A New Operation Suggested by DNA Biochemistry: Hairpin Lengthening

Victor Mitrana

Faculty of Mathematics and Computer Science University of Bucharest, Romania mitrana@fmi.unibuc.ro and

Department of Information Systems Polytechnic University of Madrid, Spain victor.mitrana@upm.es

Contents

Source of inspiration: DNA biochemistry Hairpin completion

- non-iterated
- language theoretical properties
- algorithmic properties
- iterated
- language theoretical properties
- algorithmic properties
- open problems

Variants:

- Bounded hairpin completion
- Hairpin lengthening
- Reductions

DNA (deoxyribonucleic acid)

Watson \& Crick (1953): Nature 25: 737-738 Mblecul ar Structure of Nucl ei c Acids: a structure for deoxyri bose nucl ei c aci d. Nobel Prize, 1962.

DNA structure (I)

DNA sequences consist of

- A, C, G, T

Nucleotide:

- purine or pyrimidine base
- deoxyribose sugar
- phosphate group

Purine bases
- A(denine), G(uanine)

Pyrimidine bases

- C(ytosine), T(hymine)

DNA structure (II)

(9) 2007 Encyclopedia Britannica, Inc.

Abstract SS pol ynucl eotide

$5^{\prime} \mathrm{G} \rightarrow \mathrm{T} \rightarrow \mathrm{A} \rightarrow \mathrm{A} \rightarrow \mathrm{A} \rightarrow \mathrm{G} \rightarrow \mathrm{T} \rightarrow \mathrm{C} \rightarrow \mathrm{C} \rightarrow \mathrm{C} \rightarrow \mathrm{G} \rightarrow \mathrm{T} \rightarrow \mathrm{T} \rightarrow \mathrm{A} \rightarrow \mathrm{G} \rightarrow \mathrm{C} 3^{\prime}$

Abstract DS pol ynucl eoti de

5' $\mathrm{G} \rightarrow \mathrm{T} \rightarrow \mathrm{A} \rightarrow \mathrm{A} \rightarrow \mathrm{A} \rightarrow \mathrm{G} \rightarrow \mathrm{T} \rightarrow \mathrm{C} \rightarrow \mathrm{C} \rightarrow \mathrm{C} \rightarrow \mathrm{G} \rightarrow \mathrm{T} \rightarrow \mathrm{T} \rightarrow \mathrm{A} \rightarrow \mathrm{G} \rightarrow \mathrm{C} 3^{\prime}$

Melting and annealing

Lengthening DNA

- DNA polyrrerase enzyres add nucl eotides to a DNA nol ecule

Requi rements

- si ngl e-stranded templ ate
' pri mer,
- bonded to the templ ate
- 3'-hydroxyl end available for ext ensi on

DNA as a computing tool

PCR : Polymerase Chain Reaction

30-40 cycles of 3 steps :

Step 1 : denaturation
1 minut $94^{\circ} \mathrm{C}$

Step 2 : annealing
45 seconds $54^{\circ} \mathrm{C}$
forward and reverse primers !!!

Step 3 : extension

2 minutes $72^{\circ} \mathrm{C}$ only dNTP's

DNA as a computing tool

DNA Amplification Using Polymerase Chain Reaction

[^0]
DNA as a computing tool

Solving problems with hairpin (I)

(a)

Solving problems with hairpin (II)

The CNF-SAT problem is to find Boolean value assignments that satisfy the given formula in the conjunctive normal form.

$$
\begin{gathered}
\mathrm{F}=\mathrm{C}_{1} \wedge \mathrm{C}_{2} \wedge \ldots \mathrm{C}_{\mathrm{n}} \\
\mathrm{~F}=(\mathrm{a} \vee \mathrm{~b}) \wedge(\neg \mathrm{a} \vee \neg \mathrm{c}) \wedge(\neg \mathrm{b} \vee \neg \mathrm{c}) \\
\mathrm{b} \neg \mathrm{a} \mathrm{c}, \mathrm{a} \neg \mathrm{c}, \mathrm{a} \neg \mathrm{a} \neg \mathrm{~b}
\end{gathered}
$$

Hairpin completion (I)

$\operatorname{HCS}_{k}(w)=\left\{w \nu\left|w=\gamma \alpha \beta \underline{\alpha},|\alpha|=k, \alpha, \beta \in V^{+}, \gamma \in V^{*}\right\}\right.$

Hairpin completion (II)

$\mathbf{H C P}_{k}(\mathbf{w})=\left\{\chi w\left|w=\alpha \beta \underline{\alpha} \gamma,|\alpha|=k, \alpha, \beta \in V^{+}, \gamma \in V^{*}\right\}\right.$

Non-iterated hairpin completion (I)

k-hairpin completion $\mathrm{HC}_{k}(w)=\operatorname{HCS}_{k}(w) \cup \mathrm{HCP}_{k}(w)$

hairpin completion

$$
\mathbf{H C}(w)=\bigcup_{k \geq 1} \mathbf{H C}_{k}(w)
$$

$H C_{k}(L)=\bigcup \mathrm{HC}_{k}(w)$
$w \in L$

HC $(L)=\bigcup$ HC (w)
$w \in L$

Non-iterated hairpin completion (II)

Theorem. (Cheptea, Martin-Vide, Mitrana (2006)) For any integer $k \geq 1, L I N=W C O D\left(H C_{k}(R E G)\right)$

Corollary. The hairpin completion of a regular language is not necessarily regular but always linear.

$$
L_{k}=\left\{a^{n} b^{k} c \underline{b^{k}} \mid n \geq 1\right\}
$$

Non-iterated hairpin completion (III)

Given L is it decidable whether or not $\mathrm{HC}_{\mathrm{k}}(\mathrm{L})$ is regular?
Theorem. (Diekert, Kopecki, Mitrana (2009))
It is decidable whether or not the hairpin completion of a regular language is still regular.

Remarks:

1. The problem concern subclasses of linear contextfree languages.
2. Quite technical proof (approx. 10 pages long)
3. A polynomial time algorithm.
4. Exponential gap between the size of a DFA for L and a NFA for $\mathrm{HC}_{k}(\mathrm{~L})$

$$
L_{n}=\left\{b v \underline{a}^{k} b a^{k} \mid v \in\{a, b\}^{n}\right\}
$$

Non-iterated hairpin completion (IV)

Theorem. (Diekert, Kopecki, Mitrana (2011)) Let L be a regular language accepted by a DFA with n states. Then:

1. The regularity of $\mathrm{HCP}_{\mathrm{k}}(L)$ is decidable in $O\left(n^{2}\right)$ time.
2. The regularity of $\mathrm{HC}_{\mathrm{k}}(L)$ is decidable in $O\left(n^{6}\right)$ time.

Non-iterated hairpin completion (V)

A class of mildly context-sensitive of languages \boldsymbol{F} :
(i) All regular/context-free languages belong to \boldsymbol{F}.
(ii) Each language in \boldsymbol{F} has a constant growth/is semilinear.
(iii) Each language in \boldsymbol{F} has the membership in \mathbf{P}.
(iii) \boldsymbol{F} contains the following three non-context-free languages:

- multiple agreements: $\mathrm{L}_{1}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$;
- crossed agreements: $L_{2}=\left\{a^{n} b^{m} C^{n} d^{m} \mid n, m \geq 1\right\}$, and
- duplication: $\mathrm{L}_{3}=\left\{\mathrm{ww} \mid \mathrm{w} \in\{\mathrm{a}, \mathrm{b}\}^{+}\right\}$.

Linear indexed grammars, Tree adjoining grammars Head grammars, Combinatory categorial grammars

Theorem. (Manea, Mitrana, Yokomori (2009)) For any integer $k \geq 1, \mathrm{WCOD}_{\left(\mathrm{HC}_{k}\right.}(\mathrm{LIN})$) is a family of mildly context-sensitive languages.

Non-iterated hairpin completion (VI)

A language L over V is called k-locally testable in the strict sense (k-LTSS for short) if there exists a triple $\mathrm{S}_{\mathrm{k}}=(A ; B ; C)$ such that for any $w \in V^{*}$ with $|w| \geq k$, $w \in \operatorname{Liff}\left[\operatorname{Pref}_{k}(w) \in A ; \operatorname{Suff}_{k}(w) \in B ; \operatorname{Inf}_{k}(w) \in C\right]$

Proposition. (Manea, Mitrana, Yokomori (2008)) For any given $k>1, R E G \subseteq W C O D\left(H_{k}(k-L T S S)\right)$.

Converse: $L=\left\{a^{n} c^{k} \quad b \underline{c^{k}} \mid n \geq 1\right\}$.

$$
H C_{k}(L)=\left\{a^{n} c^{k} b \underline{c^{k} a^{n}} \mid n \geq 1\right\} .
$$

Non-iterated hairpin completion (VII)

A k-LTSS language L is center-disjoint if there exists a triple $S_{k}=(A ; B ; C)$ such that $L=L\left(S_{k}\right)$ and

$$
\left(\left(A^{-1} L\right) B^{-1}\right) \cap(\underline{A} \cup \underline{B})=\varnothing \text {. }
$$

Proposition. (Manea, Mitrana, Yokomori (2008)) For any $k>1$ and center-disjoint k-LTSS language L, the morphic image of $\mathrm{HC}_{k}(L)$ is regular.

Theorem. For any $\boldsymbol{k}>1$, REG is exactly the class of weak-code images of the k-hairpin completion of center-disjoint k-LTSS languages.

Non-iterated hairpin completion (VIII)

Theorem. (Cheptea, Martin-Vide, Mitrana (2006)) 1. $\operatorname{NSPACE}(f(n))$, where $f(n) \geq \log n$ is a space-constructible function, is closed under hairpin completion.
2. P is closed under hairpin completion.

If L is recognizable in $O(f(n))$ time, then $\mathrm{HC}_{k}(L)$ is recognizable in $O(n f(n))$ time.

Non-iterated hairpin completion (IX)

Non-iterated hairpin completion (X)

Partial answer: (Manea, Martin-Vide, Mitrana (2006)) Hairpin completion of regular languages are recognizable In linear time.

Input: $A=\left(Q, V, \delta, q_{0}, F\right), Q=\{0,1, \ldots, p\}$
$m[0]:=0$;
for $\boldsymbol{t}=1$ to n

$$
\begin{aligned}
& m[t]:=\delta(m[t-1], w[t]) ; \\
& a[t]:=(m[t] \in F) ;
\end{aligned}
$$

endfor

Non-iterated hairpin completion (XI)

Non-iterated hairpin completion (XII)

Partial answer: (Manea, Martin-Vide, Mitrana (2006)) Hairpin completion of context-free languages are recognizable in cubic time.

Input: $G=(N, T, S, P)$ in the Chomsky normal form

Cocke-Younger-Kasami Algorithm

$$
\begin{aligned}
& m[i][j]:=\left\{A \in N \mid A \Rightarrow^{*} w[i . . j]\right\} ; \\
& a[t]:=(S \in m[1][t]) ;
\end{aligned}
$$

Iterated hairpin completion (I)

$$
\begin{gathered}
\mathbf{H C}_{\mathbf{k}}{ }^{0}(w)=\{w\}, \\
\mathrm{HC}_{\mathbf{k}}{ }^{\mathrm{n}+1}(w)=\mathrm{HC}_{\mathbf{k}}\left(\mathrm{HC}_{\mathbf{k}}{ }^{\mathrm{n}}(w)\right) \\
\mathrm{HC}_{\mathbf{k}}{ }^{*}(w)=\bigcup_{n \geq 0} \mathrm{HC}_{\mathbf{k}}{ }^{\mathrm{n}}(w) \\
\mathrm{HC}_{\mathbf{k}}{ }^{*}(L)=\bigcup_{w \in L} \mathrm{HC}_{\mathbf{k}}{ }^{\mathrm{n}}(w)
\end{gathered}
$$

Iterated hairpin completion (II)

Theorem. (Cheptea, Martin-Vide, Mitrana (2006)) For any $k \geq 1$, the iterated \boldsymbol{k}-hairpin completion of a regular language is not necessarily context-free.

$$
L=\left\{a^{k} b \underline{a}^{k} c^{n} \underline{a}^{k} \mid n \geq 1\right\}
$$

$\mathrm{HC}_{\mathrm{k}}{ }^{*}(L) \cap\left\{a^{k}{\underline{C^{n}}}^{n} \underline{\underline{c}}^{m} a^{k} \underline{b} \underline{a}^{k} c^{p} \underline{\underline{a}}^{k} \mid n, m, p \geq 1\right\}=$

$$
\left\{a^{k}{\underline{c^{n}}}^{n} \underline{a}^{k} a^{n} \underline{b}^{k} \underline{a}^{k} \underline{c}^{n} \underline{a}^{k} \mid n \geq 1\right\}
$$

Iterated hairpin completion (III)

Theorem. (Cheptea, Martin-Vide, Mitrana (2006))

 $\operatorname{NSPACE}(f(n))$, where $f(n) \geq \log n$ is a space-constructible function, is closed under iterated hairpin completion.Function Membership $\left(x, \mathrm{HC}_{\mathrm{k}}{ }^{*}(L)\right.$);
Membership:= false;
if $x \in L$ then Membership:= true; endif; halt;
if $(|x| \leq 2 k)$ and $(x \notin L)$ then halt; endif;
choose nondeterministically a decomposition
$x=\gamma \alpha \beta \alpha^{R} \gamma^{R}$, with $|\beta \gamma| \geq 1$ and $|\alpha|=k$;
if (Membership $\left(\gamma \alpha \beta \underline{\alpha^{R}}, \mathrm{HC}_{\mathrm{k}}{ }^{*}(L)\right)$ or Membership $\left(\alpha \beta \alpha^{R} \gamma^{R}, \mathrm{HC}_{\mathrm{k}}{ }^{*}(L)\right)$ then Membership:= true; halt; endif;

Iterated hairpin completion (IV)

Theorem. (Manea, Martin-Vide, Mitrana (2006)) If L is recognizable in $O(f(n))$ time, then $\mathrm{HC}_{k}{ }^{*}(L)$ is recognizable in $O\left(n^{2} f(n)\right)$ time.

Iterated hairpin completion (V)

if $n \leq 2 k+2$ then if $w \in L$ then Output YES; else Output NO; endif; halt; for $i=1$ to $n-2 k$
for $j=i+2 k$ to n
if $w[i, j] \in L$ then $m[i][j]:=1$; endif;
endfor;
endfor;
for $l=2 k+3$ to n

$$
\text { for } i=1 \text { to } n-l+1
$$

$j:=i+l-1 ; p:=0$;
for $t=i$ to $i+[(l-1) / 2]-1$
if $w[t]=w[j-t+i]$ then $p:=p+1$ else exit; endif; endfor; if $p \geq k+1$ then for $t=1$ to $p-k$ if $(m[i][j-t]=1)$ or $(m[i+t][j]=1)$ then $m[i][j]:=1$; endif; endfor;
endif;
endfor:
endfor; if $m[1][n]=1$ then Output YES else Output NO; endif;

Iterated hairpin completion (VI)

Can we do it better?

Yes

1. $P[i][j]=\max (\{t \mid w[i . . i+t-1]=w[j-t+1 . . j]\} \cup\{0\}), j-i \geq 2 k$
for $p=2$ to $n-2 k+1$
i
$i:=p-1 ; j:=p+2 k-1$;
while $(i \geq 1) \&(j \leq n)$
if $w[i]=w[j]$ then $P[i][j]:=P[i+1][j-1]+1$; endif; $i:=i-1 ; j:=j+1$;
endwhile;
$i:=p-1 ; j:=p+2 k ;$
while $(i \geq 1) \&(j \leq n)$

$$
\begin{aligned}
& \text { if } w[i]=w[j] \text { then } P[i][j]:=P[i+1][j-1]+1 \text {; endif; } \\
& i:=i-1 ; j:=j+1 \text {; }
\end{aligned}
$$

endwhile;
endfor;

Iterated hairpin completion (VII)

2. $\operatorname{right}[i]:=$ the greatest p, such that $w[i . . p] \in\left(L \rightarrow_{k}{ }^{*}\right)$, left $[j]:=$ the least p, such that $w[p . . j] \in\left(L \rightarrow_{k}^{*}\right)$.

Initially, $\operatorname{left}[j]=i$ and $\operatorname{right}[i]=j$, for all i, j such that $w[i . . j] \in L ;$
$\operatorname{left}[j]=0$ and $\operatorname{right}[i]=n+1$, otherwise.

Iterated hairpin completion (VIII)

if $n \leq 2 k+2$ then if $w \in L$ then Output YES; else Output NO; endif; halt; for $i=1$ to $n-2 k$
for $j=i+2 k$ to n
if $w[i, j] \in L$ then $m[i][j]:=1$; endif;
endfor;
endfor;
for $l=2 k+3$ to n

$$
\text { for } i=1 \text { to } n-l+1
$$

$j:=i+l-1 ; p:=0$;
for $t=i$ to $i+[(l-1) / 2]-1$
if $w[t]=w[j-t+i]$ then $p:=p+1$ else exit; endif; endfor; if $p \geq k+1$ then for $t=1$ to $p-k$ if $(m[i][j-t]=1)$ or $(m[i+t][j]=1)$ then $m[i][j]:=1$; endif; endfor;
endif;
endfor:
endfor; if $m[1][n]=1$ then Output YES else Output NO; endif;

Iterated hairpin completion (IX)

if $n \leq 2 k+2$ then if $w \in L$ then Output YES; else Output NO; endif; halt; for $i=1$ to $n-2 k$
for $j=i+2 k$ to n
if $w[i, j] \in L$ then $m[i][j]:=1$; endif;
endfor;
endfor;
Compute P;
for $l=2 k+3$ to n
for $i=1$ to $n-l+1$
$j:=i+l-1$;
if $(j>\operatorname{right}[i] \geq j-P[i][j]+1+k)$ then $m[i][j]:=1$; left $[j]=i$; $\operatorname{right}[i]=j$; endif;
if $(i<l e f t[j] \leq i+P[i][j]-1-k)$ then $m[i][j]:=1$; left $[j]=i$; $\operatorname{right}[i]=j$; endif;
endfor;
endfor; if $m[1][n]=1$ then Output YES else Output NO; endif;

Iterated hairpin completion (X)

if $n \leq 2 k+2$ then if $w \in L$ then Output YES; else Output NO; endif; halt;
$\boldsymbol{O}\left(\boldsymbol{n}^{3}\right)$ for context-free languages/ $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ for regular languages

Compute P;
for $l=2 k+3$ to n
for $i=1$ to $n-l+1$
$j:=i+l-1$;
if $(j>\operatorname{right}[i] \geq j-P[i][j]+1+k)$ then $m[i][j]:=1$; left $[j]=i$; $\operatorname{right}[i]=j$; endif;
if $(i<$ left $[j] \leq i+P[i][j]-1-k)$ then $m[i][j]:=1$; left $[j]=i$; $\operatorname{right}[i]=j$; endif;
endfor;
endfor; if $m[1][n]=1$ then Output YES else Output NO; endif;

Iterated hairpin completion (XI)

What kind of language is $\mathrm{HC}_{\mathrm{k}}{ }^{*}(w)$?
(i) It is in NL
(ii) It contains non-context-free languages [Kopecki, 2011]

$$
\mathbf{w}=\mathbf{a}^{\mathbf{k}} \mathbf{b} \mathbf{a}^{\mathbf{k}} \underline{\mathbf{a}}^{\mathbf{k}} \mathbf{a}^{\mathbf{k}} \mathbf{c} \underline{\mathbf{a}}^{\mathbf{k}}
$$

Theorem. (Manea, Mitrana, Yokomori (2008))
Let $k \geq 1$. The following problems are decidable for this class:

1. The membership problem is decidable in quadratic time.
2. The inclusion is decidable in quadratic time.
3. The equivalence problem is decidable in linear time. 4. The finiteness is decidable in linear time.

Iterated hairpin completion (XII)

Is the regularity of $\mathrm{HC}_{\mathrm{k}}{ }^{*}(w)$ decidable?
Theorem. (Kari, Kopecki, Seki (2012)) For every non-crossing word w, it is algorithmically decidable whether $\mathrm{HC}_{\boldsymbol{k}}{ }^{*}(w)$ is regular.

Theorem. (Shikishima-Tsuji (2015))
For every crossing (2,2)-word w, it is algorithmically decidable whether $\mathrm{HC}_{k}{ }^{*}(w)$ is regular.

Iterated hairpin completion:
 Open problems

1. Is the \boldsymbol{n}^{2} factor needed ?

Other classes for which it is not needed ?
2. Is n^{2} optimal for the regular case ?
3. Is it decidable whether or not the iterated k hairpin completion of a given regular language is still regular?
4. Given two words x and y, can one decide whether $H C_{k}(x) \cap H C_{k}(y) \neq \varnothing$?
5. Is the regularity of $\mathbf{H C}_{\mathbf{k}}{ }^{*}(w)$ decidable for every word w ?

Hairpin completion distance

$H D_{k}(x, y)=\min \left\{p \mid y \in\left(x \rightarrow_{k}^{p}\right)\right.$ or $\left.x \in\left(y \rightarrow_{k}^{p}\right)\right\}$ $H D_{k}(L, y)=\min \left\{p \mid y \in\left(L \rightarrow_{k}^{p}\right)\right\}$

1. Given x, y, k compute $H D_{k}(x, y)$
2. Given L, y, k compute $H D_{k}(L, y)$

Solution: dynamic programming

1. $O\left(\max \left(n^{2} \log n\right), n=\max (|x|,|y|)\right.$
2. $O\left(|y|^{2} f(|y|)\right)$

Better?

Bounded hairpin completion

Ito, Leupold, Mitrana (2009),

Ito, Leupold, Manea, Mitrana (2011).
$p H C S_{k}(w)=\left\{w \gamma\left|w=\gamma \alpha \beta \underline{\alpha},|\alpha|=k, \alpha, \beta \in V^{+},|\gamma| \leq p\right\}\right.$
$p \mathbf{H C P}_{k}(\mathbf{w})=\left\{\chi w\left|w=\alpha \beta \underline{\alpha} \gamma,|\alpha|=k, \alpha, \beta \in V^{+},|\gamma| \leq p\right\}\right.$
\boldsymbol{p}-bounded \boldsymbol{k}-hairpin completion $p \mathrm{HC}_{k}(w)=p \mathrm{HCS}_{k}(w) \cup p \mathrm{HCP}_{k}(w)$

Hairpin lengthening

Manea, Martin-Vide, Mitrana $(2010,2012)$

Manea, Mercas, Mitrana (2012)
$\operatorname{HLS}_{k}(\mathrm{w})=\left\{w \underline{\delta}\left|w=\gamma \alpha \beta \underline{\alpha},|\alpha|=k, \alpha, \beta \in V^{+}, \delta\right.\right.$ is a suffix of $\gamma\}$
$\operatorname{HLP}_{k}(\mathbf{w})=\left\{\underline{\delta} w\left|w=\alpha \beta \underline{\alpha} \gamma,|\alpha|=k, \alpha, \beta \in V^{+}, \delta\right.\right.$ is a prefix of $\gamma\}$
k-hairpin lengthening
$\operatorname{HL}_{k}(w)=\operatorname{HLS}_{k}(w) \cup \operatorname{HLP}_{k}(w)$

Reductions

$\operatorname{HRS}_{k}(w)=\left\{\gamma \alpha \underline{\beta}|w=\gamma \alpha \beta \underline{\alpha} \nu| \alpha \mid=k, \alpha, \beta \in V^{+}, \gamma \in V^{*}\right\}$
$\mathbf{H R P}_{k}(\mathrm{w})=\left\{\alpha \beta \underline{\alpha} \gamma\left|w=\mathcal{\nu} \alpha \beta \underline{\alpha} \gamma,|\alpha|=k, \alpha, \beta \in V^{+}, \gamma \in V^{*}\right\}\right.$ $H_{k}(w)=\operatorname{HRS}_{k}(w) \cup \operatorname{HRP}_{k}(\mathbf{w})$

- formal operation on languages
- distances
- hairpin root of a word/language
M. Ito, P. Leupoldt, F. Manea, C. Martin-Vide, V. Mitrana

Thank You

[^0]: Source: DNA Science, see Fig. 13

