

Combinational Logic Design

Prof. Dr. Miloš Krstić

Boolean Algebra

• Boolean values

Different representations

 On/OFF – Vdd/Gnd

 True/False

 1/0

• Boolean operators

NOT

AND

OR

• Examples

A = 1

B = C AND 0

F = /(A+B*C)

Z= (/A+B)*(A+/B)
2

Truth Tables

• Listing of all possible values of inputs and respective outputs

A not A

0 1

1 0

A B A or B

0 0 0

1 0 1

0 1 1

1 1 1

A XOR B ?

3

Rules of Boolean Algebra

• Commutivity

A + B = B + A

A * B = B * A

• Associativity

A+ (B + C) = (A+B)+C

A* (B * C) = (A*B)*C

• Distributivity

A*(B+C)=A*B+A*C

• Basic Relationships

A*1=A A+0=A

A*0=0 A+1=1

A*A=A A+A=A

A*/A=0 A+/A=1

4

Rules of Boolean Algebra

• De Morgan’s Law

/(A*B) = /A+/B

/(A+B) = /A * /B

• Shannon’s expansion theorem

F(A,B,C,D,…)=(A+F(0,B,C,D,…))*(/A+F(1,B,C,D,…))

5

Logic Gates

• Logic Symbols Equivalent Circuit Representation

6

M. Zwolinski – Digital System Design with VHDL

MINTERM and MAXTERM

• Minterm – Boolean AND function containing one instance of

each variable

• Maxterm – Boolean OR function containing one instance of

each variable

A B C Z

0 0 0 1 m0

0 0 1 1 m1

0 1 0 0 M2

0 1 1 0 M3

1 0 0 0 M4

1 0 1 1 m5

1 1 0 0 M6

1 1 1 1 m7

 Z= m0 + m1 + m5 +m7

 Z=M2 * M3 * M4 * M6

7

Logic Minimization

• Function of a combinational logic circuit can be described by

one or more Boolean expressions.

We need optimal implementation of combinational logic!

Karnaugh Maps

8

M. Zwolinski – Digital System Design with VHDL

Karnaugh map

• Grouping patterns

Circle the largest possible groups

Avoid circles inside circles

9

M. Zwolinski – Digital System Design with VHDL

Karnaugh map

• Redundant Grouping

• Don’t care

10

M. Zwolinski – Digital System Design with VHDL

Timing

• Timing Diagram

Boolean gates require some time for propagation

In reality circuits and wires have intrinsic delay

Usually when modeling in VHDL it is not required to handle the timing

In some specific cases is however this recommended

 Sole combinational logic, race conditions, hazards

11

M. Zwolinski – Digital System Design with VHDL

Number Codes

• Digital representation in set of bits

• Integers

Base 2 – 101 2

hex – 7AF 16

Two’s complement

 -6 = inverting 0110 + 1 = 1010

• Fixed-point numbers

6.25 = 110.01

The point is implicitly stored by knowing the position in

advance

• Floating-point numbers

S- sign bit, e –exponent, m – mantisa

(-1)s X 1.m X 2e

12

Combinational Code using VHDL

• Combinational logic is stateless

 Changes in inputs immediately propagate to outputs

In simulator this is however delta cycle delay

• Entities and architectures

Basic structures of VHDL

Entity – Symbol (outer view of the block)

Architecture - Implementation

entity and2 is

 port (a, b : in BIT; c: out BIT);

end entity and2;

architecture struc of And2 is

begin

 c <= a and b;

end architecture struc;

13

Identifiers, spaces and comments

• VHDL not case-sensitive, however … still

recommended to follow some rules
use meaningful names

Don’t mix cases, consistent use of cases

Identifiers <15

Don’t redefine predefined identifiers (BIT, TIME)

For signals and variables that are active low, this shall be clearly indicated by

their name, by suffixing _n

14

Comments

--==--

-- Design units :RS_Decoder (Arch_RS_Decoder) (entity and architecture)

-- File name :RS_Decoder.vhd

--

-- Purpose : Model of Reed Solomon (RS) Decoder for communication systems

-- with FEC (Forward Error Correction)

--

-- Note: Selection of code is performed …

--

-- Limitations : ….

--

-- Errors : None known

--

-- Library/Package :

-- work.rs_decoder_package

--

-- Author : N.N

-- IHP GmbH, System Design Department

-- e-mail : nn@ihp-microelectronics.com

--

-- Simulator: ModelSim SE-64 10.1d

--

-- Revision list

-- Version : 1.0

-- Author :N.N.

-- Date : 20.09.2015

-- Changes : New version

15

Handling more complex examples

A B C Z

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Use K-map to get result !

entity comb_function is

 port (a, b, c : in BIT; z: out BIT);

end entity comb_function;

architecture expression of comb_function is

begin

 z <= (not a and b) or (a and c);

end architecture expression;

 Why parentheses?

16

M. Zwolinski – Digital System Design with VHDL

Hierarchy in modules

entity Or2 is

 port (x, y : in BIT; z: out BIT);

end entity Or2;

architecture ex1 of Or2 is

begin

 z <= x or y;

end architecture ex1;

architecture netlist of comb_function is

 signal p, q, r : BIT;

begin

 g1: entity WORK.Not1(ex1) port map (a, p);

 g2: entity WORK.And2(ex1) port map (p, b, q);

 g3: entity WORK.And2(ex1) port map (a, c, r);

 g4: entity WORK.Or2(ex1) port map (q, r, z);

end architecture netlist;

17

M. Zwolinski – Digital System Design with VHDL

entity Not1 is

 port (x : in BIT; z: out BIT);

end entity Not1;

architecture ex1 of Not1 is

begin

 z <= not x;

end architecture ex1;

• VHDL code can be hierarchically

utilized

• The code which just connects the

components uses netlist

(structural) style

Netlists

architecture netlist2 of comb_function is

 component And2 is

 port (x, y : in BIT; z: out BIT);

 end component And2;

 component Or2 is

 port (x, y : in BIT; z: out BIT);

 end component Or2;

 component Not1 is

 port (x : in BIT; z: out BIT);

 end component Not1;

 signal p, q, r : BIT;

begin

 g1: Not1 port map (a, p);

 g2: And2 port map (p, b, q);

 g3: And2 port map (a, c, r);

 g4: Or2 port map (q, r, z);

end architecture netlist;

18

M. Zwolinski – Digital System Design with VHDL

Signal Assignments

Z <= x and y;

Several ways of modelling delay in VHDL

Intertial delay

Z <= x after 4 ns;

Pulses shorter then 4 ns will be suppressed!

Transport delay

Z <= transport x after 4 ns;

The assignments could be complex

Z <= x and y after 4 ns;

19

M. Zwolinski – Digital System Design with VHDL

Generics

If we need programmable definition of delay we can use generics

entity And2 is

 generic (delay : DELAY_LENGTH);

 port (x, y : in BIT; z: out BIT);

end entity And2;

architecture ex2 of And2 is

begin

 z <= x and y after delay;

end architecture ex2;

20

M. Zwolinski – Digital System Design with VHDL

Constant and open ports

Sometimes we do not want to connect all ports

Example: universal gate: two outputs are “and” and “or” function

invert input defines whether the output should be inverted

We can implement AND, NAND, OR, NOR function

entity universal is

 port (x, y, invert : in BIT; a, o : out BIT);

end entity universal;

architecture univ of universal is

begin

 a <= (y and (x xor invert)) or (invert and not y);

 o <= (not x and (y xor invert)) or (x and not invert);

end architecture univ;

In higher instance:

U0: entity work.universal(univ) port map (x,y,’0’, a, open);

Synthesis tool can further optimize circuits if some output is left open

21

M. Zwolinski – Digital System Design with VHDL

Testbenches

We want to evaluate correctness of our model

Usual way is simulation -> we need stimuli file

We have to define a testbench which reads the stimuli, applies this to DUT

and checks the results

entity TestAnd2 is

end entity TestAnd2;

architecture io of TestAnd2 is

 signal a,b,c : BIT;

begin

 g1: entity WORK.And2(ex2) port map (x=>a, y=>b, z=>c);

 a<= '0', '1' after 100 NS;

 b<= '0', '1' after 150 NS;

end architecture io;

22

M. Zwolinski – Digital System Design with VHDL

Configurations

Alternative way to describe AND

entity And2 is

 port (x, y : in BIT; z: out BIT);

end entity And2;

architecture ex3 of And2 is

 signal xy : BIT_VECTOR(0 to 1);

begin

 xy <= x&y;

 with xy select

 z <= '1' when "11",

 '0' when others;

end architecture ex3;

23

M. Zwolinski – Digital System Design with VHDL

Testbench with configurations

entity TestAnd2 is

end entity TestAnd2;

architecture alternate of TestAnd2 is

 component A2 is

 port (x, y : in BIT; z: out BIT);

 end component A2;

 for all : A2 use entity work.And2(ex2);

 signal a,b,c : BIT;

begin

 g1: A2 port map (x=>a, y=>b, z=>c);

 a<= '0', '1' after 100 NS;

 b<= '0', '1' after 150 NS;

end architecture alternate;

configuration Tester1 of TestAnd2 is

 for io

 for g1 : And2

 use entity WORK.And2(ex1);

 end for;

 end for;

end configuration Tester1;

Configurations

entity TestAnd2 is

end entity TestAnd2;

architecture remapped of TestAnd2 is

 component MyAnd2 is

 generic (dly : DELAY_LENGTH);

 port (in1, in2 : in BIT; out1: out BIT);

 end component MyAnd2;

 signal a,b,c : BIT;

begin

 g1: MyAnd2 generic map (6 NS) port map (a, b, c);

 a<= '0', '1' after 100 NS;

 b<= '0', '1' after 150 NS;

end architecture remapped;

configuration Tester2 of TestAnd2 is

 for remapped

 for g1 : MyAnd2

 use entity WORK.And2(ex2)

 generic map (delay => dly);

 port map (x => in1, y => in2, z => out1)

 end for;

 end for;

end configuration Tester2;

24

M. Zwolinski – Digital System Design with VHDL

Conclusions

• Boolean logic and logic synthesis

• Representation

• Combinational logic in VHDL

Entity

Architecture

Signal assignment

Generics

Open

Configuration

25

