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          (x, y)  ⊢(i,j) (z1, z2)      iff  x = tu, y = vw, z1 = tw, z2 = vu,   and  
                                      |t| = i, |v| = j. 

⊢(i,j)  is said to be uniform iff  i=j,  so that we shall simply write ⊢ i 

[U]CO(A)= ∪ {z|(x,y) ⊢(i,j) (z,w) or (x,y) ⊢(i,j) (w,z) } 
                   {x,y∈A} 



  The Problem: Translocation distance  

Given two genomes G and G' what is the minimal number  
of translocation mutations that transforms G into G'? 

1. How the translocation is defined: uniform or arbitrar. 
  
2. How the chromosomes in the two genomes are:  
they are formed by different segments (markers) or not. 
 
3. How large is the target genome: singleton or arbitrary 



 Uniform translocation distance  

  Uniform translocation and unique markers  
    (J. Kececioglu, R. Ravi, 1995) 

Assumptions: 
1. All chromosomes (words) in both genomes are of the same length k. 
2. Each marker (symbol) appears at most once in a chromosome and in  
only one. 
3. If G has n chromosomes, then G' must have n chromosomes as well. 

Theorem 1. The uniform translocation distance between G and G'  
can be computed  in time and memory O(kn). 

Ingredients: Greedy strategy 
         Cayley (1849): The minimal number of transpositions  
            for sorting π  is n-Ψ (π ).  

Important note: If a symbol appears on the position i in a word in G, then 
it will appears on the same position in a word of G'. 



1. We label the words in G' in some way from 1 to n. 
2. Associate with each set G,G' a matrix as follows: 
  - each column in the matrix represents a word 
  - each symbol from a word is represented by the unique word of G' 
in which it occurs. 
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Lemma: Any instance of the problem has a solution which is  
bottom-up. 

it jt it+1 it jt it+1 it jt it+1 

it, jt, lt      it+1, jt, lt+1      

it+1, jt+1, lt+1      it, it+1, lt      
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  Translocation distance: Our solution   

Assumptions: 
1. All chromosomes (words) in both genomes are of the same length k. 
2. Each marker (symbol) appears may appear more than once in any 
chromosome and in different chromosomes. 
3. If G has n chromosomes, then G' may have as many chromosomes as 
we want. 
A few more definitions:  

A  translocation sequence: S=s1,s2, … ,sn,  si=(xi,yi)⊢(k(i),p(i)) (ui,vi) 

Pi(S,x) = card{j≤i|x = xj or x = yj}+card{j≤i|xj = yj = x}, 
Fi(S, x) =card{j≤i|uj = xj or vj = yj}+card{j≤i|uj = vj = x}, if x∉A,    
               ∞, otherwise 
A translocation sequence S is contiguous iff: 
(i) x1, y1 ∈ A, 
(ii) Fi−1(S, xi) > Pi−1(S, xi), and Fi−1(S, yi) > Pi−1(S, yi),  



  Translocation distance: Our solution   

     A CTS S is B-producing if Fn(S, z) > Pn(S, z) for all z ∈ B. 

TD(A,B) = min{lg(S)|S is a B − producing 
CTS}. 

Compute TD(A,B) B is a singleton 

B is an arbitrary set 



  Translocation distance: Our solution   

Example: A = {x1, x2, x3, x4} with 
x1 = abcbad, x2 = bbabd, x3 = accbabd, x4 = aaab,  
and 
z1 = bbcbad, z2 = ababd, z3 = ababad, z4 = bbcbd, z5 = abbababd  
z6 = aabad, z7 = abababd, z8 = bbd, z9 = bbbd, z10 = bbabad,  
z11 = bbbabad, z12 = bbababd, z13 = bababd, z14 = accbd, z15 
=bbccbabd 
z16 = aababd, z17 = abcccbabd z18 = abad  
A B-producing CTS, B = {z4, z6, z8, z11, z15, z16, z18}. 
 
(x1, x2) ≭ (2,2) (z2, z1), (z1, z2) ≭ (4,4) (z4, z3),  
(z2, x2) ≭ (4,2) (z7, z8), (z3, z7) ≭ (2,1) (z5, z6), (x2, x3) ≭ (3,3) (z12, z14), 
(z8, z12) ≭ (2,5) (z9, z10), (x2, x3) ≭ (3,3) (z12, z14), (x2, x3) ≭ (3,3) (z12, z14), 
(z12, z10) ≭ (2,1) (z11, z13), (z12, x3) ≭ (2,1) (z15, z16), (x1, x3) ≭ (3,1) (z17, z18). 
 



  Translocation distance: Our solution   

Example: A = {x1, x2, x3, x4} with 
x1 = abcbad, x2 = bbabd, x3 = accbabd, x4 = aaab,  
and 
z1 = bbcbad, z2 = ababd, z3 = ababad, z4 = bbcbd, z5 = abbababd  
z6 = aabad, z7 = abababd, z8 = bbd, z9 = bbbd, z10 = bbabad,  
z11 = bbbabad, z12 = bbababd, z13 = bababd, z14 = accbd, z15 
=bbccbabd 
z16 = aababd, z17 = abcccbabd z18 = abad  
A B-producing CTS, B = {z4, z6, z8, z11, z15, z16, z18}. 
 
(x1, x2) ≭ (2,2) (z2, z1), (z1, z2) ≭ (4,4) (z4, z3),  
(z2, x2) ≭ (4,2) (z7, z8), (z3, z7) ≭ (2,1) (z5, z6), (x2, x3) ≭ (3,3) (z12, z14), 
(z8, z12) ≭ (2,5) (z9, z10), (x2, x3) ≭ (3,3) (z12, z14), (x2, x3) ≭ (3,3) (z12, z14), 
(z12, z10) ≭ (2,1) (z11, z13), (z12, x3) ≭ (2,1) (z15, z16), (x1, x3) ≭ (3,1) (z17, z18). 

(x1, x2) ≭ (2,2) (z2, z1), 

   TD(A,B) ≤ 12 



  Translocation distance: Our solution   

Compute TD(A,B) B is a singleton:  
Let z be a string of length k and A be a  
set of cardinality n. There is an exact  
algorithm that computes TD(A,z) in  
O(kn) time and O(kn) space. 
  

B is an arbitrary set: There is a  
2-approximation algorithm for computing  
the translocation distance from two sets  
of strings. 
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  Translocation distance: Open problems   

1. Is it possible to do it better? 

2. Non-uniform translocation? 

(i) Non-uniform translocation and unique markers: 

(ii) This definition of translocation distance: 

? 
 

2-approximation algorithm 
 



Thank You 
READY FOR DISCUSSIONS  
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