Nature Motivated Approaches to Computer Science - II.

György Vaszil

University of Debrecen, Faculty of Informatics

Department of Computer Science

Potsdam, July 2017

Abstract models

Real world

Theoretical models

Implementation

Last week - The chemical model

- Symbolic chemical solution with abstract molecules, and rules describing reactions between them
- Molecules represent data, reactions represent operations
- Brownian motion, as execution model
\rightarrow Multisets of symbols/objects + multiset rewriting rules

The chemical model/paradigm

- Multisets of symbols/objects + multiset rewriting rules

Abstract machine	Chemistry
Data	Molecule
Multiset	Solution
Parallelism/nondeterminism	Brownian motion
Computation	Reaction

Gamma example - Primes

$$
\begin{aligned}
\operatorname{primes}(N) & =\Gamma((R, A))(\{2 \ldots N\}) \text { where } \\
R(x, y) & =\text { multiple }(x, y) \\
A(x, y) & =\{y\}
\end{aligned}
$$

Properties of chemical programs

- Multiset of abstract molecules in a
- solution, with
- reactions (operations): reaction condition + reaction result.
- Sub-solutions: „sub-regions" with their own reaction rules (priority, sequentiality).
- Program execution ends, if there are no applicable reactions.
\rightarrow Natural, free from the forced sequentiality of the physical computer architecture

Real world
 Theoretical models
 Implementation

Membrane systems - The biochemical motivation

Cells contain regions

durva felszínú

- Regions are enclosed by membranes
- Different regions have different biochemical processes inside
- Membranes also regulate traffic between the regions

Membrane systems

Membrane systems, a membrane structure

A hierarchical arrangement of regions where multisets of objects evolve according to given evolutionary rules

The membrane structure

Can be described by

- a tree, or a
- string of parentheses

$$
\left[{ }_{1}\left[L_{2}\right]_{2}\left[{ }_{3}\right]_{3}\left[{ }_{4}\left[{ }_{5}\right]_{5}\left[\left[_{6}[8]_{8}[9]_{9}\right]_{6}\left[{ }_{7}\right]_{7}\right]_{4}\right]_{1}\right.
$$

The membrane structure

- membrane <--> enclosed region
- outer (skin) membrane, environment
- "inside", "outside"

The objects

The regions (membranes) contain multisets of objects

- object: symbol from a finite alphabet
- mutisets are represented be strings over the object alphabet

The rules

Applying the multiset rewriting rule $a a \rightarrow f g h$

Maximal parallel rule application
An example:

$$
\begin{aligned}
& w_{i}: a a a b b \\
& k_{i}: \underset{i r_{1}}{a a} \underset{\Delta r_{2}}{ } \rightarrow c a b \rightarrow d d \\
& \rightarrow r_{2}
\end{aligned}
$$

There are two possibilities:
1.

$$
a_{a} a b b \Rightarrow c c d d b
$$

2.

$$
a a a b b \rightarrow a d d d d
$$

Membrane systems, multiset rewriting rules

$$
a^{2} b c^{3} \rightarrow b a^{2} c(d a, \text { out })(c a, \text { in })
$$

The rules

- change the objects
- move the objects between neighboring regions

The rules are applied

- in maximal parallel way
- In a synchronized manner

P systems - [Paun 2000 (1998)]

Example

The computation

- Start in an initial configuration
- A computational step: Apply the rules in a maximal parallel way in all regions
- Repeat the rule application step as long as possible (until a final configuration is reached)
- The result of the computation is given by the multiplicities of certain objects in certain regions.

Example

$$
\begin{gathered}
{\left[a, a[]_{2}\right]_{1} \Rightarrow^{a \rightarrow a\left(b, i n_{2}\right)\left(c, i n_{2}\right)\left(c, i n_{2}\right)}\left[a, a[b, c, c, b, c, c]_{2}\right]_{1}} \\
\Rightarrow^{a \rightarrow a\left(b, i n_{2}\right)\left(c, i n_{2}\right)\left(c, i n_{2}\right)} \ldots \Rightarrow^{a \rightarrow a\left(b, i n_{2}\right)\left(c, i n_{2}\right)\left(c, i n_{2}\right)} \\
{[a, a[\underbrace{b, \ldots, b}_{2 n}, \underbrace{c, \ldots, c}_{4 n}]_{2}]_{1} \Rightarrow^{a a \rightarrow(a, o u t)(a, o u t)}[[\underbrace{b, \ldots, b}_{2 n}, \underbrace{c, \ldots, c}_{4 n}]_{2}]_{1}}
\end{gathered}
$$

A language of multisets - the contents of a specified region:

$$
L=\{\{\{\underbrace{b, \ldots, b}_{2 n}, \underbrace{c, \ldots, c}_{4 n}\}\} \mid n \geq 0\}
$$

Some very basic results about this very basic setup...

- Having two membranes is sufficient
- Systems with rules having one object on the lefthand side are weak: they compute the length sets of context-free languages
- Systems with rules having at least two objects on the left-hand side can compute any recursively enumerable set of numbers (compute "anything")
[Paun 2002]

There are many more features that can be added

- For example:

Computing/generating square numbers using membrane division

The computation

There are many interesting results, for example:

- Polynomial solutions to several NP complete problems
- formula satisfiabilty
- Hamiltonian path
- discrete logarithm
- ...

Outline

Our goal: Using P systems to describe string languages - construct automata-like membrane systems

- Membrane systems (P systems) with communication rules only, accepting P systems
- P automata
- The computational power of P automata
- P automata over infinite alphabets

Automata-Hike systems

- state transitions
- reading an input
- working with tapes/counters
(What are counter automata and why are they interesting?)

(What are counter automata and why are they interesting?)

1. Turing machines can compute "anything" with finite control, and a tape containing a string of symbols
2. The tape can be simulated by two stacks
3. A stack of symbols can be simulated by two counters storing numbers
4. Four counters can be simulated by two counters
\rightarrow Anything can be computed by counter machines (register machines)

(What are counter automata and why are they interesting?)

A Turing machine tape can be simulated by two

 stacks:- rewrite
- move the head V
- pop and push the new symbol
- pop from one stack, push on the other

$$
\Gamma\left\{a_{1}, a_{2}\right\}
$$

(What are counter automata and why are they interesting?)

A stack can be simulated by two counters:

- a1a2a2 in the stack
- pop , push

- 122 in the counter
- pop: divide by 10
- push ax: multiply by 10 and add x

(What are counter automata and why are they interesting?)

Any number of counters can be simulated by two counters:

- increment ci
- decrement ci
- does ci contain 0 ?

- multiply c1 with the ith prime
- divide c1 by the ith prime
- is c1 divisible by the ith prime?

Automata-ike membrane systems

- state transitions
- reading an input
\longrightarrow operating in an "environment"
- working with tapes/counters
\longrightarrow using resources represented by multisets

Membrane systems with communication only

Symport/antiport systems

Example, in communication with the environment

Example, in communication with the environment

$$
\begin{gathered}
a, a, b, c, a, b, b, c, c, c, \ldots\left[a, a[]_{2}\right]_{1} \Rightarrow \\
a, a, \quad, a, b,,,, c, \ldots\left[a, b, c, c, a, b, c, c[]_{2}\right]_{1} \Rightarrow \\
\ldots \quad\left[a, b, c, c, a, b, c, c[b, c, c, b, c, c]_{2}\right]_{1} \\
\Rightarrow \ldots \Rightarrow(a a, o u t) \\
\ldots \quad[a, b, c, c, a, b, c, c[\underbrace{b, \ldots, b}_{2 n}, \underbrace{c, \ldots, c}_{4 n}]_{2}]_{1} \Rightarrow \quad[[\underbrace{b, \ldots, b}_{2 n+1}, \underbrace{c, \ldots, c}_{4 n+1}]_{2}]_{1} \\
L=\{\{\{\underbrace{b, \ldots, b}_{2 n}, \underbrace{c, \ldots, c}_{4 n}\}\} \mid n \geq 0\}
\end{gathered}
$$

Symport/antiport systems The rules

Symport/antiport rules, possibly with promoters:

$$
\left.(x, \text { out } ; y, \text { in })\right|_{Z} \text {, with } Z \in\{z, \neg z\}, x, y, z \in V^{*}
$$

- Maximal parallel rule application
- out - leave to the upper, parent region, in - enter from the parent region
- The parent of the skin region is the environment

(Accepting) symport/antiport systems

$$
\Pi=\left(V, \mu, E, w_{1}, \ldots, w_{n}, R_{1}, \ldots, R_{n}, F, i_{i n}\right)
$$

$V \quad-\quad$ a finite alphabet of objects
μ - a membrane structure
$E \subseteq V \quad-\quad$ a set of objects, the ones which can be found in the environment
$w_{i} \in V^{*}-$ the initial contents of region i
$R_{i} \quad-\quad$ sets of symport/antiport rules associated to region i
$F \quad-\quad$ a set of final configurations
$i_{i n} \quad-\quad$ the label of the input membrane, if $i=0$ the input is read from the environment

The transitions

$$
\Pi=\left(V, \mu, E, w_{1}, \ldots, w_{n}, R_{1}, \ldots, R_{n}, F, i_{i n}\right)
$$

A configuration:
$\left(u_{0}, u_{1}, \ldots, u_{n}\right), u_{i} \in V^{*}$, the contents of the environment and the n regions of Π

The transition mapping:

$$
\begin{aligned}
& \delta: V^{*} \times\left(V^{*}\right)^{n+1} \rightarrow\left(V^{*}\right)^{n} \\
& \delta\left(u,\left(u_{0}, u_{1}, \ldots, u_{n}\right)\right) \ni\left(u_{0}^{\prime}, u_{1}^{\prime}, \ldots, u_{n}^{\prime}\right)
\end{aligned}
$$

the multiset entering the skin membrane

Symport/antiport systems and counter automata

the multiplicity of the object a_{i}
the presence of the object q
\longleftrightarrow the value of counter i

being in the internal state q

Symport/antiport systems and counter automata

- change the state $q \longrightarrow q^{\prime}$
$\left(q\right.$, out $; q^{\prime} a_{i}$, in $)$ \qquad
- change the state $q \longrightarrow q^{\prime}$
$\left(q a_{i}\right.$, out $; q^{\prime}$, in $) \longleftrightarrow$
- increase the value of counter i
- decrease the value of counter i

Symport/antiport systems and counter automata

(q, out $; q_{1} q_{2}$, in)
($q_{1} a_{i}$, out ; q1', in)
(q_{2}, out; q_{3}, in $)$
($q_{1} q_{3}$, out; q^{\prime}, in $)$
(q1'q3, out; q", in)

- change the state $q \longrightarrow q^{\prime}$
- check the emptiness of counter i
- if $c i$ is not empty: $q \rightarrow q$ "
- no rule for f

Symport/antiport systems and counter automata

$$
\begin{gathered}
N(\Pi)=\left\{k \in \mathbb{N} \mid c_{0}=\left(w_{0}, w_{1}, \ldots, w_{n}\right), \text { with }\left|w_{i n}\right| a_{i}=k,\right. \\
\\
\text { and there is } c_{t} \in F \text { and a sequence } c_{i} \text { with } \\
\\
\left.\delta\left(u_{i+1}, c_{i}\right)=c_{i+1} \text { for all } 0 \leq i \leq t-1\right\}
\end{gathered}
$$

- c_{0} is the initial configuration
- $a_{i} \in V$ is the object corresponding to the input counter
- F is the set of halting configurations

From multiplicities (numbers) to sequences (strings)...

Consider the multiset sequences accepted by antiport P systems

Accepted multiset sequences Example

initial
rules:
configuration:

Accepted multiset sequences Example

configuration: rules:

Accepted multiset sequences Example

configuration: rules:

Accepted multiset sequences Example

configuration: rules:

Accepted multiset sequences Example

final
configuration:
The (set of) accepted multiset sequence(s):

$$
\{\{c, e, D, D\}\{F, F\}\}
$$

Accepting P systems - What we have so far...

- A P system in an environment
- Given an initial configuration
- A sequence of multisets is read from the environment during the computation
- The multiset sequence is accepted if the computation ends in a halting configuration

Characterizing string languages/1

How to map the accepted multiset sequences to accepted strings?

1. Analyzing P systems, extended P automata

- Terminals and nonterminals - only terminal symbols are taken into account
- The input multisets are mapped to sets of strings which can be constructed from the terminals

Characterizing string languages/1

Analyzing P systems:

- a set of terminal objects $T \subseteq V$
- $i_{i n}=0$, the input is read from the environment
- F is the set of halting configurations
[R. Freund, M. Oswald: A short note on analysing P systems. Bulletin of the EATCS, 78 (October 2002), 231-236.]

Analyzing P systems

$$
\begin{gathered}
\Pi=\left(V, \mu, E, w_{1}, \ldots, w_{n}, R_{1}, \ldots, R_{n}, F, i_{i n}\right) \\
L(\Pi)=\bigcup \operatorname{str}_{T}\left(u_{1}\right) \cdot \operatorname{str}_{T}\left(u_{2}\right) \cdot \ldots \cdot \operatorname{str}_{T}\left(u_{t}\right)
\end{gathered}
$$

for all $c_{t} \in F$ and sequence c_{i} with $\delta\left(u_{i+1}, c_{i}\right)=c_{i+1} 0 \leq i \leq t-1$,

- c_{0} is the initial configuration
- $\operatorname{str}_{T}(u) \subseteq T^{*}$ is the set of terminal strings corresponding to the multiset $u \in V^{*}$
- F is the set of halting configurations

The previous example:

The (set of) accepted multiset sequence(s):
c e

$$
\{\{c, e, D, D\}\{F, F\}\}
$$

If the set of terminal symbols is $T=\{e, c\}$, then the accepted strings are:

$$
\{c e, e c\}
$$

The power of analyzing P systems

Any recursively enumerable language can be accepted by an analyzing P system having one membrane.
[R. Freund, M. Oswald: A short note on analysing P systems. Bulletin of the EATCS, 78 (October 2002), 231-236.]

The proof idea

1. Read the input object sequence
2. Create a numerical encoding of the object sequence in the "input counter"
3. Simulate the computation of a counter machine

The terminal-nonterminal distinction is essential: nonterminals provide the "workspace" for the computation.

The numerical encoding

$$
\Sigma=\left\{a_{1}, \ldots, a_{z-1}\right\}
$$

symbols $\quad \underline{z-a r y}$ digits

| a_{1} | \longleftrightarrow | (1)
 a_{2}

 $a_{z-1}$$\quad \longleftrightarrow$ |
| :---: | :---: | :---: | | (2) |
| :---: |

The numerical encoding

$$
w=a_{i_{1}} \ldots a_{i_{k}} \in \Sigma^{*} \quad \longleftrightarrow \quad \operatorname{code}(w)=\left(i_{1}\right) \ldots\left(i_{k}\right) \in \mathbb{N}
$$

The encoding of an input word is created step by step, with each new symbol a_{i} :

$$
\operatorname{code}\left(w a_{i}\right)=\operatorname{code}(w) \cdot z+i
$$

Simple arithmetic operations, they can be done by the counter machine.

The proof idea again

1. Read the input object sequence
2. Create a numerical encoding of the object sequence in the "input counter"
3. Simulate the computation of a counter machine

The terminal-nonterminal distinction is essential: nonterminals provide the "workspace" for the computation.

What is the role of the different features? What are those which are necessary for reaching universal power? Is it possible to restrict the power of the system in any "interesting" way?

Finite (extended) P automata

$$
\Pi=\left(V,[], w_{1}, R_{1}, F\right)
$$

- a set of terminal objects $T \subseteq V$
- rules of two types:

1. (q, out; pa, in) with $q, p \in V-T, a \in T$
2. (pa,out; r, in) with $p, r \in V-T, a \in T$

For any rule of type 1 . with $p \in V-T$, there is only one rule of type 2. with the same $p \in V-T$

- F contains halting configurations with a "final" nonterminal inside the system
[R. Freund, M. Oswald, L. Staiger: Omega-P automata with communication rules. Lecture Notes in Computer Sci., 2933 (2004), 203-217]

Finite (extended) P automata

$$
\begin{gathered}
\Pi=\left(V,[], w_{1}, R_{1}, F\right) \\
L(\Pi)=\bigcup \operatorname{str}_{T}\left(u_{1}\right) \cdot s \operatorname{tr}_{T}\left(u_{2}\right) \cdot \ldots \cdot s \operatorname{tr}_{T}\left(u_{t}\right)
\end{gathered}
$$

for all $c_{t} \in F$ and sequence c_{i} with $\delta\left(u_{i+1}, c_{i}\right)=c_{i+1} 0 \leq i \leq t-1$,
L is regular if and only if it is accepted by a finite P automaton with antiport rules.

Exponential space symport/antiport acceptors

$$
\Pi=\left(V, \mu, w_{1}, \ldots, w_{n}, R_{1}, \ldots, R_{n}, F\right)
$$

- a set of terminal objects $T \subseteq V$ containing a distinguished symbol \$
- the input is read from the environment
- rules of four types in the skin membrane:

1. (u, out; v, in $)$ with $u, v \in(V-T)^{*},|u| \geq|v|$
2. (u,out; va,in) with $u, v \in(V-T)^{*},|u| \geq|v|, a \in T$
3. (u, out; v, in $) \mid a$ with $u, v \in(V-T)^{*}$
4. for every $a \in T$, (a, out; v, in)

- rules of the form (u,out; v, in) with $u, v \in(V-T)^{*}$ in the other regions

Exponential space symport/antiport acceptors

$$
\begin{gathered}
\Pi=\left(V, \mu, w_{1}, \ldots, w_{n}, R_{1}, \ldots, R_{n}, F\right) \\
L(\Pi)=\bigcup \operatorname{str}_{T}\left(u_{1}\right) \cdot \operatorname{str}_{T}\left(u_{2}\right) \cdot \ldots \cdot \operatorname{str}_{T}\left(\bar{u}_{t}\right) \in T^{*}
\end{gathered}
$$

for all $c_{t} \in F$ and sequence c_{i} with $\delta\left(u_{i+1}, c_{i}\right)=c_{i+1}, 0 \leq i \leq$

$$
t-1, \quad \$ \in u_{t}, \bar{u}_{t}=u_{t}-\$
$$

- c_{0} is the initial configuration
- $\operatorname{str}_{T}(u) \in T^{*}$ is the set of terminal strings corresponding to the multiset $u \in V^{*}$
- F is the set of halting configurations

The power of exponential space symport/antiport acceptors

A language L is accepted by an exponential-space symport/antiport acceptor if and only if L is contextsensitive.

A language L is regular if and only if it can be accepted by an exponential-space symport/antiport acceptor using only rules of type 1 . and 2.

$$
\begin{aligned}
& \text { 1. }(u, \text { out; } v, \text { in }) \text { with } u, v \in(V-T)^{*},|u| \geq|v| \\
& \text { 2. }(u, \text { out; va, in }) \text { with } u, v \in(V-T)^{*},|u| \geq|v|, a \in T
\end{aligned}
$$

[O.H. Ibarra, Gh. Paun: Characterization of context-sensitive languages and other language classes in terms of symport/antiport P systems.
Theoretical Computer Sci., 358 (2006), 88-103]

Characterizing string languages/2

How to map the accepted multiset sequences to accepted strings?
2. P automata:

- No distinction between terminals and nonterminals
- The input multisets can be mapped to (sets of) strings using any (nonerasing) mapping.
- (Sequential rule application is also considered.)

P automata

- An antiport P system in an environment from where the input is read
- Given an initial configuration and a set of final (accepting) configurations
- A sequence of multisets is read from the environment during the computation
- The multiset sequence is accepted if the computation ends in an accepting configuration
[E. Csuhaj-Varju, Gy. Vaszil: P automata or purely communicating accepting P systems. Lecture Notes in Computer Sci., 2597 (2003), 219233]

P automaton

A P automaton is

$$
\Pi=\left(V, \mu, P_{1}, \ldots, P_{n}, c_{0}, \mathcal{F}\right)
$$

with

- object alphabet
- membrane structure
- rules corresponding to the regions
- initial configuration $c_{0}=\left(w_{1}, \ldots, w_{n}\right), w_{i} \in V^{*}$
- set of accepting configuratior $E_{1} \times \ldots \times E_{n}, E_{i} \subseteq V^{*}$ with E_{i} being finite, or $E_{i}=V^{*}$

Examples...

- Variants of P automata for regular languages different ways of mapping multiset sequences to strngs

P automaton - An example

Given a regular grammar with: $\quad S \rightarrow a A, A \rightarrow b S, S \rightarrow \varepsilon$
initial
rules:
configuration:

$$
\begin{aligned}
& (S, \text { out } ; \text { a } A, \text { in }) \\
& (A, \text { out } ; b S, \text { in }) \\
& (A, \text { out } ; b F, \text { in })
\end{aligned}
$$

(F, in)

final configuration: F is in the region

P automaton - An example

Given a regular grammar with: $\quad S \rightarrow a A, A \rightarrow b S, S \rightarrow \varepsilon$ configuration: rules:

$$
\begin{aligned}
& (S, \text { out } ; \text { a } A, \text { in }) \\
& (A, \text { out } ; \text { b } S, \text { in }) \\
& (A, \text { out } ; b F, \text { in }) \\
& (F, \text { in })
\end{aligned}
$$

final configuration: F is in the region

P automaton - An example

Given a regular grammar with: $\quad S \rightarrow a A, A \rightarrow b S, S \rightarrow \varepsilon$ configuration: rules:

$$
\begin{aligned}
& (S, \text { out } ; \text { a } A, \text { in }) \\
& (A, \text { out } ; b S, \text { in }) \\
& (A, \text { out } ; b F, \text { in })
\end{aligned}
$$

$$
(F, i n)
$$

final configuration: F is in the region

P automaton - An example

Given a regular grammar with: $\quad S \rightarrow a A, A \rightarrow b S, S \rightarrow \varepsilon$ configuration: rules:

$$
\begin{aligned}
& (S, \text { out } ; \text { a } A, \text { in }) \\
& (A, \text { out } ; b S, \text { in }) \\
& (A, \text { out } ; b F, \text { in }) \\
& (F, \text { in })
\end{aligned}
$$

final configuration: F is in the region

P automaton - An example

Given a regular grammar with: $\quad S \rightarrow a A, A \rightarrow b S, S \rightarrow \varepsilon$ configuration: rules:

$$
\begin{aligned}
& (S, \text { out } ; a A, \text { in }) \\
& (A, \text { out } ; b S, \text { in }) \\
& (A, \text { out } ; b F, \text { in }) \\
& \underbrace{}_{(F, \text { in })}
\end{aligned}
$$

final configuration: F is in the region

P automaton - An example

Given a regular grammar with:

$$
S \rightarrow a A, A \rightarrow b S, S \rightarrow \varepsilon
$$

final rules:
configuration:

$$
\begin{aligned}
& (S, \text { out } ; \text { a } A, \text { in }) \\
& (A, \text { out } ; b S, \text { in }) \\
& (A, \text { out } ; b F, \text { in }) \\
& { }_{(F, \text { in })}
\end{aligned}
$$

final configuration: F is in the region

P automata - An example

Given a regular grammar with rules: $S \rightarrow a A, A \rightarrow b S, S \rightarrow \varepsilon$

final

configuration:

The set of accepted multiset sequences:

$$
\{\{a, A\}\{b, S\} \ldots\{a, A\}\{b, F\}\}
$$

or using the string notation for multisets:

$$
\{a A, b S, \ldots, a A, b F\}
$$

P automaton - An example

Given a regular grammar with:

$$
A \rightarrow a B, A \rightarrow a \in P
$$

initial rules: configuration:

$$
\begin{aligned}
& (A, \text { out } ; a B, \text { in }) \\
& (A, \text { out } ; a F, \text { in })
\end{aligned}
$$

for all rules of the grammar

(F, in)

final configuration: F is in the region

P automaton - An example

Given a regular grammar with: $\quad A \rightarrow a B, A \rightarrow a \in P$
final
configuration:

The set of accepted multiset sequences:

$$
\left\{a_{1} B_{1}, a_{2} B_{2}, \ldots, a_{s} F \mid a_{1} a_{2} \ldots a_{s} \in L\right\}
$$

P automaton - An other example

A finite automaton $M=\left(\Sigma_{1}, Q, \delta, q_{0}, F\right) \quad \Sigma_{1}=\left\{a_{1}, \ldots, a_{k}\right\}$ A simulating P automaton with 2 membranes:

$$
\begin{aligned}
w_{1}= & a \#, \\
P_{1}= & \left\{\left.\left(a^{i}, \text { in } ; \text { a, out }\right)\right|_{t},\left.\left(a^{i-1}, \text { out }\right)\right|_{t^{\prime}} \mid t=\left[q_{j}, a_{i}, q_{k}\right], i>1\right\} \cup \\
& \left\{\left.(a, \text { in } ; a, \text { out })\right|_{t} \mid t=\left[q_{j}, a_{1}, q_{k}\right]\right\}, \\
w_{2}= & \left\{\left\{t, t^{\prime} \mid t \in T R\right\}\right\}, \\
P_{2}= & \left\{\left(\#, \text { in; } t_{0}, \text { out }\right) \mid t_{0}=\left[q_{0}, a_{i}, q\right]\right\} \cup \\
& \left\{\left(t, \text { in; } ; t^{\prime}, \text { out }\right),\left(t^{\prime}, \text { in } ; s, \text { out }\right) \mid t \in T R, s \in \text { next }\left(t^{\prime}\right)\right\}, \\
F_{2}= & \left\{\left\{\left\{t, t^{\prime} \mid t \in T R\right\}\right\}-\left\{\left\{s^{\prime}\right\}\right\} \mid\right. \text { for } \\
& \text { all } \left.s^{\prime} \in T R^{\prime} \text { such that } s^{\prime}=\left[q, a_{i}, q_{f}\right]^{\prime}, q_{f} \in F\right\} .
\end{aligned}
$$

P automaton - An other example

The system simulates a finite automaton over $\Sigma_{1}=\left\{a_{1}, \ldots, a_{k}\right\}$ with 2 membranes, and sequential rule application.

In this case, it is done in such a way that the accepted multiset sequences are:

$$
\{\underbrace{a \ldots a}_{i_{1}}, \underbrace{a \ldots a}_{i_{2}}, \ldots, \underbrace{a \ldots a}_{i_{s}} \mid a_{i_{1}} a_{i_{2}} \ldots a_{i_{s}} \in L\}
$$

P automaton - A third example

[R. Freund, M. Kogler, Gh. Paun, and M. J. Perez-Jimenez. On the power of P and dP automata. Annals of Bucharest University Mathematics-Informatics Series, LVIII:5-22, 2009.]

P automaton - A third example

The set of accepted multiset sequences:

$$
\left\{a_{1}, a_{2}, \ldots, a_{s} \mid a_{1} a_{2} \ldots a_{s} \in L\right\}
$$

P automata

- An antiport P system in an environment from where the input is read
- Given an initial configuration and a set of final (accepting) configurations
- A sequence of multisets is read from the environment during the computation
- The multiset sequence is accepted if the computation ends in an accepting configuration
- The string interpretation of the accepted multiset sequence is provided by an input mapping

The input mapping

An input mapping maps the sequences of multisets over the object alphabet V to strings over an alphabet T :

$$
f: V^{*} \rightarrow 2^{T^{*}}
$$

The language accepted by a P automaton Π :

$$
\begin{aligned}
L(\Pi, f)=\left\{f\left(v_{1}\right) \ldots f\left(v_{s}\right) \mid v_{1}, \ldots, v_{s}\right. & \text { is an accepted } \\
& \text { multiset sequence of } \Pi\}
\end{aligned}
$$

The input mapping

The first example: $\left\{a_{1} B_{1}, a_{2} B_{2}, \ldots, a_{s} F \mid a_{1} a_{2} \ldots a_{s} \in L\right\}$

- the mapping: $V=N \cup T, f(a A)=\{a\}$ where $A \in N, a \in T$

The second example $\left\{a^{i_{1}}, a^{i_{2}}, \ldots, a^{i_{s}} \mid a_{i_{1}} a_{i_{2}} \ldots a_{i_{s}} \in L\right\}$

- the mapping: $V=\{a\}, f\left(a^{i}\right)=\left\{a_{i}\right\}, a_{i} \in T=\left\{a_{1}, \ldots, a_{t}\right\}$
(The third example: $\left\{a_{1}, a_{2}, \ldots, a_{s} \mid a_{1} a_{2} \ldots a_{s} \in L\right\}$)

An other example Input mapping with permutation

A configuration sequence, maximal parallel rule application:
$(A a, A B)==>(A a a, A B)==>\ldots=>(A a \ldots a, A B)=\gg\left(\mathrm{Ba}^{2 k}, A A\right)==>\left(b^{2 k+1}, A A B\right)$
If $\left(\mathrm{V}^{*}, \mathrm{AAB}\right)$ is an accepting state, then

$$
\begin{aligned}
& \underbrace{}_{a^{2}, a^{4}, a^{8}, a^{24} \ldots, a^{2 k}, b^{2 k+1}} \text { is the accepted multiset sequence } \\
& L=\left\{a^{n-2} b^{n} \mid n=2^{k}, k>1\right\} \quad \text { could be the accepted language }
\end{aligned}
$$

Input mapping with permutation

$$
f: V{ }^{*} \rightarrow T^{*}
$$

- $f=f_{\text {perm }}$ if $V=T$ and

$$
\begin{array}{r}
f(v)=\left\{a_{1} a_{2} \ldots a_{s}| | v \mid=s, \text { and } a_{1} a_{2} \ldots a_{s}\right. \text { is a permutation } \\
\text { of the elements of } v\}
\end{array}
$$

The previous example:

$$
\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}-2} \mathrm{~b}^{\mathrm{n}} \mid \mathrm{n}=2^{\mathrm{k}}, \mathrm{k}>1\right\}
$$

is the accepted language

$$
\begin{aligned}
& \underbrace{a^{2}, a^{4}, a^{8}, a^{24} \ldots, a^{2 k}}_{a^{2 k+1-2}}, b^{2^{k+1}} \\
& \text { is the accepted multiset sequence }
\end{aligned}
$$

What can a "reasonable" input mapping be?

A previous example input mapping with erasing

The (set of) accepted multiset sequence(s):

$$
\{\{c, e, D, D\}\{F, F\}\}
$$

If the set of terminal symbols is $T=\{e, c\}$, then the accepted strings are:

$$
\{c e, e c\}
$$

The desired properties of the input mappingr nonerasing

If erasing is allowed, any language is easily obtained with simple systems having just one membrane (extended
P automata, analyzing P systems).
Recall the results of [Freund, Oswald 2002]

Therefore, we study input mappings that are nonerasing.

The desired properties of the input mappinge simplicity

- The power of the system should not come from the power of a complex input mapping

The input mapping should be simple from the point of view of computational complexity:

Different kinds of input mappings

$$
f: V^{*} \rightarrow 2^{T^{*}}
$$

Permutation:

- $f=f_{\text {perm }}$ if $V=T$ and $f(v)=\left\{a_{1} a_{2} \ldots a_{s}| | v \mid=s\right.$, and $a_{1} a_{2} \ldots a_{s}$ is a permutation of the elements of $v\}$

Remainder of division by k :

- $f=f_{k, \text { rem }}$ if $T=\left\{a_{1}, a_{2}, \ldots\right\}$ and $f(v)=\left\{a_{i} \mid / v /\right.$ divided by k gives i as remainder $\}$

Example, remainder

- The number of a-s entering the system while A is present in the outer region:

- If the number of $a-s$ in v_{5} is 11212 , then $f_{10, \text { rem }}\left(v_{1}\right) f_{10, \text { rem }}\left(v_{2}\right) \ldots f_{10, \text { rem }}\left(v_{5}\right)=a_{1} a_{1} a_{2} a_{1} a_{2}$
- The accepted language: $\mathrm{L}_{\text {rev }}=\left\{\mathrm{ww}^{-1} \mid \mathrm{w}\right.$ is a string over $\left.\left\{\mathrm{a}_{1}, \mathrm{a}_{2}\right\}\right\}$

A classification of
 (interesting) input mappings:

- $f=f_{\text {perm }}$ if and only if $V=T$. and

$$
\begin{array}{r}
f(v)=\left\{a_{1} a_{2} \ldots a_{s}| | v \mid=s, \text { and } a_{1} a_{2} \ldots a_{s}\right. \text { is a permutation } \\
\text { of the elements of }
\end{array}
$$

(Examples 3, 4)

- $f \in$ TRANS if and only if, we have $f(v)=\{w\}$ for some $w \in T^{*}$ which is obtained by applying a finite transducer to the string representation of the multiset .
(Examples 1, 2, 5)

To determine the computation power of P automata-.

...consider the workspace they have available for their computation.

- How does the power depend on the input mapping?
- How does the power depend on sequential or maximal parallel rule application?

To determine the computation power of P automata..

...consider the workspace they have available for their computation:

1. In case of "erasing" input mappings, the number of objects inside the system does not depend on the length of the input.

To determine the computation power of P automata..

...consider the workspace they have available for their computation: (d is the number of computational steps so far)
2. In case of $f \in$ TRANS :

- sequential rule application: configurations can be recorded by a Turing machine on $\log c \cdot d \sim \log d$ tape cells
- parallel rule application: configurations can be recorded by a Turing machine on $\log c^{d} \sim d$ tape cells

This limited workspace becomes available step-by-step, it is bounded by d, the length of the already processed part of the input \rightarrow restricted space bounded Turing machines.

A Turing machine with SPACEBOUND(n)

The length of the available worktape is bounded by the length of the input:

Turing machines with restricted space bound

1. After reading d_{1} input cells:

Turing machines with restricted space bound
2. After reading d_{2} input tape cells:

Turing machines with restricted space bound

A nondetermininstic Turing machine with a one-way input tape is restricted $S(n)$ space bounded if the number of nonempty cells on the worktape(s) is bounded by $S(d)$, where d is the distance of the reading head from the left-end of the one-way input tape.

Notations for logarithmic space bound:
1LOGSPACE, r1LOGSPACE, 1LINSPACE, r1LINSPCAE

Restricted space complexity

The restricted space complexity classes are not necessarily the same as the „usual" ones.

Consider for example:

$$
L=\left\{x y\left|x \in\{1,2, \ldots, 9\}\{0,1, \ldots, 9\}^{*}, y \in\{\#\}^{+}, \operatorname{val}(x)=|y|\right\} .\right.
$$

(11\#\#\#\#\#\#\#\#\#\#\# is in L, 3\#\#\#\# is not in L)

L is in 1 LOGSPACE, but it is not in r1LOGSPACE.

Restricted space complexity

The restricted logarithmic space bound:

- $r 1 L O G S P A C E \subset 1 L O G S P A C E$
- In the deterministic case, it is equal to the strong logarithmic space bound.

The restricted linear space bound:

- r1LINSPACE = LINSPACE
[E. Csuhaj-Varju, O.H. Ibarra, Gy. Vaszil: On the computational complexity of P automata. Lecture Notes in Computer Sci., 3384 (2005), 77-90.]
[M. Kutrib, J. Provillard, Gy. Vaszil, M. Wendtland: Deterministic One-Way Turing Machines with Sublinear Space. Fundam. Inform. 136(1-2): 139155 (2015)]

The power of systems with mappings by finite transducers

1. $\mathcal{L}_{\text {par }}($ PA,TRANS $)=r 1 L I N S P A C E=C S$

For any kind of $f: V^{*} \rightarrow 2^{T^{*}}$ as long as it is not more complex than linear space computable (by Turing machines), $L(\Pi, f) \in \mathrm{CS}$.
2. $\mathcal{L}_{\text {seq }}(P A, T R A N S)=r 1 L O G S P A C E \subset 1 L O G S P A C E$
[E. Csuhaj-Varju, O.H. Ibarra, Gy. Vaszil: On the computational complexity of P automata. Lecture Notes in Computer Sci., 3384 (2005), 77-90.]

The characterization of CS in more detall

For any context-sensitive language L, a \mathbf{P} automaton Π can be constructed, such that $L=L\left(\Pi, f_{1}\right)$ for a mapping f_{1} where
$f_{1}(x)=a$ for $x=a^{k}$, and $f_{1}(x)=\{\varepsilon\}$ if x is the empty multiset.

The characterization of CS in more detail

For any \mathbf{P} automaton Π with object alphabet V and mapping $f: V^{*} \rightarrow 2^{T^{*}}$ for some alphabet T, such that f is linear-space computable, the language $L(\Pi, f) \subseteq T^{*}$ is context-sensitive.

Mappings in TRANS and the mapping $f_{\text {perm }}$

The language by Example 5 (with from TRANS):

$$
L_{\text {rev }}=\left\{w w^{-1} / w \text { is a string over }\{a, b\}\right\}
$$

This is interesting because $L_{\text {rev }}$ cannot be characterized using permutations as shown in:
[R. Freund, M. Kogler, Gh. Paun, and M. J. Perez-Jimenez. On the power of P and dP automata. Annals of Bucharest University MathematicsInformatics Series, LVIII:5-22, 2009.]

Systems with mappings from

 TRANS
initial

rules:
configuration:

$$
\begin{aligned}
& (C, \text { out } ; A C, \text { in }) \\
& (A C, \text { out } ; B D, \text { in }) \\
& (A D, \text { out } ; B D, \text { in }) \\
& (B, \text { out })
\end{aligned}
$$

final configuration: A single D is in the region
The accepted multiset sequences: $\left\{(A C)^{n}(B D)^{n} \mid n \geq 1\right\}$
Consider: $f_{1}(A C)=\{a b\}, f_{1}(B D)=\{a c\}$

$$
f_{2}(A C)=\{a a c\}, f_{2}(B D)=\{b b d\}
$$

There are simple linear languages which cannot be characterized with systems using $f_{p e r m}$.

$$
L=\left\{(a b)^{n}(a c)^{n} \mid n \geq 1\right\} \notin \mathcal{L}_{P E R M}(P A)
$$

On the other hand:

$$
\left\{(a a c)^{n}(b b d)^{n} \mid n \geq 1\right\} \in \mathcal{L}_{\text {PERM }}(P A)
$$

[Paun, G., Perez-Jimenez, M.J.: Solving problems in a distributed way in membrane computing: dP systems. International Journal of Computing, Communication and Control V(2), 238-250 (2010)]

Systems with permutation mappings

[R. Freund, M. Kogler, Gh. Paun, and M. J. Pérez-Jiménez. On the power of P and dP automata. Annals of Bucharest University MathematicsInformatics Series, LVIII:5-22, 2009.]

Let us investigate the power systems with permutation mappings.

The power of P automata with permutation mapping

$$
\left|\begin{array}{r}
\mathcal{L}_{X}\left(\mathrm{PA}, f_{\text {perm }}\right) \subset \mathrm{r} 1 \mathrm{LOGSPACE}
\end{array}=\mathcal{L}_{\text {seq }}(P A, T R A N S)\right| \text { where } X \in\{\text { seq, par }\} .
$$

- The inclusion is shown by a counter machine model - RCMA
- The strictness is shown using:

$$
L_{1}=\left\{(a b)^{n} \# w \mid w \in\{1\}\{0,1\}^{*} \operatorname{val}(w)=n>1\right\}
$$

and a lemma from [Freund, Kogler, Paun, Pérez-Jiménez 2010]
[E. Csuhaj-Varjú, Gy. Vaszil: On counter machines vs. dP automata. LNCS 8340, 138-150, 2014]

The power of P automata, general formulation

Notation: for $S: \mathbb{N} \rightarrow \mathbb{N}$,
$L \in N S P A C E(S)-$ as usual
$L \in r 1 N S P A C E(S)$ - there is a Turing machine with a one-way readonly input tape accepting L using a workspace of at most $S(d)$ in each step of an accepting computation where d is the number of cells read on the input tape

The power of P automata, general formulation

Let Π be a P automaton, and let $S: \mathbb{N} \rightarrow \mathbb{N}$, such that $S(d)$ bounds the number of objects inside the system in the i-th step of functioning, $d \leq i$ being the number of transitions in which a nonempty multiset was imported into the system from the environment.

If f is non-erasing and $f \in \operatorname{NSPACE}\left(S_{f}\right)$, then $L(\Pi, f) \in$ $r 1 N S P A C E\left(\log (S)+S_{f}\right)$.

P automata over infinite alphabets

An interesting restriction of Pautomata

P finite automata:

- the object alphabet $V \cup\{a\}$ contains a distinguished symbol a
- the skin region contains rules of the form $\left.(x$, in; y, out $)\right|_{Z}$ with $x \in\{a\}^{*}, y \in(V \cup\{a\})^{*}, Z \in$ $\{z, \neg z\}, z \in V^{*}$
- the other membranes contain rules of the form $\left.(x$, in $; y$, out $)\right|_{Z}$ with $Z \in\{z, \neg z\}, x, y, z \in V^{*}$
[J.Dassow, Gy. Vaszil: P finite automata and regular languages over countably infinite alphabets. Lecture Notes in Computer Sci., 4361
(2006), 367-381.]

P finite automata

As the input multisets can only contain the symbol a, it is appropriate to have

$$
f_{2}:\{a\}^{*} \rightarrow 2^{T^{*}} \text { with } f_{2}(\underbrace{a, \ldots, a}_{i})=\left\{a_{i}\right\}
$$

P finite automata

A language L is regular if and only if there is a \mathbf{P} finite automaton Π with object alphabet $V \cup\{a\}$, such that $L=L\left(\sqcap, f_{2}\right)$.

P automata over infinite alphabets

Because of the maximal parallel rule application, the number of possible inputs is infinite, thus, we might map the input multisets to an infinite alphabet.
\longrightarrow an automata-like device over infinite alphabets
$\longrightarrow \mathbf{P}$ finite automaton - regular languages over infinite alphabets

P finite automata over infinite alphabets

$$
f_{2}:\{a\}^{*} \rightarrow 2^{T^{*}} \text { with } f_{2}(\underbrace{a, \ldots, a}_{i})=\left\{a_{i}\right\}
$$

$$
T=\left\{a_{1}, a_{2}, \ldots, a_{i}, \ldots\right\} \longleftrightarrow\{\{a\}\},\{\{a, a\}\}, \ldots,\{\{\underbrace{a, \ldots, a}_{i}\}\}, \ldots
$$

How to classify languages over infinite alphabets?

Two "natural" analogues of regular languages:

- [M. Kaminski, N. Francez 1994] - languages accepted by finitememory automata
- [F. Otto 1985] - languages characterized by Δ-regular expressions

Finite memory automata

$$
\begin{array}{|l|l|}
\hline \# & \# \\
\hline
\end{array}
$$

anúrahizasion

An accepted string: $a_{1} a_{2} a_{1} a_{3} a_{2} a_{4} a_{3} a_{4}$

Regularity finite memory automata

" L is regular if accepted by a finite memory automaton"

Checking equality of symbols is "easy", but:

$$
\left\{a_{2 i} \mid i \geq 1\right\}
$$

cannot be characterized this way

Regularity Aregular expressions

Let Δ be an infinite alphabet.

- \emptyset and ε denote the empty set and $\{\varepsilon\}$, respectively,
- $a_{i} \in \Delta$ denotes $\left\{a_{i}\right\}$,
- for $a_{i} \in \Delta, j \geq 1$, expression $a_{i, j}$ denotes $\left\{a_{i+k j} \mid k \geq 0\right\}$,
- if r, s are Δ-regular expressions denoting R, S, then $r+s$, $r s$, and r^{*} denote $R \cup S, R S$, and R^{*}, respectively.

Regularity A regular expressions

" L is regular if described by a Δ-regular expression"

Checking relationships between symbols is possible, but:

$$
\left\{a_{i} a_{i} \mid i \geq 1\right\}
$$

cannot be characterized this way

Finite memory automata and A regular expressions

$$
\begin{gathered}
L_{1}=\left\{a_{2 i} \mid i \geq 1\right\} \notin \mathcal{L}(F M A) \text { but } L_{1} \in \mathcal{L}(\Delta-\operatorname{Reg} \operatorname{Exp}) \\
\text { and } \\
L_{2}=\left\{a_{i} a_{i} \mid i \geq 1\right\} \in \mathcal{L}(F M A) \text { but } L_{2} \notin \mathcal{L}(\Delta-\operatorname{Reg} E x p)
\end{gathered}
$$

thus $\mathcal{L}(F M A)$ and $L \in \mathcal{L}(\Delta-\operatorname{Reg} E x p)$ are incomparable.
L_{1} is described by the expression $a_{2,2}$ L_{2} is also easily described by FMA

P finite automate for L_{1}

$$
\begin{aligned}
& \left\{\begin{array}{l}
P_{1}:(a a \quad i n) \mid A \\
P_{2}:(A i n) \\
L
\end{array}=\left\{f\left(\underset{2 i}{a_{2 i}, \ldots}\right) \mid i \geqslant 1\right\}=\left\{a_{2 i} \mid i \geqslant 1\right\}\right.
\end{aligned}
$$

P finite automate for L_{2}

Using P finite automata, we might obtain a more appropriate definition of regular languages over infinite alphabets.

This is an interesting research direction which is still open.

Thank you for your attention!

- Membrane systems (P systems) with communication rules only, accepting P systems
- P automata
- The computational power of P automata
- P automata over infinite alphabets

