Universität Potsdam

Institut für Informatik Lehrstuhl Maschinelles Lernen

Language Models

Tobias Scheffer

Stochastic Language Models

- A stochastic language model is a probability distribution over words.
- Given a string of words, $w_1, ..., w_m$, a language model assigns a probability $p(w_1, ..., w_m)$.
- "Words" $w_1, ..., w_m$ can be words, letters, keystrokes.
- Useful for many (most) NLP tasks.
 - Speech recognition,
 - Spell checking, auto-corrrect, auto-complete,
 - Machine translation,
 - Text classification,
 - Many non-standard NLP problems.

- Speech recognition
 - Acoustic model + language model.

Language model

 $P(I \text{ saw a tree}) = \cdots$ $P(E \text{ yes awe entry}) = \cdots$

- Hand-written text recognition:
 - Pattern-recognition model + language model

Pattern recognition model

Language model

$$P(I \text{ saw a tree}) = \cdots$$

 $P(1 \text{ saw a free}) = \cdots$

- Machine translation
 - Translation model + language model

Translation model

Language model

$$P(I \text{ saw a tree}) = \cdots$$

 $P(I \text{ saw one tree}) = \cdots$

- Auto-correct, auto-complete
 - Keyboard model + language model

Keyboard model

Language model

$$P(I \text{ saw a tree}) = \cdots$$

 $P(O \text{ saq a trew}) = \cdots$

The *n*-Gram Model

- Basic tool for language modeling.
- Based on the Markov assumption of order n-1:

$$p(X_t | X_{t-1}, ..., X_1) = p(X_t | X_{t-1}, ..., X_{t-n+1})$$

n-gram model:

$$\begin{aligned} p(X_1, \dots, X_T) \\ &= p(X_1) \dots p(X_T | X_{T-1}, \dots, X_{T-n+1}) \\ &= P(X_1) \dots p(X_{n-1} | X_{n-2}, \dots, X_1) \prod_{t=n}^T p(X_t | X_{t-1}, \dots, X_{t-n+1}) \\ &\text{Categorical distributions} \end{aligned}$$

The *n*-Gram Model

- See lecture on "basic models".
- Inference: determine $p(w_1, ..., w_T)$.
- Parameter estimation:
 - Determine $\theta_{x_1,...,x_m}$ by counting occurances.
 - Laplace smooting for regularization.
 - Laplace smooting assigns positive probability to unseen n-grams.

Implementing the *n*-Gram Model

- Probabilities of word sequences decrease exponentially in T.
- Fall below floating-point precision quickly.
- Instead of $\theta_{x_1,...,x_m}$, use parameters $\theta_{x_m|x_1,...,x_m}$.
- Do all calculations using logarithmic values.
 - $\log \prod_t p(w_t | w_{t-1}, \dots, w_{t+n-1}) = \sum_t \log p(w_t | w_{t-1}, \dots, w_{t+n-1})$

n-Gram Model: Long-Term Dependencies

- "The computer that I just installed the new operating system on crashed".
- Small values of n:
 - Better estimates of n-gram probabilities but lack of context.
- Increasing n to 4, 5, 6, ...
 - There will be increasingly many combinations of word n-grams that have never been observed.

Linear Interpolation

Simple interpolation:

$$P(w_n|w_{n-1},...,w_1) = \lambda_n P_n(w_n|w_{n-1},...,w_1) + \dots + \lambda_2 P_2(w_n|w_{n-1}) + \lambda_1 P_1(w_n)$$

Context-dependent interpolation weights:

```
P(w_{n}|w_{n-1},...,w_{1})
= \lambda_{n}(w_{n-1},w_{n-2})P_{n}(w_{n}|w_{n-1},...,w_{1}) + \cdots
+ \lambda_{2}(w_{n-1},w_{n-2})P_{2}(w_{n}|w_{n-1}) + \lambda_{1}(w_{n-1},w_{n-2})P_{1}(w_{n})
```

Linear Interpolation

- Setting the interpolation coefficients.
- Split training data into 80% training and 20% tuning data.
- Estimate parameters $\theta_{x_1,...,x_m}$ on training part.
- Then, tune parameters λ_i to maximize likelihood of the tuning data.

Resources

- Google has published a large n-gram corpus.
- http://googleresearch.blogspot.de/2006/08/all-ourn-gram-are-belong-to-you.html

```
File sizes: approx. 24 GB compressed (gzip'ed) text files

Number of tokens: 1,024,908,267,229

Number of sentences: 95,119,665,584

Number of unigrams: 13,588,391

Number of bigrams: 314,843,401

Number of trigrams: 977,069,902

Number of fourgrams: 1,313,818,354

Number of fivegrams: 1,176,470,663
```

Resources

 Google has published data on the evolution of ngram counts over time from Google Books.

Limitations of the *n*-Gram Model

- Capability of reflecting contect limited to n words.
- Independent parameter for each n-word combination.
- Semantically similar terms have independent parameters.
- Idea: Improve genralization by treating semantically similar words in a similar way.
 - Linear interpolation is an attempt at improving generalization.
 - Also, n-gram class models are an attempt at improving generalization.
 - Continuous-space language models.

- Predict w_t based on features extracted from $w_{t-1}, \dots, w_{t-n+1}$.
- Maximize $\prod_t P(w_t|w_{t-1},...,w_{t-n+1})$

- Predict w_t based on features extracted from $w_{t-n}, ..., w_{t+n}$.
- Maximize $\prod_{t \mid j=-n...+n} P(w_t | w_{t+j})$
- Model looks into the "future".
- Output $\dots \mathbf{x}_{t-1} \mathbf{x}_t \mathbf{x}_{t+1} \dots \mathbf{x}_T$

Input $\mathbf{x}_1 \dots \mathbf{x}_{t-n} \dots \mathbf{x}_{t-n} \dots \mathbf{x}_T$

- Skip-gram model: Predict $w_{t-n}, ..., w_{t-1}, w_{t+1}, w_{t+n}$ based on features extracted from w_t .
- Maximize $\prod_{t} \prod_{j=-n...+n} P(w_{t+j}|w_t)$

 For a word-level language model, words are usually represented by one-hot coded feature vector.

For a letter-level language model, latters are usually represented by one-hot coded feature vector.

- Continuous-space language models are usually implemented by neural networks.
- Forward propagation leads to activation of the hidden units.
- The activation of the hidden units creates the embedding (feature representation) $\phi(\mathbf{x}_t)$ of each word.
- This feature representation $\phi(\mathbf{x}_t)$ is useful for many tasks.
- Words that occur in similar contexts have similar feature representations.

Neural Language Model

Also uses Markov assumption of order n-1!

 $\begin{pmatrix} 0.001 \\ \vdots \\ 0.6 \\ 0.1 \\ 0.02 \\ \vdots \\ 0 \end{pmatrix} =$

Softmax output layer

Output

$$\dots \mathbf{X}_{t-1} \quad \mathbf{X}_t \stackrel{\checkmark}{\mathbf{X}}_{t+1} \dots \mathbf{X}_T$$

Rectified linear units

Input

$$\mathbf{X}_1 \quad \dots \mathbf{X}_{t-n+1} \quad \dots \quad \mathbf{X}_{t-1} \quad \dots \quad \mathbf{X}_T.$$

$$= \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Neural Skip-Gram Language Model

$$\begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} =$$

Output

Input

$$\mathbf{X}_{1} \quad \dots \mathbf{X}_{t-n+1} \quad \dots \quad \mathbf{X}_{t-n+1} \quad \dots \quad \mathbf{X}_{T}.$$

$$= \begin{pmatrix} 0.001 \\ \vdots \\ 0.6 \\ 0.1 \\ 0.02 \\ \vdots \\ 0 \end{pmatrix} \qquad = \begin{pmatrix} 0.01 \\ \vdots \\ 0.1 \\ 0.2 \\ 0.8 \\ \vdots \\ 0 \end{pmatrix}$$

Language Model with Context Memory

- Additionally provide paragraph ID as input.
- Allows model to lean an embedding for paragraphs in addition to the embedding for words.
- Paragraph vector: one-hot endocing of paragraph
 ID.

Neural Language Model with Context

Output

$$\phi(\mathbf{x}_t)$$
 Rec

Rectified linear units

■ Input $(\mathbf{x}_1, \mathbf{p}_1)$... $(\mathbf{x}_{t-n+1}, \mathbf{p}_{t-n+1})$... $(\mathbf{x}_{t-1}, \mathbf{p}_{t-1})$... \mathbf{x}_T .

$$= \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Using Word Embeddings

- Feature vectors $\phi(\mathbf{x}_t)$ can replace one-hot coding of words in many applications.
 - Text classification (aggregate over text),
 - Sentiment analysis,
 - Information extraction,
 - **...**

Using Language Models

Auto-correct: find most likely intended sentence $w_1^*, ..., w_T^*$ given word entries $x_1, ..., x_T$.

Learn from corpus of spelling mistakes

Using Language Models

■ Auto-correct: find most likely intended sentence $w_1^*, ..., w_T^*$ given word entries $x_1, ..., x_T$.

•
$$w_1^*, ..., w_T^* = \arg\max_{w_1, ..., w_T} P(w_1, ..., w_T | x_1, ..., x_T)$$

= $\arg\max_{w_1, ..., w_T} P(x_1, ..., x_T | w_1, ..., w_T) P(w_1, ..., w_T)$
= $\arg\max_{w_1, ..., w_T} \left(\prod_t P(x_t | w_t) \right) P(w_1, ..., w_T)$

When the language model is based on n-th order Markov assumption, maximization by Viterbi is exponential in n (not T).

Using Language Models

■ Auto-correct: find most likely intended sentence $w_1^*, ..., w_T^*$ given word entries $x_1, ..., x_T$.

•
$$w_1^*, ..., w_T^* = \arg\max_{w_1, ..., w_T} P(w_1, ..., w_T | x_1, ..., x_T)$$

= $\arg\max_{w_1, ..., w_T} P(x_1, ..., x_T | w_1, ..., w_T) P(w_1, ..., w_T)$
= $\arg\max_{w_1, ..., w_T} \left(\prod_t P(x_t | w_t) \right) P(w_1, ..., w_T)$

If $O(k^n)$ is still too slow, use beam search instead of maximizing over all sequences.

- Extrinsic evaluation: how well deces the model perform at the task that it is intended for?
- Machine translation:
 - Apply translation system with different language models.
 - The have human judge score the output sencences.
- Auto completion:
 - Install two models on smartphones.
 - Measure how frequently users accept the proposed completions.

- Intrinsic evaluation: Does the language model assign a high likelihood to actual sentences?
- Cannot evaluate on training corpus:
 - Has been used to train the model.
 - Does not imply that model will assign high likelyhood to any out-of-corpus sentence.
- Training-Test-Split:
 - Estimate parameters on 80% of the corpus.
 - Evaluate model on remaining 20%.

- What is a good evaluation measure?
- Log-Likelihood of the test corpus?
 - Possible to compare multiple language models.
 - Not possible to compare sencences because short sentences tend to have a higher likelihood than long one (fewer factors).
- Perplexity of the test corpus:
 - Inverse likelihood, normalized by number of words.

$$PP(w_1, ..., w_T) = P(w_1, ..., w_T)^{-\frac{1}{T}} = \sqrt[T]{\prod_t \frac{1}{P(w_t | w_{t-1}, ...)}}$$

- Perplexity of the test corpus:
 - Inverse likelihood, normalized by number of words.

•
$$PP(w_1, ..., w_T) = P(w_1, ..., w_T)^{-\frac{1}{T}} = \sqrt[T]{\prod_t \frac{1}{P(w_t | w_{t-1}, ...)}}$$

Example:

•
$$p(w_t) = \frac{1}{10}$$

•
$$PP(w_1, ..., w_T) = \left(\left(\frac{1}{10}\right)^T\right)^{-\frac{1}{T}} = \left(\frac{1}{10}\right)^{-1} = 10$$

Perplexity: average branching factor.

- Different corpora reflect different distributions.
- A model that has been trained on the Wall Street Journal corpus may assign a log likelihood to sentences from a belletristic corpus.
- If a language model infers $P(w_1, ..., w_T) = 0$, then the perplexity is undefined.
 - Sign of overfitting to the training data, lack of regularization.

Summary

- Stochastic language models quantify the likelihood of a sencence.
- Markov assumption of order n-1: word w_t only dependent on $w_{t-1}, ..., w_{t-n+1}$.
- The *n*-gram model has a discrete parameter for each *n*-word combination.
- Continuous-space (neural) language models learn embedding of words into a feature space; this gives better generalization.
- Language models are a useful tools for many applications.