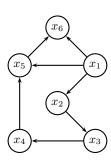
Maschinelles Lernen II

3. Übung

Prof. Tobias Scheffer Dr. Niels Landwehr Christoph Sawade


Sommer 2010

Ausgabe am: 12.05.10 Besprechung am: 19.05.10

Aufgabe 1

Message-Passing Algorithmus

Betrachten Sie das folgende Bayessche Netz über die sechs binären Zufallsvariablen $x_1, x_2, x_3, x_4, x_5, x_6$.

$p(x_1=1)$	
0.5	

$p(x_2 = 1 \mid x_1)$	x_1
0.6	0
0.3	1

$p(x_3 = 1 \mid x_2)$	x_2
0.7	0
0.4	1

$p(x_4 = 1 \mid x_3)$	x_3
0.2	0
0.5	1

$p(x_5 = 1 \mid x_1, x_4)$	x_1	x_4
0.3	0	0
0.6	1	0
0.5	0	1
0.1	1	1

$p(x_6 = 1 \mid x_1, x_5)$	x_1	x_5
0.5	0	0
0.1	1	0
0.3	0	1
0.4	1	1

Berechnen Sie die bedingte Verteilung $p(x_3 \mid x_1 = 0, x_4 = 1)$ unter Verwendung des Message-Passing Algorithmus.

Hinweis: D-separation.

Aufgabe 2

Gibbs-Sampling

Wir betrachten das gleiche Bayessche Netz wie in Aufgabe 1. Berechnen Sie ebenfalls die bedingte Verteilung $p(x_3 \mid x_1 = 0, x_4 = 1)$, diesmal approximativ unter Verwendung des Gibbs-Sampling Algorithmus. Schreiben Sie dazu ein kurzes Programm (in einer beliebigen Programmiersprache), das die Gibbs-Sampling Methode für dieses Netz implementiert. Geben Sie Ihre Lösung für 10, 100, und 1000 gezogene Samples an, mit jeweils 10 Burn-in Iterationen.

Aufgabe 3

Ancestral Sampling

Wir betrachten wiederum das Bayessche Netz aus Aufgabe 1. Implementieren Sie zusätzlich Ancestral Sampling für dieses Netz, und bestimmen Sie die Verteilung $p(x_5)$ für 5, 10, und 100 gezogene Samples.