Universität Potsdam

Institut für Informatik Lehrstuhl Maschinelles Lernen

Model Evaluation

Tobias Scheffer

Overview

- Risk, empirical risk
- Precision, recall
- ROC curves
- Evaluation protocols
- Model selection

Learning and Evaluation

- Learning problem
 - Input: data $S = (x_1, y_1), ..., (x_n, y_n)$
 - Output: model $f_{\theta}: X \to Y$
- When model is applied, it is used to make predictions for new instances x.
- How well will f_{θ} perform at application time?
 - What does "well" even mean?
 - How can it be determined?

Model Evaluation

- Central assumption about data: drawn according to single (unknown) distribution $p(\mathbf{x}, y)$.
- "IID assumption": Instances $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ are drawn independently and from an identical distribution.
- Independent: $p\left(\left(\mathbf{x}_{i+j}, y_{i+j}\right) | \left(\mathbf{x}_{i}, y_{i}\right)\right) = p\left(\left(\mathbf{x}_{i+j}, y_{i+j}\right)\right)$.
- Identical distribution: $\forall i$: $(\mathbf{x}_i, y_i) \sim p(\mathbf{x}, y)$

Model Evaluation

- "IID assumption": Instances $(x_1, y_1), ..., (x_n, y_n)$ are drawn independently and from an identical distribution.
- Independent: $p\left(\left(\mathbf{x}_{i+j}, y_{i+j}\right) | \left(\mathbf{x}_{i}, y_{i}\right)\right) = p\left(\left(\mathbf{x}_{i+j}, y_{i+j}\right)\right)$.
 - Counter example: people who are surveyed at a random but fixed geographical location.
 - Consequence: a dependent sample contains less variance than an independent sample.
- Identical distribution: $\forall i$: $(\mathbf{x}_i, y_i) \sim p(\mathbf{x}, y)$
 - Counter example: first half of the data generated under laboratory conditions, second half collected "in the wild".
 - Consequence: model trained on laboratory data may perform less well on data "in the wild".

Loss Function

Loss function: How bad is it if the model predicts value $f_{\theta}(\mathbf{x}_i)$ when the true value of the target variable is y_i ?

$$\ell(f_{\boldsymbol{\theta}}(\mathbf{x}_i), y_i)$$

- Example loss functions:
 - Zero-one loss (classification):

$$\ell_{0/1}(f_{\theta}(\mathbf{x}_i), y_i) = \begin{cases} 0 & \text{if } f_{\theta}(\mathbf{x}_i) = y_i \\ 1 & \text{otherwise} \end{cases}$$

Quadratic loss (regression):

$$\ell_2(f_{\boldsymbol{\theta}}(\mathbf{x}_i), y_i) = (f_{\boldsymbol{\theta}}(\mathbf{x}_i) - y_i)^2$$

• Perceptron loss, hinge loss, ε -insensitive loss, ...

Risk

- Risk of model f_{θ} : expected loss over underlying distribution $p(\mathbf{x}, y)$.
- Finite set Y (classification):

$$R(\theta) = E_{(\mathbf{x}, y) \sim p(\mathbf{x}, y)}[\ell(\mathbf{x}, y)] = \sum_{y \in Y} \int \ell(f_{\theta}(\mathbf{x}), y) p(\mathbf{x}, y) d\mathbf{x}$$

Infinite Y (regression):

$$R(\theta) = E_{(\mathbf{x}, y) \sim p(\mathbf{x}, y)}[\ell(\mathbf{x}, y)] = \int \int \ell(f_{\theta}(\mathbf{x}), y) p(\mathbf{x}, y) d\mathbf{x} dy$$

- Expected zero-one loss (risk for zero-one loss function) is called error rate.
- 1-error rate is called accuracy.

Risk

- Risk of model f_{θ} : expected loss over underlying distribution $p(\mathbf{x}, y)$.
- Finite set Y (classification):

$$R(\theta) = E_{(\mathbf{x}, y) \sim p(\mathbf{x}, y)}[\ell(\mathbf{x}, y)] = \sum_{y \in Y} \int \ell(f_{\theta}(\mathbf{x}), y) p(\mathbf{x}, y) d\mathbf{x}$$

■ Infinite *Y* (regression):

$$R(\theta) = E_{(\mathbf{x}, y) \sim p(\mathbf{x}, y)}[\ell(\mathbf{x}, y)] = \int \int \ell(f_{\theta}(\mathbf{x}), y) p(\mathbf{x}, y) d\mathbf{x} dy$$

- It is generally impossible to determine the risk:
 - $p(\mathbf{x}, y)$ is not known.
 - Generally impossible to integrate over all instances x.

Empirical Risk

Impossible to calculate risk

$$R(\theta) = E_{(\mathbf{x}, y) \sim p(\mathbf{x}, y)} \left[\ell(f_{\theta}(\mathbf{x}), y) \right]$$

■ → Empirical risk: estimate on sample $S \sim p(\mathbf{x}, y)^n$.

$$\widehat{R}_{S}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(f_{\theta}(\mathbf{x}_{i}, y_{i}))$$

- Empirical risk is a random variable; depends on the instances S that are drawn.
- If S is drawn **IID**, then it is governed by $p((\mathbf{x}_1, y_1) \times \cdots \times (\mathbf{x}_n, y_n)) = p(\mathbf{x}, y)^n$.

Estimators

- In statistics, an estimator is any rule for calculating an estimate of a quantity.
- A procedure for that determines the empirical risk is an estimator of the risk.
- An estimator is called unbiased if the expected value of the estimate is the true quantity:

$$\widehat{R}(\theta)$$
 is unbiased $\Leftrightarrow E_{S \sim p(\mathbf{x}, \mathbf{y})^n} [\widehat{R}_S(\theta)] = R(\theta)$

An estimator that is not unbiased has a bias:

$$B\left(\widehat{R}(\theta)\right) = E_{S \sim p(\mathbf{x}, y)^n} \left[\widehat{R}_S(\theta)\right] - R(\theta)$$

Bias of the Empirical Risk

Bias of the empirical risk:

$$B\left(\widehat{R}(\theta)\right) = E_{S \sim p(\mathbf{x}, \mathbf{y})^n} \left[\widehat{R}_S(\theta)\right] - R(\theta)$$

Empirical risk is unbiased estimator if:

$$E_{S\sim p(\mathbf{x},y)^n}[\widehat{R}_S(\theta)] = R(\theta)$$

Empirical risk is optimistic estimator if:

$$E_{S \sim p(\mathbf{x}, \mathbf{y})^n} [\hat{R}_S(\theta)] - R(\theta) < 0$$

Empirical risk is pessimistic estimator if:

$$E_{S \sim p(\mathbf{x}, y)^n} [\hat{R}_S(\theta)] - R(\theta) > 0$$

Bias of the Empirical Risk

Bias of the empirical risk:

$$B\left(\widehat{R}(\theta)\right) = E_{S \sim p(\mathbf{x}, \mathbf{y})^n} \left[\widehat{R}_S(\theta)\right] - R(\theta)$$

- The bias is a systematical offset between risk and empirical risk.
- It can be caused by a particular experimental setting used to determine the empirical risk.
- Large bias: risk is systematically estimated too low or too high.

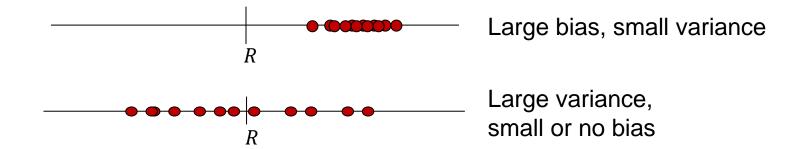
Variance of an Estimator

- Estimator $\hat{R}_S(\theta)$ has a variance $Var[\hat{R}_S(\theta)] = \mathrm{E}_{S \sim p(\mathbf{x}, y)}[(R(\theta) \hat{R}_S(\theta))^2]$
- The variance is caused by the fact that the empirical risk is calculated on a finite sample.
- Zero-one loss: empirical risk $\hat{R}_S(\theta)$ follows binomial distribution with mean value $R(\theta)$.
- High variance: empirical risk is a crude estimate of the risk.
- The larger a sample the empirical risk is based on, the lower its variance becomes.

Bias and Variance of Empirical Risk

■ Empirical risk $\hat{R}_S(\theta)$ determined repeatedly on multiple samples $S_1, ..., S_k$

• Value of \hat{R}_{S_i} for sample S_i



Estimation Error

 Estimation error: expected quadratic difference between empirical risk and risk.

$$\mathbb{E}_{S \sim p(\mathbf{x}, y)^n} \left[\left(\hat{R}_S(\theta) - R(\theta) \right)^2 \right]$$

Can be decomposed into bias and variance

$$\begin{split} & \operatorname{E}_{S \sim p(\mathbf{x}, \mathbf{y})^n} \left[\left(\hat{R}_S(\theta) - R(\theta) \right)^2 \right] \\ &= \operatorname{E} \left[\hat{R}_S(\theta)^2 - 2R(\theta) \hat{R}_S(\theta) + R(\theta)^2 \right] \\ &= \operatorname{E} \left[\hat{R}_S(\theta)^2 \right] - 2R(\theta) \operatorname{E} \left[\hat{R}_S(\theta) \right] + R(\theta)^2 \\ &= \operatorname{E} \left[\hat{R}_S(\theta) \right]^2 - 2R(\theta) \operatorname{E} \left[\hat{R}_S(\theta) \right] + R(\theta)^2 + \operatorname{E} \left[\hat{R}_S(\theta)^2 \right] - \operatorname{E} \left[\hat{R}_S(\theta) \right]^2 \\ &= \left(\operatorname{E} \left[\hat{R}_S(\theta) \right] - R(\theta) \right)^2 + \operatorname{E} \left[\hat{R}_S(\theta)^2 \right] - \operatorname{E} \left[\hat{R}_S(\theta) \right]^2 \\ &= \operatorname{Bias} \left[\hat{R}(f) \right]^2 + \operatorname{Var} \left[\hat{R}(f) \right] & \text{Algebraic formula for the variance} \end{split}$$

Alternative Measures to Risk

- Risk is not always a meaningful measure.
- Not always possible to specify a meaningful loss function
 - Mine detector: what is the cost of exploding?
 - On the other hand, a mine detector that always says "there could be a mine here" is useless.
- Error rate / accuracy are not meaningful for rare classes.
 - Earth quake prediction tool that always says "there will be no earthquake today" has accuracy of >99.9% (in most countries).

Alternative Measures to Risk

- Alternative performance measures for binary classification.
- Let decision function $f_{\theta}(\mathbf{x})$ return continuous value.
- Decision rule for binary classification:

$$y_{\theta}(\mathbf{x}) = \begin{cases} +1 & \text{if } f_{\theta}(\mathbf{x}) \ge \theta_0 \\ -1 & \text{if } f_{\theta}(\mathbf{x}) < \theta_0 \end{cases}$$

- By adjusting threshold θ_0 decision rule can be made more sensitive or more conservative.
- We will now study measures that quantify how well the decision function separates positive from negative instances, independent of any threshold value θ_0 .
 - Precision-recall curves
 - ROC curves

Overview

- Risk, empirical risk
- Precision, recall
- ROC curves
- Evaluation protocols
- Model selection

Precision and Recall

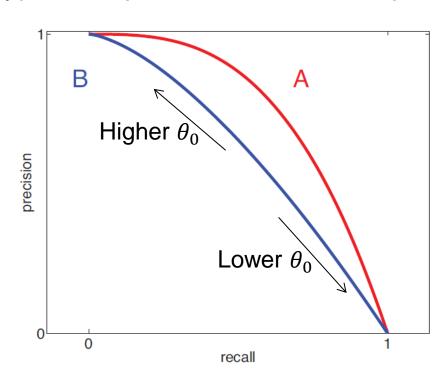
- Alternative performance measure for binary classification.
 - Example: diagnosis of rare disease.
 - Patient \mathbf{x}_i has disease if $y_i = +1$.
 - Classifier diagnoses disease for patient **x** if $y_{\theta}(\mathbf{x}_i) = +1$.
- True positives:
 - Patient has disease $(y_i = +1)$, classifier recognizes $(y_\theta(\mathbf{x}_i) = +1)$
- False positives:
 - Patient is healthy ($y_i = -1$), but classifier diagnoses disease ($y_{\theta}(\mathbf{x}_i) = +1$)
- True negatives:
 - Patient is healthy $(y_i = -1)$, classifier recognizes $(y_\theta(\mathbf{x}_i) = -1)$
- False negatives:
 - Patient has disease $(y_i = +1)$, classifier misses $(y_\theta(\mathbf{x}_i) = -1)$

Precision and Recall

- Let n_{TP} be the number of true positives.
- Let n_{FP} be the number of false positives.
- Let n_{TN} be the number of true negatives.
- Let n_{FN} be the number of false negatives.
- Precision: $P = \frac{n_{TP}}{n_{TP} + n_{FP}}$
 - "Rate of true positives among all instances that are classified as positives"
 - Answers: "How accurate is classifier when it says +1?"
- $\blacksquare \quad \text{Recall: } R = \frac{n_{TP}}{n_{TP} + n_{FN}}$
 - "Rate of true positives among all positive instances"
 - Answers: "How many of the positive instances does the classifier detect?"

Precision-Recall Curves

- Evaluates decision function $f_{\theta}(\mathbf{x})$ independent of threshold θ_0 .
- Shows which pairs of precision and recall can be obtained by varying threshold θ_0 .
- Each point on the curve is a classification rule with a particular values of θ_0 .
- Which decision function is better – A or B?



F Measures

• F_{α} measures combine precision and recall values into single value:

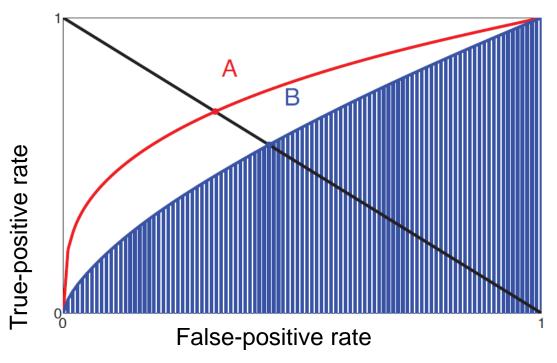
$$F_{\alpha} = \frac{n_{TP}}{\alpha(n_{TP} + n_{FP}) + (1 - \alpha)(n_{TP} + n_{FN})}$$

- $\alpha = 1$: Precision
- $\alpha = 0$: Recall
- $\alpha = 0.5$: "F-measure", harmonic mean of precision and recall.
- Alternative definition: F_{β} measures.
 - Relationship: $\alpha = \frac{1}{1+\beta}$

Overview

- Risk, empirical risk
- Precision, recall
- ROC curves
- Evaluation protocols
- Model selection

• Alternative measure of how well the decision function separates positive from negative instances, independent of any threshold value θ_0 .

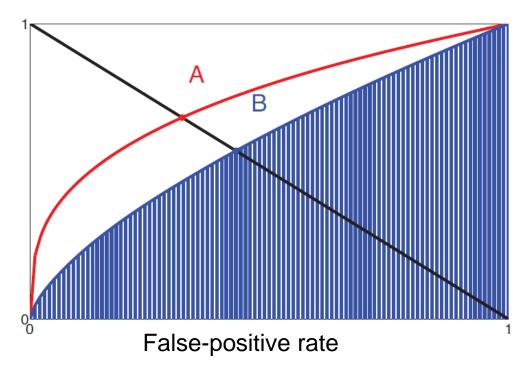


- **Each** curve characterizes a decision function f_{θ} .
- Each point is a classification rule for a value of θ_0 .
- Which is better, A or B?

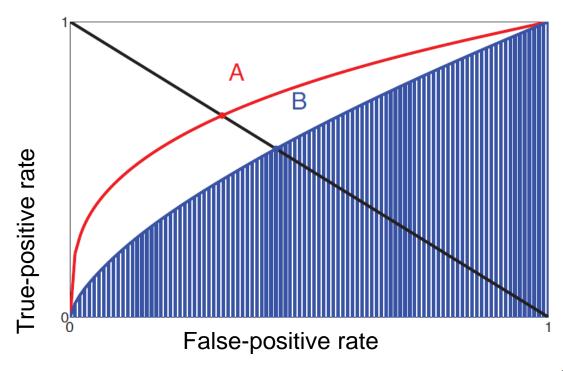
True-positive rate

$$r_{TP} = \frac{n_{TP}}{n_{TP} + n_{FN}}$$

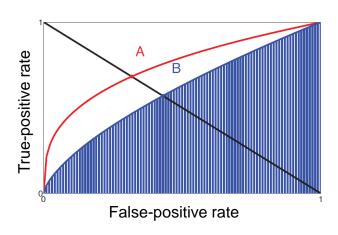
$$r_{FP} = \frac{n_{FP}}{n_{FP} + n_{TP}}$$



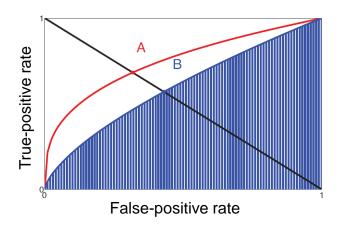
- Equal error rate (EER): value $r_{TP} = 1 r_{FP}$.
- Scalar aggregate of curve: Area under ROC curve (AUC).



- Area under the ROC curve (AUC):
 - \bullet Let x_+ be a randomly drawn positive instance.
 - Let x₋ be a randomly drawn negative instance.
 - $AUC(\theta) = P(f_{\theta}(\mathbf{x}_{+}) > f_{\theta}(\mathbf{x}_{-})).$



- ROC analysis is often used
 - When positive instances are rare (accuracy of 99.9% is meaningless if positive class is extremely rare)
 - When no meaningful probability of meeting positive instances can be defined (probability of stepping on a mine varies by country).



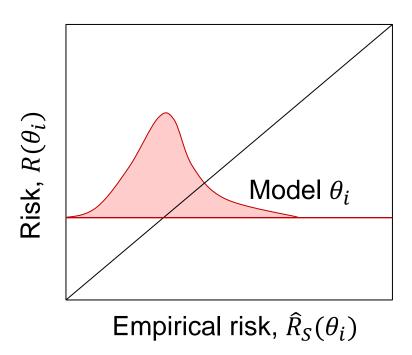
Overview

- Risk, empirical risk
- Precision, recall
- ROC curves
- Evaluation protocols
- Model selection

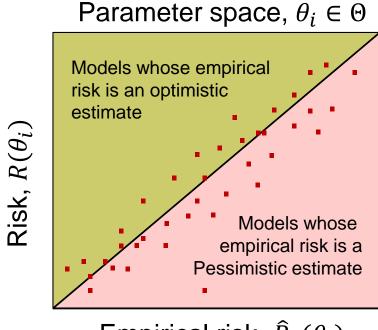
- Usually, model f_{θ} is not given and evaluation data cannot be drawn from $p(\mathbf{x}, y)$.
- Typical case, data $S = (\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)$ and learning method are given.
- Data S have to be used for training and evaluation.
- Desired output: model f_{θ} and risk estimate.

- Can we first train model f_{θ} on S and then evaluate the model on the same data?
- Will $\hat{R}_{S}(\theta)$ be unbiased, optimistic, or pessimistic?

- Every model $\theta_i \in \Theta$ has a risk $R(\theta_i)$.
- Its empirical risk $\hat{R}_S(\theta_i)$ follows a distribution with mean value $R(\theta_i)$.



 Some models get lucky (upper-left area), some are unlucky (lower-right area).



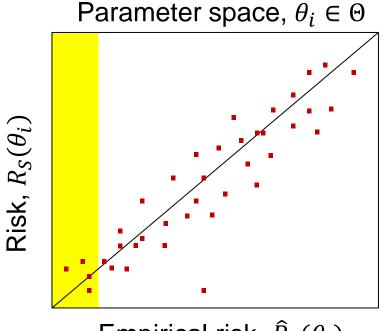
- Learning algorithm will choose a model with small empirical risk (on the far left).
- In this area, most models' empirical risk is an optimistic estimate.

Parameter space, $\theta_i \in \Theta$ Models whose empirical risk is an optimistic estimate

Models whose empirical risk is a Pessimistic estimate

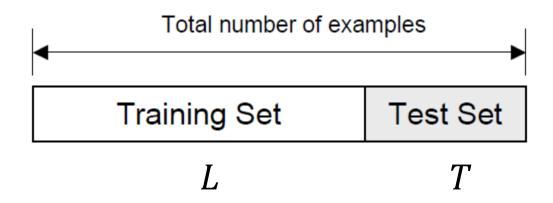
Empirical risk, $\hat{R}_{S}(\theta_{i})$

- Learning algorithm will choose a model with small empirical risk (on the far left).
- For those θ_* on the left: $E_S[\hat{R}_S(\theta_*)] < R(\theta_*)$ (otherwise they would be further right).
- This is called selection bias.
- Empirical risk on training data is optimistic.



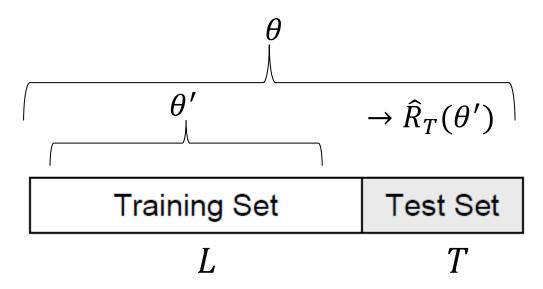
Holdout Testing

- Idea: error estimation on independent test data
- Given: data $S = (\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)$
- Divide the data into
 - Training data $L = (\mathbf{x}_1, y_1), ..., (\mathbf{x}_m, y_m)$ and
 - Test data $T = (\mathbf{x}_{m+1}, y_{m+1}), ..., (\mathbf{x}_n, y_n)$

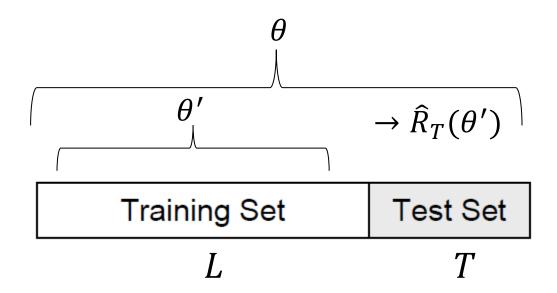


Holdout Testing

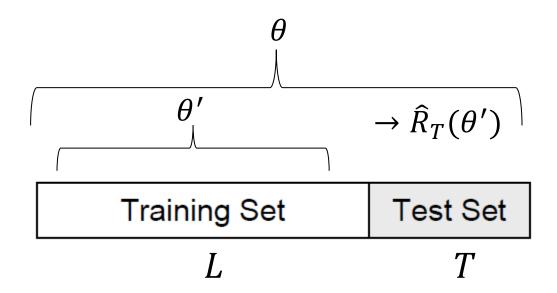
- Start learning algorithm with data L and obtain model f_{θ} , from it.
- Determine empirical risk $\hat{R}_T(\theta')$ from data T.
- Start learning algorithm with all data S and obtain Model f_{θ} from it.
- Output: model f_{θ} & $\hat{R}_{T}(\theta')$ as the estimator of $R(\theta)$.



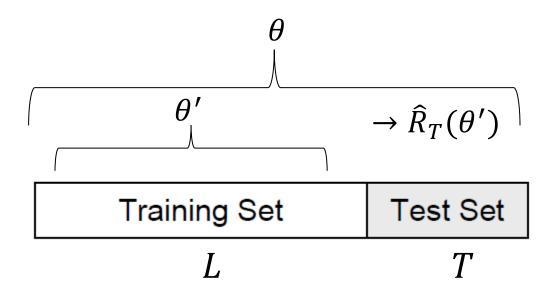
- Is the estimator $\hat{R}_T(\theta')$ of the risk of model $R(\theta)$
 - unbiased,
 - optimistic,
 - pessimistic?
- Hint: the more training data, the better the model.



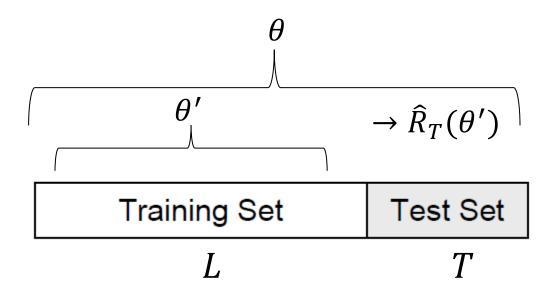
- Estimate $\hat{R}_T(\theta')$ is obtained on a small part of the available data.
- Therefore, its variance is relatively high, especially if the overall sample is small.
- Holdout testing is used in practice for large available samples.



- Using empirical risk $\hat{R}_T(\theta')$ is an **pessimistic** estimator of the risk $R(\theta)$.
- Because θ' is trained with fewer training instances than θ .

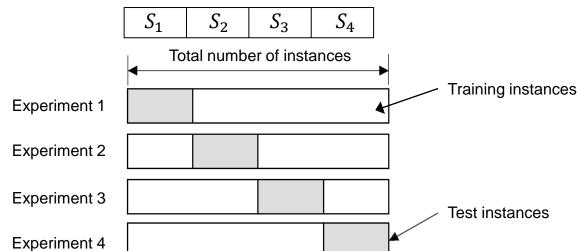


- One could instead return model θ' .
- Empirical risk $\hat{R}_T(\theta')$ would be an unbiased estimate of $R(\theta')$.
- But since θ' was trained on fewer data, it would result in an inferior model.



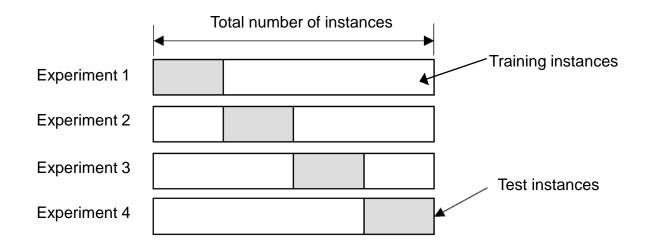
K-Fold Cross Validation

- Given: data $S = (\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)$
- Partition S into k equally sized portions $S_1, ..., S_k$.
- Repeat for $i = 1 \dots k$
 - Train f_{θ_i} with training set $S = S \setminus S_i$.
 - Calculate empirical risk $\hat{R}_{S_i}(\theta_i)$ on S_i .
- Calculate average $\hat{R}_S = \frac{1}{k} \sum_i \hat{R}_{S_i}(\theta_i)$



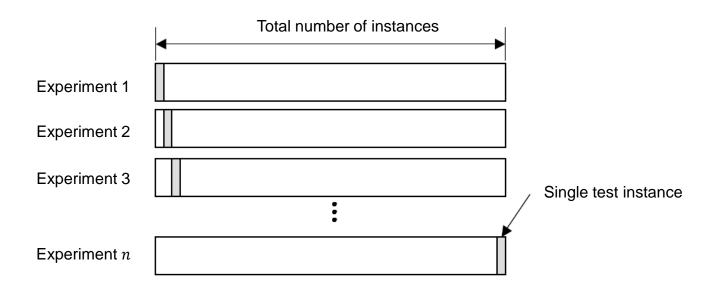
Cross Validation

- Then, train f_{θ} on all data S.
- Return model f_{θ} and estimator \hat{R}_{S} .



Leave-One-Out Cross Validation

• Special case k = n is also called *leave-one-out* error estimation

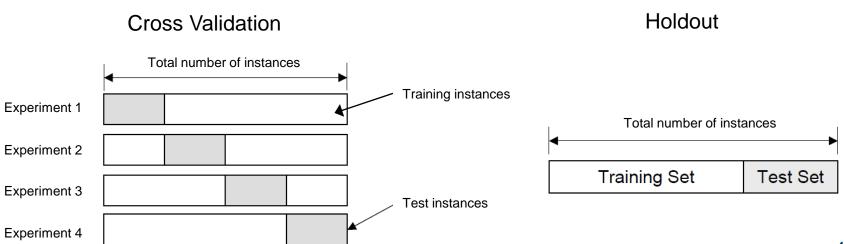


Cross Validation: Analysis

- Is the estimator
 - optimistic / pessimistic / unbiased?

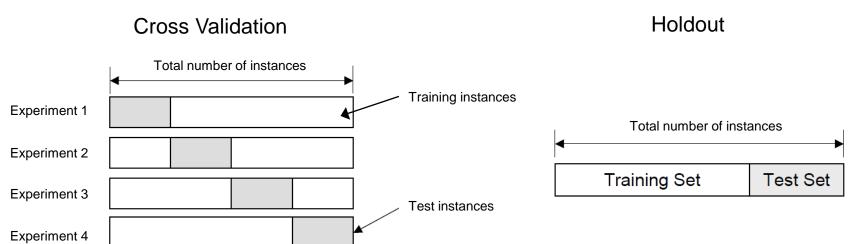
Cross Validation: Analysis

- Is the estimator
 - optimistic / pessimistic / unbiased?
- Estimator is slightly pessimistic:
 - Model f_{θ_i} is trained on a (k-1)/k-th fraction of the available data.
 - Model f_{θ} is trained on the entire data.



Cross Validation: Analysis

- Bias/Variance compared to holdout testing?
- Variance is lower than with holdout testing
 - Averaging over several holdout experiments reduces the estimator's variance.
 - All data is incorporated into the estimator.
- Bias similar to holdout testing, depending on the split ratios.



Overview

- Risk, empirical risk
- Precision, recall
- ROC curves
- Evaluation protocols
- Model selection

Model Selection

- Compare several different learning approaches
 - Should one use decision trees?
 - SVMs? Logistic Regression?
- Set regularization parameter for a learning approach
 - ullet For instance, set value for λ for regularized empirical risk minimization.

Model Selection: Example

• Regularization parameter λ in optimization criterion

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{i} \ell(f_{\theta}(\mathbf{x}_i), y_i) + \lambda \|\theta\|^2 \qquad \lambda = ?$$

(Hyper)parameters that specify the model class;
 e.g. the degree for polynomial regression

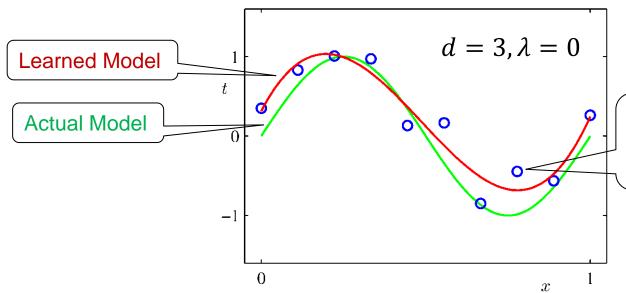
$$f_{\theta}(x) = \sum_{j=0}^{d} \theta_j x^j \qquad d = ?$$

- Desired output: hyperparameter (λ, d) , model f_{θ} , and estimate of the model's risk.
- How do we use available data to achieve this?

Example: Polynomial Regression

- Polynomial model of degree d: $f_{\theta}^{d}(x) = \sum_{j=0}^{d} \theta_{j} x^{j}$
- Regularized empirical risk minimization:

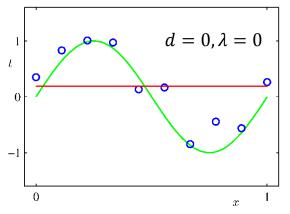
$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^n (f_{\theta}^d(x_i) - y_i)^2 + \lambda ||\theta||^2$$

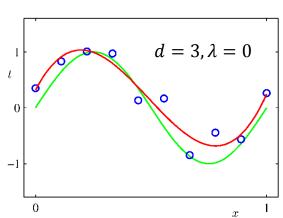


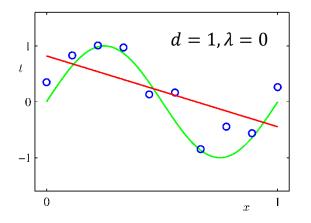
Data points = actual model plus Gaussian noise

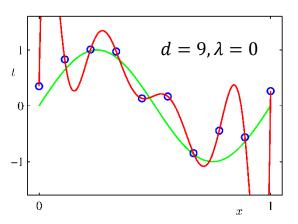
Polynomial Regression

 Success of the learning depends on the selected polynomial degree d, which controls the complexity of the model.



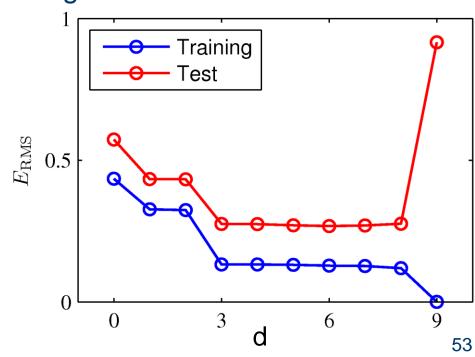






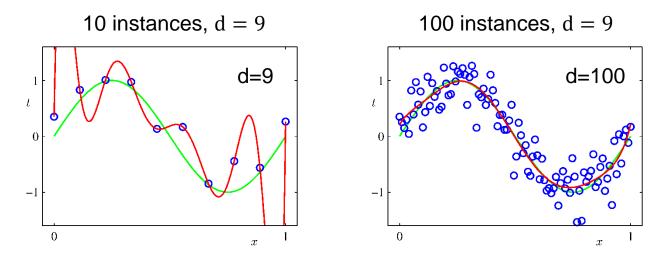
Polynomial Regression: Empirical Risk on Training vs. Test Sample

- Empirical risk on training vs. test data for different polynomial degrees.
- "Overfitting": empirical risk on training data decreases as d is increased. Empirical risk on test data has a minimum, then increases again.



Example: Polynomial Regression

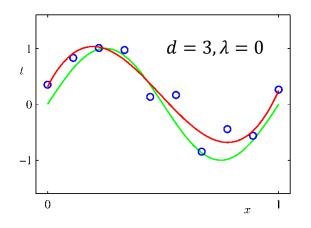
If more data are available, more complex models can be fitted.

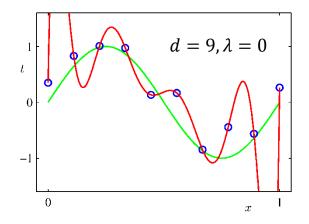


 Given fixed amount of data, optimal d has to be found.

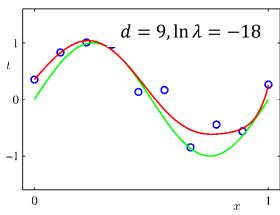
Example: Polynomial Regression

• Regularization factor λ has a similar effect to d.



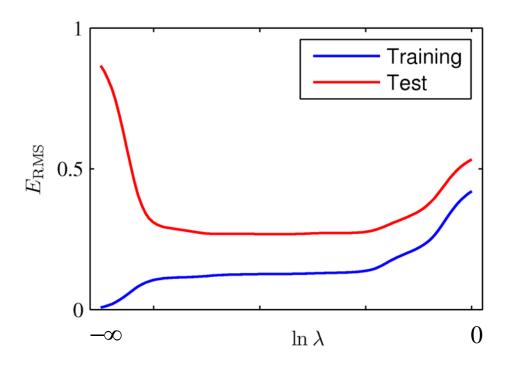


 Both λ and d constrain the model complexity.



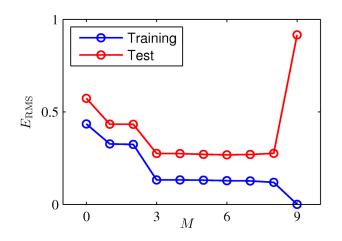
Regularized Polynomial Regression

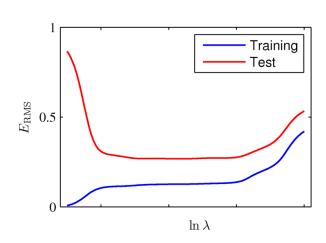
- Empirical risk on training vs. test sample.
- Empirical risk on training sample decreases when regularization decreases.
- There is a regularization factor that minimizes the risk.



Regularized Polynomial Regression

- Regularizer acts like a limitation on the model complexity and prevents overfitting.
- In practice it is best to control model complexity through regularization (direct parameters like the polynomial degree often are not available).
- Regularizer has to be tuned on available data.



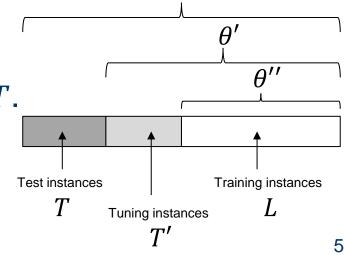


Model Selection, Setting Hyperparameters

- Desired output: hyperparameter (λ, d) , model f_{θ} , and estimate of the model's risk.
- Idea: Iterate over values of (λ, d) , train model, evaluate; take best values and train final model.
- Cannot tune hyperparameters on training data because low regularization leads to low empirical risk on training data but high risk on test data.
- Evaluating multiple models (for different values of λ , d) on the same test set results in an optimistic bias.
- Therefore, triple or nested cross validation.

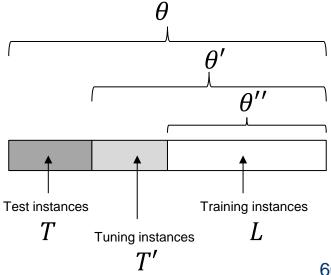
Triple Cross Validation

- Iterate over all values of the hyperparameters λ (grid search)
 - Train model $f_{\theta''}^{\lambda}$ on L.
 - Evaluate $f_{\theta''}^{\lambda}$ on T' by calculating $\hat{R}_{T'}(f_{\theta''}^{\lambda})$
- Use hyperparameter λ^* that gave lowest $\hat{R}_{T'}(f_{\alpha''}^{\lambda^*})$.
- Train model $f_{\theta'}^{\lambda^*}$ on $L \cup T'$.
- Determine $\hat{R}_T(\theta')$.
- Train model $f_{\theta}^{\lambda^*}$ on $L \cup T' \cup T$.
- Return model $f_{\theta}^{\lambda^*}$ and estimate $\hat{R}_T(f_{\theta'}^{\lambda^*})$.



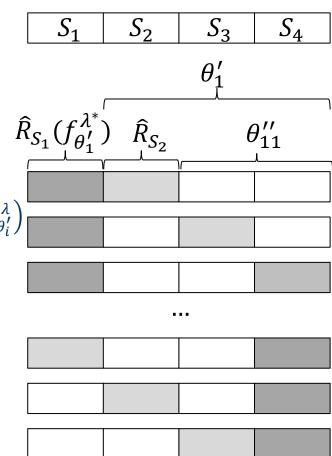
Triple Cross Validation: Analysis

- Empirical risk $\hat{R}_T(\theta')$ is a pessimistic estimator for $R(\theta)$ because θ' is trained on less data than θ .
- λ^* may be a poor estimate of the optimal parameters because T' may be small.
- The variance of $\hat{R}_T(\theta')$ may high because T may be small.
- Protocol is used when the total sample S is very large.



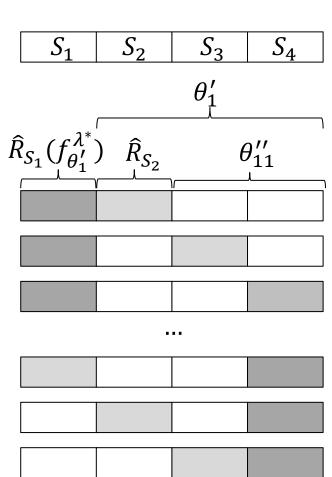
Nested Cross Validation

- For i = 1 ... k
 - Iterate over values λ
 - ★ For $j = 1 ... k \setminus i$
 - Train $f_{\theta_{ij}}^{\lambda}$ on $S \setminus S_i \setminus S_j$
 - Determine $\hat{R}_{S_j}\left(f_{\theta_{ij}}^{\lambda}\right)$
 - * Average \hat{R}_{S_j} to determine $\hat{R}_{S \setminus S_i} \left(f_{\theta_i'}^{\lambda} \right)$
 - Choose λ_i^* that minimizes $\widehat{R}_{S \setminus S_i}\left(f_{\theta_i'}^{\lambda}\right)$
 - Train $f_{\theta_i}^{\lambda_i^*}$ on $S \setminus S_i$
 - Determine $\hat{R}_{S_i}\left(f_{\theta_i'}^{\lambda_i^*}\right)$
- Average $\widehat{R}_{S_i}\left(f_{\theta_i}^{\lambda_i^*}\right)$ to determine $\widehat{R}_{S}\left(f_{\theta^*}^{\lambda^*}\right)$
- Determine λ^* by averaging λ_i^*
- Train $f_{\theta}^{\lambda^*}$ on S
- Return $f_{\theta}^{\lambda^*}$ and $\hat{R}_{S}(f_{\theta^*}^{\lambda^*})$



Nested Cross Validation: Analysis

- Complextiy: k² models have to be trained and evaluated
- Slightly pessimistic because $f_{\theta}^{\lambda^*}$ has been trained on more data than the $f_{\theta_i}^{\lambda_i^*}$.
- Lower variance than triple cross validation because all data is used for evaluation
- Better estimate of λ^* because almost all data is used for tuning.
- Best tuning protocol when few data are available.



Summary

- Risk: expected loss over input distribution $p(\mathbf{x}, y)$.
- Empirical risk: estimate of risk on data.
- Precision-recall curves and ROC curves characterize decision function. Each point on curve is classifier for some threshold θ_0 .
- Evaluation protocols:
 - Hold-out testing: good for large samples
 - K-fold Cross Validation: good for small samples.
- Model selection: tune model hyperparameters.
 - Triple cross validation: good for large samples.
 - Nested cross validation: good for small samples.