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Review: Linear Models

= Linear models: fa(x) =x'0

= Regularized empirical risk minimization:

arg;nin Z £(fo(x;),y;) + AQ(06)
i=1

= Choice of loss & regularizer gives different methods
Perceptron, SVM, ridge regression, ...



Feature Mappings

= Models constained to hyperplane in feature space:
Hy = {x|x'0 = 0}.

= Use mapping ¢ to embed instances x € X in higher-
dimensional feature space.

= Find hyperplane in higher-dimensional space,
corresponds to non-linear surface in feature space.

= Kernel trick: Feature space ¢ (X) need not be
represented explicitly, can be infinite-dimensional.



Feature Mappings

= All linear methods can be made non-linear by
means of feature mapping ¢.
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Feature Mappings

X110 Xim
X = . :
Xn1 " Xam

s Feature Mapping:

(¢(X1)T) (¢(X1)1 ¢(X1)m1)
P = : = : :
¢(xn)T (p(xn)l tte ¢(Xn)m/

m |nstances:



Feature Mappings

= Feature mapping ¢ (x) can be high dimensional.

The size of estimated parameter vector 8 depends
on the dimensionality of ¢ — could be infinite!

= Computation of ¢(x) can be expensive.

¢ must be computed for each training point x; & for
each prediction x.

= How can we adapt linear methods to efficiently
Incorporate high dimensional ¢?



Representer Theorem: Observation

= Perceptron algorithm: IF Y f(x)<0
THEN 9=0+y.X

s Resulting parameter vector is a linear combination
of instances: 0" = Y'*, @; V;X;

= Sufficient to determine coefficients «;, independent
of dimensionality of feature space.

= Underlying general principle?
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Representer Theorem

Theorem: If g(o) is strictly monotonically increasing,

then the 8* that minimizes

L(®) = ) £(87p(x), ¥ + g(lfll2)
=1

has the form 0* = }I'; ;¢ (x;), with a; € R.

n

for (0 = ) @i p(x)T )

=1

Inner product is a measure for
similarity between instances

Generally 8" is any vector in @, but we
show it must be in the span of the data.
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L®) = ) €(fox0,y0) + g(lfoll2)
i=1

Representer Theorem: Proof

= Orthogonal Decomposition:
0" = 9" + Gl, with 0" S @" = {Z?=1 C(in(Xi) |C¥i S ]R}
and O_L S @_L — {9 S @lOTOH =0V 9" S ®||}
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L®) = ) €(fox0,y0) + g(lfoll2)
i=1

Representer Theorem: Proof

= Orthogonal Decomposition:
0" = 9" + Gl, with 0" S @" = {Z?=1 C(in(Xi) |C¥i S ]R}
and O_L S @_L — {9 S @lOTOH =0V 9" S ®||}

= For any training point x; it follows that
for(x) =0, ¢ (x;) + 0, p(x) =0, p(x;)
Why is 0, ¢ (x;) = 0?
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L®) = ) €(fox0,y0) + g(lfoll2)
i=1

Representer Theorem: Proof

= Orthogonal Decomposition:
0" = 9" + Gl, with 0" S @" = {Z?=1 Clin(Xi) |C¥i € ]R}
and O_L € ®_L — {9 € @lOTOH =0V 9" € ®||}

= For any training point x; it follows that
for(x) =0, ¢ (x;) + 0, p(x) =0, p(x;)
Yie1 P(fo(x;),y;) is independent of 0 .
because 0, "¢ (x;) = 0

= Finally from g(]|0*||,) = g( 0, |2) it follows 8, = 0.
gle*l) =g(lley+e.l,) = g (J 0y, + ||el||%> > g([leull,)

Since 616, =0 Since g is strictly
(Pythagoras' Theorem) monotonically increasing. 13




Representer Theorem

= The hyperplane 6%, which minimizes
L(8) = X7, £(8Tp(x),y;) +Q(8)
= can be represented as

fr (0 = 0TH00 = fur 0 = Y aip(x) "
1=1
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Primal vs. Dual View

s Primal decision function:
fo(x) = 01 p(x)

s Dual decision function:

fe®0 = a9
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Primal vs. Dual View

s Primal decision function:
fox) = 0T (%)

s Dual decision function:
=) adp@)T$00 = a P00

s |llustration:

leaiﬁb(xi)T

(_ d(x;)" —)
=(a .. ap) : — oald
o ¢(Xn)T _
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Primal vs. Dual View

s Primal decision function:
fox) = 0T (%)

= Dual decision function:
fe® =) ap@)TB00 = BP0
= Duality between parameters:
0= Z:l 1“i¢(Xi) =d'a

s |llustration:

| | aq
0=|o(x1) .. OXp) ( : >= dla
| | @n
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Primal vs. Dual View

s Primal decision function:
fo(x) = 01 p(x)

= Dual decision function:
n
)= ) @dpx)TER) = aTPHR)
1=
= Duality between parameters:

0 = Z:lzlaigb(xi) = »Tq

18



Primal vs. Dual View

= Primal view: fg(x) = 0T¢p(x)
Model 8 has as many parameters as the dimensionality
of ¢ (x).

Good if there are many examples with few attributes.

= Dual view: f,(x) = a' ®p(x)
Model a has as many parameters as there are
examples.
Good if there are few examples with many attributes.

The representation ¢(x) can even be infinite
dimensional, as long as the inner product can be
computed efficiently.
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Kernel Functions

s Dual view of the decision function:

fa(X) = <Zn a; ¢(Xi)T> ¢ (x)

=1

B Z?zlai (¢(Xi)T¢(x))

n
= z a; k(X X)
i=1

= Where kernel function k(x;,x) calculates the inner
product ¢ (x;)Tp(x).
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Kernel Functions

s Kernel functions can be understood as a measure
of similarity between instances.

= Primal view on data: “what does x look like?”

¢ (x)1
d(x) = : = multiply by 0T.
¢ ()
= Dual view on data: “how similar is x to each training
Instance?”
k(xq,X)
PP(x) = : = multiply by a’.

k (X, X)

21



Kernel Functions

= Kernel function can be defined for
Vectors (linear, polynomial, RBF, ...)
Strings
Images
Sequences, graphs

= Any kernel learning method can be applied to any
type of data using a kernel for that type of data.
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Kernel Ridge Regression

s Sqguared loss:

= L2 reqgularization:
0,(8) = [16]I5

24



Kernel Ridge Regression
s Minimize
L®) =), (folx) —y)* +2070
z (67d(x) — v;)" + 2076
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Kernel Ridge Regression
= Minimize
L(O) = Zi=1(f"(xi) —y)*+ 200

n
_ z 1(9T¢(xi) —y:)" + 1070
1=
— (0 — y)T(®0 —y) + 1070
m Why’>

- ¢(X1)T — 0,
(PO —y) = : R
o ¢(Xn)T — Om

(cp(xl)Te - ;vl)
b(x,)T0 — y,
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Kernel Ridge Regression

= Minimize
L(6) = z-=1(fe(xi) —-y)*+10'60

_ zn (0T (x,) — y;)" + 1070
= (d)é) 1— Y (®0 —y) +10'0
= By the representer theorem:
0=2>oa
= Dual regularized empirical risk:
L(a) = (@@ Ta—y) (@0 Ta—y) + 1aTddTa
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Kernel Ridge Regression

= Dual regularized empirical risk:

L) = (®®Ta - y)T(CDCDTa —y)+ladTodTa
=a'PP PP o — 2a PPy —yly
+la' P a

= Define gram matrix (or kernel matrix) as K = &7,
L(a) = a'KKa — 2a’Ky — y'y + la'Ka
= Setting the derivative to zero

9
al‘(a) =0

s Gives the solution
a= K+ Dty

28



Kernel Ridge Regression

= Kernel (gram) matrix: K = ®®T

- ¢(X1)T — |
K=|: : d(x1)
_ ¢(Xn)T _ |

k(x4,X1) ... kXq4,X,)

(k(xn,xl) v k(x,X5)
| Kl] = k(Xi,Xj)

%)

..)

|
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Kernel Ridge Regression

= Regression method that uses kernel functions

= Works with any nonlinear embedding ¢ as long as
there is a kernel function that computes the inner

product: k(x;,X) = ¢(x;) ¢ (x).

= Kernel matrix K of size n X n has to be inverted,
works only for modest sample sizes.

= Solution dependent on K;; = k(x;,X;), but
otherwise independent of ®.

s For large sample size, use numeric optimization
(e.g., stochastic gradient descent method).
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Kernel Perceptron

= Loss function:
fp(fe(xi),}’i) = max(O, —yife(x,;)) y
= No reqularizer.
= Primal stochastic gradient:
—yiX; —Vifex) >b———(5—F7
V0i,.(0) =
«(0) { 0 —yife(x)) <O

Rosenblatt, 1960
32



Kernel Perceptron

IF Y f(x) <0

= Stochastic gradient update step: THEN 0’ = 0+ y x

=0 +y;p(x;) i
o Z @@ =) @)+ i)
= BT = ap )T+ i (x)

& a; i =a; T Y

= Dual stochastic gradient update step:

IF Yifa(xi) <0
THEN  a; = a; +y;

33



Kernel Perceptron Algorithm

Perceptron(lInstances {(x;y;)})
Set a=0
DO
FOR i=1,..,n
IF Vifa(x;) <0
THEN a; = a; + y;
END
WHILE o changes
RETURN «

s Decision function:

fu0) = TRPx) = Y

a;ik(X;, X)
i=1

34



Kernel Perceptron

= Perceptron loss, no regularizer
s Dual form of the decision function:

fu®0 =) aik(xi®

= Dual form of the update rule:
|f yifa(xi) < 0, then a; =a; +y;
= Equivalent to the primal form of the perceptron

= Advantageous to use instead of the primal
perceptron if there are few samples and ¢(x) is
high dimensional.
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Kernel Support Vector Machine

= Primal: min [Z ~, max(0,1 — y;p(x;)70) + — OTO]

= Equivalent optimization problem with side
constraints:

mln[ Z £ + eTel

such that
y;p(x;)T0>1—¢&; and & =0

s Goal: dual formulization of the optimization problem

37



Kernel Support Vector Machine

= Optimization problem with side constraints:

. 1
min [A Yiz1§it; OTO]
8 Goal function: 7(0,%)
such that Side constraints:  g(8,%) >0

L function: Z(8,%) — Bg(®,
vip(x)T0 = 1—¢; and agrange function: Z(6,) — £g(8,8)

= Lagrange function with Lagrange-Multipliers g = 0 and
B° > 0 for the side constraints:

L(6,%B,B°) = ﬂz $i + - Zﬁi(Yi(p(Xi)Te —14+&) - Z.Biofi
im1 i=1 i=1

= Optimization problem without side constraints:

min max L(0, &, B, B°
pnma (0,%,8,8°)
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Kernel Support Vector Machine

= Lagrange function
10,5 B, 6%) = AE L D Biid()TO~1+8) = > B%
=1 =1

i=1

= Setting the derivative of L w.r.t. (0, &) to zero gives:

2LOERB) =0 = 0=3", fiy; b(x)

ZLOEBE)=0 = 1= ot BN

Relation between primal
and dual parameters...
representer theorem.
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_ 0= z:l=1ﬁiyi¢(xi)
Kernel Support Vector Machine | 25+

= Substitute the derived parameters into the
Lagrange function

LQEBB%——WFm)
Zﬁl('ylcp(xlﬂe —1+8)- Eﬁl i+ AZ 7

40



_ 0= z:l=1ﬁiyi¢(xi)
Kernel Support Vector Machine | 25+

= Substitute the derived parameters into the
Lagrange function:

n T/ n
1
L(6,%B,B°) = E(Z 5i}’i¢(xi)> (Z ﬁj}’jf,b(xj))
i=1 =1
_Z,Bi <Yi¢(xi)TZﬁij¢(Xj) -1+ fi) - Zﬁiofi + ﬂz $i
' i=1 i=1

n
=1 j=1
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Kernel Support Vector Machine

0= zi=1:8iyi¢(xi)
A= B+ B

= Substitute the derived parameters into the

Lagrange function:

n T n
1
L(0,%B,B") = E(Z 5i}’i¢(xi)> (Z ﬁjyf¢(xj)>
i=1 =

1 n

Ez ,BJYLYJQ[)(XL)TQ[)( )
Bi

L,j=

2

z ( id)(xi)Tzn:,BijQb(xj) -1+ fi) - Zn:ﬁiofi + ﬂzn: $i
i=1 i=1

By x0T (x) + Eﬁl Y (Bt )6t 12 7
i=1 =1

=1
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_ 0= z:l=1ﬁiyi¢(xi)
Kernel Support Vector Machine | 25+

= Substitute the derived parameters into the
Lagrange function:

n T/ n
1
L(6,%B,B°) = > (Z 5i}’i¢(xi)> (Z ﬁj}’jf,b(xj))
i=1 =1
Bi ()’i(l)(xi)Tz Bivip(x;) — 1+ fi) - z B& + ﬂz $i
i=1 i=1
z iBivividx)Td(x;)

2 By x0T (x) + Eﬁl Y (5t )¢ +A§ 7
=1

i=1

R

=
Il
[UE

l\JIb—\

|
.MS‘

=~
Il
[UEN
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Kernel Support Vector Machine

= Optimization criterion of the dual SVM:

maxz Bi — > z ﬁlﬁ]ylyjk(xuxj)

,j=1
suchthat
06, <4

Large if §;,5; > 0
for similar instances of
different classes.

L1-Reqularizer
of B (sparse)
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Kernel Support Vector Machine

Optimization criterion of the dual SVM:
n 1 n
mBaXz Bi —3 Z BiBiyiyik(x;,x;)
i=1 i,j=1
Optimization over parameters 3.

Solution found with QP-Solver in 0(n?).
Sparse solution.

Samples only appear as pairwise inner products.
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Kernel Support Vector Machine

Primal and dual optimization problem have the
same solution.

0= z B;yv;p(X;) ‘ Support Vectors:

X;ESV pi >0

—

Dual form of the decision function:

fe(x) = Z Biyik(x;,x)

X;ESV
Primal SVM:
Solution is a Vector 0 in the space of the attributes.

Dual SVM:

The same solution is represented as weights ; of
the samples.
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Constructing Kernels

= Design embedding ¢ (x), then obtain resulting
kernel function k(x,x") = ¢p(x)Top(x').
s Or: just define kernel function (any similarity

measure) k(x,x’) directly, don’t bother with
embedding.

= For which functions k does there exist a mapping
¢(x), so that k represents an inner product?

47



Kernels

= Kernel matrices are symmetric:
K =K'

= Kernel matrices K € R™*" are positive semidefinite:

JPp € RV K = pPpT

= Kernel function k(x,x’) is positive semidefinite if
K is positive semidefinite for every data set.

m For every positive definite function k there is at
least one mapping ¢ (x) such that k(x,x’) =
d»(x)Tp((x") for all x and x'.

48
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Mercer Map

= Eigenvalue decomposition: Every symmetric matrix
K can be decomposed in terms of its eigenvectors
u; and eigenvalues A;:

A 0 | |
K=UAUL, withA=[: =~ { |&U=(u - u,
0 An | |

= If Kis positive semi-definite, then A; € R%*

= The eigenvectors are orthonormal (u/u; = 1 and
u; u; = 0) and U is orthogonal: UT = U™,

i

50



Mercer Map
Eigenvalue decomposition

= Thus it holds: 7 Diagonal matrix with ./4;
/

K = UAU!T
— (UAl/Z)(Al/ZuT)
= (UAY/2)(UAY2)"

s Feature mapping for training data can be defined as

| |
(¢(X1) - (xy) | = (UAV2)
| |

51



Mercer Map

s Feature mapping for used training data can then be
defined as

| |
T
p(x1) - P(xn) | = (UAY?)
| |
= Kernel matrix between training and test data
Kiest = CD(Xtrain)TcD(Xtest)
= (UAY?) 0 (X st )
= Equation results in a mapping of the test data:
-1
O (Xpest) = (UAY?) "Kiest
D(Xest) = AY2UTK o

T

UT — U—l

52



Mercer Map

s Useful if a learning problem is given as a kernel
function but learning should take place in the
primal.

s For example if the kernel matrix will be too large
(quadratic memory consumption!)

53
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Kernel Compositions

s Kernel functions can be composed:
k(x,x") = ck,;(x,x")
k(x,x") = f(X)k (x,x")f(x")
k(x,x) = q(ky(x,x"))
k(x,x) = eka(xx)
k(x,x) =k{(x,xX") + k,(%,X')

55



Kernel Functions

= Polynomial kernels: kpory (X5, %) = (xFx; +1)°

= Radial basis functions: kggr(x;, ;) = e~V li=x;]°
= Sigmoid kernels,

= Dynamic time-warping kernels,

= String kernels,

s Graph kernels,

56



Polynomial Kernels

= Kernel function: ko, (x;, %) = (x7x; +1)"
= Which transformation ¢ corresponds to this kernel?
= Example: 2-D input space, p = 2.
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Polynomial Kernels

= Kernel: kyoy (x5, %) = (%% + 1)°, 2D-input, p = 2.
kpoly(xi'xj) = (x'irx]' T 1)2

2
X 2
- ((Xil Xi2) (Xﬁ> + 1) = (Xille + Xi2Xjp + 1)

58



Polynomial Kernels

= Kernel: kyoy (x5, %) = (%% + 1)°, 2D-input, p = 2.
kpoty (%i,%;) = (x7x; +1)°
2
= ((Xu Xi2) (2;) + 1> = (xille + XX + 1)2

(o2 o2 2 2
= (xille + XX, + 2xilxj1xi2xj2 + 2Xi1Xj1 + inzsz + 1)

(0

X;
=(xi21 Xizz ‘/Exuxiz ‘/Exu ‘/Exiz 1) ﬁlesz
¢ (x)T V2x;

All monomials of degree <2 over input attributes . /ZX - /
]
\ 1

(x;)
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Polynomial Kernels

= Kernel: kyoy (x5, %) = (%% + 1)°, 2D-input, p = 2.
kpoty (%i,%;) = (x7x; +1)°
2
= ((Xu Xi2) (2;) + 1> = (xille + XX + 1)2

(o2 o2 2 2
= (xille + XX, + 2xilxj1xi2xj2 + 2Xi1Xj1 + inzsz + 1)

(0

X;
=(xi21 Xizz ‘/Exuxiz ‘/Exu ‘/Exiz 1) ﬁlesz
¢ (x)T V2x;

All monomials of degree <2 over input attributes . /ZX - /
]
\ 1

(x;)
X; QX; ! X; ®X;
- \/le- \/zx]
1 1 60



RBF Kernel

= Kernel:  kppe(x;,%;) = exp (—v[|x; — x|
= No finite-dimensional feature mapping ¢.
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Time Series: DTW Kernel

= Similarity of time series
= |dea: Find corresponding similar points in x,x’.

s Correspondence function
T[X(k) E [11 TX]) 7-[x’ (l) E [11 Tx’]

= DTW distance is squared distance between
matched sequences:

2
kprw(X,X') = e ( () X

62



Time Series: DTW Kernel

= Efficient calculation using dynamic programming

s Lety(k, 1) be the minimum squared distance of
corresponding points up to time k and .

= Recursive update:

y(k, 1) = (x, —x7)?
+ min{y(k - 1,1 - 1),y(k —1,0),y(k,l — 1)}

= Algorithm:
DTW(Sequences x and x‘)
Let y(0,0) =0;y(k,0) = o0;y(0,1) = 0
FOR k=1...T,
FOR 1=1...T,
vk, D) = X —x)? +min{y(k — 1,1 —1),y(k — 1,1),y(k, 1 — 1)}
RETURN y(T,, Ty)
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Strings: Motivation

= Strings are a common non-numeric type of data
Documents & email are strings

From: Webmaster Admin <in-foweb@live.co.uk=

To: undisclosed-recipients: ;

Reply-to: in-foweb@live.co.uk

Subject: Attention !! Re-activer le service e-mail
Date: Wed, 19 Jan 2011 15:54:21 +0100 (CET)

User-Agent: SquirrelMail/1.4.8-5.el5.centos.10

‘Votre quota a dépassé 'ensemble quota/limite est de 20 Go Vous étes en
cours d'exécution sur 23FR de fichiers et parce que les fichiers cachés
sur votre e-mail.

DNA & Protein sequences are strings

Nucleotide Backbone @
(s Lty )Lyl solpne) on
30

15
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String Kernels

= String — a sequence of characters from alphabet X
written as s = s45, ... s, with |s| = n.

The set of all strings is 2* = U,,en 2"
Si:j = SiSi+1 S]

Subsequence: for any i € {0,1}", s[i] is the elements
of s corresponding to elements of i that are 1

« Eg. If s="abcd” s[(1,0,0,1)]="ad”

= A string kernel is a real-valued function on £* x X*.
We need positive definite kernels

We will design kernels by looking at a feature space
of substrings / subsequences
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Bag-of-Words Kernel

= For textual data, a simple feature representation is
Indexed by the words contained in the string

Email Attribute Instance x

— Word #1 occurs? 0\ Aardvark
Dear Beneficiary,

1 |Beneficiary

your Email address has been picked . 0 |Eriend
online in this years MICROSOFT . ] _
CONSUMER AWARD as a : :

Winner of One Hundred and Fifty Five 1 | Sterling
Thousand
Pounds Sterling... Word #m occurs? 0 /Science

m =~ 1,000,000

s Bag-of-Words Kernel computes the number of
common words between 2 texts; efficient?



Spectrum Kernel

= Consider feature space with features corresponding
to every p length substring of alphabet .

d(s), is # of times u € 2P is contained in string s
s The p-spectrum kernel is the result

D= () O,
uexp
nmmmm ﬂ

aaab aaab

bbab O 1 1 1 bbab 1 3 0 2
aaaa 3 o) 0 0 aaaa 6 o) 9 3
baab 1 1 1 0 baab 3 2 3 3
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Spectrum Kernel — Computation

= Without explicitly computing this feature map,
the p-spectrum kernel can be computed as

s|-p+1|t|l—p+1

Kp(s,t) = z Z I[[Si:i+p—1=tj:j+p—1]]

i=1  j=1

This computation is O(p|s||t]).
Using trie data structures, this computation can be
reduced to O(p - max(|s|, |t])).
= Naturally, we can also compute (weighted) sums of
different length substrings
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String Kernels

s All-subsequences kernel determines the number of
subsequences that appear in both strings

s Fixed-length subsequence kernels
s Gap-weighted subsequence kernels...
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Graphs: Motivation

s Graphs are often used to model objects and their
relationship to one another:

Bioinformatics: Molecule relationships
Internet, social networks

s Central Question:
How similar are two
Graphs?

How similar are two

nodes within a
Graph?
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Graph Kernel: Example

= Consider a dataset of websites with links
constituting the edges in the graph

A kernel on the nodes of the graph would be useful
for learning w.r.t. the web-pages

A kernel on graphs would be useful for comparing
different components of the internet (e.g. domains)
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Graph Kernel: Example

= Consider a set of chemical pathways (sequences of
Interactions among molecules); i.e. graphs

A node kernel would a useful way to measure
similarity of different molecules’ roles within these

A graph kernel would be a useful measure of
similarity for different pathways
S sagiosciences sttt
A‘ o a : .
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Graphs: Definition

s Agraph G = (V,E) is specified by
A set of nodes: Vi, ...,V EV
A set of edges: ECV XV

= Data structures for representing graphs:

n

Adjacency matrix: A = (aij)l]:1’ a;; =1](v;,v;) € E|

@ Gy = V1, Ep)

V1 = {vl, ...,v4} Al =
(U1, Ul), (U1, vZ):}

@ @ e {(UZJ v3), (V4, 12)

O O
-0 O
O O =k O
o O O O
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Similarity between Graphs

= Central Question: How similar are two graphs?

= 1st Possibility: Number of isomorphisms between
all (sub-) graphs.
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Isomorphisms of Graphs

= Isomorphism: Two Graphs G; = (V,E;) &
G, = (V,, E,) are isomorphic if there exists a
bijective mapping f : V; = V, so that

(Ui, U]) S El = (f(vl),f(v])) S EZ
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Isomorphisms of Graphs

= Isomorphism: Two Graphs
G, = (V,,E,) are isomo

Subgraph isomorphism:
NP-hard!

bijective mapping [ : &

7 v2

(Ui; Uj) €k = (f(vi f 2

@> ‘@
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Similarity between Graphs

= Central Question: How similar are two graphs?

= 2nd Possibility: Counting the number of “common”
paths in the graph.

@g ’ @> ‘@
& ‘@ (vl

G, = (V1,E1) G, = (Vz;Ez) "




Common Paths in Graphs

= The number of paths of length 0 is just the number
of nodes Iin the graph.

CINONC
ool

G, = (Vp E1)
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Common Paths in Graphs

= The number of paths of length 1 from one node to
any other is given by the adjacency matrix.

1C From
vi1/1 1 0 O
L7 v3l0 0 0 0
0

\

s \0 1 0
Q %1 vzvv3 Uy

G, = (V1: E1)
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Common Paths in Graphs

= Number of paths of length k from one node to any
other are given by the k™ power of the adjacency

matrix.
1(\ From
v1r/1 1 1 0
) (w000 ¢
1> w310 0 0 0
0
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Common Paths in Graphs

= Number of paths of length k from one node to any
other are given by the k™ power of the adjacency

matrix.

(o @
of0

G, = (Vp E1)

Proof?

From

Al =

v1 /1 1 1
v2[0 0 0
v3{0 0 0
v4\0 0 0

k> 2

o O OO

V1 V2 ) L%

To
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Common Paths in Graphs

= Number of paths of length k from one node to any
other are given by the k™ power of the adjacency

matrix.
From
o @ s
k V210 0 0 O
A=vl0 0 0 0] k>2
V4 \O 0 0 0/
) R
To

G, = (V1: E1)

= Number of paths of length k: Y7;_,(A¥). = 1TA¥1
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Common Paths in Graphs

= Common paths are given by product graphs
G@ — (V@, E®):
V® — V1®V2

Eg = {((v, v), (w, W’))|(v, w)€eE; A (v,w) € Ez}

(& (R &
0) 8~ Ty o
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Similarity between Graphs

= Similarity between graphs: number of “common”
paths in their product graph.
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al

a2

o _ bl

0) B~ Ty () %=y
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Similarity between Graphs

= Similarity between graphs: number of “common”
paths in their product graph.

From
1 al 0 0 1 1 0 O
a2000100
23 jl> 0 00 0 1 1
c 0 00 0 0 1
0 000 0 O
° 0 000 0 O
al a2 bl b2 c1 c2

To
Gl Gz

CP., = CP., + z (AD);; = 6+ 6 = 12
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Similarity between Graphs

= Similarity between graphs: number of “common”
paths in their product graph.

From
1 al
a2
ORISR :> &

Gl Gz To

O O O OO
O O OO 0o
O OO OO
O O O OO
S OO OO
SO OO KrIN

Q
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Q
N
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[uy
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a
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CP., = CP., + z (A%);; = 12+4 =16

,j=1 86



Similarity between Graphs

= Similarity between graphs: number of “common”
paths in their product graph.

From

'E') al o0 0 0 0 0 O
a2 O 0 0 0O 0 O
° 23 jl> A%, 0 00 0 0 O
O 0 0 0 0 O
O 0 0 0 0 O
‘EI’ 0 000060
al a2 bl b2 cl1 c2

G To

1 Gz

CP.; = CP., + z (A%);; =16 +0 = 16
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Similarity between Graphs

= Similarity between graphs: number of “common”
paths in their product graph.
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Similarity between Graphs

= Similarity between graphs: number of “common”
paths in their product graph.

With cycles, there can be an Infinite number paths!

From
'E') a1 1 k 1
0O 1 0
ok :> ol b
0O 0 O
0O 0 O
0O 0 O

k=01ij=1 89
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Similarity between Graphs

= Similarity between graphs: number of “common”
paths in their product graph.
With cycles, there can be an infinite number paths!
We must downweight the influence of long paths.

s Random Walk Kernels:

171 -21Ag) 711

1
k(G,,G,) = 2 KAL) =
v |V1||Vz|},(=0l.j=1 ( ®)” Vi lVs]

(GG — 1 iiak AL) _ 1Texp(AAg)1
RAAPE W o s AN AT

= These kernels can be calculated by means of the
Sylvester Equation in 0(n3).
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Similarity between Nodes

= Similarity between graphs: number of “common”
paths in their product graph.

= Assumption: Nodes are similar if they are
connected by many paths.

s Random Walk Kernels

k(vi,v;) = z 1 (a), = (a-2ag)71)

& K
k(vl,v] :Zk_ = exp(AA@,))

Lj
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Additional Graph-Kernels

s Shortest-Path Kernel

All shortest paths between pairs of nodes computed
by Floyd-Warshall algorithm with run time 0(|V|3)

Compare all pairs of shortest paths between 2
graphs O(|V1|*|V,|?)

s Subtree-Kernel:

ldea: use tree structures as indexes in the feature
space

Can be recursively computed for a fixed height tree
Trees are downweighted in their height
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Summary

= Kernel function k(x,x") = ¢ (x)T¢(x") computes the
Inner product of the feature mapping of instances.

= The kernel function can often be computed without
an explicit representation ¢(x).

E.g., polynomial kernel: ko, (x;,%;) = (x7x; +1)°
= Infinite-dimensional feature mappings are possible
Eg., RBF kernel: kgppr(x;,X;) = e~V lxi=x[’
= Kernel functions for time series, strings, graphs, ...

= For a given kernel matrix, the Mercer map provides
a feature mapping.
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Summary

= Representer Theorem: fg+(x) = X1-, af p(x;) (%)
Instances only interact through inner products
Great for few instances, many attributes
= Kernel learning algorithms:
Kernel ridge regression
Kernel perceptron, SVM,
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