
Logistic Model Trees

A thesis

submitted in partial fulfilment

of the requirements for the degree

of

Diploma of Computer Science

at the

University of Freiburg

by

Niels Landwehr

Department of Computer Science

Freiburg, Germany

9th of July, 2003



ii



Abstract

Tree induction methods and linear regression are popular techniques for supervised learning

tasks, both for the prediction of discrete classes and numeric quantities. The two schemes

have somewhat complementary properties: the simple linear models fit by regression exhibit

high bias and low variance, while tree induction fits more complex models which results in

lower bias but higher variance. For predicting numeric quantities, there has been work on

combining these two schemes into ‘model trees’, i.e. trees that contain linear regression

functions at the leaves [Quinlan, 1992]. This thesis presents an algorithm that adapts this

idea for classification problems. For solving classification tasks in statistics, the analogue

to linear regression is linear logistic regression, so our method builds classification trees

with linear logistic regression functions at the leaves. A stagewise fitting process allows the

different logististic regression functions in the tree to be fit by incremental refinement using

the recently proposed LogitBoost algorithm [Friedman et al., 2000], and we show how this

approach can be used to automatically select the most relevant attributes to be included in

the logistic models. We compare our algorithm to several other state-of-the-art learning

schemes on 32 benchmark UCI datasets, and conclude that it produces accurate classifiers

and good estimates of the class membership probabilities.
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Chapter 1

Introduction

Machine learning provides tools that automatically analyze large datasets, looking for in-

formative patterns, or use accumulated data to improve decision making in certain domains.

Recent advances in computer hardware and software have led to a large increase in the

amount of data that is routinely stored electronically, and this has made techniques of ma-

chine learning both more important and more feasible. There has been an impressive array

of successful applications of machine learning: programs that learn from data are used to

make or support decisions in medical domains, recognize spoken words, detect fraudulent

use of credit cards, or classify astronomical structures. Often, the learning task can be

stated as a classification problem: given some observations about a specific object, the goal

is to associate it with one of a predefined set of classes. For example, a patient could be

diagnosed as having a particular disease or not depending on the outcome of a number of

medical tests. Solving classification tasks is an important problem in machine learning and

has received a lot of attention.

This thesis introduces a new algorithm for solving classification problems, called the logis-

tic model tree learner, and compares it to other state-of-the-art learning schemes on several

real-world problems. The thesis is organized as follows: In this chapter, we start with a

short overview of the algorithm and the related work that motivated our approach in Sec-

tion 1.1. Section 1.2 gives some background on machine learning in general and classifica-

tion problems in particular, states the learning problem more precisely and introduces some

terminology that will be used in subsequent sections. Chapter 2 discusses the two learning

schemes logistic model trees are based upon: tree induction and logistic regression, and

Chapter 3 reviews other tree-based learners that are related to logistic model trees. In Chap-
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ter 4 we introduce logistic model trees and give a detailed description of our algorithm for

building them. Chapter 5 describes our experimental study and discusses its results. We

conclude with a short summary in Chapter 6.

1.1 Thesis Motivation and Overview

Supervised learning of discrete classes is a well-studied problem in machine learning, and

a wide variety of algorithms for dealing with it have been proposed. The standard approach

in statistics for solving classification tasks is to use a linear logistic regression model — a

parametric model fit by maximum likelihood — to estimate the influence of the independent

variables on the class membership probabilities. In the machine learning community, tree

induction is one of the oldest and most popular approaches for classification (see for exam-

ple [Quinlan, 1993], [Breiman et al., 1984]). Tree induction works by finding a subdivision

of the instance space into regions that correspond to a particular class based on the examples

in the training data. Although trees can also produce probability estimates, the main focus

is on classification.

The two methods have somewhat complementary advantages and disadvantages. Looking

at the final decision boundaries, linear logistic regression fits a simple (linear) model to

the data, and the process of model fitting is quite stable. The method can be characterized

as having a high bias but low variance. Tree induction, on the other hand, exhibits low

bias but often high variance: it searches a less restricted space of models, allowing it to

capture nonlinear patterns in the data, but making it less stable and prone to overfitting. It

is not surprising that neither of the two methods is superior in general — earlier studies

(e.g. [Perlich and Provost, 2002]) have shown that their relative performance depends on

the size and the characteristics of the dataset. Generally speaking, the linear models fit by

logistic regression are preferable when the data is noisy or only few training examples are

available, or when the data exhibits a linear structure. Tree induction is preferable on highly

non-linear datasets, if enough training examples are available.

It is a natural idea to try and combine these two methods into learners that rely on simple

regression models if only few/noisy data is available and add a more complex tree structure

only if there is enough data to warrant such structure. For the case of predicting a continuous

2



class variable, this has lead to ‘model trees’ — trees with linear regression models at the

leaves — and those have been shown to produce good results [Quinlan, 1992]. It is possible

to use model trees for classification tasks by transforming the regression problem into a

classification problem in the standard way, and indeed this approach can sometimes yield

more accurate classifiers than standard tree induction [Frank et al., 1998]. However, it is not

very elegant, because it means that a separate model tree has to be built for every possible

value of the class variable. This increases the computational complexity and makes the final

model harder to interpret, especially if there are many different classes. A more natural

way of dealing with classification tasks would be to use a combination of tree structure

and logistic regression, i.e. a decision tree with logistic regression functions at the leaves.

Emphasizing the connection to model trees, we will call this kind of model a ‘logistic model

tree’. This approach leads to final models that consist of a single tree, and can produce class

probability estimates (in addition to a classification) in a natural way.

This thesis presents a method that follows this idea, called LMT (Logistic Model Trees).

We discuss a new scheme for selecting the attributes to be included in the logistic regres-

sion models, and introduce a way of building the logistic models at the leaves by refining

logistic models that have been trained at higher levels in the tree, i.e. on larger subsets of the

training data. The performance of LMT is evaluated on 32 real-world datasets taken from

the UCI repository [Blake and Merz, 1998]. Included in the experiments are the standard

classification tree inducer C4.5, linear logistic regression and other tree-based classifiers,

such as boosted C4.5, M5’ for classification and a different system for building logistic

model trees called ‘PLUS’. The experiments show that LMT produces more accurate clas-

sifiers than C4.5, logistic regression, M5’ for classification, and PLUS. It is competitive

with boosted decision trees, which are considered one of the best ‘off the shelf’ classifica-

tion systems (see for example [Breiman, 1998]), while producing models that are easier to

interpret. In terms of probability estimates, LMT outperforms all other methods included

in the experiments. We also present empirical evidence that LMT smoothly scales model

complexity (from a simple linear model to a large tree) depending on the characteristics of

the dataset.
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1.2 Machine Learning: Concepts and Definitions

This section presents a short introduction to machine learning, gives a precise definition

of the learning task and introduces some concepts and terminology that will be used in

subsequent sections.

The field of machine learning is concerned with computer programs that improve their per-

formance at solving a particular class of problems by experience. This definition of learning

is rather broad: it says nothing about the form of the experience available to the learner, or

the way the performance is evaluated. It covers statistical techniques that seek to determine

correlations between certain variables in a domain (for example, the correlation between

the price of a house and its geographical location or age) by looking at large databases; or

programs that learn how to drive a car by observing a human driver, or a robot that learns to

navigate through a building by gradually exploring its environment. Performance could be

measured by the degree to which the learned correlation holds over new samples from the

housing domain, the number of miles a program can drive a car without human intervention,

or the speed/safety with which the robot can move from one part of the building to another.

Consequently, machine learning is made up of several subfields that can be characterized by

the learning scenario they employ. In this thesis, we are interested in supervised learning

of discrete classes. Here, the learner is presented with a fixed set of examples (also called

instances), which are described by a number of measurements called attributes and a label

that tells the class the example falls into. The set of attributes are fixed, and they can take

on either a numeric value (‘numeric attribute’, e.g. price) or one of a fixed set of unordered

values (’nominal attribute’, e.g. color). The goal of learning is to find a function that maps

new instances (for which no class label is available) to one of the classes. It is assumed

that the training examples represent independent samples of an underlying ‘target function’

that describes how class labels are assigned to instances, and the learned function should be

an approximation to this target function. We call this scenario of learning a classification

problem.

1.2.1 The Classification Problem

We can formalize the general setting of a J-class classification problem as follows:
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The learner is presented with a set of training examples or instances x1, . . . , xn which are

defined over a fixed set of attributes v1, . . . , vm and labeled with a class yi ∈ {1, . . . , J}.

The attributes have associated domains (sets of possible values they can take on)D1, . . . , Dm,

which can be continuous (Di = R) or discrete (Di = {di1, . . . , d
i
ki
}). The classification for

an instance is given by a target function g : D1 × · · · × Dm → {1, . . . , J}, and the goal

of the learner is to find an approximation f to g. The space D1 × · · · ×Dm spanned by all

attributes is called the instance space, and finding an f corresponds to finding a subdivision

of the instance space into disjoint regions labeled with one of the classes {1, . . . , J}.

Unfortunately, this scenario is a bit too optimistic — it assumes that all information rele-

vant to the classification is actually included in the available attributes (i.e., they perfectly

determine the class). For most real-world problems, class labels are not a deterministic

function of the attribute values, but are corrupted by other influences that are often referred

to as noise. This means that instead of a target function we have a random variable G(x)

and class membership probabilities P (G = j|X = x) for a given instance x. Here, X

is the random variable that encodes which instance is observed, and we assume that X is

governed by some unknown but fixed probability distribution over the instance space. The

best the learner can do in this scenario is to find a function that minimizes the probability of

misclassifying a new instance by choosing

f∗ = argmin
f

P (f(X) 6= G(X)), (1.1)

but we cannot expect to reduce the probability for misclassification to zero.

More generally, a learner can also try to learn an estimate P̂ (G = j|X = x) of the class

membership probabilities P (G = j|X = x) from the training examples, and most of

the algorithms discussed in this thesis indeed produce such estimates. Given probability

estimates for the different classes, new instances are classified according to

f(x) = argmax
j

P̂ (G = j|X = x).

Producing these estimates can sometimes be better than producing only a classification, for

example, they can serve as a measure of how confident the classifier is in its prediction.

As an example, Figure 1.1 shows some training examples from a simplified version of the
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Figure 1.1: Examples from the ‘iris’ dataset.
petal length petal width class

1.3 0.2 Iris-setosa
4.9 1.5 Iris-versicolor
5.1 1.9 Iris-virginica
5.9 2.1 Iris-virginica
1.5 0.2 Iris-setosa
5.6 1.8 Iris-virginica
4.7 1.4 Iris-versicolor
1.7 0.4 Iris-setosa
1.9 0.4 Iris-setosa
5.8 2.2 Iris-virginica
5.0 1.7 Iris-versicolor
... ... ...

Figure 1.2: Instance space for the ‘iris’ dataset.

setosa
x versicolor
+ virginica

x x

x
x

x x

x
x+

+

+

+ + +

++

+

+ +petal width

petal length

‘iris’ dataset from the UCI repository [Blake and Merz, 1998]. The two numeric attributes

are measurements from an iris plant (the petal length and width), and the goal is to clas-

sify the plant as ‘Iris-setosa’, ‘Iris-virginica’ or ‘Iris-versicolor’. Figure 1.2 visualizes the

distribution of the examples in the instance space for this dataset, and possible decision

boundaries between the classes 1.

1.2.2 Learning as Search

This section discusses learning from a more theoretical point of view. Assume a learning

algorithm is presented with a set of training examples and called upon to output a function

that assigns a classification to arbitrary instances taken from the instance space. What is a

reasonable choice for that function, i.e., how can the learner generalize from the observed

training examples to a general concept? One way of looking at this problem is to view learn-

ing as a search for a function f from a space of hypothesis (potentially learnable functions)
1These boundaries were found by a nearest neighbor learner.
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that assign class labels to instances x. The search for f is guided by the given examples:

typically, the learner will try to find a function that is (more or less) consistent with the

training data. A learning scheme can then be characterized by the space of hypothesis it

considers and the way it selects its final function, possibly from several hypothesis that fit

the training data equally well. The hypothesis space under consideration and the way the

final function is selected can be seen as an a-priori assumption about the structure under-

lying the data that is encoded in the learning algorithm, and is often referred to as its bias.

Having some kind of bias is necessary for generalization — without it, a learner would have

no basis whatsoever to classify instances that were not already observed in the training set.

On the other hand, having the wrong kind of bias can mean that the learner will fail to learn

the right function (i.e., a function that comes close to minimizing Equation 1.1).

One component of the bias is the size of the hypothesis space being considered. A large hy-

pothesis space means the learner considers outputting complex functions (complex subdivi-

sions of the instance space), while a more restricted space means the considered functions

have to be simpler. There is an obvious disadvantage to having a hypothesis space that is too

restricted: it might not contain any good approximations to the optimal function as defined

by Equation 1.1. However, very complex hypothesis spaces can also be problematic. The

reason for this is that it becomes harder to identify a good function (given a limited amount

of training data) if there are many degrees of freedom in the hypothesis space. With many

degrees of freedom, it is very easy to fit the training data perfectly (find a function that as-

signs the correct class labels to all training examples). But this not necessarily the best thing

to do: the training data will usually not be perfectly representative of the target function be-

cause it is a limited sample and possibly corrupted by noise. Often, a complex function fit

in this way will have higher error over unseen instances than a simpler function that has a

higher error on the training examples. This phenomenon is well-known from statistics and

often referred to as overfitting. Another problem with very rich hypothesis spaces is that the

estimate of the function f is not very stable — for slightly changed versions of the training

data the learner could output a considerably changed f . Both the problems of variance and

overfitting are more severe for small datasets (the less data, the more likely it is that some

complex function ‘by chance’ fits the data well) and for noisy datasets (because this means

the training sample is even less representative of the target function).

Another component of bias is the way a specific function from the hypothesis space is
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selected as the final model. A learner might consider a very large hypothesis space but

favor simple hypothesis as far as possible, only resorting to more complex ones if the simple

hypothesis fail to explain the training sufficiently well2. Of course, it is not obvious what

‘sufficiently well’ means in a particular case, the learner has to somehow trade off training

error against model complexity.

Characterizing learning algorithms in terms of their bias provides a uniform view of the

model fitting process and often helps understand their particular strength and weaknesses.

We will have more to say about this in later sections.

1.2.3 Evaluating a Learned Model

Obtaining a good estimate of the performance of a learned function (or model) is an impor-

tant aspect in machine learning. It is needed for comparing different learning algorithms,

and is sometimes used as well within a learning algorithm to assess the quality of the model

learned so far. When evaluating the performance of a learned function f , we are really

interested in the ‘true error’

error(f) = P (f(X) 6= G(X)), (1.2)

but we can only approximate this error by looking at the misclassification rate on a set of k

‘test instances’:

errorS(f) =
1

k

∑

x∈S

I(f(x) 6= y(x)) (1.3)

where y(x) is the class label of x ∈ S. To give a realistic (unbiased) estimate for Equa-

tion 1.2, S must not have played any part in the construction of the model, and to give a

stable estimate it should be as large as possible. Unfortunately, data is usually limited and

we want to use as much of it as possible for estimating f , meaning we cannot afford to set

a large part of it aside for evaluation purposes. The most practical way of obtaining a good

estimate of the real error is to use a cross validation scheme: Split all available data D into

V subsets of roughly equal size, and in the V different ‘folds’ use V − 1 of the subsets

for constructing a model fv and the last subset as a test set for estimating its error. The V

different error estimates are then averaged and used as an approximation for the error of a

2This is sometimes called a ‘preference’ bias as opposed to the ‘restriction’ bias given by the hypothesis
space.

8



model f built on all data D by the same learner. Typical values for V are five or ten.

A technique called stratification can improve the stability of the cross-validated estimates.

Stratifying a cross-validation means to split the data into the V subsets in such a way that the

distribution of the class values is (approximately) the same for every subset. As an example,

consider a ten-class problem where the a-priori frequency of the ten classes is roughly equal.

If the training set for one fold only contained examples labeled with the classes one to nine

but the test set mostly examples of class 10, the learner could not achieve a reasonable result.

It is better to have stratified subsets that again contain roughly equal numbers of examples

for the different classes.

Apart from classification accuracy, other possible performance measures are the error on

the probability estimates (see Section 5.2 for a more detailed discussion of this), the time

needed to construct a model from the training examples as a function of the number of

examples and the number of attributes, and the interpretability of the final model. For some

real-world applications the latter is actually more interesting than the classification accuracy,

because the primary objective is to gain insight into the structure of the domain rather than

predicting the class of unseen instances.
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Chapter 2

Tree Induction and Logistic

Regression

In this chapter, we will discuss the two learning schemes our algorithm is based upon: tree

induction and logistic regression. In Section 2.1 we will briefly review tree induction in gen-

eral and describe the C4.5 tree learner used in our experimental study. Section 2.2 describes

how to solve classification tasks with learners that can only produce a numeric prediction,

for example standard linear regression. Section 2.3 describes the logistic regression model,

which is a more advanced scheme to use regression for classification tasks. We will de-

scribe how to fit a logistic regression model with the LogitBoost algorithm [Friedman et al.,

2000], and show how this approach can be used to automatically select the most important

attributes to be included in the logistic model. In Section 2.4 we will try to compare the two

techniques and give some insight into their relative strengths and weaknesses.

2.1 Tree Induction

Recall from Section 1.2.1 that the goal of learning is to find a subdivision of the instance

space into regions labeled with one of the classes. Tree induction finds this subdivision

by repeatedly splitting the instance space, stopping when the regions of the subdivision are

reasonbly ‘pure’ in the sense that they contain examples with mostly identical class labels.

After splitting has stopped, the regions are labeled with the majority class of the examples

in that region.
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Splitting is carried out in a divide-and-conquer fashion: After a split, the resulting two

regions are split recursively using the same method. All considered splits correspond to

a test on a single attribute, either of the form ‘attribute = value’ (for nominal attributes)

or ‘attribute ≤ value’ (for numeric attributes). So splitting on a numeric attribute yields

two regions with an axis-parallel boundary and splitting on a nominal attribute partitions a

region into multiple axis-parallel ‘stripes’. Because splits correspond to tests on attributes,

the final subdivision can be represented as a tree with attribute tests at the inner nodes,

where every leaf represents one region in the subdivision.

For classification, a new instance is sorted down to a leaf in the tree (which corresponds to

determining the region in the subdivision it falls into) and the predicted class is the majority

class of the examples in that region. Classification trees can also generate estimates for the

class membership probabilities: the probability for a particular class is just the fraction of

the examples in the region which are labeled with that class.

Important advantages of tree models are that they can be constructed efficiently and are easy

to interpret. A path in a decision tree basically corresponds to a conjunction of boolean

expression of the form ‘attribute = value’ (for nominal attributes) or ‘attribute ≤ value’ (for

numeric attributes), so a tree can be seen as a set of rules that say how to classify instances.

Several variants of tree induction have been proposed. The two most important issues for

tree induction algorithms are the following:

• How to split the instance space? Splitting consists of choosing an attribute to split

on, and if the attribute is numeric, to decide on a ‘splitting value’, i.e. a threshold

value for the attributes such that instances that have a higher/lower value for that at-

tribute are sorted down the left/right branch of that node. The split should somehow

increase the ‘purity’ in the subdivisions generated by the split, and the different split-

ting criteria that have been proposed can be characterized by the purity measure they

try to optimize. For example, the well-known C4.5 system [Quinlan, 1993] uses an

entropy-based criterion, while the CART system uses a different criterion called the

Gini index [Breiman et al., 1984].

• When to stop splitting? As explained in Section 1.2.2, it is not a good idea to keep

splitting until the samples in every subdivision all have identical class labels. This

will usually lead to a model that overfits the training data and thus performs poorly

12



Figure 2.1: The artificial ‘polynomial-noise’ dataset and the uncorrupted class boundary.

Figure 2.2: Subdivisions of increasing complexity for the ‘polynomial-noise’ dataset.

when predicting the class of new instances. Furthermore, it leads to huge trees that

are hard to interpret. The goal is to find a subdivision that is fine enough to capture

the structure in the underlying domain but does not fit random patterns in the training

data.

As an example, Figure 2.1 shows a sample of 500 instances from an artificial domain,

namely the sign-boundary of the function

f(x1, x2) = x
2
1 + x1 + x2 + e,

a polynomial of the two attributes x1, x2 that is corrupted by Gaussian noise e. The

function was uniformly sampled in [−1, 1]2. The original decision boundary of the

polynomial (without noise) is also given (black/white region). We refer to this dataset

as the ‘polynomial-noise’ dataset, it will be used again later.

Figure 2.2 shows three subdivision of the R2 instance space for the ‘polynomial-

noise’ dataset, generated by a decision stump learner, C4.5 with the ‘minimum in-

stances’ parameter set to 20, and C4.5 with standard options. Colors from light to

13



dark indicate probability estimates for class one from one to zero. The subdivisions

are increasingly more complex; in this case, probably the center one would be ade-

quate, while the rightmost one clearly overfits the examples.

The usual approach to the problem of finding the best number of splits is to first

perform many splits (build a large tree) and afterwards use a ‘pruning’ scheme to

undo some of these splits. Different pruning schemes have been proposed. For ex-

ample, C4.5 uses a statistically motivated estimate for the true error given the error

on the training data (see below), while the CART method cross-validates a ‘cost-

complexity-parameter’ that assigns a penalty to large trees (see Section 4.2.2 for a

detailed discussion of CART pruning).

In our experiments we used an implementation of the C4.5 tree induction algorithm. C4.5

uses entropy as the measure of impurity: assume that in a set of instances M fractions

p1, . . . , pJ of the instances are labeled with class 1, . . . , J . Then define

entropy(M) =

J∑

i=1

−pi · logpi,

and select the split that gives the highest ‘information gain’, defined by

IG(S) = entropy(M)−
k∑

i=1

|Mi|

|M |
entropy(Mi)

for a split S that splits the set of examplesM at the node into the subsetsM1, . . . ,Mk.

Pruning in C4.5 is based on an estimate of the ‘real’ error rate at a node, i.e. the expected

misclassification rate for new instances. The estimate is computed in the following way:

assume incorrect/correct classifications for unseen instances are governed by a Bernoulli

process with parameter q, i.e. the probability is q for a misclassification and 1− q for a cor-

rect classification. The observed training error for the node can be seen as an (optimistically

biased) estimate of q, and together with the number of training examples at the node allows

to compute a confidence interval (at the 25% level) in which the real error should fall. C4.5

uses the upper bound of this confidence interval as the estimate for the real error. Using the

upper bound is supposed to compensate for the optimistic bias in the training error, although

the statistical underpinnings of the method are relatively weak.
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The described approach is used for leaves — for inner nodes, the estimate of the error rate is

the average estimated error rate of its children, weighted by the number of training examples

that are sorted down the respective branch. For pruning decisions, the error estimate for a

subtree is compared to the error estimate that would be obtained if the subtree was replaced

by a leaf, and if the latter one is lower, the subtree is pruned away (replaced by the leaf).

C4.5 implements some additional heuristics and features, for handling weighted instances,

instances with missing values, and penalties for splitting on nominal attributes with many

different values (which would otherwise be preferred because they tend to give a large

information gain). For a more detailed discussion, see [Quinlan, 1993].

2.2 Classification via Regression

The term ‘regression’ sometimes refers to a particular kind of parametric model for esti-

mating a numeric target variable, and sometimes to the process of estimating a numeric

target variable in general (as opposed to a discrete one). For the moment, we take the latter

meaning — we explain how to solve a classification problem with a learner that can only

produce estimates for a numeric target variable.

Assume we have a class variable G that takes on values 1, . . . , J . The idea is to transform

this class variable into J numeric ‘indicator’ variables G1, . . . , GJ to which the regression

learner can be fit. The indicator variable Gj for class j takes on value 1 whenever class

j is present and value 0 everywhere else. A separate model is then fit to every indicator

variable Gj using the regression learner. When classifying an unseen instance, predictions

u1, . . . , uJ are obtained from the numeric estimators fit to the class indicator variables, and

the predicted class is

j∗ = argmax
j

uj .

This scheme can also produce estimates of the class membership probabilities. The u1, . . . , uJ

are converted into class probability estimates by limiting them to [0, 1] and normalizing so

they sum to one:

u′i = min(1,max(ui, 0)),
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pi =
1

∑J
j=1 u

′
j

· u′i

We will use this transformation process several times, for example when using model trees

for classification (see below).

Transforming a classification task into a regression problem in this fashion, we can use

standard linear regression for classification. Linear regression fits a parameter vector β to a

numeric target variable to form a model

f(x) = βTx

where x is the vector of attribute values for the instance (we assume a constant component

in the input vector to accomodate the intercept). The model is fit to minimize the squared

error:

β∗ = argmin
β

n∑

i=1

(f(xi)− yi)
2.

However, this approach has some disadvantages. Usually, the predictions given by the

regression functions fit to the class indicator variables are not confined to [0, 1] and can

even become negative. Besides, the approach is known to suffer from masking problems

in the multiclass case: even if the class regions of the instance space are linearly separable,

two classes can ‘mask’ a third one such that the learned model cannot separate it from the

other two (see for example [Hastie et al., 2001]).

2.3 Logistic Regression

A better way to use regression for classification tasks is to use a logistic regression model

that models the posterior class probabilities Pr(G = j|X = x) for the J classes. Given

estimates for the class probabilities, we can classify unseen instances by

j∗ = argmax
j

P (G = j|x = X).

Logistic regression models these probabilities using linear functions in x while at the same

time ensuring they sum to one and remain in [0,1]. The model is specified in terms of J − 1
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log-odds that separate each class from the ‘base class’ J :

log
Pr(G = j|x = X)

Pr(G = J |X = x)
= βTj x, j = 1, . . . , J − 1

or, equivalently,

Pr(G = j|X = x) =
exp(βTj x)

1 +
∑J−1
l=1 exp(β

T
l x)
, j = 1, . . . , J − 1

Pr(G = J |X = x) =
1

1 +
∑J−1
l=1 exp(β

T
l x)
.

Note that this model still produces linear boundaries between the regions in the instance

space corresponding to the different classes. For example, the x lying on the boundary

between a class j and the class J are those for which

Pr(G = j|X = x) = Pr(G = J |X = x),

which is equivalent to the log-odds being zero. Since the equation for the log-odds is linear

in x, this class boundary is effectively a hyperplane. The formulation of the logistic model

given here uses the last class as the base class in the odds-ratios, however, the choice of the

base class is arbitrary in that the estimates are equivariant under this choice.

Fitting a logistic regression model means estimating the parameter vectors βj . The standard

procedure in statistics is to look for the maximum likelihood estimate: choose the parame-

ters that maximize the probability of the observed data points. For the logistic regression

model, there are no closed-form solutions for these estimates. Instead, we have to use nu-

meric optimization algorithms that approach the maximum likelihood solution iteratively

and reach it in the limit.

In a recent paper that links boosting algorithms like AdaBoost to additive modeling in statis-

tics, Friedman et al. propose the LogitBoost algorithm for fitting additive logistic regression

models by maximum likelihood [Friedman et al., 2000]. These models are a generalization

of the (linear) logistic regression models described above. Generally, they have the form

Pr(G = j|X = x) =
eFj(x)

∑J
k=1 e

Fk(x)
,

J∑

k=1

Fk(x) = 0,
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LogitBoost (J classes)

1. Start with weights wij = 1/n, i = 1, . . . , n, j = 1, . . . , J, Fj(x) = 0
and pj(x) = 1/J ∀j

2. Repeat form = 1, . . . ,M :

(a) Repeat for j = 1, . . . , J :

i. Compute working responses and weights in the jth class

zij =
y∗ij − pj(xi)

pj(xi)(1− pj(xi))

wij = pj(xi)(1− pj(xi))

ii. Fit the function fmj(x) by a weighted least-squares regression
of zij to xi with weights wij

(b) Set fmj(x)← J−1
J (fmj(x)−

1
J

∑J
k=1 fmk(x)), Fj(x)← Fj(x) + fmj(x)

(c) Update pj(x) = e
Fj(x)PJ

k=1 e
Fk(x)

3. Output the classifier argmax
j

Fj(x)

Figure 2.3: The LogitBoost algorithm.

where Fj(x) =
M∑
m=1
fmj(x) and the fmj are (not necessarily linear) functions of the input

variables. Indeed, the authors show that if regression trees are used as the fmj , the resulting

algorithm has strong connections to boosting decision trees with algorithms like AdaBoost.

Figure 2.3 gives the pseudocode for the algorithm. The variables y∗ij encode the observed

class membership probabilities for instance xi, i.e.

y∗ij =






1 if yi = j,

0 if yi 6= j
(2.1)

(recall that yi is the class label of example xi). The pj(x) are the estimates of the class

probabilities for an instance x given by the model fit so far.

LogitBoost performs forward stagewise fitting: in every iteration, it computes ‘response

variables’ zij that encode the error of the currently fit model on the training examples (in

terms of probability estimates), and then tries to improve the model by adding a function

fmj to the committee Fj , fit to the response by least-squared error. As shown in [Friedman
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et al., 2000], this amounts to performing a quasi-Newton step in every iteration, where the

Hessian matrix is approximated by its diagonal.

Any class of functions fmj can be used as the ‘weak learner’ in the algorithm, as long as

they are fit by a least-squares regression. Depending on the class of functions, we get a

more expressive or more restricted overall model. In the special case that the fmj(x) and so

the Fj(x) are linear functions of the input variables, the additive logistic regression model

is equivalent to the linear logistic model introduced above. Assuming that Fj(x) = αTj · x,

the equivalence of the two models is established by setting αj = βj−βJ for j = 1 . . . J−1

and αJ = βJ . Note that the condition
∑J
k=1 Fk(x) = 0 is for numeric stability only, adding

a constant to all Fk(x) does not change the model.

This means we can use the LogitBoost algorithm to learn linear logistic regression models,

by fitting a standard least-squares regression function as the fmj in step 2(a)ii. of the algo-

rithm. In fact, this is almost identical to the standard ‘iteratively reweighted least squares’

method used for fitting linear logistic regression models (discussed for example in [Green,

1984]), except for the approximation of the Hessian matrix that is used instead of full New-

ton stepping.

2.3.1 Attribute Selection

Typical real-world data includes various attributes, only a few of which are actually relevant

to the true target concept. If non-relevant attributes are included in, for example, a logistic

regression model, they will usually allow the training data to be fitted with a smaller error,

because there is by chance some correlation between the class labels and the values of

these attributes for the training data. They will not, however, increase predictive power

over unseen cases, and can sometimes even significantly reduce accuracy. Furthermore,

including attributes that are not relevant will make it a lot harder to understand the structure

of the domain by looking at the final model, because it is ‘distorted’ by the influence of these

attributes. Therefore, it is important to find some way to select the most relevant attributes

to include in the logistic regression models.

When we say that we fit a linear regression function fmj by least squares regression in a

LogitBoost iteration, we usually mean a multiple linear regression that makes use of all the
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attributes. However, it is also possible to use even simpler functions for the fmj : simple

regression functions, that perform a regression on only one attribute present in the training

data. Fitting simple regression by least-squared error means fitting a simple regression

function to each attribute in the data using least-squares as the error criterion, and then

selecting the attribute that gives the smallest squared error.

Because every multiple linear regression can be expressed as a sum of simple linear re-

gression functions, the general model does not change if we use simple instead of multiple

regression for the fmj . Furthermore, the final model found by LogitBoost will be the same

because quasi-Newton stepping is guaranteed to actually find the maximum likelihood so-

lution if the likelihood function is convex, which it is for linear logistic regression. Using

simple regression functions instead of multiple ones will basically slow down the learning

process, building gradually more complex models that include more and more attributes.

However, all this only holds provided the algorithm is run until convergence (i.e., until the

likelihood does not change anymore between two successive iterations). If it is stopped

before it converges to the maximum likelihood solution, using simple regression will result

in automatic attribute selection, because the model will only include the most relevant at-

tributes present in the data. The stopping criterion can be based on cross-validation: only

perform more iterations (and include more attributes) if this actually improves predictive

accuracy over unseen instances.

On the other hand, slowing down the model fitting process can lead to higher computational

costs. Although fitting a simple regression is computationally more efficient than fitting

a multiple one, it could be necessary to consider the same attribute multiple times if the

overall model has changed because other attributes have been included. This means many

iterations have to be performed before the algorithm converges to a reasonable model. The

computational complexity of a simple linear regression on one attribute is O(n), so one

iteration of LogitBoost would take O(n ·m) because we have to build a simple regression

model on all attributes in order to find out which one is the best (recall that n denotes the

number of training examples andm the number of attributes present in the data). The com-

putational complexity for building a multiple regression is O(n ·m +m3)1. The relative

speed of the two methods depends on how many LogitBoost iterations are required when us-

ing simple regression functions, but it is reasonable to expect that using multiple regression

1We take the number of classes J as a constant here, otherwise there is another factor of J .
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does converge faster.

We decided to use simple regression functions in our implementation because that approach

improved predictive accuracy and significantly reduced the number of attributes included

in the final model for some datasets (see Section 5.3 for an empirical comparison of this

method to building a ‘full’ logistic model on all attributes). Note that this applies both to

the logistic model tree algorithm LMT that builds logistic regression functions at the nodes

of a decision tree (see Section 4) and the standalone logistic regression learner we use as a

benchmark in our experimental evaluation.

More specifically, in our implementation of standalone logistic regression we determine

the optimum number of LogitBoost iterations by a five fold cross-validation: split the data

five times into training and test set, run LogitBoost on every training set up to a maximum

number of iterations (500) and log the classification error on the respective test set. After-

wards, run LogitBoost again on all data using the number of iterations that gave the smallest

error on the test set averaged over the five folds. We will refer to this implementation as

SimpleLogistic.

2.3.2 Handling Nominal Attributes and Missing Values

In real-world domains important information is often carried by nominal attributes whose

values are not necessarily ordered in any way and thus cannot be treated as numeric (for

example, the make of a car in the ‘autos’ dataset from the UCI repository). However, the re-

gression functions used in the LogitBoost algorithm can only be fit to numeric attributes, so

we have to convert those attributes to numeric ones. We followed the standard approach for

doing this: a nominal attribute with k values is converted into k numeric indicator attributes,

where the l-th indicator attribute takes on value 1 whenever the original attribute takes on

its l-th value and value 0 everywhere else. Note that a disadvantage of this approach is that

it can lead to a high number of attributes presented to the logistic regression if the original

attributes each have a high number of distinct values. It is well-known that a high dimen-

sionality of the input data (in relation to the number of training examples) increases the

danger of overfitting. On such datasets, attribute selection techniques will be particularly

important.
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Another problem with real-world datasets is that they often contain missing values, i.e.

instances for which not all attribute values are observed. For example, an instance could

describe a patient and attributes correspond to results of medical tests. For a particular

patient results might only be available for a subset of all tests. Missing values can occur

both during training and when predicting the class of an unseen instance. The regression

functions that have to be fit in an iteration of LogitBoost cannot directly handle missing

values, so one has to fill in the missing values for such instances.

We used a simple global scheme for this: at training time, calculate the mean (for numeric

attributes) or the mode (for nominal attributes) of the values for each attribute and use these

to replace missing values in the training data. When classifying unseen instances with

missing values, the same mean/mode is used to fill in the missing value.

2.4 Comparing Tree Induction and Logistic Regression

Because logistic regression originated in the statistics community, it was rarely included

in early studies that compared machine learning algorithms empirically. However, in more

recent studies there has been interest in comparing the relative performance of classical

machine learning algorithms like tree induction with that of logistic regression. In a com-

prehensive study involving many different learning algorithms, Lim et al. note that logistic

regression outperforms tree induction in terms of classification accuracy on the majority of

the datasets in the UCI repository, and was generally very competitive with other schemes

[Lim et al., 2000]. However, this might partly be due to special characteristics of the datasets

in the UCI repository, for example, most of these datasets are relatively small (about a few

hundred to a few thousand instances).

A later study by Perlich et al. [Perlich and Provost, 2002] seeks to compare tree induction

to logistic regression methods specifically taking into account some large datasets (several

hundred thousand instances). They try to determine which of the two methods is preferable

depending on the number of training instances available and the signal-to-noise ratio of the

data. Instead of finding that logistic regression is generally preferable, they draw the con-

clusion that logistic regression is better relatively speaking on small datasets and on datasets

with a low signal-to-noise ratio, while trees usually perform better for larger datasets and
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Figure 2.4: Learning curve of linear logistic regression and tree induction for an artificial
two-class dataset.

datasets that do not contain too much noise. For several domains they note that the learn-

ing curves (accuracy of learned model as a function of the number of training instances) of

logistic regression and tree induction cross — logistic regression giving better results when

only few examples are available for training but tree induction taking over when the training

set is large enough.

Figure 2.4 shows an example learning curve for logistic regression and tree induction. It

plots the achieved classification accuracy on an independent test set as a function of the

training set size for an artificial dataset (see Section 5.4.1 for a detailed description of the

dataset and methodology used). We observe that the two learning curves cross: for up

to 200 training instances, logistic regression achieves a higher classification accuracy, but

afterwards the curve for logistic regression levels off while the tree continues to improve its

performance with more training examples.

These empirical results can be understood in terms of the concepts discussed in Section 1.2.2.

The bias for logistic regression is that it only considers functions that correspond to linear

decision boundaries, encoding the assumption that the structure underlying the data is linear,

or can at least be approximated reasonably well by a linear model. Within this hypothesis

space, the preferred model is the one that maximizes the likelihood of the data. Because

linear models are so restricted compared to the class of all functions that can be defined
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Figure 2.5: Class probability estimates from a tree and a logistic regression model for the
‘polynomial-noise’ dataset.

over the instance space, logistic regression can be characterized as a learner that is strongly

biased toward simple models. In contrast to that, the space of functions that can be ex-

pressed as a decision tree is very large. If all attributes are nominal, it is easy to see that

every function can be expressed as a decision tree (because there is a decision tree with a

leaf for every point in the instance space). In the presence of numeric attributes, it is still

possible to approximate a function arbitrarily well, provided that it is bounded and non-zero

only in a finite region of the instance space. So there is no restriction bias for decision

tree learning, however, there is a preference bias given by the way the hypothesis space is

searched. Roughly speaking, we prefer smaller trees over larger ones, and smaller trees

correspond to simpler models. We might even prefer smaller trees that are less consistent

with the training data to larger ones that explain it better, when trading off tree size versus

training error during pruning.

Nevertheless, the bias towards simple models is certainly stronger for logistic regression

than for tree induction. As explained in Section 1.2.2, having a strongly biased hypothesis

space pays off if there is a high danger of overfitting — i.e., for small and/or noisy datasets.

On the other hand, a less biased learner has an advantage if there is enough data to reliably

identify a good approximation to the target function in a rich hypothesis space.

We can conclude from these considerations that neither logistic regression nor tree induction

is superior in general, either can be preferable depending on the domain and the number of

training examples available. This is one motivation for our method: logistic model trees,

which combine splits of the instance space with logistic regression models, should be able

to adapt model complexity smoothly depending on the dataset.
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Figure 2.5 visualizes models built by tree induction (C4.5) and logistic regression for the

‘polynomial-noise’ dataset introduced in Section 2.1. The plot shows the probability esti-

mates given by the models in the different regions of the instance space, colors from white

to black indicate class membership probabilities for class one from one to zero. Recall that

the optimal decision boundary has a nonlinear shape with examples for class two concen-

trated in the lower left region of the instance space (see Figure 2.1). We observe that logistic

regression tries to approximate this by a diagonal linear boundary, while tree induction fits

a more complicated model that roughly follows the nonlinear shape of the optimal bound-

ary. However, tree induction also fits some patterns in the training data more closely, for

example in the lower left part of the picture, which constitutes overfitting in this case. Fur-

thermore, the probability estimates of the logistic regression model are smoother than for

the classification tree. The tree partitions the instance space into regions of constant class

membership probability estimates, whereas the estimates given by the logistic model vary

more gradually.
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Chapter 3

Related Tree-Based Learning

Schemes

Starting from simple decision trees, several advanced tree-based learning schemes have

been developed. In this section we will describe some of these methods which are related

to logistic model trees, to show what our work builds on and where we improve on previous

solutions. Some of the related methods will also be used as benchmarks in our experimental

study, described in Section 5.

Section 3.1 describes the ‘model tree’ algorithm developed by Quinlan et al., which com-

bines regression and tree induction for tasks where the target variable to be predicted is

numeric [Quinlan, 1992]. The logistic model trees developed in this thesis are an analogue

to model trees for categorical target variables, so a description of model trees is a good

starting point for understanding our method. Section 3.2 describes the ‘stepwise model tree

induction’ algorithm (SMOTI), another model tree inducer. It is related to our method in that

the final regression functions at the leaves of the tree are made up from ‘global’ and ‘local’

influences of different variables, that enter into the regression at different levels in the tree.

Section 3.3 reviews another recently proposed algorithm for building logistic model trees

called PLUS (Polytomous Logistic regression trees with Unbiased Splits) [Lim, 2000]. The

final trees built by PLUS are similar to the logistic model trees constructed by our method,

however, the way the logistic regression functions are constructed and integrated into the

tree is substantially different. Section 3.4 describes the well-known ‘boosting’ scheme in

general and specifically the AdaBoost.M1 algorithm. Boosting can significantly increase

the classification accuracy of tree-based classifiers. We will also briefly discuss advantages
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and disadvantages of this technique, especially with regard to interpreting the constructed

models.

3.1 Model Trees

Model trees, like ordinary regression trees, predict a continuous numeric value for an in-

stance that is defined over a fixed set of numeric or nominal attributes. Unlike ordinary

regression trees, model trees construct a piecewise linear (instead of a piecewise constant)

approximation to the target function. The final model tree consists of a tree with linear re-

gression functions at the leaves, and the prediction for an instance is obtained by sorting it

down to a leaf and using the prediction of the linear model associated with that leaf. The

linear models at a leaf typically do not incorporate all attributes present in the data, in order

to avoid building overly complex models (we will describe how the attributes are selected

in more detail later). In a sense, this means that ordinary regression trees are a special case

of model trees: the ‘linear regression models’ here do not incorporate any attribute and are

just the average class value of the training instances at that node. In this Section, we will

describe the M5’ model tree algorithm [Wang and Witten, 1997], which is a ’rational re-

construction’ of Quinlan’s M5 algorithm [Quinlan, 1992], arguably the most well-known

model tree algorithm. An M5’ tree is constructed as follows:

In the first phase, a standard regression tree is grown. The ‘purity’ measure for the splitting

criterion is the standard deviation of the class values of the examples at a node: the algorithm

selects the attribute to split on as the one giving the largest decrease in standard deviation.

All splits in the tree are binary, nominal attributes are converted to binary ones (that are

treated as numeric) before tree growing starts. For this, the average value of the target

variable is calculated for every nominal value of the attribute, and the nominal values are

sorted according to these averages. If the nominal attribute has k values, it is replaced by

k − 1 binary attributes, the i-th being zero if the nominal value is among the first i in the

ordering and one otherwise.

After the initial tree is grown, a linear regression model is build for every node in the tree.

The attributes considered in the regression are those that were selected as splitting attributes

anywhere in the subtree rooted at that node. The rationale for this is that one later considers
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replacing this subtree by the linear model, so it should take into account the same variables.

This means that at the leaves (of the original, unpruned tree) the regression models are just

the average class value of the instances at that leaf, while the regression model at the root

incorporates all attributes that were used in the original tree.

The central idea for the second phase, the pruning of the tree, is to find an estimate of

the ‘true error’ for the subtree and the regression function at every node of the tree. The

true error is the expected error of the subtree/regression on unseen instances that are sorted

down to that node in the tree. Of course, the observed error on the training data — the

absolute difference between the predicted value and the actual class value averaged over

all training instances sorted down to this node — is a poor estimate of the true error at

the node. Therefore, it is multiplied by a ‘compensation factor’ that takes into account the

number of training examples at that node and the number of parameters included in the

model. The idea is that the optimistic bias of the training error compared to the real error

will be especially strong if the model has many degrees of freedom (many parameters) and

there are only a few instances. The compensation for the training error used in M5’ is

E∗ = E ·
n+ v

n− v
,

where E∗ is the ‘corrected’ estimate of the training error E, n denotes the number of in-

stances at the node and v the number of parameters in the regression (the number of at-

tributes included plus one for the constant term).

This approach is used to estimate the error of the regression function at every node. The esti-

mate for the error of the subtree is the combined error estimates from the different branches,

weighted by the number of training instances that are sorted down the respective branch.

Before deciding whether to prune the subtree rooted at a node and replace it with the linear

model, the algorithm considers dropping attributes from the regression functions if this re-

sults in a lower error estimate (i.e., if the decrease in the number of parameters outweighs

the increase in the observed training error). Then every inner node is considered for prun-

ing, the subtree rooted at the node is replaced by its linear model if the error estimate for

the model is smaller than or equal to the estimate for the subtree.

When classifying a new instance, it is basically sorted down to a leaf and the linear model

at the leaf is used to predict the target value. However, there is one problem with this
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approach: the regression functions at adjacent leaves have been constructed independently

of each other, and there will often be sharp discontinuities between them. This means the

target value could change considerably if the value for an attribute varies a bit so that it is

sorted into a different leaf. To avoid this, M5’ employs a ‘smoothing’ process that averages

the prediction of the model at the leaf with that of the models on the path from that leaf to

the root. The smoothing calculation is

p′ =
np+ kq

n+ k
,

where p′ is the prediction passed up to the parent node, p is the prediction passed to this

node from the child node, q is the value predicted by the model at this node and n is the

number of examples at the node. The ‘smoothing parameter’ k is a user-defined constant

(15 in our implementation) that controls the degree of smoothing.

Model trees have been shown to produce good results for numeric prediction problems

[Wang and Witten, 1997]. They have also been applied to classification problems using the

transformation described in Section 2.2 [Frank et al., 1998]. In our experimental section,

we will give results for this ‘M5’ for classification’ algorithm and compare it to our method.

3.2 Stepwise Model Tree Induction

In this section, we will briefly discuss a different algorithm for inducing (numeric) model

trees called ‘Stepwise Model Tree Induction’ or SMOTI [Malerba et al., 2002], that builds

on an earlier system called TSIR [Lubinsky, 1994]. Although we are more concerned with

classification problems, SMOTI uses a scheme of constructing the linear regression func-

tions associated with the leaves of the model tree that is related to the way our method builds

the logistic regression functions at the leaves of the logistic model tree. The idea is to con-

struct the final multiple regression function at a leaf from simple regression functions that

are fit at different levels in the tree, from the root down to that particular leaf. This means

that the final regression function takes into account ‘global’ effects of some of the variables

— effects that were not inferred from the examples at that leaf but from some superset of

examples found on the path to the root of the tree. An advantage of this technique is that

only simple linear regressions have to be fitted at the nodes of the tree, which is faster than
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fitting a multiple regression every time (that has to estimate the global influences again and

again at the different nodes). The global effects should also smooth the predictions because

there will be less extreme discontinuities between the linear functions at adjacent leaves if

some of their coefficients have been estimated from the same (super)set of examples.

To implement these ideas, SMOTI trees consist of two types of nodes: split nodes and

regression nodes. Split nodes partition the sample space in the usual way, while regression

nodes perform simple linear regression on one attribute. A regression node fits a simple

regression to the examples passed down to it from the parent node, and passes on a modified

version of the examples to its only child node, removing the linear effect of the attribute

used in the simple regression. This means the model at a leaf of the tree is constructed

incrementally, adding more and more variables to it at the different regression nodes on the

path to the leaf while the tree is grown. For a more detailed discussion of the algorithm, see

[Malerba et al., 2002].

Our method uses a similar scheme for constructing the logistic regression models at the

leaves: the simple regression functions produced in the iterations of the LogitBoost algo-

rithm are fit on the nested sequence of sets of examples associated with the nodes on the

path from the leaf to the root of the tree. We will give a detailed description of this in

Section 4.

3.3 Polytomous Logistic Regression Trees

The PLUS (‘Polytomous Logistic regression trees with Unbiased Split’) system is the only

other algorithm for building logistic model trees that we are aware of for which an imple-

mentation is available. We will briefly explain the algorithm here, and we will give results

for it in the experimental study presented in Section 5. The system was developed by T.-S.

Lim in his Ph.D. thesis [Lim, 2000].

The final models constructed by PLUS (trees with logistic regression functions at the leaves)

are similar to the models constructed by our method, but the tree growing procedure is quite

different; it is based more on statistical considerations and less related to algorithms from the

machine learning community (like C4.5). Although the algorithm can handle both numeric

and nominal attributes, only numeric attributes are actually used in the logistic regression
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functions, nominal attributes are only considered for splits in the tree. This means that

PLUS resorts to building a classification tree if there are no numeric attributes present in the

data.

The first step in the PLUS algorithm is to grow a large initial tree with logistic regression

models at each node. This is done in a top-down fashion: first, a multiple logistic model

is built for all the data (at the root of the tree) using all numeric attributes. Then, a split

variable (nominal or numeric) is selected to split the data into subsets and they are passed

down to the respective child nodes in the usual way. The algorithm continues to recursively

build the logistic models at the child nodes, and possibly split them again if there are enough

examples at the node and the set of training examples is not yet ‘pure’ enough. Splitting

can also be stopped if there is some problem with fitting a logistic model at one of the child

nodes.

The crucial steps in this algorithm are the splitting process and the construction of the

logistic regression models at the nodes of the tree. Concerning the first point, every split

in PLUS is binary: for numeric attributes xk, the test has the usual form of xk ≤ c, for

a nominal attribute xj with domain D it is of the form xj ∈ A for some subset A ⊂

D. The subset A is determined using the procedure outlined in [Breiman et al., 1984].

Furthermore, PLUS places a lot of emphasis on selecting the ‘right’ attribute to split on,

using a statistically motivated splitting criterion that is supposed to achieve unbiasedness in

the split variable selection process: each attribute will have the same probability of being

selected for the split if all attributes are equally uninformative with respect to the target

variable. We will not discuss the splitting criterion in more detail here, a comprehensive

description can be found in [Lim, 2000].

Concerning the second point, PLUS can build the logistic regression function at a node on

either all the (numeric) attributes present in the data, or on just one attribute. This is a choice

that has to be made by the user at the command line. In our experiments building the logistic

regression functions on only one attribute rarely worked well, and the same is reported by

the author of the system in [Lim, 2000]. If the logistic model is built on all attributes, PLUS

always builds a ‘full’ model, i.e. there is no attribute selection scheme.

After the initial tree is grown, it is pruned back using a pruning method similar to the

one employed in the CART algorithm [Breiman et al., 1984]. The idea is to use a ‘cost-
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complexity measure’ that combines the error of the tree on the training data with a penalty

term for the model complexity, as measured by the number of terminal nodes. We will

describe the details of the CART pruning method when introducing our method in Section 4.

The cost-complexity-measure in CART is based on the misclassification error of a (sub)tree,

whereas PLUS offers two modes of pruning: one where the cost-complexity is based on the

error rate as in CART, and one where the misclassification error is replaced by deviance.

The deviance of a set of instancesM is defined as

deviance = −2 · logP (M |T )

where P (M |T ) denotes the likelihood of the dataM as a function of the current model T

(which is the tree being constructed).

3.4 Boosting Trees

A well-known technique to improve the classification accuracy of tree-based classifiers is

the boosting procedure. The idea of boosting is to combine the prediction of many ‘weak’

classifiers to form a powerful ‘committee’. The weak classifiers are trained on reweighted

versions of the training data, such that training instances that have been misclassified by

the classifiers built so far receive a higher weight and the new classifier can concentrate on

these ‘hard’ instances.

Although a variety of boosting algorithms have been developed, we will here concentrate

on the popular AdaBoost.M1 algorithm [Freund and Schapire, 1996]. The algorithm starts

with equal weights 1n assigned to all instances x1, . . . , xn in the training set. One weak

learner (for, example, a C4.5 decision tree) is built and the data is reweighted such that

correctly classified instances receive a lower weight: their weights are updated by

weight← weight ·
e

1− e

where e is the weighted error of the classifier on the current data. In a second step, the

weights are renormalized such that they sum to one again. This is repeated until the error

e of a classifier reaches zero or exceeds 0.5 (or some pre-defined maximum for the number

of boosting iterations is reached).
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AdaBoost.M1

1. Initialize the observation weights wi = 1
n , i = 1, . . . , n.

2. Form = 1 toM :

(a) Fit a classifier Gm(x) to the training data using weights wi,

(b) Compute

errm =

∑n
i=1wi · I(yi 6= Gm(xi))∑n

i=1wi

(c) Compute αm = −log errm1−errm
.

(d) Set wi ← wi · errm1−errm
· I(yi = Gm(xi)), i = 1, . . . , n.

3. Output G(x) = sign(
∑M
m=1 αm ·Gm(x)).

Figure 3.1: The AdaBoost.M1 algorithm.

This procedure yields a set of classifiers with corresponding error values, which are used to

predict the class of an unseen instance at classification time by a weighted majority vote.

The vote of a classifier with error e is weighted by

α = −log
e

1− e
.

For all classes, the weights of the classifiers that vote for it are summed up and the class with

the largest sum of votes is chosen as the predicted class. AdaBoost can also generate class

probability estimates: the probability estimate for a class is just the sum of weights for that

class divided by the total sum of weights over all classes. Figure 3.1 gives the pseudocode

for the AdaBoost.M1 algorithm.

Boosting trees has received a lot of attention, and has been shown to outperform simple

classification trees on many real-world domains. Often the gains in classification accuracy

are quite impressive (as an example, see our experimental results in Section 5.4.3). In fact,

boosted decision trees are considered one of the best ‘off-the-shelf’ classifiers (learners that

are not optimized with regard to a particular domain). On the other hand, boosted trees have

some disadvantages compared to simple classification trees. One obvious disadvantage is

the higher computational complexity, because the basic tree induction algorithm has to be
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run several times. But since basic tree induction is very fast, it is still feasible to build

boosted models for most datasets. A more serious disadvantage is the reduced interpretabil-

ity of a committee of trees as compared to a single tree. The interpretation of a tree as a

set of rules does not translate to a whole set of trees which produce a classification by a

weighted majority vote. However, information contained in the single trees can still be used

to yield some insight into the data, for example, the frequency of attributes occurring in the

trees can tell us something about the relevance of that attribute for the class variable (see

e.g. [Hastie et al., 2001]).
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Chapter 4

Logistic Model Trees

In this section, we will present our Logistic Model Tree algorithm, or LMT for short. It

combines the logistic regression models described in Chapter 2 with tree induction, and

thus is an analogue of model trees for classification problems.

4.1 The Model

A logistic model tree basically consists of a standard decision tree structure with logistic

regression functions at the leaves, much like a model tree is a regression tree with regression

functions at the leaves. As in ordinary decision trees, a test on one of the attributes is

associated with every inner node. For a nominal (enumerated) attribute with k values, the

node has k child nodes, and instances are sorted down one of the k branches depending on

their value of the attribute. For numeric attributes, the node has two child nodes and the test

consists of comparing the attribute value to a threshold: an instance is sorted down the left

branch if its value for that attribute is smaller than the threshold and sorted down the right

branch otherwise.

More formally, a logistic model tree consists of a tree structure that is made up of a set of

inner or non-terminal nodesN and a set of leaves or terminal nodes T . Let S = D1×· · ·×

Dm denote the whole instance space, spanned by all attributes V = {v1, . . . , vm} that are

present in the data. Then the tree structure gives a disjoint subdivision of S into regions St
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(as explained in Section 2.1), and every region is represented by a leaf in the tree:

S =
⋃

t∈T

St, St ∩ St′ = ∅ for t 6= t
′

Unlike ordinary decision trees, the leaves t ∈ T have an associated logistic regression

function ft instead of just a class label. The regression function ft takes into account an ar-

bitrary subset Vt ⊂ V of all attributes present in the data, and models the class membership

probabilities as

Pr(G = j|X = x) =
eFj(x)

∑J
k=1 e

Fk(x)

where

Fj(x) = α
j
0 +
∑

v∈Vt

αjv · v,

or, equivalently,

Fj(x) = α
j
0 +

m∑

k=1

αjvk · vk

if αjvk = 0 for vk /∈ Vt. The model represented by the whole logistic model tree is then

given by

f(x) =
∑

t∈T

ft(x) · I(x ∈ St)

where I(x ∈ St) is 1 if x ∈ St and 0 otherwise.

Note that both standalone logistic regression and ordinary decision trees are special cases

of logistic model trees, the first is a logistic model tree pruned back to the root, the second

a tree in which Vt = ∅ for all t ∈ T .

Ideally, we want our algorithm to adapt to the dataset in question: for small datasets where

a simple linear model offers the best bias-variance tradeoff, the logistic model ‘tree’ should

just consist of a single logistic regression model, i.e. be pruned back to the root. For other

datasets, a more elaborate tree structure is adequate.

The same reasoning also applies to the subsets of the original dataset that are encountered

while building the tree. Recall that tree induction works in a divide-and-conquer fashion:

a classifier for a set of examples is build by performing a split and then building separate

classifiers for the two resulting subsets. As explained in Section 2.4, there is strong evidence

that building trees for very small datasets is usually not a good idea, it is better to use simpler
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Figure 4.1: Class probability estimates from a C4.5 and a LMT model for the ‘polynomial-
noise’ dataset.

models (like logistic regression). Because the subsets encountered at lower levels in the tree

become smaller and smaller, it can be preferable at some point to build a linear logistic

model instead of calling the tree growing procedure recursively. This is one motivation for

the logistic model tree algorithm.

Figure 4.1 visualizes the class probability estimates of a logistic model tree and a C4.5

decision tree for the ‘polynomial-noise’ dataset introduced in Section 2.1. The logistic

model tree initially divides the instance space into 3 regions and uses logistic regression

functions to build the (sub)models within the regions, while the C4.5 tree partitions the

instance space into 12 regions. It is evident that the tree built by C4.5 overfits some patterns

in the training data, especially in the lower-right region of the instance space.

Figure 4.2 and Figure 4.3 depict the corresponding models. At the leaves of the logistic

model tree, the functions F1, F2 determine the class membership probabilities by

Pr(G = 1|X = x) =
eF1(x)

eF1(x) + eF2(x)
,

P r(G = 2|X = x) =
eF2(x)

eF1(x) + eF2(x)
.

The entire left subtree of the root of the ‘original’ C4.5 tree has been replaced in the logistic

model tree by the linear model with

F1(x) = −0.39 + 5.84 · x1 + 4.88 · x2

F2(x) = 0.39− 5.84 · x1 − 4.88 · x2 = −F1(x)
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Figure 4.2: Decision tree constructed by the C4.5 algorithm for the ‘polynomial-noise’
dataset.

Figure 4.3: Logistic model tree constructed by the LMT algorithm for the ‘polynomial-
noise’ dataset.
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Note that this logistic regression function models a similar influence of the attributes x1, x2

on the class variable as the subtree it replaced, if we follow the respective paths in the tree

we will see it mostly predicts class one if x1 and x2 are both large. However, the linear

model is simpler than the tree structure, and so less likely to overfit.

4.2 Building Logistic Model Trees

An algorithm for building logistic model trees has to address the following issues:

• Growing the tree:

How is the initial tree constructed? This includes points like the splitting criterion,

when to stop building the tree, what do to with different types of attributes (nomi-

nal/numeric) and how to treat missing values.

• Building the logistic models:

How are the logistic models at the nodes of the tree constructed? The most important

point here is the attribute selection, i.e. the question of how many/which variables to

include in the model. Including too many variables or variables that have no predic-

tive power over the target concept can easily lead to overfitting, and at the same time

make the final model harder to interpret. We also have to decide how to treat nominal

attributes that cannot be used directly when building the logistic regression models.

• Pruning:

A fully grown logistic model tree will usually severely overfit the dataset it was build

on. The problem is that the combination of tree structure and logistic regression

models leads to a very rich space of hypothesis that is searched by the algorithm.

We have noted during experimentation that pruning is both very important and dif-

ficult for logistic model trees, maybe even more so than for ordinary decision trees.

It is important because fully grown trees will hopelessly overfit most data sets. The

reduction in tree size (from unpruned to pruned tree) is generally much higher for

logistic model trees than for ordinary decision trees (see Section 5). Quite often, the

tree is pruned back (almost) to the root, while this is rarely the case for decision trees.

On the other hand, it is especially difficult because the model offers so many degrees
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of freedom — for example, at the root of the tree one could try to improve the fit by

adding more variables to the logistic regression model or construct a split and two

simple logistic models that only include a few variables.

The next section addresses the first two points and explains in detail how our method grows

the initial logistic model tree. Section 4.2.2 discusses pruning of logistic model trees, and

Sections 4.2.3 and 4.3 describe some additional features of the algorithm.

4.2.1 Growing the Initial Tree

There is a straightforward approach for growing logistic model trees that follows the way

trees are built by M5’ or PLUS. This would involve first building a standard classification

tree, using, for example, the C4.5 algorithm, and afterwards building a logistic regression

model at every node trained on the set of examples at that node. Note we initially need

a logistic regression model at every node of the tree, because every node is a ‘candidate

leaf’ during pruning. In this approach, the logistic regression models would be built in

isolation on the local training examples at a node, not taking into account the surrounding

tree structure.

Instead, we chose a different approach for constructing the logistic regression functions,

namely by incrementally refining logistic models already fit at higher levels in the tree.

Assume we have split a node and want to build the logistic regression function at one of

the child nodes. Since we have already fit a logistic regression at the parent node, it is

reasonable to use it as a basis for fitting the logistic regression at the child node. We expect

that the parameters of the model at the parent node already encode ‘global’ influences of

some attributes on the class variable; at the child node, the model can be further refined by

taking into account influences of other attributes that are only valid locally, i.e. within the

set of training examples associated with the child node.

The LogitBoost algorithm provides a natural way to do just that. Recall that it iteratively

changes the linear class functions Fj(x) to improve the fit to the data by adding a simple

linear regression function fmj to Fj , fit to the response variable. This means changing one

of the coefficients in the linear function Fj or introducing a new variable/coefficient pair.

After splitting a node we can continue running LogitBoost iterations, fitting the fmj to the
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Figure 4.4: Building logistic models by incremental refinement. The parameters a0, a1 are
estimated from the training examples at n, the parameters a2, a3 and a′2, a

′
3 from the training

examples at t, t′. Attribute x1 has a global influence, x2, x3 have a local influence.

response variables of the training examples at the child node only.

As an example, consider a tree with a single split at the root and two leaves. The root node

n has training data Dn and one of its children t has a subset of the training data Dt ⊂ Dn.

Fitting the logistic regression models in isolation means the model fn would be built by

iteratively fitting simple regression functions to Dn and the model ft by iteratively fitting

simple regression functions to Dt. In the ‘iterative refinement’ approach, the tree would

be constructed as follows: Start building a logistic model fn at n by running LogitBoost

on Dn, including more and more variables in the model by adding simple regressions fmj

to the Fnj (the linear class function for class j at node n). At some point, adding more

variables does not increase the accuracy of the model1, but splitting the instance space and

1this has to be determined using cross-validation or an independent test set, of course, because the training
error will continue to decrease
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refining the logistic models locally in the two subdivisions created by the split might give

a better model. So split the node n and build refined logistic models at the child nodes by

proceeding with the LogitBoost algorithm on the smaller set of examples Dt, adding more

simple regression functions to the Fnj to form the F tj . These simple linear regressions are

fit to the response variables of the set of training examples Dt given the (partial) logistic

regression already fit at the parent node. Figure 4.4 illustrates this scheme for building the

logistic regression models.

An advantage of this approach is that it is computationally more efficient to build the logistic

models at lower levels of the tree by extending models already built at higher levels, rather

than building the models at lower levels from scratch. Note that this approach of iteratively

refining the logistic regression models is related to the way the linear models in SMOTI are

constructed: as more simple regressions are fit while going down the tree, the influence of

more and more variables is taken into account. In the terminology of the SMOTI system, our

approach would amount to building a chain of ‘regression nodes’ as long as this improves

the fit (as determined by the cross-validation), then a single ‘split node’ and again a chain

of regression nodes.

These ideas lead to the following algorithm for building logistic model trees:

• Tree growing starts by building a logistic model at the root using the LogitBoost

algorithm (as described above). The number of iterations (of base learners fmj to

add to Fj) is determined using a five fold cross-validation: In this process the data is

split into training and test set five times, for every training set LogitBoost is run to

a maximum number of iterations (200), the error rates on the test set are logged for

every iteration and summed up over the different folds. The number of iterations that

has the lowest sum of errors over the different folds is used to train the LogitBoost

algorithm on all the data. This gives the logistic regression model at the root of the

tree.

• A split for the data at the root is constructed. Splits are either binary (for numeric

attributes) or multiway (for nominal ones), the splitting criterion will be discussed in

more detail below. Tree growing continues by sorting the appropriate subsets of data

to the child nodes and building the logistic models at the child nodes in the following

way: the LogitBoost algorithm is run on the subset associated with the child node, but
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LMT(examples){
root = new Node()
alpha = getCARTAlpha(examples)
root.buildTree(examples, null)
root.CARTprune(alpha)

}

buildTree(examples, initialLinearModels) {
numIterations = crossValidateIterations(examples, initialLinearModels)
initLogitBoost(initialLinearModels)
linearModels = copyOf(initialLinearModels)
for i = 1...numIterations

logitBoostIteration(linearModels,examples)
split = findSplit(examples)
localExamples = split.splitExamples(examples)
sons = new Nodes[split.numSubsets()]
for s = 1...sons.length

sons.buildTree(localExamples[s], nodeModels)
}

crossValidateIterations(examples,initialLinearModels) {
for fold = 1...5

initLogitBoost(initialLinearModels)
//split into training/test set
train = trainCV(fold)
test = testCV(fold)
linearModels = copyOf(initialLinearModels)
for i = 1...200

logitBoostIteration(linearModels,train)
logErrors[i] += error(test)

numIterations = findBestIteration(logErrors)
return numIterations

}

Figure 4.5: Pseudocode for the LMT algorithm.

starting with the committee Fj(x), weights wij and probability estimates pij of the

last iteration performed at the parent node (it is ‘resumed’ at step 2.a of Figure 2.3).

Again, the optimum number of iterations to perform (the number of fjm to add to Fj)

is determined by a five fold cross validation.

• Splitting of the child nodes continues in this fashion until some stopping criterion is

met (the stopping criterion is discussed in Section 4.2.1).

Figure 4.5 gives the pseudocode for this algorithm, which we call LMT. The method LMT

constructs the tree given the training data examples. It first calls getCARTAlpha to

cross-validate the ‘cost-complexity-parameter’ for the CART pruning scheme implemented

in CARTPrune 2. The method buildTree grows the logistic model tree by recursively

splitting the instance space. The argument initialLinearModels contains the simple

linear regression functions already fit by LogitBoost at higher levels of the tree. The method

initLogitBoost initializes the probabilities/weights for the LogitBoost algorithm as if

it had already fitted the regression functions initialLinearModels (resuming Logit-

2note that this involves growing multiple ‘auxiliary’ logistic model trees
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Boost at step 2.a). The method crossValidateIterations determines the number

of LogitBoost iterations to perform, and logitBoostIteration performs a single it-

eration of the LogitBoost algorithm (step 2), updating the probabilities/weights and adding

a regression function to linearModels.

Two points in this sketch of the algorithm for growing logistic model trees need to be ex-

plained in more detail: how to select the attribute to split on, and when to stop growing the

tree.

Splitting Criterion

We implemented two different criteria to select the attribute to split on. One is the C4.5

splitting criterion that tries to improve the purity of the class variable. The other splitting

criterion derives from the way our algorithm constructs the logistic regression models: it

tries to improve the purity of the response variables.

Assume we have grown the tree up to a node n and performed some (additional) Logit-

Boost iterations at n, that together with iterations performed at higher levels form a logistic

regression model fn. The cross-validation has determined that performing more LogitBoost

iterations at n does not give a better model, so we should try a split on some attribute of the

data. It is possible to select the attribute to split on by looking at the purity of the class vari-

able, for example using the splitting criterion of the C4.5 algorithm. This will eventually

give a good subdivision of the instance space, and it would certainly be a reasonable thing

to do if we had ‘isolated’ logistic models that are trained from scratch on the examples at

a node. However, with our approach of iteratively refining the logistic regression models

it also makes sense to use the response variables zij of the LogitBoost algorithm. The re-

sponse variables are a kind of ‘reweighted residuals’ —they encode the difference between

the class probabilities observed in the training data and the estimate for them given by the

current model. While splitting on the class variable does not take into account the (partial)

logistic model already built at the node we want to split, splitting on the response variables

does, because the effect of that model has been removed from the response.

There is one response variable for each class within the LogitBoost algorithm, while we

have to decide on one split. This split should simultaneously optimize the purity in the
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response variables for all classes. So we need a measure for the ‘global’ impurity over all

the classes, and then select the split that gives the largest decrease in this global impurity.

We measured the impurity I(M |f) of a set of examplesM = {x1, . . . , xN} given a logistic

regression function f in the following way: Compute response and weight for the instances

xi inM for every class 1, . . . , J according to

zij =
y∗ij − pj(xi)

pj(xi)(1− pj(xi))

wij = pj(xi)(1− pj(xi))

where pj(xi) is the probability estimate of class j for instance xi given by f and y∗ij are

the class probabilities of instance xi observed in the training data (i.e, one if example xi

is labeled with class j and zero otherwise). Then, compute the weighted mean mj of the

response for every class 1, . . . , J by

mj =

∑N
i=1 zijwij∑N
i=1wij

and the global impurity as the quadratic distance of the zij from their mean, averaged over

all classes:

I(M |f) =

∑N
i=1

∑J
j=1wij(zij −mj)

2

∑N
i=1

∑J
j=1wij

The split S∗ is then selected that gives the largest decrease in impurity:

S∗ = argmax
S

I(M |S)−
k∑

i=1

|Mi|

|M |
I(Mi|S)

where a split S splitsM into subsetsM1, . . . ,Mk.

We implemented both splitting criteria for our method, the choice has to be made by the

user as a command-line option. Judging from the results of our experiments, the selection

of the splitting criterion only has a small impact on both classification accuracy and tree

size. On average splitting on the response produced slightly smaller trees but also slightly

lower classification accuracy (see Table A.1 and Table A.2 in Appendix A). A disadvantage

of splitting on the response is that it takes longer to calculate the impurity, compared to

calculating the entropy of the class variable for the C4.5 splitting criterion.
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Although the results for both methods were similar, the variables used for splits in the tree

structure were often quite different. This is not surprising: the (partial) logistic regression

model built at, for example, the root node will already include attributes that have a strong

direct influence on the class variable. This means that the effect of these attributes is already

explained by the logistic model, and so removed from the response variables. Consequently,

the attributes that give the highest reduction in impurity in the response variables will be

different from those that give the highest reduction in impurity in the class variable. This

means that looking at the splits in the tree will usually not tell us which attributes are the

most relevant ones with regard to the class variable if the splitting criterion based on the

response variables is used. A consequence of this is that the final tree structure is less

intelligible.

Because of these points, we made splitting on the class variable (using the C4.5 splitting

criterion) the default option in our algorithm, and all experimental results reported for LMT

in Section 5 refer to that version.

Stopping Criterion

Tree growing stops for one of three reasons:

• A node is not split if it contains less than 15 examples. This number is somewhat

larger than for standard decision trees, however, the leaves in logistic model trees

contain more complex models, which need more examples for reliable model fitting.

• A particular split is only considered if there are at least 2 subsets that contain 2 exam-

ples each. This is a heuristic used by the C4.5 algorithm to avoid overly fragmented

splits. Furthermore, a split is only considered if it achieves a minimum information

gain (for C4.5-style splitting) or a minimum decrease in impurity (for splitting on the

response). When no such split exists, we stop growing the tree.

• A logistic model is only built at a node if it contains at least 5 examples, because we

need 5 examples for the cross-validation to determine the best number of iterations

for the LogitBoost algorithm. Note that this can lead to ‘partially expanded’ nodes,

where for some branches no additional iterations of LogitBoost are performed and so

the model at the child is identical to the model of the parent.
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We have found that the exact stopping criterion is not very important, because in most cases

the final tree (after pruning) is much smaller than the tree that is initially grown anyway.

4.2.2 Pruning the Tree

As for standard decision trees, pruning is an essential part of the LMT algorithm. Standard

decision trees are usually grown to (approximately) minimize the training error, which de-

creases monotonically as more and more splits are performed and the tree becomes larger

and larger. Large trees, however, are complex models with many degrees of freedom, which

means they can easily overfit random patterns in the training data that are not representative

of the true structure of the domain. This is another example for the bias-variance tradeoff

when learning models: Smaller trees have higher bias, but lower variance, while large trees

have less bias but higher variance. Generalization performance becomes maximal at the

‘optimal’ bias/variance, and this is the right sized tree we are looking for.

The complexity of trees can be measured in the number of splits they contain: every new

split further refines the subdivision of the instance space, and so makes the decision function

represented by the tree more complex. Furthermore, splits usually introduce new parameters

into the model (unless the same attribute has already been used in a different split). Pruning

methods for decision trees make use of this fact by trading off tree size (which is roughly

equivalent to the number of splits) versus training error.

For logistic model trees, the situation is slightly different compared to ordinary classification

trees, because the logistic regression functions at the leaves are so much more complex than

simple leaves (that just use the majority class in their set of examples for predictions). For

logistic model trees, sometimes a single leaf (a tree pruned back to the root) leads to the

best generalization performance, which is rarely the case for ordinary decision trees (there

it would mean that the best thing to do is to predict the majority class for every unseen

instance). So logistic model trees will be a lot smaller than ordinary classification trees on

average, but the same principle still applies: Every split and subsequent local refinement of

the logistic regression models at the child nodes increases the complexity of the model. This

means that pruning algorithms for decision trees (like CART’s method) that trade off tree

size versus accuracy on the training set are still applicable. Note that if we had decided to

build isolated logistic models at every node, it would not have been clear that a split really
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Figure 4.6: Error on test set as a function of tree size for standard classification tree (left)
and logistic model tree on the ‘german’ dataset.

Figure 4.7: Error on test set as a function of tree size for standard classification tree (left)
and logistic model tree on the ‘vehicle’ dataset.

increases model complexity. Because the logistic models use variable selection, it could

happen that a split plus two simple logistic models is actually less complex than a complex

logistic model at the original node. This might lead to problems with a pruning algorithm

that penalizes splits.

Figure 4.6 and Figure 4.7 give example pruning curves for LMT and standard tree induction

to illustrate the importance of pruning. The graphs show the error over unseen test cases

as a function of the tree size for the two algorithms and the datasets ‘german’ and ‘vehicle’

taken from the UCI repository [Blake and Merz, 1998] (see Section 5 for a description

of the datasets). The graphs were generated as follows: Split the data into a training set

(four-fifths) and a test set (one-fifths) and build a classification or logistic model tree on

the training set. Then prune the tree back step by step following the CART procedure (see

below), and determine the error on the test set for the different-sized trees. This gives

pairs of tree size/error values. Note that typically not all tree sizes occur during pruning,

sometimes the algorithm prunes off several subtrees at once or pruning a subtree decreases
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tree size by more than one. Depending on the type of the attributes present in the data,

some tree sizes are never observed at all. The above procedure of growing and pruning a

tree is repeated 5000 times with different splits into training/test sets. Tree sizes that were

measured less than 500 times are excluded from the data to ensure stable estimates (this

mostly applies to very large trees that were only grown on a few training sets). From all

pairs of tree size/error values generated we calculated the average error for every tree size.

From Figure 4.6 and Figure 4.7 it can be seen that the reduction in tree size from the tree

that is initially built by the algorithm to the tree that has the lowest error on the test set is

much larger for logistic model trees than for standard decision trees. On ‘german’, standard

decision trees start to overfit at about 20 nodes, while the best tree size for logistic model

trees is actually one (i.e., a tree that is pruned back to the root). On ‘vehicle’, overfitting

seems to be less of a problem, standard decision trees do not overfit at all. Logistic model

trees reach the minimum error at a tree size of about three leaves, for higher tree sizes the

error start increasing again (but note that the error is generally much lower for logistic model

trees than for standard decision trees on that dataset). These examples suggest that logistic

model trees overfit easily and the reliability of the pruning scheme is particularly important.

We spent a lot of time experimenting with different pruning schemes. Since our work

was originally motivated by the model tree algorithm, we first tried adapting the pruning

scheme used by the M5’ algorithm. However, we could not find a way to compute reliable

estimates for the expected error rate (resulting in an unstable pruning algorithm), hence we

abandoned that approach after a while. Nevertheless, this approach is discussed briefly in

the next subsection, and some general problems with it are outlined. Instead, we adapted

the pruning method from the CART algorithm [Breiman et al., 1984], which is discussed in

detail in Section 4.2.2. From the experimental study (Section 5) we argue that this method

indeed works well for pruning logistic model trees and gives near-optimal tree sizes.

M5’-style pruning

As described in Section 3.1, pruning in the M5’ algorithm is based on an estimate of the

real error rate (the expected rate of misclassification over unseen instances) of the regres-

sion model and the subtree at a particular node. For the regression function, this estimate

is the training error of the function on the set of examples at that node, multiplied by a
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‘compensation factor’. The compensation factor takes into account the number of attributes

the regression is built on (which are exactly the attributes appearing in the subtree) and

the number of training examples, penalizing models that contain many parameters in re-

lation to the number of training examples. For the subtree, it is just the combined error

estimate of the child nodes, weighted by the number of examples that go down the respec-

tive branches. This also gives rise to a straightforward attribute selection method for the

regression models, simply drop attributes if this decreases the error estimate for the model.

The conceptual similarity of model trees and logistic model trees prompted us to try to use

the same approach for pruning logistic model trees: build the logistic model at a node using

all attributes appearing in the subtree rooted at that node, and calculate an error estimate

as done in the M5’ algorithm. However, there is a crucial difference between continuous

numeric target variables (M5’) and categorical ones (LMT) — in the latter case, it is much

easier to build a model with a training error of zero. This is because the target variable only

takes on a few distinct values, while for regression problems it can be different for every

training example. If all training instances sorted down into a subtree are classified correctly,

the error estimate for that subtree given by the M5’-formula is zero, and that subtree would

never be considered for pruning.

Of course, one could try to use other formulas for the error estimate (e.g., a sum of the

training error and some penalty term). We considered this, but we were unable to find a

formula that estimates the error over unseen instances as a function of the training error, the

number of training examples and the number of parameters in the model equally well for

different domains. For some domains, including a lot of parameters easily lead to overfit-

ting, for others, it did not. This means it will be difficult to get a reliable error estimate (and

so, a good pruning algorithm) just by looking at the training error and the complexity of the

model.

CART pruning

Like the M5’ algorithm, the CART pruning method uses a combination of training error

and penalty term for model complexity to make pruning decisions. However, the penalty

term includes a ‘complexity parameter’ that adapts to different domains (datasets). While

estimating this parameter by cross-validation (or, if enough data is available, by using an
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independent test set) sacrifices some of the computational efficiency of the other method, it

leads to much more reliable pruning. We will now describe the CART pruning algorithm

for decision trees, closely following the description in [Breiman et al., 1984]. Throughout

this section, we will denote the initially grown unpruned tree by Tmax, the set of terminal

nodes of a tree T by T̃ and the training error of a tree by R(T ) (resubstitution estimate). If

a tree T ′ has been obtained from the tree T by a sequence of pruning operations (replacing

a subtree by a single leaf), we denote that by T ′ ≤ T .

The idea at the heart of the CART algorithm is to minimize a ‘cost-complexity measure’

Rα(T ) = R(T ) + α|T̃ |. (4.1)

The complexity parameter α determines the relative penalty we assign to complex models,

and depends on the domain in question. If α = 0, there is no penalty for large trees, and

the initial tree Tmax minimizes Rα. For α → 1 the minimizer of Rα becomes smaller and

smaller, and for α = 1 it will consist of a single leaf. For the moment, we will assume

we already have the optimum α and concentrate on how to find the tree that minimizes

Equation 4.1. We will describe how to compute the complexity parameter for a given dataset

later.

For minimizing the cost-complexity measure, we only consider trees T ≤ Tmax that can be

obtained from Tmax by a sequence of pruning operations. Equation 4.1 tells us that for a

fixed tree size, a tree with lower error on the training data is to be preferred, and that a tree

T with fewer leaves is to be preferred over a tree T ′ with more leaves if R(T ) = R(T ′).

However, it could happen that two different trees T ′ ≤ Tmax, T ′′ ≤ Tmax simultaneously

minimize Rα, either because T ′′ has more leaves but a smaller training error than T ′ or

because they have the same number of leaves and the same training error. Interestingly,

one result from [Breiman et al., 1984] is that in the first case T ′ ≤ T ′′ holds, and the

second case can not occur. This enables us to define the smallest minimizer subtree T (α)

unambiguously by the conditions

Rα(T (α)) = min
T≤Tmax

Rα(T ) (4.2)

If Rα(T ) = Rα(T (α)), then T (α) ≤ T. (4.3)
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which means that in the first case we prefer T ′ over the larger T ′′.

The goal of the CART pruning algorithm is to find the minimizer T (α) ≤ Tmax for every

value of α. Of course, T (α) will only change for some ‘threshold’ values of α, so what we

are really looking for is a sequence of values α1 < · · · < αK and trees T (α1), . . . , T (αK)

with T (α) = T (αk) for αk ≤ α < αk+1. It turns out that this sequence of trees is indeed

nested, i.e. T (αk+1) is gotten from T (αk) by pruning away some subtree(s). The sequence

can be constructed as follows:

Start with the tree Tmax (or, more precisely, with the smallest tree T1 for that R(T1) =

R(Tmax)— we can just prune away all subtrees that do not increase accuracy on the training

set). Then, prune T1 by cutting away the ‘weakest link’: the subtree that would be pruned

first if we started to continuously increase α from zero. Looking at a particular node t,

replacing the subtree Tt rooted at that node with the simple leaf t̃ becomes preferable when

Rα(Tt) ≥ Rα(t̃)

or, equivalently, when α exceeds a threshold value αt:

α ≥
R(t̃)−R(Tt)

|T̃t| − 1
= αt. (4.4)

This means we can find the ‘weakest link’ by solving equation 4.4 for αt at every node in

the tree and pruning the subtree rooted at the node with the minimal αt. This gives the tree

T2, and recursively applying the procedure to T2 gives the trees T3, . . . , TK . A proof that

this procedure actually finds the desired sequence of trees T (α1), . . . , T (αK) can be found

in [Breiman et al., 1984].

Following this procedure, we can find the minimizer T (α) of equation 4.1 for every value

of α, but we have not yet explained how to compute the optimum α for a given dataset. One

approach for finding the optimum α is to use cross-validation, which involves growing and

pruning auxiliary trees on subsets of the data and estimating their error on the rest of the

data. In the V folds of the cross-validation, the data is split into training and test set V times.

In a particular fold v of the cross-validation, a tree is grown and pruned on the training set

using the procedure described above, which yields a sequence of α-values αv1, . . . , α
v
Kv

to-

gether with corresponding trees T v1 , . . . , T
v
Kv

that minimize Equation 4.1 for the respective
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α-value. An (unbiased) estimate of the error for a tree T vk is obtained by evaluating it on the

test set, which gives a sequence of error estimates R∗(T v1 ), . . . , R
∗(T vKv).

A final tree is then built on all the data, and pruning again yields a nested sequence of trees

T1, . . . , TK and α-values α1, . . . , αK . The error estimates obtained in the cross-validation

should be used to determine the best tree in the sequence T1, . . . , TK , but we somehow have

to ‘match’ the αk with the α-values of the trees built during the cross-validation. Tk is the

tree obtained for an α-value between αk and αk+1. The midpoint α is defined as

α′k =
√
αkαk+1.

The tree gotten in fold v of the cross-validation if α was α′k is T vkv where

kv = max{k|α
v
k ≤ α

′
k}.

As an error estimate for the tree Tk, we use the error estimate gotten for the tree T vkv in the

cross-validation, averaged over all V folds:

R∗(Tk) =

v∑

i=1

R∗(T vkv).

Given this error estimate for Tk, we can now select the final tree from T1, . . . , TK by

TCART = argmin
Tk

R∗(Tk).

The advantage of this approach is that the selection of α is based on the characteristics of

the domain. If small trees are favorable, this will lead to a larger value for α because the

error estimates R∗(T vk ) will be better for larger k, and so the final tree will be smaller. Of

course, there is a price to be paid for this in terms of computational complexity — growing

the auxiliary trees in the V folds of the cross-validation takes time.

So far, we have assumed that the trees T are standard decision trees and the prediction of a

leaf is simply the majority class of the training examples associated with it. However, the

procedure translates easily to logistic model trees for which predictions at a leaf are given by

its logistic regression function. The only part that changes is the calculation of the error rate,

which is now the error of the logistic model tree R(T ) or the error of the logistic regression
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function R(t̃) for a single leaf. Minimizing Equation 4.1 now means something slightly

different, though: the complexity parameter α now measures how high additional nonlinear

structure in the model is penalized, which is introduced by the splits in the logistic model

tree. If the structure of the dataset is linear, cost-complexity pruning will result in small

logistic model trees but not necessarily small standard decision trees, because decision trees

have to approximate the linear structure with many axis-parallel splits. The ‘waveform-

noise’ dataset is an example for this phenomenon: it is the largest datasets included in our

experiments and leads to the largest standard classification trees, but the logistic model trees

are always pruned back to the root because the data exhibits a roughly linear structure (see

Section 5).

Our implementation of LMT uses a five fold cross-validation for estimating the optimum

α. This means that we basically have to run the tree growing algorithm six times in order

to build the final model, which contributes a constant multiplying factor of about six to the

runtime of the algorithm.

Figure 4.8 gives an example pruning sequence T1, T2, T3, T4 for a subset of the ‘glass (G2)’

dataset. The inner nodes of the trees are labeled with their α-values as defined by Equa-

tion 4.4 (values in brackets). In addition, every node shows the number of training examples

misclassified by the logistic model at that node, and the total number of instances at the node

(e.g., 31/117). From T1 to T4, trees become smaller but their training error increases: from

nine misclassified training examples for T1 to 31 misclassified examples for T4. In every

pruning step, the subtree rooted at the node with the smallest α-value is pruned away, or

all such subtrees if several nodes have equally minimal α-values (for example, going from

T2 to T3). Note that the α-values have to be updated for every node after each pruning

step, because pruning operation carried out below a node change the number of examples

misclassified by its subtree. The sequence of α-values gotten for this pruning sequence is

α1 = 0, α2 = 0.004, α3 = 0.034, α4 = 0.077.

We observe that the most efficient pruning operations are carried out in the beginning: for

example, from T1 to T2 the number of leaves decreases by two and only one training exam-

ple more is misclassified, while in the last pruning step a small reduction in the number of

leaves leads to a relatively large increase in training error. This is reflected in the change of

the α-value (the penalty we have to assign to the number of leaves before the nect pruning

operation is carried out): there is only a small difference between α1 and α2, but larger
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differences between subsequent α-values.

4.2.3 Handling of Missing Values and Nominal Attributes

As explained in Section 2.3.2, missing values must be filled in before fitting the logistic

regression models with the LogitBoost algorithm. This is done gloablly before tree build-

ing commences, by replacing the missing values with the means/modes of the respective

attribute (see Section 2.3.2). This means that, unlike the C4.5 algorithm, LMT does not

do any ‘fractional splits’ for instances with missing values (see [Quinlan, 1993] for more

details). On the datasets we looked at, this simple approach seemed to work reasonably

well, however, more sophisticated techniques for dealing with missing values could be an

interesting area for future work.

Nominal attributes have to be converted to numeric ones in order to fit the logistic regression

models. This is done locally at all nodes in our algorithm, i.e. the logistic model is fit to

a local copy of the examples at a node where the nominal attributes have been transformed

into binary ones. The procedure for this is the same as described in Section 2.3.2: a nominal

attribute with k values is transformed into k binary indicator attributes that are then treated

as numeric. The reason why this is not done globally is that splitting on nominal attributes

(that often capture a specific characteristic of the domain) can be better than splitting on

the binary ones that are the result of the conversion, both in terms of information gain and

interpretability of the produced model.

4.3 Computational Complexity

This section discusses the computational complexity of building logistic regression models

with SimpleLogistic and of building logistic model trees with LMT. It also describes two

heuristics used to speed up the LMT algorithm.

Generally speaking, the stagewise model fitting approach used in SimpleLogistic means

that a potentially large number of LogitBoost iterations have to be performed, because it

might be necessary to fit a simple linear function to the same variable many times. On the

other hand, performing a single iteration is of course a lot faster if only a simple regression
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function is fit. As described in Section 2.3.1, a single iteration of LogitBoost when fitting

simple linear regression functions only takesO(n ·m) as compared toO(n ·m+m3) when

fitting multiple linear regression.

In our implementation, the optimum number of iterations to be performed is selected by a

five fold cross-validation. In every fold, LogitBoost is run on the training set and simultane-

ously the error on the test set is monitored, looking for the number of LogitBoost iterations

that gives the minimal error. The maximum number of LogitBoost iterations to run is 500

for the standalone logistic regression and 200 for the regressions performed at the nodes of

logistic model trees. The rationale for this is that the logistic regression functions in the

tree do not have to be as complex as those for standalone logistic regression (because of the

additional tree structure).

This means that if the maximum number of iterations is taken as a constant, the asymptotic

complexity of building a single logistic regression model would only be of the orderO(n·m)

where n is the number of training examples and m the number of attributes. However, this

ignores the constant factor of the number of LogitBoost iterations and the cross-validation.

It is reasonable to expect that the maximum number of iterations should at least be linear in

the numberm of attributes present in the data (after all, the number of attributes that can be

included in the final model is bounded by the number of LogitBoost iterations that can be

performed). It is not clear whether a limit of 500 iterations is really enough for all datasets,

though it seemed to work fine in our experiments. Therefore, a more realistic estimate of

the asymptotic runtime of SimpleLogistic is O(n ·m2).

There is only a moderate increase in computational complexity from building logistic re-

gression models to building logistic model trees. Using the more realistic estimate for the

complexity of building the logistic models, the asymptotic complexity of the LMT algo-

rithm is O(n ·m2 · d + k2), where d is the depth and k the number of nodes of the initial

unpruned tree. The first part of the sum derives from building the logistic regression models,

the second one from the CART pruning scheme. In our experiments, the time for building

the logistic regression models accounted for most of the overall runtime. Note that the initial

depth d of the unpruned logistic model tree is usually smaller than the depth of an unpruned

standard classification tree, because tree growing is stopped earlier. The cross-validation

performed by the CART pruning algorithm constitutes another constant multiplying factor

of about six.
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The asymptotic complexity is not too high compared to other machine learning methods,

although it is higher than for simple tree induction (which is O(n ·m) for C4.5). However,

the two nested cross-validations — one for determining the optimum number of boosting

iterations and one for the pruning — increase the runtime by a large constant factor, which

makes the algorithm appear quite slow in practice.

Heuristics to speed up the algorithm

In this section we discuss two simple heuristics to speed up the LMT algorithm. The first one

concerns the ‘inner’ cross-validation that determines the number of LogitBoost iterations

to perform at a particular node. In order to avoid cross-validating this number at every

node, we tried performing just one cross-validation to determine the optimum number of

iterations for LogitBoost in the beginning (at the root of the tree) and then used that number

everywhere in the tree. Although it is not very intuitive, this approach worked surprisingly

well. It never produced results that were significantly worse than those of the original

algorithm. It seems that the LMT algorithm is not too sensitive to the number of LogitBoost

iterations that are performed at every node, as long as the number is roughly in the right

range for the dataset. We also tried using some fixed number of iterations for every dataset,

but that gave significantly worse results in some cases. It seems that the best number of

iterations for LogitBoost does depend on the domain, but that it does not change so much

for different subsets of a particular dataset (as encountered in lower levels in the tree).

As a second heuristic, we tried to stop performing LogitBoost iterations early in a single

fold of the cross-validation in case it is obvious that the optimum number of iterations is

relatively small. Recall that we run LogitBoost on the training set of a fold while monitoring

the error on the test set, afterwards summing up the errors over the different folds to find

the optimum number of iterations to perform. Examining the error curve on the test set pro-

duced by LogitBoost shows that the error usually decreases first, then reaches a minimum

and later starts to increase again because the model is overfitting the training data. If the

minimum is reached early, we can stop performing more iterations after a while because we

know the best number must be relatively low.

Figure 4.9 shows the error on the test set as a functions of the number of LogitBoost itera-

tions for the ‘autos’ dataset. The optimum accuracy on the test set is reached at less than 10
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Figure 4.9: Error of the logistic regression model as a function of performed LogitBoost
iterations for the ‘autos’ dataset.

iterations (if there is a ‘draw’ in terms of accuracy between different numbers of iterations

we select the smallest number). Unfortunately, the error curve exhibits some spikes and

irregularities. To account for these, we do not stop performing iterations immediately if the

error increases, but instead keep track of the current minimum and stop if it has not changed

for 25 iterations.

This second heuristic does not change the behavior of the algorithm significantly, and can

give a considerable speed-up on datasets where the optimum number of LogitBoost itera-

tions is small. Note it can be used together with the first heuristic, by speeding up the initial

cross-validation that determines the best number of LogitBoost iterations. By default, both

heuristics are used in our implementation of LMT, although it is possible to switch to the

original version of the algorithm via a command-line option. All results shown for the LMT

algorithm in this thesis refer to the default version that uses the heuristics.
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Chapter 5

Experimental Evaluation

This section evaluates the performance of our methods on real-world datasets. More specif-

ically, we compare our version of logistic regression that uses parameter selection (Sim-

pleLogistic) to a standard version of logistic regression that builds a full logistic model on

all attributes present in the data, and we compare LMT to other learning schemes.

Section 5.1 and Section 5.2 present the algorithms and datasets used and the experimental

methodology. Section 5.3 compares SimpleLogistic with a full logistic model, and Sec-

tion 5.4 compares LMT to logistic regression, C4.5, M5’ for classification, boosted trees

and PLUS.

5.1 Algorithms Included in Experiments

The following algorithms are used in our experiments:

• C4.5

The C4.5 classification tree inducer. C4.5 is run with the standard options: The con-

fidence threshold for pruning is 0.25, the minimum number of instances per leaf is

2. For pruning, both subtree pruning and subtree raising are considered. Probability

estimates are obtained using Laplace correction.

• M5’

The model tree learning algorithm M5’. The classification problems are transformed
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into regression problems as described in Section 2.2. M5’ is run with the standard

options: the minimum number of instances per leaf is four, smoothing is enabled.

• PLUS

The PLUS algorithm for inducing logistic model trees. The algorithm has three dif-

ferent modes of operation: one to build a simple classification tree, and two modes

that build logistic model trees using simple/multiple logistic regression models. We

will give results for all three modes. Selection of the best tree during pruning is based

on classification error (as is the standard for the CART pruning method). Imputation

of missing values is global instead of nodewise, which gives better results on average

according to [Lim, 2000].

• AdaBoost.M1

The AdaBoost.M1 algorithm as described in Section 3.4. C4.5 with standard op-

tions is used as the base learner, and the maximum number of iterations is set to 10

(AdaBoost(10)) or 100 (AdaBoost(100)).

• MultiLogistic

A standard implementation of logistic regression that uses quasi-Newton steps to find

a maximum-likelihood solution for a full logistic model. See Section 5.3 for more

details.

• SimpleLogistic

The standalone logistic regression as described in Section 2.3. We use a five fold

cross-validation to determine the optimum number of iterations as described in Sec-

tion 2.3.1, with a maximum number of 500 iterations for the LogitBoost algorithm.

• LMT

The LMT algorithm, using the heuristics discussed in Section 4.3 and splitting on the

class variable (C4.5splitting criterion). The maximum number of iterations for the

LogitBoost algorithm is 200 per node. The minimum number of instances for a node

to be split is 15.

All algorithms except PLUS are implemented in version 3.3.6 of the Weka machine learning

workbench1, including SimpleLogistic and LMT. More details about the implementations

can be found in the Weka documentation.
1Weka is available from www.cs.waikato.ac.nz/˜ml
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Dataset Instances Missing Numeric Binary Nominal Classes
values (%) attributes attributes attributes

labor 57 35.7 8 3 5 2
zoo 101 0.0 1 15 0 7
lymphography 148 0.0 3 9 6 4
iris 150 0.0 4 0 0 3
hepatitis 155 5.6 6 13 0 2
glass (G2) 163 0.0 9 0 0 2
autos 205 1.1 15 4 6 6
sonar 208 0.0 60 0 0 2
glass 214 0.0 9 0 0 6
audiology 226 2.0 0 61 8 24
heart-statlog 270 0.0 13 0 0 2
breast-cancer 286 0.3 0 3 6 2
heart-h 294 20.4 6 3 4 2
heart-c 303 0.2 6 3 4 2
primary-tumor 339 3.9 0 14 3 21
ionosphere 351 0.0 33 1 0 2
horse-colic 368 23.8 7 2 13 2
vote 435 5.6 0 16 0 2
balance-scale 625 0.0 4 0 0 3
soybean 683 9.8 0 16 19 19
australian 690 0.6 6 4 5 2
breast-w 699 0.3 9 0 0 2
pima-indians 768 0.0 8 0 0 2
vehicle 846 0.0 18 0 0 4
anneal 898 0.0 6 14 18 5
vowel 990 0.0 10 2 1 11
german 1000 0.0 6 3 11 2
segment 2310 0.0 19 0 0 7
kr-vs-kp 3196 0.0 0 35 1 2
hypothyroid 3772 5.5 7 20 2 4
sick 3772 5.5 7 20 2 2
waveform-noise 5000 0.0 40 0 0 3

Table 5.1: Datasets used for the experiments (sorted by number of examples).

5.2 Datasets and Methodology

For the experiments we used the 32 benchmark datasets from the UCI repository [Blake and

Merz, 1998] given in Table 5.1. Their size ranges from under hundred to a few thousand

instances, they contain varying numbers of numeric and nominal attributes and some contain

missing values. Note that the original ‘zoo’ dataset has an identifier attribute (that takes on a

different value for every instance) which was removed for our experiments, because it leads

to a sharp degrade in performance for the algorithms M5’ for classification and PLUS.

We consider two different performance measures: classification accuracy (percentage of

correctly classified instances in the test set) and root mean squared error, which measures

the quality of the probability estimates produced by the different methods.

Apart from PLUS, all the classifiers discussed above are able to produce class membership

probabilities in addition to a classification. Even if we have to decide on a class to assign

to an unseen instance, these probabilities can serve as a kind of confidence measure —

the classification is more confident if the class membership probability for the predicted
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class is close to one, instead of just being slightly higher than the probability for the other

classes. For the datasets in our experiments, we only have a classification, so the ‘real’

class membership probability for instances in the test set used to evaluate the classifiers

is always one for the right class and zero for all other classes. However, a classifier can

improve its root mean squared error if it is less sure (on average) about the predictions

made for instances that it classifies incorrectly and more sure about the predictions made

for instances it classifies correctly.

The root mean squared error is defined as follows: Assume the classifier produces proba-

bility estimates p̂i1, . . . , p̂
i
J for instance xi and classes 1, . . . , J and the real probabilities are

pi1, . . . , p
i
J :

pij =






1 if yi = j,

0 if yi 6= j

Then the root mean squared error is

rmse =

√√√√ 1
N

N∑

i=1

1

J

J∑

j=1

(pij − p̂
i
j)
2
.

For every dataset and algorithm, we performed ten runs of ten fold stratified cross-validation

(using the same splits into training/test set for every method). This gives a hundred data-

points for each algorithm and dataset, from which the average result (classification accu-

racy/root mean squared error) and standard deviation are calculated. Furthermore, we used

a corrected resampled t-test [Nadeau and Bengio, 1999] instead of the standard t-test to

identify if one method significantly outperforms another, at a 5% significance level. This

test corrects for the dependencies in the estimates of the different datapoints, and is less

prone to false-positive significance results. It is more conservative than running a standard

t-test on the 10 datapoints given by the average result for every run. Because our methodol-

ogy also takes into account the variation between the different folds in one run, the standard

deviation computed is also higher than it would be if we compared the averages of the

different runs.
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Data Set SimpleLogistic MultiLogistic Data Set SimpleLogistic MultiLogistic
labor 91.93±10.43 93.90±10.33 horse-colic 82.17±5.98 80.87±6.06
zoo 94.79±6.75 94.95±6.34 vote 95.75±2.72 95.65±3.12
lymphography 84.52±9.32 77.51±10.53 • balance-scale 88.62±2.96 89.44±3.29
iris 96.33±4.87 97.00±4.96 soybean 93.53±2.70 92.72±2.58
hepatitis 84.07±8.14 83.89±8.12 australian 85.23±4.14 85.33±3.85
glass (G2) 76.93±8.77 69.56±10.77 • breast-w 96.18±2.28 96.50±2.18
autos 75.10±8.9 68.07±9.98 • pima-indians 77.15±4.51 77.47±4.39
sonar 75.06±8.86 72.09±9.29 vehicle 80.35±3.44 79.80±4.05
glass 65.42±8.73 62.98±9.08 anneal 99.47±0.75 99.22±0.83
audiology 83.74±7.84 79.53±8.42 vowel 84.24±3.67 83.67±4.06
heart-statlog 83.67±6.53 83.67±6.43 german 75.24±3.73 75.23±3.53
breast-cancer 75.61±5.52 67.77±6.92 • segment 95.39±1.47 95.48±1.60
heart-h 84.23±6.27 84.23±5.93 kr-vs-kp 97.45±0.82 97.56±0.76
heart-c 83.10±7.36 83.47±6.68 hypothyroid 96.76±0.71 96.79±0.73
primary-tumor 46.70±6.18 41.30±7.85 • sick 96.69±0.74 96.79±0.69
ionosphere 88.12±5.26 87.75±5.53 waveform-noise 86.95±1.57 86.73±1.49

◦, • statistically significant improvement or degradation

Table 5.2: Classification accuracy, standard deviation and significant wins/losses for Sim-
pleLogistic and MultiLogistic.

5.3 The Impact of Variable Selection for Logistic Regression

This section explores the effectiveness of our parameter selection method for SimpleLogis-

tic. We compare our implementation to a more standard version of logistic regression that

finds a maximum likelihood model taking into account all attributes present in the data by

performing iterative quasi-Newton optimization. The algorithm is run until it converges,

i.e. until the change in log-likelihood is smaller than some small constant, or to a maximum

of 200 optimization iterations. For a reference for the algorithm, see the Weka documenta-

tion and [Cessie and Houwelingen, 1992]. We refer to this version of logistic regression as

MultiLogistic.

There are two motivations for doing variable selection in logistic regression: one is the hope

that controlling the number of parameters that enter the model can decrease the risk of build-

ing overly complex models that overfit the training data. This means that attribute selection

should increase the classification accuracy and decrease the root mean squared error. The

other motivation is that models with many parameters are usually harder to interpret than

models with few parameters; in particular, parameters that have no real relation to the target

variable can be misleading when interpreting the final model. In the following two sections

we will take a closer look at these two points.
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Data Set SimpleLogistic MultiLogistic Data Set SimpleLogistic MultiLogistic
labor 0.19±0.17 0.14±0.20 horse-colic 0.36±0.05 0.39±0.06
zoo 0.08±0.06 0.08±0.09 vote 0.17±0.05 0.17±0.07
lymphography 0.23±0.08 0.32±0.09 • balance-scale 0.22±0.02 0.21±0.03
iris 0.11±0.07 0.10±0.09 soybean 0.07±0.01 0.08±0.02 •
hepatitis 0.34±0.08 0.35±0.09 australian 0.32±0.04 0.33±0.04
glass (G2) 0.44±0.03 0.45±0.05 breast-w 0.16±0.05 0.16±0.05
autos 0.24±0.05 0.30±0.05 • pima-indians 0.40±0.03 0.40±0.03
sonar 0.41±0.07 0.52±0.09 • vehicle 0.26±0.02 0.26±0.02
glass 0.27±0.02 0.28±0.03 anneal 0.03±0.02 0.04±0.03
audiology 0.11±0.03 0.12±0.03 vowel 0.15±0.01 0.16±0.02 •
heart-statlog 0.35±0.06 0.35±0.06 german 0.41±0.02 0.41±0.02
breast-cancer 0.43±0.04 0.47±0.04 • segment 0.10±0.01 0.10±0.01
heart-h 0.21±0.04 0.21±0.04 kr-vs-kp 0.15±0.02 0.15±0.02
heart-c 0.22±0.04 0.22±0.04 hypothyroid 0.11±0.01 0.11±0.01
primary-tumor 0.18±0.01 0.20±0.01 • sick 0.16±0.02 0.16±0.02
ionosphere 0.30±0.06 0.31±0.07 waveform-noise 0.25±0.01 0.25±0.01

◦, • statistically significant lower/higher mean squared error

Table 5.3: Root mean squared error, standard deviation and significant wins/losses for Sim-
pleLogistic and MultiLogistic.

5.3.1 The Impact on Predictive Accuracy

Table 5.2 gives the achieved classification accuracy for the two methods, and indicates sig-

nificant wins/losses according to the modified t-test discussed above. The test reports five

significant differences in favor of SimpleLogistic. Note that all wins are on the smaller

datasets (i.e., in the first column)2. This is not surprising, because overfitting is generally

more of a problem when only few training examples are available, and attribute selection

helps to prevent overfitting.

Looking at the quality of the probability estimates, the difference between the methods is

even more pronounced. Table 5.3 shows the root mean squared error for the two methods,

again with significant wins/losses according to the modified t-test. We see that the estimates

produced by SimpleLogistic are significantly better on seven datasets. These are roughly

the same datasets for which SimpleLogistic also gave a better classification accuracy.

We can summarize that the attribute selection scheme leads to somewhat better predictive

accuracy (both in terms of classification and probability estimates) for some datasets and

almost identical accuracy for others. It never significantly decreases accuracy.
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Figure 5.1: Original number of attributes and number of attributes appearing in the final
model for SimpleLogistic.

5.3.2 Attributes Appearing in the Final Model

Figure 5.1 gives the number of attributes for all datasets (after converting nominal attributes

to binary ones) and the number of attributes included in the final model for SimpleLogistic.

Although the fraction of attributes that are discarded varies wildly (from more than 95 % for

the ‘breast-cancer’ dataset to none for ‘balance-scale’, ‘vehicle’ or ‘vowel’), in most cases

the number of attributes included in the final model is reduced substancially. On average,

the biggest reduction takes place for datasets with a high number of attributes that are not

too large (again, datasets are sorted by size from left to right).

As an example for parameter selection, consider the breast-cancer dataset. After transform-

ing the nominal attributes into binary ones, the dataset has 48 numeric attributes (plus the

class). SimpleLogistic builds a model including only two of the parameters, the function

determining the class probability membership (cf. Section 2.3) for class 1, no-recurrence-

events, is

F1(x) = 0.53 + [inv − nodes = 0− 2] · 1.07− [deg −malig = 3] · 1.32.

The function F2 for the class membership probability of class 2 is

F2(x) = −F1(x)

2Datasets are sorted by size in all result tables
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because there are only two classes. The binary attribute [inv-nodes=0–2] has been generated

from the nominal attribute ‘inv-nodes’ that can take on values ‘0–2’, ‘3–5’, and so on. The

nominal attribute ‘deg-malig’ takes on values ‘1’, ‘2’ and ‘3’. The model is relatively easy to

interpret: it basically says that no recurrence events are expected if the number of involved

nodes is small and the degree of malignancy is not too high.

In contrast to that, the model built by MultiLogistic has sizeable coefficients for 38 of the

48 attributes, which makes it a lot harder to interpret, and is at the same time less accurate

(see Table 5.2).

5.4 Empirical Evaluation of LMT

This section discusses the performance of LMT compared to other learning schemes, in-

cluding logistic regression, C4.5, PLUS, M5’ for classification, and boosted C4.5 trees.

More specifically, the following questions are addressed:

1. How does LMT compare to the two algorithms that form its basis, i.e., logistic re-

gression and C4.5? Ideally, we would never expect worse performance than either

of these algorithms. This question is related to the issue of pruning: we expect the

pruning algorithm to adequately scale the complexity of the model from simple linear

logistic regression to a combination of tree structure and regression models.

2. How does LMT compare to a state-of-the-art logistic model tree inducer from the

statistics community? We will discuss the results achieved by the PLUS algorithm as

described above, and discuss its different modes of operation.

3. How does LMT compare to methods that build multiple trees? Models consisting of

multiple trees often allow more accurate predictions at the expense of interpretability.

M5’ for classification and boosted C4.5 trees fall into this group. The former builds

a tree for every class, the latter a large committee of trees whose predictions are

weighted.

In the next three subsections we will address these questions, looking at the achieved clas-

sification accuracy, the quality of the produced probability estimates and the size of the

constructed trees (where applicable).
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Data Set LMT C4.5 SimpleLogistic MultiLogistic
labor 91.50±10.90 78.60±16.58 • 91.93±10.43 93.90±10.33
zoo 94.98±6.63 92.61±7.33 94.79±6.75 94.95±6.34
lymphography 84.65±9.62 75.84±11.05 • 84.52±9.32 77.51±10.53 •
iris 96.20±5.04 94.73±5.30 96.33±4.87 97.00±4.96
hepatitis 83.68±8.12 79.22±9.57 84.07±8.14 83.89±8.12
glass (G2) 76.54±8.92 78.15±8.50 76.93±8.77 69.56±10.77
autos 75.84±9.71 80.79±9.15 75.10±8.90 68.07±9.98 •
sonar 76.45±9.36 73.61±9.34 75.06±8.86 72.09±9.29
glass 69.71±9.47 67.63±9.31 65.42±8.73 62.98±9.08
audiology 83.96±7.83 76.73±7.46 • 83.74±7.84 79.53±8.42
heart-statlog 83.63±6.60 78.15±7.42 • 83.67±6.53 83.67±6.43
breast-cancer 75.64±5.40 74.18±6.00 75.61±5.52 67.77±6.92 •
heart-h 84.23±6.27 80.16±7.99 84.23±6.27 84.23±5.93
heart-c 82.74±7.45 76.97±6.63 • 83.10±7.36 83.47±6.68
primary-tumor 46.70±6.18 41.21±6.90 • 46.70±6.18 41.30±7.85 •
ionosphere 92.68±4.25 89.74±4.38 • 88.12±5.26 • 87.75±5.53 •
horse-colic 83.75±6.27 85.13±5.89 82.17±5.98 80.87±6.06
vote 95.75±2.76 96.57±2.56 95.75±2.72 95.65±3.12
balance-scale 89.95±2.49 77.82±3.42 • 88.62±2.96 89.44±3.29
soybean 93.62±2.53 90.82±3.18 • 93.53±2.70 92.72±2.58
australian 84.96±4.15 85.68±3.97 85.23±4.14 85.33±3.85
breast-w 96.27±2.15 95.01±2.73 96.18±2.28 96.50±2.18
pima-indians 77.07±4.39 74.49±5.27 77.15±4.51 77.47±4.39
vehicle 82.39±3.26 72.28±4.32 • 80.35±3.44 79.80±4.05
anneal 99.51±0.78 98.57±1.04 • 99.47±0.75 99.22±0.83
vowel 94.09±2.50 80.08±4.34 • 84.24±3.67 • 83.67±4.06 •
german 75.25±3.71 71.13±3.19 • 75.24±3.73 75.23±3.53
segment 97.07±1.23 96.79±1.29 95.39±1.47 • 95.48±1.60 •
kr-vs-kp 99.66±0.34 99.44±0.37 97.45±0.82 • 97.56±0.76 •
hypothyroid 99.58±0.36 99.54±0.36 96.76±0.71 • 96.79±0.73 •
sick 98.93±0.63 98.72±0.55 96.69±0.74 • 96.79±0.69 •
waveform-noise 86.96±1.56 75.25±1.90 • 86.95±1.57 86.73±1.49

◦, • statistically significant improvement or degradation

Table 5.4: Classification accuracy and standard deviation for LMT, C4.5, SimpleLogistic
and MultiLogistic and significant wins/losses versus LMT.

5.4.1 Comparing LMT to Logistic Regression and Tree Induction

Table 5.4 gives the average classification accuracy and standard deviation for LMT, C4.5,

SimpleLogistic and MultiLogistic. We observe that LMT indeed always reaches roughly

the same classification accuracy as logistic regression and C4.5: there is no dataset where

LMT is significantly outperformed by either SimpleLogistic, MultiLogistic or C4.5. It sig-

nificantly outperforms C4.5 on 14 datasets, SimpleLogistic on 6 datasets, and MultiLogistic

on 10 datasets. We can also confirm the observation (see for example [Lim et al., 2000])

that logistic regression performs surprisingly well compared to tree induction on most UCI

datasets. This includes all small to medium-sized datasets except ‘ionosphere’. Only on

some larger datasets (‘kr-vs-kp’, ‘sick’, ‘hypothyroid’) its performance is not competitive

with that of tree induction (and other methods, see below). We also confirm that SimpleLo-

gistic is more accurate than MultiLogistic on average, as argued in Section 5.3.

Table 5.5 gives the average root mean squared error and standard deviation for LMT, C4.5,
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Data Set LMT C4.5 SimpleLogistic MultiLogistic
labor 0.19±0.15 0.40±0.15 • 0.19±0.17 0.14±0.20
zoo 0.08±0.06 0.15±0.04 • 0.08±0.06 0.08±0.09
lymphography 0.23±0.08 0.30±0.07 • 0.23±0.08 0.32±0.09 •
iris 0.12±0.08 0.15±0.10 0.11±0.07 0.10±0.09
hepatitis 0.34±0.08 0.38±0.09 0.34±0.08 0.35±0.09
glass (G2) 0.43±0.07 0.41±0.08 0.44±0.03 0.45±0.05
autos 0.23±0.05 0.24±0.03 0.24±0.05 0.30±0.05 •
sonar 0.42±0.07 0.46±0.09 0.41±0.07 0.52±0.09 •
glass 0.27±0.04 0.28±0.04 0.27±0.02 0.28±0.03
audiology 0.10±0.03 0.14±0.01 • 0.11±0.03 0.12±0.03 •
heart-statlog 0.35±0.06 0.40±0.07 • 0.35±0.06 0.35±0.06
breast-cancer 0.43±0.04 0.44±0.03 0.43±0.04 0.47±0.04 •
heart-h 0.21±0.04 0.25±0.04 • 0.21±0.04 0.21±0.04
heart-c 0.22±0.04 0.27±0.03 • 0.22±0.04 0.22±0.04
primary-tumor 0.18±0.01 0.20±0.01 • 0.18±0.01 0.20±0.01 •
ionosphere 0.24±0.08 0.28±0.07 0.30±0.06 • 0.31±0.07 •
horse-colic 0.35±0.06 0.35±0.06 0.36±0.05 0.39±0.06 •
vote 0.18±0.06 0.16±0.06 0.17±0.05 0.17±0.07
balance-scale 0.22±0.03 0.34±0.02 • 0.22±0.02 0.21±0.03
soybean 0.07±0.01 0.11±0.01 • 0.07±0.01 0.08±0.02 •
australian 0.32±0.04 0.33±0.04 0.32±0.04 0.33±0.04
breast-w 0.16±0.05 0.20±0.06 • 0.16±0.05 0.16±0.05
pima-indians 0.40±0.03 0.43±0.04 • 0.40±0.03 0.40±0.03
vehicle 0.24±0.02 0.31±0.02 • 0.26±0.02 0.26±0.02
anneal 0.03±0.03 0.07±0.02 • 0.03±0.02 0.04±0.03
vowel 0.09±0.02 0.19±0.02 • 0.15±0.01 • 0.16±0.02 •
german 0.41±0.02 0.45±0.02 • 0.41±0.02 0.41±0.02
segment 0.08±0.02 0.09±0.02 0.10±0.01 • 0.10±0.01 •
kr-vs-kp 0.05±0.03 0.07±0.02 • 0.15±0.02 • 0.15±0.02 •
hypothyroid 0.04±0.02 0.04±0.02 0.11±0.01 • 0.11±0.01 •
sick 0.09±0.03 0.10±0.02 0.16±0.02 • 0.16±0.02 •
waveform-noise 0.25±0.01 0.37±0.01 • 0.25±0.01 0.25±0.01

◦, • statistically significantly lower/higher error

Table 5.5: Root mean squared error and standard deviation for LMT, C4.5, SimpleLogistic
and MultiLogistic and significant wins/losses versus LMT.

SimpleLogistic and MultiLogistic. It shows that the probability estimates produced by LMT

are also at least as good as those produced by C4.5 and logistic regression. The root mean

squared error is never significantly higher, and it is lower on 18 datasets compared to C4.5,

six datasets compared to SimpleLogistic, and 14 datasets compared to MultiLogistic. The

relative weakness of C4.5 for predicting probabilities is not surprising, after all, the logis-

tic regression model takes the class membership probabilities explicitly into account. In

contrast to that, the scheme to generate probability estimates for trees is more an ad-hoc ex-

tension of the original algorithm. It is interesting to see that the impact of variable selection

for logistic regression (SimpleLogistic as compared to MultiLogistic) is easier to observe

here than comparing the two methods directly (in Table 5.2 and Table 5.3).

The rest of this section discusses results for the size of the trees constructed by our method

and compares them to the size of C4.5 classification trees. We argue that the pruning scheme

implemented in LMT reliably makes the correct decision between a linear logistic model

(corresponding to a logistic model tree that is pruned back to the root) and a more elaborate
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Data Set LMT C45 Data Set LMT C45
labor 1.01±0.10 4.16±1.44 • horse-colic 3.71±4.37 5.91±1.99
zoo 1.01±0.10 8.35±0.82 • vote 1.06±0.34 5.83±0.38 •
lymphography 1.18±0.72 17.30±2.88 • balance-scale 5.31±2.49 41.60±4.97 •
iris 1.05±0.36 4.64±0.59 • soybean 3.70±7.34 61.12±6.01 •
hepatitis 1.12±0.64 9.33±2.37 • australian 2.51±6.09 22.49±7.54 •
glass (G2) 4.59±2.93 12.53±2.64 • breast-w 1.35±1.25 12.23±2.77 •
autos 2.97±4.72 44.77±6.09 • pima-indians 1.04±0.40 22.20±6.55 •
sonar 2.71±2.04 14.45±1.75 • vehicle 3.51±1.86 69.50±10.28 •
glass 6.99±3.79 23.58±2.29 • anneal 1.82±0.63 37.98±5.39 •
audiology 1.04±0.40 29.90±1.95 • vowel 5.20±1.26 123.28±17.19 •
heart-statlog 1.01±0.10 17.82±2.86 • german 1.03±0.30 90.18±15.67 •
breast-cancer 1.05±0.33 9.75±8.16 • segment 12.02±4.12 41.21±3.05 •
heart-h 1.00±0.00 6.32±3.73 • kr-vs-kp 8.01±0.44 29.29±1.83 •
heart-c 1.04±0.24 25.70±5.53 • hypothyroid 5.62±0.94 14.44±1.06 •
primary-tumor 1.00±0.00 43.81±5.16 • sick 14.05±2.93 27.44±3.88 •
ionosphere 4.55±1.89 13.87±1.95 • waveform-noise 1.00±0.00 296.47±12.15 •

◦, • statistically significantly smaller/larger trees

Table 5.6: Tree size (number of leaves) with standard deviation and significant differences
for LMT and C4.5.

tree structure. We also look at the learning curves of LMT, C4.5 and SimpleLogistic (the

accuracy and tree size as a function of the number of training examples) for an artificial

dataset.

Table 5.6 gives the average tree size and standard deviation for LMT and C4.5. The modified

t-test discussed above is used to identify significant differences in tree size. As expected,

the trees constructed by LMT are much smaller than the standard classification trees built

by C4.5. LMT produces smaller trees on all datasets and the difference is significant in

all but one case (horse-colic, where there is a high variance in the tree size of LMT). Of

course, logistic model trees contain part of their ‘structure’ in the leaves in form of the

logistic regression functions. Nevertheless, there are some datasets where the difference

in tree size is so large that one advantage of C4.5, namely that the final models are easier

to understand, disappears. For the ‘waveform-noise’ dataset, for example, LMT builds

a logistic regression model (no tree structure), while C4.5 builds a tree with almost 300

terminal nodes. About half of the 40 attributes in ‘waveform-noise’ are used in the logistic

regression (see Table 5.1). It is probably easier to understand the influence of the attributes

on the class variable from a logistic model with 20 parameters than from a tree with 300

terminal nodes.

There are several datasets for which the trees constructed by LMT are pruned back to the

root. Let us a call a tree pruned back to the root if the average tree size is less than 1.5,

meaning that more than half of the datapoints correspond to ‘trees’ that were just a logistic

regression function. It can be seen from Table 5.6 that this happens on exactly half of the 32
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datasets. If the pruning process worked correctly, we would expect that for the 16 datasets

where the tree is pruned back to the root the achieved classification accuracy is better than

that of the C4.5 algorithm — indicating that a linear logistic regression model is preferable

to a tree structure — and for the other 16 datasets the result for LMT is better than that of

SimpleLogistic. The first claim is true for all but one dataset (vote, where there is a small

win for C4.5). The second claim is true for 13 out of the 16 datasets where a tree structure

is built; on the three exceptions (anneal, australian, glass (G2)) the result for LMT is equal

or slightly worse than that of SimpleLogistic. Allowing for small random effects, we can

conclude that the adapted pruning method — the CART algorithm from [Breiman et al.,

1984] — reliably makes the right choice between building a linear logistic model and a

more elaborate tree structure.

To illustrate how the LMT algorithm scales model complexity depending on the information

available for training, we ran it on increasingly larger training datasets sampled from an

artificial domain and compared its result to the results for SimpleLogistic (’logistic model

tree of size one’) and C4.5 (standard classification tree).

Consider the polynomial

f : R4 → R, f(x) = 2 · x21 + x2 + x3 + x4

and the binary function

g : R4 → {1,−1}, g(x) = sign(f(x)).

The function g(x) gives rise to a two-class classification problem over the four numeric

attributes x1, . . . , x4. The attributes x2, x3, x4 have a linear influence on the target variable

while the influence of x1 is nonlinear. We sampled training datasets of size 25, 50, 100,

200, 400, 800, 1600, 3200, 6400 and 12800 instances from this domain, then used LMT,

SimpleLogistic and C4.5 to build a model on the training set and evaluated its performance

on a separate test set. More specifically, we generated 100 datasets of each size, sampling

g(x) uniformly in [−1, 1]4. This gives a-priori probabilities for the two classes of about

0.7 for class 1 and 0.3 for class -1. Samples are stratified, meaning that the distribution of

the classes in the sample is the same as their a-priori probability (as far as possible), which

helps getting stable estimates for small training set sizes. The accuracy achieved by each
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Figure 5.2: Accuracy (left) and tree size as a function of the number of training instances

method was measured using a fixed test set of 10000 instances. From the 100 datapoints

measured for each algorithm and training set size, we calculated the average accuracy on

the test set for every method and the average tree size for LMT and C4.5.

Figure 5.2 shows the accuracy on the test set (left graph) and the tree size for LMT, C4.5 and

SimpleLogistic as a function of the training set size (note the exponential scale). It can be

seen that, naturally, the accuracy on the test set monotonically increases with the number of

training examples for every method. The learning curves of SimpleLogistic and C4.5 cross

at around 200 training examples. As explained in Section 2.4, this can be understood in

terms of the bias-variance tradeoff discussed in Section 1.2.2. For small training sets, a bias

towards simple models pays off because it allows more stable estimates and does not overfit,

while the less biased model space of tree induction allows to capture nonlinear patterns if

enough data is available. More specifically, the learning curve for logistic regression levels

off at a training set size of about 100 instances because the method cannot fit the nonlinear

part of the underlying distribution, while induction continues to improve its estimate with

more data.

Looking at LMT, we see that the accuracy is almost identical to that of SimpleLogistic for

25, 50 and 100 instances, but continues to increase for larger datasets. The models built by

LMT are more accurate than those of C4.5 even for large training sets, LMT reaches the

same accuracy as C4.5 at about half the number of training instances. The graph visualizing

the tree sizes shows that the LMT algorithm starts to build a sizeable tree structure around

the point the learning curves of SimpleLogistic and C4.5 cross, which indicates that the

pruning method correctly detects at what point a tree structure is superior to a linear logis-

tic model. Finally, we note that both tree induction methods built larger and larger trees
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Data Set LMT PLUS(best) PLUS(c) PLUS(s) PLUS(m)
labor 91.50±10.90 89.87±11.51 89.87±11.51 79.97±16.16 • 64.97±9.48 •
zoo 94.98±6.63 94.47±6.80 94.47±6.80
lymphography 84.65±9.62 78.41±10.18 78.41±10.18 71.30±12.58 •
iris 96.20±5.04 94.33±5.39 94.33±5.39 78.93±14.30 • 89.67±13.38
hepatitis 83.68±8.12 83.35±7.80 81.52±8.66 79.15±11.25 83.35±7.80
glass (G2) 76.54±8.92 83.15±11.08 83.15±11.08 75.34±9.44 69.39±11.13
autos 75.84±9.71 76.62±8.70 76.62±8.70 37.70±7.98 • 54.80±11.16 •
sonar 76.45±9.36 71.65±8.04 71.65±8.04 70.70±9.51 53.43±2.82 •
glass 69.71±9.47 69.33±9.70 69.33±9.70 46.19±7.68 • 60.29±9.57 •
audiology 83.96±7.83 80.65±8.25 80.65±8.25
heart-statlog 83.63±6.60 83.67±6.43 79.19±7.59 80.59±7.86 83.67±6.43
breast-cancer 75.64±5.40 71.45±5.70 • 71.45±5.70 •
heart-h 84.23±6.27 79.85±7.81 79.85±7.81 79.58±7.69 78.21±6.18 •
heart-c 82.74±7.45 78.22±7.41 77.66±6.92 • 78.22±7.41 77.82±7.28
primary-tumor 46.70±6.18 40.69±6.12 • 40.69±6.12 •
ionosphere 92.68±4.25 89.49±5.22 89.49±5.22 84.82±6.37 • 87.72±5.57 •
horse-colic 83.75±6.27 84.04±5.76 84.04±5.76 79.94±10.41 80.87±6.27
vote 95.75±2.76 95.33±2.76 95.33±2.76
balance-scale 89.95±2.49 89.68±2.83 77.60±3.92 • 79.87±4.35 • 89.68±2.83
soybean 93.62±2.53 93.56±2.70 93.56±2.70
australian 84.96±4.15 85.23±3.90 84.86±4.08 84.12±3.92 85.23±3.90
breast-w 96.27±2.15 96.35±2.19 94.14±2.72 • 94.77±2.42 • 96.35±2.19
pima-indians 77.07±4.39 77.17±4.28 74.24±4.86 • 73.80±5.64 • 77.17±4.28
vehicle 82.39±3.26 79.84±4.02 71.00±4.49 • 62.66±5.73 • 79.84±4.02
anneal 99.51±0.78 99.36±0.82 99.36±0.82 76.17±0.55 • 79.24±2.50 •
vowel 94.09±2.50 83.02±3.72 • 83.02±3.72 • 37.72±4.44 • 67.28±5.14 •
german 75.25±3.71 73.31±3.52 71.33±3.76 • 72.41±3.60 • 73.31±3.52
segment 97.07±1.23 96.76±1.15 96.76±1.15 53.64±3.92 • 95.37±1.40 •
kr-vs-kp 99.66±0.34 99.49±0.36 99.49±0.36
hypothyroid 99.58±0.36 99.06±0.41 • 99.06±0.41 • 87.62±4.16 • 94.70±0.82 •
sick 98.93±0.63 98.61±0.61 98.61±0.61
waveform-noise 86.96±1.56 86.73±1.49 75.23±1.94 • 73.73±1.89 • 86.73±1.49

◦, • statistically significant improvement or degradation

Table 5.7: Average classification accuracy with standard deviation and significant
wins/losses for LMT and PLUS.

asymptotically to fit the nonlinear distribution (note the data is perfectly noise-free), but the

trees built by LMT are significantly smaller than the standard classification trees.

This example illustrates how the LMT algorithm smoothly scales model complexity from a

simple linear model as produced by logistic regression to a more complex combination of

tree structure and logistic regression models.

5.4.2 Comparing LMT to PLUS

In this section, we will give empirical results for the PLUS algorithm discussed in Sec-

tion 3.3. As explained above, PLUS offers three different modes of operation, two of which

build real logistic model trees while the last one builds a simple classification tree. When

building logistic model trees, PLUS can build the logistic regression functions at the nodes

either on all numeric attributes present in the data, or by just selecting one of the attributes.
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The three different modes often gave very different results in our experiments. The modes

that build a logistic regression tree did not work correctly on all datasets — sometimes, a

logistic regression can not be fit and the program resorts to building a simple classifica-

tion tree instead. Furthermore, a logistic model tree can only be fit if the data contains at

least one numeric attributes (recall that PLUS does not use nominal attributes in the logistic

regression functions). On the datasets ‘sick’ and ‘hypothyroid’ PLUS did not give a rea-

sonable result initially — this was due to an attribute whose value was always missing. We

removed this attribute from the datasets before runnning PLUS on them.

Table 5.7 gives the average classification accuracy for LMT and PLUS. The columns PLUS(c),

PLUS(s) and PLUS(m) give the result for the modes classification tree, simple logistic re-

gression at nodes, and multiple regression at nodes respectively. The column PLUS(best)

contains the maximum of the former three columns. If PLUS could not construct a logistic

model tree, the result of the column PLUS(s)/PLUS(m) is left out.

It can be seen that the achieved classification accuracy of PLUS varies strongly for the dif-

ferent datasets and modes. The standard mode of PLUS that the author recommends is

PLUS(m). Comparing the results of PLUS(m) with those of LMT, we note that for some

datasets (‘hepatitis’, ‘credit-rating’, ‘balance-scale’, ‘breast-w’, ‘heart-statlog’, ‘pima-indians’,

‘waveform-noise’) PLUS achieves results almost identical to LMT. On other datasets (‘au-

tos’, ‘labor’, ‘sonar’, ‘vowel’), this mode fails to achieve reasonable results. Although we

did not look into this issue more closely, it seems that for some reason the algorithm PLUS

uses for building the logistic model trees is not really reliable. Building the logistic regres-

sion models on one attribute only (PLUS(s)) generally gave worse results than using all

available attributes (PLUS(m)). The same has been noted in [Lim, 2000]. The mode that

builds simple classification trees produces good results on average — slightly better than

those produced by C4.5 (see above).

Even looking at the column PLUS(best) (which introduces an optimistic bias because the

selection of the best mode is based on the very test set used to measure the accuracy), LMT

outperforms PLUS on four datasets and never produces significantly less accurate models.

We conclude that the predictive accuracy of PLUS is not as good as that of LMT, even if we

always select the best result for comparison . The tree growing algorithm of PLUS seems

to be unstable, though it can produce competitive results on some datasets.

77



Data Set LMT M5’ AdaBoost(10) AdaBoost(100)
labor 91.50±10.90 85.13±16.33 87.17±14.28 88.90±14.11
zoo 94.98±6.63 94.48±6.43 96.15±6.11 96.35±6.07
lymphography 84.65±9.62 80.35±9.32 80.87±8.63 84.72±8.41
iris 96.20±5.04 94.93±5.62 94.33±5.22 94.53±5.05
hepatitis 83.68±8.12 82.38±8.79 82.38±8.01 84.93±7.79
glass (G2) 76.54±8.92 81.08±8.73 85.10±7.75 ◦ 88.72±6.42 ◦
autos 75.84±9.71 76.03±10.00 85.46±7.23 ◦ 86.77±6.81 ◦
sonar 76.45±9.36 78.37±8.82 79.22±8.70 85.14±7.84 ◦
glass 69.71±9.47 71.30±9.08 75.15±7.59 78.78±7.80 ◦
audiology 83.96±7.83 76.83±8.62 • 84.75±7.44 84.70±7.57
heart-statlog 83.63±6.60 82.15±6.77 78.59±7.15 • 80.44±7.08
breast-cancer 75.64±5.40 70.40±6.84 • 66.89±7.33 • 66.19±8.15 •
heart-h 84.23±6.27 82.44±6.39 78.68±7.4 78.35±7.07 •
heart-c 82.74±7.45 82.14±6.65 78.76±7.09 80.00±6.55
primary-tumor 46.70±6.18 45.26±6.22 41.65±6.55 • 41.65±6.55 •
ionosphere 92.68±4.25 89.92±4.18 93.05±3.92 94.02±3.83
horse-colic 83.75±6.27 83.23±5.40 81.63±6.20 81.68±5.79
vote 95.75±2.76 95.61±2.77 95.51±3.05 95.19±3.29
balance-scale 89.95±2.49 87.76±2.23 • 78.35±3.78 • 76.11±4.09 •
soybean 93.62±2.53 92.90±2.61 92.83±2.85 93.31±2.82
australian 84.96±4.15 85.39±3.87 84.01±4.36 86.41±3.99
breast-w 96.27±2.15 95.85±2.15 96.08±2.16 96.70±2.18
pima-indians 77.07±4.39 76.56±4.71 71.69±4.80 • 73.89±4.75 •
vehicle 82.39±3.26 78.66±4.38 • 75.59±3.99 • 77.87±3.58 •
anneal 99.51±0.78 98.64±1.13 99.59±0.70 99.63±0.65
vowel 94.09±2.50 80.93±4.68 • 92.89±2.82 96.81±1.93 ◦
german 75.25±3.71 74.99±3.31 70.91±3.60 • 74.53±3.26
segment 97.07±1.23 97.35±1.03 98.12±0.90 ◦ 98.61±0.69 ◦
kr-vs-kp 99.66±0.34 99.21±0.50 • 99.59±0.31 99.62±0.30
hypothyroid 99.58±0.36 99.44±0.38 99.65±0.31 99.69±0.31
sick 98.93±0.63 98.41±0.62 • 98.99±0.50 99.05±0.50
waveform-noise 86.96±1.56 82.51±1.60 • 81.32±1.90 • 85.05±1.58 •

◦, • statistically significant improvement or degradation

Table 5.8: Average classification accuracy with standard deviation and significant
wins/losses for LMT, M5’ for classification, and boosted C4.5.

The size of the trees produces by PLUS of course depends strongly on the mode used. The

trees built by PLUS(c) are larger than those built by LMT and roughly comparable to C4.5

trees, while PLUS(m) builds trees of similar size as the logistic model trees built by LMT.

Table A.3 in the Appendix A lists the tree sizes of PLUS for the different modes.

5.4.3 Comparing LMT to Multiple-Tree Models

This section compares LMT to methods that build models that consist of a set of trees: M5’

for classification and boosted C4.5. In order to solve classification problems with M5’ —

a learner that estimates numeric target variables — we convert the classification problem

into a regression problem as described in Section 2.2. The final model consists of a set

of model trees, one for every class. When boosting trees using AdaBoost.M1, multiple

C4.5 trees are built on reweighted versions of the training data, as explained in Section 3.4.

The result is a set of classification trees whose prediction are combined (using a weighted
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voting scheme) for classifying new instances. For boosting, it is not clear a priori how many

boosting iterations should be performed. AdaBoost.M1 was run with a maximum of 10 and

100 boosting iterations (though boosting can be stopped sooner, if the error of one of the

classifiers built on the reweighted training data reaches zero or exceeds 0.5).

Table 5.8 gives the classification accuracy of LMT, M5’ for classification, and boosted C4.5

trees using AdaBoost.M1 with 10/100 boosting iterations. LMT clearly outperforms M5’

for classification: it is significantly more accurate on eight datasets and significantly less

accurate on none. Comparing LMT with boosted C4.5 trees, it can be seen that performing

100 boosting iterations is superior to performing only 10. We conclude that performing 10

boosting iterations is not enough and concentrate on AdaBoost(100).

Looking at the number of wins and losses, LMT achieves results comparable to AdaBoost(100)

(with 7 wins and 6 losses). However, the relative performance of the two schemes really

depends on the datasets. Interestingly, there are several datasets where boosting achieves

a similar gain in accuracy compared to simple tree induction as LMT, i.e. there was a win

for LMT against C4.5 and there is neither a loss nor a win of LMT against AdaBoost(100).

This is the case for nine datasets. On the six datasets where boosted trees outperform LMT,

they achieve a higher accuracy than any other scheme, and the gain is quite impressive (up

to seven percentage points higher than the next-best classifier).

The seven datasets for which AdaBoost(100) is significantly less accurate than LMT can

be split into two groups. For three of them (breast-cancer, heart-h, pima-indians), boost-

ing seems to have failed: there was no win of LMT over C4.5, but there is one over Ad-

aBoost(100). It is reasonable to expect that using a more advanced boosting scheme (for

example, controlling the number of boosting iterations by cross-validation) would make

these losses disappear. For the other four, boosting seems to have no impact on perfor-

mance (‘balance-scale’, ‘primary-tumor’) or increases performance compared to C4.5, but

not as much as building logistic model trees (‘waveform-noise’, ‘vehicle’).

We conclude (as others have before us) that boosting trees is clearly superior to simple tree

induction with regard to classification accuracy. Depending on the dataset, the gain can

be larger than, equal to or smaller than the gain of logistic model trees over simple tree

induction. Neither of the two schemes seems generally preferable.
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Data Set LMT M5’ AdaBoost(10) AdaBoost(100)
labor 0.19±0.15 0.29±0.13 • 0.31±0.09 • 0.32±0.09 •
zoo 0.08±0.06 0.12±0.05 • 0.10±0.05 0.11±0.04 •
lymphography 0.23±0.08 0.26±0.05 0.26±0.04 0.26±0.03
iris 0.12±0.08 0.16±0.06 • 0.18±0.07 • 0.18±0.07 •
hepatitis 0.34±0.08 0.36±0.07 0.35±0.06 0.35±0.04
glass (G2) 0.43±0.07 0.38±0.06 ◦ 0.35±0.05 ◦ 0.35±0.03 ◦
autos 0.23±0.05 0.24±0.04 0.20±0.03 ◦ 0.19±0.02 ◦
sonar 0.42±0.07 0.39±0.07 0.38±0.04 0.37±0.03
glass 0.27±0.04 0.25±0.02 0.23±0.03 ◦ 0.22±0.02 ◦
audiology 0.10±0.03 0.12±0.01 • 0.11±0.02 0.11±0.02
heart-statlog 0.35±0.06 0.37±0.05 0.39±0.04 • 0.38±0.03 •
breast-cancer 0.43±0.04 0.45±0.04 • 0.47±0.03 • 0.46±0.03 •
heart-h 0.21±0.04 0.22±0.03 0.23±0.03 • 0.26±0.02 •
heart-c 0.22±0.04 0.23±0.03 0.24±0.03 • 0.24±0.02 •
primary-tumor 0.18±0.01 0.18±0.01 0.21±0.01 • 0.21±0.01 •
ionosphere 0.24±0.08 0.28±0.05 0.25±0.04 0.25±0.03
horse-colic 0.35±0.06 0.35±0.06 0.39±0.04 • 0.41±0.02 •
vote 0.18±0.06 0.18±0.06 0.20±0.04 0.21±0.04 •
balance-scale 0.22±0.03 0.26±0.01 • 0.30±0.02 • 0.31±0.02 •
soybean 0.07±0.01 0.08±0.01 0.08±0.01 • 0.08±0.01 •
australian 0.32±0.04 0.32±0.04 0.35±0.03 • 0.36±0.02 •
breast-w 0.16±0.05 0.17±0.04 0.19±0.04 • 0.18±0.03
pima-indians 0.40±0.03 0.40±0.03 0.43±0.02 • 0.42±0.02 •
vehicle 0.24±0.02 0.26±0.01 • 0.28±0.02 • 0.27±0.01 •
anneal 0.03±0.03 0.07±0.02 • 0.06±0.01 • 0.06±0.01 •
vowel 0.09±0.02 0.17±0.01 • 0.13±0.01 • 0.13±0.01 •
german 0.41±0.02 0.41±0.02 0.43±0.02 • 0.43±0.01 •
segment 0.08±0.02 0.08±0.01 0.08±0.01 0.08±0.01
kr-vs-kp 0.05±0.03 0.09±0.02 • 0.09±0.01 • 0.11±0.01 •
hypothyroid 0.04±0.02 0.05±0.01 0.05±0.01 0.05±0.01 •
sick 0.09±0.03 0.11±0.02 0.10±0.01 0.12±0.01 •
waveform-noise 0.25±0.01 0.28±0.01 • 0.30±0.01 • 0.29±0.01 •

◦, • statistically significant lower/higher error

Table 5.9: Root mean squared error with standard deviation and significant wins/losses for
LMT, M5’ for classification and boosted C4.5.

The following discussion concerns the quality of the probability estimates produced by the

two methods. Table 5.9 gives the root mean squared error of LMT, M5’ for classification,

and boosted C4.5 trees using AdaBoost.M1 with 10/100 boosting iterations. In contrast to

the results for classification accuracy, boosting does not necessarily increase the quality of

the probability estimates. Although it does improve the estimates on some datasets (most

notably ‘autos’ and the two versions of the ‘glass’ dataset), there are also several datasets for

which boosting leads to a higher root mean squared error than standard tree induction, and

performing more boosting iterations decreases accuracy further. Comparing boosted trees

to LMT, it can be seen that the probability estimates produced by LMT are clearly better

than those produced by both AdaBoost(10) and AdaBoost(100) on most datasets (with the

exception of the three mentioned above).
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LMT C4.5 SimpleLogistic M5’ PLUS AdaBoost
LMT - 0 0 0 0 6
C4.5 13 - 6 5 5 13
SimpleLogistic 6 3 - 4 4 10
M5’ 8 0 3 - 1 12
PLUS 4 1 1 2 - 0
AdaBoost 7 1 6 1 3 -

Table 5.10: Number of datasets where algorithm in column significantly outperforms algo-
rithm in row with regard to classification accuracy.

LMT C4.5 SimpleLogistic M5’ AdaBoost
LMT - 0 0 1 3
C4.5 18 - 17 17 15
SimpleLogistic 6 3 - 6 9
M5’ 11 1 10 - 4
AdaBoost 22 8 18 13 -

Table 5.11: Number of datasets where algorithm in column significantly outperforms algo-
rithm in row with regard to root mean squared error.

5.5 Conclusions from Experiments

This section summarizes the results of our experimental evaluation by ranking the different

methods according to their classification accuracy and root mean squared error, and also

gives some empirical results for their (relative) speed.

Table 5.10 and Table 5.11 gives the number of datasets for which method in column sig-

nificantly outperforms method in row with regard to classification accuracy and root mean

squared error. Note that PLUS cannot produce probability estimates, so there is no entry

for the method in Table 5.11. Since SimpleLogistic performs better than MultiLogistic, we

leave out MultiLogistic. The column for PLUS is PLUS(best), and the column for AdaBoost

is AdaBoost(100). Table 5.12 and Table 5.13 derive a ranking of the algorithms with regard

to classification accuracy and root mean squared error from the number of wins/losses. For

every method, we count the total number of wins (over all datasets and against all other

methods) and the total number of losses. The methods are then ranked according to number

of wins minus number of losses.

Looking at this ranking for classification accuracy, we find LMT and AdaBoost very close

at the top, followed by SimpleLogistic, PLUS, M5, and finally C4.5. Note that AdaBoost

has both more wins and more losses than LMT, indicating that it achieves more ‘extreme’

results (very strong on some datasets, but weak on others). The gain from simple C4.5 to

AdaBoost is impressive, especially keeping in mind that it is possible to improve on our

version of AdaBoost with a more sophisticated boosting scheme. The results for PLUS
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Resultset Wins− Wins Losses
Losses

LMT 33 39 6
AdaBoost 32 50 18

SimpleLogistic -3 21 24
PLUS -11 4 15

M5’ -11 13 24
C4.5 -40 5 45

Table 5.12: Ranking of algorithms based
on wins/losses with regard to classifica-
tion accuracy.

Resultset Wins− Wins Losses
Losses

LMT 53 57 4
SimpleLogistic 21 45 24

M5’ 11 37 26
AdaBoost -30 31 61

C4.5 -55 12 67
PLUS

Table 5.13: Ranking of algorithms based
on wins/losses with regard to root mean
squared error.

Resultset average accu
LMT 86.06

AdaBoost 85.89
SimpleLogistic 85.01

PLUS 84.46
M5’ 84.40
C4.5 82.46

Table 5.14: Ranking of algorithms by av-
erage classification accuracy.

Resultset average RMSE
LMT 0.2192

SimpleLogistic 0.2316
M5’ 0.2364

AdaBoost 0.2432
C4.5 0.2616

PLUS

Table 5.15: Ranking of algorithms by av-
erage root mean squared error.

also look quite good, but note that just selecting the best of the result obtained for the

three modes of operation introduces a positive bias. Finally, we can confirm that logistic

regression beats C4.5 on the UCI datasets in terms of classification accuracy. Looking at

the ranking for root mean squared error, it can be seen that the methods based on simple

classification trees (C4.5 and AdaBoost) are weaker relatively speaking than methods based

on (logistic) regression.

Table 5.14 and Table 5.15 rank the different methods by an alternative criterion, namely

average classification accuracy and average root mean squared error. This yields the same

ordering for the classifiers.

All in all, it is surprising how well logistic regression performs on the datasets included in

our experiments. However, keep in mind that this method is less ‘flexible’ than the other

methods in the sense that it fits a very restricted (linear) model. If the structure of the data

is highly nonlinear, logistic regression will not give reasonable results — and this holds

independently from the amount or quality (noisy/noisefree) of the training data.

We close this section by giving some rough indication of the relative runtime for the dif-

ferent methods. All methods except PLUS are implemented in Java in the WEKA machine

learning package, so the measured runtimes should be roughly comparable. PLUS was exe-

cuted as a compiled binary which makes it difficult to compare it to the other methods, and

we do not give any results for its runtime.
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Resultset time(sec)
C4.5 0.4
M5’ 8

AdaBoost 40
LMT 121

SimpleLogistic 283

Table 5.16: Ranking of algorithms by average runtime (seconds for constructing a single
model).

Table 5.16 shows for every method the time it took to construct a single model (one fold

in one cross-validation run), averaged over all datasets. It shows that both LMT and Sim-

pleLogistic are very slow compared to the other schemes. This is due to the slow estimation

process for the parameters of the logistic model performed by the LogitBoost algorithm.

Surprisingly, building a standalone logistic regression takes longer than building a logistic

model tree. This is because of the heuristics used for fitting the logistic models in the tree,

and the higher number of maximum iterations (500 instead of 200) for LogitBoost when

building a standalone logistic regression.

We conclude that building logistic model trees with the LMT algorithm is orders of mag-

nitude slower than simple tree induction or using model trees for classification, and still

somewhat slower than boosting trees. Improving the computational efficiency of the method

could be an interesting field for further research.
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Chapter 6

Summary and Future Work

This thesis has introduced a new method for inducing logistic model trees, called the LMT

algorithm, that builds on earlier work on model trees [Quinlan, 1992]. The method uses the

recently developed LogitBoost algorithm [Friedman et al., 2000] for building the logistic

regression functions at the nodes of the tree. We show how this approach can be used to

select the most relevant attributes present in the data by performing only a simple regres-

sion in one iteration of LogitBoost and stopping before the algorithm has converged to the

maximum likelihood solution. The optimum number of iterations is determined by cross-

validation. From our experimental evaluation we conclude that using this method yields

final models that contain significantly fewer parameters and are thus easier to interpret. It

can also improve prediction accuracy on some datasets, while never decreasing accuracy.

Another consequence of using LogitBoost for building the logistic regression functions is

that they can be built by incrementally refining logistic regression functions fit at higher

levels of the tree.

Pruning is an important issue for logistic model trees. The pruning scheme has to decide

whether a linear logistic regression model (a tree pruned back to the root) or a more elabo-

rate tree structure is preferable for a particular dataset. It has been shown that this depends

on the size and characteristics of the dataset (see for example [Perlich and Provost, 2002]).

Often, the learning curves of linear logistic regression and tree induction cross — logistic

regression yields better accuracy if only few training examples are available, while tree in-

duction produces better results on larger samples from the domain. Our method adapts the

well-known CART algorithm for pruning [Breiman et al., 1984]. We give empirical evi-

dence that this method reliably scales the tree size with the size/complexity of the data set.
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If the learning curves of logistic regression and tree induction cross, it starts building a tree

structure about at the same time tree induction starts outperforming logistic regression.

To evaluate the predictive accuracy of LMT, we compare it to several other state-of-the-art

learning schemes. These include standalone logistic regression, C4.5 classification trees,

boosted C4.5 classification trees using AdaBoost.M1, M5’ for classification, and PLUS.

M5’ is a model tree inducer that is used for classification by transforming the classification

problems into regression problems in the standard way. PLUS is another scheme for induc-

ing logistic model trees that originated in the statistics community. We use 32 real-world

datasets from the UCI collection [Blake and Merz, 1998] in our experiments, comparing

the different schemes in terms of classification accuracy and the quality of the class mem-

bership probability estimates. From the reported results we conclude that with regard to

classification accuracy LMT outperforms logistic regression, C4.5, M5’ for classification

and PLUS and is competitive with boosted C4.5 trees. The probability estimates produced

by LMT are more accurate than for any of the other methods included in our experiments.

LMT produces a single tree containing binary splits on numeric attributes, multiway splits

on nominal ones, and logistic regression models at the leaves, and the algorithm ensures that

only relevant attributes are included in the latter. The result is not quite as easy to interpret

as a standard decision tree, but much more intelligible than a committee of multiple trees

or more opaque classifiers like kernel-based estimators. Like other tree induction methods,

LMT can be used ’off the shelf’ — it does not require any tuning of parameters by the user.

There are several issues that provide directions for future work. Probably the most important

drawback of logistic model tree induction is the high computational complexity compared

to simple tree induction. Although the asymptotic complexity of LMT is acceptable com-

pared to other methods (see Section 4.3), the algorithm appears quite slow in practice. Most

of the time is spent fitting the logistic regression models at the nodes with the LogitBoost

algorithm. It would be worthwhile looking for a faster way of fitting the logistic models

that achieves the same performance (including variable selection). The heuristic discussed

in Section 4.3 significantly speeds up the algorithm without decreasing prediction accuracy,

but it is admittedly ad-hoc and not very intuitive. Further research might yield a more prin-

cipled way of determining the optimum number of LogitBoost iterations to be performed at

a node without an additional cross-validation.
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A further issue is the missing values handling. At the moment, LMT uses a simple global

imputation scheme for filling in missing values. Although our experiments do not suggest a

particular weakness of the algorithm on datasets with missing values, a more sophisticated

scheme for handling them might improve accuracy for domains where missing values occur

frequently.
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Appendix A

Additional Results from Experiments

Data Set LMT(class) LMT(residuals) Data Set LMT(class) LMT(residuals)
labor 91.50±10.90 91.50±10.90 horse-colic 83.75±6.27 82.47±6.08
zoo 94.98±6.63 94.98±6.63 vote 95.75±2.76 95.81±2.72
lymphography 84.65±9.62 84.79±9.77 balance-scale 89.95±2.49 91.71±3.43
iris 96.20±5.04 96.27±4.86 soybean 93.62±2.53 93.54±2.61
hepatitis 83.68±8.12 83.68±8.02 australian 84.96±4.15 85.16±4.01
glass (G2) 76.54±8.92 79.65±10.22 breast-w 96.27±2.15 96.10±2.30
autos 75.84±9.71 77.57±9.80 pima-indians 77.07±4.39 77.11±4.52
sonar 76.45±9.36 74.60±9.76 vehicle 82.39±3.26 81.08±3.77
glass 69.71±9.47 69.02±9.43 anneal 99.51±0.78 99.57±0.74
audiology 83.96±7.83 83.87±7.84 vowel 94.09±2.50 92.26±2.95
heart-statlog 83.63±6.60 83.63±6.58 german 75.25±3.71 75.32±3.68
breast-cancer 75.64±5.40 75.54±5.51 segment 97.07±1.23 97.03±1.20
heart-h 84.23±6.27 84.23±6.29 kr-vs-kp 99.66±0.34 99.19±0.56 •
heart-c 82.74±7.45 82.97±7.41 hypothyroid 99.58±0.36 99.60±0.36
primary-tumor 46.70±6.18 46.70±6.18 sick 98.93±0.63 98.83±0.59
ionosphere 92.68±4.25 88.95±5.62 • waveform-noise 86.96±1.56 86.94±1.59

◦, • statistically significant improvement or degradation

Table A.1: Classification accuracy and standard deviation for LMT with splitting criterion
based on class values/residuals.

Data Set LMT(class) LMT(residuals) Data Set LMT(class) LMT(residuals)
labor 1.01±0.10 1.01±0.10 horse-colic 3.71±4.37 1.13±0.79
zoo 1.01±0.10 1.00±0.00 vote 1.06±0.34 1.06±0.60
lymphography 1.18±0.72 1.13±0.81 balance-scale 5.31±2.49 8.40±2.55 •
iris 1.05±0.36 1.12±0.48 soybean 3.70±7.34 1.06±0.60
hepatitis 1.12±0.64 1.29±0.94 australian 2.51±6.09 1.03±0.22
glass (G2) 4.59±2.93 6.81±2.99 breast-w 1.35±1.25 1.13±0.66
autos 2.97±4.72 10.72±10.07 • pima-indians 1.04±0.40 1.04±0.24
sonar 2.71±2.04 2.01±1.57 vehicle 3.51±1.86 4.81±3.86
glass 6.99±3.79 5.19±2.77 anneal 1.82±0.63 1.83±0.57
audiology 1.04±0.40 1.00±0.00 vowel 5.20±1.26 5.89±1.06
heart-statlog 1.01±0.10 1.01±0.10 german 1.03±0.30 1.12±0.54
breast-cancer 1.05±0.33 1.34±2.54 segment 12.02±4.12 5.74±2.39 ◦
heart-h 1.00±0.00 1.04±0.24 kr-vs-kp 8.01±0.44 9.68±3.48
heart-c 1.04±0.24 1.00±0.00 hypothyroid 5.62±0.94 3.90±0.30 ◦
primary-tumor 1.00±0.00 1.00±0.00 sick 14.05±2.93 9.06±1.87 ◦
ionosphere 4.55±1.89 2.86±1.57 ◦ waveform-noise 1.00±0.00 1.03±0.30

◦, • statistically significant smaller/larger trees

Table A.2: Tree size (number of leaves) and standard deviation for LMT with splitting
criterion based on class values/residuals
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Data Set PLUS(best) PLUS(c) PLUS(s) PLUS(m)
labor 5.06±1.13 5.06±1.13 1.06±0.24 1.00±0.00
zoo 9.53±0.76 9.53±0.76
lymphography 14.94±6.51 14.94±6.51 1.00±0.00
iris 6.05±2.19 6.05±2.19 1.20±0.40 1.00±0.00
hepatitis 1.53±0.89 4.22±4.40 4.48±2.07 1.53±0.89
glass (G2) 15.46±4.54 15.46±4.54 7.78±3.56 1.00±0.00
autos 42.18±6.69 42.18±6.69 1.00±0.00 1.00±0.00
sonar 13.18±7.46 13.18±7.46 6.51±5.84 1.00±0.00
glass 25.16±10.61 25.16±10.61 1.08±0.27 1.00±0.00
audiology 47.60±6.71 47.60±6.71
heart-statlog 1.00±0.00 13.99±8.45 8.06±3.23 1.00±0.00
breast-cancer 9.09±8.30 9.09±8.30
heart-h 5.11±10.12 5.11±10.12 3.53±2.24 1.00±0.00
heart-c 6.21±3.52 12.91±8.59 6.21±3.52 3.28±1.74
primary-tumor 26.74±15.50 26.74±15.50
ionosphere 13.52±6.37 13.52±6.37 8.76±3.23 1.00±0.00
horse-colic 6.57±5.20 6.57±5.20 5.08±2.24 2.89±0.72
vote 5.80±4.78 5.80±4.78
balance-scale 1.86±0.74 57.11±28.03 10.80±1.80 1.86±0.74
soybean 42.35±8.82 42.35±8.82
australian 2.00±0.00 8.34±8.22 7.34±5.11 2.00±0.00
breast-w 1.21±0.54 9.94±5.38 8.42±4.22 1.21±0.54
pima-indians 1.24±0.55 13.88±10.26 2.58±4.60 1.24±0.55
vehicle 1.00±0.00 72.43±38.00 8.41±2.66 1.00±0.00
anneal 15.75±1.04 15.75±1.04 1.00±0.00 1.00±0.00
vowel 156.87±7.60 156.87±7.60 2.01±0.10 1.00±0.00
german 4.26±2.34 18.71±16.70 8.45±6.42 4.26±2.34
segment 65.92±10.38 65.92±10.38 1.00±0.00 1.00±0.00
kr-vs-kp 42.64±5.55 42.64±5.55
hypothyroid 12.89±7.11 12.89±7.11 1.29±0.46 1.00±0.00
sick 30.04±8.67 30.04±8.67
waveform-noise 1.01±0.10 100.92±29.42 17.00±7.27 1.01±0.10

Table A.3: Tree size (number of leaves) and standard deviation for the three different modes
of PLUS and PLUS(best).

90



Bibliography

Blake, C. and Merz, C. [1998]. UCI repository of machine learning databases.

[www.ics.uci.edu/∼mlearn/MLRepository.html].

Breiman, L. [1998]. Combining predictors. Technical report, Statistics Department, Uni-

versity of California, Berkeley.

Breiman, L., Friedman, H., Olshen, J. A. and Stone, C. J. [1984]. Classification and Re-

gression Trees. Wadsworth.

Cessie, S. L. and Houwelingen, J. V. [1992]. Ridge estimators in logistic regression. Applied

Statistics, 41, 191–201.

Frank, E., Wang, Y., Inglis, S., Holmes, G. and Witten, I. H. [1998]. Using model trees for

classification. Machine Learning, 32(1), 63–76.

Freund, Y. and Schapire, R. E. [1996]. Experiments with a new boosting algorithm. In Pro-

ceedings of the International Conference on Machine Learning (pp. 148–156). Morgan

Kaufmann.

Friedman, J., Hastie, T. and Tibshirani, R. [2000]. Additive logistic regression: a statistical

view of boosting. The Annals of Statistic, 38(2), 337–374.

Green, P. J. [1984]. Iteratively reweighted least squares maximum likelihood estimation

and some robust and resistant alternatives. Journal of the Royal Statistical Society (pp.

149–192).

Hastie, T., Tibshirani, R. and Friedman, J. [2001]. The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer-Verlag.

91



Lim, T.-S. [2000]. Polytomous Logistic Regression Trees. PhD thesis, Department of Statis-

tics, University of Wisconsin.

Lim, T.-S., Loh, W. and Shih, Y. [2000]. A comparison of prediction accuracy, complex-

ity, and training time for thirty-three old and new classification algorithms. Machine

Learning, 40, 641–666.

Lubinsky, D. [1994]. Tree structured interpretable regression. In Fisher, D. and Lenz, H.

(Eds.), Learning from Data, Lecture Notes in Statistics (pp. 387–398).

Malerba, D., Appice, A., Ceci, M. and Monopoli, M. [2002]. Trading-off local versus global

effects of regression nodes in model trees. In Hacid, M.-S., Ras, Z. W., Zighed, D. A.

and Kodratoff, Y. (Eds.), ISMIS 2002, Lecture Notes in Computer Science. Springer.

Nadeau, C. and Bengio, Y. [1999]. Inference for the generalization error. In Advances in

Neural Information Processing Systems 12 (pp. 307–313). MIT Press.

Perlich, C. and Provost, F. [2002]. Tree induction vs logistic regression. In Beyond Classi-

fication and Regression (NIPS 2002 Workshop).

Quinlan, J. R. [1992]. Learning with Continuous Classes. In 5th Australian Joint Confer-

ence on Artificial Intelligence (pp. 343–348).

Quinlan, R. [1993]. C4.5: Programs for Machine Learning. Morgan Kaufmann.

Wang, Y. and Witten, I. [1997]. Inducing model trees for continuous classes. In Proceedings

of Poster Papers, European Conference on Machine Learning.

92


