Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen

Kernel Methods

Tobias Scheffer

Contents

- Feature mappings
- Representer Theorem
- Kernel learning algorithms
- Kernel ridge regression
- Kernel perceptron,
- Dual SVM
- Mercer map
- Kernel functions
- Polynomial, RBF
- For time series, strings, graphs

Review: Linear Models

- Linear models: $f_{\boldsymbol{\theta}}(\mathbf{x})=\mathbf{x}^{\mathrm{T}} \boldsymbol{\theta}$
- Regularized empirical risk minimization:

$$
\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{i=1}^{n} \ell\left(f_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right), y_{i}\right)+\lambda \Omega(\boldsymbol{\theta})
$$

- Choice of loss \& regularizer gives different methods
- Perceptron, SVM, ridge regression, ...

Feature Mappings

- Models constained to hyperplane in feature space: $H_{\boldsymbol{\theta}}=\left\{\mathbf{x} \mid \mathbf{x}^{\mathrm{T}} \boldsymbol{\theta}=0\right\}$.
- Use mapping ϕ to embed instances $\mathbf{x} \in X$ in higherdimensional feature space.
- Find hyperplane in higher-dimensional space, corresponds to non-linear surface in feature space.
- Kernel trick: Feature space $\phi(X)$ need not be represented explicitly, can be infinite-dimensional.

Feature Mappings

- All linear methods can be made non-linear by means of feature mapping ϕ.

- Hyperplane in feature space corresponds to a nonlinear surface in original space.

Feature Mappings

- Instances:

$$
\mathbf{X}=\left(\begin{array}{ccc}
x_{11} & \cdots & x_{1 m} \\
\vdots & \ddots & \vdots \\
x_{n 1} & \cdots & x_{n m}
\end{array}\right)
$$

- Feature Mapping:

$$
\boldsymbol{\Phi}=\left(\begin{array}{c}
\phi\left(\mathbf{x}_{1}\right)^{\mathrm{T}} \\
\vdots \\
\phi\left(\mathbf{x}_{n}\right)^{\mathrm{T}}
\end{array}\right)=\left(\begin{array}{ccc}
\phi\left(\mathbf{x}_{1}\right)_{1} & \cdots & \phi\left(\mathbf{x}_{1}\right)_{m^{\prime}} \\
\vdots & \ddots & \vdots \\
\phi\left(\mathbf{x}_{n}\right)_{1} & \cdots & \phi\left(\mathbf{x}_{n}\right)_{m^{\prime}}
\end{array}\right)
$$

Feature Mappings

- Feature mapping $\phi(\mathbf{x})$ can be high dimensional.
- The size of estimated parameter vector $\boldsymbol{\theta}$ depends on the dimensionality of ϕ - could be infinite!
- Computation of $\phi(\mathbf{x})$ can be expensive.
- ϕ must be computed for each training point $\mathbf{x}_{i} \&$ for each prediction x.
- How can we adapt linear methods to efficiently incorporate high dimensional ϕ ?

Representer Theorem: Observation

- Perceptron algorithm:

$$
\begin{array}{ll}
\text { IF } & y_{i} f_{\theta}\left(\mathbf{x}_{i}\right) \leq 0 \\
\text { THEN } & \boldsymbol{\theta}=\boldsymbol{\theta}+y_{i} \mathbf{x}_{i} \\
\hline
\end{array}
$$

- Resulting parameter vector is a linear combination of instances: $\boldsymbol{\theta}^{*}=\sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i}$
- Sufficient to determine coefficients α_{i}, independent of dimensionality of feature space.
- Underlying general principle?

Contents

- Feature mappings
- Representer Theorem
- Kernel learning algorithms
- Kernel ridge regression
- Kernel perceptron,
- Dual SVM
- Mercer map
- Kernel functions
- Polynomial, RBF
- For time series, strings, graphs

Representer Theorem

Theorem: If $g(o)$ is strictly monotonically increasing, then the $\boldsymbol{\theta}^{*}$ that minimizes

$$
L(\boldsymbol{\theta})=\sum_{i=1}^{n} \ell\left(\boldsymbol{\theta}^{T} \phi\left(\mathbf{x}_{i}\right), y_{i}\right)+g\left(\left\|f_{\boldsymbol{\theta}}\right\|_{2}\right)
$$

has the form $\boldsymbol{\theta}^{*}=\sum_{i=1}^{n} \alpha_{i}^{*} \phi\left(\mathbf{x}_{i}\right)$, with $\alpha_{i}^{*} \in \mathbb{R}$.

$$
f_{\mathbf{\theta}^{*}}(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i}^{*} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \phi(\mathbf{x})
$$

Generally $\boldsymbol{\theta}^{*}$ is any vector in Φ, but we show it must be in the span of the data.

Representer Theorem: Proof

- Orthogonal Decomposition:
$-\boldsymbol{\theta}^{*}=\boldsymbol{\theta}_{\|}+\boldsymbol{\theta}_{\perp}$, with $\boldsymbol{\theta}_{\|} \in \Theta_{\|}=\left\{\sum_{i=1}^{n} \alpha_{i} \phi\left(\mathbf{x}_{i}\right) \mid \alpha_{i} \in \mathbb{R}\right\}$ and $\boldsymbol{\theta}_{\perp} \in \Theta_{\perp}=\left\{\boldsymbol{\theta} \in \Theta \mid \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}_{\|}=0 \forall \boldsymbol{\theta}_{\|} \in \Theta_{\|}\right\}$

Representer Theorem: Proof

$$
L(\boldsymbol{\theta})=\sum_{i=1}^{n} \ell\left(f_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right), y_{i}\right)+g\left(\left\|f_{\boldsymbol{\theta}}\right\|_{2}\right)
$$

- Orthogonal Decomposition:
$-\boldsymbol{\theta}^{*}=\boldsymbol{\theta}_{\|}+\boldsymbol{\theta}_{\perp}$, with $\boldsymbol{\theta}_{\|} \in \Theta_{\|}=\left\{\sum_{i=1}^{n} \alpha_{i} \phi\left(\mathbf{x}_{i}\right) \mid \alpha_{i} \in \mathbb{R}\right\}$

$$
\text { and } \boldsymbol{\theta}_{\perp} \in \Theta_{\perp}=\left\{\boldsymbol{\theta} \in \Theta \mid \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}_{\|}=0 \forall \boldsymbol{\theta}_{\|} \in \Theta_{\|}\right\}
$$

- For any training point \mathbf{x}_{i} it follows that

$$
f_{\boldsymbol{\theta}^{*}}\left(\mathbf{x}_{i}\right)=\boldsymbol{\theta}_{\|}{ }^{\mathrm{T}} \phi\left(\mathbf{x}_{i}\right)+\boldsymbol{\theta}_{\perp}{ }^{\mathrm{T}} \phi\left(\mathbf{x}_{i}\right)=\boldsymbol{\theta}_{\|}{ }^{\mathrm{T}} \phi\left(\mathbf{x}_{i}\right)
$$

- Why is $\boldsymbol{\theta}_{\perp}{ }^{\mathrm{T}} \phi\left(\mathbf{x}_{i}\right)=0$?

Representer Theorem: Proof

$$
L(\boldsymbol{\theta})=\sum_{i=1}^{n} \ell\left(f_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right), y_{i}\right)+g\left(\left\|f_{\boldsymbol{\theta}}\right\|_{2}\right)
$$

- Orthogonal Decomposition:
$-\boldsymbol{\theta}^{*}=\boldsymbol{\theta}_{\|}+\boldsymbol{\theta}_{\perp}$, with $\boldsymbol{\theta}_{\|} \in \Theta_{\|}=\left\{\sum_{i=1}^{n} \alpha_{i} \phi\left(\mathbf{x}_{i}\right) \mid \alpha_{i} \in \mathbb{R}\right\}$ and $\boldsymbol{\theta}_{\perp} \in \Theta_{\perp}=\left\{\boldsymbol{\theta} \in \Theta \mid \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}_{\|}=0 \forall \boldsymbol{\theta}_{\|} \in \Theta_{\|}\right\}$
- For any training point \mathbf{x}_{i} it follows that

$$
f_{\boldsymbol{\theta}^{*}}\left(\mathbf{x}_{i}\right)=\boldsymbol{\theta}_{\|}^{\mathrm{T}} \phi\left(\mathbf{x}_{i}\right)+\boldsymbol{\theta}_{\perp}{ }^{\mathrm{T}} \phi\left(\mathbf{x}_{i}\right)=\boldsymbol{\theta}_{\|}^{\mathrm{T}} \phi\left(\mathbf{x}_{i}\right)
$$

- $\sum_{i=1}^{n} \ell\left(f_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right), y_{i}\right)$ is independent of $\boldsymbol{\theta}_{\perp}$.
- because $\boldsymbol{\theta}_{\perp}{ }^{\mathrm{T}} \phi\left(\mathbf{x}_{i}\right)=0$
- Finally from $g\left(\left\|\boldsymbol{\theta}^{*}\right\|_{2}\right) \geq g\left(\left\|\boldsymbol{\theta}_{\|}\right\|_{2}\right)$, it follows $\boldsymbol{\theta}_{\perp}=\mathbf{0}$.

$$
\begin{gathered}
g\left(\left\|\boldsymbol{\theta}^{*}\right\|_{2}\right)=g\left(\left\|\boldsymbol{\theta}_{\|}+\boldsymbol{\theta}_{\perp}\right\|_{2}\right)=g\left(\sqrt{\left\|\boldsymbol{\theta}_{\|}\right\|_{2}^{2}+\left\|\boldsymbol{\theta}_{\perp}\right\|_{2}^{2}}\right) \geqslant g\left(\left\|\boldsymbol{\theta}_{\|}\right\|_{2}\right) \\
\begin{array}{c}
\text { Since } \boldsymbol{\theta}_{\perp}^{\mathrm{T}} \boldsymbol{\theta}_{\|}=0 \\
\text { (Pythagoras' } \text { Theorem) }
\end{array} \\
\begin{array}{c}
\text { Since } g \text { is strictly } \\
\text { monotonically increasing. }
\end{array} \\
\hline
\end{gathered}
$$

Representer Theorem

- The hyperplane $\boldsymbol{\theta}^{*}$, which minimizes

$$
-L(\boldsymbol{\theta})=\sum_{i=1}^{n} \ell\left(\boldsymbol{\theta}^{\mathrm{T}} \phi(\mathbf{x}), y_{i}\right)+\Omega(\boldsymbol{\theta})
$$

- can be represented as

$$
f_{\mathbf{\theta}^{*}}(\mathbf{x})=\boldsymbol{\theta}^{* \mathrm{~T}} \phi(\mathbf{x})=f_{\boldsymbol{\alpha}^{*}}(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i}^{*} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \phi(\mathbf{x})
$$

Primal vs. Dual View

- Primal decision function:

$$
f_{\boldsymbol{\theta}}(\mathbf{x})=\boldsymbol{\theta}^{\mathrm{T}} \phi(\mathbf{x})
$$

- Dual decision function:

$$
f_{\boldsymbol{\alpha}}(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \phi(\mathbf{x})
$$

Primal vs. Dual View

- Primal decision function:

$$
f_{\boldsymbol{\theta}}(\mathbf{x})=\boldsymbol{\theta}^{\mathrm{T}} \phi(\mathbf{x})
$$

- Dual decision function:

$$
f_{\boldsymbol{\alpha}}(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \phi(\mathbf{x})=\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\Phi} \phi(\mathbf{x})
$$

- Illustration:

$$
\sum_{i=1}^{n} \alpha_{i} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}}
$$

$$
=\left(\begin{array}{lll}
\alpha_{1} & \ldots & \alpha_{n}
\end{array}\right)\left(\begin{array}{ccc}
- & \phi\left(\mathbf{x}_{1}\right)^{\mathrm{T}} & - \\
\vdots & \\
- & \phi\left(\mathbf{x}_{n}\right)^{\mathrm{T}} & -
\end{array}\right)=\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\Phi}
$$

Primal vs. Dual View

- Primal decision function:

$$
f_{\boldsymbol{\theta}}(\mathbf{x})=\boldsymbol{\theta}^{\mathrm{T}} \phi(\mathbf{x})
$$

- Dual decision function:

$$
f_{\boldsymbol{\alpha}}(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \phi(\mathbf{x})=\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\Phi} \phi(\mathbf{x})
$$

- Duality between parameters:

$$
\boldsymbol{\theta}=\sum_{i=1}^{n} \alpha_{i} \phi\left(\mathbf{x}_{i}\right)=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}
$$

- Illustration:

$$
\boldsymbol{\theta}=\left(\begin{array}{ccc}
\mid & & \mid \\
\phi\left(\mathbf{x}_{1}\right) & \ldots & \phi\left(\mathbf{x}_{n}\right) \\
\mid & & \mid
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{n}
\end{array}\right)=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}
$$

Primal vs. Dual View

- Primal decision function:

$$
f_{\boldsymbol{\theta}}(\mathbf{x})=\boldsymbol{\theta}^{\mathrm{T}} \phi(\mathbf{x})
$$

- Dual decision function:

$$
f_{\boldsymbol{\alpha}}(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \phi(\mathbf{x})=\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\Phi} \phi(\mathbf{x})
$$

- Duality between parameters:

$$
\boldsymbol{\theta}=\sum_{i=1}^{n} \alpha_{i} \phi\left(\mathbf{x}_{i}\right)=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}
$$

Primal vs. Dual View

- Primal view: $f_{\boldsymbol{\theta}}(\mathbf{x})=\boldsymbol{\theta}^{\mathrm{T}} \phi(\mathbf{x})$
- Model $\boldsymbol{\theta}$ has as many parameters as the dimensionality of $\phi(\mathbf{x})$.
- Good if there are many examples with few attributes.
- Dual view: $f_{\boldsymbol{\alpha}}(\mathbf{x})=\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\Phi} \phi(\mathbf{x})$
- Model $\boldsymbol{\alpha}$ has as many parameters as there are examples.
- Good if there are few examples with many attributes.
- The representation $\phi(\mathbf{x})$ can even be infinite dimensional, as long as the inner product can be computed efficiently.

Kernel Functions

- Dual view of the decision function:

$$
\begin{aligned}
f_{\boldsymbol{\alpha}}(\mathbf{x}) & =\left(\sum_{i=1}^{n} \alpha_{i} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}}\right) \phi(\mathbf{x}) \\
& =\sum_{i=1}^{n} \alpha_{i}\left(\phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \phi(\mathbf{x})\right) \\
& =\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)
\end{aligned}
$$

- Where kernel function $k\left(\mathbf{x}_{i}, \mathbf{x}\right)$ calculates the inner product $\phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \phi(\mathbf{x})$.

Kernel Functions

- Kernel functions can be understood as a measure of similarity between instances.
- Primal view on data: "what does x look like?"

$$
\phi(\mathbf{x})=\left(\begin{array}{c}
\phi(x)_{1} \\
\vdots \\
\phi(x)_{m^{\prime}}
\end{array}\right) \Rightarrow \text { multiply by } \boldsymbol{\theta}^{\mathrm{T}} .
$$

- Dual view on data: "how similar is \mathbf{x} to each training instance?"

$$
\boldsymbol{\Phi} \boldsymbol{\phi}(\mathbf{x})=\left(\begin{array}{c}
k\left(\mathbf{x}_{1}, \mathbf{x}\right) \\
\vdots \\
k\left(\mathbf{x}_{n}, \mathbf{x}\right)
\end{array}\right) \Rightarrow \text { multiply by } \boldsymbol{\alpha}^{\mathrm{T}} .
$$

Kernel Functions

- Kernel function can be defined for
- Vectors (linear, polynomial, RBF, ...)
- Strings
- Images
- Sequences, graphs
- Any kernel learning method can be applied to any type of data using a kernel for that type of data.

Contents

- Feature mappings
- Representer Theorem
- Kernel learning algorithms
- Kernel ridge regression
- Kernel perceptron,
- Dual SVM
- Mercer map
- Kernel functions
- Polynomial, RBF
- For time series, strings, graphs

Kernel Ridge Regression

- Squared loss:

$$
\ell_{\mathbf{2}}\left(f_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right), y_{i}\right)=\left(f_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}
$$

- L2 regularization:

$$
\Omega_{2}(\boldsymbol{\theta})=\|\boldsymbol{\theta}\|_{2}^{2}
$$

Kernel Ridge Regression

- Minimize

$$
\begin{aligned}
\boldsymbol{L}(\boldsymbol{\theta})= & \sum_{i=1}^{n}\left(f_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta} \\
& =\sum_{i=1}^{n}\left(\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}
\end{aligned}
$$

Kernel Ridge Regression

- Minimize

$$
\begin{aligned}
\boldsymbol{L}(\boldsymbol{\theta})= & \sum_{i=1}^{n}\left(f_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta} \\
& =\sum_{i=1}^{n}\left(\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta} \\
& =(\boldsymbol{\Phi} \boldsymbol{\theta}-\mathbf{y})^{\mathrm{T}}(\boldsymbol{\Phi} \boldsymbol{\theta}-\mathbf{y})+\lambda \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}
\end{aligned}
$$

- Why?

$$
\begin{aligned}
& (\boldsymbol{\Phi} \boldsymbol{\theta}-\mathbf{y})=\left(\begin{array}{ccc}
- & \phi\left(\mathbf{x}_{1}\right)^{\mathrm{T}} & - \\
\vdots & \vdots \\
- & \phi\left(\mathbf{x}_{n}\right)^{\mathrm{T}} & -
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{\theta}_{1} \\
\vdots \\
\boldsymbol{\theta}_{m}
\end{array}\right)-\mathbf{y} \\
& =\left(\begin{array}{c}
\phi\left(\mathbf{x}_{1}\right)^{\mathrm{T}} \boldsymbol{\theta}-y_{1} \\
\vdots \\
\phi\left(\mathbf{x}_{n}\right)^{\mathrm{T}} \boldsymbol{\theta}-y_{n}
\end{array}\right)
\end{aligned}
$$

Kernel Ridge Regression

- Minimize

$$
\begin{aligned}
\boldsymbol{L}(\boldsymbol{\theta})= & \sum_{i=1}^{n}\left(f_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta} \\
& =\sum_{i=1}^{n}\left(\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\phi}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta} \\
& =(\boldsymbol{\Phi} \boldsymbol{\theta}-\mathbf{y})^{\mathrm{T}}(\boldsymbol{\Phi} \boldsymbol{\theta}-\mathbf{y})+\lambda \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}
\end{aligned}
$$

- By the representer theorem:

$$
\boldsymbol{\theta}=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}
$$

- Dual regularized empirical risk:

$$
\boldsymbol{L}(\boldsymbol{\alpha})=\left(\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}-\mathbf{y}\right)^{\mathrm{T}}\left(\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}-\mathbf{y}\right)+\lambda \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}
$$

Kernel Ridge Regression

- Dual regularized empirical risk:

$$
\begin{aligned}
\boldsymbol{L}(\boldsymbol{\alpha})= & \left(\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}-\mathbf{y}\right)^{\mathrm{T}}\left(\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}-\mathbf{y}\right)+\lambda \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha} \\
& =\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}-2 \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \mathbf{y}-\mathbf{y}^{\mathrm{T}} \mathbf{y} \\
& +\lambda \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}
\end{aligned}
$$

- Define gram matrix (or kernel matrix) as $\mathbf{K}=\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}}$.

$$
L(\boldsymbol{\alpha})=\boldsymbol{\alpha}^{\mathrm{T}} \mathbf{K K} \boldsymbol{\alpha}-2 \boldsymbol{\alpha}^{\mathrm{T}} \mathbf{K y}-\mathbf{y}^{\mathrm{T}} \mathbf{y}+\lambda \boldsymbol{\alpha}^{\mathrm{T}} \mathbf{K} \boldsymbol{\alpha}
$$

- Setting the derivative to zero

$$
\frac{\partial}{\partial \alpha} L(\alpha)=0
$$

- Gives the solution

$$
\boldsymbol{\alpha}=(\mathbf{K}+\lambda \boldsymbol{I})^{-1} \mathbf{y}
$$

Kernel Ridge Regression

- Kernel (gram) matrix: $\mathbf{K}=\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}}$

$$
\begin{aligned}
& \mathbf{K}=\left(\begin{array}{ccc}
- & \phi\left(\mathbf{x}_{1}\right)^{\mathrm{T}} & - \\
\vdots & \ddots & \vdots \\
- & \phi\left(\mathbf{x}_{n}\right)^{\mathrm{T}} & -
\end{array}\right)\left(\begin{array}{ccc}
\mid & \ldots & \mid \\
\phi\left(\mathbf{x}_{1}\right) & \ddots & \phi\left(\mathbf{x}_{n}\right) \\
\mid & \ldots & \mid
\end{array}\right) \\
&=\left(\begin{array}{ccc}
k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & \ldots & k\left(\mathbf{x}_{1}, \mathbf{x}_{n}\right) \\
\vdots & \ddots & \vdots \\
k\left(\mathbf{x}_{n}, \mathbf{x}_{1}\right) & \ldots & k\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)
\end{array}\right)
\end{aligned}
$$

- $\mathbf{K}_{i j}=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$

Kernel Ridge Regression

- Regression method that uses kernel functions
- Works with any nonlinear embedding $\boldsymbol{\phi}$ as long as there is a kernel function that computes the inner product: $k\left(\mathbf{x}_{i}, \mathbf{x}\right)=\phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \phi(\mathbf{x})$.
- Kernel matrix K of size $n \times n$ has to be inverted, works only for modest sample sizes.
- Solution dependent on $\mathbf{K}_{i j}=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$, but otherwise independent of $\boldsymbol{\Phi}$.
- For large sample size, use numeric optimization (e.g., stochastic gradient descent method).

Contents

- Feature mappings
- Representer Theorem
- Kernel learning algorithms
- Kernel ridge regression
- Kernel perceptron,
- Dual SVM
- Mercer map
- Kernel functions
- Polynomial, RBF
- For time series, strings, graphs

Kernel Perceptron

- Loss function:

$$
\ell_{p}\left(f_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right), y_{i}\right)=\max \left(0,-y_{i} f_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)\right)
$$

- No regularizer.
- Primal stochastic gradient:

$$
\nabla L_{\mathbf{x}_{i}}(\boldsymbol{\theta})=\left\{\begin{array}{cllll}
-y_{i} \mathbf{x}_{i} & -y_{i} f_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)>0 & & -1 & 0 \\
0 & -y_{i} f_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)<0 & & 1
\end{array}\right.
$$

Rosenblatt, 1960

Kernel Perceptron

- Stochastic gradient update step: | IF | $y_{i} f_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right) \leq 0$ |
| :--- | ---: |
| THEN | |
| $\boldsymbol{\theta}^{\prime}=\boldsymbol{\theta}+y_{i} \mathbf{x}_{i}$ | |

$$
\begin{aligned}
& \boldsymbol{\theta}^{\prime}=\boldsymbol{\theta}+y_{i} \phi\left(\mathbf{x}_{i}\right) \\
& \Leftrightarrow \sum_{i=1}^{n} \alpha_{i}^{\prime} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}}=\sum_{i=1}^{n} \alpha_{i} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}}+y_{i} \phi\left(\mathbf{x}_{i}\right) \\
& \quad \Leftarrow \alpha_{i}^{\prime} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}}=\alpha_{i} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}}+y_{i} \phi\left(\mathbf{x}_{i}\right) \\
& \quad \Leftarrow \alpha^{\prime}{ }_{i}=\alpha_{i}+y_{i}
\end{aligned}
$$

- Dual stochastic gradient update step:

$$
\begin{array}{ll}
\text { IF } & y_{i} f_{\boldsymbol{\alpha}}\left(\mathbf{x}_{i}\right) \leq 0 \\
\text { THEN } & \alpha_{i}=\alpha_{i}+y_{i}
\end{array}
$$

Kernel Perceptron Algorithm

$$
\begin{aligned}
& \text { Perceptron(Instances } \left.\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}\right) \\
& \text { Set } \boldsymbol{\alpha}=\mathbf{0} \\
& \text { DO } \\
& \text { FOR } i=1, \ldots, n \\
& \text { IF } \quad y_{i} f_{\boldsymbol{\alpha}}\left(\mathbf{x}_{i}\right) \leq 0 \\
& \text { THEN } \quad \alpha_{i}=\alpha_{i}+y_{i} \\
& \text { END } \\
& \text { WHILE } \boldsymbol{\alpha} \text { changes } \\
& \text { RETURN } \boldsymbol{\alpha}
\end{aligned}
$$

- Decision function:

$$
f_{\boldsymbol{\alpha}}(\mathbf{x})=\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\Phi} \phi\left(\mathbf{x}_{i}\right)=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

Kernel Perceptron

- Perceptron loss, no regularizer
- Dual form of the decision function:

$$
f_{\boldsymbol{\alpha}}(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

- Dual form of the update rule:
- If $y_{i} f_{\boldsymbol{\alpha}}\left(\mathbf{x}_{i}\right) \leq 0$, then $\alpha_{i}=\alpha_{i}+y_{i}$
- Equivalent to the primal form of the perceptron
- Advantageous to use instead of the primal perceptron if there are few samples and $\phi(\mathbf{x})$ is high dimensional.

Contents

- Feature mappings
- Representer Theorem
- Kernel learning algorithms
- Kernel ridge regression
- Kernel perceptron,
- Dual SVM
- Mercer map
- Kernel functions
- Polynomial, RBF
- For time series, strings, graphs

Kernel Support Vector Machine

- Primal: $\min _{\boldsymbol{\theta}}\left[\sum_{i=1}^{n} \max \left(0,1-y_{i} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \boldsymbol{\theta}\right)+\frac{1}{2 \lambda} \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}\right]$
- Equivalent optimization problem with side constraints:

$$
\begin{aligned}
& \min _{\boldsymbol{\theta}, \xi}\left[\lambda \sum_{i=1}^{n} \xi_{i}+\frac{1}{2} \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}\right] \\
& \text { such that } \\
& y_{i} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \boldsymbol{\theta} \geq 1-\xi_{i} \text { and } \xi_{i} \geq 0
\end{aligned}
$$

- Goal: dual formulization of the optimization problem

Kernel Support Vector Machine

- Optimization problem with side constraints:

$$
\min _{\boldsymbol{\theta}, \xi}\left[\lambda \sum_{i=1}^{n} \xi_{i}+\frac{1}{2} \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}\right]
$$

such that

- Lagrange function with Lagrange-Multipliers $\boldsymbol{\beta} \geq \mathbf{0}$ and $\boldsymbol{\beta}^{0} \geq \mathbf{0}$ for the side constraints:

$$
L\left(\boldsymbol{\theta}, \xi, \boldsymbol{\beta}, \boldsymbol{\beta}^{0}\right)=\lambda \sum_{i=1}^{n} \xi_{i}+\frac{\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}}{2}-\sum_{i=1}^{n} \beta_{i}\left(y_{i} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \boldsymbol{\theta}-1+\xi_{i}\right)-\sum_{i=1}^{n} \beta_{i}^{0} \xi_{i}
$$

- Optimization problem without side constraints:
$\min _{\boldsymbol{\theta}, \xi} \max _{\boldsymbol{\beta}, \boldsymbol{\beta}^{0}} L\left(\boldsymbol{\theta}, \xi, \boldsymbol{\beta}, \boldsymbol{\beta}^{0}\right)$

Kernel Support Vector Machine

- Lagrange function:

$$
L\left(\boldsymbol{\theta}, \xi, \boldsymbol{\beta}, \boldsymbol{\beta}^{0}\right)=\lambda \sum_{i=1}^{n} \xi_{i}+\frac{\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}}{2}-\sum_{i=1}^{n} \beta_{i}\left(y_{i} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \boldsymbol{\theta}-1+\xi_{i}\right)-\sum_{i=1}^{n} \beta_{i}^{0} \xi_{i}
$$

- Setting the derivative of L w.r.t. $(\boldsymbol{\theta}, \boldsymbol{\xi})$ to zero gives:

$$
\begin{array}{r}
\frac{\partial}{\partial \boldsymbol{\theta}} L\left(\boldsymbol{\theta}, \xi, \boldsymbol{\beta}, \boldsymbol{\beta}^{0}\right)=\mathbf{0} \Rightarrow \boldsymbol{\theta}=\sum_{i=1}^{n} \underbrace{\beta_{i} y_{i}}_{\alpha_{i}} \phi\left(\mathbf{x}_{i}\right) \\
\frac{\partial}{\partial \xi_{i}} L\left(\boldsymbol{\theta}, \xi, \boldsymbol{\beta}, \boldsymbol{\beta}^{0}\right)=0 \Rightarrow \lambda=\beta_{i}+\beta_{i}^{0} \\
\begin{array}{c}
\text { Relation between primal } \\
\text { and dual parameters... } \\
\text { representer theorem. }
\end{array}
\end{array}
$$

Kernel Support Vector Machine

$$
\begin{aligned}
& \boldsymbol{\theta}=\sum_{i=1}^{n} \beta_{i} y_{i} \phi\left(\mathbf{x}_{i}\right) \\
& \lambda=\beta_{i}+\beta_{i}^{0}
\end{aligned}
$$

- Substitute the derived parameters into the Lagrange function:

$$
\begin{aligned}
& L\left(\boldsymbol{\theta}, \xi, \boldsymbol{\beta}, \boldsymbol{\beta}^{0}\right)=\frac{1}{2}(\boldsymbol{\theta})^{\mathrm{T}}(\boldsymbol{\theta}) \\
& -\sum_{i=1}^{n} \beta_{i}\left(y_{i} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \boldsymbol{\theta}-1+\xi_{i}\right)-\sum_{i=1}^{n} \beta_{i}^{0} \xi_{i}+\lambda \sum_{i=1}^{n} \xi_{i}
\end{aligned}
$$

Kernel Support Vector Machine

$$
\begin{aligned}
& \boldsymbol{\theta}=\sum_{i=1}^{n} \beta_{i} y_{i} \phi\left(\mathbf{x}_{i}\right) \\
& \lambda=\beta_{i}+\beta_{i}^{0}
\end{aligned}
$$

- Substitute the derived parameters into the Lagrange function:

$$
\begin{aligned}
& L\left(\boldsymbol{\theta}, \xi, \boldsymbol{\beta}, \boldsymbol{\beta}^{0}\right)=\frac{1}{2}\left(\sum_{i=1}^{n} \beta_{i} y_{i} \phi\left(\mathbf{x}_{i}\right)\right)^{\mathrm{T}}\left(\sum_{j=1}^{n} \beta_{j} y_{j} \phi\left(\mathbf{x}_{j}\right)\right) \\
& -\sum_{i=1}^{n} \beta_{i}\left(y_{i} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \sum_{j=1}^{n} \beta_{j} y_{j} \phi\left(\mathbf{x}_{j}\right)-1+\xi_{i}\right)-\sum_{i=1}^{n} \beta_{i}^{0} \xi_{i}+\lambda \sum_{i=1}^{n} \xi_{i}
\end{aligned}
$$

Kernel Support Vector Machine

$$
\begin{aligned}
& \mathrm{\theta}=\sum_{i=1}^{n} \beta_{i} y_{i} \phi\left(\mathbf{x}_{i}\right) \\
& \lambda=\beta_{i}+\beta_{i}^{0}
\end{aligned}
$$

- Substitute the derived parameters into the Lagrange function:

$$
\begin{aligned}
& L\left(\boldsymbol{\theta}, \xi, \boldsymbol{\beta}, \boldsymbol{\beta}^{0}\right)=\frac{1}{2}\left(\sum_{i=1}^{n} \beta_{i} y_{i} \phi\left(\mathbf{x}_{i}\right)\right)^{\mathrm{T}}\left(\sum_{j=1}^{n} \beta_{j} y_{j} \phi\left(\mathbf{x}_{j}\right)\right) \\
& -\sum_{i=1}^{n} \beta_{i}\left(y_{i} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \sum_{j=1}^{n} \beta_{j} y_{j} \phi\left(\mathbf{x}_{j}\right)-1+\xi_{i}\right)-\sum_{i=1}^{n} \beta_{i}^{0} \xi_{i}+\lambda \sum_{i=1}^{n} \xi_{i} \\
& =\frac{1}{2} \sum_{i, j=1}^{n} \beta_{i} \beta_{j} y_{i} y_{j} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \phi\left(\mathbf{x}_{j}\right) \\
& -\sum_{i, j=1}^{n} \beta_{i} \beta_{j} y_{i} y_{j} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \phi\left(\mathbf{x}_{j}\right)+\sum_{i=1}^{n} \beta_{i}-\sum_{i=1}^{n} \underbrace{\left(\beta_{i}+\beta_{i}^{0}\right)}_{=\lambda} \xi_{i}+\lambda \sum_{i=1}^{n} \xi_{i}
\end{aligned}
$$

Kernel Support Vector Machine

$$
\begin{aligned}
& \boldsymbol{\theta}=\sum_{i=1}^{n} \beta_{i} y_{i} \phi\left(\mathbf{x}_{i}\right) \\
& \lambda=\beta_{i}+\beta_{i}^{0}
\end{aligned}
$$

- Substitute the derived parameters into the Lagrange function:

$$
\begin{aligned}
& L\left(\boldsymbol{\theta}, \xi, \boldsymbol{\beta}, \boldsymbol{\beta}^{0}\right)=\frac{1}{2}\left(\sum_{i=1}^{n} \beta_{i} y_{i} \phi\left(\mathbf{x}_{i}\right)\right)^{\mathrm{T}}\left(\sum_{j=1}^{n} \beta_{j} y_{j} \phi\left(\mathbf{x}_{j}\right)\right) \\
& -\sum_{i=1}^{n} \beta_{i}\left(y_{i} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \sum_{j=1}^{n} \beta_{j} y_{j} \phi\left(\mathbf{x}_{j}\right)-1+\xi_{i}\right)-\sum_{i=1}^{n} \beta_{i}^{0} \xi_{i}+\lambda \sum_{i=1}^{n} \xi_{i} \\
& =\frac{1}{2} \sum_{i, j=1}^{n} \beta_{i} \beta_{j} y_{i} y_{j} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \phi\left(\mathbf{x}_{j}\right) \\
& -\sum_{i, j=1}^{n} \beta_{i} \beta_{j} y_{i} y_{j} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \phi\left(\mathbf{x}_{j}\right)+\sum_{i=1}^{n} \beta_{i}-\sum_{i=1}^{n} \underbrace{\left(\beta_{i}+\beta_{i}^{0}\right)}_{=\lambda} \xi_{i}+\lambda \sum_{i=1}^{n} \xi_{i} \\
& =\sum_{i=1}^{n} \beta_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \beta_{i} \beta_{j} y_{i} y_{j} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \phi\left(\mathbf{x}_{j}\right)
\end{aligned}
$$

Kernel Support Vector Machine

- Optimization criterion of the dual SVM:

Kernel Support Vector Machine

- Optimization criterion of the dual SVM:

$$
\max _{\boldsymbol{\beta}} \sum_{i=1}^{n} \beta_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \beta_{i} \beta_{j} y_{i} y_{j} k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

- Optimization over parameters $\boldsymbol{\beta}$.
- Solution found with QP-Solver in $O\left(n^{2}\right)$.
- Sparse solution.
- Samples only appear as pairwise inner products.

Kernel Support Vector Machine

- Primal and dual optimization problem have the same solution.

$$
\boldsymbol{\theta}=\sum_{\mathbf{x}_{i} \in S V} \beta_{i} y_{i} \phi\left(\mathbf{x}_{i}\right) \quad \begin{gathered}
\text { Support Vectors: } \\
\beta_{i}>0
\end{gathered}
$$

- Dual form of the decision function:

$$
f_{\boldsymbol{\beta}}(\mathbf{x})=\sum_{\mathbf{x}_{i} \in S V} \beta_{i} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)
$$

- Primal SVM:
- Solution is a Vector $\boldsymbol{\theta}$ in the space of the attributes.
- Dual SVM:
- The same solution is represented as weights β_{i} of the samples.

Constructing Kernels

- Design embedding $\phi(\mathbf{x})$, then obtain resulting kernel function $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\phi(\mathbf{x})^{\mathrm{T}} \phi\left(\mathbf{x}^{\prime}\right)$.
- Or: just define kernel function (any similarity measure) $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ directly, don't bother with embedding.
- For which functions k does there exist a mapping $\phi(\mathbf{x})$, so that k represents an inner product?

Kernels

- Kernel matrices are symmetric:

$$
\mathbf{K}=\mathbf{K}^{\mathrm{T}}
$$

- Kernel matrices $\mathbf{K} \in \mathbb{R}^{n \times n}$ are positive semidefinite:

$$
\exists \boldsymbol{\Phi} \in \mathbb{R}^{n \times m}: \mathbf{K}=\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}}
$$

- Kernel function $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is positive semidefinite if \mathbf{K} is positive semidefinite for every data set.
- For every positive definite function k there is at least one mapping $\phi(\mathbf{x})$ such that $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=$ $\phi(\mathbf{x})^{\mathrm{T}} \phi\left(\mathbf{x}^{\prime}\right)$ for all \mathbf{x} and \mathbf{x}^{\prime}.

Contents

- Feature mappings
- Representer Theorem
- Kernel learning algorithms
- Kernel ridge regression
- Kernel perceptron,
- Dual SVM
- Mercer map
- Kernel functions
- Polynomial, RBF
- For time series, strings, graphs

Mercer Map

- Eigenvalue decomposition: Every symmetric matrix \mathbf{K} can be decomposed in terms of its eigenvectors \mathbf{u}_{i} and eigenvalues λ_{i} :

$$
\mathbf{K}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{-1}, \text { with } \Lambda=\left(\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right) \& \mathbf{U}=\left(\begin{array}{ccc}
\mid & & \mid \\
\mathbf{u}_{1} & \cdots & \mathbf{u}_{n} \\
\mid & & \mid
\end{array}\right)
$$

- If \mathbf{K} is positive semi-definite, then $\lambda_{i} \in \mathbb{R}^{0+}$
- The eigenvectors are orthonormal ($\mathbf{u}_{i}^{\mathrm{T}} \mathbf{u}_{i}=1$ and $\mathbf{u}_{i}^{\mathrm{T}} \mathbf{u}_{j}=0$) and \mathbf{U} is orthogonal: $\mathbf{U}^{\mathrm{T}}=\mathbf{U}^{-1}$.

Mercer Map

Eigenvalue decomposition

- Thus it holds:

$$
\begin{aligned}
\mathbf{K} & =\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{T}} \quad \text { Diagonal matrix with } \sqrt{\lambda_{i}} \\
& =\left(\mathbf{U} \boldsymbol{\Lambda}^{1 / 2}\right)\left(\boldsymbol{\Lambda}^{1 / 2} \mathbf{U}^{\mathrm{T}}\right) \\
& =\left(\mathbf{U} \boldsymbol{\Lambda}^{1 / 2}\right)\left(\mathbf{U} \boldsymbol{\Lambda}^{1 / 2}\right)^{\mathrm{T}}
\end{aligned}
$$

- Feature mapping for training data can be defined as

$$
\left(\begin{array}{ccc}
\mid & & \mid \\
\phi\left(\mathbf{x}_{1}\right) & \cdots & \phi\left(\mathbf{x}_{n}\right) \\
\mid & & \mid
\end{array}\right)=\left(\mathbf{U} \boldsymbol{\Lambda}^{1 / 2}\right)^{\mathrm{T}}
$$

Mercer Map

- Feature mapping for used training data can then be defined as

$$
\left(\begin{array}{ccc}
\mid & \mid \\
\phi\left(\mathbf{x}_{1}\right) & \cdots & \phi\left(\mathbf{x}_{n}\right) \\
\mid & & \mid
\end{array}\right)=\left(\mathbf{U} \boldsymbol{\Lambda}^{1 / 2}\right)^{\mathrm{T}}
$$

- Kernel matrix between training and test data

$$
\begin{aligned}
\mathbf{K}_{\text {test }} & =\Phi\left(\mathbf{X}_{\text {train }}\right)^{\mathrm{T}} \Phi\left(\mathbf{X}_{\text {test }}\right) \\
& =\left(\mathbf{U} \boldsymbol{\Lambda}^{1 / 2}\right) \Phi\left(\mathbf{X}_{\text {test }}\right)
\end{aligned}
$$

- Equation results in a mapping of the test data:

$$
\begin{aligned}
& \Phi\left(\mathbf{X}_{\text {test }}\right)=\left(\mathbf{U} \boldsymbol{\Lambda}^{1 / 2}\right)^{-1} \mathbf{K}_{\text {test }} \\
& \Phi\left(\mathbf{X}_{\text {test }}\right)=\boldsymbol{\Lambda}^{-1 / 2} \mathbf{U}^{\mathrm{T}} \underbrace{}_{\mathbf{U}_{\text {test }}} \underbrace{}_{\mathbf{U}^{-1}}
\end{aligned}
$$

Mercer Map

- Useful if a learning problem is given as a kernel function but learning should take place in the primal.
- For example if the kernel matrix will be too large (quadratic memory consumption!)

Contents

- Feature mappings
- Representer Theorem
- Kernel learning algorithms
- Kernel ridge regression
- Kernel perceptron,
- Dual SVM
- Mercer map
- Kernel functions
- Polynomial, RBF
- For time series, strings, graphs

Kernel Compositions

- Kernel functions can be composed:

$$
\begin{aligned}
& k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=c k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \\
& k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=f(\mathbf{x}) k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) f\left(\mathbf{x}^{\prime}\right) \\
& k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=q\left(k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right) \\
& k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=e^{k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)} \\
& k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)+k_{2}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)
\end{aligned}
$$

Kernel Functions

- Polynomial kernels: $\quad k_{\text {poly }}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\mathbf{x}_{i}^{\mathrm{T}} \mathbf{x}_{j}+1\right)^{p}$
- Radial basis functions: $k_{R B F}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=e^{-\gamma\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}$
- Sigmoid kernels,
- Dynamic time-warping kernels,
- String kernels,
- Graph kernels,

Polynomial Kernels

- Kernel function: $k_{\text {poly }}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\mathbf{x}_{i}^{\mathrm{T}} \mathbf{x}_{j}+1\right)^{p}$
- Which transformation ϕ corresponds to this kernel?
- Example: 2-D input space, $p=2$.

Polynomial Kernels

- Kernel: $k_{\text {poly }}\left(\mathbf{x}_{i}, \mathrm{x}_{j}\right)=\left(\mathbf{x}_{i}^{\mathrm{T}} \mathrm{x}_{j}+1\right)^{p}, 2 \mathrm{D}$-input, $p=2$.

$$
\begin{aligned}
& k_{\text {poly }}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\mathbf{x}_{i}^{\mathrm{T}} \mathbf{x}_{j}+1\right)^{2} \\
& =\left(\begin{array}{ll}
\left.\left(\begin{array}{ll}
\mathbf{x}_{i 1} & \left.\mathbf{x}_{i 2}\right)
\end{array}\right)\binom{\mathbf{x}_{j 1}}{\mathbf{x}_{j 2}}+1\right)^{2}=\left(\mathbf{x}_{i 1} \mathbf{x}_{j 1}+\mathbf{x}_{i 2} \mathbf{x}_{j 2}+1\right)^{2}
\end{array}\right.
\end{aligned}
$$

Polynomial Kernels

- Kernel: $k_{\text {poly }}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\mathbf{x}_{i}^{\mathrm{T}} \mathbf{x}_{j}+1\right)^{p}$, 2D-input, $p=2$.

$$
\begin{aligned}
& k_{\text {poly }}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\mathbf{x}_{i}^{\mathrm{T}} \mathbf{x}_{j}+1\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\mathbf{x}_{i 1}^{2} \mathbf{x}_{j 1}^{2}+\mathbf{x}_{i 2}^{2} \mathbf{x}_{j 2}^{2}+2 \mathbf{x}_{i 1} \mathbf{x}_{j 1} \mathbf{x}_{i 2} \mathbf{x}_{j 2}+2 \mathbf{x}_{i 1} \mathbf{x}_{j 1}+2 \mathbf{x}_{i 2} \mathbf{x}_{j 2}+1\right) \\
& =\underbrace{\left(\begin{array}{lllll}
\mathbf{x}_{i 1}^{2} & \mathbf{x}_{i 2}^{2} & \sqrt{2} \mathbf{x}_{i 1} \mathbf{x}_{i 2} & \sqrt{2} \mathbf{x}_{i 1} & \sqrt{2} \mathbf{x}_{i 2} \\
\left.\mathbf{x}_{i}\right)^{\mathrm{T}} & 1
\end{array}\right)}_{\text {All monomials of degree } \leq 2 \text { over input attributes }} \underbrace{\left(\begin{array}{c}
\mathbf{x}_{j 1}^{2} \\
\mathbf{x}_{j 2}^{2} \\
\sqrt{2} \mathbf{x}_{j 1} \mathbf{x}_{j 2} \\
\sqrt{2} \mathbf{x}_{j 1} \\
\sqrt{2} \mathbf{x}_{j 2} \\
1
\end{array}\right)}_{\phi\left(\mathbf{x}_{j}\right)}
\end{aligned}
$$

Polynomial Kernels

- Kernel: $k_{\text {poly }}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\mathbf{x}_{i}^{\mathrm{T}} \mathbf{x}_{j}+1\right)^{p}$, 2D-input, $p=2$.

$$
\begin{aligned}
& k_{\text {poly }}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}+1\right)^{2} \\
& \left.=\left(\begin{array}{ll}
\left(\mathbf{x}_{i 1}\right. & \mathbf{x}_{i 2}
\end{array}\right)\binom{\mathbf{x}_{j 1}}{\mathbf{x}_{j 2}}+1\right)^{2}=\left(\mathbf{x}_{i 1} \mathbf{x}_{j 1}+\mathbf{x}_{i 2} \mathbf{x}_{j 2}+1\right)^{2} \\
& =\left(\begin{array}{lll}
\mathbf{x}_{i 1}^{2} \mathbf{x}_{j 1}^{2}+\mathbf{x}_{i 2}^{2} \mathbf{x}_{j 2}^{2}+2 \mathbf{x}_{i 1} \mathbf{x}_{j 1} \mathbf{x}_{i 2} \mathbf{x}_{j 2}+2 \mathbf{x}_{i 1} \mathbf{x}_{j 1}+2 \mathbf{x}_{i 2} \mathbf{x}_{22}+1
\end{array}\right) \\
& =\underbrace{\left(\begin{array}{lll}
\mathbf{x}_{i 1}^{2} & \mathbf{x}_{i 2}^{2} & \sqrt{2} \mathbf{x}_{i 1} \mathbf{x}_{i 2} \\
\phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} & \sqrt{2} \mathbf{x}_{i 1} & \sqrt{2} \mathbf{x}_{i 2} \\
1
\end{array}\right)}_{\text {All monomials of degree } \leq 2 \text { over input attributes }} \underbrace{\left(\begin{array}{c}
\mathbf{x}_{j 1}^{2} \\
\mathbf{x}_{j 2}^{2} \\
\sqrt{2} \mathbf{x}_{j 1} \mathbf{x}_{j 2} \\
\sqrt{2} \mathbf{x}_{j 1} \\
\sqrt{2} \mathbf{x}_{j 2} \\
1
\end{array}\right)}_{\phi\left(\mathbf{x}_{j}\right)}
\end{aligned}
$$

$$
=\left(\begin{array}{c}
\mathbf{x}_{i} \otimes \mathbf{x}_{i} \\
\sqrt{2} \mathbf{x}_{i} \\
1
\end{array}\right)^{T}\left(\begin{array}{c}
\mathbf{x}_{j} \otimes \mathbf{x}_{j} \\
\sqrt{2} \mathbf{x}_{j} \\
1
\end{array}\right)
$$

RBF Kernel

- Kernel: $\quad k_{R B F}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\exp \left(-\gamma\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}\right)$
- No finite-dimensional feature mapping ϕ.

Time Series: DTW Kernel

- Similarity of time series
- Idea: Find corresponding similar points in $\mathbf{x}, \mathbf{x}^{\prime}$.
- Correspondence function

$$
\pi_{\mathbf{x}}(k) \in\left[1, T_{\mathbf{x}}\right], \pi_{\mathbf{x}^{\prime}}(l) \in\left[1, T_{\mathbf{x}^{\prime}}\right]
$$

- DTW distance is squared distance between matched sequences:

$$
k_{D T W}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=e^{-\left(\min \sum_{k=1}^{T}\left(\mathbf{x}_{\pi_{\mathbf{x}(k)}}-\mathbf{x}^{\prime} \pi_{\mathbf{x}^{\prime}(k)}\right)^{2}\right)}
$$

Time Series: DTW Kernel

- Efficient calculation using dynamic programming
- Let $\gamma(k, l)$ be the minimum squared distance of corresponding points up to time k and l.
- Recursive update:

$$
\begin{aligned}
\gamma(k, l) & =\left(\mathbf{x}_{k}-\mathbf{x}_{l}\right)^{2} \\
& +\min \{\gamma(k-1, l-1), \gamma(k-1, l), \gamma(k, l-1)\}
\end{aligned}
$$

- Algorithm:

```
DTW(Sequences \(\mathbf{x}\) and \(\mathbf{x}^{\text {' }}\) )
    Let \(\gamma(0,0)=0 ; \gamma(k, 0)=\infty ; \gamma(0, l)=\infty\)
    FOR \(k=1 \ldots T_{x}\)
        FOR \(l=1 \ldots T_{y}\)
        \(\gamma(k, l)=\left(\mathbf{x}_{k}-\mathbf{x}_{l}\right)^{2}+\min \{\gamma(k-1, l-1), \gamma(k-1, l), \gamma(k, l-1)\}\)
```

 RETURN \(\gamma\left(T_{x}, T_{y}\right)\)

Strings: Motivation

- Strings are a common non-numeric type of data
- Documents \& email are strings

From: Webmaster Admin in-foweb@live.co.uk
To: undisclosed-recipients: ;
Reply-to: in-foweb@live.co.uk
Subject: Attention !! Re-activer le service e-mail
Date: Wed, 19 Jan 2011 15:54:21 +0100 (CET)
User-Agent: SquirrelMail/1.4.8-5.el5.centos. 10
Votre quota a dépassé l'ensemble quota/limite est de 20 Go Vous êtes en cours d'exécution sur 23FR de fichiers et parce que les fichiers cachés
sur votre e-mail.

- DNA \& Protein sequences are strings

String Kernels

- String - a sequence of characters from alphabet Σ written as $\boldsymbol{s}=s_{1} s_{2} \ldots s_{n}$ with $|\boldsymbol{s}|=n$.
- The set of all strings is $\Sigma^{*}=\cup_{n \in N} \Sigma^{n}$
- $\mathbf{s}_{i: j}=s_{i} s_{i+1} \ldots s_{j}$
- Subsequence: for any $\mathbf{i} \in\{0,1\}^{n}, \mathbf{s}[\mathbf{i}]$ is the elements of \mathbf{s} corresponding to elements of i that are 1
* Eg. If $\boldsymbol{s}=$ "abcd" $\boldsymbol{s}[(1,0,0,1)]=" a d "$
- A string kernel is a real-valued function on $\Sigma^{*} \times \Sigma^{*}$.
- We need positive definite kernels
- We will design kernels by looking at a feature space of substrings / subsequences

Bag-of-Words Kernel

- For textual data, a simple feature representation is indexed by the words contained in the string

- Bag-of-Words Kernel computes the number of common words between 2 texts; efficient?

Spectrum Kernel

- Consider feature space with features corresponding to every p length substring of alphabet Σ.
- $\phi(\mathbf{s})_{\mathbf{u}}$ is \# of times $\mathbf{u} \in \Sigma^{p}$ is contained in string \mathbf{s}
- The p-spectrum kernel is the result

$$
\kappa_{p}(\mathbf{s}, \mathbf{t})=\sum_{\mathbf{u} \in \Sigma^{p}} \phi(\mathbf{s})_{\mathbf{u}}^{\mathrm{T}} \phi(\mathbf{t})_{\mathbf{u}}
$$

ϕ	aa	ab	ba	bb		K	aaab	bbab	aaaa
baab									
aaab	2	1	0	0		aaab	5	1	6
bbab	0	1	1	1		bbab	1	3	0
aaaa	3	0	0	0		aaaa	6	0	9
baab	1	1	1	0		baab	3	2	3

Spectrum Kernel - Computation

- Without explicitly computing this feature map, the p-spectrum kernel can be computed as

$$
\kappa_{p}(\mathbf{s}, \mathbf{t})=\sum_{i=1}^{|\mathbf{s}|-p+1} \sum_{j=1}^{|\mathbf{t}|-p+1} \mathrm{I} \llbracket \mathbf{s}_{i: i+p-1}=\mathbf{t}_{j: j+p-1} \rrbracket
$$

- This computation is $O(p|\mathbf{s}||\mathbf{t}|)$.
- Using trie data structures, this computation can be reduced to $O(p \cdot \max (|\mathbf{s}|,|\mathbf{t}|))$.
- Naturally, we can also compute (weighted) sums of different length substrings

String Kernels

- All-subsequences kernel determines the number of subsequences that appear in both strings
- Fixed-length subsequence kernels
- Gap-weighted subsequence kernels...

Graphs: Motivation

- Graphs are often used to model objects and their relationship to one another:
- Bioinformatics: Molecule relationships
- Internet, social networks
- Central Question:
- How similar are two Graphs?
- How similar are two nodes within a Graph?

Graph Kernel: Example

- Consider a dataset of websites with links constituting the edges in the graph
- A kernel on the nodes of the graph would be useful for learning w.r.t. the web-pages
- A kernel on graphs would be useful for comparing different components of the internet (e.g. domains)

Graph Kernel: Example

- Consider a set of chemical pathways (sequences of interactions among molecules); i.e. graphs
- A node kernel would a useful way to measure similarity of different molecules' roles within these
- A graph kernel would be a useful measure of similarity for different pathways

Graphs: Definition

- A graph $G=(V, E)$ is specified by
- A set of nodes:

$$
\begin{aligned}
& v_{1}, \ldots, v_{n} \in V \\
& E \subseteq V \times V
\end{aligned}
$$

- A set of edges:
- Data structures for representing graphs:
- Adjacency matrix: $\mathbf{A}=\left(a_{i j}\right)_{i, j=1}^{n}, a_{i j}=\mathrm{I} \llbracket\left(v_{i}, v_{j}\right) \in E \rrbracket$
- Adjacency list

$$
\begin{aligned}
& G_{1}=\left(V_{1}, E_{1}\right) \quad \mathbf{A}_{1}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
V_{1} & =\left\{v_{1}, \ldots, v_{4}\right\} \quad \\
E_{1} & =\left\{\begin{array}{l}
\left(v_{1}, v_{1}\right),\left(v_{1}, v_{2}\right), \\
\left(v_{2}, v_{3}\right),\left(v_{4}, v_{2}\right)
\end{array}\right\}
\end{array} \quad \begin{array}{llll}
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Similarity between Graphs

- Central Question: How similar are two graphs?
- 1st Possibility: Number of isomorphisms between all (sub-) graphs.

Isomorphisms of Graphs

- Isomorphism: Two Graphs $G_{1}=\left(V_{1}, E_{1}\right)$ \& $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorphic if there exists a bijective mapping $f: V_{1} \rightarrow V_{2}$ so that

$$
\left(v_{i}, v_{j}\right) \in E_{1} \Rightarrow\left(f\left(v_{i}\right), f\left(v_{j}\right)\right) \in E_{2}
$$

$G_{1}=\left(V_{1}, E_{1}\right)$

$G_{2}=\left(V_{2}, E_{2}\right)$

Isomorphisms of Graphs

- Isomorphism: Two Graphs $G_{2}=\left(V_{2}, E_{2}\right)$ are isomorps Subgraph isomo bijective mapping $f:$
$\left(v_{i}, v_{j}\right) \in E_{1} \Rightarrow\left(f\left(v_{i}\right), f()\right) \in \sqrt{2}$

$G_{1}=\left(V_{1}, E_{1}\right)$

$G_{2}=\left(V_{2}, E_{2}\right)$

Similarity between Graphs

- Central Question: How similar are two graphs?
- 2nd Possibility: Counting the number of "common" paths in the graph.

Common Paths in Graphs

- The number of paths of length 0 is just the number of nodes in the graph.

Common Paths in Graphs

- The number of paths of length 1 from one node to any other is given by the adjacency matrix.

Common Paths in Graphs

- Number of paths of length k from one node to any other are given by the $k^{\text {th }}$ power of the adjacency matrix.

Common Paths in Graphs

- Number of paths of length k from one node to any other are given by the $k^{\text {th }}$ power of the adjacency matrix.

$$
\begin{aligned}
& \text { From } \\
& \mathbf{A}_{1}^{k}={ }_{v_{1}}^{v_{1}} v_{v_{3}} v_{4} \underbrace{v_{1}}_{v_{1}} \begin{array}{llll}
v_{2} & v_{3} & v_{3} & v_{4}
\end{array})
\end{aligned}
$$

Common Paths in Graphs

- Number of paths of length k from one node to any other are given by the $k^{\text {th }}$ power of the adjacency matrix.

- Number of paths of length $k: \sum_{i, j=1}^{n}\left(\mathbf{A}^{k}\right)_{i j}=\mathbf{1}^{\mathrm{T}} \mathbf{A}^{k} \mathbf{1}$

Common Paths in Graphs

- Common paths are given by product graphs
$G_{\otimes}=\left(V_{\otimes}, E_{\otimes}\right):$
$-V_{\otimes}=V_{1} \otimes V_{2}$
$-E_{\otimes}=\left\{\left(\left(v, v^{\prime}\right),\left(w, w^{\prime}\right)\right) \mid(v, w) \in E_{1} \wedge\left(v^{\prime}, w^{\prime}\right) \in E_{2}\right\}$

Similarity between Graphs

- Similarity between graphs: number of "common" paths in their product graph.

$$
C P_{\leq 0}=\sum_{i, j=1}^{n}\left(\mathbf{A}^{0}\right)_{i j}=6
$$

Similarity between Graphs

- Similarity between graphs: number of "common" paths in their product graph.

$$
C P_{\leq 1}=C P_{\leq 0}+\sum_{i, j=1}^{n}\left(\mathbf{A}^{1}\right)_{i j}=6+6=12
$$

Similarity between Graphs

- Similarity between graphs: number of "common" paths in their product graph.

$$
C P_{\leq 2}=C P_{\leq 1}+\sum_{i, j=1}^{n}\left(\mathbf{A}^{2}\right)_{i j}=12+4=16
$$

Similarity between Graphs

- Similarity between graphs: number of "common" paths in their product graph.

$$
C P_{\leq 3}=C P_{\leq 2}+\sum_{i, j=1}^{n}\left(\mathbf{A}^{3}\right)_{i j}=16+0=16
$$

Similarity between Graphs

- Similarity between graphs: number of "common" paths in their product graph.

$k>2$

$$
C P_{\leq \infty}=\sum_{k=0}^{\infty} \sum_{i, j=1}^{n}\left(\mathbf{A}^{k}\right)_{i j}=16
$$

Similarity between Graphs

- Similarity between graphs: number of "common" paths in their product graph.

With cycles, there can be an infinite number paths!
 From
$\mathbf{A}_{\otimes}^{k}=\begin{aligned} & a 1 \\ & a 2 \\ & b 1 \\ & b 2 \\ & c 1 \\ & c 2\end{aligned} \underbrace{\left(\begin{array}{llllll}1 & k & 1 & k & 1 & k \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & a 2 & b 1 & b 2 & c 1 & c 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)}_{a 1}$
$k>2$

$$
C P_{\leq L}=\sum_{k=0}^{L} \sum_{i, j=1}^{n}\left(\mathbf{A}^{k}\right)_{i j}=\frac{3}{2} L^{2}+\frac{15}{2} L+6 \rightarrow \infty
$$

Similarity between Graphs

- Similarity between graphs: number of "common" paths in their product graph.
- With cycles, there can be an infinite number paths!
\Rightarrow We must downweight the influence of long paths.
- Random Walk Kernels:

$$
\begin{aligned}
& k\left(G_{1}, G_{2}\right)=\frac{1}{\left|V_{1}\right|\left|V_{2}\right|} \sum_{k=0}^{\infty} \sum_{i, j=1}^{n} \lambda^{k}\left(\mathbf{A}_{\otimes}^{k}\right)_{i j}=\frac{\mathbf{1}^{\mathrm{T}}\left(\mathbf{I}-\lambda \mathbf{A}_{\otimes}\right)^{-1} \mathbf{1}}{\left|V_{1}\right|\left|V_{2}\right|} \\
& k\left(G_{1}, G_{2}\right)=\frac{1}{\left|V_{1}\right|\left|V_{2}\right|} \sum_{k=0}^{\infty} \sum_{i, j=1}^{n} \frac{\lambda^{k}}{k!}\left(\mathbf{A}_{\otimes}^{k}\right)_{i j}=\frac{\mathbf{1}^{\mathrm{T}} \exp \left(\lambda \mathbf{A}_{\otimes}\right) \mathbf{1}}{\left|V_{1}\right|\left|V_{2}\right|}
\end{aligned}
$$

- These kernels can be calculated by means of the Sylvester Equation in $O\left(n^{3}\right)$.

Similarity between Nodes

- Similarity between graphs: number of "common" paths in their product graph.
- Assumption: Nodes are similar if they are connected by many paths.
- Random Walk Kernels:

$$
\begin{aligned}
& k\left(v_{i}, v_{j}\right)=\sum_{k=1}^{\infty} \lambda^{k}\left(\mathbf{A}_{\otimes}^{k}\right)_{i j}=\left(\left(\mathbf{I}-\lambda \mathbf{A}_{\otimes}\right)^{-1}\right)_{i j} \\
& k\left(v_{i}, v_{j}\right)=\sum_{k=1}^{\infty} \frac{\lambda^{k}}{k!}\left(\mathbf{A}_{\otimes}^{k}\right)_{i j}=\left(\exp \left(\lambda \mathbf{A}_{\otimes}\right)\right)_{i j}
\end{aligned}
$$

Additional Graph-Kernels

- Shortest-Path Kernel
- All shortest paths between pairs of nodes computed by Floyd-Warshall algorithm with run time $O\left(|V|^{3}\right)$
- Compare all pairs of shortest paths between 2 graphs $O\left(\left|V_{1}\right|^{2}\left|V_{2}\right|^{2}\right)$
- Subtree-Kernel:
- Idea: use tree structures as indexes in the feature space
- Can be recursively computed for a fixed height tree
- Trees are downweighted in their height

Summary

- Kernel function $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\phi(\mathbf{x})^{\mathrm{T}} \phi\left(\mathbf{x}^{\prime}\right)$ computes the inner product of the feature mapping of instances.
- The kernel function can often be computed without an explicit representation $\phi(\mathbf{x})$.
- E.g., polynomial kernel: $k_{\text {poly }}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}+1\right)^{p}$
- Infinite-dimensional feature mappings are possible
- Eg., RBF kernel: $k_{R B F}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=e^{-\gamma\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}$
- Kernel functions for time series, strings, graphs, ...
- For a given kernel matrix, the Mercer map provides a feature mapping.

Summary

- Representer Theorem: $f_{\boldsymbol{\theta}^{*}}(\mathbf{x})=\sum_{i=1}^{n} \alpha_{i}^{*} \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \phi(\mathbf{x})$
- Instances only interact through inner products
- Great for few instances, many attributes
- Kernel learning algorithms:
- Kernel ridge regression
- Kernel perceptron, SVM,

