

Combinational Building Blocks

Prof. Dr. Miloš Krstić

Multi-valued Logic

• Example - Three-State Buffer

• We can define the types with different values

type tri is (‘0’,’1’,’Z’);

The signal can be then defined as

Signal a, b, c: tri;

• How to use tri same as bit signals?

For example how to calculate:

B<= a and c after 5 ns;

• Defining the function

 AND 0 1 Z

 0 0 0 0

 1 0 1 1

 Z 0 1 Z 2

Overloading Operator

• We can define function which can overload standard operators

(such as and)

function “and” (Left, Right:tri) return tri is

 type tri_array is array (tri,tri) of tri;

 constant and_table: tri_array:=((‘0’,’0’,’0’),

 (‘0’,’1’,’1’),

 (‘0’,’1’,’Z’));

begin

 return and_table(Left, Right);

end function “and”;

We cannot mix different operators now! (for example bit and tri)

Overloading must be used very carefully

3

Standard Logic Type

• Normally the logic implemented in hardware is modelled with more than

binary values (‘0’ and ‘1’)

‘Z’ –high impedance

‘L’ – weak 0

‘H’ – weak 1

‘U’ – undefined

‘X’ – strong unknown

‘W’ – weak unknown

‘-’ – don’t care

type std_ulogic is (‘U’,’X’,’0’,’1’,’Z’,’W’,’L’,’H’,’-’);

How AND truth table for std_ulogic could be defined?

subtype std_logic is resolved std_ulogic;

Standard types and functions are organized in a package

We have to use them from the library

library IEEE;

use IEEE.std_logic_1164.all;

4

Building Three State Buffer

library IEEE;

use IEEE.std_logic_1164.all;

entity three_state is

 port (a, enable : in std_logic;

 z : out std_logic);

end entity three_state;

architecture when_else of three_state is

begin

 z <= a when enable = '1' else 'Z';

end architecture when_else;

architecture after_when_else of three_state is

begin

 z <= a after 4 NS when enable = '1' else 'Z';

end architecture after_when_else;
5

M. Zwolinski – Digital System Design with VHDL

Decoder

• Converts data into some other form

 Inputs Outputs

A1 A0 Z3 Z2 Z1 Z0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

• How to define vectors in VHDL

type std_logic_vector is array (natural range <>) of std_logic;

6

M. Zwolinski – Digital System Design with VHDL

Decoder

• One possibility for implementation is

library IEEE;

use IEEE.std_logic_1164.all;

entity decoder is

 port (a : in std_logic_vector(1 downto 0);

 z : out std_logic_vector(3 downto 0));

end entity decoder;

architecture when_else of decoder is

begin

 z <= "0001" when a = "00" else

 "0010" when a = "01" else

 "0100" when a = "10" else

 "1000" when a = "11" else

 "XXXX";

end architecture when_else;
7

M. Zwolinski – Digital System Design with VHDL

Decoder - alternative

library IEEE;

use IEEE.std_logic_1164.all;

entity decoder is

 port (a : in std_logic_vector(1 downto 0);

 z : out std_logic_vector(3 downto 0));

end entity decoder;

architecture with_select of decoder is

begin

 with a select

 z <= "0001" when "00",

 "0010" when "01",

 "0100" when "10",

 "1000" when "11",

 "XXXX" when others;

end architecture with_select;
8

M. Zwolinski – Digital System Design with VHDL

Practical example - Seven Segment Decoder

Please try at home and in labs!

9

M. Zwolinski – Digital System Design with VHDL

Programmable Decoders

• How to ensure parametric design?

Use of generics is essential in VHDL

entity decoder is

 generic (n : POSITIVE);

 port (a : in std_logic_vector(n-1 downto 0);

 z : out std_logic_vector(2**n-1 downto 0));

end entity decoder;

• How to use shift operator to build decoder?

architecture rotate of decoder is

 constant z_out : BIT_VECTOR(2**n-1 downto 0) :=

 (0 => '1', others => '0');

begin

 z <= to_StdLogicVector(z_out sll to_integer(unsigned(a)));

end architecture rotate; 10

M. Zwolinski – Digital System Design with VHDL

VHDL Shift Operators

11

M. Zwolinski – Digital System Design with VHDL

Types of Arithmetic and Conversion in VHDL

• Standard std_logic_1164 package supports std_logic_vectors and integers

For conversion one can use to_StdLogicVector and to_integer functions

• For arithmetic we need definition whether this is signed or unsigned

This is supported by numeric_std package

Conversion std_logic_vector  (un) signed is simple

x<= unsigned(y);

y<= std_logic_vector(x);

From integer we need to define the number of bits:

to_unsigned(i,n)

Take care about the number of bits when using integers!

12

Multiplexers

• Multiplexer switches one of many inputs to a single output

They enable effective reuse of hardware

entity mux is

 port (a, b, c, d: in std_logic;

 s: in std_logic_vector(1 downto 0);

 y: out std_logic);

end entity mux;

architecture mux1 of mux is

begin

 with s select

 y <= a when "00",

 b when "01",

 c when "10",

 d when "11",

 'X' when others;

end architecture mux1; 13

M. Zwolinski – Digital System Design with VHDL

Priority Encoders

• In many situations the output of the combinational block is

irrelevant to the complete set of inputs

In this case we can use don’t care values

Example priority encoder

Inputs Outputs

 A1 A2 A3 A4 Y1 Y0 Valid

 0 0 0 0 0 0 0

 0 0 0 1 0 0 1

 0 0 1 - 0 1 1

 0 1 - - 1 0 1

 1 - - - 1 1 1

14

Priority Encoder - Implementation

library IEEE;

use IEEE.std_logic_1164.all;

entity priority is

 port (a: in std_logic_vector(3 downto 0);

 y: out std_logic_vector(1 downto 0);

 valid: out std_logic);

end entity priority;

architecture DontCare of priority is

begin

 with a select

 y <= "00" when "0001",

 "01" when "001-",

 "10" when "01--",

 "11" when "1---",

 "00" when others;

 valid <= '1' when a(0)='1' or a(1)='1' or a(2)='1' or a(3) = '1'

 else '0';

end architecture DontCare;

15

M. Zwolinski – Digital System Design with VHDL

Priority Encoder – Alternative Implementation

library IEEE;

use IEEE.std_logic_1164.all;

entity priority is

 port (a: in std_logic_vector(3 downto 0);

 y: out std_logic_vector(1 downto 0);

 valid: out std_logic);

end entity priority;

architecture Ordered of priority is

begin

 y <= "11" when a(3)='1' else

 "10" when a(2)='1' else

 "01" when a(1)='1' else

 "00" when a(0)='1' else

 "00";

 valid <= '1' when a(0)='1' or a(1)='1' or a(2)='1' or a(3) = '1'

 else '0';

end architecture Ordered;

 16

M. Zwolinski – Digital System Design with VHDL

VHDL Modelling Styles

• Three ways of VHDL coding, two have been covered before

Structural – netlist type

u1: inv port map (A, X);

Dataflow – concurrent signal assignments

out <= ‘0’ when In1=In2 else ‘1’;

Sequential – can be used in functions, procedures and processes

Process – one of the most important structures in VHDL

 Sensitivity list

 if statements

17

Priority Encoder – sequential Implementation

library IEEE;

use IEEE.std_logic_1164.all;

entity priority is port (a: in std_logic_vector(3 downto 0); y: out std_logic_vector(1 downto 0); valid: out

std_logic); end entity priority;

architecture Sequential of priority is

begin

 process (a) is

 begin

 if a(3)='1' then

 y <= "11"; valid <= '1';

 elsif a(2)='1' then

 y <= "10"; valid <= '1';

 elsif a(1)='1' then

 y <= "01"; valid <= '1';

 elsif a(0)='1' then

 y <= "00"; valid <= '1';

 else

 y <= "00"; valid <= '0';

 end if;

 end process;

end architecture Sequential;
18

M. Zwolinski – Digital System Design with VHDL

Adders

• Entity declaration

library IEEE;

use IEEE.std_logic_1164.all, IEEE.numeric_std.all;

entity NBitAdder is

 generic (n: NATURAL :=4);

 port(A, B: in std_logic_vector(n-1 downto 0);

 Cin : in std_logic;

 Sum : out std_logic_vector(n-1 downto 0);

 Cout: out std_logic);

end entity NBitAdder;

• Two types of addition

Signed

Unsigned

19

M. Zwolinski – Digital System Design with VHDL

Adders – Unsigned Implementation

architecture unsgned of NBitAdder is

 signal result : unsigned(n downto 0);

 signal carry : unsigned(n downto 0);

 constant zeros : unsigned(n-1 downto 0) := (others => '0');

begin

 carry <= (zeros & Cin);

 result <= ('0' & unsigned(A)) + ('0' & unsigned(B)) + carry;

 Sum <= std_logic_vector(result(n-1 downto 0));

 Cout <= result(n);

end architecture unsgned;

20

M. Zwolinski – Digital System Design with VHDL

Adders – Signed Implementation

architecture sgned of NBitAdder is

 signal result : signed(n downto 0);

 signal carry : signed(n downto 0);

 constant zeros : signed(n-1 downto 0) := (others => '0');

begin

 carry <= (zeros & Cin);

 result <= (A(n-1) & signed(A)) + (B(n-1) & signed(B)) + carry;

 Sum <= std_logic_vector(result(n-1 downto 0));

 Cout <= result(n);

end architecture sgned;

21

M. Zwolinski – Digital System Design with VHDL

Single Bit Full Adder

library IEEE;

use IEEE.std_logic_1164.all;

entity FullAdder is

 port (a, b, Cin : in std_logic; Sum, Cout: out std_logic);

end entity FullAdder;

architecture concurrent of FullAdder is

begin

 Sum <= a xor b xor Cin;

 Cout <= (a and b) or (a and Cin) or (b and Cin);

end architecture concurrent;

• Two assignments are concurrent!

This is a general rule in VHDL

22

M. Zwolinski – Digital System Design with VHDL

Adder – Iterative Implementation

architecture StructIterative of NBitAdder is

 signal Carry: std_logic_vector(0 to n);

begin

 g1 : for i in 0 to n-1 generate

 lt : if i = 0 generate

 f0 : entity work.FullAdder port map (A(i), B(i), Cin, Sum(i), Carry(i+1));

 end generate lt;

 rt : if i = n-1 generate

 fn : entity work.FullAdder port map (A(i), B(i), Carry(i), Sum(i), Cout);

 end generate rt;

 md : if i > 0 and i < n-1 generate

 fm : entity work.FullAdder port map (A(i), B(i), Carry(i), Sum(i), Carry(i+1));

 end generate md;

 end generate g1;

end architecture StructIterative;

23

M. Zwolinski – Digital System Design with VHDL

Parity Checker

 library IEEE;

use IEEE.std_logic_1164.all;

entity parity is

 port (a : in std_logic_vector;

 y : out std_logic);

end entity parity;

architecture iterative of parity is

begin

 process (a) is

 variable even : std_logic;

 begin

 even := '0';

 for i in a'RANGE loop

 if a(i) = '1' then

 even := not even;

 end if;

 end loop;

 y <= even;

 end process;

end architecture iterative;

24

M. Zwolinski – Digital System Design with VHDL

 New VHDL constructs

 attribute RANGE

 use of variables

 Immediately Update

 for loop

 Principle of loop unrolling

Testbenches for Combinational Blocks

• Two important functions of a testbench
Generation of input stimuli

Checking of results validity

• Example Adder testbench
library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity TestNBitAdder is

end entity TestNBitAdder;

architecture TestBench_1 of TestNBitAdder is

 constant n: NATURAL := 4;

 signal A, B, Sum: std_logic_vector (n-1 downto 0);

 signal Cin, Cout: std_logic;

begin

 s0: entity WORK.NBitAdder(unsgned) generic map (n) port map(A, B, Cin, Sum, Cout);

 Cin <= '0', '1' after 10 NS, '0' after 25 NS;

 A <= "0000", "1111" after 5 NS, "0111" after 15 NS;

 B <= "0000", "1111" after 20 NS;

end architecture TestBench_1;

25

M. Zwolinski – Digital System Design with VHDL

Testbenches in a Process

architecture TestBench_3 of TestNBitAdder is

 constant n: NATURAL := 4;

 signal A, B, Sumint : NATURAL;

 signal Aslv, Bslv, Sum: std_logic_vector (n-1 downto 0);

 signal Cin, Cout: std_logic;

begin

 s0: entity WORK.NBitAdder(unsgned) generic map (n) port map(Aslv, Bslv, Cin, Sum, Cout);

 Aslv <= std_logic_vector(to_unsigned(A, n)); Bslv <= std_logic_vector(to_unsigned(B, n));

 Sumint <= to_integer(unsigned(Cout & Sum));

stim: process is

 begin

 Cin <= '0';

 A <= 0;

 B <= 0;

 wait for 5 NS;

 A <= 15;

 wait for 5 NS;

 Cin <= '1';

 wait for 5 NS;

 A <= 7;

 wait for 5 NS;

 B <= 15;

 wait for 5 NS;

 Cin <= '0';

 wait;

 end process;

end architecture TestBench_3;

26

M. Zwolinski – Digital System Design with VHDL

Testbench – monitoring of the results

architecture TestBench_4 of TestNBitAdder is

 constant n: NATURAL := 4;

 signal A, B, Sumint : NATURAL; signal Aslv, Bslv, Sum: std_logic_vector (n-1 downto 0);

 signal Cin, Cout: std_logic; signal error: BOOLEAN := FALSE;

begin

 s0: entity WORK.NBitAdder(unsgned) generic map (n) port map(Aslv, Bslv, Cin, Sum, Cout);

 Aslv <= std_logic_vector(to_unsigned(A, n)); Bslv <= std_logic_vector(to_unsigned(B, n));

 Sumint <= to_integer(unsigned(Cout & Sum));

stim: process is

 begin

 Cin <= '0'; A <= 0; B <= 0;

 wait for 5 NS;

 A <= 15;

 wait for 5 NS;

 Cin <= '1';

 wait for 5 NS;

 A <= 7;

 wait for 5 NS;

 B <= 15;

 wait for 5 NS;

 Cin <= '0';

 wait;

 end process;

resp: process (Cout, Sum) is

 begin

 error <= (A + B + BIT'POS(to_bit(Cin))) /= Sumint;

 end process;

end architecture TestBench_4;

27

M. Zwolinski – Digital System Design with VHDL

Conclusions

• We have learnt a number of basic combinational logic blocks

• In order to define them several VHDL constructs have been

introduced

Packages

When…else

With…select

Generate

Shift operators

Processes

• Testbench generation is also presented

28

