Einführung in Hardware- und Systembeschreibungssprachen

Prof. Dr. Miloš Krstić

Digital Systems in Hardware -

Why is this important for informatics students?

- Digital systems are constituting devices around us.

Design of Digital Systems-

 Why is this important for informatics students?- The main component of one informatic system is processor
- Processor is one example of the digital system
- It can be modelled with Boolean gates and memory components
- We need to understand how the process of design and modelling of a digital system work, and how digital system operates
- If we understand this we will also understand how processor works and how it can be designed
- This will enable also effective software development
- We will address also complex digital systems and the aspects of its design

Goals of this Course

- Make the baseline of the knowledge of digital system and hardware design
- Learn to use VHDL for digital system implementation
- Understand chip and FPGA design and test flow
- Get some information on the system level design flow and SystemC modelling language
- Have hands-on experience with state-of-the-art CAD tools for the design of digital systems
- Einführung Digitale Logik
- Einführung in HDL Beschreibungssprachen Beispiel: VHDL
- ASIC \& FPGA Designflow
- Test und Verifizierung digitaler Systeme
- System Design und TLM Modellierung
- Einführung in System-Level-Design-Languages Beispiel: SystemC

Organisation

- Lectures
- Time: 10:00-12:00 Fr

Prof. Dr. Milos Krstic, IHP, Frankfurt (Oder) and University Potsdam krstic@ihp-microelectronics.com

- Labs
- Time: 12:00-14:00 Fr

Dr. Steffen Zeidler, Anselm Breitentreiter zeidler, breitenreiter @ihp-microelectronics.com

- During the semester we may have some swaps between lectures and labs

Examination

- Examination will be oral

I will consist on set of small problems/exams to solve

Additionally, we will provide couple of theoretical questions

IHP in Frankfurt (Oder)

- Main resource

Mark Zwolinski, Digital System Design with VHDL, Prentice Hall

For SystemC:
J. Bhasker, A SystemC Primer, Star Galaxy

Additionally there is a lot of material on the internet.

If support is required, please contact us!

- Modern Digital Design
- CMOS Transistors \& Logic Gates

Structure
"Switch-Level" Transistor Model
Some of the basic gates

- The VLSI Design Process

Levels of Abstraction
Design steps
Design styles

- VLSI Trends

For this lecture the content was utilized from:
Presentation Complex Digital Systems, MIT USA
Presentation VLSI Circuit Design, John Nestor, Lafayette College

Modern Digital Design

- Analogue and Digital circuit Design
- Digital Electronics is significant in consumer goods

Personal computers
Mobile phones
Tablets

- For design of Digital Electronics one needs CAD tools synthesis
simulation
- Modelling in hardware description languages

VHDL
Verilog

- Basic building blocks of digital circuit
component with one or more inputs and (usually) one output inputs/outputs: 0 and 1
in reality are presented by voltage, for example 0 V and 3.3 V
- Integrated Circuit

Could be constituted with many logic gates

- Design Styles

ASIC and FPGA

VLSI Design Styles

- Custom and Semi-Custom

Hand-drawn transistors (+ some standard cells)
High volume, best possible performance: used for most advanced microprocessors, RF design

- Standard-Cell-Based ASICs

High volume, moderate performance: Graphics chips, network chips, cell-phone chips, automotive

- Field-Programmable Gate Arrays

Prototyping
Low volume, low-moderate performance applications

Different design styles require:
different design tools, have different chip development cost, and require different design time

Full Custom Design Style

- Each circuit element is hand designed
- Tradeoffs

High Design Costs (enormous effort!)
High starting investment in production

120 GHZ radar chip from IHP

High Performance
Low Unit Cost (good for high volume products!)

- Examples

Analog and Mixed-Signal
High-performance microprocessor

Design cost of a high-end CPU is on the order of $\$ 100$ million

- this is why we pay so much for processor!

ASIC Design Style

- Pre-designed (or pre-manufactured) components that are assembled and wired by CAD tools.

Standard cell

pre-designed cells include: flip-flops, logic gates, IOs, etc.

- Tradeoffs

Low Design Cost
High starting investment in production
Medium Unit Cost - suboptimal design
Medium Performance (< $2 \mathbf{G H z}$ with the current state-of-the-art technology)

- Examples:

Control chip for cell phone
Communication chip for phone or pads Graphic accelerators

Programmable Logic Design Style

- Pre-manufactured components with programmable interconnect wired by CAD tools
- Tradeoffs

Low Design Cost
No starting investment in production
Low performance (for logic usually $\mathbf{< 2 5 0} \mathbf{~ M H z}$)
High unit cost (most complex FPGAs ~ 10 k $€$)

- Examples

Network routers
"Digital" electric guitar
Satellite equipment
Defense and military
But also consumer products (Washing maschines)!
This will be in the future very

VLSI Technology Overview

- Commonly used technologies:
- CMOS* (Complementary Metal Oxide Semiconductor) today dominant technology

Additionally present:
Bipolar (e.g., TTL)
Bi-CMOS - hybrid Bipolar, CMOS (for high speed, lower cost)
GaAs - Gallium Arsenide (for high speed, low noise, high cost)
Si-Ge - Silicon Germanium (for RF)

VLSI Levels of Abstraction

VLSI Design Process

- Start from higher and go to lower levels of abstraction
- Use CAD tools to automate parts of the process

CMOS Transistors

四井 Metal Contacts \boxed{m} Poly-Si

Key feature: transistor length L


```
2002: L=130nm
2003: L=90nm
2005: L=65nm
2008: L=45nm
2010: L=32nm
2012: L=22nm
2015: L=14nm
2016: L=10nm
```


CMOS Chip

VLSI Technology - CMOS Transistors

- How transistors look in reality - processing is not ideal!
- a 65nm transistor from the Intel Tri-Gate transistor technology:
- As a result a variability and reliability becomes a problem!

http://www.grin.com
- nfet or n transistor on when gate H
"good" switch for logic L "poor" switch for logic H "pull-down" device
 "good" switch for logic H "poor" switch for logic L "pull-up" device
- pfet or p transistor on when gate L

CMOS Logic Design

- Complementary transistor networks Pullup: p transistors Pulldown - \mathbf{n} transistors

Inverter

CMOS Logic Example - NAND

A	B	OUT
0	0	1
0	1	1
1	0	1
1	1	0

VLSI Trends: Moore's Law

- In 1965, Gordon Moore predicted that transistors would continue to shrink, allowing:
Doubled transistor density every 18-24 months
Doubled performance every 18-24 months
- History has proven Moore right
- But, is the end is in sight?

Physical limitations (technology issues)
Economic limitations (new technology cost)

Intel Co-Founder and Chairmain Emeritus
Image source: Intel Corporation www.intel.com

Exponential growth: Moore's Law

Intel 8080A, 1974 3Mhz, 6K transistors, 6u

Intel 486, 1989, $81 \mathrm{~mm}^{2}$ $50 \mathrm{Mhz}, 1.2 \mathrm{M}$ transistors, .8 u

Intel 8086, 1978, 33mm ${ }^{2}$ 10Mhz, 29 K transistors, 3 u

Intel 80286, 1982, 47mm² $12.5 \mathrm{Mhz}, 134 \mathrm{~K}$ transistors, 1.5 u

Intel Pentium, 1993/1994/1996, 295/147/90mm² $66 \mathrm{Mhz}, 3.1 \mathrm{M}$ transistors, $.8 \mathrm{u} / .6 \mathrm{u} / .35 \mathrm{u}$

Intel 386DX, 1985, 43mm² 33Mhz, 275K transistors, 1u

Intel Pentium II, 1997, 203mm²/104mm ${ }^{2}$ 300/333Mhz, 7.5M transistors, .35u/.25u

Microprocessor Trends (Intel)

Year	Chip	L	transistors
1971	4004	10رm	2.3K
1974	8080	$6 \mu \mathrm{~m}$	6.0K
1976	8088	$3 \mu \mathrm{~m}$	29K
1982	80286	$1.5 \mu \mathrm{~m}$	134K
1985	80386	$1.5 \mu \mathrm{~m}$	275K
1989	80486	$0.8 \mu \mathrm{~m}$	1.2M
1993	Pentium ${ }^{\circledR}$	$0.8 \mu \mathrm{~m}$	3.1M
1995	Pentium® Pro	$0.6 \mu \mathrm{~m}$	15.5M
1999	Mobile PII	$0.25 \mu \mathrm{~m}$	27.4
2000	Pentium® 4	180nm	42M
2002	Pentium® 4 (N)	130nm	55M
2003	Itanium® 2 (M)	130nm	410M
2004	Pentium® 4 (P)	90 nm	125M
2006	Core 2 Duo®	65nm	291M
2009	Core 15®	45nm	774M
2010	Core 17®	32nm	1170M
2012	Core I7® - Ivy Bridge	22nm	1400M
2014	Broadwell	14nm	1900M

Source netlist.com

Processor Performance Trends

- Processor

Logic capacity
Clock frequency
Cost per function

```
    increases ~ 30% per year
incroasoc ~ 20% por yoar
Not any more!
    decreases ~20% per year
```

- Memory

DRAM capacity: (4x every 3 years)
Speed: increases ~ 10\% per year
Cost per bit: decreases ~25\% per year

Design Effort per Chip

- Front-end is designing the logic (RTL)
- Back-end is placing the gates and routing the wires on the chip; meeting timing requirements; connecting power, ground, and clock - performing layout and verification
- New HL Tools are required!

Design Cost Impacts Chip Cost

- Non-Recurring Engineering (NRE) costs for a 90nm ASIC is ~\$30M

59\% chip design (architecture, logic \& I/O design, product \& test engineering) 30\% software and applications development 11\% prototyping (masks, wafers, boards)

- If we sell 100,000 units, NRE costs add

$$
\$ 30 \mathrm{M} / 100 \mathrm{~K}=\$ 300 \text { per chip! }
$$

Hand-crafted IBM-Sony-Toshiba Cell microprocessor achieves 4GHz in 90 nm , but at the development cost of $\mathbf{>} \$ 400 \mathrm{M}$

Source: http://csg.csail.mit.edu/
Alternative: Use FPGAs

Gallery - Early Processors

Intel 4004

First $\mu \mathrm{P}$ - 2300 xtors
$\mathrm{L}=10 \mu \mathrm{~m}$

Gallery - Current Processors

Pentium ${ }^{\circledR} 4$
42M transistors / 1.3-1.8GHz
49-55W
$\mathrm{L}=180 \mathrm{~nm}$

Process Shrinks

Pentium® 4 "Northwood" 55 M transistors / $2-2.5 \mathrm{GHz}$ 55W $\mathrm{L}=0.130 \mathrm{~nm}$ Area=131 mm^{2}

Pentium® 4 "Prescott" 125M transistors / 2.8-3.4GHz 115W
$\mathrm{L}=90 \mathrm{~nm}$ Area=112mm ${ }^{2}$

Gallery - Current Processors

Intel Core 2 Duo "Conroe" 291M transistors / 2.67GHz / 65W

L=65nm Area=143mm ${ }^{2}$

Image courtesy Intel Corporations All Rights Reserved

Intel Penryn (2007)

- Dual core
- Quad-issue out-of-order superscalar processors
- 6MB shared L2 cache
- 45nm technology

Metal gate transistors
High-K gate dielectric

- 410 Million transistors
- 3+? GHz clock frequency

Could fit over 500486 processors on same size die.

Intel Gulftown - I7 (2010)

- Min. feature size 32 nm

Cores 6 (physical), 12 (logical)
L2 cache 6×256 KB, L3 cache 12 MB
Front side bus replaced with QuickPath up to 6.4GT/s
TDP 130W
1.17 Bil. Transistors (240 mm 2)

Up to 3.8 GHz clock frequency

Intel Ivy Bridge - I7 (2012)

- Min. feature size 22 nm
- Ivy Bridge-HE-4

160 mm2, 1.4 billion transistors, 4 cores, 16 GPUs, L3 Cash 8 MB Up to 4 GHz clock frequency

3rd Generation Intel ${ }^{\circ}$ Core ${ }^{m}$ Processor: 22nm Process

Source: http://cache.futurelooks.com

IHP's Moonrake chip

- Moonrake Chip - GALS and synchronous OFDM gigabit transmitter for 60 GHz band

16M equivalent gates, 30% core logic; 218 memory: 8 FIFOs (64Kb), 86 SROMs (192Kb), 134 SRAMs (400Kb); 219 pads: 136 TX/shared pads, 20 NoC dedicated pads, 63 power pads.

TSMC 40-nm CMOS process; $4000 \mu m^{2} \times 2250 \mu \mathrm{~m}^{2}=9 \mathrm{~mm}^{2}$; LBGA-345 package; Bondlib 55 $\mu \mathrm{m}$ pitch.

SCREAMER Chip

4 TSN hard-macros integrated on the same die (ASIC complexity~25mm2 in 130 nm CMOS)
Each macro is a secured wireless sensor node,
LEON-2 uProcessor and three crypto-cores (AES/SHA-1/ECC).
Different noise optimization techniques are used (current shaping, clock modulation, two-phase clocking)

| Substrate
 noise | 50 MHz | 100 MHz | 800 MHz | 850 MHz | 900 MHz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MACRO 0
 (dBm) | -32.85 | -37.78 | -60.82 | -52.17 | -59.04 |
| δ MACRO1 (dB) | -0.85 | +0.45 | -6.38 | -5.74 | -6.85 |
| δ MACRO2 (dB) | -4.77 | -12.80 | -5.63 | -8.57 | -7.14 |
| δ MACRO3 (dB) | -6.14 | -1.93 | -4.37 | $-\mathbf{- 2 . 5 4}$ | -6.30 |

FMP Chip

- Technology: $\mathbf{0 . 1 3}$ um; Size: 33 mm2; Pads: 208
- Power: ~350mW @ 50 MHz
- 8 32-bit cores @ 2 memory interfaces (4 cores/interface)
- 512 KB total chip memory ($64 \mathrm{~KB} /$ core) for L1 cache
- LOAD/STORE architecture with Stack Facility
- 24-bit core address space
- Novel virtual memory system
- Framework

- HW part - framework controllers
- SW part - framework middleware

Application layer
ramework middleware
Framework controllers

