Mathe-Tutorium

- Erstes Mathe-Tutorium am 07.05.
- Themen können gewählt werden unter:
 - https://docs.google.com/forms/d/1lvYFGvKe7sKVQL cgZsPJT4mKiRnrgNRFPKKn3j2VqOs/viewform

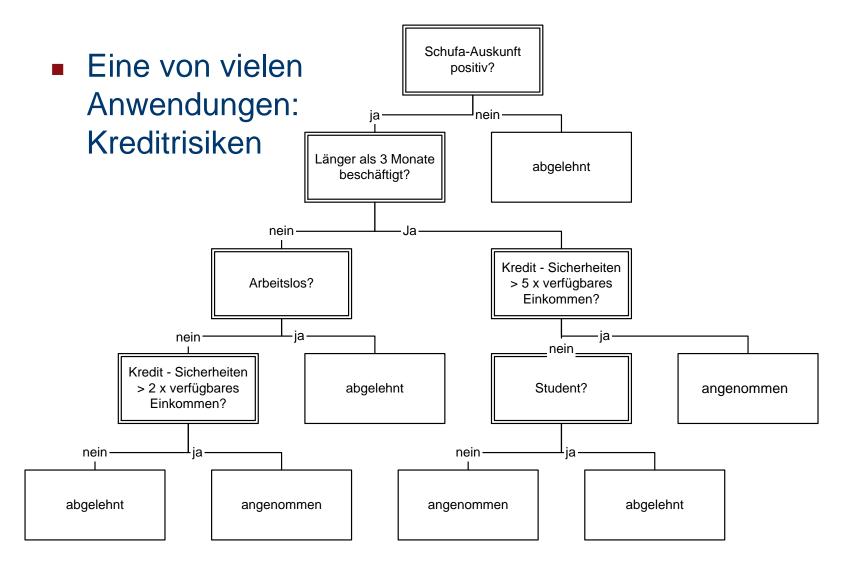
Universität Potsdam

Institut für Informatik Lehrstuhl Maschinelles Lernen

Intelligente Datenanalyse Entscheidungsbäume

Paul Prasse, Niels Landwehr, Tobias Scheffer

Entscheidungsbäume



Entscheidungsbäume – Warum?

- Einfach zu interpretieren.
- Liefern Klassifikation plus Begründung.
 - "Abgelehnt, weil weniger als 3 Monate beschäftigt und Kredit-Sicherheiten < 2 x verfügbares Einkommen".
- Können aus Beispielen gelernt werden.
 - Einfacher Lernalgorithmus.
 - Effizient, skalierbar.
- Verschiedene Lernprobleme werden abgedeckt
 - Klassifikations- und Regressionsbäume.
 - Klassifikations-, Regressions-, Modellbäume häufig Komponenten komplexer (z.B. Risiko-)Modelle.

Klassifikation

- Eingabe: Instanz (Objekt) $x \in X$.
 - Instanzen sind durch Vektoren von Attributen repräsentiert.
 - Eine Instanz ist eine Belegung der Attribute.
 - Instanzen werden auch als Merkmalsvektoren bezeichnet.

- Ausgabe: Klasse $y \in Y$; endliche Menge Y.
 - Beispiele:
 - ★ {akzeptiert, abgelehnt};
 - ★ {Kind, Frau, Mann}.
 - Klasse wird auch als Zielattribut bezeichnet.

Klassifikationslernen

Eingabe: Trainingsdaten.

$$L = \langle (\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n) \rangle$$

Ausgabe: Klassifikator.

Entscheidungsbaum:
Pfad entlang der Kanten zu

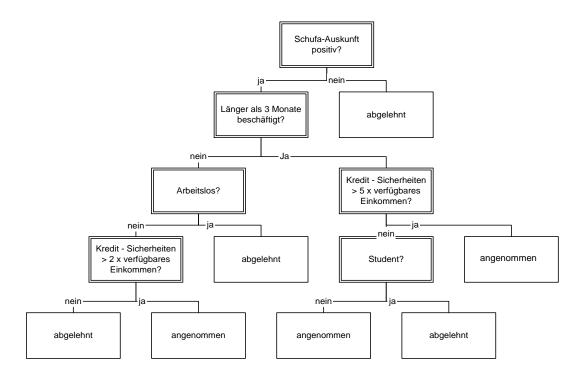
einem Blatt liefert Klassifikation

Regression

- Eingabe: Instanz (Objekt) $x \in X$.
 - Instanzen sind durch Vektoren (fett gedruckt) von Attributen (kursiv) repräsentiert.
 - Eine Instanz ist eine Belegung der Attribute.
- Ausgabe: Funktionswert $y \in Y$; kontinuierlicher Wert.
- Lernproblem: kontinuierliche Trainingsdaten.
 - $L = \langle (\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n) \rangle$
 - z.B. $\langle (\mathbf{x}_1, 3.5), ..., (\mathbf{x}_N, -2.8) \rangle$

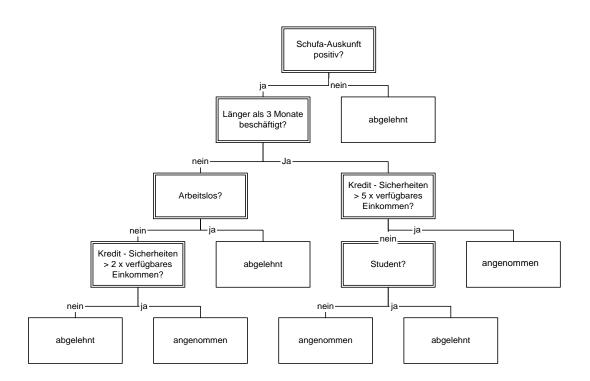
Entscheidungsbäume - Aufbau

- Testknoten: Testen, ob der Wert des Attributs die Bedingung erfüllen; bedingte Verzweigung in einen Ast.
- Terminalknoten: Liefern einen Wert als Ausgabe.



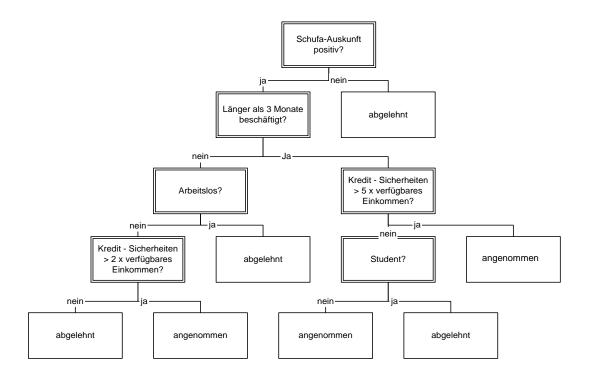
Entscheidungsbäume - Repräsentation

- Entscheidungsbäume können logische Operationen repräsentieren, wie:
 - ♠ ∧,∨, *XOR*
 - \bullet $(A \land B) \lor (C \land \neg D \land E)$



Anwendung von Entscheidungsbäumen

- Testknoten: führe Test aus, wähle passende Verzweigung, rekursiver Aufruf.
- Terminalknoten: liefere Wert als Klasse zurück.



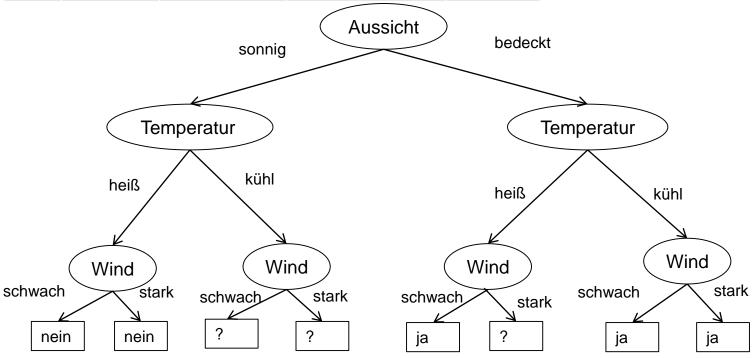
Entscheidungsbäume – Wann sinnvoll?

- Entscheidungsbäume sinnvoll, wenn:
 - Instanzen durch Attribut-Werte-Paare beschrieben werden.
 - Zielattribut einen diskreten Wertebereich hat.
 - ⋆ Bei Erweiterung auf Modellbäume auch kontinuierlicherer Wertebereich möglich.
 - Interpretierbarkeit der Vorhersage gewünscht ist.
- Anwendungsgebiete:
 - Medizinische Diagnose
 - Kreditwürdigkeit
 - Vorverarbeitungsschritt in der Computer Vision (z.B. Objekterkennung)

Tag	Aussicht	Temperatur	Luftfeuchtigkeit	Wind	Tennis?
1	sonnig	heiß	hoch	schwach	nein
2	sonnig	heiß	hoch	stark	nein
3	bedeckt	heiß	hoch	schwach	ja
4	Regen	mild	hoch	schwach	ja
5	Regen	kühl	normal	schwach	ja
6	Regen	kühl	normal	stark	nein
7	bedeckt	kühl	normal	stark	ja
8	sonnig	mild	hoch	schwach	nein
9	sonnig	kühl	normal	schwach	ja
10	Regen	mild	normal	schwach	ja

- Finde Entscheidungsbaum, der zumindest für die Trainingsdaten die richtige Klasse liefert.
- Trivialer Weg: Erzeuge einen Baum, der lediglich die Trainingsdaten repräsentiert.

Tag	Aussicht	Temperatur	Wind	Tennis?
1	sonnig	heiß	schwach	nein
2	sonnig	heiß	stark	nein
3	bedeckt	heiß	schwach	ja
4	bedeckt	kühl	stark	ja
5	bedeckt	kühl	schwach	ja



- Eleganter Weg: Unter den Bäumen, die mit den Trainingsdaten konsistent sind, wähle einen möglichst kleinen Baum (möglichst wenige Knoten).
- Kleine Bäume sind gut, weil:
 - Sie leichter zu interpretieren sind;
 - Sie in vielen Fällen besser generalisieren;
 - Es gibt mehr Beispiele pro Blattknoten.
 - ★ Klassenentscheidungen in den Blättern stützen sich so auf mehr Beispiele.

Vollständige Suche nach kleinstem Baum

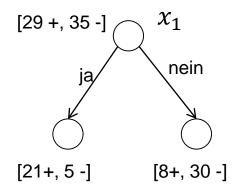
- Wie viele Entscheidungsbäume gibt es?
 - Angenommen m binäre Attribute, zwei Klassen.

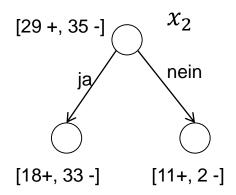
Komplexität einer vollständigen Suche nach kleinstem Baum?

- Greedy-Algorithmus, der einen kleinen Baum (statt des kleinsten Baumes) findet, dafür aber polynomiell in Anzahl der Attribute ist.
- Idee für Algorithmus?

Greedy-Algorithmus – Top-Down Konstruktion

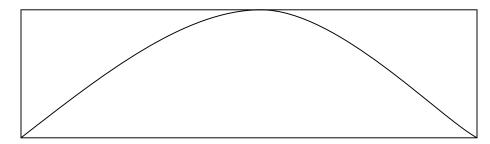
- Solange die Trainingsdaten nicht perfekt klassifiziert sind:
 - Wähle das "beste" Attribut A, um die Trainingsdaten zu trennen.
 - Erzeuge für jeden Wert des Attributs A einen neuen Nachfolgeknoten und weise die Trainingsdaten dem so entstandenen Baum zu.
- Problem: Welches Attribut ist das beste?





Splitkriterium: Entropie

Entropie = Maß für Unsicherheit.



- S ist Menge von Trainingsdaten.
- p_+ ist Anteil von positiven Beispielen in S.
- p_- ist Anteil von negativen Beispielen in S.
- Entropie misst die Unsicherheit in S:

$$\bullet$$
 $H(S) = -p_{+} \log_{2} p_{+} - p_{-} \log_{2} p_{-}$

Splitkriterium: Entropie

- # H(S) = Erwartete Anzahl von Bits, die benötigt werden, um die Zielklasse von zufällig gezogenen Beispielen aus der Menge S zu kodieren.
 - Optimaler, kürzester Kode
- Entropie einer Zufallsvariable y:
 - $H(y) = -\sum_{v} p(y=v) \log_2 p(y=v)$
- Empirische Entropie Zufallsvariable y auf Daten L:
 - $H(L,y) = -\sum_{v} \hat{p}_L(y=v) \log_2 \hat{p}_L(y=v)$

Splitkriterium: Bedingte Entropie

Bedingte Entropie von Zufallsvariable y gegeben Ereignis x=v:

$$\Phi_{|x=v}(y) = H(y \mid x=v) = -\sum_{v'} p(y=v' \mid x=v) \log_2 p(y=v' \mid x=v)$$

Empirische bedingte Entropie auf Daten L:

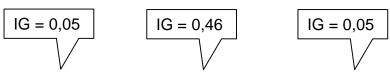
$$H_{|x=v|}(L, y) = H(L, y \mid x = v)$$

$$= -\sum_{v} \hat{p}_{L}(y = v' \mid x = v) \log_{2} \hat{p}_{L}(y = v' \mid x = v)$$

Splitkriterium: Information Gain

- Entropie der Klassenvariable: Unsicherheit über korrekte Klassifikation.
- Information Gain:
 - Transinformation eines Attributes.
 - Verringerung der Entropie der Klassenvariable nach Test des Wertes des Attributes x.
 - $IG(x) = H(y) \sum_{v} p(x = v) H_{|x=v}(y)$
- Information Gain auf Daten L für Attribut x
 - $IG(L, x) = H(L, y) \sum_{v} \hat{p}_{L}(x = v)H(L_{|x=v}, y)$

Beispiel – Information Gain



Beispiele	x ₁ : Kredit > 3 x Einkommen?	x_2 : Länger als 3 Monate beschäftigt?	x_3 : Student?	y: Kredit zurückgezahlt?
1	Ja	Ja	Nein	Ja
2	Ja	Nein	Nein	Nein
3	Nein	Ja	Ja	Ja
4	Nein	Nein	Ja	Nein
5	Nein	Ja	Nein	Ja
6	Nein	Nein	Nein	Ja

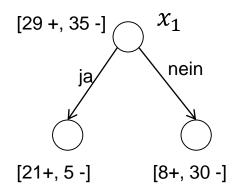
$$H(L, y) = -\sum_{v} \hat{p}_{L}(y = v) \log_{2} \hat{p}_{L}(y = v)$$

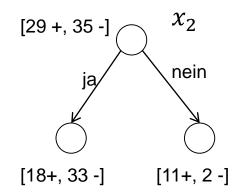
$$[\approx 0.92]$$

$$IG(L,x) = H(L,y) - \sum_{v} \hat{p}_{L}(x=v)H(L_{x=v},y)$$

Beispiel II – Information Gain

- IG(L,x)= Erwartete Reduktion der Unsicherheit durch den Split an Attribut x.
- Welcher Split ist besser?





- $H(L,y) = -\left(\frac{29}{64}\log_2\frac{29}{64} + \frac{35}{64}\log_2\frac{35}{64}\right) = 0.99$
- $IG(L, x_1) = 0.99 \left(\frac{26}{64}*H(L_{|x_1=ja},y) + \frac{38}{64}*H(L_{|x_1=nein},y)\right) = 0.26$
- $IG(L, x_2) = 0.99 \left(\frac{51}{64} * H(L_{|x_2=ja}, y) + \frac{13}{64} * H(L_{|x_2=nein}, y)\right) = 0.11$

Information Gain / Gain Ratio

Motivation:

- Vorhersage ob ein Student die Prüfung besteht.
- Wie hoch ist der Information Gain des Attributes "Matrikelnummer"?
- Informationsgehalt des Tests ist riesig.

Information Gain / Gain Ratio

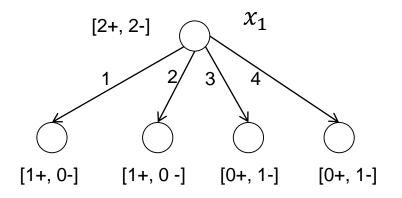
- Motivation:
 - Vorhersage ob ein Student die Prüfung besteht.
 - Wie hoch ist der Information Gain des Attributes "Matrikelnummer"?
 - Informationsgehalt des Tests ist riesig.
- Idee: Informationsgehalt des Tests bestrafen.

•
$$GainRatio(L, x) = \frac{IG(L, x)}{SplitInfo(L, x)}$$

• SplitInfo
$$(L, x) = -\sum_{v} \frac{|L_{|x=v}|}{|L|} \log_2 \frac{|L_{|x=v}|}{|L|}$$

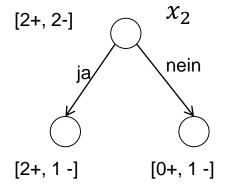
Beispiel: Info Gain Ratio

Welcher Split ist besser?



$$IG(L, x_1) = 1$$

 $SplitInfo(L, x_1) = -4\left(\frac{1}{4}\log_2\frac{1}{4}\right) = 2$
 $GainRatio(L, x_1) = 0.5$



$$IG(L, x_2) = 1 - (\frac{3}{4}*0.92) = 0.68$$

 $SplitInfo(L, x_2) = -(\frac{3}{4}\log_2\frac{3}{4} + \frac{1}{4}\log_2\frac{1}{4}) = 0.81$
 $GainRatio(L, x_2) = 0.84$

Algorithmus ID3

- Voraussetzung:
 - Klassifikationslernen,
 - Alle Attribute haben festen, diskreten Wertebereich.
- Idee: rekursiver Algorithmus.
 - Wähle das Attribut, welches die Unsicherheit bzgl. der Zielklasse maximal verringert
 - ⋆ Information Gain, Gain Ratio, Gini Index
 - Dann rekursiver Aufruf für alle Werte des gewählten Attributs.
 - Solange, bis in einem Zweig nur noch Beispiele derselben Klasse sind.
- Originalreferenz:

Algorithmus ID3

- Eingabe: $L = \langle (\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n) \rangle$, verfügbare Attribute = $(x_1, ..., x_m)$
- Wenn alle Beispiele in L dieselbe Klasse y haben,
 - dann gib Terminalknoten mit Klasse y zurück.
- Wenn Menge der verfügbaren Attribute =Ø,
 - Gib Terminalknoten mit häufigster Klasse in L zurück.
- Sonst konstruiere Testknoten:
 - Bestimme bestes Attribut $x_* = \arg \max_{x_i \in \text{verfügbar}} IG(L, x_i)$
 - Für alle Werte v_i dieses Attributs:
 - ★ Teile Trainingsmenge, $L_j = \langle (\mathbf{x}_k, y_k) \in L \mid x_{k*} = v_j \rangle$
 - ★ Rekursion: Zweig für Wert $v_j = ID3$ (L_i , verfügbar $\setminus x_*$).

Algorithmus ID3: Beispiel

Beispiele	x ₁ : Kredit > 3 x Einkommen?	x_2 : Länger als 3 Monate beschäftigt?	x ₃ : Student?	y: Kredit zurückgezahlt?
1	Ja	Ja	Nein	Ja
2	Ja	Nein	Nein	Nein
3	Nein	Ja	Ja	Ja
4	Nein	Nein	Ja	Nein
5	Nein	Ja	Nein	Ja
6	Nein	Nein	Nein	Ja

- Eingabe: $L = \langle (\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n) \rangle$, verfügbare Attribute = $(x_1, ..., x_m)$
- Wenn alle Beispiele in L dieselbe Klasse y haben,
 - dann gib Terminalknoten mit Klasse y zurück.
- Wenn Menge der verfügbaren Attribute =Ø,
 - Gib Terminalknoten mit häufigster Klasse in L zurück.
- Sonst konstruiere Testknoten:
 - Bestimme bestes Attribut $x_* = \arg \max_{x_i \in \text{verfligbar}} IG(L, x_i)$
 - Für alle Werte v_i dieses Attributs:
 - ★ Teile Trainingsmenge, $L_j = \langle (\mathbf{x}_k, y_k) \in L \mid x_{k^*} = v_j \rangle$
 - ★ Rekursion: Zweig für Wert $v_j = ID3$ (L_j , verfügbar \ x_*).

Kontinuierliche Attribute

- ID3 wählt Attribute mit größtem Informationsgehalt aus und bildet dann einen Zweig für jeden Wert dieses Attributes.
- Problem: Geht nur für diskrete Attribute.
- Attribute wie Größe, Einkommen, Entfernung haben unendlich viele Werte.
- Idee?

Kontinuierliche Attribute

- Idee: Binäre Entscheidungsbäume, "≤"-Tests.
- Problem: Unendlich viele Werte für binäre Tests.
- Idee: Nur endlich viele Werte kommen in Trainingsdaten vor.
- Beispiel:
 - Kontinuierliches Attribut hat folgende Werte:
 - **★** 0,2; 0,4; 0,7; 0,9
 - Mögliche Splits:
 - $\star \leq 0.2; \leq 0.4; \leq 0.7; \leq 0.9$
- Andere Möglichkeiten:
 - Attribute in einen diskreten Wertebereich abbilden.

Algorithmus C4.5

- Weiterentwicklung von ID3
- Verbesserungen:
 - auch kontinuierliche Attribute
 - behandelt Trainingsdaten mit fehlenden Attributwerten
 - behandelt Attribute mit Kosten
 - Pruning
- Nicht der letzte Stand: siehe C5.0
- Originalreferenz:

J.R. Quinlan: "C4.5: Programs for Machine Learning". 1993

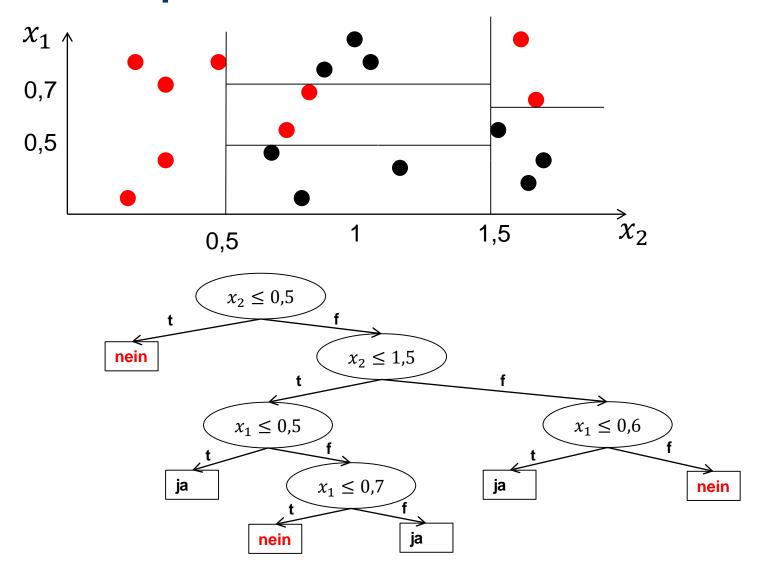
Algorithmus C4.5

- Eingabe: $L = \langle (\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n) \rangle$.
- Wenn alle Beispiele in L dieselbe Klasse y haben,
 - dann gib Terminalknoten mit Klasse y zurück.
- Wenn alle Instanzen identisch sind:
 - Gib Terminalknoten mit häufigster Klasse in L zurück.
- Sonst konstruiere besten Testknoten, iteriere dazu über alle Attribute.
 - Diskrete Attribute: wie ID3.
 - ♦ Kontinuierliche Attribute: $[x_* \le v_*] = \arg \max_{\text{Attribute } x_i, \text{ Werte } v \text{ in } L} IG(L, [x_i \le v])$
 - Wenn bestes Attribut diskret, Rekursion wie ID3.
 - Wenn bestes Attribut kontinuierlich, teile Trainingsmenge:
 - $\star L_{links} = \langle (\mathbf{x}_k, y_k) \in L \mid x_{k*} \leq v_* \rangle, L_{rechts} = \langle (\mathbf{x}_k, y_k) \in L \mid x_{k*} > v_* \rangle$
 - * Rekursion: linker Zweig= $C4.5(L_{links})$, rechter Zweig= $C4.5(L_{rechts})$

Information Gain für kontinuierliche Attribute

- Information Gain eines Tests " $[x \le v]$ ":
 - $IG([x \le v]) = H(y) p([x \le v])H_{[x \le v]}(y) p([x > v])H_{[x > v]}(y)$
- Empirischer Information Gain:
 - $\bullet IG(L,[x \le v]) = H(L,y) \hat{p}_L([x \le v])H(L_{[x \le v]},y) \hat{p}_L([x > v])H(L_{[x > v]},y)$

C4.5: Beispiel



Pruning

- Problem: Blattknoten, die nur von einem (oder sehr wenigen) Beispielen gestützt werden, liefern häufig keine gute Klassifikation(Generalisierungsproblem).
- Pruning: Entferne Testknoten, die Blätter mit weniger als einer Mindestzahl von Beispielen erzeugen.
- Dadurch entstehen Blattknoten, die dann mit der am häufigsten auftretenden Klasse beschriftet werden.

Pruning mit Schwellwert

- Für alle Blattknoten: Wenn weniger als *r*Trainingsbeispiele in den Blattknoten fallen
 - Entferne darüberliegenden Testknoten.
 - Erzeuge neuen Blattknoten, sage Mehrheitsklasse vorraus.
- Regularisierungsparameter r.
- Einstellung mit Cross Validation.

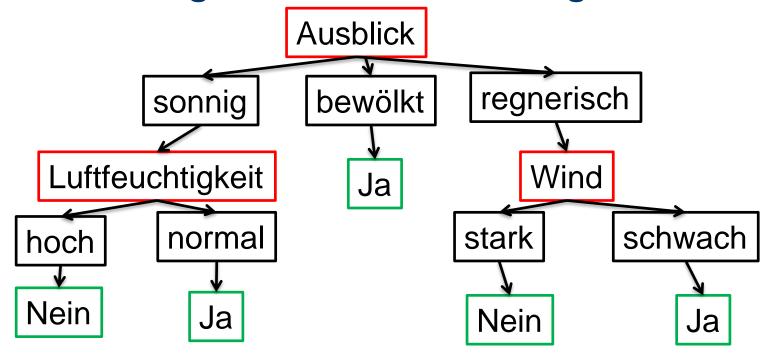
Reduced Error Pruning

- Aufteilen der Trainingsdaten in Trainingsmenge und Pruningmenge.
- Nach dem Aufbau des Baumes mit der Trainingsmenge:
 - Versuche, zwei Blattknoten durch Löschen eines Tests zusammenzulegen,
 - Solange dadurch die Fehlerrate auf der Pruningmenge verringert wird.

Umwandlung von Bäumen in Regeln

- Pfad durch den Baum: Bedingung der Regel
- Klasse: Schlussfolgerung
- Pruning von Regeln: Testen, welche Bedingungen weggelassen werden können, ohne dass die Fehlerrate dadurch steigt.

Umwandlung von Bäumen in Regeln



 $R_1 = Wenn (Ausblick = sonnig) \land (Luftfeuchtigkeit = hoch), dann kein Tennis spielen$

 $R_2 = Wenn \ (Ausblick = sonnig) \land (Luftfeuchtigkeit = normal), dann Tennis spielen$

 $R_3 = Wenn (Ausblick = bew\"olkt), dann Tennis spielen$

 $R_4 = Wenn (Ausblick = regnerisch) \land (Wind = stark), dann kein Tennis spielen$

 $R_5 = Wenn (Ausblick = regnerisch) \land (Wind = schwach), dann Tennis spielen$

Entscheidungsbäume aus großen Datenbanken: SLIQ

- C4.5 iteriert häufig über die Trainingsmenge
 - Wie häufig?
 - Wenn die Trainingsmenge nicht in den Hauptspeicher passt, wird das Swapping unpraktikabel!

SLIQ:

- Vorsortieren der Werte für jedes Attribut
- Baum "breadth-first" aufbauen, nicht "depth-first".
- Originalreferenz:

M. Mehta et. al.: "SLIQ: A Fast Scalable Classifier for Data Mining". 1996