Universitit Potsdam

Institut fur Informatik
Lehrstuhl Maschinelles Lernen

Kernel Methods

Tobilas Scheffer

Contents

= Feature mappings
Representer Theorem

= Kernel learning algorithms
Kernel ridge regression
Kernel perceptron,
Dual SVM

= Mercer map

= Kernel functions
Polynomial, RBF
For time series, strings, graphs

Review: Linear Models

= Linear models: fa(x) =x'0

= Regularized empirical risk minimization:

arg;nin Z £(fo(x;),y;) + AQ(06)
i=1

= Choice of loss & regularizer gives different methods
Perceptron, SVM, ridge regression, ...

Feature Mappings

= Models constained to hyperplane in feature space:
Hy = {x|x'0 = 0}.

= Use mapping ¢ to embed instances x € X in higher-
dimensional feature space.

= Find hyperplane in higher-dimensional space,
corresponds to non-linear surface in feature space.

= Kernel trick: Feature space ¢ (X) need not be
represented explicitly, can be infinite-dimensional.

Feature Mappings

= All linear methods can be made non-linear by
means of feature mapping ¢.

*
g
I &
~

A

O LR
- te,
o ‘e

*
.
. ‘
|
amn®

*
*
*
® s
o E,
[]
‘i
o9 s
*
*

2 .2

b (x1,x3) = (x1%2, X7, X3

~

—

—

-

* .

L

L “
.
-r"',.""

= Hyperplane in feature space corresponds to a

nonlinear surface in original space.

L
>

Feature Mappings

X110 Xim
X = . :
Xn1 " Xam

s Feature Mapping:

(¢(X1)T) (¢(X1)1 ¢(X1)m1)
P = : = : :
¢(xn)T (p(xn)l tte ¢(Xn)m/

m |nstances:

Feature Mappings

= Feature mapping ¢ (x) can be high dimensional.

The size of estimated parameter vector 8 depends
on the dimensionality of ¢ — could be infinite!

= Computation of ¢(x) can be expensive.

¢ must be computed for each training point x; & for
each prediction x.

= How can we adapt linear methods to efficiently
Incorporate high dimensional ¢?

Representer Theorem: Observation

= Perceptron algorithm: IF Y f(x)<0
THEN 9=0+y.X

s Resulting parameter vector is a linear combination
of instances: 0" = Y'*, @; V;X;

= Sufficient to determine coefficients «;, independent
of dimensionality of feature space.

= Underlying general principle?

Contents

|
Representer Theorem

= Kernel learning algorithms
Kernel ridge regression
Kernel perceptron,
Dual SVM

= Mercer map

= Kernel functions
Polynomial, RBF
For time series, strings, graphs

Representer Theorem

Theorem: If g(o) is strictly monotonically increasing,

then the 8* that minimizes

L(®) =) £(87p(x), ¥ + g(lfll2)
=1

has the form 0* = }I'; ;¢ (x;), with a; € R.

n

for (0 =) @i p(x)T)

=1

Inner product is a measure for
similarity between instances

Generally 8" is any vector in @, but we
show it must be in the span of the data.

10

L®) =) €(fox0,y0) + g(lfoll2)
i=1

Representer Theorem: Proof

= Orthogonal Decomposition:
0" = 9" + Gl, with 0" S @" = {Z?=1 C(in(Xi) |C¥i S]R}
and O_L S @_L — {9 S @lOTOH =0V 9" S ®||}

11

L®) =) €(fox0,y0) + g(lfoll2)
i=1

Representer Theorem: Proof

= Orthogonal Decomposition:
0" = 9" + Gl, with 0" S @" = {Z?=1 C(in(Xi) |C¥i S]R}
and O_L S @_L — {9 S @lOTOH =0V 9" S ®||}

= For any training point x; it follows that
for(x) =0, ¢ (x;) + 0, p(x) =0, p(x;)
Why is 0, ¢ (x;) = 0?

12

L®) =) €(fox0,y0) + g(lfoll2)
i=1

Representer Theorem: Proof

= Orthogonal Decomposition:
0" = 9" + Gl, with 0" S @" = {Z?=1 Clin(Xi) |C¥i €]R}
and O_L € ®_L — {9 € @lOTOH =0V 9" € ®||}

= For any training point x; it follows that
for(x) =0, ¢ (x;) + 0, p(x) =0, p(x;)
Yie1 P(fo(x;),y;) is independent of 0 .
because 0, "¢ (x;) = 0

= Finally from g(]|0*||,) = g(0, |2) it follows 8, = 0.
gle*l) =g(lley+e.l,) = g (J 0y, + ||el||%> > g([leull,)

Since 616, =0 Since g is strictly
(Pythagoras' Theorem) monotonically increasing. 13

Representer Theorem

= The hyperplane 6%, which minimizes
L(8) = X7, £(8Tp(x),y;) +Q(8)
= can be represented as

fr (0 = 0TH00 = fur 0 = Y aip(x) "
1=1

14

Primal vs. Dual View

s Primal decision function:
fo(x) = 01 p(x)

s Dual decision function:

fe®0 = a9

15

Primal vs. Dual View

s Primal decision function:
fox) = 0T (%)

s Dual decision function:
=) adp@)T$00 = a P00

s |llustration:

leaiﬁb(xi)T

(_ d(x;)" —)
=(a .. ap) : — oald
o ¢(Xn)T _

16

Primal vs. Dual View

s Primal decision function:
fox) = 0T (%)

= Dual decision function:
fe® =) ap@)TB00 = BP0
= Duality between parameters:
0= Z:l 1“i¢(Xi) =d'a

s |llustration:

| | aq
0=|o(x1) .. OXp) (: >= dla
| | @n

17

Primal vs. Dual View

s Primal decision function:
fo(x) = 01 p(x)

= Dual decision function:
n
)=) @dpx)TER) = aTPHR)
1=
= Duality between parameters:

0 = Z:lzlaigb(xi) = »Tq

18

Primal vs. Dual View

= Primal view: fg(x) = 0T¢p(x)
Model 8 has as many parameters as the dimensionality
of ¢ (x).

Good if there are many examples with few attributes.

= Dual view: f,(x) = a' ®p(x)
Model a has as many parameters as there are
examples.
Good if there are few examples with many attributes.

The representation ¢(x) can even be infinite
dimensional, as long as the inner product can be
computed efficiently.

19

Kernel Functions

s Dual view of the decision function:

fa(X) = <Zn a; ¢(Xi)T> ¢ (x)

=1

B Z?zlai (¢(Xi)T¢(x))

n
= z a; k(X X)
i=1

= Where kernel function k(x;,x) calculates the inner
product ¢ (x;)Tp(x).

20

Kernel Functions

s Kernel functions can be understood as a measure
of similarity between instances.

= Primal view on data: “what does x look like?”

¢ (x)1
d(x) = : = multiply by 0T.
¢ ()
= Dual view on data: “how similar is x to each training
Instance?”
k(xq,X)
PP(x) = : = multiply by a’.

k (X, X)

21

Kernel Functions

= Kernel function can be defined for
Vectors (linear, polynomial, RBF, ...)
Strings
Images
Sequences, graphs

= Any kernel learning method can be applied to any
type of data using a kernel for that type of data.

22

Contents

= Kernel learning algorithms
Kernel ridge regression
Kernel perceptron,
Dual SVM

= Mercer map

= Kernel functions
Polynomial, RBF
For time series, strings, graphs

23

Kernel Ridge Regression

s Sqguared loss:

= L2 reqgularization:
0,(8) = [16]I5

24

Kernel Ridge Regression
s Minimize
L®) =), (folx) —y)* +2070
z (67d(x) — v;)" + 2076

25

Kernel Ridge Regression
= Minimize
L(O) = Zi=1(f"(xi) —y)*+ 200

n
_ z 1(9T¢(xi) —y:)" + 1070
1=
— (0 — y)T(®0 —y) + 1070
m Why’>

- ¢(X1)T — 0,
(PO —y) = : R
o ¢(Xn)T — Om

(cp(xl)Te - ;vl)
b(x,)T0 — y,

26

Kernel Ridge Regression

= Minimize
L(6) = z-=1(fe(xi) —-y)*+10'60

_ zn (0T (x,) — y;)" + 1070
= (d)é) 1— Y (®0 —y) +10'0
= By the representer theorem:
0=2>oa
= Dual regularized empirical risk:
L(a) = (@@ Ta—y) (@0 Ta—y) + 1aTddTa

27

Kernel Ridge Regression

= Dual regularized empirical risk:

L) = (®®Ta - y)T(CDCDTa —y)+ladTodTa
=a'PP PP o — 2a PPy —yly
+la' P a

= Define gram matrix (or kernel matrix) as K = &7,
L(a) = a'KKa — 2a’Ky — y'y + la'Ka
= Setting the derivative to zero

9
al‘(a) =0

s Gives the solution
a= K+ Dty

28

Kernel Ridge Regression

= Kernel (gram) matrix: K = ®®T

- ¢(X1)T — |
K=|: : d(x1)
_ ¢(Xn)T _ |

k(x4,X1) ... kXq4,X,)

(k(xn,xl) v k(x,X5)
| Kl] = k(Xi,Xj)

%)

..)

|

29

Kernel Ridge Regression

= Regression method that uses kernel functions

= Works with any nonlinear embedding ¢ as long as
there is a kernel function that computes the inner

product: k(x;,X) = ¢(x;) ¢ (x).

= Kernel matrix K of size n X n has to be inverted,
works only for modest sample sizes.

= Solution dependent on K;; = k(x;,X;), but
otherwise independent of ®.

s For large sample size, use numeric optimization
(e.g., stochastic gradient descent method).

30

Contents

Kernel perceptron,
Dual SVM
= Mercer map

= Kernel functions
Polynomial, RBF
For time series, strings, graphs

31

Kernel Perceptron

= Loss function:
fp(fe(xi),}’i) = max(O, —yife(x,;)) y
= No reqularizer.
= Primal stochastic gradient:
—yiX; —Vifex) >b———(5—F7
V0i,.(0) =
«(0) { 0 —yife(x)) <O

Rosenblatt, 1960
32

Kernel Perceptron

IF Y f(x) <0

= Stochastic gradient update step: THEN 0’ = 0+ y x

=0 +y;p(x;) i
o Z @@ =) @)+ i)
= BT = ap)T+ i (x)

& a; i =a; T Y

= Dual stochastic gradient update step:

IF Yifa(xi) <0
THEN a; = a; +y;

33

Kernel Perceptron Algorithm

Perceptron(lInstances {(x;y;)})
Set a=0
DO
FOR i=1,..,n
IF Vifa(x;) <0
THEN a; = a; + y;
END
WHILE o changes
RETURN «

s Decision function:

fu0) = TRPx) = Y

a;ik(X;, X)
i=1

34

Kernel Perceptron

= Perceptron loss, no regularizer
s Dual form of the decision function:

fu®0 =) aik(xi®

= Dual form of the update rule:
|f yifa(xi) < 0, then a; =a; +y;
= Equivalent to the primal form of the perceptron

= Advantageous to use instead of the primal
perceptron if there are few samples and ¢(x) is
high dimensional.

35

Contents

Dual SVM
= Mercer map

= Kernel functions
Polynomial, RBF
For time series, strings, graphs

36

Kernel Support Vector Machine

= Primal: min [Z ~, max(0,1 — y;p(x;)70) + — OTO]

= Equivalent optimization problem with side
constraints:

mln[Z £ + eTel

such that
y;p(x;)T0>1—¢&; and & =0

s Goal: dual formulization of the optimization problem

37

Kernel Support Vector Machine

= Optimization problem with side constraints:

. 1
min [A Yiz1§it; OTO]
8 Goal function: 7(0,%)
such that Side constraints: g(8,%) >0

L function: Z(8,%) — Bg(®,
vip(x)T0 = 1—¢; and agrange function: Z(6,) — £g(8,8)

= Lagrange function with Lagrange-Multipliers g = 0 and
B° > 0 for the side constraints:

L(6,%B,B°) = ﬂz $i + - Zﬁi(Yi(p(Xi)Te —14+&) - Z.Biofi
im1 i=1 i=1

= Optimization problem without side constraints:

min max L(0, &, B, B°
pnma (0,%,8,8°)

38

Kernel Support Vector Machine

= Lagrange function
10,5 B, 6%) = AE L D Biid()TO~1+8) = > B%
=1 =1

i=1

= Setting the derivative of L w.r.t. (0, &) to zero gives:

2LOERB) =0 = 0=3", fiy; b(x)

ZLOEBE)=0 = 1= ot BN

Relation between primal
and dual parameters...
representer theorem.

39

_ 0= z:l=1ﬁiyi¢(xi)
Kernel Support Vector Machine | 25+

= Substitute the derived parameters into the
Lagrange function

LQEBB%——WFm)
Zﬁl('ylcp(xlﬂe —1+8)- Eﬁl i+ AZ 7

40

_ 0= z:l=1ﬁiyi¢(xi)
Kernel Support Vector Machine | 25+

= Substitute the derived parameters into the
Lagrange function:

n T/ n
1
L(6,%B,B°) = E(Z 5i}’i¢(xi)> (Z ﬁj}’jf,b(xj))
i=1 =1
_Z,Bi <Yi¢(xi)TZﬁij¢(Xj) -1+ fi) - Zﬁiofi + ﬂz $i
' i=1 i=1

n
=1 j=1

41

Kernel Support Vector Machine

0= zi=1:8iyi¢(xi)
A= B+ B

= Substitute the derived parameters into the

Lagrange function:

n T n
1
L(0,%B,B") = E(Z 5i}’i¢(xi)> (Z ﬁjyf¢(xj)>
i=1 =

1 n

Ez ,BJYLYJQ[)(XL)TQ[)()
Bi

L,j=

2

z (id)(xi)Tzn:,BijQb(xj) -1+ fi) - Zn:ﬁiofi + ﬂzn: $i
i=1 i=1

By x0T (x) + Eﬁl Y (Bt)6t 12 7
i=1 =1

=1

42

_ 0= z:l=1ﬁiyi¢(xi)
Kernel Support Vector Machine | 25+

= Substitute the derived parameters into the
Lagrange function:

n T/ n
1
L(6,%B,B°) = > (Z 5i}’i¢(xi)> (Z ﬁj}’jf,b(xj))
i=1 =1
Bi ()’i(l)(xi)Tz Bivip(x;) — 1+ fi) - z B& + ﬂz $i
i=1 i=1
z iBivividx)Td(x;)

2 By x0T (x) + Eﬁl Y (5t)¢ +A§ 7
=1

i=1

R

=
Il
[UE

l\JIb—\

|
.MS‘

=~
Il
[UEN

43

1 n
i_zz ,BJZVL:V]Q[)(XL)TQb()

Kernel Support Vector Machine

= Optimization criterion of the dual SVM:

maxz Bi — > z ﬁlﬁ]ylyjk(xuxj)

,j=1
suchthat
06, <4

Large if §;,5; > 0
for similar instances of
different classes.

L1-Reqularizer
of B (sparse)

44

Kernel Support Vector Machine

Optimization criterion of the dual SVM:
n 1 n
mBaXz Bi —3 Z BiBiyiyik(x;,x;)
i=1 i,j=1
Optimization over parameters 3.

Solution found with QP-Solver in 0(n?).
Sparse solution.

Samples only appear as pairwise inner products.

45

Kernel Support Vector Machine

Primal and dual optimization problem have the
same solution.

0= z B;yv;p(X;) ‘ Support Vectors:

X;ESV pi >0

—

Dual form of the decision function:

fe(x) = Z Biyik(x;,x)

X;ESV
Primal SVM:
Solution is a Vector 0 in the space of the attributes.

Dual SVM:

The same solution is represented as weights ; of
the samples.

46

Constructing Kernels

= Design embedding ¢ (x), then obtain resulting
kernel function k(x,x") = ¢p(x)Top(x').
s Or: just define kernel function (any similarity

measure) k(x,x’) directly, don’t bother with
embedding.

= For which functions k does there exist a mapping
¢(x), so that k represents an inner product?

47

Kernels

= Kernel matrices are symmetric:
K =K'

= Kernel matrices K € R™*" are positive semidefinite:

JPp € RV K = pPpT

= Kernel function k(x,x’) is positive semidefinite if
K is positive semidefinite for every data set.

m For every positive definite function k there is at
least one mapping ¢ (x) such that k(x,x’) =
d»(x)Tp((x") for all x and x'.

48

Contents

= Mercer map

= Kernel functions
Polynomial, RBF
For time series, strings, graphs

49

Mercer Map

= Eigenvalue decomposition: Every symmetric matrix
K can be decomposed in terms of its eigenvectors
u; and eigenvalues A;:

A 0 | |
K=UAUL, withA=[: =~ { |&U=(u - u,
0 An | |

= If Kis positive semi-definite, then A; € R%*

= The eigenvectors are orthonormal (u/u; = 1 and
u; u; = 0) and U is orthogonal: UT = U™,

i

50

Mercer Map
Eigenvalue decomposition

= Thus it holds: 7 Diagonal matrix with ./4;
/

K = UAU!T
— (UAl/Z)(Al/ZuT)
= (UAY/2)(UAY2)"

s Feature mapping for training data can be defined as

| |
(¢(X1) - (xy) | = (UAV2)
| |

51

Mercer Map

s Feature mapping for used training data can then be
defined as

| |
T
p(x1) - P(xn) | = (UAY?)
| |
= Kernel matrix between training and test data
Kiest = CD(Xtrain)TcD(Xtest)
= (UAY?) 0 (X st)
= Equation results in a mapping of the test data:
-1
O (Xpest) = (UAY?) "Kiest
D(Xest) = AY2UTK o

T

UT — U—l

52

Mercer Map

s Useful if a learning problem is given as a kernel
function but learning should take place in the
primal.

s For example if the kernel matrix will be too large
(quadratic memory consumption!)

53

Contents

= Kernel functions
Polynomial, RBF
For time series, strings, graphs

54

Kernel Compositions

s Kernel functions can be composed:
k(x,x") = ck,;(x,x")
k(x,x") = f(X)k (x,x")f(x")
k(x,x) = q(ky(x,x"))
k(x,x) = eka(xx)
k(x,x) =k{(x,xX") + k,(%,X')

55

Kernel Functions

= Polynomial kernels: kpory (X5, %) = (xFx; +1)°

= Radial basis functions: kggr(x;, ;) = e~V li=x;]°
= Sigmoid kernels,

= Dynamic time-warping kernels,

= String kernels,

s Graph kernels,

56

Polynomial Kernels

= Kernel function: ko, (x;, %) = (x7x; +1)"
= Which transformation ¢ corresponds to this kernel?
= Example: 2-D input space, p = 2.

57

Polynomial Kernels

= Kernel: kyoy (x5, %) = (%% + 1)°, 2D-input, p = 2.
kpoly(xi'xj) = (x'irx]' T 1)2

2
X 2
- ((Xil Xi2) (Xﬁ> + 1) = (Xille + Xi2Xjp + 1)

58

Polynomial Kernels

= Kernel: kyoy (x5, %) = (%% + 1)°, 2D-input, p = 2.
kpoty (%i,%;) = (x7x; +1)°
2
= ((Xu Xi2) (2;) + 1> = (xille + XX + 1)2

(o2 o2 2 2
= (xille + XX, + 2xilxj1xi2xj2 + 2Xi1Xj1 + inzsz + 1)

(0

X;
=(xi21 Xizz ‘/Exuxiz ‘/Exu ‘/Exiz 1) ﬁlesz
¢ (x)T V2x;

All monomials of degree <2 over input attributes . /ZX - /
]
\ 1

(x;)

59

Polynomial Kernels

= Kernel: kyoy (x5, %) = (%% + 1)°, 2D-input, p = 2.
kpoty (%i,%;) = (x7x; +1)°
2
= ((Xu Xi2) (2;) + 1> = (xille + XX + 1)2

(o2 o2 2 2
= (xille + XX, + 2xilxj1xi2xj2 + 2Xi1Xj1 + inzsz + 1)

(0

X;
=(xi21 Xizz ‘/Exuxiz ‘/Exu ‘/Exiz 1) ﬁlesz
¢ (x)T V2x;

All monomials of degree <2 over input attributes . /ZX - /
]
\ 1

(x;)
X; QX; ! X; ®X;
- \/le- \/zx]
1 1 60

RBF Kernel

= Kernel: kppe(x;,%;) = exp (—v[|x; — x|
= No finite-dimensional feature mapping ¢.

61

Time Series: DTW Kernel

= Similarity of time series
= |dea: Find corresponding similar points in x,x’.

s Correspondence function
T[X(k) E [11 TX]) 7-[x’ (l) E [11 Tx’]

= DTW distance is squared distance between
matched sequences:

2
kprw(X,X') = e (() X

62

Time Series: DTW Kernel

= Efficient calculation using dynamic programming

s Lety(k, 1) be the minimum squared distance of
corresponding points up to time k and .

= Recursive update:

y(k, 1) = (x, —x7)?
+ min{y(k - 1,1 - 1),y(k —1,0),y(k,l — 1)}

= Algorithm:
DTW(Sequences x and x‘)
Let y(0,0) =0;y(k,0) = o0;y(0,1) = 0
FOR k=1...T,
FOR 1=1...T,
vk, D) = X —x)? +min{y(k — 1,1 —1),y(k — 1,1),y(k, 1 — 1)}
RETURN y(T,, Ty)

63

Strings: Motivation

= Strings are a common non-numeric type of data
Documents & email are strings

From: Webmaster Admin <in-foweb@live.co.uk=

To: undisclosed-recipients: ;

Reply-to: in-foweb@live.co.uk

Subject: Attention !! Re-activer le service e-mail
Date: Wed, 19 Jan 2011 15:54:21 +0100 (CET)

User-Agent: SquirrelMail/1.4.8-5.el5.centos.10

‘Votre quota a dépassé 'ensemble quota/limite est de 20 Go Vous étes en
cours d'exécution sur 23FR de fichiers et parce que les fichiers cachés
sur votre e-mail.

DNA & Protein sequences are strings

Nucleotide Backbone @
(s Lty)Lyl solpne) on
30

15

64

String Kernels

= String — a sequence of characters from alphabet X
written as s = s45, ... s, with |s| = n.

The set of all strings is 2* = U,,en 2"
Si:j = SiSi+1 S]

Subsequence: for any i € {0,1}", s[i] is the elements
of s corresponding to elements of i that are 1

« Eg. If s="abcd” s[(1,0,0,1)]="ad”

= A string kernel is a real-valued function on £* x X*.
We need positive definite kernels

We will design kernels by looking at a feature space
of substrings / subsequences

65

Bag-of-Words Kernel

= For textual data, a simple feature representation is
Indexed by the words contained in the string

Email Attribute Instance x

— Word #1 occurs? 0\ Aardvark
Dear Beneficiary,

1 |Beneficiary

your Email address has been picked . 0 |Eriend
online in this years MICROSOFT .] _
CONSUMER AWARD as a : :

Winner of One Hundred and Fifty Five 1 | Sterling
Thousand
Pounds Sterling... Word #m occurs? 0 /Science

m =~ 1,000,000

s Bag-of-Words Kernel computes the number of
common words between 2 texts; efficient?

Spectrum Kernel

= Consider feature space with features corresponding
to every p length substring of alphabet .

d(s), is # of times u € 2P is contained in string s
s The p-spectrum kernel is the result

D= () O,
uexp
nmmmm ﬂ

aaab aaab

bbab O 1 1 1 bbab 1 3 0 2
aaaa 3 o) 0 0 aaaa 6 o) 9 3
baab 1 1 1 0 baab 3 2 3 3

67

Spectrum Kernel — Computation

= Without explicitly computing this feature map,
the p-spectrum kernel can be computed as

s|-p+1|t|l—p+1

Kp(s,t) = z Z I[[Si:i+p—1=tj:j+p—1]]

i=1 j=1

This computation is O(p|s||t]).
Using trie data structures, this computation can be
reduced to O(p - max(|s|, |t])).
= Naturally, we can also compute (weighted) sums of
different length substrings

68

String Kernels

s All-subsequences kernel determines the number of
subsequences that appear in both strings

s Fixed-length subsequence kernels
s Gap-weighted subsequence kernels...

69

Graphs: Motivation

s Graphs are often used to model objects and their
relationship to one another:

Bioinformatics: Molecule relationships
Internet, social networks

s Central Question:
How similar are two
Graphs?

How similar are two

nodes within a
Graph?

70

Graph Kernel: Example

= Consider a dataset of websites with links
constituting the edges in the graph

A kernel on the nodes of the graph would be useful
for learning w.r.t. the web-pages

A kernel on graphs would be useful for comparing
different components of the internet (e.g. domains)

71

Graph Kernel: Example

= Consider a set of chemical pathways (sequences of
Interactions among molecules); i.e. graphs

A node kernel would a useful way to measure
similarity of different molecules’ roles within these

A graph kernel would be a useful measure of
similarity for different pathways
S sagiosciences sttt
A‘ o a : .

72

Graphs: Definition

s Agraph G = (V,E) is specified by
A set of nodes: Vi, ...,V EV
A set of edges: ECV XV

= Data structures for representing graphs:

n

Adjacency matrix: A = (aij)l]:1’ a;; =1](v;,v;) € E|

@ Gy = V1, Ep)

V1 = {vl, ...,v4} Al =
(U1, Ul), (U1, vZ):}

@ @ e {(UZJ v3), (V4, 12)

O O
-0 O
O O =k O
o O O O

73

Similarity between Graphs

= Central Question: How similar are two graphs?

= 1st Possibility: Number of isomorphisms between
all (sub-) graphs.

74

Isomorphisms of Graphs

= Isomorphism: Two Graphs G; = (V,E;) &
G, = (V,, E,) are isomorphic if there exists a
bijective mapping f : V; = V, so that

(Ui, U]) S El = (f(vl),f(v])) S EZ

75

Isomorphisms of Graphs

= Isomorphism: Two Graphs
G, = (V,,E,) are isomo

Subgraph isomorphism:
NP-hard!

bijective mapping [: &

7 v2

(Ui; Uj) €k = (f(vi f 2

@> ‘@

76

Similarity between Graphs

= Central Question: How similar are two graphs?

= 2nd Possibility: Counting the number of “common”
paths in the graph.

@g ’ @> ‘@
& ‘@ (vl

G, = (V1,E1) G, = (Vz;Ez) "

Common Paths in Graphs

= The number of paths of length 0 is just the number
of nodes Iin the graph.

CINONC
ool

G, = (Vp E1)

/8

Common Paths in Graphs

= The number of paths of length 1 from one node to
any other is given by the adjacency matrix.

1C From
vi1/1 1 0 O
L7 v3l0 0 0 0
0

\

s \0 1 0
Q %1 vzvv3 Uy

G, = (V1: E1)

79

Common Paths in Graphs

= Number of paths of length k from one node to any
other are given by the k™ power of the adjacency

matrix.
1(\ From
v1r/1 1 1 0
) (w000 ¢
1> w310 0 0 0
0

80

Common Paths in Graphs

= Number of paths of length k from one node to any
other are given by the k™ power of the adjacency

matrix.

(o @
of0

G, = (Vp E1)

Proof?

From

Al =

v1 /1 1 1
v2[0 0 0
v3{0 0 0
v4\0 0 0

k> 2

o O OO

V1 V2) L%

To

81

Common Paths in Graphs

= Number of paths of length k from one node to any
other are given by the k™ power of the adjacency

matrix.
From
o @ s
k V210 0 0 O
A=vl0 0 0 0] k>2
V4 \O 0 0 0/
) R
To

G, = (V1: E1)

= Number of paths of length k: Y7;_,(A¥). = 1TA¥1

82

Common Paths in Graphs

= Common paths are given by product graphs
G@ — (V@, E®):
V® — V1®V2

Eg = {((v, v), (w, W’))|(v, w)€eE; A (v,w) € Ez}

(& (R &
0) 8~ Ty o

83

Similarity between Graphs

= Similarity between graphs: number of “common”
paths in their product graph.

OYONE

al

a2

o _ bl

0) B~ Ty () %=y

cl

e) (e2) “
Gg

S O OO O
SO OO O
SO O m OO
SO RO OO
o OO oo
-0 O O O O

Q
=
Q
N
oy
[uy
=y
N
a
[
a
N

Gl Gz To

n
CP<o = z (A%);; =6

,j=1 84

Similarity between Graphs

= Similarity between graphs: number of “common”
paths in their product graph.

From
1 al 0 0 1 1 0 O
a2000100
23 jl> 0 00 0 1 1
c 0 00 0 0 1
0 000 0 O
° 0 000 0 O
al a2 bl b2 c1 c2

To
Gl Gz

CP., = CP., + z (AD);; = 6+ 6 = 12

,j=1 85

Similarity between Graphs

= Similarity between graphs: number of “common”
paths in their product graph.

From
1 al
a2
ORISR :> &

Gl Gz To

O O O OO
O O OO 0o
O OO OO
O O O OO
S OO OO
SO OO KrIN

Q
=
Q
N
oy
[uy
=y
N
a
[
a
N

CP., = CP., + z (A%);; = 12+4 =16

,j=1 86

Similarity between Graphs

= Similarity between graphs: number of “common”
paths in their product graph.

From

'E') al o0 0 0 0 0 O
a2 O 0 0 0O 0 O
° 23 jl> A%, 0 00 0 0 O
O 0 0 0 0 O
O 0 0 0 0 O
‘EI’ 0 000060
al a2 bl b2 cl1 c2

G To

1 Gz

CP.; = CP., + z (A%);; =16 +0 = 16

I,j=1 87

Similarity between Graphs

= Similarity between graphs: number of “common”
paths in their product graph.

© ONOR
al

o) 8~ Tk
cl

G, G G 10
? ¥ k> 2

S O O O OO
S O O O OO
S O O O OO
S O O O OO

>
®?T‘
Il
a o o
N N
Sl ocoococo o
Q
N
ey
U
ey
N
a
=
o
N

O OO OO

CPeoo = z (A¥),; =16

k=01i,j=1 88

Similarity between Graphs

= Similarity between graphs: number of “common”
paths in their product graph.

With cycles, there can be an Infinite number paths!

From
'E') a1 1 k 1
0O 1 0
ok :> ol b
0O 0 O
0O 0 O
0O 0 O

k=01ij=1 89

SO O OO
SO OOk X

SO OOk X

Similarity between Graphs

= Similarity between graphs: number of “common”
paths in their product graph.
With cycles, there can be an infinite number paths!
We must downweight the influence of long paths.

s Random Walk Kernels:

171 -21Ag) 711

1
k(G,,G,) = 2 KAL) =
v |V1||Vz|},(=0l.j=1 (®)” Vi lVs]

(GG — 1 iiak AL) _ 1Texp(AAg)1
RAAPE W o s AN AT

= These kernels can be calculated by means of the
Sylvester Equation in 0(n3).

90

Similarity between Nodes

= Similarity between graphs: number of “common”
paths in their product graph.

= Assumption: Nodes are similar if they are
connected by many paths.

s Random Walk Kernels

k(vi,v;) = z 1 (a), = (a-2ag)71)

& K
k(vl,v] :Zk_ = exp(AA@,))

Lj
91

Additional Graph-Kernels

s Shortest-Path Kernel

All shortest paths between pairs of nodes computed
by Floyd-Warshall algorithm with run time 0(|V|3)

Compare all pairs of shortest paths between 2
graphs O(|V1|*|V,|?)

s Subtree-Kernel:

ldea: use tree structures as indexes in the feature
space

Can be recursively computed for a fixed height tree
Trees are downweighted in their height

92

Summary

= Kernel function k(x,x") = ¢ (x)T¢(x") computes the
Inner product of the feature mapping of instances.

= The kernel function can often be computed without
an explicit representation ¢(x).

E.g., polynomial kernel: ko, (x;,%;) = (x7x; +1)°
= Infinite-dimensional feature mappings are possible
Eg., RBF kernel: kgppr(x;,X;) = e~V lxi=x[’
= Kernel functions for time series, strings, graphs, ...

= For a given kernel matrix, the Mercer map provides
a feature mapping.

93

Summary

= Representer Theorem: fg+(x) = X1-, af p(x;) (%)
Instances only interact through inner products
Great for few instances, many attributes
= Kernel learning algorithms:
Kernel ridge regression
Kernel perceptron, SVM,

94

	Kernel Methods
	Contents
	Review: Linear Models
	Feature Mappings
	Feature Mappings
	Feature Mappings
	Feature Mappings
	Representer Theorem: Observation
	Contents
	Representer Theorem
	Representer Theorem: Proof
	Representer Theorem: Proof
	Representer Theorem: Proof
	Representer Theorem
	Primal vs. Dual View
	Primal vs. Dual View
	Primal vs. Dual View
	Primal vs. Dual View
	Primal vs. Dual View
	Kernel Functions
	Kernel Functions	
	Kernel Functions
	Contents
	Kernel Ridge Regression
	Kernel Ridge Regression
	Kernel Ridge Regression
	Kernel Ridge Regression
	Kernel Ridge Regression
	Kernel Ridge Regression
	Kernel Ridge Regression
	Contents
	Kernel Perceptron
	Kernel Perceptron
	Kernel Perceptron Algorithm
	Kernel Perceptron
	Contents
	Kernel Support Vector Machine
	Kernel Support Vector Machine
	Kernel Support Vector Machine
	Kernel Support Vector Machine
	Kernel Support Vector Machine
	Kernel Support Vector Machine
	Kernel Support Vector Machine
	Kernel Support Vector Machine
	Kernel Support Vector Machine
	Kernel Support Vector Machine
	Constructing Kernels
	Kernels
	Contents
	Mercer Map
	Mercer Map
	Mercer Map
	Mercer Map
	Contents
	Kernel Compositions
	Kernel Functions
	Polynomial Kernels
	Polynomial Kernels
	Polynomial Kernels
	Polynomial Kernels
	RBF Kernel
	Time Series: DTW Kernel
	Time Series: DTW Kernel
	Strings: Motivation
	String Kernels
	Bag-of-Words Kernel
	Spectrum Kernel
	Spectrum Kernel – Computation
	String Kernels
	Graphs: Motivation
	Graph Kernel: Example
	Graph Kernel: Example
	Graphs: Definition
	Similarity between Graphs
	Isomorphisms of Graphs
	Isomorphisms of Graphs
	Similarity between Graphs
	Common Paths in Graphs
	Common Paths in Graphs
	Common Paths in Graphs
	Common Paths in Graphs
	Common Paths in Graphs
	Common Paths in Graphs
	Similarity between Graphs
	Similarity between Graphs
	Similarity between Graphs
	Similarity between Graphs
	Similarity between Graphs
	Similarity between Graphs
	Similarity between Graphs
	Similarity between Nodes
	Additional Graph-Kernels
	Summary
	Summary

