Universität Potsdam Institut für Informatik

Lehrstuhl Maschinelles Lernen

Problem Analysis and Preprocessing

Tobias Scheffer

Overview

- Analysis of learning problems
 - Understanding requirements
 - Deriving a solution
 - Developing an evaluation protocol
- Data preprocessing
 - Data integration
 - Feature representation
 - Missing values
 - Feature selection

Problem Analysis

- Engineering approach to problem solving
- Understanting the requirements
 - Application goal, quality metric
 - Properties of the data, of the process that generates the data
 - Application-specific requirements
 - Locating the problem in the taxonomy of machine learning paradigms
 - Do underlying assumptions of methods match the problem requirements?
- Developing a solution
- Developing an evaluation strategy

Understanding the Problem Requirements

- Differing cultures in different industries
- E.g., automotive industry
 - 10- to 20-pages of written software requirements specifications are not uncommon
- Usual case:
 - User / customer has idea which property a good solution should have
 - Exact problem setting and requirements have to be determined in interviews.

- Problem: email spam exhausts hard drives and processing capacity
- Server and storage are massive cost factors
- Legal requiements: messages that have been accepted for delivery must not be deleted

 Individual mailing campaigns distributed by botnets create enormous volumes of data

This is a good way to make a right move and receive your due benefits if you are qualified but are lacking that piece of paper. Get one from us in a fraction of the time. If you want to get better - you must Contact us 24 hours a day to start improving your life!		This is a nice way to make a right move and receive your due benefits if you are qualified but are lacking that piece of paper. Get one from us in a fraction of the time. If you want to get better - you must Call us NOW to start improving your life!		
~CALL FOR A FR 1-407-245-7320 F your phone numb and name and we possible.	 This is an exellent chance to make a receive your due benefits if you are qualified but are of paper. Get one from us in a short call Us to start improving your life! CONTAC This is a good chance to make a right more your due benefits if you are qualified but are lack of paper. Get one from us in a short outside US, possible. Call Us to start improving your life! 		This is a good chance to make a right move a your due benefits if you are qualified but are lacking t of paper. Get one from us in a fraction of the t If you want to get better - you must Contact u a day and 7 days a week! to start improving y	ind receive hat piece time. s 24 hours our life!
	~CONTACT US FOR A FREE CONS 1-407-245-7320 You must leave us a with your phone number with country USA and name and we'll call you bac	SULTATION~ a voice mess / code if outs ck as soon a	 ~CALL US FOR A FREE CONSULTATION~ 1-407-245-7320 You should leave us a messa your phone number with country code if outsid and name and we'll contact you asap. 	age with de USA

- Administrators notice large campaigns, write regular expression that matches campaign
- Email server then refuses to accept messages that match these regular expressions
- Problems: campaigns have to be noticed in time, admin has to act (weekends? Holidays?)
- If legitimate messages do not arrive, number of complaint calls to call center increases

Fallbeispiel Email Service Provider

- Requirements for automatted solution?
- Evaluation metric?
- Modeling as a learning problem?
 - Type of learning problem?
 - Model space?
 - Loss function? Regularizer?

Taxonomy of Learning Problems

- Supervised: Training data contain values for variable that model has to predict
 - Classification: categorial variable
 - Regression: continuous variable
 - Ordinal regression, finite, ordered set of values
 - Rankings: ordering of elements
 - Structured prediction: sequence, tree, graph, …
 - Recommendation: Item-by-user matrix

Taxonomy of Learning Problems

- Unsupervised: discover structural properties of data
 - Clustering
 - Unsupervised feature learning: find attributes that can be used to describe the data well
 - Anomaly detection
- Control / reinforcement learning: learning to control a dynamical system
- Many further models

. . .

- Semi-supervised learning
- Supervised clustering

Data Availability

- Batch learning: all data available
- Online learning: data come in one at a time; incremental model updates

Data Availability

- Number of data
 - Very few?
 - So many that they have to be stored and processed distributedly?
- Number of attributes
 - Too few?
 - Too many to process?
 - Sparse (most entries zero)?
- Quality of data
 - Missing values?
 - Erroneous values? Measurement errors?

Representational Properties of the Data

- Balanced class ratio? Rare classes?
- Class ratio representative?
- Marginal distribution p(x) in the data equal to distribution at application time? (If not, learning under covariate shift)
- Values of the target attribute from the real target distribution or from an auxiliary distribution (laboratory experiments, simulation data)
- Recent data? Does the process change over time?

Data Properties

- One or several data sources?
- Credibility? Quality? Consistency?
- Availability
 - Fixed, given data set?
 - Does a data collection protocol have to be developed?

Data Dependencies

- Independent observations
 - X_1 X_3 X_4
- Sequences

Interdependent data

- Modeled as two subsequent learning problems
 - 1. Campaign discovery

- Modeled as two subsequent learning problems
 - 1. Campaign discovery
 - 2. Creating a regular expression for each campaign

This is a [a-z]+to make a right move and receive your due benefits... if you are qualified but are lacking that piece

of paper. Get one from us in a $S+(S+){0,2}$ time.

 $S+(S+){1,19}$ to start improving your life!

~C[A-Z]*FOR A FREE CONSULTATION~

(1-407-245-7320 You must |1-407-245-7320 You should |1-407-245-7320 Please)leave us a (|voice)message with your (name and |)phone number with country code if outside USA and S+(S+)=0,4II (|contact |get back to)you S+(S+)=0,4.

Example: Discovering Campaigns

- Unsupervised learning: cluster analysis
- Online processing of the data stream
- Optimization criterium:
 - Most likely partitioning of stream into clusters
- Instances: header and word-occurrance attributes

(\dots)	Email Header A	Email Header Attributes				
0	Alternative					
1	Beneficiary	Dear Beneficiary,				
0	Friend	your Email address has been picked online in this				
		years MICROSOFT CONSUMER AWARD as a				
1	Sterling	Winner of One Hundred and Fifty Five Thousand Pounds Sterling				
$\left(0\right)$	Zoo					

Example: Discovering Campaigns

- Offline evaluation
 - Save all emails within a limited period of time
 - Manually partition into clusters
 - Metrics: agreement between manually and automatically generated clustering
 - False-positive rate, False-negative rate
- Online evaluation, testing
 - Find clusters during regular business operation
 - Show to admins in charge of blocking campaigns
 - Admin feedback: incomplete? Multiple campaigns?
 Ok to block?

- Instances x: sets of emails (set of strings)
- Target attribute y: Regular expression

 $\mathbf{y}=\mathsf{I'm}$ a [a-z]^+ russian (girl|lady). I am 2[123] years old, weigh $\backslash \mathsf{d}^+$ kilograms and am $1\backslash \mathsf{d}\{2\}$ centimeters tall.

 Training data {(x_i, y_i)}: Sets of strings and corresponding regular expression written by admin.

This is a nice way to make a right move and receive your due

This is a best chance to make a right move and receive your

This is a good chance to make a right move and receive your

This is a good chance to make a right move and receive your due

benefits... if you are qualified but are lacking that piece of paper. Get one from us in a fraction of the time.

If you want to get better - you must Contact us 24 hours a day and 7 days a week! to start improving your life!

~CALL US FOR A FREE CONSULTATION~

1-407-245-7320 You should leave us a message with your phone number with country code if outside USA and name and we'll contact you asap.

This is a [a-z]+to make a right move and receive your due benefits... if you are qualified but are lacking that piece of paper. Get one from us in a \S+(\S+){0,2} time.

\S+(\S+){1,19} to start improving your life!

~C[A-Z]*FOR A FREE CONSULTATION~

• Type of learning problem?

- Type of leanring problem:
 - Training data contain correct regular expressions: ⇒ supervised learning
 - Target variable is a regular expression: discrete, structured ⇒ Structured prediction (learning wth struvctured output spaces)

• Loss function $\ell(y_{\theta}(x_i), y_i)$: should measure how different the expressions are

- Loss function $\ell(y_{\theta}(x_i), y_i)$: should measure how different the expressions are:
 - Proportion of non-identical nodes in the syntax tree.
- Regularization: L₂

Example: Evaluation and Testing

Example: Evaluation and Testing

- Online evaluation
 - Discovered campaigns and generated regular expressions presented to admins who have to blacklist campaigns
 - Rates of acceptance, acceptance + editing, rejection of the generated expressions
 - Rate of complaint calls to the call center

Overview

- Analysis of learning problems
 - Understanding requirements
 - Deriving a solution
 - Developing an evaluation protocol
- Data preprocessing
 - Data integration
 - Feature representation
 - Missing values
 - Feature selection

Data Integration

- Multiple data sources: integrate consistently; e.g., in data warehouse.
- Integration of multiple data formats.
- Schema integration: identify same / related attributes in different sources.
- Data conflicts (e.g., conversion of differing units).
- Discover redundant information (duplicate detection).

- Transform attributes, depending of model structure
- For instance, linear model compute inner product of attributes and model parameters.
 - All attributes have to be numeric.
 - Larger attribute values: larger value of inner product
 - Categorial attributes, attributes without ordering, textual attributes have to be converted.

Farbe	Größe	Produktkategorie
rot	23	173
blau	23	173
grün	45	36

	Farbe rot	Farbe blau	Farbe grün	Größe	Produktkategorie 1	 Produktkategorie 173
2	1	0	0	23	0	1
/	0	1	0	23	0	1
	0	0	1	45	0	0

- Texts: TF- or TFIDF-representation
- Term-frequency vector: one dimension per term in a dictionary.
- Use all terms that appear at least 3 times in data.
- Value: number of occurances of the term in the document.

Email		
Dear Beneficiary,		
your Email address has been picked online in this years MICROSOFT CONSUMER AWARD as a Winner of One Hundred and Fifty Five Thousand Pounds Sterling		

- Texts: TF- or TFIDF-representation
- Frequently occurring terms (and, or, not, is) carry little semantic meaning.
- Idea: assign lower weight to frequent terms.
- Inverse document frequency

 $IDF(term_i) = \log \frac{\#documents}{\#documents that contain term_i}$

TFIDF vector

$$TFIDF(\mathbf{x}) = \frac{1}{|\mathbf{x}|} \begin{pmatrix} TF(\text{term}_1) \cdot IDF(\text{term}_1) \\ \vdots \\ TF(\text{term}_n) \cdot IDF(\text{term}_n) \end{pmatrix}$$

- Texts: N-Gram vectors
- In TFIDS representation, information about the ordering of the terms is lost
- N-Gram features: one attribute for each k-tuple of subsequent terms (for all $k \le N$)

Dear Dear Beneficiary Dear Beneficiary your

- has been picked
- Thousand pounds Sterling

Email

Dear Beneficiary,

your Email address has been picked online in this years MICROSOFT CONSUMER AWARD as a Winner of One Hundred and Fifty Five Thousand Pounds Sterling...

- Attributes can assume greatly varying ranges of values.
- Larger absolute values will have a larger impact on th decision function
- It can be beneficial to normalize these ranges.
- This is equivalen to applying stronger regularization to the corresponding weights.

Feature normalization

Min/Max normalization:

$$x^{new} = \frac{x - x_{\min}}{x_{\max} - x_{\min}} (x_{\max}^{new} - x_{\min}^{new}) + x_{\min}^{new}$$

Z-Score normalisierung:

$$x^{new} = \frac{x - \mu_x}{\sigma_x}$$

 $\gamma - \mu$

$$x^{new} = |x| \cdot 10^a \quad a = \max_x \{ i \in \mathbb{Z} | |x| \cdot 10^i < 1 \}$$

• Logarithmic scaling:

Decimal scaling:

 \blacklozenge

$$x^{new} = \log_a x$$

- It can be beneficial to construct complex features is such combinations cannot be found by the model.
 - With polynomial kernels, the model space contains all polynomials of the attributes, but not with linear modelks
- Feature construction
 - Combinations of elementary features, e.g., $(x_i, x_j) \rightarrow (x_j, \sqrt{x_i x_j}, x_i + x_j)$
 - Mapping of elementary features, e.g., $x_i \rightarrow (x_i, \log x_i, x_i^2)$

Attributes with Missing Values

Cause of missing values

- Missing at random (e.g., memory error, measuring fault).
- Some values may be missing systematically, some classes may be more likely to have missing values.
- Data integration: values may have been deleted due to inconsistencies.
- Data aggregation: may have been aggregated or deleted for privacy.

•

Attributes with Missing Values

- Delete all affected instances (attributes)
 - Makes only sense if very few instances have missing values (attribute is almost always missing)
- Extend range of values to special value "missing".
- Introduce new binary attributes "Attribute_XY_missing".
- Estimate missing values
 - (Class-specific) mean / median imputation
 - Infer most likely values (e.g., using EM algorithm).
- Do not handle missing values (if learning algorithm can intrinsically work with missing values).

Attributes with Erroneous Values

- Identifying incorrect values
 - ▶ Binning: equidistant discretization into bins
 ⇒ Bins with few instances may be outliers.
 - Clustering \Rightarrow Clusters with one or few instances may be outliers.
 - Active learning/labeling: inconsistencies between data and model ⇒ query human for correct label.
- Handling of erroneous values
 - Smoothing of numeric values (e.g., regression, moving average).
 - Treat as missing value / delete instance
 - ...

Feature Selection

- Selecting a subset of attributes can lead to better result.
- Dimensionality reduction.
- Plenty of approaches to feature selection.
 - For instance, principal component analysis
 - Forward-/Backward-selection
- Evaluation with training/test or n-fold cross validation
 - Train models with varying feature subsets on training set
 - Evaluate on testing set.

Feature Selection

- Feature selection for linear models; e.g.,
 - Train linear model,
 - Delete attributres with smalles weights,
 - Train linear model again,
 - Evaluate on test set,
 - Reiterate until optimum is reached.

Problem Analysis, Data Preprocessing

- Machine learning is an engineering science.
 - Analyze problem, understand requirements,
 - Map to known paradigms, refer to state of the art.
 - Derive a solution, and evaluation protocol.
- Data preprocessing can make difference between a model that works great and one that works not at all
 - Data integration,
 - Engineering of good features,
 - Handling of missing, erroneous values,
 - Feature selection