## A New Operation Suggested by DNA Biochemistry: Hairpin Lengthening

#### **Victor Mitrana**

Faculty of Mathematics and Computer Science University of Bucharest, Romania mitrana@fmi.unibuc.ro

#### and

Department of Information Systems Polytechnic University of Madrid, Spain victor.mitrana@upm.es

## Contents

#### Source of inspiration: DNA biochemistry Hairpin completion

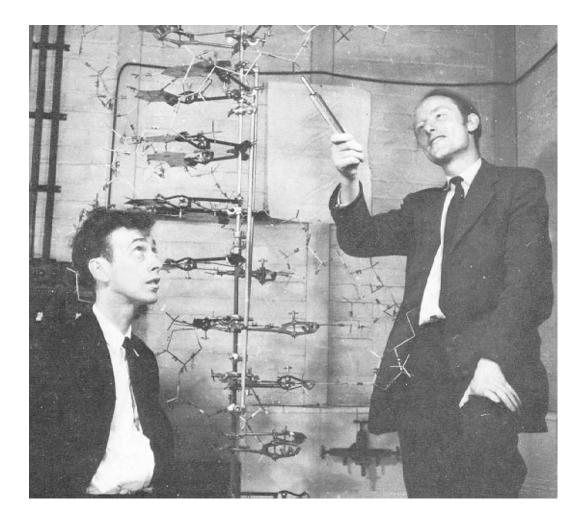
- non-iterated
  - language theoretical properties
  - algorithmic properties
- iterated
  - language theoretical properties
  - algorithmic properties
  - open problems

Variants:

- Bounded hairpin completion
- Hairpin lengthening
- Reductions

#### **DNA** (<u>d</u>eoxyribo<u>n</u>ucleic <u>a</u>cid)

Watson & Crick (1953): *Nature* 25: 737-738 Molecular Structure of Nucleic Acids: a structure for deoxyribose nucleic acid. Nobel Prize, 1962.



#### **DNA structure (I)**

DNA sequences consist ofA, C, G, T

#### Nucleotide:

- purine or pyrimidine base
- deoxyribose sugar
- phosphate group

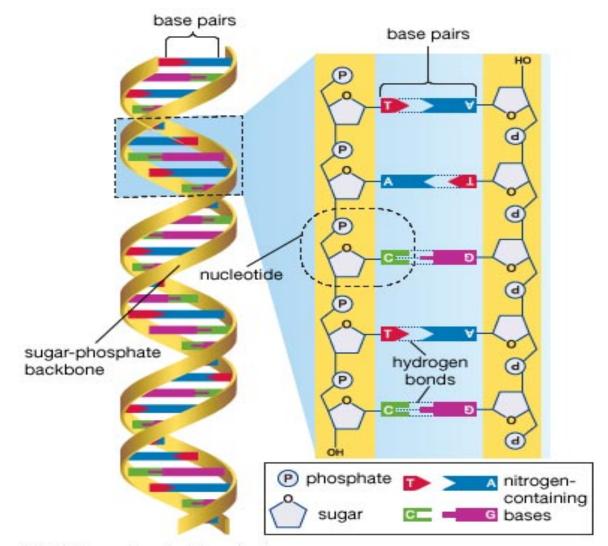
#### **Purine bases**

• A(denine), G(uanine)

#### **Pyrimidine bases**

C(ytosine), T(hymine)

#### **DNA structure (II)**



© 2007 Encyclopædia Britannica, Inc.

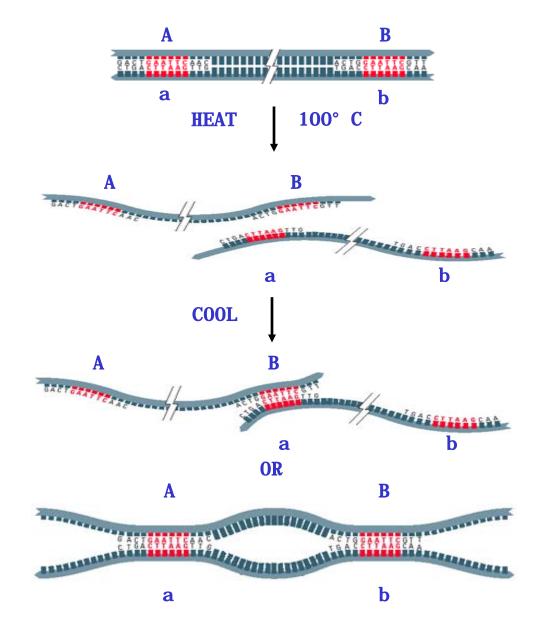
## Abstract SS polynucleotide

#### 5' $G \rightarrow T \rightarrow A \rightarrow A \rightarrow G \rightarrow T \rightarrow C \rightarrow C \rightarrow C \rightarrow G \rightarrow T \rightarrow T \rightarrow A \rightarrow G \rightarrow C$ 3'

## Abstract DS polynucleotide



## **Melting and annealing**

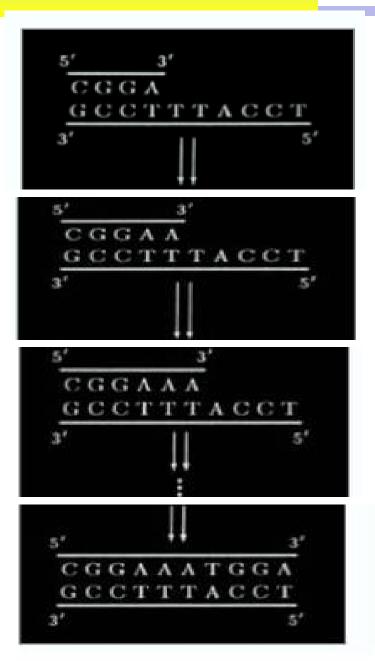


#### **Lengthening DNA**

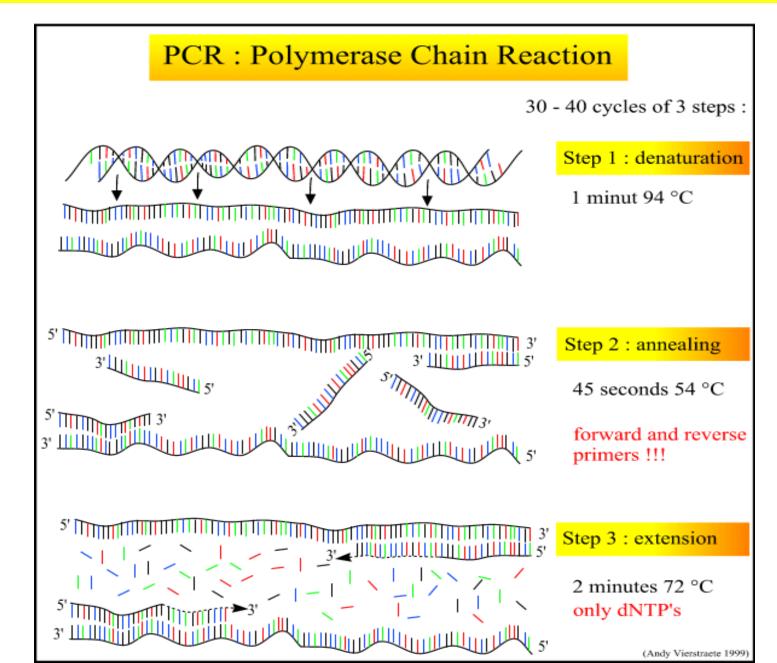
> DNA polymerase enzymes add nucleotides to a DNA molecule

#### **Requi rements**

- single-stranded template
- primer,
- bonded to the template
- 3'- hydroxyl end available for extension



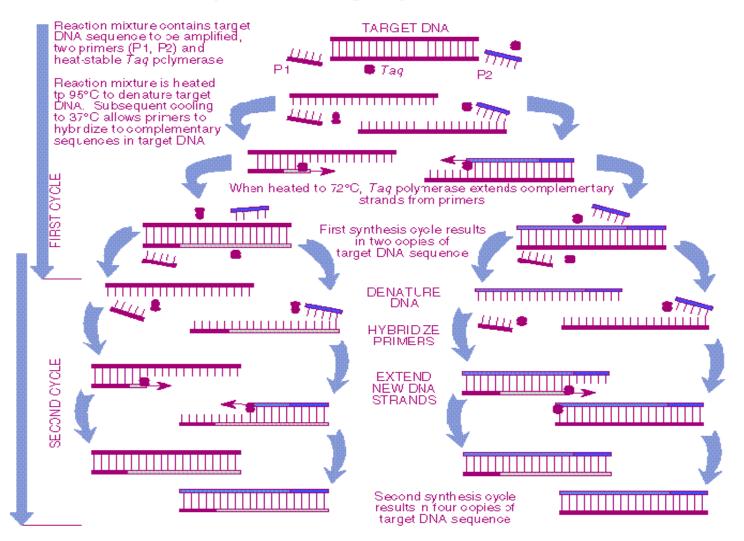
## **DNA** as a computing tool



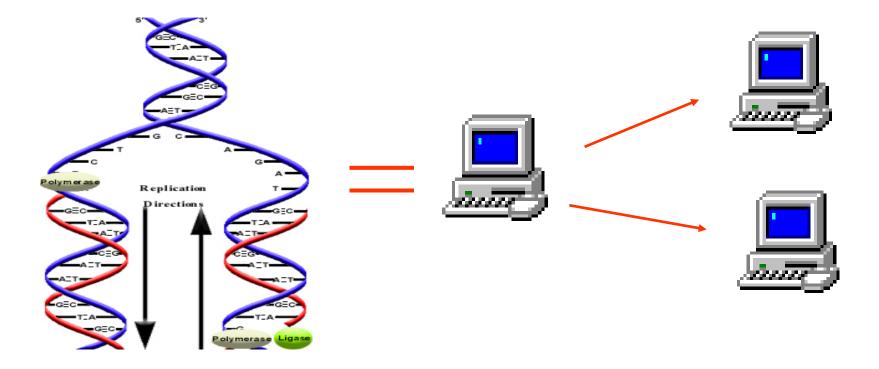
#### **DNA** as a computing tool

ORNL-DWG 91M-17476

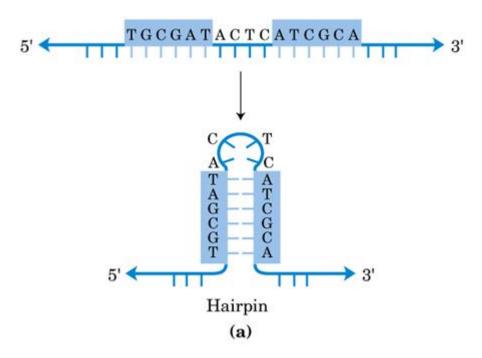
#### **DNA Amplification Using Polymerase Chain Reaction**



#### **DNA** as a computing tool



#### **Solving problems with hairpin (I)**

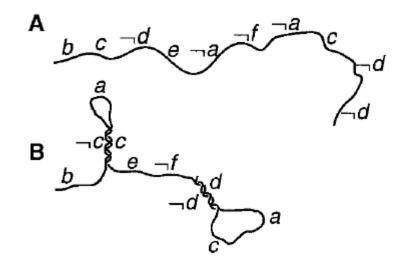


#### **Solving problems with hairpin (II)**

The CNF-SAT problem is to find Boolean value assignments that satisfy the given formula in the conjunctive normal form.

$$F = C_1 \land C_2 \land \dots C_n$$

$$F=(a \lor b) \land (\neg a \lor \neg c) \land (\neg b \lor \neg c)$$
$$b \neg a c, a \neg c, a \neg a \neg b$$



#### Hairpin completion (I)

## 

 $\operatorname{HCS}_{k}(\mathbf{w}) = \{ w \underline{\gamma} \mid w = \gamma \alpha \beta \underline{\alpha}, \ |\alpha| = k, \ \alpha, \beta \in V^{+}, \ \gamma \in V^{*} \}$ 

#### **Hairpin completion (II)**

## 

 $\operatorname{HCP}_{k}(\mathbf{w}) = \{ \underline{\gamma} w \mid w = \alpha \beta \underline{\alpha} \gamma, |\alpha| = k, \alpha, \beta \in V^{+}, \gamma \in V^{*} \}$ 

#### **Non-iterated hairpin completion (I)**

## *k*-hairpin completion $HC_k(w) = HCS_k(w) \cup HCP_k(w)$

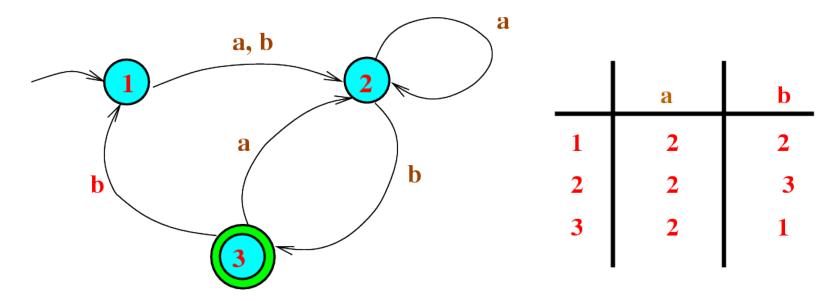
hairpin completion  $HC(w) = \bigcup HC_k(w)$  $k \ge l$ 

 $\operatorname{HC}_{k}(L) = \bigcup \operatorname{HC}_{k}(w)$ 

 $HC(L) = \bigcup HC(w)$ 

#### **Non-iterated hairpin completion (II)**

**Theorem.** (Cheptea, Martin-Vide, Mitrana (2006)) For any integer  $k \ge 1$ , LIN = WCOD(HC<sub>k</sub>(REG))



**Corollary.** The hairpin completion of a regular language is not necessarily regular but always linear.

$$L_k = \{a^n b^k c \underline{b^k} \mid n \ge 1\}$$

Given L is it decidable whether or not  $HC_k(L)$  is regular?

**Theorem.** (Diekert, Kopecki, Mitrana (2009)) It is decidable whether or not the hairpin completion of a regular language is still regular.

#### **Remarks:**

- 1. The problem concern subclasses of linear contextfree languages.
- 2. Quite technical proof (approx. 10 pages long)
- **3.** A polynomial time algorithm.
- 4. Exponential gap between the size of a DFA for L and a NFA for  $HC_k(L)$

$$L_n = \{ bv \underline{a^k} \ ba^k \mid v \in \{a, b\}^n \}$$

## **Non-iterated hairpin completion (IV)**

**Theorem.** (Diekert, Kopecki, Mitrana (2011)) Let *L* be a regular language accepted by a DFA with *n* states. Then:

- 1. The regularity of  $HCP_k(L)$  is decidable in  $O(n^2)$  time.
- 2. The regularity of  $HC_k(L)$  is decidable in  $O(n^6)$  time.

#### **Non-iterated hairpin completion (V)**

- A class of *mildly context-sensitive of languages F*:
- (i) All regular/context-free languages belong to *F*.
- (ii) Each language in F has a constant growth/is semilinear.
- (iii) Each language in F has the membership in P.
- (iii) F contains the following three non-context-free languages:
- multiple agreements:  $L_1 = \{a^n b^n c^n \mid n \ge 1\};$
- crossed agreements:  $L_2 = \{a^n b^m c^n d^m \mid n, m \ge 1\}$ , and
- duplication:  $L_3 = \{ww | w \in \{a,b\}^+\}.$

Linear indexed grammars, Tree adjoining grammars Head grammars, Combinatory categorial grammars

**Theorem.** (Manea, Mitrana, Yokomori (2009)) For any integer  $k \ge 1$ , WCOD(HC<sub>k</sub>(LIN)) is a family of mildly context-sensitive languages.

#### **Non-iterated hairpin completion (VI)**

A language *L* over *V* is called *k*-locally testable in the strict sense (*k*-LTSS for short) if there exists a triple  $S_k = (A;B;C)$  such that for any  $w \in V^*$  with  $|w| \ge k$ ,  $w \in L$  iff [Pref<sub>k</sub> (w)  $\in A$ ; Suff<sub>k</sub> (w)  $\in B$ ; Inf<sub>k</sub> (w)  $\in C$ ]

**Proposition.** (Manea, Mitrana, Yokomori (2008)) For any given k > 1, REG  $\subseteq$  WCOD(HC<sub>k</sub>(*k*-LTSS)).

Converse: 
$$L = \{a^n c^k \ b \ \underline{c^k} | n \ge 1 \}$$

$$HC_k(L) = \begin{cases} a^n c^k & b \underline{c^k a^n} & n \ge 1 \end{cases}$$

#### **Non-iterated hairpin completion (VII)**

A *k*-*LTSS* language *L* is *center-disjoint* if there exists a triple  $S_k = (A;B;C)$  such that  $L = L(S_k)$  and

 $((A^{-1} L)B^{-1}) \cap (\underline{A} \cup \underline{B}) = \emptyset.$ 

**Proposition.** (Manea, Mitrana, Yokomori (2008)) For any k > 1 and center-disjoint k-LTSS language *L*, the morphic image of  $HC_k(L)$  is regular.

**Theorem.** For any *k* > 1, REG is exactly the class of weak-code images of the k-hairpin completion of center-disjoint k-LTSS languages.

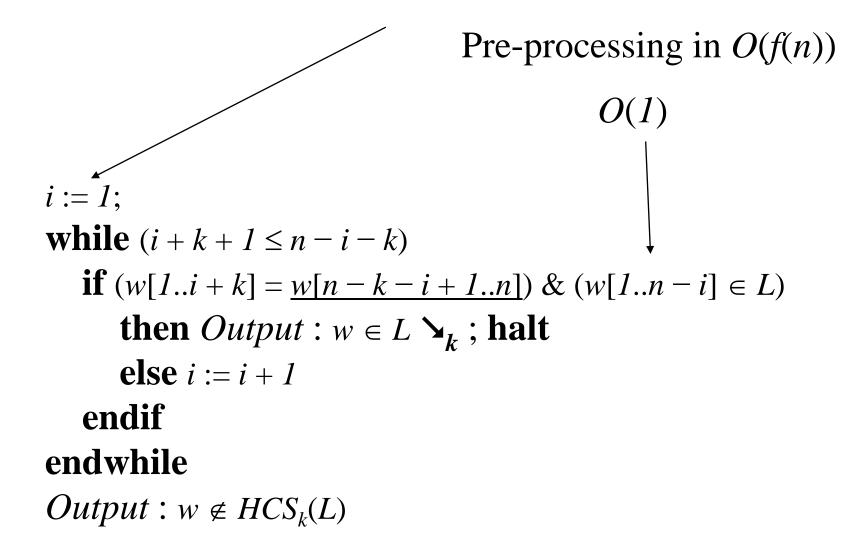
#### **Non-iterated hairpin completion (VIII)**

**Theorem**. (Cheptea, Martin-Vide, Mitrana (2006)) 1. NSPACE(f(n)), where  $f(n) \ge \log n$  is a space-constructible function, is closed under hairpin completion.

2. P is closed under hairpin completion.

If L is recognizable in O(f(n)) time, then  $HC_k(L)$  is recognizable in O(nf(n)) time.

#### **Non-iterated hairpin completion (IX)**



#### Is the n factor needed?

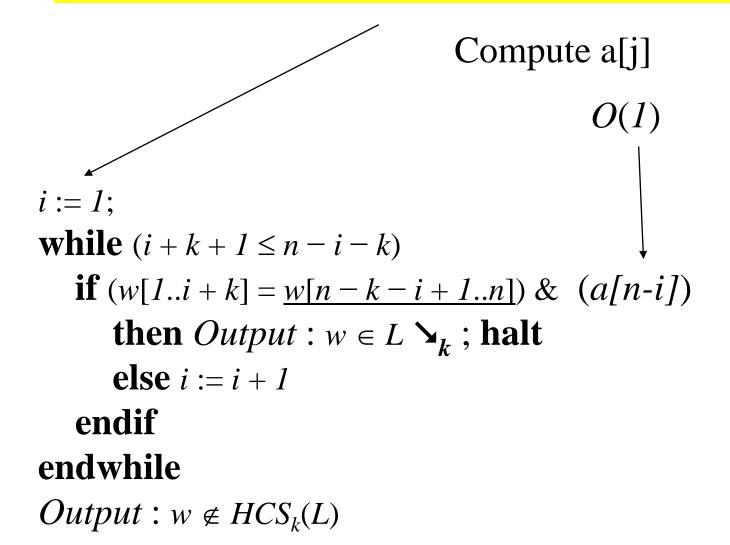
### **Non-iterated hairpin completion (X)**

**Partial answer:** (Manea, Martin-Vide, Mitrana (2006)) Hairpin completion of regular languages are recognizable In linear time.

Input: 
$$A = (Q, V, \delta, q_0, F), Q = \{0, 1, ..., p\}$$

m[0]:=0; **for** t=1 **to** n  $m[t]:=\delta (m[t-1],w[t]);$   $a[t]:=(m[t] \in F);$ **endfor** 

#### **Non-iterated hairpin completion (XI)**



## **Non-iterated hairpin completion (XII)**

**Partial answer:** (Manea, Martin-Vide, Mitrana (2006)) Hairpin completion of context-free languages are recognizable in cubic time.

*Input:* G = (N, T, S, P) in the Chomsky normal form

#### Cocke-Younger-Kasami Algorithm

$$m[i][j]:=\{A \in N / A \Longrightarrow^* w[i..j]\};$$
  
$$a[t]:=(S \in m[1][t]);$$

#### **Iterated hairpin completion (I)**

$$\mathbf{HC}_{\mathbf{k}}^{0}(w) = \{w\},\$$

$$\mathbf{HC}_{k}^{n+1}(w) = \mathbf{HC}_{k}(\mathbf{HC}_{k}^{n}(w))$$

$$\operatorname{HC}_{k}^{*}(w) = \bigcup_{n \ge 0} \operatorname{HC}_{k}^{n}(w)$$

$$\operatorname{HC}_{k}^{*}(L) = \bigcup_{w \in L} \operatorname{HC}_{k}^{n}(w)$$

#### **Iterated hairpin completion (II)**

**Theorem**. (Cheptea, Martin-Vide, Mitrana (2006)) For any  $k \ge 1$ , the iterated k-hairpin completion of a regular language is not necessarily context-free.

$$L = \{a^k b \underline{a^k} c^n \underline{a^k} \mid n \ge 1\}$$

 $\operatorname{HC}_{k}^{*}(L) \cap \{a^{k}\underline{c^{n}}a^{k}\underline{c^{m}}a^{k}b\underline{a^{k}}c^{p}\underline{a^{k}} \mid n,m, \, p \geq l\} =$ 

 $\{a^k\underline{c^n}a^k\underline{c^n}a^kb\underline{a^k}c^n\underline{a^k} \mid n \ge 1\}.$ 

#### **Iterated hairpin completion (III)**

**Theorem**. (Cheptea, Martin-Vide, Mitrana (2006)) NSPACE(f(n)), where  $f(n) \ge \log n$  is a space-constructible function, is closed under iterated hairpin completion.

**Function** Membership(x, HC<sub>k</sub><sup>\*</sup>(L)); Membership:= **false**; **if**  $x \in L$  **then** Membership:= **true**; **endif**; **halt**; **if** ( $|x| \leq 2k$ ) **and** ( $x \notin L$ ) **then halt**; **endif**; choose nondeterministically a decomposition

$$x = \gamma \alpha \beta \underline{\alpha}^R \underline{\gamma}^R$$
, with  $|\beta \gamma| \ge 1$  and  $|\alpha| = k$ ;

if (Membership( $\gamma \alpha \beta \underline{\alpha}^{R}$ , HC<sub>k</sub><sup>\*</sup>(L)) or Membership( $\underline{\alpha \beta \alpha}^{R} \gamma^{R}$ , HC<sub>k</sub><sup>\*</sup>(L)) then Membership:= true; halt; endif;

#### **Iterated hairpin completion (IV)**

#### **Theorem.** (Manea, Martin-Vide, Mitrana (2006)) If L is recognizable in O(f(n)) time, then $HC_k^{*}(L)$ is recognizable in $O(n^2f(n))$ time.

#### **Iterated hairpin completion (V)**

if  $n \le 2k+2$  then if  $w \in L$  then *Output* YES; else *Output* NO; endif; halt; for i=1 to n-2kfor j=i+2k to n if  $w[i,j] \in L$  then m[i][j] := 1; endif; endfor; endfor: for l=2k+3 to n for i=1 to n-l+1j:=i+l-1; p:=0;for t=i to i+[(l-1)/2]-1

**if** w[t]=w[j-t+i] **then** p:=p+1 **else exit**; **endif**; **endfor**;

endif;

endfor;

#### **Iterated hairpin completion (VI)**

Yes

Can we do it better?

**1**.  $P[i][j] = \max(\{t \mid w[i..i+t-1] = w[j-t+1..j]\} \cup \{0\}), j-i \ge 2k$ 

for p=2 to n-2k+1 i:=p-1; j:=p+2k-1;while  $(i \ge 1) \& (j \le n)$ 

if w[i]=w[j] then P[i][j]:=P[i+1][j-1]+1; endif; i:=i-1; j:=j+1; endwhile; i:=p-1; j:=p+2k;

**while**  $(i \ge 1) \& (j \le n)$ 

#### **Iterated hairpin completion (VII)**

2. *right[i]* := the greatest *p*, such that  $w[i..p] \in (L \rightarrow_k^*)$ , *left[j]* := the least *p*, such that  $w[p..j] \in (L \rightarrow_k^*)$ .

# Initially, left[j]=i and right[i]=j, for all i,j such that $w[i..j] \in L$ ;

*left*[*j*]=0 and *right*[*i*]=n+1, otherwise.

#### **Iterated hairpin completion (VIII)**

if  $n \le 2k+2$  then if  $w \in L$  then Output YES; else Output NO; endif; halt; for i=1 to n-2kfor j=i+2k to nif  $w[i,j] \in L$  then m[i][j]:=1; endif; endfor; endfor; for l=2k+3 to nfor i=1 to n-l+1j:=i+l-1; p:=0; for t=i to i+[(l-1)/2]-1

if w[t]=w[j-t+i] then p:=p+1 else exit; endif; endfor;

endif;

endfor;

#### **Iterated hairpin completion (IX)**

```
if n \le 2k+2 then if w \in L then Output YES; else Output NO; endif; halt;
for i=1 to n-2k
  for j=i+2k to n
   if w[i,j] \in L then m[i][j] := 1; endif;
  endfor;
endfor;
Compute P;
for l=2k+3 to n
 for i=l to n-l+l
   j:=i+l-1;
   if (j > right[i] \ge j - P[i][j] + 1 + k) then m[i][j] := 1; left[j] = i; right[i] = j;
    endif:
    if (i < left[j] \le i + P[i][j] - 1 - k) then m[i][j] := 1; left[j] = i; right[i] = j;
    endif;
```

endfor;

#### **Iterated hairpin completion (X)**

if  $n \le 2k+2$  then if  $w \in L$  then *Output* **YES**; else *Output* **NO**; endif; halt;

 $O(n^3)$  for context-free languages/ $O(n^2)$  for regular languages

*Compute P;*  **for** l=2k+3 **to** *n*  **for** i=1 **to** n-l+1j:=i+l-1;

> if (j>right[i] ≥ j - P[i][j] + 1 + k) then m[i][j]:=1; left[j]=i; right[i]=j; endif; if (i<left[j] ≤ i + P[i][j] - 1 - k) then m[i][j]:=1; left[j]=i; right[i]=j; endif;

endfor;

### **Iterated hairpin completion (XI)**

- What kind of language is  $HC_k^*(w)$ ?
- (i) It is in NL
- (ii) It contains non-context-free languages [Kopecki, 2011]  $w = a^k b a^k \underline{a^k} a^k c \underline{a^k}$

**Theorem.** (Manea, Mitrana, Yokomori (2008)) Let  $k \ge 1$ . The following problems are decidable for this class:

1. The membership problem is decidable in quadratic time.

- 2. The inclusion is decidable in quadratic time.
- 3. The equivalence problem is decidable in linear time.
- 4. The finiteness is decidable in linear time.

#### **Iterated hairpin completion (XII)**

#### Is the regularity of $HC_k^{*}(w)$ decidable?

**Theorem.** (Kari, Kopecki, Seki (2012)) For every non-crossing word w, it is algorithmically decidable whether  $HC_k^{*}(w)$  is regular.

**Theorem.** (Shikishima-Tsuji (2015)) For every crossing (2,2)-word w, it is algorithmically decidable whether  $HC_k^*(w)$  is regular.

## Iterated hairpin completion: Open problems

- Is the *n*<sup>2</sup> factor needed ?
   Other classes for which it is not needed ?
- 2. Is  $n^2$  optimal for the regular case ?
- 3. Is it decidable whether or not the iterated *k*-hairpin completion of a given regular language is still regular?
- 4. Given two words x and y, can one decide whether  $HC_k(x) \cap HC_k(y) \neq \emptyset$ ?
- 5. Is the regularity of HC<sub>k</sub><sup>\*</sup>(w) decidable for every word w?

#### Hairpin completion distance

$$HD_{k}(x,y) = \min\{p \mid y \in (x \rightarrow_{k}^{p}) \text{ or } x \in (y \rightarrow_{k}^{p})\}$$
$$HD_{k}(L,y) = \min\{p \mid y \in (L \rightarrow_{k}^{p})\}$$

Given x,y,k compute HD<sub>k</sub>(x,y)
 Given L,y,k compute HD<sub>k</sub>(L,y)

Solution: dynamic programming 1.  $O(max(n^2 \log n), n = max(|x|,|y|)$ 2.  $O(|y|^2 f(|y|))$ 

#### **Better** ?

#### **Bounded hairpin completion**

Ito, Leupold, Mitrana (2009), Ito, Leupold, Manea, Mitrana (2011).

 $pHCS_{k} (w) = \{w_{2} \mid w = \gamma \alpha \beta \underline{\alpha}, |\alpha| = k, \alpha, \beta \in V^{+}, |\gamma| \leq p\}$   $pHCP_{k} (w) = \{w_{2} \mid w = \alpha \beta \underline{\alpha} \gamma, |\alpha| = k, \alpha, \beta \in V^{+}, |\gamma| \leq p\}$  p-bounded k-hairpin completion  $pHC_{k} (w) = pHCS_{k} (w) \cup pHCP_{k} (w)$ 

#### **Hairpin lengthening**

#### Manea, Martin-Vide, Mitrana (2010, 2012) Manea, Mercas, Mitrana (2012)

$$\begin{split} & \text{HLS}_{k}\left(\mathbf{w}\right) = \left\{w\underline{\delta} \mid w = \gamma \alpha \beta \underline{\alpha}, \ |\alpha| = k, \ \alpha, \beta \in V^{+}, \ \delta \text{ is a} \\ & \text{suffix of } \gamma \right\} \\ & \text{HLP}_{k}\left(\mathbf{w}\right) = \left\{\underline{\delta}w \mid w = \alpha \beta \underline{\alpha}\gamma, \ |\alpha| = k, \ \alpha, \beta \in V^{+}, \ \delta \text{ is a} \\ & \text{prefix of } \gamma \right\} \end{split}$$

*k*-hairpin lengthening  $HL_k(w) = HLS_k(w) \cup HLP_k(w)$ 

#### Reductions

$$\begin{aligned} &\operatorname{HRS}_{k}\left(\mathbf{w}\right) = \left\{ \gamma \alpha \beta \underline{\alpha} \mid w = \gamma \alpha \beta \underline{\alpha} \gamma, |\alpha| = k, \ \alpha, \beta \in V^{+}, \ \gamma \in V^{*} \right\} \\ &\operatorname{HRP}_{k}\left(\mathbf{w}\right) = \left\{ \alpha \beta \underline{\alpha} \gamma \mid w = \gamma \alpha \beta \underline{\alpha} \gamma, |\alpha| = k, \ \alpha, \beta \in V^{+}, \ \gamma \in V^{*} \right\} \\ &\operatorname{HR}_{k}(\mathbf{w}) = \operatorname{HRS}_{k}(\mathbf{w}) \cup \operatorname{HRP}_{k}(\mathbf{w}) \end{aligned}$$

- formal operation on languages
- distances
- hairpin root of a word/language

M. Ito, P. Leupoldt, F. Manea, C. Martin-Vide, V. Mitrana

