A FEW GREEDY ALGORITHMS FOR COMPUTING UNIFORM TRANSLOCATION DISTANCE

VICTOR MITRANA

Faculty of Mathematics and Computer Science,
University of Bucharest, Romania and
Department of Information Systems
Polytechnic University of Madrid, Spain
mitrana@fmi.unibuc.ro

CONTENTS

Translocation operation in genome
Formal definition
Uniform translocation with unique markers
Uniform translocation with multiple markers: singleton target set

Uniform translocation with multiple markers: multiple target set

Open problems

What Is the Human Genome?

A Sample Human Genome

Recombination: Crossing Over

Transl ocation/ Cr ossover - For mal

y

Transl ocation/ Crossover - For mal

Transl ocation/ Cr ossover - For mal

Transl ocation/ Crossover - For mal

$\vdash_{(i, j)}$ is said to be uniform iff $i=j$, so that we shall simply write \vdash_{i}
$[\mathrm{U}] \mathrm{CO}(\mathrm{A})=\bigcup\left\{z \mid(x, y) \vdash_{(i, j)}(z, w)\right.$ or $\left.(x, y) \vdash_{(i, j)}(w, z)\right\}$

$$
\{x, y \in A\}
$$

The Problem Translocation di stance

Given two genomes G and G^{\prime} what is the minimal number of translocation mutations that transforms G into G '?

1. How the translocation is defined: uniform or arbitrar.
2. How the chromosomes in the two genomes are: they are formed by different segments (markers) or not.
3. How large is the target genome: singleton or arbitrary

Uni form transl ocati on di stance

Uniform translocation and unique markers

(J. Kececioglu, R. Ravi, 1995)

Assumptions:

1. All chromosomes (words) in both genomes are of the same length k. 2. Each marker (symbol) appears at most once in a chromosome and in only one.
2. If G has n chromosomes, then G^{\prime} must have n chromosomes as well.

Important note: If a symbol appears on the position i in a word in G, then it will appears on the same position in a word of G^{\prime}.

Theorem 1. The uniform translocation distance between G and G^{\prime} can be computed in time and memory $O(k n)$.

Ingredients: Greedy strategy
Cayley (1849): The minimal number of transpositions for sorting π is $n-\Psi(\pi)$.

Uni formtransl ocation di stance

1. We label the words in G^{\prime} in some way from 1 to n.
2. Associate with each set G, G^{\prime} a matrix as follows:

- each column in the matrix represents a word
- each symbol from a word is represented by the unique word of G^{\prime} in which it occurs.

Example: $G=\left\{a_{2} a_{7} a_{9} a_{4}, a_{5} a_{1} a_{12} a_{8}, a_{10} a_{3} a_{6} a_{11}\right\}$ $G^{\prime}=\left\{a_{10} a_{1} a_{9} a_{8}, a_{5} a_{7} a_{6} a_{4}, a_{2} a_{3} a_{12} a_{11}\right\}$

$$
M_{G}=\left(\begin{array}{lll}
3 & 2 & 1 \\
2 & 1 & 3 \\
1 & 3 & 2 \\
2 & 1 & 3
\end{array}\right) \quad M_{G^{\prime}}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3 \\
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)
$$

Problem: Select two columns and a natural $l \leq n-1$ and interchange the elements of the first l rows.

Let (i, j, l) : the columns i and j interchange each other the entries of the first l rows. A solution is a sequence
$\left(i_{1}, j_{1}, l_{1}\right),\left(i_{2}, j_{2}, l_{2}\right), \ldots\left(i_{p}, j_{p}, l_{p}\right)$

Find the minimal p.

A solution $\left(i_{1}, j_{1}, l_{1}\right),\left(i_{2}, j_{2}, l_{2}\right), \ldots\left(i_{p}, j_{p}, l_{p}\right)$ is "bottom-up if there are no $1 \leq s<q \leq n-1$ such that $l_{q}>l_{s}$.

Uni formtransl ocation di stance

Lemma: Any instance of the problem has a solution which is bottom-up.

Uni formtransl ocation di stance

A bottom-up sequence is locally optimal if the number of transformations applied to the current row in order to transform it into the identical permutation is minimal.

Lemma 2 A bottom-up locally optimal is totally optimal.

Proof. Let us consider a part of a bottom-up sequence when one starts to "sort the row $i+1$. Let π be the current state of the row $i+1$ and λ_{i} the state of the row. After sorting the row $i+1$ the state of the row i is

$$
\lambda_{i} \circ \pi^{-1} .
$$

$$
\sigma=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
2 & 5 & 4 & 3 & 1
\end{array}\right)
$$

$$
P Q=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 4 & 1 & 3 & 5
\end{array}\right)\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 4 & 3 & 2 & 1
\end{array}\right)=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 3 & 1 & 4 & 2
\end{array}\right) \neq Q P .
$$

$$
\pi=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 4 & 3 & 2
\end{array}\right)
$$

Uni formtransl ocation di stance

Given a permutation π, what is the minimal number m of transpositions $\tau_{1}, \tau_{2}, \ldots, \tau_{m}$ such that

$$
\pi \circ \tau_{1} \circ \tau_{2} \circ \ldots \circ \tau_{m}=\varepsilon_{n}
$$

Lemma 3 (Cayley) The minimal number of transpositions for sorting π is $n-\Psi(\pi)$.
procedure Sort_Crossover_uniform(A,k,n);

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ the rows of A
$d:=0 ; \pi:=\varepsilon_{n}$;
for $i:=k$ downto 1 do

$$
\begin{aligned}
& \pi:=\lambda_{i} \circ \pi^{-1} ; \\
& d:=d+n-\Psi(\pi) ;
\end{aligned}
$$

endfor;
end.

Transl ocation di stance: Our sol ution

Assumptions:

1. All chromosomes (words) in both genomes are of the same length k.
2. Each marker (symbol) appears may appear more than once in any chromosome and in different chromosomes.
3. If G has n chromosomes, then G^{\prime} may have as many chromosomes as we want.

A few more definitions:
A translocation sequence: $S=s_{1}, s_{2}, \ldots, s_{n}, s_{i}=\left(x_{i} y_{i}\right) \vdash_{(k(i), p(i))}\left(u_{i} v_{i}\right)$
$P_{i}(S, x)=\operatorname{card}\left\{j \leq i \mid x=x_{j}\right.$ or $\left.x=y_{j}\right\}+\operatorname{card}\left\{j \leq i \mid x_{j}=y_{j}=x\right\}$, $F_{i}(S, x)=\operatorname{card}\left\{j \leq i \mid u_{j}=x_{j}\right.$ or $\left.v_{j}=y_{j}\right\}+\operatorname{card}\left\{j \leq i \mid u_{j}=v_{j}=x\right\}$, if $x \notin A$, ∞, otherwise
A translocation sequence S is contiguous iff:
(i) $x_{1}, y_{1} \in A$,
(ii) $F_{i-1}\left(S, x_{i}\right)>P_{i-1}\left(S, x_{i}\right)$, and $F_{i-1}\left(S, y_{i}\right)>P_{i-1}\left(S, y_{i}\right)$,

Translocation di stance: Our sol ution

A CTS S is B-producing if $F_{n}(\mathbf{S}, \mathbf{z})>P_{n}(\mathbf{S}, \mathbf{z})$ for all $\boldsymbol{z} \in \boldsymbol{B}$.

$T D(A, B)=\min \{\lg (S) \mid S$ is a $B-$ producing CTS\}.

Translocation di stance: Our sol ution

Example: $A=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ with
$x_{1}=a b c b a d, x_{2}=b b a b d, x_{3}=a c c b a b d, x_{4}=a a a b$,
and
$z_{1}=$ bbcbad, $z_{2}=a b a b d, z_{3}=$ ababad, $z_{4}=b b c b d, z_{5}=a b b a b a b d$
$\mathrm{z}_{6}=$ aabad, $\mathrm{z}_{7}=$ abababd, $\mathrm{z}_{8}=\mathrm{bbd}, \mathrm{z}_{9}=\mathrm{bbbd}, \mathrm{z}_{10}=$ bbabad, $z_{11}=$ bbbabad, $z_{12}=$ bbababd, $z_{13}=$ bababd, $z_{14}=\operatorname{accbd}, z_{15}$
=bbccbabd
$z_{16}=$ aababd, $z_{17}=$ abcccbabd $z_{18}=$ abad
A B-producing CTS, $B=\left\{\mathrm{z}_{4}, \mathrm{z}_{6}, \mathrm{z}_{8}, \mathrm{z}_{11}, \mathrm{z}_{15}, \mathrm{z}_{16}, \mathrm{z}_{18}\right\}$.
$\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) *_{(2,2)}\left(\mathrm{z}_{2}, \mathrm{z}_{1}\right),\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right) *_{(4,4)}\left(\mathrm{z}_{4}, \mathrm{z}_{3}\right)$,
$\left(\mathrm{z}_{2}, \mathrm{x}_{2}\right) *_{(4,2)}\left(\mathrm{z}_{7}, \mathrm{z}_{8}\right),\left(\mathrm{z}_{3}, \mathrm{z}_{7}\right)$ * $_{(2,1)}\left(\mathrm{z}_{5}, \mathrm{z}_{6}\right),\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right)$ * $_{(3,3)}\left(\mathrm{z}_{12}, \mathrm{z}_{14}\right)$,
$\left(\mathrm{z}_{8}, \mathrm{z}_{12}\right) *_{(2,5)}\left(\mathrm{z}_{9}, \mathrm{z}_{10}\right),\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right) *_{(3,3)}\left(\mathrm{z}_{12}, \mathrm{z}_{14}\right),\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right) \mathcal{*}_{(3,3)}\left(\mathrm{z}_{12}, \mathrm{z}_{14}\right)$,
$\left(\mathrm{z}_{12}, \mathrm{z}_{10}\right) *_{(2,1)}\left(\mathrm{z}_{11}, \mathrm{z}_{13}\right),\left(\mathrm{z}_{12}, \mathrm{x}_{3}\right) *_{(2,1)}\left(\mathrm{z}_{15}, \mathrm{z}_{16}\right),\left(\mathrm{x}_{1}, \mathrm{x}_{3}\right) *_{(3,1)}\left(\mathrm{z}_{17}, \mathrm{z}_{18}\right)$.

Translocation di stance: Our sol ution

Example: $A=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ with
$x_{1}=a b c b a d, x_{2}=b b a b d, x_{3}=a c c b a b d, x_{4}=a a a b$,
and
$z_{1}=$ bbcbad, $z_{2}=a b a b d, z_{3}=$ ababad, $z_{4}=b b c b d, z_{5}=a b b a b a b d$
$\mathrm{z}_{6}=$ aabad, $\mathrm{z}_{7}=$ abababd, $\mathrm{z}_{8}=\mathrm{bbd}, \mathrm{z}_{9}=\mathrm{bbbd}, \mathrm{z}_{10}=$ bbabad,
$z_{11}=$ bbbabad, $z_{12}=$ bbababd, $z_{13}=$ bababd, $z_{14}=\operatorname{accbd}, z_{15}$
=bbccbabd
$z_{16}=$ aababd, $z_{17}=$ abcccbabd $z_{18}=$ abad
A B-producing CTS, $B=\left\{\mathrm{z}_{4}, \mathrm{z}_{6}, \mathrm{z}_{8}, \mathrm{z}_{11}, \mathrm{z}_{15}, \mathrm{z}_{16}, \mathrm{z}_{18}\right\}$.
$\left.\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) *_{(2,2)}\left(\mathrm{z}_{2}, \mathrm{z}_{1}\right),\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right) *_{(4,4)}\left(\mathrm{z}_{4}, \mathrm{z}_{3}\right), \mathrm{x}_{1}, \mathrm{x}_{2}\right) *_{(2,2)}\left(\mathrm{z}_{2}, \mathrm{z}_{1}\right)$,
$\left(\mathrm{z}_{2}, \mathrm{x}_{2}\right) *_{(4,2)}\left(\mathrm{z}_{7}, \mathrm{z}_{8}\right),\left(\mathrm{z}_{3}, \mathrm{z}_{7}\right)$ * $_{(2,1)}\left(\mathrm{z}_{5}, \mathrm{z}_{6}\right),\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right) *_{(3,3)}\left(\mathrm{z}_{12}, \mathrm{z}_{14}\right)$,
$\left(\mathrm{z}_{8}, \mathrm{z}_{12}\right) \mathcal{*}_{(2,5)}\left(\mathrm{z}_{9}, \mathrm{z}_{10}\right),\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right) \mathcal{*}_{(3,3)}\left(\mathrm{z}_{12}, \mathrm{z}_{14}\right),\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right) \mathcal{*}_{(3,3)}\left(\mathrm{z}_{12}, \mathrm{z}_{14}\right)$,
$\left(\mathrm{z}_{12}, \mathrm{z}_{10}\right) *_{(2,1)}\left(\mathrm{z}_{11}, \mathrm{z}_{13}\right),\left(\mathrm{z}_{12}, \mathrm{x}_{3}\right) *_{(2,1)}\left(\mathrm{z}_{15}, \mathrm{z}_{16}\right),\left(\mathrm{x}_{1}, \mathrm{x}_{3}\right) *_{(3,1)}\left(\mathrm{z}_{17}, \mathrm{z}_{18}\right)$.

$$
T D(A, B) \leq 12
$$

Transl ocation di stance: Our sol ution

Compute TD(A,B)

B is a singleton:
Let z be a string of length k and A be a set of cardinality n. There is an exact algorithm that computes $T D(A, z)$ in $O(\mathrm{kn})$ time and $O(\mathrm{kn})$ space.
B is an arbitrary set: There is a 2-approximation algorithm for computing the translocation distance from two sets of strings.

Translocation di stance: Our sol ution

Let $A=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and z be an arbitrary string of length k

$$
\begin{aligned}
\operatorname{MaxSubLen}(A, z, p)= & \max \{q \mid \exists 1 \leq i \leq n \text { such that } \\
& \left.x_{i}[p, p+q-1]=z[p, p+q-1]\right\} .
\end{aligned}
$$

Let $z \in T O_{*}(A)$; define iteratively the set $H(A, z)$ of intervals of natural numbers as follows:

1. $H(A, z)=\{[1, \operatorname{MaxSubLen}(A, z, 1)]\}$;
2. Take the interval $[i, j]$ having the largest j; if $j=k$, then stop, otherwise put into $H(A, z)$ the new interval $[j+1, j+\operatorname{MaxSubLen}(A, z, j+$ 1)].

Note that we allow intervals of the form $[i, i]$ for some i to be in $H(A, z)$; moreover, for each $1 \leq i \leq k$ there are $1 \leq p \leq q \leq k$ (possibly the same) such that $i \in[p, q] \in H(A, z)$.

Lemma 4 Let S be a z-producing $C T S$ in $C O_{*}(A)$. Then,

$$
\lg (S) \geq \operatorname{card}(H(A, z))-1
$$

Transl ocation distance: Our sol ution

$$
\begin{aligned}
& s_{i}=\left(x_{i}, y_{i}\right) \vdash_{p_{i}}\left(u_{i}, v_{i}\right) \\
A^{\prime}= & \{x[\operatorname{MaxSubLen}(A, z, 1)+1, h] x \in A\}, \\
z^{\prime}= & z[\operatorname{MaxSubLen}(A, z, 1)+1, b] .
\end{aligned}
$$

For simplicity denote $r=\operatorname{MaxSubLen}(A, z, 1)$. Clearly, $H\left(A^{\prime}, z^{\prime}\right)=$ $\{[i-r, j-r][i, j] \in H(A, z) \backslash\{[1, r]\}\}$, hence $\operatorname{card}\left(H\left(A^{\prime}, z^{\prime}\right)\right)=\operatorname{card}(H(A, z))-$ 1. Starting from S we construct a $C^{\prime} T S$ in $C O_{*}\left(A^{\prime}\right)$, producing z^{\prime} $S^{\prime}=s_{1}^{\prime}, s_{2}^{\prime}, \ldots s_{m}^{\prime}$ in the way indicated by the following procedure:

Transl ocation di stance: Our sol ution

Procedure Construct_CTS(S,r);
begin
$m:=0$;
for $i:=1$ to q begin
if $\left(p_{i}>r\right)$ then
$m:=m+1 ; \quad s_{m}^{\prime}=\left(x_{i}[r+1, k], y_{i}[r+1, k]\right) \vdash_{p_{i}-r}\left(u_{i}[r+1, k], v_{i}[r+\right.$
$1, k])$; endif;
endfor;
end.

Claim 1: S^{\prime} is a CTS.

Claim 2: S^{\prime} is z^{\prime}-producing.

Transl ocation di stance: Our sol ution

$p_{i_{1}}, p_{i_{2}}, \ldots, p_{i_{m}}$ are all integers from $\left\{p_{1}, p_{2}, \ldots, p_{q}\right\}$ bigger than r

$$
\begin{aligned}
& F_{j-1}\left(S^{\prime}, x_{i_{j}}[r+1, k]\right)=\sum_{x[r+1, k]=x_{i_{j}}[r+1, k]} F_{i_{j}-1}(S, x)-\operatorname{card}(X)-\operatorname{card}(Y), \\
& P_{j-1}\left(S^{\prime}, x_{i j}[r+1, k]\right)=\sum_{x[r+1, k]=x_{i_{j}}[r+1, k]} P_{i_{j}-1}(S, x)-\operatorname{card}(X)-\operatorname{card}(Y),
\end{aligned}
$$

where

$$
\begin{aligned}
& X=\left\{t \leq i_{j}-1 \mid p_{t} \leq r, u_{t}[r+1, k]=v_{t}[r+1, k]=x_{i_{j}}[r+1, k]\right\}, \\
& Y=\left\{t \leq i_{j}-1 \mid p_{t} \leq r, u_{t}[r+1, k]=x_{i_{j}}[r+1, k] \text { or } v_{t}[r+1, k]=x_{i_{j}}[r+1, k]\right\} .
\end{aligned}
$$

Translocation di stance: Our sol ution

Theorem 2 Let z be a string of length k and A be a set of cardinality n. There is an exact algorithm that computes $C D(A, z)$ in $O(k n)$ time and $O(\mathrm{kn})$ space.

Transl ocation di stance: Our sol ution

Arbitrary Target Sets

Let A be a finite set of strings and $z \in C O_{*}(A)$; denote by

$$
\begin{aligned}
\operatorname{MaxPrefLen}(A, z)= & \left\{\begin{aligned}
|z|, \text { iff } z \in A, \\
\max (\{q|q<|z|, \text { there exists } x \in A,|x|>q, \\
\text { so that } x[1, q]=z[1, q]\} \cup\{0\}),
\end{aligned}\right. \\
\operatorname{MaxSufLen}(A, z)= & \max (\{q \mid \text { there exists } x \in A,|x| \geq|z|, \\
& \text { so that } x[|x|-q+1, \mid x]=z[|z|-q+1, \mid z]\}\} \\
& \cup\{0\}),
\end{aligned}
$$

$\operatorname{ArbMaxSubLen}(A, z, p)=\max (\{q \mid$ there exists $x \in A$ and $|x| \geq p+q$ such that $x[p, p+q-1]=z[p, p+q-1]\}$ $u\{0\}$).

Transl ocation di stance: Our sol ution

We define iteratively the set $\operatorname{ArbH}(A, z)$ of intervals of natural numbers as follows, provided that all parameters defined above are nonzero:

1. $\operatorname{Arb} H(A, z)=\{[1, \operatorname{MaxPrefLen}(A, z)]\} ;$
2. Take the interval $[i, j]$ having the largest $j ;$ if $j=|z|$, then stop. If $j<|z|-\operatorname{MaxSufLen}(A, z)$, then put the new interval $[j+1, j+$ $\operatorname{ArbMaxSubLen}(A, z, j+1)]$ into $\operatorname{Arb} H(A, z)$; otherwise put $[j+1, \mid z]$ into $\operatorname{ArbH}(A, z)$.

Transl ocation di stance: Our sol ution

Theorem 3 1. Let A be a finite set of strings and B be a finite subset of $T O_{*}(A)$. Then $\frac{\sum_{z \in B}(\operatorname{card}(\operatorname{Arb} H(A, z))-1)}{2} \leq T D(A, B) \leq$ $\sum_{z \in B}(\operatorname{card}(\operatorname{Arb} H(A, z))-1)$.
2. There exist A and $B \subseteq T O_{*}(A)$ such that $T D(A, B)=$ $\frac{\sum_{z \in B}(\operatorname{card}(A r b H(A, z))-1)}{2}$.
3. There exist A and $B \subseteq T O_{*}(A)$ such that $T D(A, B)=$ $\sum_{z \in B}(\operatorname{card}(\operatorname{Arb} H(A, z))-1)$.

Transl ocation di stance: Our sol ution

Proof. 1. We shall prove the first assertion by induction on the length of the longest string in B, say k. The non-trivial relation is
$\frac{\sum_{z \in B}(\operatorname{card}(A r b H(A, z))-1)}{2} \leq T D(A, B)$.

If $k=1$, the relation $(*)$ is satisfied. Assume that the relation $(*)$ holds for any two finite sets X and $Y, Y \subseteq T O_{*}(X)$, all strings in Y being shorter than k. Assume that $B \backslash A=\left\{z_{1}, z_{2}, \ldots, z_{m}\right\}$ and let $S=s_{1}, s_{2}, \ldots, s_{q}, s_{i}=\left(x_{i}, y_{i}\right) \vdash p_{i}\left(u_{i}, v_{i}\right), 1 \leq i \leq q$, be a $B \backslash A$ producing $C T S$ in $T O_{*}(A)$. Note that at least one string in $B \backslash A$ should exist, otherwise the relation $(*)$ being trivially fulfilled.

Transl ocation di stance: Our sol ution

Consider m new symbols $a_{1}, a_{2}, \ldots, a_{m}$ and construct the sets:
$\left.A^{\prime}=\{x[1, r]]_{i} x[r+2,|x|] x \in A, 1 \leq i \leq m\right\}, \quad B^{\prime}=\left\{z_{i}[1, r] a_{i} z_{i}[r+\right.$
$\left.2,\left|z_{i}\right| \mid 1 \leq i \leq m\right\}$, , where $r=\min \left\{p_{i} \mid 1 \leq i \leq q\right\}$. One can construct a B^{\prime}-producing $C^{\prime} T S$ in $T O_{*}\left(A^{\prime}\right)$ of the same length of S^{\prime}, say $S^{\prime \prime}$ by applying a procedure Convert illustrated by the next example

Transl ocation di stance: Our sol ution

$B=\{a b a c d b, a a b c c b, b b a a d c\}, A=\{a b b c c b, a a a a d b, b b b c d c\}$.

The $C T S S$ is

$(a b b c c b, a a a a d b) \vdash_{2}(a b a a d b, a a b c c b),(a b b c c b, a b a a d b) \vdash_{3}(a b b a d b, a b a c c b)$, $(b b b c d c, a b a c c b) \vdash_{2}(b b a c c b, a b b c d c),(b b a c c b$, aaaadb $) \vdash_{3}(b b a a d b$, aaaccb $)$, $(b b a a d b, b b b c d c) \vdash_{5}(b b a a d c, b b b c d b),(a b a a d b, a a a c c b) \vdash_{2}(a b a c c b, a a a a d b)$, (abaccb, aaaadb) $\vdash_{4}(a b a c d b, a a a a c b)$.
The procedure Convert runs for $r=2$ transforming this sequence into the sequence S^{\prime} :

```
(ab\mp@subsup{a}{2}{}ccb,aa\mp@subsup{a}{3}{}adb)\vdash}\mp@subsup{\vdash}{2}{}(ab\mp@subsup{a}{3}{}adb,aa\mp@subsup{a}{2}{}ccb),(ab\mp@subsup{a}{1}{}ccb,ab\mp@subsup{a}{3}{}adb)\mp@subsup{\vdash}{3}{
```



```
(bb\mp@subsup{a}{3}{}ccb, aa\mp@subsup{a}{1}{}adb)\vdash}\mp@subsup{\vdash}{3}{}(bb\mp@subsup{a}{3}{}adb,aa\mp@subsup{a}{1}{}ccb),(bb\mp@subsup{a}{3}{}adb,bb\mp@subsup{a}{1}{}cdc)\mp@subsup{\vdash}{5}{
    (bb\mp@subsup{a}{3}{}adc,bb\mp@subsup{a}{1}{}cdb), (ab\mp@subsup{a}{1}{}adb,aa\mp@subsup{a}{1}{}ccb)\vdash}\mp@subsup{\vdash}{2}{(ab\mp@subsup{a}{1}{}ccb,aa\mp@subsup{a}{1}{}adb),
(aba
```


Transl ocation di stance: Our sol ution

Now S^{\prime} is transformed into $S^{\prime \prime}$ for r previously defined. $S^{\prime \prime}$ is a $B^{\prime \prime}$ producing CTS in $\mathrm{CO}_{*}\left(A^{\prime \prime}\right)$, where
$A^{\prime \prime}=\left\{a_{i}[r r+2,|x x| \mid x \in A, 1 \leq i \leq m\}, \quad B^{\prime \prime}=\left\{a_{i} z_{i}\left[r+2,\left|z_{i}\right|\right] 1 \leq i \leq\right.\right.$
m\}

For each $1 \leq i \leq m \operatorname{card}\left(A r b H\left(A^{\prime \prime}, a_{i} z_{i}\left[r+2,\left|z_{i}\right|\right]\right)\right.$ is either $\operatorname{card}\left(A r b H\left(A, z_{i}\right)\right)$ or card $\left(\operatorname{ArbH}\left(A, z_{i}\right)\right)-1$.

Transl ocation di stance: Our sol ution

$$
\operatorname{card}\left(\operatorname{ArbH} H\left(A^{\prime \prime}, a_{i} z_{i}\left[r+2,\left|z_{i}\right|\right]\right)\right)=\operatorname{card}\left(\operatorname{ArbH}\left(A, z_{i}\right)\right)-1
$$

there exist at least one step in S^{\prime} where the strings exchange prefixes of length at most r. It follows that $\lg \left(S^{\prime \prime}\right) \leq \lg \left(S^{\prime}\right)-[t / 2]$, where $t=\operatorname{card}\left(\left\{i \mid \operatorname{card}\left(A \operatorname{Arb} H\left(A^{\prime \prime}, a_{i} z_{i}\left[r+2, \mid z_{i}\right]\right)\right)=\operatorname{card}\left(A r b H\left(A, z_{i}\right)\right)-1\right\}\right)$. Consequently,

$$
\begin{aligned}
\lg (S)= & \lg \left(S^{\prime}\right) \geq \lg \left(S^{\prime \prime}\right)+[t / 2\rceil \geq \\
& \frac{\sum_{1}^{m}\left(\operatorname{card}\left(\operatorname{Arb} b H\left(A^{\prime \prime}, a_{i} z_{i}\left[r+2, \mid z_{i}\right]\right)\right)-1\right)}{2}+ \\
& {[t / 2\rceil \geq \frac{\sum_{1}^{m}\left(\operatorname{Arbcard}\left(H\left(A, z_{i}\right)\right)-1\right)}{2} . }
\end{aligned}
$$

Transl ocation di stance: Our sol ution

Theorem 4 There is a 2-approximation algorithm for computing the
translocation distance from two sets of strings.

Transl ocation di stance: Open probl ens

1. Is it possible to do it better?
2. Non-uniform translocation?
(i) Non-uniform translocation and unique markers:

2-approximation algorithm

(ii) This definition of translocation distance:

Thank Yyou

READY FOR DJSCUSSJONS

