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Overview

= Graphical models.

= The n-gram model.

= Hidden Markov model.

= Linear classification models.

s Conditional random fields.

m PCFGs

s Forward- and backpropagation in neural networks.
s Recurrent neural networks.

s LSTM networks.
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Graphical Models

= Model of the joint distribution p(X4, ..., Xy) of a set of
random variables.

= Direct dependence and independence of variables
IS represented in the graphical structure.

= Inference: Model allows to infer
All marginal probabilities p(X;_, ..., X; ),

All conditional probabllities p(X;, ..., X;, [ X, , . -, Xi ).
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= Random variables can represent acoustic signals,
letters, words, parts of speech, semantic labels, ...




Directed Graphical Models

= Directed graphical model is a graph over
Nodes: set of random variables {X;, ..., Xy }.

With edges c {X,, ..., Xy }? that contain no cycles.
Edges are written X; — X;.

» Parents pa(X;) = {X;|X; - X;} are the nodes which
X; I1s directly dependent on.

= The directed model represents a joint distribution
P(Xy, .., Xn) = [liz1 p(Xi[pa(X)).
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Directed Graphical Models

= Why does the graph have to be acyclic?

= It the graph is acyclic then there is an ordering
i1, ...,y Of the nodes such that

For all i; and for all X;, € pa (Xl- ):k <]J.

j
That Is, the parents come before their children in the
odering.

= For such an ordering, we can factorize
P(Xy, ..., Xn) = [1it1 p(Xipa(Xy).

AN

Before X; in the ordering

wm
o
=
@
—h
@
=
=
Q
S
Q
c
Q
Q
o)
)
o
-
S
S
o
Q
<




Directed Graphical Models: Independence

= The graph structure of a graphical model implies
(conditional) independencies between random
variables.

—(X; = X;) Implies p(X; |pa(Xj),Xl-) = p(X; |pa(Xj)).

= Independences make inference easier!

Depending on the structure of the model, polynomial
Instead of exponential complexity.

= Dependences and independences represent
domain knowledge and modeling assumptions.
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Directed Graphical Models: Example

= Ordering:
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Directed Graphical Models: Example

= Ordering: A,D,B,E,C.
= P(A,B,C,D,E) =P(A)P(D)P(B|A,D)P(E|D)P(C|B).

AVAN

© :

wm
o
=
@
—h
@
=
=
Q
S
Q
c
Q
Q
o)
)
o
-
S
S
o
Q
<




Undirected Graphical Models

= Undirected graphical model over X4, ...
1 k
=1
= Represented by a factor graph
1
= ~P(4,B)P(A E)P(E,R)P(A,N)

s Solid nodes are factors. \.\ / \.\

= Each factor is joint distribution of
Its connected nodes.
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Undirected Graphical Models

= Undirected graphical model over X3, ..., Xy:

1 k
P(Xy, ., Xn) = Zl_[_ w,
=

s Factor graph represents factorization

s Markov field: connect nodes that
occur in a joint factor.

s Markov field reflects conditional
Independence.
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Undirected Graphical Models

= Undirected graphical model over X3, ..., Xy:

1 k
P(Xy, . Xn) :ZH- 1tp,-
]:

= With ¥ = e¥:

1 k
P(Xy, .., Xy) = 7 ©%P {Zj:ll/)j}
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Inference in Graphical Models

= Problem setting for inference.
= Given observations for some variables X; , ..., X; ,

= Infer distribution of query variable X,:

p(Xq|xl-1, ...,xim).
= Cannot immediately calculate value because the
values of the unobserved parents are unknown.

Sum over all values (summation rule).

= Notation: {Xq, ..., Xy} = { X Xiysooor Xy s Xy s Xjy }

) ]1J
query observed unobserved
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Graphical Models: Inference

= Notation: {X,..,. Xy} ={ X Xiysooor Xy » Xjyo s Xy 3

3
query observed unobserved

s Inference:

p(Xq|xl-1, e

. ) CpXg X e Xy)
l P(Xiys s Xi)

Xj1  Xjk

J

Number of summands is exponential
in the number of unobserved variables.
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Graphical Models: Inference

= Inference:
p(X |xl1,..  Xi
p(xl e )z Zp(Xq,x y Xi s Xjy e X )
e

Xj1 ik
= Exact inference:
Message passing algorithm.
For general graph structures intractable.

If the model has sequential structure: quadratic
(Viterbi-/forward-backward algorithm).

If the model has tree structure: cubic.
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Graphical Models: Inference

s Inference:
p(X |xl1,..  Xi
s e )z Zp(Xq,x y Xi y Xj s e x]k)
e

Xj1 ik
= Approximate inference for general graph structures
Loopy belief propagation,
Variational methods.
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Plate Notation

= Shorthand notation for “loops”:

) -

16
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Overview

= The n-gram model.

= Hidden Markov model.

= Linear classification models.

s Conditional random fields.

m PCFGs

s Forward- and backpropagation in neural networks.
s Recurrent neural networks.

s LSTM networks.
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The n-Gram Model

= Basic tool for language modeling.

= Unigram model (n = 1)

= Based on the Markov assumption of order O:
p(XelXe—1, s X1) = p(X¢)

& B & & & @ . W
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= p(Xy, .., X7) = p(Xl)p(Xz;p(Xs)p(le)p(Xs)p(Xs) . p(X7)

= np(Xi)
i=1

18




The n-Gram Model

= Basic tool for language modeling.

= Bigram model (n = 2)

= Based on the Markov assumption of order 1:
p(XelXe—1, s X1) = D(Xe|Xe—1)

&) —0) —&)—k)—&—& . =K
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s p(Xy, ..., X7) = p(Xp(X; |TX1)I9(X3|X2) X7 |X7-1)

= P(X1) HP(Xt|Xt—1)
t=2

19




The n-Gram Model

= Basic tool for language modeling.

= Trigram model (n = 3)

= Based on the Markov assumption of order 3:
p(XelXe—1, s X1) = D(Xe| Xiq, Xi—2)

O -~

| p(XlJ ...,XT)
= P(X1)P(X2|X1)P(X3|X2;)§1) DX X7r—1, X7-2)

= P(X)p(X2|X1) HP(Xt|Xt—1»Xt—2)
t=3
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The n-Gram Model

= Basic tool for language modeling.
= Based on the Markov assumption of order n — 1:
p(thxt—1; ""Xl) — p(thxt—l; '"JXt—n+1)

= n-gram model:

p(Xy, ..., X7)
=p(Xy) . 0X7|X7-1, ---»XT—n+1T)

= P(Xy) . 0(Xn_1|Xn—2, -, X1) HP(XdXt—L s Xe—n+1)
t=

A

Categorical distributions
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The n-Gram Model

= Basic tool for language modeling.
= Based on the Markov assumption of order n — 1:
p(thxt—1; ""Xl) — p(thxt—l; '"JXt—n+1)

= n-gram model:

p(Xy, ..., X7)
=p(Xy) . 0X7|X7-1, ---»XT—n+1T)

= P(Xy) . 0(Xn_1|Xn—2, -, X1) HP(XHXt—b wor Xe—ns1)

Parameters of the n-gram model
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Parameters of the n-Gram Model

s Parameters: values that are required to infer the
likelihood of an observation in the model.

— p(x1,wxn)
p(xnlxn—lt ""xl) T p(xl,l...,xn‘r_ll)

m Foreach mwith 1 < m < n and each combination
of values x4, ..., X,

p(x4, ..., X, ) has to be known.
Written as 6,
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= We will infer these parameters from data (e.g., from
a text corpus).
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The n-Gram Model: Parameter Inference

s Given data from which we determine:

For all m with 1 < m < n and each combination of
values x4, ..., x,,, we observe the number of
occurances N,

W Xm"
For all m with 1 < m < n we observe the total
number N,,, of observations.
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= What is the relationship between the true, unknown
parameters 6, , andthe observed N, ., ?

24




The n-Gram Model: Parameter Inference

= What is the relationship between the true, unknown
parameters 6, , andthe observed N, , ?

»”'m

Each N, . Isarandom variable.

N,,, random experiments,

Each (x4, ..., x,;,) € Y™ is a possible outcome that
occurs with probability 8, .

Let {y;, ..., v} = Y™ be all the possible outcomes
What type of distribution is p(N,, , ..., N, |6, , ..., 6, )7
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The n-Gram Model: Parameter Inference

= What is the relationship between the true, unknown
parameters 6, , andthe observed N, , ?

o Xm

Each N, . Isarandom variable.

N,,, random experiments,

Each (x4, ..., x,;,) € Y™ is a possible outcome that
occurs with probability 8, .

Let {y;, ..., v} = Y™ be all the possible outcomes
= p(Ny,..,N, 16y, ..,0,) IS a multinomial distribution.
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p(Ny,, ...,Nyk|9y 0,) = —tml gl oV

1! Ny V1 Yk

26




The n-Gram Model: ML Parameters

= Likelihood of training data:

p(NYﬂ ""NYk|HZV1’ Y 93’]{) = M[HIV1’ B HYk](NYﬂ ""NYR)

_ N,,! 91\/3,1 o GNyk

| I V1 T T Vk
NZV1' NJ’k'

s Maximum-likelihood estimate:
arg  max M[le, ) Hyk](Nyl, ey Ny, )
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Oy By,
ML _ % _ Number of occurrences of y;
i Ny Number of observed n—gram combinations

= Maximum-likelihood parameters generally not

robust, unregularized estimates.
27




The n-Gram Model: MAP Parameters

= Posterior of training data:

P(le' ""fyklNyl' ’ Nyk)
N p(N,, Ny,) p(Nyl’ ""Nyk|9y1' ...,Hyk)p(é’yl, 1 By)
Ny

= Likelihood p(N,,, ..., Ny, |6y,, ..., 8y, ) is @ multinomial
distribution.

= If prior p(6,., ..., 8y, ) follows a Dirichlet distribution,
then posterior p(6,,., ..., 0, |Ny,., ..., N, ) follows a
Dirichlet distribution as well.

Dirichlet distribution is the conjugate of the
multinomial distribution.

28
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The n-Gram Model: MAP Parameters

= Posterior of training data:

p(eyl' ""fyklNyl' e Nyk)

= oMo N M|6y., ... 0y, |(Ny,, ... Ny )D|aty,, ..., @y, |P(6y,, -, 6y,)
1
= ooy Dl O+ 6y, (M e )

= Maximum-posterior estimate:

arg  max Dla, +6,,..,a, +6,|(Ny,,..,Ny,)
By 1Oy,
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oMaP _ Myt %y _
Yi Nm+2Xy ay
Number of occurrences of yitay,

Number of observed n—gram combinations+}., a,,

= This form of regularization is also called Laplace

smoothing. s




Overview

= Hidden Markov model.

= Linear classification models.

s Conditional random fields.

m PCFGs

s Forward- and backpropagation in neural networks.
s Recurrent neural networks.

s LSTM networks.
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The Hidden Markov Model

= Directed, generative model.

= Joint probability of input and output:
P(x,y|0) = PT(xl, ey X7y V1, 0, V7| 0)
= t_lp(J’tD’t—b 0) P(x¢|y:, 0)
= Generative model: parameters optimized to
maximize joint likelihood of input and output.
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The Hidden Markov Model

= Model parameters in vector 8 = (m,a, b):
Starting state probabillities m; = P(y; = i|0)
Transition probabilities a;; = P(y¢41 = jlye =1, 0)
Observation probabilities b;(0) = P(x; = o|y; = i,0)
= Markov assumptions:
Pty o ¥6,0) = P(Yes1lye, 0)
P(x¢|ly1, Y7, 0) = P(x¢|y:, 0)
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The Hidden Markov Model

= Prediction, inference: most likely output given input
argmax,, v P(¥1, ..., yr|x1, ..., X7,0)

s Nalve maximization over all combinations of labels;
exponentially many in T.

= But can be solved in O(T) with dynamic
programming — Viterbi algorithm.
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HMM: Inference Tasks

= Find most likely state sequence given output:
argmaxy, . P(y1, ..., Yr|%1, ..., X7, 0)
Solved in O(T) by the Viterbi algorithm.
= Likelihood of an observation sequence:
P(xq4, ..., x7|0)
Solved in O(T) by the forward-backward algorithm.

= Find most likely state at t given output sequence:
argmax,, P(y:|xy,...,x7,0)

Solved in O(T) by @ . @ . @

the forward-
backward algorithm. l l l

() (=) )
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Viterbi Algorithm

m Definition:
0;(i) = max P(yq, ., Vi, Ve = 1,Xq, ..., X¢|0)

YiruVt-1

= It follows that };; 67(i) = P(x,y|0)

= Since x is constant, maximizing );; §r(i) overy
maximizes P(y|x, 0).
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Viterbi Algorithm

m Definition:
0;(i) = max P(yq, ., Vi, Ve = 1,Xq, ..., X¢|0)

V1, Yt—1
= Theorem: can be calculated recursively

6:(0) = p(y; = i|@)P(x1ly, =1,0)
6er1() = (maXi 5t(i)aij)bj(xt+1)
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= Proof:
5t+1(j) = yinﬁ);tp(yl' o Yo Yt+1 = j' X1, ""xt+1|6)
= ymagstP(yl, s Ver X1y s Xe[0)a; b (X4 1)
Ly
=max max Py, ..,¥r =, X1, ., %:10)a;ibj (X¢41)
l yl"":yt—l
= max 6:(1)a;jbj(x¢s1)

36




Viterbi Algorithm

= [nitialization:
log 8, (i) =log m;b;(x4)
1P1(i) =0

m Fort=1..T -1, forall y"

log§;.1(j) = (maxi log 6:(i) + log al-j) + log bj (xt41)
Y1) = (argmaxlog 8,(i) + ay)

= Termination: yr = argmax 61(y)
y
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m Fort=T—-1..1

Ve = Ve+1(qe41)
s Return yg, ..., yr.

37




Forward-Backward Algorithm

= Definitions:
a;(i) = P(0y, ..., 0, q; = i]0)
Be(i) = P(O¢41, -, O7lqr = 1,0)
ye(@) = P(q; = |04, ..., 07, 0)

= Relation to inference problems:

Likelihood of observation sequence:
P(Ol, cer OT |0) = Zi aT(i).

Most likely state given observation sequence:

P(qt — i|011 ---)OT) 9) — )/t(l)

38
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Forward Step

= Likelihood of an initial observation sequence:

a;(i) = P(0y, ..., 0, q; = i]0)
= Theorem:
a; (i) = m;b;(04)
aei1() = (T, at(i)aij)bj(0t+1)

= Forward algorithm:
For all i, let ay(i) =m;b;(0,)
For t=1..T—1: let
ar1() = (X, “t(i)aij)bj(0t+1)

39
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Forward Step: Proof

= Proof by induction: base case

o, (i) = P(0,.q, =1 2)

=P(q, =1|A)P(O, |q, =1,4) =7,b,(O,)
= Induction:t -t +1

.. (j)=P(0,,-,0,.,,q,. = j| 1) = ZP( s 0,154, =159, = j| )

—ZP( 500,59, = 1| A)P(g,,, = j| g, = 10;,...,0,,4)
P(OH] |qr+1 j?q: = 5501!‘“:0::2’)

N
:ZP( 1523 :r'?::il‘a’)P(q“] j|qz_1‘2’)P( -i]|qH] JF?E’)

=(ia (), ] 0.)
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Backward Step

= Likelihood of rest of observation sequence:
B:(i) = P(Ot41, .-, O0rlq: = 1,0)

= Theorem:
Br(i) =1
B (i) = (Z] 1Qij b (Ot+1).3t+1(]))
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= Backward algorithm:
For all i, let Br(i) =1
For t=T—1..1, for all i: let B;(i) =
(Z] 1al]b (0t+1),8t+1(]))

41




Backward Step: Proof

= Inductionstept+1-t

ﬁr(i) = P(O:-u!'":Or | g, = i,A)
ZZP(Or-i-l""=OT=q:-.1 =Jl q, = i,A)

d

=3 P(0,,s0; 4,1, = o4, =i, AP(q,., = j| 4, =i, 2)
J

= ZP(OI-i-Z’""OT | qr-i-] = j! f}, = i:fq«)P(-‘I}I_+_1 = j | qr = 1,/1)
J

P(O,,,19,.,=J,q,=1i,4)
= ZP(O:-i-Z?“'ﬂ OT | qr-i-] = j:i)P(Q.t-i-] = J.r | QE = i: E)P(Or-i-] | qu-l = j,ﬁ,)
J

= Zﬁ‘ __1(_}-){1&-5;(0; ..1)
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Forward-Backward Algorithm

= Probability of a state at time t:

yt(l) — P(qt — i|011 ...,OT, 8)
B P(q; =1i,04,..,07|0)

B P(0y, ..., 0r]6)
_P@r =104, ...,0¢ 044, 07]0)

P(04,...,07|6)

_ P(q: = i,04,...,0:)P(0¢41,07|q: = i, 0)
P(04,...,07|0)
_ a ()6 (i)
2 ar (i)

43
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Forward-Backward Algorithm

m Forward pass:
For all i, let ay(i) = m;b;(0,)
For t=1..T—1, for all 1i:
x Let ap1() = (T, at(i)aij)bj(0t+1)
m Backward pass:
For all i, let Br(i) =1
For t=T-1..1, for all i:

*x Let B:(i) = (Zﬂyﬂ a;;j bj(0t+1),3t+1(j))

N DB
D =50
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* Let )/t
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Learning in Hidden Markov Models

= Focus on discrete observations 0; first.

1. Hidden states are visible during training:
Training data are labeled with states.
For instance, in part-of-speech tagging.

2. Hidden states are not visible during training:
States have to be inferred.
For instance, in speech recognition.
Training by Baum-Welch algorithm.
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HMM Learning with Visible States

» Maximume-likelihood parameters 0 = (m, a, b):
. # sequences that startin state i
m; = P(y, = i|0) =

#sequences

# state transitions from i to j

ajj = P(Yer1 = jlye =1,0) =

#state transitions from i
# of times xy=o0 in state i

bi(0) = P(x; = oly; =1i,0) =

# of times in state i

= Laplace correction (regularization): add constant to
numerator, change denominator so that
probabilities add to one again.

46
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HMM Learning with Invisible States

s Start with initial, random model
= lteratively:

use forward backward to estimate state probabilities

Update model parameters based on estimated
states.

= Baum-Welch algorithm is variant of the EM
algorithm for the hidden markov model.

47
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Baum-Welch Algorithm

= Definition: probability of a transition from state i to
state j at time t:

ft(i;j) =P(q: = i,9¢+1 = j|04, ..., 07, 0)
s Can be calculated as:

§c(i,j) =P(qe = i».CIt+1 =j|0_1» ., 07,0)
_ Oft(l)aijﬁtﬂ(/)

N .
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Baum-Welch Algorithm

m Input: Set of observation sequences
((03,..,0%),..., (O™, ...,0m)
m Initialize 6 at random
m Repeat until convergence:
Run forward-backward algorithm to infer all
ac(), Be(D), ve(D).
For all t, 1, j: infer &(i,j)
For all i: let m =y1(0)
_ Ttz §eCd)
Yi=1 Ve (@)
2t.0p=0 Yt()
Yieq ve(D
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For all 1, j: let a

For all i, O: let b;(0) =
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Continuous Hidden Markov Models

= So far, b;(0;) has been a multinomial distribution
over a set of discrete observations.

= In speech processing, O; is a vector of continuous
attributes.

= Modeling assumption: mixture of Gaussian
distributions.

bi(X¢) = Yie=1 Cire Npie, Zin ] (X¢) = Xie=1 Cix bi (X¢)

50
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Continuous Hidden Markov Models

= Modeling assumption: mixture of Gaussian
distributions.

bi(X¢) = Y=t Cire Ntir, Zire ] (X¢) = X1 Cir bix (X¢)
s Parameters of multivariate Gaussian distributions
b;i (X¢) have to be estimated from data.

= Mixing coefficients c;;, are unknown; estimated
using EM algorithm.

= Each iteration of the Baum-Welch algorithm
requires an execution of the EM algorithm to
estimate mixing coefficients c;,.
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The Hidden Markov Model

= Generative sequence model.
= Observed output variable, latent state variable.

= Latent states, state sequences can be inferred by
Viterbi-/forward-backward-algorithm.

= States visible in labeled training data? Model
parameters estimated by “regularized counting”.

= States invisible in labeled training data? Model
parameters estimated by Baum-Welch algorithm.

= Continuous observations usually modeled as
(mixture of) multivariate Gaussian distributions.
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Overview

= Linear classification models.

s Conditional random fields.

m PCFGs

s Forward- and backpropagation in neural networks.
s Recurrent neural networks.

s LSTM networks.
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Classification

= Input: an instance x € X
E.g., X can be a vector space over attributes
The Instance is then an assignment of attributes.

X1
X = ( : ) is a feature vector
xm
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s Output: Class y € Y; where Y is a finite set.
The class is also referred to as the target attribute
y Is also referred to as the (class) label

x — classifier — y
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Classification: Example

= Input: Instance x € X
X : the set of all possible combinations of regiment of

)
(@)
-
D
i i =
medication @
D
. Medication
Attribute Instance x A =
combination c
Medication #1 included? 0 =
nx o)
25 [/ES§ :
1€ 2 ~ 5
D o
0|5 5 S 3
118 ¢ o
(@) Q
O - wm <<

Medication #6 included?
= Output: y € Y = {toxic, ok} ‘/ @

&® - classifier —
S ®
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Linear Classification Models

= Hyperplane given by normal vector & displacement:
He = {X|fo(x) =x"0 + 6, = 0}

= Example: X = R?

= Decision function:
fo(x) =x"0 + 6, /

= Binary classifier,y € {(+1,-1}: /®  /3&  jrem<o_
ve(X) = sign(fy(x)) T “
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Linear Classification Models

= Hyperplane given by normal vector & displacement:
Ho = {X|fo(x) =x"0 + 6, = 0}
= Example: X = R? I (2)
10
= Decision function:

o T

s Example points: 0 o010y
o] 2 ,
/ %
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fo () =10 2)(5)-20= 4<0

f9(120)=(2 10)(%)—20=12>0
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Linear Classification Model

m Offset can “disappear” into parameter vector.
s Example

Before: fo(x) = (i;)T (;) — 20

1\ /=20
After: fo(x) =<x1> ( 1 )
X2 3

= New constant attribute x, = 1 added to all
Instances

s Offset 6, integrated into 0.
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Learning Linear Classifiers

= Input to the Learner: = Output: a Model %
Training data T,,. oA
2o e :
xll xlm O‘:‘ ye :X—)Y é
X — ( : : ) =
- : : S
Xn1 ° Xnm/& Linear classifier: g
Y@ _ {@ ifxTO > 0 3
y = ( : ) yo(x) @ otherwise é
Yn

° /\_
= Training Data: Linear classifier with
T, = {(X{,V1), oo, Xy, V) } parameter vector .
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Regularized Empirical Risk Minimization

m Solve
n
argmin Y e(fa(x0), 70 + 29(8)
=1

m Loss function ¢(fy(x;), y;): cost of the model’'s
output fg(x) when the true value is y.

The empirical risk is R,,(0) = Y™, 2(fy(x;), y;)

= Regularizer Q(0) & trade-off parameter 1 > 0:
Background information about preferred solutions
Provides numerical stability (Tikhonov-Regularizer)
allows for tighter error bounds (PAC-Theory)

wm
o
=
@
—h
@
=
=
Q
S
Q
c
Q
Q
o)
)
o
-
S
S
o
Q
<

60




Regularized Empirical Risk Minimization

m Solve
n
arg;nin 2 2(fo(x1), 1) + 1 Q(0)
i=1

s Linear model:
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n
argmin 2 2(x;70,v;) + 20(0)
9 <
i=1
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Regularized Empirical Risk Minimization

s Linear model: solve
n
argmin Z 2(x70,y;) + 1Q(0)
0 :
=1

= How to find solution:

Classification: No analytic solution but numeric
solutions (gradient descent, cutting plane, interior
point method)
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Regularized Empirical Risk Minimization

s Linear classification model: minimize
n
L(6) = z £(x70,y;) +1.0(6)
i=1

s Gradient:
Vector of the derivatives / dL(0)
with respect to each individual
parameter VL(O) =

Direction of the steepest aL(e)
increase of the function L(0). \
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Regularized Empirical Risk Minimization

s Linear classification model: minimize
n
L(6) = z £(x70,y;) +1.0(6)
i=1

s Gradient descent method:
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RegERM (Data: (Xq,¥1), -» Xy, ¥0)) L(8%) Ly
Set 09=0 and t=0
DO 7L(0)
Compute gradient VL(0%Y L(eY)
Compute step size at :
Set Ot =@t — ¢tVL(0Y) ! 0° o
Set t=t+1 Starting soln.
WHILE |0t -0 > ¢
RETURN 0f
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Regularized Empirical Risk Minimization

s Linear classification model: minimize
n
L(6) = Z £(x70,y;) +1.0(6)
i=1

s Gradient descent method:

wm
o
=
@
—h
@
=
=
Q
S
Q
c
Q
Q
o)
)
o
-
S
S
o
Q
<

RegERM (Data: (X1,y1), ) (Xn, ¥n)) = The step size at can
0°=0 =0 :
. et be determined through
Compute gradient VL(0Y%) Line search
Compute step size al Barzilai-Borwein
Set 0!l = 0! — alVL(0Y)
Set t=t+1 method
WHILE |0t -0 > ¢
RETURN O°¢
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Regularized Empirical Risk Minimization

= Properties of the gradient descent method:
Optimization criterion improved with every step.

Converges to the global minimum of the optimization
criterion when this criterion I1s convex.

m | he sum of convex functions is convex.

= Therefore, optimization criterion is convex if
Loss function is convex and
Regularizer is convex

convex Not convex

66
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ERM: Stochastic Gradient Method

= |Idea: Determine the gradient for a random subset of
the samples (e.g., a single instance).

= Less computation per optimization step, but only
approximate descent direction.

= Optimization criterion with regularizer in sum:
n A
L) = ) [eUfa(x),y) +50(0)
1=
= Stochastic gradient for a single instance:

0 A0
Ve, L(0) = %3(fe(xi)»3’i) + gﬁﬂ(ﬂ)
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ERM: Stochastic Gradient Method

= Approximate gradient using single examples.

RegERM-Stoch (Data: (Xg,V1), r Xn, V)
Set 9=0 and t=0

DO
Shuffle data randomly
FOR i=1,..,n
Compute subset gradient V,L(0%)
Compute step size at
Set Ot =0t - athiL(Ot)
Set t=t+1
END
WHILE |0t -0 > ¢
RETURN 0°
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ERM: Stochastic Gradient Method

= In every step only one summand of the optimization
criterion is improved.

= The total optimization criterion can be worsened by
these individual steps.

= Converges to the optimum
If the step sizes satisfy:
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Yizpat = and ¥, (ah)? < oo

(Robbins & Monro, 1951)
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ERM: Loss Functions for Classification

m Zero-one loss:
sign(fo(x;)) # y;

00 <o 60 20

sign(fe('xi)) =y,

vifo(Xi)
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ERM: Loss Functions for Classification

Zero-one loss is not convex
s Zero-one loss: = difficult to minimize!

sign(fo(x;)) # y;

Lo/1(fo(X0), yi) = {(1) :iiﬁ:gg Z 8

sign(fo(x))) = ¥;

vifo(Xi)
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ERM: Loss Functions for Classification

m Zero-one loss:
sign(fo(X;)) # ¥i

fO/1(f9(Xi),yi) — {é _Yife(Xi) > (

—yife(x;) <0 |

AN

- sign(fo (X)) = ¥;
= Logistic loss:

glog(fe(xi);yi) = log(l + e—yife(Xi))

\

vifo(Xi)
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ERM: Loss Functions for Classification

m Zero-one loss:
sign(fo(x;)) # y;
1 —yife(x;) >0
0 —yifo(X;) < 0
sign(fo(x))) = ¥;

Lo/1(fo(Xi),yi) = {

= Logistic loss:

Yifo(X;)
glog(fe(xi);yi) = log(l + e—yife(Xi))
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£y (fo(x1),yi) = {_yi%(xi) :;i;ggg 2 8 = max(0, —y;fo(x;))




ERM: Loss Functions for Classification

Zero-one loss:
) sign(fo(x;)) # y;

'1 — Vi [ 0
1,”0/1(f9(xi)»3’i) = {O _;223 Z 0

sign(fo(x) = ¥;

Logistic loss:

~Yifeo(X; Yifo(X;)
glog(fe(xi);yi) = lOg(l + e yife( 1)) 0
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2, (o (X0, y0) = {‘yife<xi> Cyifo(x) > 0

0 —yifo(x) <0 max(0, —y;fo(x;))

Hinge loss:

h(fo(xy), i) = {1 —yifo(xi) 1 -Yyife(x;) >0

0 1—yifa(x) <0 max(0,1 — y;fo(x;))




ERM: Regularizers for Classification

= Idea: use as few attributes as possible:
0y(0) o ||8]|[= number of j with 6; # 0

Q, is not convex = difficult to minimize!
= Manhattan norm (encourages scarcity):
0,(0) « [I6]l,=X7,|6;]
= Squared Euclidean norm (encourages small
weights):
0,(8) « [18]13= X7, 6;
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ERM: Support Vector Machine (SVM)

m Classy e {—1,+1}
s Loss function:

— v Y if 1= v .
= max(0,1 — y; fo(x;)) 1\
= Regularizer: -1 0 L yife(x)
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2
0,(0) =070 = Z}nﬂwjl = 10|
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Support Vector Machine (SVM)

m Loss function is 0O, if...
?=1 max(O,l — )’ife(Xi)) =0
= Vitiryife(x) =1

S ViLgyix; 01

Hessian normal
form: normal
vector has length 1
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o Y :vx.T 8 =T
Vl—l YiXi 16l — 6]l
1.
= o, yi=Hl
n . T 0 2
S Vs X 18ll2 -1
< ify; = -1
16|
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Support Vector Machine (SVM)

m Loss function is 0O, if...
momax(0,1 — y;fa(x;)) = 0
S Ve yife(x) =1
& V?_lt lelTe > 1
& v?—l ylxl ||9||2

= — 6]l
n ‘ = +1
S Viixg |I9||2

if Distance of closest
1y; =
|9||2 point to plane (margin)

s For loss to be 0, all training samples must
lie on the correct side of separating plane
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and have a minimal margin (gap) of to the plane.
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Support Vector Machine (SVM)

= Loss function is O if all
training samples have a

margin of at least —— ”9”2

Points that lie M from the

plane are support vectors
= Regularizer

0,(0) =070 = ||0]|5; is zero only if 6 = 0

Minimizing Q,(0) & maximizing margin

|I9|I

= SVM is also referred to as a large margin classifier
because its optimization criterion is minimized by
the plane with the largest margin from any sample.

79
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Support Vector Machine (SVM)

= If loss function >0, some instances violate margin.
s Loss function as a sum of slack terms
i=1 max(O,l - )’ife(Xi)) = iz1 &
& =max(0,1 — y;fo(x;))

Slack term or
margin violation
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= Points with non-zero slack are support vectors
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Support Vector Machine (SVM)

= Minimize hinge loss and L2-norm ||8]|5 = 870 of the
parameter vector.

= Hinge loss is positive for a sample if the sample has
a distance (margin) of less than —— to the

181l
separating hyperplane.

s SVM thereby finds the hyperplane with the greatest
margin that separates the most possible samples. It
trades off between

The size of the margin
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L
161]2

And the sum of the slack errors }.i*, &;
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Support Vector Machine (SVM)

m Linear classification model: minimize

L(O) =i
=1

s Gradient:

A
max(0,1 — y;x;70) + - 0'o

VL(6) = Z v, L(6)
=1
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= Stochastic gradient for x;:

v, L(6) = {
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Support Vector Machine (SVM)

m Linear classification model: minimize

L(O) =i
=1

s Gradient:

A
max(0,1 — y;x;70) + - 0'o

VL(6) = Z v, L(6)
=1
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= Stochastic gradient for x;:

(24 . T
—0 if ViXi 0>1
Vi, L@ =1{,, "
—0 — ViXi if iniTe <1

\n
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Support Vector Machine (SVM)

= L(0) can be minimized using stochastic gradient
descent method (“Pegasos”)

Very fast, often used in practice

s L(0) can be minimized using gradient descent
method (“Primal SVM")
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Logistic Regression

s ,Logistic regression® is a model for classification!
= For now, binary classification with 'y, e {-1,1}.

= Need: model for p(y|Xx,0)
Model defines probability p(y =1|Xx,9).
Probability p(y =-1|x,0) =1- p(y =1] x,0).

= |dea: transformation of a linear model X'6.

~
N, T~
<
—i
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S Sigmoid function (,Squashing
4 function“) maps interval [—o0,0]
= to [0,1].
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Logistic Regression

= Model logistic regression
Given by parameter vector 9 e[ ",
Defines conditional distribution p(y|Xx,0) by

1 1
=1|x,0)=0(x'0) =
Py =110 =070 = o2 f

yA

p(y =-1|x,0)=1-p(y =1|x,0)
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= Prediction function f,:0" —{0,1}:

f () = {1: o(x'0)>0.5

0: sonst
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Learning Logistic Regression Models

= MAP model: minimize regularized loss.

0, =argmax, P(y|X,0)p(0)
=argmin, Zlog (1+ exp(—yixiTO))+ 1 =10 [
i=1 26p

\ J
| \ Y '

loss function regularizer
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= Convex optimization problem, global minimum.
s Compare earlier lecture on ,Linear models”.
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Overview

s Conditional random fields.

m PCFGs

s Forward- and backpropagation in neural networks.
s Recurrent neural networks.

s LSTM networks.
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Undirected Sequence Models

s Factorization:

1 T
PocyIO) = | | _ exply(ryeen) + 9020}

( . 1)
{ T 2_,9i,-[yt=l,yt+1=f]
= — exp < -
Zl_Lzl P

+Z 0; =10,Xt =0
\ o w[.Vt t ]j
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Undirected Sequence Models

s Factorization:

1 T
PocyIO) = | | _ exply(ryeen) + 9020}

( . 1)
{ T 2_,9i,-[yt=l,yt+1=f]
= — exp < -
Zl_Lzl P

+Z 0; =10,Xt =0
\ o w[.Vt t ]j

1
= exp{0" P (x,y)}
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Undirected Sequence Models

s Conditional random field:

_ P(xyl|9)
PO 0) =5 v 16)

1 T
= ntzlexp{tlj(yt, Ver1) T Ve )}

1 T (zijeij[% =1, YVt+1 :]']\
= — exp < ’

\ +2i’O[J’t =i,x; = 0] )
_ exp{0'P(x,y)}
- Yy exp{0To(x,y")}
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Undirected Sequence Models

s Factorization:

1
P(x,y16) = exp(6T b (x,y)}
= With

/th’t =Lyt = 1]\

Zt[% =N,Yt41 = N]

Zt[xt =01,y = 1]
\Zt[xt = O.M:Yt = N]/

« 4

() () )

d(x,y) =
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Undirected Sequence Models

s Decision function:
fo(xy) =0"0(x,y)

/zt[)’t =Lyt41 = 1]\
Zt[)’t = 1\};3’t+1 = N]

Zt[xt =01,y = 1]
\zt[xt = (;M:}’t = N]/

= With

d(x,y) =

wm
o
=
@
—h
@
-
=
Q
S
Q
c
Q
Q
o)
)
o
-
S
o
o
Q
<<




Undirected Sequence Models: Prediction

= Conditional random field: most likely output
1
y = argmax P(y|x,0) = arg maXZexp{OTCD(X, y)}
y y
= argmax 0 d(x,y)
y

m Decision function:
¥ = argmaxfy(x,y) = 0Td(x,y)
y
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Undirected Sequence Models: Prediction

s ¥ =argmaxfy(x,y) = 0Td(x,y)
y

= Maximization with variant of Viterbi allgorithm.
Scores instead of log-probabilities
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Conditional Random Fields: Inference

= Conditional random field: probability
exp{0 T P(x,y)}
P(ylx,0) = T ;
2y exp{0  O(x,y')}
= Denominator Yy, exp{@' ®(x,y")} inferred by variant
of the Viterbi algorithm.
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Conditional Random Field: Learning

= Optimization criterion
n

arg max P(y;|x;, 0) P(0)
=1

n
= arg méaxz 0Td(x;,y;) + Q(0)
i=1

= Optimization for instance by stochastic gradient
descent.

= Requires labeled training data (y; visible).
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Overview

s PCFGs
s Forward- and backpropagation in neural networks.

s Recurrent neural networks.
s LSTM networks.
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PCFG: Definitions

= Terminal symbols: {w*}, k=1 ..v.
= Nonterminal symbols: {N'},i = 1...n.
= Starting symbol N*.

= Productions: {N' — &/}, whete &’ is a sequence of
terminals and nonterminals.

= Probabilities P(N* — &7), such that for all i:
Y P(N' = &) =1.
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PCFG: Definitions

= Letw,,..,w, be a sentence.

s N'=*w, ..., w, if w, ...,w, can be derived from N*.
= N!,: derivation of w, ..., w, from N.

= Example PCFG:

wm
o
=
@
—h
@
=
=
Q
S
Q
c
Q
Q
o)
)
o
-
S
S
o
Q
<

S—NPVP 1.0 NP — NP PP 0.4
PP—-PNP 1.0 NP — astronomers 0.1
VP - VNP 0.7 NP — ears 0.18
VP - VP PP 0.3 NP — saw 0.04
P — with 1.0 NP — stars 0.18

V — saw 1.0 NP — telescopes 0.1
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PCFG: Example Parse

[ 51.0 %
>

/\ ciDn
NPo.1 VPo.7 n

>

\ /\ =

&

astronomers Vi NP 4 2
N -

o

saw  NPp1s  PP1o S

NEEPZN

stars P1o NPg1s

with ears
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PCFG: Example Parse

wm

(o 51.0 S
/\ %

:

NPg 1 VP 3 |2

‘ /\ (;g;
astronomers VPg 7 PP 2
/\ /\ ]

S

Vio NPpis Pro NPoisg <

saw stars with ears
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PCFG: Inference

s PCFGs answer three questions (much like HMMs):
What is the likelihood of a sentence given a PCFG?
What is the most likely parse tree?

What are the most likely PCFG parameters given a
corpus of sentences and parse trees.
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Chomsky Normal Form

= For each context-free grammar, there is a context-
free grammar in Chomsky normal form.

= Chomsky normal form has two types of productions:
N' — N/N*¥
Nt - w/

= Chomsky normal form allows a simplified treatment.
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Forward / Backward - Inside / Outside

gt=i 7

o

States NP [N | N - N C:D,,.
vy oY Y Y

I

Observations Die grol3e braune  Kiste 2
- : —

IBt(I) — P(Ot+1 ----- OT | qt — |,ﬂ¢) %

o

=

,(i)=P(O,,..,0,,q =i| 1)  -Packward

,Forward®
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Forward / Backward - Inside / Outside
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Jnside” Kiste
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Inside / Outside

= Qutside probabillity:
a; (P, G) = P(Wyp 1y, NJgs Weg.zym | G)
= Inside probability
B;(p.a) =P(w,, [N}, G)
s Likelihood of a chain of terms:
P(w, |G)=P(N'=" w,,G)
=P(W,; [Ny, G)=4(LT)
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Calculating the Inside Probability

B;(p,q)=P(w, |N],G)

N/

N7 N*
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Wp Wad Wgaiil Wg
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Calculating the Inside Probability
s Basecase: Bk k)=PWw|Ng,G)

=P(N;, ->w|G)
= Inductive step:

Bi(p,q) = P(WygINpg G)

Z Z P(Wpva;dt W(d-i-l)q'Nfd.g.])qlNéQ! G)
rs d=p

-1 . .
ZS: P(N;d' {d‘#l)qlN";Q'G)P(wpleéQ' ;d’ isd-f.])qn G)
r,s d=p
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J
XP(W(i+1)q|Npq, pva(d+1)q9 Wpd, G)

> ZP(di' (d+1)q|NrJ;q’G)P(Wde,r,d,G)
r.sS d—p
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Example: Calculating Inside Probability

S—NPVP 1.0 NP — NP PP 0.4 %
PP—-PNP 1.0 NP — astronomers 0.1 =
VP — VNP 0.7 NP — ears 0.18 o}
VP - VP PP 0.3 NP — saw 0.04 o
P—with 1.0 NP — stars 0.18 S
V — saw 1.0 NP — telescopes 0.1 @
3
] 2 3 4 5 ]
T | Bnp= 0.1 B<= 0.0126 B<= 0.0015876 S
2 Bnp = 0.04 | Byp= 0.126 Bvp = 0.015876 =
By= 1.0
3 Bnp = 0.18 Bup = 0.01296
4 Bp= 1.0|Bpp= 0.18
5 Bnp = 0.18
astronomers saw stars with ears
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Calculating the Outside Probability

or; (P, 0) = P(Wiy gy, N gy Wegaym | G)
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Calculating the Outside Probability

m Base case: o (LT)=1 o;LT)=0firj=1

= Inductive step:
aj(pl q) = I:)(Wl(p—l)’ N ;Q’W(qﬂ)m |G)

m ¢ .
= [Z D Py 1 Wigayms Nipes N, N(%ﬂ)e)]

f,g e=q+1

p-1
f .
+(ZZ P (Wit Wigagyms Negr Ny Néq)]

f,g e=1

= [ Z I:)(\Nl(p—l) ! W(e+1)m’ N ge) P(N gq I\I(gq+1)e | N ;e)P(W(qﬂ)e | N(%Hl)e)]
f,
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p-1 .
+(f P(Wl(e—l)’W(q+1)m' Ne]:q)P(Neg(p—l)’ NrJJq | Ne;)P(We(p—q) | Neg(pl))]

{ :af (e,q)P(N" — NN, (e, p—l)] 112



Most Likely Parse Tree

= Viterbi algorithm for PCFG
s O(m3n3)
= 6;(p,q): maximum inside probability for a parse of
subtree N, .
= Initialization: 8;(p,p) = P(N' - wy)
= Induction: &(p.a)=max;, ..., P(N' = N'N“)5,(p,r)s,(r+1,q)
m Save best parse tree:
w,(p,q) =argmax;  , PIN' > N'N*)&, (p, )8, (r +1,0)
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= Reconstruct parse tree: if w,(p,q)=(j.k,r), then left
branch starts withN !, right branch with N/

pr’ (r+1)q
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PCFG: Parameter Estimation

=  Grammar has to be known; only probabilities
P(N' - N/N¥) are estimated.

= If corpus is annotated with parse trees: count how
frequently each rule is used + Laplace smoothing.

= Without parse tree annotation: use EM algorithm
(Baum Welch for PCFGSs).
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Overview

wm
o
=
@
—h
@
=
=
Q
S
Q
c
Q
Q
o)
)
o
-
S
S
o
Q
<

s Forward- and backpropagation in neural networks.
s Recurrent neural networks.
s LSTM networks.
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