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Overview

= Linear Algebra:
Vectors, Matrices, ...

= Analysis & Optimization:

Norms, convex functions

= Bayesian statistics
Bayesian Learning
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Linear Algebra

Vectors
X, X
= Vector: X=| P =Dy %l 2
X L
- - D
_ Xt X X, X, O
s Sum of vectors: Zn:X _ : Qx3 =
— i ’ X+ X, + X, 5
_X1m+...+Xnm_ (g
Weighted R ax, +(1-a)x ‘%
average ax, +(1-a)x, =x, +a(x, —Xx,) Wf\h z
1 Xz g
S
<

= Dot product (scalar product / inner product)

<y,X>=<X,y>=xTy=iZi‘,xiyi i
(x.y)=|]ly|cosc -

y




Linear Algebra

Matrices

_X11 Xln_ _X11 Xml_T _XlT— g
- Matrlx X=| : N =] R Z[Xl Xn]= %
_Xml an_ _Xln an_ _X;_ 5
= Sum of matrices: x4y ] 5
X+Y =[x 4y, -+ X, +Y,]= : S
. Xn + Yy (%'_3.
= Matrix product: - 3
(Y)Y g
YX£EXY =P [y, — v.]=| . =

_X-n:_ _<Xm’y1> <Xm1yn>_




Linear Algebra

Matrices

s Quadratic:

= Symmetric:

= Positive definite:
= trace:

= rank:

Ay

ml

A
= Rmxn

mn

n=m
A=AT
X' AX>0 Vx=0 if A symmetric
tr(A) = ia“
i=1

rk(A) = #linearly independent rows/columns
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Linear Algebra

Special Matrices

s Vector / Matrix of 1=l 1=
all ones: 1 1 -1

s Unit vector:

= Diagonal matrix: | Ao )
diag(a) =[ae, - ae,l=|i "~
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= Matrix-vector product: X :<x1,y>

Xy .<><m,y>




Linear Algebra

Distances and Norms

= Examples for vector distances and norms:

p-norm: X|, = ,p/_zm)\xi\" Distance
Manhattan norm: [X|, betwgen
. - x and y:
Euclidian norm:  [x], =y(xx) =2 y
d(x.y)=[x-y]

= Examples of matrix norms:

-norm (&S ) |

P 0 ‘(;;‘X‘uj Distance
__ between

Frobenius norm:  |X|. =D > % X and Y:

i=1 j=1

d(X,Y)=|X-Y|
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Linear Algebra
Geometry

= Hyperplane: H,,

H, ={x]| f(X)=x"w+w, =0} f@>0
f(2)<0 [T@2)
/ " o

S f

= Mahalanobis distance
(w.r.t. covariance matrix A > 0):
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da (%) =J(x=y) A (x-Y)




Linear Algebra

Representations & Operations

= Representation of data

]
Instance with m features: X=X % ]
n instances (data matrix): X=[X,...., %, ]
= Decision values (linear function)
of a point: f(x)=w'x+w,
of a data matrix: f(X)=w"X+w,1

m Affine-linear transformations of data fromR™ to R™:

of a point : A(X)=Ax+b AcR™™ heR™?
of a data matrix .  A(X)=AX+B AcR™™ BeR™"
Results in reduction of features if m, <m,
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Analysis
Differentiation

= Derivative of a function is the
slope of the tangent line to
the graph of the function.

o0 = tim LEHAD — ()

Ax—-0 Ax
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Analysis

Differentiation

m First derivative of a function

) . df
of a scalar x: fr=—o
dx
]
of a vector x: vl ot
ZX OX, OX

Gradient N

Partial derivative

s Second derivative of a function

: d* f
of a scalar x: fr=——
dx C 2 22
XX XX
of a vector x: vVit=| ¢ T
o° f o’ f
X

Hessian Matrix

14
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Analysis
Convex & concave functions
()

s Convex function:
f(tx+(L—t)y) <tf (x)+(@—t) f (y)

s Concave function: St 510)
f(tx+(@1L—t)y) >tf (X) +(@L—t) f(Y) £

1fx) + (1-0 fiy)

xt +(1-f) y

= Strictly convex and concave, resp.:
,< and ,>" become ,<" and ,>".

There exist no more than one minimum or maximum,
resp.

= Second gradient is hon-negative everywhere (non-
positive for strictly concave functions)

= Any tangent of f(x) is a lower bound on f (upper
bound for concave functions)
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Optimization

Definitions

= Optimization problem (OP):
f™ = min f (x) with X =argmin f(x)
- target function. “
S feasible region (defined by constraints).
f° optimal value.
X" optimal solution.

Any X € S is called feasible solution.

= Convex optimization problem:
Target function and feasible region are convex.
Local Optimum = global Optimum.
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Stochastics _
Application 1: Diagnostics

m New test has been

- developed.
- = Question: What is the
ih likelihood of a person
o being sick if the test is
% positive?

i Teii N

- ///js/”/ = Study: Apply test on

both healthy and sick
probands (real state Is
Known).
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Stochastics _
Application 2: Vaccine

s New vaccine has been
developed.

= Question: How good is
It? How often does it
prevent an infection?

= Study: Test persons
are vaccinated and
later tested if they got
an infection.
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What are we investigating?

= Descriptive statistics: Describing and investigating
attributes of samples.

What is the fraction of probands that got an infection?
(= counting)

= Inductive statistics: Which conclusions regarding
the population can be drawn from a sample?
(Machine Learning).
How many persons will stay healthy in the future?
How confident are we regarding that number?

Q)
o
=
Q)
=
)
=
o
o
2
—
Q
-
!
-
D
Q
(¢
@
O
>
S
=]
@)
Q
<

20




Probabilities

s Frequentist ,objective” probabilities

Probabilities as relative frequency of an event in large
number of independent and repeated experiments.

= Bayesian ,subjective” probabilities
Probabilities as personal belief that an event will appear.
Uncertainty translates to lack of information.
» How likely is it that the vaccination works?

» New information (e.g. new studies) can change these
subjective probabilities.

21
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Probability theory

= Random experiment: Defined process in which an
observation w is generated (elementary event /
outcome).

s Sample space Q: Set of all possible elementary
events. Number of events is |Q].

s Event A: Subset of sample space .

= Probability P: Function that distributes probability
mass to events A in Q.

P(A):=P({we A})

22
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Probability theory
= Probability = normed measure
= Defined via Kolmogorov axioms:
Probability of event Ac Q: 0<P(A) L1
Unit measure: P(Q2) =1

Probability of event Ac Q orevent Bc Q
with AN B = (Events are mutually exclusive):

P(AuUB)=P(A)+P(B)
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In general: P(AuB)=P(A)+P(B)-P(AnB)
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Random variables

s Random variable X iIs a measurable function from
elementary events

to numerical value X:weQ—>xelR
. . . m
or to m-dimensional vector X:weQ-—>XxelR

Machine Learning: Mappings to trees and other structures
are also possible.

Machine Learning: Used synonymously to sample space.

= Image (or range) of random variable:
X ={X(w)|weQ}
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Discrete random variable

m X Is called a discrete random variable if its set of
possible outcomes is discrete.

= Probability function P assigns a probability to every
possible value of the random variable.

P(X =x)e[0:1]
Sum of probability function over all values:

> P(X =x)=1

xeX
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Continuous random variable

s X IS a continuous random variable if its set of
possible outcomes is continuous.

s The values of the distribution function P are defined
as the cumulated probabilities

P, (x)=P(X <x)e[0;1]
= The values of the probabllity density function p
correspond to the change in the distribution
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function.
oP, (x) o
Py (@) = gx 3 with '[O py (x)dx =1

26




Random variables

s Discrete:
E.g. coin toss.

= Continuous:
E.g. Gaussian normal distribution.

05y
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Notational subtleties

= P(X) Probability function or 7
Py probability density function over all %
values of X S

= P(X =x) specific probability value or é
py (x)  specific value of probability density 8
function 2

= P(x) shortened notation of P(X =x) or py (x) H
p () if the identity of the random variable is <

unambiguous.
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Expectation and variance

s The expected value E(X) is the weighted average
over all possible values of X

Discrete random variable:

E(X)=> xP(X =x)

xeX
Continuous random variable:

E(X)=5[xpx (x)dx

= The variance Var(X) is the expected quadratic
distance to the expected value of X

Var(X) = E| (X ~E(X))’|
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Expectation: Example

= St. Petersburg Lottery:

Toss a coin until head appears for the first time.
Pot starts at 1€.

Each time tail appears, the pot is doubled.
Value of pot is random variable X.

Expected (average) profit:

E(X)=) xP(X =x)

xeX

=l-£+2-£+4-l+...=oo
2 4 8
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How much are you willing to pay to enter the game?
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Joint Probability

s P(X1, X5)is the joint probability distribution of
random variables X; and X,

= Joint image:

Cartesian product

P

s E.Q. )(1 X Xz

X, XX, = {(sick, sick), (sick, healthy),
(healthy, sick), (healthy, healthy) }
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Conditional Probabilities

= Conditional Probability: Probability of values of X
with additional information:

Discrete random variable:

P (X = x| Additional Information)

Continuous random variable:

py (x| Additional Information)

= Definition of conditional probability:

P(X,Y=
P(XIY = y) = 55>
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Rules for Calculating Probabilities

s Product rule:
P(X,Y)=PX)P(Y|X)

General product rule (chain rule): 4,
P(Xla XZ) <. 7XTL) — P(Xl) HP(XZ‘Xla R 7Xi—1)
i=2
= Sum rule:
If two events, A and B, are mutually exclusive:

P(AuB)=P(A)+P(B)
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= Marginal distribution:
P(X)=) P(X,Y=y)=> PX|Y=yPY =y)

yey yey
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Rules for Calculating Probabilities

s Bayes’ theorem:
Infer P(X|Y)fromP(Y|X),P(X),and P(Y)

P(X,Y)=P(Y,X)
S P(X|Y)P(Y)=P(Y|X)P(X)
Y| X)P(X)

= p(xIY) -2 P(Y)
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Dependent Random Variables

= Random variables X; and X, can either be
dependent or independent.

= Independent: P(X,, X,) = P(X;) P(X,)
Example:

x 2 consecutive coin tosses (fair coin).

» Result of second event does not dependent on first
event.

Implies: P(X, | X;) = P(X,)
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= Dependent: P(X,, X,)= P(X;) P(X, | X;) #P(X;) P(X,)
Example:
» Flu symptoms of 2 people sitting next to each other.
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Conditional Independence

= Random variables can be dependent and at the
same time independent given another random
variable.

= The random variables X; and X, are conditional
iIndependent given Y if:

P(X1,X5Y) = P(X4]Y) P(X,]Y)

= Example:

Effectiveness of vaccinate known — probabilities of
Infections independent

Effectiveness of vaccinate unknown — Observation of
probands gives clues for other probands.
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Application 1: Diagnostics

m New test has been

- developed.

. el = Question: What is the
likelihood of a person
being sick if the test is
%”‘ , positive?

_— Egg !fg, JEiY

both healthy and sick
probands (real state Is
Known).
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Application 2: Vaccine

s New vaccine has been
developed.

= Question: How good is
It? How often does it
prevent an infection?

= Study: Test persons
are vaccinated and
later tested if they got
an infection.
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Bayes’ Theorem: Example

= Diagnostics example:
P(positive | sick) = 0.98
P(positive | healthy) = 0.05
P(sick) = 0.02

s Given test result Test, we want to know:

Probabillity that the patient is sick:
P (sick | Test)

Most plausible cause

argmax P(Test|S)

Se{sick,healthy}

Most probable cause
argmax P (S |Test)

Se{sick,healthy}
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Bayes‘ Theorem

= Probability of real cause Cau. for observation ODbs.:

P(Cau|Obs)=P(Obs|Cau) P(Cau)
P (Obs)
P(Obs)= »  P(Obs|c)P(c)
ceCauses
= P(Cau): Prior probability, ,Prior”.

= P(Obs|Cau): Likelihood.
= P(Cau|Obs): Poster probability, ,Posterior”.
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Prior, Likelihood, and Posterior

= Subjective estimate, before we have seen any
data: prior distribution over models

P(Health)
P(8), 6 —effectiveness of vaccination

= How well does data fit to model: Likelihood
P(Test | Health)

P(Study| 6),

= Subjective estimate, after we have seen data:
posterior distribution

P(Health | Test)
P(&| Study)
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Prior

= Where do we get a prior distribution from?
P(Health) relatively easy; discrete.

P(6): harder; continuous; could e.g. be estimated
from all current studies on other vaccinations.

= By definition, a prior expresses one's belief about a
random variable. There is no ,correct’ prior.

But: Choice of prior distribution influences the quality
of future predictions.

» Posterior distribution is computable from prior and
likelihood of the observations.

using Bayes' theorem
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Example for Likelihood:
Bernoulli Distribution

= A discrete distribution with two possible outcomes O
and 1 is a Bernoulli distribution.

s Determined by exactly one parameter:

0 € |0;1]
s Distribution function:
P(X =1l0)=460

P(X=0/0)=1-0
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Example for Likelihood:
Binomial Distribution

s Collection of several Bernoulli distributed random
variables X,,...,X, with same parameter 6.

New random variable Y, which determines how many of
the X. are positive: L
i P Vv = Z X
i=1

Y is binomially distributed with parameters #and n
Distribution function:

P(Y =yla,n)=| " |6 (1-6)"
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Binomial coefficient: number of

possibilities to draw y elements out of Probability that n-y random variables
a set of n elements. X; are negative.

Probability that y random variables X;

- 44
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Example for Prior:
Beta Distribution

= Distribution over all possible effectiveness rates.
= Continuous distribution.
s P(6) Is a density function

= Common choice (with parameter 6§ € [0; 1)):
Beta distribution
defined by 2 parameters o and 3

01 —0)F !
~ B(@p)

N
Beta function; used for normalization
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P(0)
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Example for Prior:
Beta i§tribution

24 F a=pg=0.5 4
39 .l a=3p=1 [ g)
il a=1,p=3 | g
3 L I 1:: - z. = E C
. a=2p=5 — | =
1.8 F II | %
|
16 b | | ~
! N
14 b ! f o)
- . »
1.2 F "'\-R ' (8
1 , / S
':I.E B __---"". N «Q
0.6 .-'"-.l- - x""' ®
. .-.-'-l- "'\-.\. g
i =
0z p/ a
4 i 1 1 E i ] i — " (@)
0 Q
<

0 o1 02 03 04 05 06 07 08 09 1

s Special case: o= =1 is uniform distribution
i (1—-0)7t 6%(1—0)°
~ Ble,s) 1

P(6) —1
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General Pattern for Computation of the
Posterior Distribution

= We have:
Prior distribution P(6)
Observation Xy, .0 X))
Likelihood P(Xy,...Xy | 0)

= We want: Posterior distribution P(8] Xy, ...,X,)

= 1. Apply Bayes' theorem.

P@|zy,...,2,) = P(xy,...,2,|0)P(0)/P(x1,...,2,)

= 2. Apply marginal distribution for continuous
parameters.

P(zy,...,xy) :/P(acl,...,a:nw)P(Q)dQ

a7
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Computation of the Posterior Distribution:
Practical Example

s Given:
Model parameter space 6 € [0; 1]

Beta prior with parameters ¢ and S
P(6)=Beta(d|a,p)
Bernoulli likelihood

Binary observations X, ...,X,, conditionally
Independent given model parameter 6

* a positive observations, b negative

= Compute:
Posterior P(@] X, ...,X,)
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Computation of the Posterior Distribution

P(O]x,....X,) %
2
=P (X, X, |O)P(O) ] P(X,... %) Bayes’ theorem %
:{ P(x |9)} ( )/P(X1 ..... Xn) Conditional independence c%
i=1 -
N . . 3
=P (X =1] Qg)alj((lx ;)(;|16?) P(0)!P(x,...,X,) apositive, b negative E
- Bernoulli and L
= 0" (1— 9)b /P (Xl """" Xy ) Beta distributions @
bBﬂ(la’l_B) b+ -1 §

a+a-1 TP a+a-1 P
_ 6 (1— 0 / J- 0 (1_ 6) do Shorten expressions, %T
B(e, B) marginal distribution formula S
L <

Definition of
Beta function

=Beta(6|a+a,b+p) Canceling,
Definition of Beta distribution
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Conjugate Prior

= Previous example:
Starting from prior Beta(@|«, /)
using a positive and b negative observations
we computed posterior Beta(@ |a+a, /+b)

Algebraic forms of posterior and prior are identical.

m Beta distribution is conjugate prior of Bernoulli
likelihood.

= Itis generally good to use the conjugate prior, in
order to guarantee that the posterior is efficiently
computable.
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Practical Example: Vaccination Study

= Prior: Beta with a=1, =5

—_ b2 L Ia L}
L 1 L 1 L 1 L 1 L I

1] 0.2 0.4 0.4 0.2 1
g

= 8 healthy probands, 2 infected
= Corresponding posterior: Beta with a=9, =7
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s Parameters of Beta distribution
take role of pseudo counts.

o 02 04 06 02 1
8
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Prediction / Inference

= Which observations can we expect in the future,
given our belief about the probabillity distribution?

Prediction of test data, given distribution parameters,
e.g. P(X..,, |9), e.g. belief that vaccination

effectiveness is @ = 0.7
or P(X,,,)= | g P(X,.,10) P(6) , e.9. belief that
vaccination effectiveness is Beta distributed with (9,7)
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= Which observations can we expect in the future,
given past observation?

Prediction of test data, given a set of training data
P(X.ew | Xo19)- This is also called inference in graphical

models (next lecture). -




Parameter Estimation

s Bayesian inference doesn't yield model parameters
but distribution over model parameters.

= Estimation of model with highest probability: MAP
estimation

,mnaximum-a-posteriori® = maximizes the posterior
Ouap = argmax, P(& | observations)

= In contrast: most plausible model = ML estimation
,mnaximum-likelihnood” = maximizes likelihood
without considering Priors
Oy = argmax, P(observations | 6)
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Parameter Estimation: Example

= Vaccination study:
Prior: Beta with a=1, =5
8 healthy probands, 2 infected
Corresponding posterior: Beta with =9, =7
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s ML estimation: o105,
Gy = argmax,P(Obs | 6) oon:
4 n:nm-
QML = argmgmx 98(1 — 9)2 — g "3 02 04 06 02 1
k
. . Likelihood function
= MAP estimation: (no probability distribution)
Ouap = argmax, P(&| Obs)
; 03(1—-6)° 4
— arg imax = —
MAP =SS TRy 7
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Parameter Estimation: MAP

= We want: The parameter that maximizes the
posterior distribution P(8] Xy, ...,X,).

s Before: Compute posterior distribution.
1. Apply Bayes' theorem.
PO|xy,...,xn) = P(xy,...,2,|0)P(0)/P(x1,...,2,)

2. Apply marginal distribution for continuous
parameters.

P(xy,...,xy,) :/P(xl,...,:cnw)P(Q)dé’

= We don't need the marginal distribution P(x,,...,x,) to
compute the MAP parameter!
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Prediction / Inference

= Which observations can we expect in the future, given
past observation?

Prediction of test data, given a set of training data
I:)(Xnew | Xold)

= Prediction using MAP estimation:
Compute Gyap Via Gyap = argmax,P(8| X, )
Then compute P(X,.,, | Quap) (Likelinood distribution)

Loss of information:
* Guap IS NOt the real” parameter but the most likely.
» Approach ignores that other models are also possible.
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Bayes Optimal Prediction

= No intermediate step using the MAP model.
Instead, direct derivation of the prediction:

I:)(Xnew | Xold)

b Margina - .P(Xnewlgaxold)P(HlXold)dH
distribution Y,

2. Conditional (b
independence . (Xnew | ‘9) ((9| Xod )|d‘9
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— N N

Weighted by how good model fits
to previous observations.
(Posterior)

Average over all models
(Bayesian Model Averaging)

Prediction given model
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Prediction: Example

= Vaccination study: What is the probability of a
person staying healthy, given the study?

= Prediction using MAP model:
Ouap = argmax,P(6| Obs) = 4/7
P(healthy| 8,.p) = Gap = 417

= Bayes optimal prediction:

P(healthy| X, )=|P(healthy|8)P(0]| X, )dE
old old
0

=V6’-Beta(6’|9,7)d<9 ==
0

Expected value of Beta distribution
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Summary

= Bayesian Learning:
Prior: subjective start distribution over models
Past observations: Likelihood given model parameters

With Bayes' theorem: Posterior: Distribution over models
given data.

Possible ways of future predictions:

» Compute MAP model (maximization of posterior),
simpler —»  afterwards prediction with MAP Model

» Bayes optimal prediction: average over all models,
better —»  weighted with posterior.
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Questions?

Scheffer/Dick: Language Technology
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