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Review: Linear Models 

 Linear models: 𝑓𝛉 𝐱 = 𝐱T𝛉 
 

 Regularized empirical risk minimization: 

argmin
𝛉

�ℓ 𝑓𝛉 𝐱𝑖 ,𝑦𝑖

𝑛

𝑖=1

+ 𝜆Ω 𝛉  

 
 Choice of loss & regularizer gives different methods 

 Perceptron, SVM, ridge regression, …  
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Feature Mappings 

 Models constained to hyperplane in feature space: 
𝐻𝛉 = 𝐱|𝐱T𝛉 = 0 . 

 Use mapping 𝜙 to embed instances 𝐱 ∈ 𝑋 in higher-
dimensional feature space. 

 Find hyperplane in higher-dimensional space, 
corresponds to non-linear surface in feature space. 

 Kernel trick: Feature space 𝜙(𝑋) need not be 
represented explicitly, can be infinite-dimensional. 
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Feature Mappings 

 All linear methods can be made non-linear by 
means of feature mapping 𝜙. 
 
 
 
 
 
 
 

 Hyperplane in feature space corresponds to a 
nonlinear surface in original space. 
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𝜙 𝑥1, 𝑥2 = 𝑥1𝑥2, 𝑥12, 𝑥22  
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Feature Mappings 

 Instances:  

𝐗 =
𝑥11 ⋯ 𝑥1𝑚
⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑚

 

 Feature Mapping:  

𝚽 =
𝜙 𝐱1 T

⋮
𝜙 𝐱𝑛 T

=
𝜙 𝐱1 1 ⋯ 𝜙 𝐱1 𝑚𝑚

⋮ ⋱ ⋮
𝜙 𝐱𝑛 1 ⋯ 𝜙 𝐱𝑛 𝑚𝑚
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Feature Mappings 

 Feature mapping 𝜙 𝐱  can be high dimensional. 
 The size of estimated parameter vector 𝛉 depends 

on the dimensionality of 𝜙 – could be infinite! 
 

 Computation of 𝜙 𝐱  can be expensive. 
 𝜙 must be computed for each training point 𝐱𝑖 & for 

each prediction 𝑥. 
 

 How can we adapt linear methods to efficiently 
incorporate high dimensional 𝜙? 
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Representer Theorem: Observation 

 Perceptron algorithm: 
 

 Resulting parameter vector is a linear combination 
of instances: 𝛉∗ = ∑ 𝛼𝑖𝑛

𝑖=1 𝑦𝑖𝐱𝑖 
 Sufficient to determine coefficients 𝛼𝑖 , independent 

of dimensionality of feature space. 
 

 Underlying general principle? 
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( ) 0i iy f ≤θ x
i iy= +θ θ x

IF  
THEN 
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Representer Theorem  

Theorem: If 𝑔 ∘  is strictly monotonically increasing, 
then the 𝛉∗ that minimizes 

𝐿 𝛉 = �ℓ 𝛉𝑇𝜙 𝐱𝑖 ,𝑦𝑖

𝑛

𝑖=1

+ 𝑔 𝑓𝛉 2  

has the form 𝛉∗ = ∑ 𝛼𝑖∗𝜙 𝐱𝑖𝑛
𝑖=1 , with 𝛼𝑖∗ ∈ ℝ. 

 

𝑓𝛉∗ 𝐱 = �𝛼𝑖∗𝜙 𝐱𝑖 T𝜙 𝐱
𝑛

𝑖=1
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Inner product is a measure for 
similarity between instances 

Generally 𝛉∗ is any vector in Φ, but we 
show it must be in the span of the data. 
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Representer Theorem: Proof 

 Orthogonal Decomposition: 
 𝛉∗ = 𝛉∥ + 𝛉⊥, with 𝛉∥ ∈ Θ∥ = ∑ 𝛼𝑖𝜙 𝐱𝑖𝑛

𝑖=1 𝛼𝑖 ∈ ℝ  
         and 𝛉⊥ ∈ Θ⊥ = 𝛉 ∈ Θ 𝛉T𝛉∥ = 0  ∀  𝛉∥ ∈ Θ∥  
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𝐿 𝛉 = �ℓ 𝑓𝛉 𝐱𝑖 ,𝑦𝑖

𝑛

𝑖=1

+ 𝑔 𝑓𝛉 2  
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Representer Theorem: Proof 

 Orthogonal Decomposition: 
 𝛉∗ = 𝛉∥ + 𝛉⊥, with 𝛉∥ ∈ Θ∥ = ∑ 𝛼𝑖𝜙 𝐱𝑖𝑛

𝑖=1 𝛼𝑖 ∈ ℝ  
         and 𝛉⊥ ∈ Θ⊥ = 𝛉 ∈ Θ 𝛉T𝛉∥ = 0  ∀  𝛉∥ ∈ Θ∥  

 For any training point 𝐱𝑖 it follows that 
𝑓𝛉∗ 𝐱𝑖 = 𝛉∥T𝜙 𝐱𝑖 + 𝛉⊥T𝜙 𝐱𝑖 = 𝛉∥T𝜙 𝐱𝑖  

 Why is 𝛉⊥T𝜙 𝐱𝑖 = 0? 
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𝐿 𝛉 = �ℓ 𝑓𝛉 𝐱𝑖 ,𝑦𝑖

𝑛

𝑖=1

+ 𝑔 𝑓𝛉 2  



Intelligent D
ata A

nalysis 

Representer Theorem: Proof 

 Orthogonal Decomposition: 
 𝛉∗ = 𝛉∥ + 𝛉⊥, with 𝛉∥ ∈ Θ∥ = ∑ 𝛼𝑖𝜙 𝐱𝑖𝑛

𝑖=1 𝛼𝑖 ∈ ℝ  
         and 𝛉⊥ ∈ Θ⊥ = 𝛉 ∈ Θ 𝛉T𝛉∥ = 0  ∀  𝛉∥ ∈ Θ∥  

 For any training point 𝐱𝑖 it follows that 
𝑓𝛉∗ 𝐱𝑖 = 𝛉∥T𝜙 𝐱𝑖 + 𝛉⊥T𝜙 𝐱𝑖 = 𝛉∥T𝜙 𝐱𝑖  

 ∑ ℓ 𝑓𝛉 𝐱𝑖 ,𝑦𝑖𝑛
𝑖=1  is independent of 𝛉⊥. 

 because 𝛉⊥T𝜙 𝐱𝑖 = 0 

 Finally from 𝑔 𝛉∗ 2 ≥ 𝑔 𝛉∥ 2 , it follows 𝛉⊥ = 𝟎. 

𝑔 𝛉∗ 2 = 𝑔 𝛉∥ + 𝛉⊥ 2 = 𝑔 𝛉∥ 2
2 + 𝛉⊥ 2

2 ≥ 𝑔 𝛉∥ 2  

13 
        Since 𝛉⊥T𝛉∥ = 0  
(Pythagoras‘ Theorem) 

Since 𝑔 is strictly  
monotonically increasing.  

𝐿 𝛉 = �ℓ 𝑓𝛉 𝐱𝑖 ,𝑦𝑖

𝑛

𝑖=1

+ 𝑔 𝑓𝛉 2  
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Representer Theorem 

 The hyperplane 𝛉∗, which minimizes  
 𝐿 𝛉 = ∑ ℓ 𝛉T𝜙(𝐱),𝑦𝑖𝑛

𝑖=1 + Ω(𝛉) 
 can be represented as 

𝑓𝛉∗ 𝐱 = 𝛉∗T𝜙 𝐱 = 𝑓𝛂∗ 𝐱 = � 𝛼𝑖∗𝜙 𝐱𝑖 T𝜙 𝐱
𝑛

𝑖=1
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Primal vs. Dual View 

 Primal decision function:  
𝑓𝛉 𝐱 = 𝛉T𝜙 𝐱  

 Dual decision function:     
𝑓𝛂 𝐱 = � 𝛼𝑖𝜙 𝐱𝑖 T𝜙 𝐱

𝑛

𝑖=1
 

 

15 



Intelligent D
ata A

nalysis 

Primal vs. Dual View 

 Primal decision function:  
𝑓𝛉 𝐱 = 𝛉T𝜙 𝐱  

 Dual decision function:     
𝑓𝛂 𝐱 = � 𝛼𝑖𝜙 𝐱𝑖 T𝜙 𝐱

𝑛

𝑖=1
= 𝛂T𝚽𝜙 𝐱  

 Illustration: 

� 𝛼𝑖𝜙 𝐱𝑖 T
𝑛

𝑖=1
 

= 𝛼1 … 𝛼𝑛
− 𝜙 𝐱1 T −

⋮
− 𝜙 𝐱𝑛 T −

    = 𝛂T𝚽 
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Primal vs. Dual View 

 Primal decision function:  
𝑓𝛉 𝐱 = 𝛉T𝜙 𝐱  

 Dual decision function:     
𝑓𝛂 𝐱 = � 𝛼𝑖𝜙 𝐱𝑖 T𝜙 𝐱

𝑛

𝑖=1
= 𝛂T𝚽𝜙 𝐱  

 Duality between parameters:  

𝛉 = � 𝛼𝑖𝜙 𝐱𝑖
𝑛

𝑖=1
= 𝚽T𝜶 

 Illustration: 

𝛉 =
| |

𝜙(𝐱1) … 𝜙(𝐱𝑛)
| |

𝛼1
⋮
𝛼𝑛

= 𝚽T𝜶 
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Primal vs. Dual View 

 Primal decision function:  
𝑓𝛉 𝐱 = 𝛉T𝜙 𝐱  

 Dual decision function:     
𝑓𝛂 𝐱 = � 𝛼𝑖𝜙 𝐱𝑖 T𝜙 𝐱

𝑛

𝑖=1
= 𝛂T𝚽𝜙 𝐱  

 Duality between parameters:  

𝛉 = � 𝛼𝑖𝜙 𝐱𝑖
𝑛

𝑖=1
= 𝚽T𝜶 
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Primal vs. Dual View 

 Primal view: 𝑓𝛉 𝐱 = 𝛉T𝜙 𝐱  
 Model 𝛉 has as many parameters as the dimensionality 

of 𝜙 𝐱 . 
 Good if there are many examples with few attributes. 

 
 Dual view: 𝑓𝛂 𝐱 = 𝛂T𝚽𝜙 𝐱  

 Model 𝛂 has as many parameters as there are 
examples.  

 Good if there are few examples with many attributes. 
 The representation 𝜙 𝐱  can even be infinite 

dimensional, as long as the inner product can be 
computed efficiently. 
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Kernel Functions 

 Dual view of the decision function: 

𝑓𝛂 𝐱 = � 𝛼𝑖 𝜙 𝐱𝑖 T
𝑛

𝑖=1
𝜙 𝐱

= � 𝛼𝑖
𝑛

𝑖=1
 𝜙 𝐱𝑖 T𝜙 𝐱                

= � 𝛼𝑖 
𝑛

𝑖=1
𝑘(𝐱𝑖 , 𝐱) 

 Where kernel function 𝑘(𝐱𝑖 , 𝐱) calculates the inner 
product 𝜙 𝐱𝑖 T𝜙 𝐱 . 
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Kernel Functions  

 Kernel functions can be understood as a measure 
of similarity between instances. 

 Primal view on data: “what does 𝐱 look like?” 

              𝜙 𝐱 =
𝜙(𝑥)1
⋮

𝜙 𝑥 𝑚′

⇒ multiply by 𝛉T. 

 Dual view on data: “how similar is 𝐱 to each training 
instance?”  

𝚽𝝓(𝐱) =
𝑘 𝐱1, 𝐱

⋮
𝑘 𝐱𝑛, 𝐱

⇒  multiply by 𝛂T. 
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Kernel Functions 

 Kernel function can be defined for 
 Vectors (linear, polynomial, RBF, …) 
 Strings 
 Images 
 Sequences, graphs 
 … 

 Any kernel learning method can be applied to any 
type of data using a kernel for that type of data. 
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Kernel Ridge Regression 

 Squared loss: 
ℓ𝟐 𝑓𝛉 𝐱𝑖 ,𝑦𝑖 = 𝑓𝛉 𝐱𝑖 − 𝑦𝑖 𝟐 

 L2 regularization: 
Ω2 𝛉 = 𝛉 2

2 
 
 

24 

( )i if y−w x

l

0 1

1

1− εε−
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Kernel Ridge Regression 

 Minimize  

𝑳 𝛉 = � 𝑓𝛉 𝐱𝑖 − 𝑦𝑖 𝟐
𝑛

𝑖=1
+ 𝜆𝛉T𝛉

= � 𝛉T𝝓 𝐱𝑖 − 𝑦𝑖
𝟐𝑛

𝑖=1
+ 𝜆𝛉T𝛉 
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Kernel Ridge Regression 

 Minimize  

𝑳 𝛉 = � 𝑓𝛉 𝐱𝑖 − 𝑦𝑖 𝟐
𝑛

𝑖=1
+ 𝜆𝛉T𝛉

= � 𝛉T𝝓 𝐱𝑖 − 𝑦𝑖
𝟐𝑛

𝑖=1
+ 𝜆𝛉T𝛉

= 𝚽𝛉− 𝐲 T 𝚽𝛉 − 𝐲 + 𝜆𝛉T𝛉 
 Why? 

𝚽𝛉− 𝐲 =
− 𝜙 𝐱1 T −

⋮
− 𝜙 𝐱𝑛 T −

𝛉1
⋮
𝛉𝑚

− 𝐲

=
𝜙 𝐱1 T𝛉 − 𝑦1

⋮
𝜙 𝐱𝑛 T𝛉 − 𝑦𝑛
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Kernel Ridge Regression 

 Minimize  

𝑳 𝛉 = � 𝑓𝛉 𝐱𝑖 − 𝑦𝑖 𝟐
𝑛

𝑖=1
+ 𝜆𝛉T𝛉

= � 𝛉T𝝓 𝐱𝑖 − 𝑦𝑖
𝟐𝑛

𝑖=1
+ 𝜆𝛉T𝛉

= 𝚽𝛉− 𝐲 T 𝚽𝛉 − 𝐲 + 𝜆𝛉T𝛉 
 By the representer theorem:  

𝛉 = 𝚽T𝜶 
 Dual regularized empirical risk: 

𝑳 𝛂 = 𝚽𝚽T𝜶 − 𝐲 T 𝚽𝚽T𝜶 − 𝐲 + 𝜆𝜶T𝚽𝚽T𝜶 
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Kernel Ridge Regression 

 Dual regularized empirical risk: 
𝑳 𝛂 = 𝚽𝚽T𝛂 − 𝐲 T 𝚽𝚽T𝛂 − 𝐲 + 𝜆𝛂T𝚽𝚽T𝛂

= 𝛂T𝚽𝚽T𝚽𝚽T𝛂 − 𝟐𝛂T𝚽𝚽T𝐲 − 𝐲T𝐲
+ 𝜆𝛂T𝚽𝚽T𝛂 

 Define gram matrix (or kernel matrix) as 𝐊 = 𝚽𝚽T. 
𝑳 𝛂 = 𝛂T𝐊𝐊𝛂 − 𝟐𝛂T𝐊𝐲 − 𝐲T𝐲 + 𝜆𝛂T𝐊𝛂 

 Setting the derivative to zero  
𝜕
𝜕𝛂

𝑳 𝛂 = 𝟎 

 Gives the solution 
𝛂 = 𝐊 + 𝜆𝑰 −1𝐲 
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Kernel Ridge Regression 

 Kernel (gram) matrix: 𝐊 = 𝚽𝚽T 

𝐊 =
− 𝜙 𝐱1 T −
⋮ ⋱ ⋮
− 𝜙 𝐱𝑛 T −

| … |
𝜙(𝐱1) ⋱ 𝜙(𝐱𝑛)

| … |

=
𝑘(𝐱1, 𝐱1) … 𝑘(𝐱1, 𝐱𝑛)

⋮ ⋱ ⋮
𝑘(𝐱𝑛, 𝐱1) … 𝑘(𝐱𝑛, 𝐱𝑛)

 

 𝐊𝑖𝑖 = 𝑘(𝐱𝑖 , 𝐱𝑖) 

29 
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Kernel Ridge Regression 

 Regression method that uses kernel functions 
 Works with any nonlinear embedding 𝝓 as long as 

there is a kernel function that computes the inner 
product: 𝑘 𝐱𝑖 , 𝐱 = 𝜙 𝐱𝑖 T𝜙 𝐱 . 

 Kernel matrix 𝐊  of size 𝑛 × 𝑛 has to be inverted, 
works only for modest sample sizes. 

 Solution dependent on 𝐊𝑖𝑖 = 𝑘(𝐱𝑖 , 𝐱𝑖), but 
otherwise independent of 𝚽. 

 For large sample size, use numeric optimization 
(e.g., stochastic gradient descent method). 
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Kernel Perceptron 

 Loss function:  
ℓ𝑝 𝑓𝛉 𝐱𝑖 ,𝑦𝑖 = max 0,−𝑦𝑖𝑓𝛉 𝐱𝑖  

 No regularizer. 
 Primal stochastic gradient: 

𝛻𝐿𝐱𝑖 𝛉 = �−𝑦𝑖𝐱𝑖 −𝑦𝑖𝑓𝛉 𝐱𝑖 > 0
0 −𝑦𝑖𝑓𝛉 𝐱𝑖 < 0 
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Rosenblatt, 1960 
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Kernel Perceptron 

 Stochastic gradient update step: 
 
𝛉𝑚 = 𝛉 + 𝑦𝑖𝜙 𝐱𝑖  
⇔� 𝛼′𝑖𝜙 𝐱𝑖 T

𝑛

𝑖=1
= � 𝛼𝑖𝜙 𝐱𝑖 T

𝑛

𝑖=1
+ 𝑦𝑖𝜙 𝐱𝑖  

        ⇐ 𝛼′𝑖𝜙 𝐱𝑖 T = 𝛼𝑖𝜙 𝐱𝑖 T + 𝑦𝑖𝜙 𝐱𝑖  
        ⇐   𝛼′𝑖 = 𝛼𝑖 + 𝑦𝑖 
 

 Dual stochastic gradient update step: 
 

33 

( ) 0i iy f ≤θ x
' i iy+=θ θ x

IF  
THEN 

IF    𝑦𝑖𝑓𝛂 𝐱𝑖 ≤ 0 
THEN  𝛼𝑖 = 𝛼𝑖 + 𝑦𝑖 
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 Decision function: 

𝑓𝛂 𝐱 = 𝛂T𝚽𝜙(𝐱𝑖) = � 𝛼𝑖𝑘 𝐱𝑖 , 𝐱
𝑛

𝑖=1
 

 

Kernel Perceptron Algorithm 
Perceptron(Instances 𝐱𝑖 ,𝑦𝑖 ) 

Set 𝛂 = 𝟎 
DO 

 FOR 𝑖 = 1, … ,𝑛  

  IF    𝑦𝑖𝑓𝛂 𝐱𝑖 ≤ 0 
  THEN  𝛼𝑖 = 𝛼𝑖 + 𝑦𝑖    

 END 

WHILE 𝛂 changes 
RETURN 𝛂  

34 
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Kernel Perceptron 

 Perceptron loss, no regularizer 
 Dual form of the decision function:  

𝑓𝛂 𝐱 = � 𝛼𝑖𝑘(𝐱𝑖 , 𝐱)
𝑛

𝑖=1
 

 Dual form of the update rule: 
 If 𝑦𝑖𝑓𝛂 𝐱𝑖 ≤ 0, then 𝛼𝑖 = 𝛼𝑖 + 𝑦𝑖 

 Equivalent to the primal form of the perceptron 
 Advantageous to use instead of the primal 

perceptron if there are few samples and 𝜙 𝐱  is 
high dimensional. 
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Kernel Support Vector Machine 

 Primal:  min
𝛉

∑ max 0,1 − 𝑦𝑖𝜙 𝐱𝑖 T𝛉𝑛
𝑖=1 + 1

2𝜆
𝛉T𝛉  

 
 Equivalent optimization problem with side 

constraints: 

min
𝛉,𝛏

𝜆� 𝜉𝑖
𝑛

𝑖=1
+

1
2
𝛉T𝛉  

such that 
𝑦𝑖𝜙 𝐱𝑖 T𝛉 ≥ 1 − 𝜉𝑖   and  𝜉𝑖 ≥ 0 

 
 Goal: dual formulization of the optimization problem 
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Kernel Support Vector Machine 

 Optimization problem with side constraints: 

   min
𝛉,𝛏

𝜆 ∑ 𝜉𝑖𝑛
𝑖=1 + 1

2
𝛉T𝛉  

   such that 
   𝑦𝑖𝜙 𝐱𝑖 T𝛉 ≥ 1 − 𝜉𝑖   and  𝜉𝑖 ≥ 0 
 Lagrange function with Lagrange-Multipliers 𝛃 ≥ 𝟎 and 
𝛃0 ≥ 𝟎 for the side constraints: 

𝐿 𝛉, 𝛏,𝛃,𝛃0 = 𝜆�𝜉𝑖

𝑛

𝑖=1

+
𝛉T𝛉

2
−�𝛽𝑖 𝑦𝑖𝜙 𝐱𝑖 T𝛉 − 1 + 𝜉𝑖

𝑛

𝑖=1

−�𝛽𝑖0𝜉𝑖

𝑛

𝑖=1

 

 Optimization problem without side constraints: 
min
𝛉,𝛏

max
𝛃,𝛃0

𝐿 𝛉, 𝛏,𝛃,𝛃0  

 

Goal function:         𝑍 𝛉, 𝛏  
Side constraints:     𝑔 𝛉, 𝛏 ≥ 0 
Lagrange function: 𝑍 𝛉, 𝛏 − 𝛽𝑔 𝛉, 𝛏  
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Kernel Support Vector Machine 

 Lagrange function:   

𝐿 𝛉, 𝛏,𝛃,𝛃0 = 𝜆�𝜉𝑖

𝑛

𝑖=1

+
𝛉T𝛉

2
−�𝛽𝑖 𝑦𝑖𝜙 𝐱𝑖 T𝛉 − 1 + 𝜉𝑖

𝑛

𝑖=1

−�𝛽𝑖0𝜉𝑖

𝑛

𝑖=1

 

 
 Setting the derivative of 𝐿 w.r.t. 𝛉, 𝛏  to zero gives: 

    𝜕
𝜕𝛉
𝐿 𝛉, 𝛏,𝛃,𝛃0 = 𝟎  ⇒   𝛉 = ∑ 𝛽𝑖𝑦𝑖�

𝛼𝑖

𝜙 𝐱𝑖𝑛
𝑖=1  

    𝜕
𝜕𝜉𝑖

𝐿 𝛉, 𝛏,𝛃,𝛃0 = 0  ⇒   𝜆 = 𝛽𝑖 + 𝛽𝑖0 

 Relation between primal 
and dual parameters… 
representer theorem. 
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Kernel Support Vector Machine 

 Substitute the derived parameters into the 
Lagrange function: 

𝐿 𝛉, 𝛏,𝛃,𝛃0 =
1
2
𝛉 T 𝛉  

−�𝛽𝑖 𝑦𝑖𝜙 𝐱𝑖 T𝛉 − 1 + 𝜉𝑖

𝑛

𝑖=1

−�𝛽𝑖0𝜉𝑖

𝑛

𝑖=1

+ 𝜆�𝜉𝑖

𝑛

𝑖=1

 

 

𝛉 = � 𝛽𝑖𝑦𝑖𝜙 𝐱𝑖
𝑛

𝑖=1
 

𝜆 = 𝛽𝑖 + 𝛽𝑖0 
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Kernel Support Vector Machine 

 Substitute the derived parameters into the 
Lagrange function: 

𝐿 𝛉, 𝛏,𝛃,𝛃0 =
1
2

�𝛽𝑖𝑦𝑖𝜙 𝐱𝑖

𝑛

𝑖=1

T

�𝛽𝑖𝑦𝑖𝜙 𝐱𝑖

𝑛

𝑖=1

 

−�𝛽𝑖 𝑦𝑖𝜙 𝐱𝑖 T�𝛽𝑖𝑦𝑖𝜙 𝐱𝑖

𝑛

𝑖=1

− 1 + 𝜉𝑖

𝑛

𝑖=1

−�𝛽𝑖0𝜉𝑖

𝑛

𝑖=1

+ 𝜆�𝜉𝑖

𝑛

𝑖=1

 

 

𝛉 = � 𝛽𝑖𝑦𝑖𝜙 𝐱𝑖
𝑛

𝑖=1
 

𝜆 = 𝛽𝑖 + 𝛽𝑖0 
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Kernel Support Vector Machine 

 Substitute the derived parameters into the 
Lagrange function: 

𝐿 𝛉, 𝛏,𝛃,𝛃0 =
1
2

�𝛽𝑖𝑦𝑖𝜙 𝐱𝑖

𝑛

𝑖=1

T

�𝛽𝑖𝑦𝑖𝜙 𝐱𝑖

𝑛

𝑖=1

 

−�𝛽𝑖 𝑦𝑖𝜙 𝐱𝑖 T�𝛽𝑖𝑦𝑖𝜙 𝐱𝑖

𝑛

𝑖=1

− 1 + 𝜉𝑖

𝑛

𝑖=1

−�𝛽𝑖0𝜉𝑖

𝑛

𝑖=1

+ 𝜆�𝜉𝑖

𝑛

𝑖=1

 

=
1
2
� 𝛽𝑖𝛽𝑖𝑦𝑖𝑦𝑖𝜙 𝐱𝑖 T𝜙 𝐱𝑖

𝑛

𝑖,𝑖=1

 

− � 𝛽𝑖𝛽𝑖𝑦𝑖𝑦𝑖𝜙 𝐱𝑖 T𝜙 𝐱𝑖

𝑛

𝑖,𝑖=1

+ �𝛽𝑖

𝑛

𝑖=1

−� 𝛽𝑖 + 𝛽𝑖0

=𝜆

𝜉𝑖

𝑛

𝑖=1

+ 𝜆�𝜉𝑖

𝑛

𝑖=1

 

 

𝛉 = � 𝛽𝑖𝑦𝑖𝜙 𝐱𝑖
𝑛

𝑖=1
 

𝜆 = 𝛽𝑖 + 𝛽𝑖0 
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Kernel Support Vector Machine 

 Substitute the derived parameters into the 
Lagrange function: 

𝐿 𝛉, 𝛏,𝛃,𝛃0 =
1
2

�𝛽𝑖𝑦𝑖𝜙 𝐱𝑖

𝑛

𝑖=1

T

�𝛽𝑖𝑦𝑖𝜙 𝐱𝑖

𝑛

𝑖=1

 

−�𝛽𝑖 𝑦𝑖𝜙 𝐱𝑖 T�𝛽𝑖𝑦𝑖𝜙 𝐱𝑖

𝑛

𝑖=1

− 1 + 𝜉𝑖

𝑛

𝑖=1

−�𝛽𝑖0𝜉𝑖

𝑛

𝑖=1

+ 𝜆�𝜉𝑖

𝑛

𝑖=1

 

=
1
2
� 𝛽𝑖𝛽𝑖𝑦𝑖𝑦𝑖𝜙 𝐱𝑖 T𝜙 𝐱𝑖

𝑛

𝑖,𝑖=1

 

− � 𝛽𝑖𝛽𝑖𝑦𝑖𝑦𝑖𝜙 𝐱𝑖 T𝜙 𝐱𝑖

𝑛

𝑖,𝑖=1

+ �𝛽𝑖

𝑛

𝑖=1

−� 𝛽𝑖 + 𝛽𝑖0

=𝜆

𝜉𝑖

𝑛

𝑖=1

+ 𝜆�𝜉𝑖

𝑛

𝑖=1

 

= �𝛽𝑖 −
𝑛

𝑖=1

1
2
� 𝛽𝑖𝛽𝑖𝑦𝑖𝑦𝑖𝜙 𝐱𝑖 T𝜙 𝐱𝑖

𝑛

𝑖,𝑖=1

 

 

𝛉 = � 𝛽𝑖𝑦𝑖𝜙 𝐱𝑖
𝑛

𝑖=1
 

𝜆 = 𝛽𝑖 + 𝛽𝑖0 
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Kernel Support Vector Machine 

 Optimization criterion of the dual SVM: 

max
𝛃

�𝛽𝑖 −
𝑛

𝑖=1

1
2
� 𝛽𝑖𝛽𝑖𝑦𝑖𝑦𝑖𝑘 𝐱𝑖 , 𝐱𝑖

𝑛

𝑖,𝑖=1

 

such that 
0 ≤ 𝛽𝑖 ≤ 𝜆 

L1-Regularizer 
of 𝛃 (sparse) 

Large if 𝛽𝑖 ,𝛽𝑖 > 0               
for similar instances of 
different classes. 
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Kernel Support Vector Machine 

 Optimization criterion of the dual SVM: 

max
𝛃

�𝛽𝑖 −
𝑛

𝑖=1

1
2
� 𝛽𝑖𝛽𝑖𝑦𝑖𝑦𝑖𝑘 𝐱𝑖 , 𝐱𝑖

𝑛

𝑖,𝑖=1

 

 Optimization over parameters 𝛃. 
 Solution found with QP-Solver in 𝑂 𝑛2 . 
 Sparse solution. 

 
 Samples only appear as pairwise inner products. 
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Kernel Support Vector Machine 

 Primal and dual optimization problem have the 
same solution. 

𝛉 = � 𝛽𝑖𝑦𝑖𝜙 𝐱𝑖
𝐱𝑖∈𝑆𝑆

 

 Dual form of the decision function: 

𝑓𝛃 𝐱 = � 𝛽𝑖𝑦𝑖𝑘 𝐱𝑖 , 𝐱
𝐱𝑖∈𝑆𝑆

 

 Primal SVM: 
 Solution is a Vector 𝛉 in the space of the attributes. 

 Dual SVM: 
 The same solution is represented as weights 𝛽𝑖 of 

the samples. 
 

Support Vectors: 
𝛽𝑖 > 0 
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Constructing Kernels 

 Design embedding 𝜙 𝐱 , then obtain resulting 
kernel function 𝑘 𝐱, 𝐱𝑚 = 𝜙 𝐱 T𝜙 𝐱′ . 

 Or: just define kernel function (any similarity 
measure) 𝑘 𝐱, 𝐱𝑚  directly, don’t bother with 
embedding.  

 For which functions 𝑘 does there exist a mapping 
𝜙 𝐱 , so that 𝑘 represents an inner product? 
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Kernels 

 Kernel matrices are symmetric: 
𝐊 = 𝐊T 

 Kernel matrices 𝐊 ∈ ℝ𝑛×𝑛 are positive semidefinite: 
∃𝚽 ∈ ℝ𝑛×𝑚:𝐊 = 𝚽𝚽T 

 Kernel function 𝑘 𝐱, 𝐱′  is positive semidefinite if 
𝐊 is positive semidefinite for every data set. 
 

 For every positive definite function 𝑘 there is at 
least one mapping 𝜙 𝐱  such that 𝑘 𝐱, 𝐱′ =
𝜙 𝐱 T𝜙 𝐱′  for all 𝐱 and 𝐱′. 
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Contents 
 Feature mappings 

 Representer Theorem 

 Kernel learning algorithms 
 Kernel ridge regression 
 Kernel perceptron,  
 Dual SVM 

 Mercer map 
 Kernel functions 

 Polynomial, RBF 
 For time series, strings, graphs 
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Mercer Map 

 Eigenvalue decomposition: Every symmetric matrix 
𝐊 can be decomposed in terms of its eigenvectors 
𝐮𝑖 and eigenvalues 𝜆𝑖: 

𝐊 = 𝐔𝚲𝐔−1, with 𝚲 =
𝜆1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜆𝑛

 & 𝐔 =
| |
𝐮1 ⋯ 𝐮𝑛
| |

 

 
 If 𝐊 is positive semi-definite, then 𝜆𝑖 ∈ ℝ0+ 

 
 The eigenvectors are orthonormal (𝐮𝑖T𝐮𝑖 = 1 and 
𝐮𝑖T𝐮𝑖 = 0) and 𝐔 is orthogonal: 𝐔T = 𝐔−1. 
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Mercer Map 

 Thus it holds: 
𝐊 = 𝐔𝚲𝐔T 

= 𝐔𝚲1/2 𝚲1/2𝐔T  
= 𝐔𝚲1/2 𝐔𝚲1/2 T 

 
 Feature mapping for training data can be defined as 

| |
𝜙 𝐱1 ⋯ 𝜙 𝐱𝑛

| |
= 𝐔𝚲1/2 T 

51 

Eigenvalue decomposition 

Diagonal matrix with 𝜆𝑖 
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Mercer Map 

 Feature mapping for used training data can then be 
defined as 

| |
𝜙 𝐱1 ⋯ 𝜙 𝐱𝑛

| |
= 𝐔𝚲1/2 T 

 Kernel matrix between training and test data 
𝐊𝑡𝑡𝑡𝑡 = Φ 𝐗𝑡𝑡𝑡𝑖𝑛 TΦ 𝐗𝑡𝑡𝑡𝑡  

= 𝐔𝚲1/2 Φ 𝐗𝑡𝑡𝑡𝑡  
 Equation results in a mapping of the test data: 

Φ 𝐗𝑡𝑡𝑡𝑡 = 𝐔𝚲1/2 −1𝐊𝑡𝑡𝑡𝑡 
Φ 𝐗𝑡𝑡𝑡𝑡 = 𝚲−1/2𝐔T𝐊𝑡𝑡𝑡𝑡 

52 𝐔T = 𝐔−1 
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Mercer Map 

 Useful if a learning problem is given as a kernel 
function but learning should take place in the 
primal. 
 

 For example if the kernel matrix will be too large 
(quadratic memory consumption!) 
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Contents 
 Feature mappings 

 Representer Theorem 

 Kernel learning algorithms 
 Kernel ridge regression 
 Kernel perceptron,  
 Dual SVM 

 Mercer map 
 Kernel functions 

 Polynomial, RBF 
 For time series, strings, graphs 
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Kernel Compositions 

 Kernel functions can be composed:  
𝑘 𝐱, 𝐱′ = 𝑐𝑘1 𝐱, 𝐱′  
𝑘 𝐱, 𝐱′ = 𝑓 𝐱 𝑘1 𝐱, 𝐱𝑚 𝑓 𝐱𝑚  
𝑘 𝐱, 𝐱′ = 𝑞 𝑘1 𝐱, 𝐱𝑚  
𝑘 𝐱, 𝐱′ = 𝑒𝑘1 𝐱,𝐱′  
𝑘 𝐱, 𝐱′ = 𝑘1 𝐱, 𝐱′ + 𝑘2 𝐱, 𝐱′  
… 
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Kernel Functions 

 Polynomial kernels: 𝑘𝑝𝑝𝑝𝑝 𝐱𝑖 , 𝐱𝑖 = 𝐱𝑖T𝐱𝑖 + 1 𝑝 

 Radial basis functions: 𝑘𝑅𝑅𝑅 𝐱𝑖 , 𝐱𝑖 = 𝑒−𝛾 𝐱𝑖−𝐱𝑗
2
 

 Sigmoid kernels,  
 Dynamic time-warping kernels, 
 String kernels, 
 Graph kernels, 
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Polynomial Kernels 

 Kernel function: 𝑘𝑝𝑝𝑝𝑝 𝐱𝑖 , 𝐱𝑖 = 𝐱𝑖T𝐱𝑖 + 1 𝑝  
 Which transformation 𝜙 corresponds to this kernel? 
 Example: 2-D input space,  𝑝 = 2. 
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Polynomial Kernels 

 Kernel: 𝑘𝑝𝑝𝑝𝑝 𝐱𝑖 , 𝐱𝑖 = 𝐱𝑖T𝐱𝑖 + 1 𝑝, 2D-input, 𝑝 = 2. 
 𝑘𝑝𝑝𝑝𝑝 𝐱𝑖 , 𝐱𝑖 = 𝐱𝑖T𝐱𝑖 + 1 2 

 = 𝐱𝑖1 𝐱𝑖2
𝐱𝑖1
𝐱𝑖2 + 1

2

= 𝐱𝑖1𝐱𝑖1 + 𝐱𝑖2𝐱𝑖2 + 1 2 
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Polynomial Kernels 

 Kernel: 𝑘𝑝𝑝𝑝𝑝 𝐱𝑖 , 𝐱𝑖 = 𝐱𝑖T𝐱𝑖 + 1 𝑝, 2D-input, 𝑝 = 2. 
𝑘𝑝𝑝𝑝𝑝 𝐱𝑖 , 𝐱𝑖 = 𝐱𝑖T𝐱𝑖 + 1 2 

= 𝐱𝑖1 𝐱𝑖2
𝐱𝑖1
𝐱𝑖2 + 1

2

= 𝐱𝑖1𝐱𝑖1 + 𝐱𝑖2𝐱𝑖2 + 1 2 

= 𝐱𝑖12 𝐱𝑖12 + 𝐱𝑖22 𝐱𝑖22 + 2𝐱𝑖1𝐱𝑖1𝐱𝑖2𝐱𝑖2 + 2𝐱𝑖1𝐱𝑖1 + 𝟐𝐱𝑖2𝐱𝑖2 + 1  

= 𝐱𝑖12 𝐱𝑖22 2𝐱𝑖1𝐱𝑖2 2𝐱𝑖1 2𝐱𝑖2 1
𝜙 𝐱𝑖 T

All monomials of degree ≤2 over input attributes

𝐱𝑖12

𝐱𝑖22

2𝐱𝑖1𝐱𝑖2
2𝐱𝑖1
2𝐱𝑖2
1

𝜙 𝐱𝑗
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Polynomial Kernels 

 Kernel: 𝑘𝑝𝑝𝑝𝑝 𝐱𝑖 , 𝐱𝑖 = 𝐱𝑖T𝐱𝑖 + 1 𝑝, 2D-input, 𝑝 = 2. 
𝑘𝑝𝑝𝑝𝑝 𝐱𝑖 , 𝐱𝑖 = 𝐱𝑖T𝐱𝑖 + 1 2 

= 𝐱𝑖1 𝐱𝑖2
𝐱𝑖1
𝐱𝑖2 + 1

2

= 𝐱𝑖1𝐱𝑖1 + 𝐱𝑖2𝐱𝑖2 + 1 2 

= 𝐱𝑖12 𝐱𝑖12 + 𝐱𝑖22 𝐱𝑖22 + 2𝐱𝑖1𝐱𝑖1𝐱𝑖2𝐱𝑖2 + 2𝐱𝑖1𝐱𝑖1 + 𝟐𝐱𝑖2𝐱𝑖2 + 1  

= 𝐱𝑖12 𝐱𝑖22 2𝐱𝑖1𝐱𝑖2 2𝐱𝑖1 2𝐱𝑖2 1
𝜙 𝐱𝑖 T

All monomials of degree ≤2 over input attributes

𝐱𝑖12

𝐱𝑖22

2𝐱𝑖1𝐱𝑖2
2𝐱𝑖1
2𝐱𝑖2
1

𝜙 𝐱𝑗

=
𝐱𝑖⨂𝐱𝑖

2𝐱𝑖
1

𝑇 𝐱𝑖⨂𝐱𝑖
2𝐱𝑖
1
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RBF Kernel 

 Kernel: 𝑘𝑅𝑅𝑅 𝐱𝑖 , 𝐱𝑖 = exp −𝛾 𝐱𝑖 − 𝐱𝑖
2  

 No finite-dimensional feature mapping 𝜙. 
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Time Series: DTW Kernel 

 Similarity of time series 
 Idea: Find corresponding similar points in 𝐱, 𝐱′.  
 Correspondence function  

𝜋𝐱 𝑘 ∈ 1,𝑇𝐱 ,𝜋𝐱′ 𝑙 ∈ 1,𝑇𝐱′  
 DTW distance is squared distance between 

matched sequences: 

𝑘𝐷𝑇𝐷 𝐱, 𝐱𝑚 = 𝑒
− min ∑ 𝐱𝜋𝐱 𝑘 −𝐱′𝜋𝐱′ 𝑘

2
𝑇
𝑘=1  
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Time Series: DTW Kernel 

 Efficient calculation using dynamic programming 
 Let 𝛾(𝑘, 𝑙) be the minimum squared distance of 

corresponding points up to time 𝑘 and 𝑙. 
 Recursive update: 
𝛾 𝑘, 𝑙 = 𝐱𝑘 − 𝐱𝑝 2

+ min{𝛾 𝑘 − 1, 𝑙 − 1 , 𝛾 𝑘 − 1, 𝑙 , 𝛾 𝑘, 𝑙 − 1 } 
 Algorithm: 

DTW(Sequences x and  x‘) 
Let 𝛾 0,0 = 0; 𝛾 𝑘, 0 = ∞; 𝛾 0, 𝑙 = ∞ 
FOR k = 1…Tx 

 FOR l = 1…Ty 
𝛾 𝑘, 𝑙 = 𝐱𝑘 − 𝐱𝑝 2 + min{𝛾 𝑘 − 1, 𝑙 − 1 , 𝛾 𝑘 − 1, 𝑙 ,𝛾 𝑘, 𝑙 − 1 } 

RETURN 𝛾 Tx, Ty  
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Strings: Motivation 

 Strings are a common non-numeric type of data 
 Documents & email are strings 

 
 
 
 
 DNA & Protein sequences are strings 
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String Kernels 

 String – a sequence of characters from alphabet Σ 
written as 𝐬 = 𝑠1𝑠2 … 𝑠𝑛 with 𝐬 = 𝑛. 
 The set of all strings is Σ∗ = ⋃ Σ𝑛𝑛∈𝑁  
 𝐬𝑖:𝑖 = 𝑠𝑖𝑠𝑖+1 … 𝑠𝑖 
 Subsequence: for any 𝐢 ∈ 0,1 𝑛, 𝐬 𝐢  is the elements 

of 𝐬 corresponding to elements of 𝐢 that are 1 
 Eg. If 𝐬=“abcd” 𝐬 1,0,0,1 =“ad” 

 
 A string kernel is a real-valued function on Σ∗ × Σ∗. 

 We need positive definite kernels 
 We will design kernels by looking at a feature space 

of substrings / subsequences 
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Bag-of-Words Kernel 

 For textual data, a simple feature representation is 
indexed by the words contained in the string 
 
 
 
 
 
 
 

 Bag-of-Words Kernel computes the number of 
common words between 2 texts; efficient? 
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Word #1 occurs? 

Word #𝑚 occurs? 

Aardvark 

Beneficiary 

Sterling 

Friend 

Science 

…
 

0
1
0

1
0

 
 
 
 
 
 
 
  
 



Dear Beneficiary,  
 
your Email address has been picked 
online in this years MICROSOFT 
CONSUMER AWARD as a 
Winner of One Hundred and Fifty Five 
Thousand 
Pounds Sterling… 

Email Attribute  Instance  𝐱  



𝑚 ≈ 1,000,000 



Intelligent D
ata A

nalysis 

Spectrum Kernel 

 Consider feature space with features corresponding 
to every 𝑝 length substring of alphabet Σ. 
 𝜙 𝐬 𝐮 is # of times 𝐮 ∈ Σ𝑝 is contained in string 𝐬 

 The 𝑝-spectrum kernel is the result 
𝜅𝑝 𝐬, 𝐭 = � 𝜙 𝐬 𝐮

T𝜙 𝐭 𝐮
𝐮∈Σ𝑝
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𝝓 aa ab ba bb 
aaab 2 1 0 0 
bbab 0 1 1 1 
aaaa 3 0 0 0 
baab 1 1 1 0 

𝐊 aaab bbab aaaa baab 
aaab 5 1 6 3 
bbab 1 3 0 2 
aaaa 6 0 9 3 
baab 3 2 3 3 
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Spectrum Kernel – Computation 

 Without explicitly computing this feature map, 
the 𝑝-spectrum kernel can be computed as 

 

𝜅𝑝 𝐬, 𝐭 = � � I 𝐬𝑖:𝑖+𝑝−1 = 𝐭𝑖:𝑖+𝑝−1

𝐭 −𝑝+1

𝑖=1

𝐬 −𝑝+1

𝑖=1

 

 
 This computation is 𝑂 𝑝 𝐬 𝐭 . 
 Using trie data structures, this computation can be 

reduced to 𝑂 𝑝 ∙ 𝑚𝑚𝑥 𝐬 , 𝐭 . 
 Naturally, we can also compute (weighted) sums of 

different length substrings 
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String Kernels 

 All-subsequences kernel determines the number of 
subsequences that appear in both strings 

 Fixed-length subsequence kernels 
 Gap-weighted subsequence kernels… 
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Graphs: Motivation 

 Graphs are often used to model objects and their 
relationship to one another: 
 Bioinformatics: Molecule relationships 
 Internet, social networks 
 … 

 
 Central Question:  

 How similar are two  
Graphs? 

 How similar are two  
nodes within a 
Graph? 
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Graph Kernel: Example 

 Consider a dataset of websites with links 
constituting the edges in the graph 
 A kernel on the nodes of the graph would be useful 

for learning w.r.t. the web-pages 
 A kernel on graphs would be useful for comparing 

different components of the internet (e.g. domains) 
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Graph Kernel: Example 

 Consider a set of chemical pathways (sequences of 
interactions among molecules); i.e. graphs 
 A node kernel would a useful way to measure 

similarity of different molecules’ roles within these 
 A graph kernel would be a useful measure of 

similarity for different pathways 
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Graphs: Definition 

 A graph 𝐺 = 𝑉,𝐸  is specified by 
 A set of nodes:  𝑣1, … , 𝑣𝑛 ∈ 𝑉 
 A set of edges:  𝐸 ⊆ 𝑉 × 𝑉 

 
 Data structures for representing graphs: 

 Adjacency matrix: 𝐀 = 𝑚𝑖𝑖 𝑖,𝑖=1
𝑛 ,  𝑚𝑖𝑖 = I 𝑣𝑖 ,𝑣𝑖 ∈ 𝐸  

 Adjacency list 
 Incidence matrix 
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𝐀1 =

1 1 0 0
0 0 1 0
0 0 0 0
0 1 0 0

 
𝐺1 = 𝑉1,𝐸1  
𝑉1 = 𝑣1, … , 𝑣4  

𝐸1 = 𝑣1, 𝑣1 , 𝑣1, 𝑣2 ,
𝑣2, 𝑣3 , 𝑣4, 𝑣2

 

𝑣1 𝑣3 

𝑣2 𝑣4 
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Similarity between Graphs 

 Central Question: How similar are two graphs? 
 1st Possibility: Number of isomorphisms between 

all (sub-) graphs. 
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𝑣1 

𝑣3 

𝑣2 

𝑣4 𝑣5 

𝑣𝑡 

𝑣𝑑 

𝑣𝑏 

𝑣𝑡 𝑣𝑐 

𝐺1 = 𝑉1,𝐸1  𝐺2 = 𝑉2,𝐸2  
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Isomorphisms of Graphs 

 Isomorphism: Two Graphs 𝐺1 = 𝑉1,𝐸1  & 
𝐺2 = 𝑉2,𝐸2  are isomorphic if there exists a 
bijective mapping 𝑓 ∶  𝑉1 → 𝑉2 so that 

𝑣𝑖 , 𝑣𝑖 ∈ 𝐸1   ⇒    𝑓 𝑣𝑖 ,𝑓 𝑣𝑖 ∈ 𝐸2 
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𝑣1 

𝑣3 

𝑣2 

𝑣4 𝑣5 

𝑣𝑡 

𝑣𝑑 

𝑣𝑏 

𝑣𝑡 𝑣𝑐 

𝐺1 = 𝑉1,𝐸1  𝐺2 = 𝑉2,𝐸2  
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Isomorphisms of Graphs 

 Isomorphism: Two Graphs 𝐺1 = 𝑉1,𝐸1  & 
𝐺2 = 𝑉2,𝐸2  are isomorphic if there exists a 
bijective mapping 𝑓 ∶  𝑉1 → 𝑉2 so that 

𝑣𝑖 , 𝑣𝑖 ∈ 𝐸1   ⇒    𝑓 𝑣𝑖 ,𝑓 𝑣𝑖 ∈ 𝐸2 
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𝑣1 

𝑣3 

𝑣2 

𝑣4 𝑣5 

𝑣𝑡 

𝑣𝑑 

𝑣𝑏 

𝑣𝑡 𝑣𝑐 

𝐺1 = 𝑉1,𝐸1  𝐺2 = 𝑉2,𝐸2  

Subgraph isomorphism: 
NP-hard! 
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Similarity between Graphs 

 Central Question: How similar are two graphs? 
 2nd Possibility: Counting the number of “common” 

paths in the graph. 
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𝑣1 

𝑣3 

𝑣2 

𝑣4 𝑣5 

𝑣𝑡 

𝑣𝑑 

𝑣𝑏 

𝑣𝑡 𝑣𝑐 

𝐺1 = 𝑉1,𝐸1  𝐺2 = 𝑉2,𝐸2  
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Common Paths in Graphs 

 The number of paths of length 0 is just the number 
of nodes in the graph. 
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𝑣1 𝑣3 

𝑣2 𝑣4 

𝐺1 = 𝑉1,𝐸1  

𝑣1 𝑣3 

𝑣2 𝑣4 
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Common Paths in Graphs 

 The number of paths of length 1 from one node to 
any other is given by the adjacency matrix. 
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𝑣1 𝑣3 

𝑣2 𝑣4 

1 

𝐀1 =

𝑣1
𝑣2
𝑣3
𝑣4

1 1 0 0
0 0 1 0
0 0 0 0
0 1 0 0
𝑣1 𝑣2 𝑣3 𝑣4

 

From 

To 
𝐺1 = 𝑉1,𝐸1  
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Common Paths in Graphs 

 Number of paths of length 𝑘 from one node to any 
other are given by the 𝑘th power of the adjacency 
matrix. 

80 

𝑣1 𝑣3 

𝑣2 𝑣4 

1 

𝐀12 =

𝑣1
𝑣2
𝑣3
𝑣4

1 1 1 0
0 0 0 0
0 0 0 0
0 0 1 0
𝑣1 𝑣2 𝑣3 𝑣4

 

From 

To 
𝐺1 = 𝑉1,𝐸1  
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Common Paths in Graphs 

 Number of paths of length 𝑘 from one node to any 
other are given by the 𝑘th power of the adjacency 
matrix. 
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𝑣1 𝑣3 

𝑣2 𝑣4 

𝑘 − 1 

𝐀1𝑘 =

𝑣1
𝑣2
𝑣3
𝑣4

1 1 1 0
0 0 0 0
0 0 0 0
0 0 0 0
𝑣1 𝑣2 𝑣3 𝑣4

 

From 

To 
𝐺1 = 𝑉1,𝐸1  

𝑘 > 2 

Proof? 
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Common Paths in Graphs 

 Number of paths of length 𝑘 from one node to any 
other are given by the 𝑘th power of the adjacency 
matrix. 
 
 
 
 
 
 
 

 Number of paths of length 𝑘:  ∑ 𝐀𝑘 𝑖𝑖
𝑛
𝑖,𝑖=1 = 𝟏T𝐀𝑘𝟏 

82 

𝑣1 𝑣3 

𝑣2 𝑣4 

𝑘 − 1 

𝐀1𝑘 =

𝑣1
𝑣2
𝑣3
𝑣4

1 1 1 0
0 0 0 0
0 0 0 0
0 0 0 0
𝑣1 𝑣2 𝑣3 𝑣4

 

From 

To 
𝐺1 = 𝑉1,𝐸1  

𝑘 > 2 
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Common Paths in Graphs 

 Common paths are given by product graphs 
𝐺⨂ = 𝑉⨂,𝐸⨂ : 
 𝑉⨂ = 𝑉1⨂𝑉2 
 𝐸⨂ = 𝑣, 𝑣′ , 𝑤,𝑤′ 𝑣,𝑤 ∈ 𝐸1  ∧  𝑣𝑚,𝑤′ ∈ 𝐸2  
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a 

b 

c 
2 

1 

a1 

b1 

c1 

a2 

b2 

c2 

𝐺1 𝐺2 𝐺⨂ 
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Similarity between Graphs 

 Similarity between graphs: number of “common” 
paths in their product graph. 
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a 

b 

c 
2 

1 

a1 

b1 

c1 

a2 

b2 

c2 

𝐺1 𝐺2 𝐺⨂ 

𝐀⨂0 =

𝑚1
𝑚𝑎
𝑏𝑏
𝑏𝑎
𝑐𝑏
𝑐𝑎

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
𝑡1 𝑡2 𝑏1 𝑏2 𝑐1 𝑐2

 

From 

To 

𝐶𝐶≤0 = � 𝐀0 𝑖𝑖

𝑛

𝑖,𝑖=1

= 6 
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Similarity between Graphs 

 Similarity between graphs: number of “common” 
paths in their product graph. 
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a 

b 

c 
2 

1 

a1 

b1 

c1 

a2 

b2 

c2 

𝐺1 𝐺2 𝐺⨂ 

𝐀⨂ =

𝑚1
𝑚𝑎
𝑏𝑏
𝑏𝑎
𝑐𝑏
𝑐𝑎

0 0 1 1 0 0
0 0 0 1 0 0
0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
𝑡1 𝑡2 𝑏1 𝑏2 𝑐1 𝑐2

 

From 

To 

𝐶𝐶≤1 = 𝐶𝐶≤0 + � 𝐀1 𝑖𝑖

𝑛

𝑖,𝑖=1

= 6 + 6 = 12 

1 
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Similarity between Graphs 

 Similarity between graphs: number of “common” 
paths in their product graph. 
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a 

b 

c 
2 

1 

a1 

b1 

c1 

a2 

b2 

c2 

𝐺1 𝐺2 𝐺⨂ 

𝐀⨂2 =

𝑚1
𝑚𝑎
𝑏𝑏
𝑏𝑎
𝑐𝑏
𝑐𝑎

0 0 0 0 1 2
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
𝑡1 𝑡2 𝑏1 𝑏2 𝑐1 𝑐2

 

From 

To 

𝐶𝐶≤2 = 𝐶𝐶≤1 + � 𝐀2 𝑖𝑖

𝑛

𝑖,𝑖=1

= 12 + 4 = 16 

2 

1 
1 

1 
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Similarity between Graphs 

 Similarity between graphs: number of “common” 
paths in their product graph. 
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2 

1 

a1 

b1 

c1 

a2 

b2 

c2 

𝐺2 𝐺⨂ 

𝐀⨂3 =

𝑚1
𝑚𝑎
𝑏𝑏
𝑏𝑎
𝑐𝑏
𝑐𝑎

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
𝑡1 𝑡2 𝑏1 𝑏2 𝑐1 𝑐2

 

From 

To 

𝐶𝐶≤3 = 𝐶𝐶≤2 + � 𝐀3 𝑖𝑖

𝑛

𝑖,𝑖=1

= 16 + 0 = 16 

a 

b 

c 

𝐺1 
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Similarity between Graphs 

 Similarity between graphs: number of “common” 
paths in their product graph. 
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2 

1 

a1 

b1 

c1 

a2 

b2 

c2 

𝐺2 𝐺⨂ 

𝐀⨂𝑘 =

𝑚1
𝑚𝑎
𝑏𝑏
𝑏𝑎
𝑐𝑏
𝑐𝑎

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
𝑡1 𝑡2 𝑏1 𝑏2 𝑐1 𝑐2

 

From 

To 

𝐶𝐶≤∞ = � � 𝐀𝑘 𝑖𝑖

𝑛

𝑖,𝑖=1

∞

𝑘=0

= 16 

a 

b 

c 

𝐺1 
𝑘 > 2 
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Similarity between Graphs 

 Similarity between graphs: number of “common” 
paths in their product graph. 
 With cycles, there can be an infinite number paths! 
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2 

1 

𝐺2 𝐺⨂ 

𝐀⨂𝑘 =

𝑚1
𝑚𝑎
𝑏𝑏
𝑏𝑎
𝑐𝑏
𝑐𝑎

1 𝑘 1 𝑘 1 𝑘
0 1 0 1 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
𝑡1 𝑡2 𝑏1 𝑏2 𝑐1 𝑐2

 

From 

To 

𝐶𝐶≤𝐿 = � � 𝐀𝑘 𝑖𝑖

𝑛

𝑖,𝑖=1

𝐿

𝑘=0

= 3
2𝐿
2 + 15

2 𝐿 + 6 → ∞ 

𝐺1 

a 

b 

c 

a1 

b1 

c1 

a2 

b2 

c2 

𝑘 > 2 
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Similarity between Graphs 

 Similarity between graphs: number of “common” 
paths in their product graph. 
 With cycles, there can be an infinite number paths! 
We must downweight the influence of long paths. 

 Random Walk Kernels: 

𝑘 𝐺1,𝐺2 =
1

𝑉1 𝑉2
� � 𝜆𝑘 𝐀⨂𝑘 𝑖𝑖

𝑛

𝑖,𝑖=1

∞

𝑘=0

=
𝟏T 𝐈 − 𝜆𝐀⨂ −1𝟏

𝑉1 𝑉2
 

𝑘 𝐺1,𝐺2 =
1

𝑉1 𝑉2
� �

𝜆𝑘

𝑘!
𝐀⨂𝑘 𝑖𝑖

𝑛

𝑖,𝑖=1

∞

𝑘=0

=
𝟏Texp 𝜆𝐀⨂ 𝟏

𝑉1 𝑉2
 

 These kernels can be calculated by means of the 
Sylvester Equation in 𝑂 𝑛3 . 
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Similarity between Nodes 

 Similarity between graphs: number of “common” 
paths in their product graph. 
 

 Assumption: Nodes are similar if they are 
connected by many paths. 
 

 Random Walk Kernels: 

𝑘 𝑣𝑖 , 𝑣𝑖 = �𝜆𝑘 𝐀⨂𝑘 𝑖𝑖

∞

𝑘=1

= 𝐈 − 𝜆𝐀⨂ −1
𝑖𝑖

 

𝑘 𝑣𝑖 , 𝑣𝑖 = �
𝜆𝑘

𝑘!
𝐀⨂𝑘 𝑖𝑖

∞

𝑘=1

= exp 𝜆𝐀⨂
𝑖𝑖
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Additional Graph-Kernels 

 Shortest-Path Kernel  
 All shortest paths between pairs of nodes computed 

by Floyd-Warshall algorithm with run time 𝑂 𝑉 3  
 Compare all pairs of shortest paths between 2 

graphs 𝑂 𝑉1 2 𝑉2 2  
 
 Subtree-Kernel: 

 Idea: use tree structures as indexes in the feature 
space 

 Can be recursively computed for a fixed height tree 
 Trees are downweighted in their height 
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Summary 

 Kernel function 𝑘 𝐱, 𝐱′ = 𝜙 𝐱 T𝜙 𝐱′  computes the 
inner product of the feature mapping of  instances. 

 The kernel function can often be computed without 
an explicit representation 𝜙 𝐱 . 
 E.g., polynomial kernel:  𝑘𝑝𝑝𝑝𝑝 𝐱𝑖 , 𝐱𝑖 = 𝐱𝑖T𝐱𝑖 + 1 𝑝

 

 Infinite-dimensional feature mappings are possible 

 Eg., RBF kernel:  𝑘𝑅𝑅𝑅 𝐱𝑖 , 𝐱𝑖 = 𝑒−𝛾 𝐱𝑖−𝐱𝑗
2
 

 Kernel functions for time series, strings, graphs, … 
 For a given kernel matrix, the Mercer map provides 

a feature mapping. 
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Summary 

 Representer Theorem:  𝑓𝛉∗ 𝐱 = ∑ 𝛼𝑖∗𝜙 𝐱𝑖 T𝜙 𝐱𝑛
𝑖=1   

 Instances only interact through inner products 
 Great for few instances, many attributes 

 Kernel learning algorithms: 
 Kernel ridge regression 
 Kernel perceptron, SVM, 
 … 
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