

INTELLIGENTE DATENANALYSE IN MATLAB

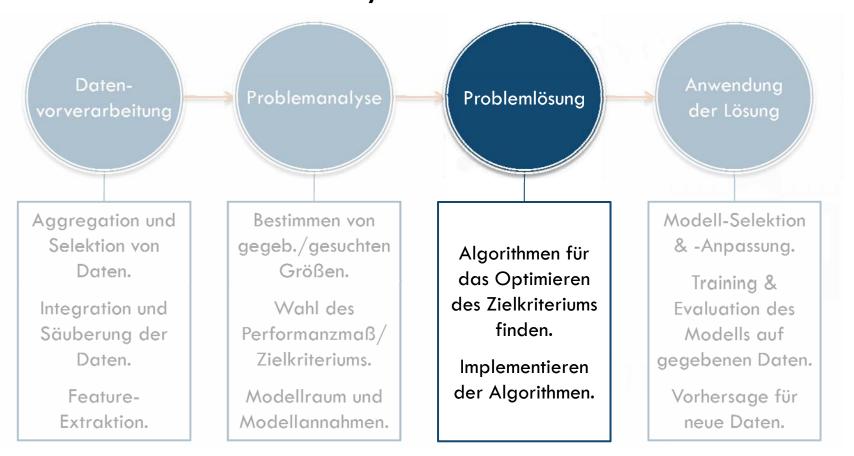
Überwachtes Lernen: Entscheidungsbäume

Literatur

- Stuart Russell und Peter Norvig: Artificial Intelligence.
- Andrew W. Moore: http://www.autonlab.org/tutorials.

Überblick

Schritte der Datenanalyse:



Überwachtes Lernen:

Problemstellung

- Gegeben: Trainingsdaten mit <u>bekannten</u> Zielattributen (gelabelte Daten).
- Eingabe: Instanz (Objekt, Beispiel, Datenpunkt,
 Merkmalsvektor) = Vektor mit Attribut-Belegungen.
- Ausgabe: Belegung des/der Zielattribut(e).
 - Klassifikation: Nominaler Wertebereich des Zielattributs.
 - Ordinale Regression: Ordinaler Wertebereich des Zielattributs.
 - Regression: Numerischer Wertebereich des Zielattributs.
- \square Gesucht: Modell $f: \mathbf{x} \mapsto y$.

Überwachtes Lernen:

Beispiel

Beispiel binäre Klassifikation:

Tag	Bewölkung	Temperatur	Luftfeuchtigkeit	Wind	Tennis spielen?
1	sonnig	warm	hoch	wenig	nein
2	sonnig	warm	hoch	stark	nein
3	bedeckt	warm	hoch	wenig	ja
4	Regen	mild	hoch	wenig	ja
5	Regen	kühl	normal	wenig	ja
6	Regen	kühl	normal	stark	nein
7	bedeckt	kühl	normal	stark	ja
8	sonnig	mild	hoch	wenig	nein
9	sonnig	kühl	normal	wenig	jα
10	Regen	mild	normal	wenig	ja
- 11	sonnig	mild	normal	stark	ŝ
12	bedeckt	mild	hoch	stark	Ś
13	bedeckt	warm	normal	wenig	Ś
14	Regen	mild	hoch	stark	ş

Zielgröße

Überwachtes Lernen:

Arten von Modellen

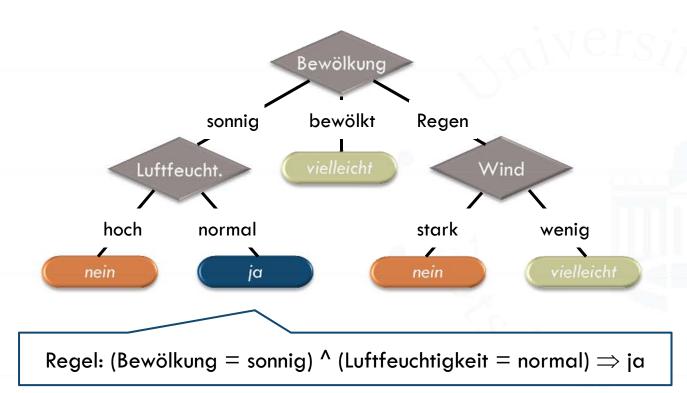
- Entscheidungsbäume/Regelsysteme:
 - Klassifikations-, Regressions-, Modellbaum.
- Lineare Modelle:
 - Trennebenen, Regressionsgerade.
- Nicht-lineare Modelle, linear in den Parametern:
 - Probabilistisches Modell.
 - Nicht-lineare Datentransformation + lineares Modell.
 - Kernel-Modell.
- □ Nicht-lineare Modelle, nicht-linear in den Parametern:
 - Neuronales Netz.

Definition

- Entscheidungsbaum: Graph-Darstellung von Regeln zur Klassifikation/Regression.
- Innere Knoten: Attributbelegung prüfen.
 - Nominale/binäre Attribute (prüfen auf gleich/ungleich).
 - Numerische/ordinale Attribute (prüfen auf größer/kleiner).
- Kanten: Attributbelegung.
- Blätter: Liefern Klassenlabel/Regressionswerte.

Beispiel

Beispiel "Tennis spielen":

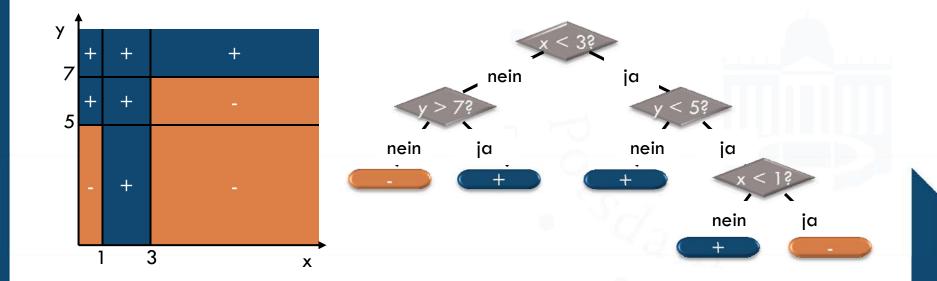


Besonders geeignet ...

- □ Für mittelgroße/große Klassifikationsprobleme.
- Falls Interpretierbarkeit/Begründung der Entscheidung notwendig.
- Für Daten mit überwiegend ordinalen/binären Attributen.
- □ Für Daten mit fehlerhaften/fehlenden Attributen.
- Falls explizite Abhängigkeiten/Regeln erkannt werden sollen.
- Falls schnelles & einfaches Verfahren gewünscht.

Beispiel

- Instanzen (Vektoren mit m Einträgen) liegen im m-dimensionalen Eingaberaum.
- Dieser wird in achsparallele Rechtecke zerlegt.



Lernen von Entscheidungsbäumen

- Ziel: Optimaler Entscheidungsbaum.
 - Maximum Likelihood (ML): Daten möglichst gut erklären.
 - Maximum A-Posteriori (MAP): Daten möglichst gut erklärt & geringe Komplexität (wenig Knoten/Kanten).
 - Leichter interpretierbar.
 - Bessere Generalisierungsfähigkeit.
 - Entscheidungen in den Blättern stützen sich auf mehr Beispiele.
- □ Problem: Anzahl binärer Entscheidungsbäume der Tiefe t für m Attributen ist $O(m^{2^t})$; kleinsten konsistenten Baum finden ist NP-hart!

- Ansatz: Greedy-Suche (z.B. Top-Down-Suche).
- Beispiel: Klassifikationsbaum für nominale Attribute.

```
BuildTree(Instanzen, Attribute)

IF Alle Instanzen sind aus einer Klasse THEN

RETURN (Blatt mit Klasse)

Welches Attribut

IF Attribute = Ø THEN

RETURN (Blatt mit häufigster Klasse)

Wähle bestes Attribute A ∈ Attribute als Wurzel W

FOR Alle Belegungen v von A

Erzeuge Kante (mit Bedingung A = v) zwischen Wurzel und

BuildTree({x ∈ Instanzen mit x.A = v}, Attribute \ {A})

RETURN (Baum mit Wurzel W)
```


Lernen von Entscheidungsbäumen (nominale Attribute)

- Splitting-Kriterium ("bestes Attribut" finden):
 - □ Daten $D = \{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_n, y_n)\}$ partitionieren bzgl. Attribut A (mit k möglichen Belegungen): $\{D_1, D_2, ..., D_k\}$.
 - □ Ziel: "Unsicherheit" (Entropie) über das Klassenlabel durch Partitionierung verringern.
- - □ Theoretische Verteilung der Zufallsvariable Z (gegeben durch Verteilungsfunktion): $H_Z = -\int p(z) \log p(z) \partial z$
 - □ Empirische Verteilung der Zufallsvariable Z (gegeben durch Datenpunkte/Instanzen): $H_Z = -\sum p(z)\log p(z)$

Lernen von Entscheidungsbäumen (nominale Attribute)

Entropie über Klassenlabel vor Partitionierung:

$$H_{Y \sim D} = -\sum_{y \in \{+1, -1\}} p_D(y) \log p_D(y)$$

Erwartete Entropie über Klassenlabel nach Partitionierung:

$$E\left[H_{Y\sim D_i}\right] = \sum_{i=1}^{k} \frac{\left|D_i\right|}{\left|D\right|} H_{Y\sim D_i}$$

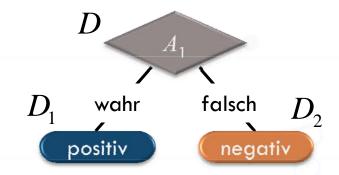
Erwartete Verringerung der Entropie (Information Gain):

$$IG_{Y,\{D_1,\dots,D_k\}} = H_{Y\sim D} - E[H_{Y\sim D_i}]$$

Lernen von Entscheidungsbäumen (nominale Attribute)

lacktriangle Beispiel: Partitionierung der Daten D bzgl. binären Attributs A_1 in D_1 und D_2 .

$$H_{Y \sim D} = -\sum_{y \in \{+1, -1\}} p_D(y) \log p_D(y)$$



$$\mathbf{H}_{Y \sim D_{1}} = -\sum_{y \in \{+1, -1\}} p_{D_{1}}(y) \log p_{D_{1}}(y) \qquad \qquad \mathbf{H}_{Y \sim D_{2}} = -\sum_{y \in \{+1, -1\}} p_{D_{2}}(y) \log p_{D_{2}}(y)$$

Lernen von Entscheidungsbäumen (nominale Attribute)

lacksquare Beispiel: Partitionierung der Daten D bzgl. binären Attributs A_1 in D_1 und D_2 .

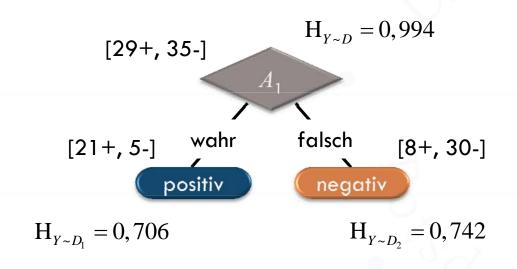
$$H_{Y\sim D} = -\sum_{y\in\{+1,-1\}} p_D(y) \log p_D(y)$$

$$= -\frac{29}{64} \log \frac{29}{64} - \frac{35}{64} \log \frac{35}{64} = 0,994$$
 [21+, 5-] wahr falsch [8+, 30-] positiv negativ

$$H_{Y \sim D_1} = -\sum_{y \in \{+1, -1\}} p_{D_1}(y) \log p_{D_1}(y) \qquad H_{Y \sim D_2} = -\sum_{y \in \{+1, -1\}} p_{D_2}(y) \log p_{D_2}(y) \\
= -\frac{21}{26} \log \frac{21}{26} - \frac{5}{26} \log \frac{5}{26} = 0,706 \qquad = -\frac{8}{38} \log \frac{8}{38} - \frac{30}{38} \log \frac{30}{38} = 0,742$$

Lernen von Entscheidungsbäumen (nominale Attribute)

lacksquare Beispiel: Partitionierung der Daten D bzgl. binären Attributs A_1 in D_1 und D_2 .



$$IG_{Y,\{D_1,\dots,D_k\}} = H_{Y\sim D} - E\left[H_{Y\sim D_i}\right] = 0,994 - \left(\frac{26}{64}\cdot 0,706 + \frac{38}{64}\cdot 0,742\right) = 0,266$$

Lernen von Entscheidungsbäumen (nominale Attribute)

- □ Information Gain abhängig von Anzahl & Größe der k Partitionen: $IG_{Y,\{D_1,\dots,D_k\}} = H_{Y\sim D} E \Big[H_{Y\sim D_i} \Big]$
- \square Beispiel: ID der n Beispiele als Attribut
 - \Rightarrow Jedes Beispiel ist eine Partition (k = n).

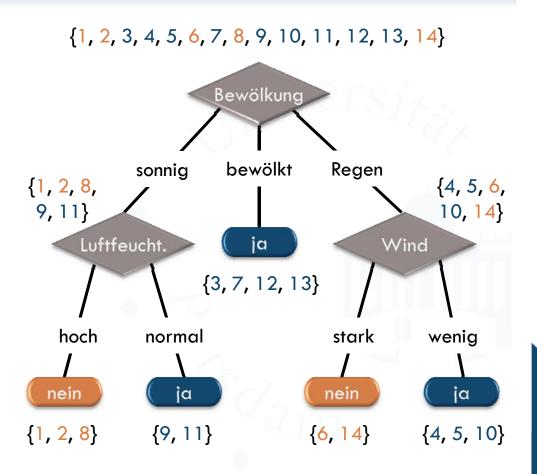
$$\Rightarrow E[H_{Y\sim D_i}] = 0 \Rightarrow IG_{Y,\{D_1,\dots,D_k\}}$$
 maximal.

Information Gain Ratio korrigiert diesen Bias:

$$GR_{Y,\{D_1,...,D_k\}} = \frac{IG_{Y,\{D_1,...,D_k\}}}{H_{\{D_1,...,D_k\}}} \qquad H_{\{D_1,...,D_k\}} = -\sum_{i=1}^k \frac{|D_i|}{|D|} \log \frac{|D_i|}{|D|}$$

Lernen von Entscheidungsbäumen (nominale Attribute)

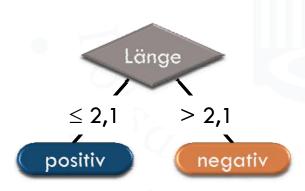
•	Tag	Bewölkung	Temp.	Luftfeucht.	Wind	Spielen?
	1	sonnig	warm	hoch	wenig	nein
	2	sonnig	warm	hoch	stark	nein
	3	bedeckt	warm	hoch	wenig	ja
	4	Regen	mild	hoch	wenig	ja
	5	Regen	kühl	normal	wenig	ja
	6	Regen	kühl	normal	stark	nein
	7	bedeckt	kühl	normal	stark	ja
	8	sonnig	mild	hoch	wenig	nein
	9	sonnig	kühl	normal	wenig	ja
	10	Regen	mild	normal	wenig	ja
	11	sonnig	mild	normal	stark	ja
	12	bedeckt	mild	hoch	stark	ja
	13	bedeckt	warm	normal	wenig	ja
	14	Regen	mild	hoch	stark	nein



Lernen von Entscheidungsbäumen (numerische/ordinale Attribute)

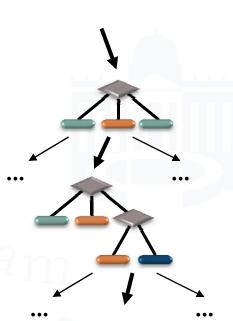
- Partitionierung bzgl. Attribut mit unendlichen Wertebereich?
- Idee: Endliche Menge an Instanzen
 - ⇒ Endliche Menge an binären Partitionierungen.
- Beispiel:

ID	Länge	•••	Label
1	2,1	•••	-
2	3,7	•••	-
3	1,5	•••	+



Erweiterungen

- Pruning: Knoten nicht weiterentwickeln bzw. zusammenfassen falls zu wenig Beispiele.
- Backtracking: Testattribut ändern falls Entropie in den Blättern zu hoch.
- Anderes Qualitätsmaß für Partitionierung (z.B. Gini-Index, Reduktion des MSE).
- Komplexere Partitionierungskriterien (z.B. Linearkombination von Attributen).
- Komplexere Modelle in den Blättern (z.B. lineare Regression).



Algorithmen

- Klassifikation, d.h. Vorhersage nominaler Werte:
 - Nominale Attribute: ID3
 - Numerische Attribute: C4.5
 - Skalierbar für große Datenbanken: SLIQ
- Regression, d.h. Vorhersage numerischer Werte:
 - Regressionsbäume (konstante Werte in Blättern): CART
 - Modellbäume (Modelle in den Blättern).

Zusammenfassung

- Entscheidungsbäume geeignet für Klassifikations- & Regressionsprobleme.
 - Besonders geeignet bei binären/nominalen Attributen.
- Lernen von Entscheidungsbäumen durch Greedy-Suche im Raum aller Entscheidungsbäume.
 - □ Partitionierungskriterium (=, \leq , >, ...).
 - Qualitätsmaß für Partitionierung (IG, GR, Gini, MSE, ...).
 - □ Erweiterungen: Backtracking, Pruning, ...
- Gefundene Lösung lokal aber i.A. nicht global optimal!