Practical Course: "Machine Learning for Model Building in the Sciences"

Summer term 2016 Niels Landwehr, Tobias Scheffer

Organization: Overview

- Practical course worth 6 "Leistungspunkte".
- Main contact: Niels Landwehr, Office 03.04.0.13, <u>landwehr@cs.uni-potsdam.de</u>.
- Webpage for course: <u>http://www.cs.uni-potsdam.de/ml/teaching/ss16/pmlnm.html</u>.
- Today: overview of format of course, brief sketch of possible topics.

Organization: Format

- Practical course covers topics in machine learning in the sciences.
- Significant prior knowledge in machine learning (at least two lectures) is required!
- Format: You get an individual project that you work on autonomously
 - Literature research, starting from a few scientific papers that we provide.
 - Familiarize yourself with the scientific application domain (data, literature).
 - Develop and implement a machine learning model.
 - Conduct experimental studies based on data from the scientific domain.
 - Detailed written report.
 - Defend your project in exam (usually with short presentation).
- 6 "Leistungspunkte": Approximately 180 hours.

Signing Up for the Course

- If you would like to participate in the practical course, please write me an email and we organize a brief meeting.
- We will discuss possible topics with you.
- Next slides: brief overview over two possible application domains in the natural sciences, namely seismic risk analysis and eye movement models.
- You can also propose other topics, if you have an interesting domain to work on.

Application Area Seismic Risk Analysis

- *Ground motion models* predict the intensity of the ground motion in the case of an earthquake as a function of magnitude, distance to epicenter, soil properties etc.
- GMMs are used in statistical seismic risk analysis to infer the probability that a certain ground motion will be exceeded within a certain time span.
- Models are estimated from data recorded during previously observed earthquakes.
- Statistical / machine learning approaches.

Topics in Seismic Risk Analysis

• Predicting so-called answer spectrum: ground motion at *k* different frequencies.

- Naive: solve k independent learning problems for the k frequencies.
- Alternative: solve joint learning problem, exploiting that neighboring frequencies are correlated.

Topics in Seismic Risk Analysis

- The relationship between inputs (distance, magnitude, soil) and output (ground acceleration) changes from region to region, e.g. due to tectonical features of region.
- However, (strong) earthquakes are rare: when training model for Region X, often need to additionally use data from Region Y.

• How to exploit data from other regions consistently?

Topics in Seismic Risk Analysis

- Physically plausible extrapolation: predictions should be monotone e.g. in distance and magnitude.
- Nonlinear models do not always extrapolate nicely when they are applied to inputs that are outside of the range of values seen in the training data.

Application Area Eye Movement Modelling

- Human eye movements reflect the interplay between vision, cognition, and motor control.
- Eye movements can be observed with high temporal and spatial precision in the lab.
- We specifically focus on eye movements during reading, where a reader fixates different words in a text while understanding what is written.

Topics in Eye Movement Modelling

- Can we predict eye movement patterns from the text being read, to better understand the interplay between text semantics and gaze control?
- What can we infer about a person based on observed eye movement patterns?
- Different aspects can be studied:
 - Predict whether a word will be fixated or how long it will be fixated
 - How do eye movements correlate for example with age, gender, native language, competency, or IQ?

Questions?

- Please watch our video lecture about how to do scientific projects: <u>http://www.cs.uni-potsdam.de/ml/teaching/ws10/face/wa/Flash/wa.html</u>
- Questions?