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Motivation

 TRIDEC project (critical decision support in evolving crisis)
* Tsunami (Early) Warning Center

= collects sensor data (seismic, tide, GPS etc.)
= Tsunami analysis (e.g. simulation)
= emission of warnings to affected areas

* use DB-stored, pre-computed models and interpolate

e analysis is time critical, but compute intense

= optimize computation
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EasyWave

 TRIDEC's grid-based simulation component (C++)
e simplified computation (e.g. linear approximations)

e computation done in dynamic bounds/window
= Phase 1: TLC stencil for wave heights
= Phase 2: BRC stencil for flux update (momentum conservation)
= Phase 3: extend window, if required
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(single precision float arrays)

grid size: 2800 x 1800, 7200 time steps (typical) computed in approx. 5 min
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EasyWave: Visualization

March 11, 2011 Honshu Tsunami -- wave heights (m) and isochrones (hrs)
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Parallelization

* massively parallel and time-critical problem
e use GPUs to calculate wave propagation
e program with different GPU APIs

= CUDA C, low-level, manual parallelization
" OpenACC, high level compiler-supported parallelization
= OpenCL not considered

 compare APIs for real-world scientific application
= Performance, i.e. required wall time for simulation
= coding effort to achieve gained performance
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Experimental Setup

* two generations of Nvidia cards in different host systems
= C1060: 240 Cores, 4 GB RAM, Tesla Architecture
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e Software
= CUDA 5.5 Toolkit, GCC's g++

= OpenACC: PGI Compiler
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CUDA Parallelization

1. Straight-forward parallelization to SIMT

= one thread per grid cell in phase 1 and 2
= phases computed in different kernels (synchronization)

2. parallel window extension

time, C1060 (Tesla) | time, C2075 (Fermi)

CPU Version, sequential 348 s 305s
SIMT port 162 s (-53 %) 28,4 s (-90%)
par. window ext. 142 s (-13 %) 15,3 s (-46 %)

numbers from typical data set, relative numbers valid for other tested scenarios
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CUDA: memory alignment

e usual / well-known tuning method
 usecudaMallocPitch/cudaMemcpy2d
* maintain alignment in case of window extension

* negligible improvement (4% for Tesla)

= additional computation due to window extension
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CUDA: Call by Value

e arrays passed to kernels using pointer array

float** data

float* wave height

* serialized read access on data array (Tesla) + double dereferencing
* avoided by passing all arrays by value

time, C1060 (Tesla) | time, C2075 (Fermi)

CPU Version, sequential 348 s 305s

SIMT port 162 s (-53 %) 28,4 s (-90%)
par. window ext. 142 s (-13 %) 15,3 s (-46 %)
call by value 62 s (-59 %) 13,9 s (-6 %)
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CUDA: Shared Memory

* well known optimization technique
= Shared Memory as SW managed cache
= copy computed domain to shared memory

e performance reduction on Fermi card

= additional overhead, cache present in hardware

time, C1060 (Tesla) | time, C2075 (Fermi)

CPU Version, sequential 348 s 305s

SIMT port 162 s (-53 %) 28,4 s (-90 %)
par. window ext. 142 s (-13 %) 15,3 s (-46 %)
call by value 62 s (-59 %) 13,9 s (-6 %)
shared memory 34 s (-45 %) 17,7 s (+27 %)
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CUDA: Summary

e good performance on Fermi by just porting to SIMT

* more tuning to HW required on Tesla

e traditional” optimization techniques show low
performance gains (even loss) on Fermi

e large programming effort (ca. 50% more LoC)

e Kepler architecture not considered here

time, C1060 (Tesla) | time, C2075 (Fermi)

CPU Version, sequential 348 s 305s
fastest CUDA 34 s (10x faster) 13,9 s (22x faster)
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OpenACC

* OpenMP-like parallelization using compiler hints
" pragmas for data movement and parallelization
= small programming effort, easy integration
= compiler generates code for accelerator HW
" requires compiler support

#pragma acc data copyin(height[:w*h])
for (it = 0; it < nsteps; it++) {
#pragma acc loop
for (y = ..)

for (x = ..) { /* compute */ }
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OpenACC: Parallelization

e straight forward code additions (+21 of 462 LoC)

e disappointing results
" slow compared to untuned and most tuned CUDA
= tested with PGl Compiler 13.6

time, C1060 (Tesla) | time, C2075 (Fermi)

CPU Version, sequential 348 s 305s
fastest CUDA 34 s (10x faster) 13,9 s (22x faster)
OpenACC 302 s (8.8x slower) 130 s (9.4x slower)
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OpenACC: performance analysis

runtime in seconds

Phase 1: TLC stencil Phase 2: BRC stencil
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* approx. equal performance of Phase 1 and 2 in direct CUDA/SIMT port
 OpenACC: performance loss for Phase 1, good performance for Phase 2
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OpenACC: Compiler Issues

* very similar source code for phases

= similar CPU and generated GPU code

= phases differ mainly in stencil (memory bound)

* mapping of threads influenced by stencil

= removing T from Phase 1 changes dimension of block grid

* bad choice for block and grid size by compiler
= only 60% device occupancy (CUDA achieves 87%)
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Workarounds

e specify mapping manually using vector (partially)
= violates hardware abstraction
" reduces gap between CUDA and OpenACC
= still 3x slower on Fermi (compared to 10x slower)

e compiler update does not resolve issues

= vendor contacted
= same numbers for PGl 13.9 and 14.1 (recent: 14.2)
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Summary

 CUDA

" high performance, but high programming effort
= detailed hardware knowledge required

* OpenACC
" promising, easy APl (see OpenMP)
= performance (can be) comparable to tuned CUDA
= compiler support is crucial

26.02.2014 Steffen Christgau (U Potsdam): A Comparison of CUDA and OpenACC 18



