

Einführung in Hardware- und Systembeschreibungssprachen

Prof. Dr. Miloš Krstić

• Digital systems are constituting devices around us.

2

- The main component of one informatic system is processor
- Processor is one example of the digital system
- It can be modelled with Boolean gates and memory components
- We need to understand how the process of design and modelling of a digital system work, and how digital system operates
- If we understand this we will also understand how processor works and how it can be designed
- This will enable also effective software development
- We will address also complex digital systems and the aspects of its design

- Make the baseline of the knowledge of digital system and hardware design
- Learn to use VHDL for digital system implementation
- Understand chip and FPGA design and test flow
- Get some information on the system level design flow and SystemC modelling language
- Have hands-on experience with state-of-the-art CAD tools for the design of digital systems

- Einführung Digitale Logik
- Einführung in HDL Beschreibungssprachen Beispiel: VHDL
- ASIC & FPGA Designflow
- Test und Verifizierung digitaler Systeme
- System Design und TLM Modellierung
- Einführung in System-Level-Design-Languages
 Beispiel: SystemC

- Lectures
- Time: 10:00-12:00 Fr

Prof. Dr. Milos Krstic, IHP, Frankfurt (Oder) and University Potsdam krstic@ihp-microelectronics.com

- Labs
- Time: 12:00-14:00 Fr

Dr. Steffen Zeidler, Anselm Breitentreiter zeidler, breitenreiter @ihp-microelectronics.com

 During the semester we may have some swaps between lectures and labs

• Examination will be oral

I will consist on set of small problems/exams to solve

Additionally, we will provide couple of theoretical questions

IHP in Frankfurt (Oder)

• Main resource

Mark Zwolinski, Digital System Design with VHDL, Prentice Hall

For SystemC:

J. Bhasker, A SystemC Primer, Star Galaxy

Additionally there is a lot of material on the internet.

If support is required, please contact us!

Overview of this lecture

- Modern Digital Design
- CMOS Transistors & Logic Gates Structure
 "Switch-Level" Transistor Model Some of the basic gates
- The VLSI Design Process
 Levels of Abstraction
 Design steps
 Design styles
- VLSI Trends
- Design Examples

For this lecture the content was utilized from: Presentation Complex Digital Systems, MIT USA Presentation VLSI Circuit Design, John Nestor, Lafayette College

Modern Digital Design

Universitär Porsdam

- Analogue and Digital circuit Design
- Digital Electronics is significant in consumer goods
 Personal computers
 Mobile phones
 Tablets
- For design of Digital Electronics one needs CAD tools synthesis simulation
- Modelling in hardware description languages
 VHDL
 Verilog

Logic Gates

Universitär Porsdam

- Basic building blocks of digital circuit component with one or more inputs and (usually) one output inputs/outputs: 0 and 1 in reality are presented by voltage, for example 0V and 3.3V
- Integrated Circuit

Could be constituted with many logic gates

Design Styles
 ASIC and FPGA

Custom and Semi-Custom

Hand-drawn transistors (+ some standard cells)

High volume, best possible performance: used for most advanced microprocessors, RF design

Standard-Cell-Based ASICs

High volume, moderate performance: Graphics chips, network chips, cell-phone chips, automotive

Field-Programmable Gate Arrays

Prototyping Low volume, low-moderate performance applications

Different design styles require: different design tools, have different chip development cost, and require different design time

• Each circuit element is hand designed

Tradeoffs

High Design Costs (enormous effort!)High starting investment in productionHigh PerformanceLow Unit Cost (good for high volume products!)

• Examples

Analog and Mixed-Signal High-performance microprocessor

Design cost of a high-end CPU is on the order of \$100 million

- this is why we pay so much for processor!

120 GHZ radar chip from IHP

 Pre-designed (or pre-manufactured) components that are assembled and wired by CAD tools.

Standard cell

pre-designed cells include: flip-flops, logic gates, IOs, etc.

Tradeoffs

Low Design Cost High starting investment in production Medium Unit Cost – suboptimal design Medium Performance (< 2 GHz with the current state-of-the-art technology)

• Examples:

Control chip for cell phone Communication chip for phone or pads Graphic accelerators

Programmable Logic Design Style

- Pre-manufactured components with programmable interconnect wired by CAD tools
- Tradeoffs
 - Low Design Cost
 - No starting investment in production
 - Low performance (for logic usually <250 MHz)
 - High unit cost (most complex FPGAs ~ 10 k€)
- Examples
 - Network routers
 - "Digital" electric guitar
 - Satellite equipment
 - **Defense and military**
 - But also consumer products (Washing maschines)!
 - This will be in the future very
 - attractive field for applications and products

usatoday30.usatoday.com

- Commonly used technologies:
- CMOS* (Complementary Metal Oxide Semiconductor)
 today dominant technology

Additionally present:

Bipolar (e.g., TTL) Bi-CMOS - hybrid Bipolar, CMOS (for high speed, lower cost) GaAs - Gallium Arsenide (for high speed, low noise, high cost) Si-Ge - Silicon Germanium (for RF)

VLSI Levels of Abstraction

Data Path

Source: VLSI Circuit D

IN

Status Signals

Data OUT

Data IN

MUX

DMUX

2 REG

n

Control Path

↓ F1

F2 F3

Dat

┥┫╺┥┫╺┥

VLSI Design Process

Applications

CMOS Transistors

DCPS 2015

29.05.2015.

20

CMOS Chip

21

VLSI Technology - CMOS Transistors

- How transistors look in reality processing is not ideal!
- a 65nm transistor from the Intel Tri-Gate transistor technology:
- As a result a variability and reliability becomes a problem!

http://www.grin.com

Image Source: http://www.tomshardware.com/

Universitat

nfet or n transistor

on when gate H "good" switch for logic L "poor" switch for logic H "pull-down" device

pfet or p transistor

 on when gate L
 "good" switch for logic H
 "poor" switch for logic L
 "pull-up" device

ON when gate=L

CMOS Logic Design

Univers

- In 1965, Gordon Moore predicted that transistors would continue to shrink, allowing:
 Doubled transistor density every 18-24 months
 Doubled performance every 18-24 months
- History has proven Moore right
- But, is the end is in sight?

Physical limitations (technology issues) Economic limitations (new technology cost)

> Gordon Moore Intel Co-Founder and Chairmain Emeritus Image source: Intel Corporation www.intel.com

Intel 8080A, 1974 3Mhz, 6K transistors, 6u

Intel 486, 1989, 81mm² 50Mhz, 1.2M transistors, .8u

Intel 8086, 1978, 33mm² 10Mhz, 29K transistors, 3u

Intel 80286, 1982, 47mm² 12.5Mhz, 134K transistors, 1.5u

Intel Pentium, 1993/1994/1996, 295/147/90mm² 66Mhz, 3.1M transistors, .8u/.6u/.35u

Intel 386DX, 1985, 43mm² 33Mhz, 275K transistors, 1u

Intel Pentium II, 1997, 203mm²/104mm² 300/333Mhz, 7.5M transistors, .35u/.25u

Shown with approximate relative sizes

http://www.intel.com/intel/intelis/museum/exhibit/hist_micro/hof/hof_main.htm

Microprocessor Trends (Intel)

Year	Chip	L	transistors
1971	4004	10µm	2.3K
1974	8080	6µm	6.0K
1976	8088	3µm	29K
1982	80286	1.5µm	134K
1985	80386	1.5µm	275K
1989	80486	0.8µm	1.2M
1993	Pentium®	0.8µm	3.1M
1995	Pentium® Pro	0.6µm	15.5M
1999	Mobile PII	0.25µm	27.4
2000	Pentium® 4	180nm	42M
2002	Pentium® 4 (N)	130nm	55M
2003	Itanium® 2 (M)	130nm	410M
2004	Pentium® 4 (P)	90nm	125M
2006	Core 2 Duo®	65nm	291M
2009	Core I5®	45nm	774M
2010	Core I7®	32nm	1170M
2012	Core I7® - Ivy Bridge	22nm	1400M
2014	Broadwell	14nm	1900M

Universitar Porsdam

"Deep Submicron"

Source: <u>http://www.intel.com/pressroom/kits/quickreffam.htm</u>, media reports

Microprocessor Trends

DRAM Memory Trends (Log Scale)

Source netlist.com

Processor Performance Trends

32

Source: http://www.gotw.ca/images/CPU.png

Processor

Logic capacity Clock frequency Cost per function

increases ~ 30% per year <u>increases ~ 20% per year</u> Not any more! decreases ~20% per year

Memory

DRAM capacity:
(4x every 3 years)increases ~ 30% per yearSpeed:increases ~ 10% per yearCost per bit:decreases ~25% per year

- Front-end is designing the logic (RTL)
- Back-end is placing the gates and routing the wires on the chip; meeting timing requirements; connecting power, ground, and clock – performing layout and verification
- New HL Tools are required!

- Non-Recurring Engineering (NRE) costs for a 90nm ASIC is ~ \$30M 59% chip design (architecture, logic & I/O design, product & test engineering) 30% software and applications development 11% prototyping (masks, wafers, boards)
- If we sell 100,000 units, NRE costs add

\$30M/100K = \$300 per chip!

Hand-crafted IBM-Sony-Toshiba Cell microprocessor achieves 4GHz in 90nm, but at the development cost of >\$400M

Source: http://csg.csail.mit.edu/

Alternative: Use FPGAs

Gallery - Early Processors

Intel 4004 First μP - 2300 xtors L=10μm

Mos Technology 6502

Gallery - Current Processors

Pentium® 4 42M transistors / 1.3-1.8GHz 49-55W L=180nm

Process Shrinks

Pentium® 4 "Northwood" 55M transistors / 2-2.5GHz 55W L=0.130nm Area=131mm² Pentium® 4 "Prescott" 125M transistors / 2.8-3.4GHz 115W L=90nm Area=112mm²

Intel Core 2 Duo "Conroe" 291M transistors / 2.67GHz / 65W L=65nm Area=143mm²

Intel Penryn (2007)

- Dual core
- Quad-issue out-of-order superscalar processors
- 6MB shared L2 cache
- 45nm technology Metal gate transistors High-K gate dielectric
- 410 Million transistors
- 3+? GHz clock frequency

Could fit over 500 486 processors on same size die.

Intel Gulftown - I7 (2010)

Min. feature size 32 nm
 Cores 6 (physical), 12 (logical)
 L2 cache 6 × 256 KB, L3 cache 12 MB
 Front side bus replaced with QuickPath up to 6.4GT/s
 TDP 130W
 1.17 Bil. Transistors (240 mm2)
 Up to 3.8 GHz clock frequency

Un^{iversita}

Intel Ivy Bridge - I7 (2012)

- Min. feature size 22 nm
- Ivy Bridge-HE-4
 160 mm2, 1.4 billion transistors, 4 cores, 16 GPUs, L3 Cash 8 MB
 Up to 4 GHz clock frequency

Source: http://cache.futurelooks.com

 Moonrake Chip - GALS and synchronous OFDM gigabit transmitter for 60 GHz band

16M equivalent gates, 30% core logic;
218 memory: 8 FIFOs (64Kb), 86 SROMs (192Kb), 134 SRAMs (400Kb);
219 pads: 136 TX/shared pads, 20 NoC dedicated pads, 63 power pads.

TSMC 40-nm CMOS process; 4000µm²x2250µm²=9mm²; LBGA-345 package; Bondlib 55µm pitch.

SCREAMER Chip

Porsdam 4 TSN hard-macros integrated on the same die (ASIC complexity~25mm2 in 130 nm CMOS) Each macro is a secured wireless sensor node,

LEON-2 uProcessor and three crypto-cores (AES/SHA-1/ECC).

Different noise optimization techniques are used (current shaping, clock modulation, two-phase clocking)

43

Universi

FMP Chip

- Technology: 0.13 um; Size: 33 mm2; Pads: 208
- Power: ~ 350*mW* @ 50 MHz
- **8 32-bit** cores @ **2** memory interfaces (**4** cores/interface)
- **512 KB** total chip memory (**64 KB/core**) for L1 cache
- LOAD/STORE architecture with Stack Facility
- 24-bit core address space
- Novel virtual memory system
- Framework
- HW part framework controllers
- SW part framework middleware

