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Stochastic Language Models

= A stochastic language model is a probability
distribution over words.

= Given a string of words, wy, ..., w,,, a language
model assigns a probability p(wy, ..., wy,).

= “Words” wy, ..., w,,, can be words, letters,
keystrokes.
s Useful for many (most) NLP tasks.
Speech recognition,
Spell checking, auto-corrrect, auto-complete,
Machine translation,
Text classification,
Many non-standard NLP problems.
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Language Models: Why?

= Speech recognition
Acoustic model + language model.

Acoustic model Language model

P(I saw a tree) = -+
P(Eyes awe entry) = -+
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Language Models: Why?

= Hand-written text recognition:
Pattern-recognition model + language model

Pattern recognition model Language model

P(I saw a tree) = ---
P(1 saw a free) = .-
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Language Models: Why?

= Machine translation
Translation model + language model

Translation model Language model

il

AMERICAN

= P(Isaw a tree) = -
P(I saw one tree) = ---
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Language Models: Why?

= Auto-correct, auto-complete
Keyboard model + language model

Keyboard model Language model

P(I saw a tree) = ---

N 00800
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The n-Gram Model

= Basic tool for language modeling.
= Based on the Markov assumption of order n — 1:
p(thxt—1; ""Xl) — p(thxt—l; '"JXt—n+1)

= n-gram model:
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p(Xy, ..., X7)
=p(Xy) . 0X7|X7-1, ---»XT—n+1T)

= P(Xy) . 0(Xn_1|Xn—2, -, X1) HP(XdXt—L s Xe—n+1)
t=

A

Categorical distributions




The n-Gram Model

s See lecture on “basic models”.
= Inference: determine p(wy, ..., wr).
s Parameter estimation:
Determine 6, . Dby counting occurances.

Laplace smooting for regularization.

Laplace smooting assigns positive probability to
unseen n-grams.
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Implementing the n-Gram Model

= Probabilities of word sequences decrease
exponentially in T.

= Fall below floating-point precision quickly.
= Instead of 6, , ,use parameters 0y |, . .
= Do all calculations using logarithmic values.

lOg Ht p(thwt—lJ ’yr Wt+n—1) —
Zt lng(Wt |Wt—1' INR A Wt+n—1)
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n-Gram Model: Long-Term Dependencies

= “The computer that | just installed the new operating
system on crashed”.

s Small values of n:

Better estimates of n-gram probabilities but lack of
context.

= Increasingnto4, 5,60, ...

There will be increasingly many combinations of
word n-grams that have never been observed.
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Linear Interpolation

= Simple interpolation:
P(Wnlwn—L ---»Wl)
= A By (Wi |Wp_q, oy W) + o+ AP (W [wy_q) + A1 Py (wy)
= Context-dependent interpolation weights:
P(Wnlwn—l; ---:Wl)
= An(Wn_1, wn_2) By (W [wy_q, ooy wy) + -
+ Ay (Wno1, Wn_2) P (Wi Wy 1) + 4 (Wn_q, Wi_2) Py (Wy,)
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Linear Interpolation

= Setting the interpolation coefficients.

= Split training data into 80% training and 20% tuning
data.

= Estimate parameters 6, , on training part.

= Then, tune parameters A; to maximize likelihood of
the tuning data.
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Resources

s Google has published a large n-gram corpus.

» http://googleresearch.blogspot.de/2006/08/all-our-
n-gram-are-belong-to-you.html

File sizes: approx. 24 GB compressed (gzip'ed) text files
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Number of tokens: 1,024,5908,267,229
Number of sentences: 65,115%,665,584
Number of unigrams: 13,588,391
Number of bigrams: 314,843,401
Number of trigrams: $77,06%,%02
Number of fourgrams: 1,313,818,354
Number of fivegrams: 1,176,470,663
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Resources

s Google has published data on the evolution of n-
gram counts over time from Google Books.
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Limitations of the n-Gram Model

= Capabillity of reflecting contect limited to n words.

= Independent parameter for each n-word
combination.

= Semantically similar terms have independent
parameters.

= |Idea: Improve genralization by treating semantically
similar words in a similar way.

Linear interpolation is an attempt at improving
generalization.

Also, n-gram class models are an attempt at
Improving generalization.

Continuous-space language models.
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Continuous-Space Language Models

= Predict w; based on features extracted from
Wi—1, s We—n+1-
| MaXImIZG Ht P(thwt_l, ---'Wt—n+1)

[ | OUtpUt "'Xt—l Xt Xt+1 . XT

T

Language model

AN

[ | |ﬂpUt X1 '"Xt—n+1 . Xt—l - XT'
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Continuous-Space Language Models

= Predict w; based on features extracted from
We_p,y ooy Wean.

» Maximize [1:[1j=—n. +n PWe Wiy ;)
j#0

s Model looks into the “future”.

[ | OUtpUt "'Xt—l Xt Xt+1 e XT

T

Language model

Y

| |npUt X1 . Xt—TL .. Xt—n . XT'
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Continuous-Space Language Models

s Skip-gram model: Predict w;_,,, ..., Ws_1, W11, Wi
based on features extracted from wy.

» Maximize [1:[1j=—n. +n PWesj|we)
j#0

[ | OUtpUt "'Xt—l Xt Xt+1 . XT

l

Language model

= Input  x; .. xt%kt_n o X7
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Continuous-Space Language Models

s For a word-level language model, words are usually
represented by one-hot coded feature vector.

&
0 Hippopotamus - Aardvark S
()
0 / Hippie g
X, =11 Dictionary: |Hippopotamus Q
0 Hipster §
\5 / : Q
0 | Zyzzogeton |
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Continuous-Space Language Models

= For a letter-level language model, latters are 0
usually represented by one-hot coded feature S,
vector. &

Q

g

/Q\ €k nN -A- %

: / : §

0 Z =]

X¢=| 1 Dictionary: |" " S
0 ! S

\o/ B
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Continuous-Space Language Models

= Continuous-space language models are usually
Implemented by neural networks.

s Forward propagation leads to activation of the
hidden units.

= The activation of the hidden units creates the
embedding (feature representation) ¢ (x;) of each
word.

= This feature representation ¢(x;) is useful for many
tasks.

= Words that occur in similar contexts have similar
feature representations.
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Neural Language Model
/0.0501\

0.6

Also uses Markov
assumption of order n — 1!

0.1 |=
0.02

; / Softmax output layer
0

[ | OUtpUt "'Xt—l Xt Xt+1 . XT
/]\

L h(x,)
W 1 7 VJ \ t
D A A j\
/T\ Rectified linear units
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Neural Skip-Gram Language Model

= Output

"

5

o Xio1 Xp Xppq oo X

|

= Input

¥ ¥ ¥ ”’\’Tt)

SN

X{ - Xieni1 o Xp—paq - X7
/0001\ /001\
0.6 0.1
=| 01 =| 02
0.02 0.8

\ )
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Language Model with Context Memory

= Additionally provide paragraph ID as input.

= Allows model to lean an embedding for paragraphs
In addition to the embedding for words.

= Paragraph vector: one-hot endocing of paragraph
ID.

/0\ Paragraph 17

0 /
= p=|1

0

\o/

24

)]
o
=
@
—h
@
=
—
Q
-
Q
c
Q
Q
@
—+
@
o
=
S
S
o
Q
<




Neural Language Model with Context
/0.0501\

0.6
0.1 |=
0.02

; / Softmax output layer
0

[ | OUtpUt "'Xt—l Xt Xt+1 . XT
/]\

LX)

1/ 1 7 W\ t

A A K j\
/T\ Rectified linear units
o InpUt (X1, P1) - Xecnt1 Pe—n+1) - Xee1,Pe—1) - X7.
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Using Word Embeddings

= Feature vectors ¢(x;) can replace one-hot coding
of words in many applications.

Text classification (aggregate over text),
Sentiment analysis,
Information extraction,
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Using Language Models

= Auto-correct: find most likely intended sentence
wy, ..., W given word entries x4, ..., Xr.
Wi, .., Wp = argmaxy,. . P(Wq, ...,wr|xy, ..., x7)

= arg max P(xq, .., xp|Wq, ..., wp) P(Wq, ..., Wp)
1,-oWT

=arg max (Hp(xt|wt)>P(W1,... T7)
/ \

Maximization is Language model
Exponential in T

Learn from corpus of
spelling mistakes

27
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Using Language Models

= Auto-correct: find most likely intended sentence
wy, ..., W given word entries x4, ..., Xr.
Wi, .., Wp = argmaxy,. . P(Wq, ...,wr|xy, ..., x7)

= arg max P(xq, .., xp|Wq, ..., wp) P(Wq, ..., Wp)
1,-oWT

=arg max (Hp(xt|wt)>P(W1,... T7)

When the language model is based on n-th
order Markov assumption, maximization by
Viterbi is exponential in n (not T).

28
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Using Language Models

= Auto-correct: find most likely intended sentence
wy, ..., W given word entries x4, ..., Xr.
Wi, .., Wp = argmaxy,. . P(Wq, ...,wr|xy, ..., x7)

= arg max P(xq, .., xp|Wq, ..., wp) P(Wq, ..., Wp)
1r=n T

= arg max (‘ ‘P(xt|wt)>P(W1,...,wT)
Wq,...WT
t

/

If O(k™) is still too slow, use beam search
Instead of maximizing over all sequences.

29
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Evaluating Language Models

» EXxtrinsic evaluation: how well deoes the model
perform at the task that it is intended for?

= Machine translation:

Apply translation system with different language
models.

The have human judge score the output sencences.

= Auto completion:
Install two models on smartphones.

Measure how frequently users accept the proposed
completions.

30
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Evaluating Language Models

= Intrinsic evaluation: Does the language model
assign a high likelihood to actual sentences?

= Cannot evaluate on training corpus:
Has been used to train the model.

Does not imply that model will assign high likelyhood
to any out-of-corpus sentence.

= Training-Test-Split:
Estimate parameters on 80% of the corpus.
Evaluate model on remaining 20%.

31
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Evaluating Language Models

= What is a good evaluation measure?
= Log-Likelihood of the test corpus?

Possible to compare multiple language models.

Not possible to compare sencences because short
sentences tend to have a higher likelihood than long
one (fewer factors).

= Perplexity of the test corpus:
Inverse likelihood, normalized by number of words.
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PP(Wl, ...,WT) — P(er "'JWT) T = \/Ht P(w¢|

We—1,m:)
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Evaluating Language Models

= Perplexity of the test corpus:
Inverse likelihood, normalized by number of words.

Wt—1,.-- )

_ 7 1
PP(Wy,...,wr) = P(Wq, .., W) T = \/Ht P(w¢|
s Example:

1
p(we) = 10
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1

e, owr) = ()] = () =10

Perplexity: average branching factor.
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Evaluating Language Models

= Different corpora reflect different distributions.

= A model that has been trained on the Wall Street
Journal corpus may assign a log likelihood to
sentences from a belletristic corpus.

= |f a language model infers P(wy, ...,wy) = 0, then
the perplexity is undefined.

Sign of overfitting to the training data, lack of
regularization.

34
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Summary

= Stochastic language models quantify the likelihood
of a sencence.

= Markov assumption of order n — 1: word w; only
dependent on w;_q, ..., Wi_541-

= The n-gram model has a discrete parameter for
each n-word combination.

= Continuous-space (neural) language models learn
embedding of words into a feature space; this gives
better generalization.

s Language models are a useful tools for many
applications.
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