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Overview

= Neural information processing.

= Deep learning.

s Feed-forward networks.

= Training feed-forward networks: back propagation.
= Parallel inference on GPUSs.

s Outlook:
Convolutional neural networks,
Recurrent neural networks.
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Learnin% Problems can be Impossible
without the Right Features
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Learnin% Problems can be Impossible
he Right Features
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= Deep Learning:

Abst Neural network with many sequential layers.
feat! Layer-wise transformation of the input into more
(highe! abstract, more “semantic” attributes.
1 Raw input data (bitmap, spectral image of audio
¢ signal) is fed into network, no manual feature
engineering.
Entire network is usually trained with stochastic
gradient descent (back-propagation).
Raw Hundreds of millions of parameters, hundreds of
(low- millions to billions of training data.
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Neural Networks

= Model of neural information processing

= Waves of popularity

T Perceptron: Rosenblatt, 1960.
| Perceptron only linear classifier (Minsky, Papert, 69).
T Multilayer perceptrons (90s).
| Popularity of SVMs (late 90s).
T Deep learning (late 2000s).

Now state of the art for Speech Recognition image
classification, face recognition and other problems.




Deep Learning Records

= Neural networks best-performing algorithms for

Object classification (CIFAR/NORB/PASCAL VOC-
Benchmarks)

Video classification (various benchmarks)
Sentiment analysis (MR Benchmark)
Pedestrian detection

Face recognition
Speech recognition




Neural Information Processing

T

Input signals

/ Weighted input signals
) are aggregated

Axon:
output signal

£

Probability of an
output spike

Weighted input signals

Synaptic weights:
strengthened and weakened
by learning processes

Output signa% are electric spikes

Connections to other nerve cells



Neural Information Processing: Model

Weighted input signals

Input vector X

Weight vector 0
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Overview

s Feed-forward networks.
= Training feed-forward networks: back propagation.
s Parallel inference on GPUSs.

s Outlook:
Convolutional neural networks,
Recurrent neural networks.
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Feed Forward Networks

a8
pad

= Forward propagation:
Input vector x°
Linear model: h, =0,x'*+4,,
Each unit has parameter
vector o, =(4,
Layer i has matrix
of parameters

Output layer

Hidden layers

n, < Input layer
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Feed Forward Networks

= Forward propagation:

Index k
Index i q 0
- X Input vector x
oK A& & Linear model: h, =0,x"™ +6,,

Activation function and
propagation: x' =o(h')

2 — h2
K=ol k)>$<, Output vector  x°
X, = G(hi)m Output layer
h =0,x"+¥, '

N h Hidden layers

a8
pad

n, < Input layer
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Feed Forward Networks

Index i

Index k
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= Bias unit
Linear modell: h! =0, x"™"+4,,
Constant element 8}, is

replaced by additional unit with
constant output 1: hy =0,x;",
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Feed Forward Networks

ndex K = Forward propagation per layer in
Indexi- o4 matrix notation:
gi K K X Linear model: h' =0'x'""
N A

Activation function: x' =o(h")

2 _p2.1 92 ‘

i K K X
i\ N4

1 1

Xy :G(hk)

1 1_0

h, =0,x +»k0

N
1

0 0

X Xno
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Classification: Softmax Layer

Index k = One output unit per class
Index i q
X+
i/ \/ \/ h
gl A A xk — Gsm( k) =
ANVAAN

xZ: predicted probability for

X2 = a(h§)>$<\ class k.
X

1 r\h /t« /'\~ /. &
0 N »/‘“
1

0 0

Xl Xno
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Regression: Sigmoidal Activation

= [or target variable k:

. Index k
Index i d 4 d 1
i Xk = Us(hk) Y
Od % 1+e 'k
//“\ Logistic activation function.
X2 = o (h? )M\ ———
2 2.1 N2 y 2 % /
he =0,x +6, | § //
0% X A T
‘N N 1 Weighted input signals
Xt = o(ht) \
hi :Olkx°+ o 3 )
1 KA
LN 3




Internal Units: Rectified Linear Units

. Index k
Index i q
- X
"4
0 Q
X =0(hf)>%\
h? =0:x" +{’6?k20 ( [
V2 7 V4 4
PX E X
K = o(h) 1
hizelkxo"' koo | 5
1A A A X
' "\ A T
1
0 0
Xl Xno

= For internal unit (i, k):

x]l( — O-RBLU(h;:() — maX(O, h;()
Leads to sparse activations and

prevents the gradient from
vanishing for deep networks.

Weighted input signals
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Overview

= Training feed-forward networks: back propagation.
= Parallel inference on GPUSs.

s Outlook:
Convolutional neural networks,
Recurrent neural networks.

19



Feed Forward Networks: Learning

Stochastic gradient descent
Loss function

~ 1
R(®) = ;- 3L, £(y;,x?)
Gradient descent:

0 =0 —aVR(0) =0 — a%ﬁ(e)

m

a 0
_ _ . wd
2m aef(yf’x )

j=1
Stochastic gradient for instance x;:
0 =0-— avx.ﬁ(e)
a
=0 — a—f(y], 4)
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Learning: Back Propagation

= Stochastic gradient for output units

X C T for instance x;:
O\ 0t(y; x*) _ 0¢(y;,x?) 9x* oh

S 009 ~  ox? 9hrioe?

JSSS _otly; x?) do(hd)

X =o(h) d 1
XK e
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Learning: Back Propagation

s Stochastic gradient for hidden units
X! — (y- x)e 3¢  forinstance x;:

o'k £ K 0¢(y;,x) _ 0(y;x?) ohi _ Sigi-1
_ 001 ohl ael  ~
2 .. v = With
g X XI|+1 0 . af(y], Xd)
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Learning: Back Propagation

s Derivative of the loss function for
5¢ classification.

s Softmax activation function:
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Learning: Back Propagation

= Derivative of the loss function for
X3 (y-x') > & regression.
ngo/ XK l = Sigmoidal activation function:
N_N_A

x}c{i = O-s(hlccl) = —hd

S

s !

gx ' dog(né

LD L S -eea-an)

X oY 8 2 .
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Learning: Back Propagation

= Derivative of the activation function
Xt (y=x') > & for internal units.
T 0° % X m& l » Rectified linear activation function:

5 A xic = Operu(hic) = max(0, hy)
q S : .
g X" Xt 8 9orery(hi) _ {1 if h, >0
g Ti @% i. o Ohj 0 otherwise
X To O %
= i f, X 9
SN R
! . 6i—1§
g.
N
XO
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Back Propagation: Algorithm

= [terate over training instances (X, y):

Forward propagation: for 1=0...d:
« Fork=1...n; hi =0!x"+6,
* X =O'(hi)
Back propagation:
0 0
« Fork=1...n; & :Wa(hf)@f(ymf)
0° "= 0! —a5ix"
» Fori=d-1...1:
e Fork=1...n; s,=c'(h)Y. "6

0,'=0, —asx"*

= Until convergence
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Back Propagation

= Loss function is not convex
Each permutation of hidden units is a local minimum.

Learned features (hidden units) may be ok, but not
usually globally optimal.

m But:
Local minima can still be arbitrarily good.
Many local minima can be equally good.

Supervised learning often works with hundreds of
layers and millions of training instances.
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Regularization

L2-regularized loss
R,(8) =55 (v, —x])°+%076
Corresponds to normal prior on parameters.
Gradient:  vR,(0') =13 8\x'+n0
Update: 0'=0-6.x—7,0
Called weight decay.
Additional regularization schemes:
Early stopping (outdated): Stop before convergence.
Delete units with small weights.

Dropout: During training, set some units‘ output to
zero at random.
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Regularization: Dropout

= In complex networks, complex co-adaptation
relationships can form between units.

Not robust for new data.

= Dropout: In each training set, draw a fraction of
units at random and set their output to zero.

= At application time, use all units.

= Improves overall robustness: each unit has to
function within varying combinations of units.
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Overview

= Neural information processing.

s Deep learning.

s Feed-forward networks.

s Training feed-forward networks: back propagation.
= Parallel inference on GPUs.

s Outlook:
+ Convolutional neural networks,
+ Recurrent neural networks.
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Parallel Inference

= Both forward and backward propagation can be
made much faster by parallel computation.

s GPUs are particularly suited.
= Pipelining in single-core CPU can be exploited.

= Forward- and backward-propagation can be written
as matrix multiplications.

= Columns of the weight matrix can be processed Iin
parallel.
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Parallel Inference

n
Index K
Index i q
Xy
% A A&
N A

N A
1
0 0
Xl Xno

Forward propagation per layer in
matrix notation:

h — 91 —1
_ - i 7 - .-
hj 911 o Ot ||
[ i i i—1
_hni_ n;l HTliTli_l _xnl 1

Use vector coprocessor / GPU
roy-by-column multiplications.

Split up rows of 8 between
multiple cores.
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Software Packages

= Caffe: allows to easily apply deep learning with
standard units, loss functions, learning techniques.

s Deep learning frameworks that allow development
of new architectures and learning techniques.
Torch,
Theano (+Lasagne),
TensorFlow (+Keras),
CNTK.
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Overview

= Neural information processing.

s Deep learning.

s Feed-forward networks.

s Training feed-forward networks: back propagation.
s Parallel inference on GPUSs.

s Outlook:
+ Convolutional neural networks,
+ Recurrent neural networks.
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Convolution

m Filter unit takes window of input,
produces response.

m For instance, a filter can detect a
specific type of patterns.

s Same filter is applied in parallel to all
window positions of the input. i) 2 A '

= Each unit produces output of same ”‘51 XK
filter for different position.

= This produces a response image.




Convolutional Layer

= Applies multiple filters to all positions of input from
layer below.

= Creates a bank of response images.

y4d
Response image of filter n /;/I

Response image of filter 1
= filter 1 appliedto all ———> V4
image positions )/

EgE Lt ]S
T )
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Convolutional Neural Networks

= Each network layer transforms the image into a
more abstract feature representation.

= Top-most layer can be softmax units for
classification. 4

A
pa|

Image representation

on network layer i+1

7

T - - 77
Transformation: matrix A
product + activation A

function
|

Image representation

on network layer i %
(3D tensor) 7
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Convolutional Neural Networks

= Widely used in image processing; e.g.,
ImageNet (general image classification),
DeepFace (face recognition).

Image representation

on network layer i+1

f

Transformation: matrix

product + activation A

function
|

Image representation

on network layer i

(3D tensor)
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Overview

= Neural information processing.

s Deep learning.

s Feed-forward networks.

s Training feed-forward networks: back propagation.
s Parallel inference on GPUSs.

s QOutlook:
¢ Convolutional neural networks,
+ Recurrent neural networks.
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Recurrent Neural Networks

= Input: time series x3, ..., x>.

= Output can be:
One output (vector) for entire time series: x¢.

One output at each time step: x4, ..., x4.
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Recurrent Neural Networks

= Hidden layer propagates information to itself.
= Hidden layer activation stores context information.

= Output x% ..x% ., x% x%,.. x9

Hidden
LD
0 0

s Input  xy ..xP ., xP xPq .. xo




Recurrent Neural Networks

= Propagation:

hl _91< X? )'Xl_O'(hl)
t — Xl )y At T t

t—1

= Output x% ..x%, x% x%,.. x%
Hidden
LD
s Input x?¥ LxP . oxP oxPo..xd
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Recurrent Neural Networks

|dentical network “unfolded” in time.
Units on hidden layer propagate to the right.

Hidden layer activation stores context information.

Output x¢ ..x%, x¢% x%, .. x%

Hidden Hidden Hidden
layers e layers e layers

Input  x? ..x? ;. XP XPiq .. X5
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Recurrent Neural Networks

= Forward propagation

= Output x% ..x% ., x% x%,.. x9
Hidden Hid¢len Hidden
Iaye'S/# laydrs |7 " : laydrs
s Input  xy ..xP ., xP xPq .. xo
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Recurrent Neural Networks

= Back propagation through time.

d

| OUtpUt Xl "'Xt—l Xt

d

Hidden

d

d

Xt+1 -

Hidglen

layefs /

v

= Input

laydrs

W

x4

Hidden
laygrs

!

0 0 0 0 0
X{ X;_q X;{ Xpyq o X7
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Deep Recurrent Neural Networks

d d d
= Output Xy Xipq1 - X7
T T T

07—, |8°—>0°—0°> 16’

0%~ |02 02 0%~ 02
Many paths through which
long-term dependencies

ol—~ |0! 0! 0l > 0! can be propagated through
the network

s Input  xy ..xP ., xP xPq .. xo
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Recurrent Neural Networks

= Widely used in language processing:

Speech recognition,
Machine translation,

= Output x¢ ..x& ., x¢

||

Hidden 7‘/ Hid

en

layefs / laydrs

A

» Input  x? ..x? ;X

{

t

d d
Xt+1 XT
Hidden

1/ 3 layers
0 |O
Xipq - X7
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Summary

s Computational model of neural information
processing.

s Feed-forward networks: layer-wise matrix
multiplication + activation function.

s Back propagation: stochastic gradient descent.

Gradient computation by layer-wise matrix

multiplication + derivative of activation function.

= Convolutional neural networks: layer-wise
application of local filters.

s Recurrent neural networks: state information
passed on to next time step.
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