Universität Potsdam

Institut für Informatik Lehrstuhl Maschinelles Lernen

Mathematical Basics (Bayesian Learning)

Tobias Scheffer
Uwe Dick

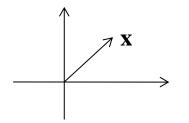
Overview

- Linear Algebra:
 - Vectors, Matrices, ...
- Analysis & Optimization:
 - Norms, convex functions
- Bayesian statistics
 - Bayesian Learning

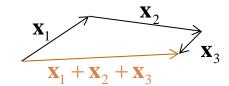
Linear Algebra **Vectors**

Vector:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} x_1 & \cdots & x_m \end{bmatrix}^{\mathrm{T}}$$

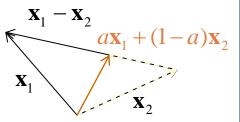


Sum of vectors:
$$\sum_{i=1}^{n} \mathbf{x}_{i} = \begin{vmatrix} x_{11} + \dots + x_{n1} \\ \vdots \\ x_{1m} + \dots + x_{nm} \end{vmatrix}$$



Weighted average

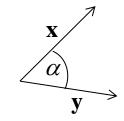
$$a\mathbf{x}_1 + (1-a)\mathbf{x}_2 = \mathbf{x}_2 + a(\mathbf{x}_1 - \mathbf{x}_2)$$



Dot product (scalar product / inner product)

$$\langle \mathbf{y}, \mathbf{x} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^{\mathrm{T}} \mathbf{y} = \sum_{i=1}^{m} x_{i} y_{i}$$

 $\langle \mathbf{x}, \mathbf{y} \rangle = \|\mathbf{x}\| \|\mathbf{y}\| \cos \alpha$



Linear Algebra Matrices

Sum of matrices:

$$\mathbf{X} + \mathbf{Y} = \begin{bmatrix} \mathbf{x}_1 + \mathbf{y}_1 & \cdots & \mathbf{x}_n + \mathbf{y}_n \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1^{\mathrm{T}} + \mathbf{y}_1^{\mathrm{T}} \\ \vdots \\ \mathbf{x}_m^{\mathrm{T}} + \mathbf{y}_m^{\mathrm{T}} \end{bmatrix}$$

Matrix product:

$$\mathbf{YX} \neq \mathbf{XY} = \begin{bmatrix} \mathbf{x}_1^{\mathrm{T}} \\ \vdots \\ \mathbf{x}_m^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} \mathbf{y}_1 & \cdots & \mathbf{y}_n \end{bmatrix} = \begin{bmatrix} \left\langle \mathbf{x}_1, \mathbf{y}_1 \right\rangle & \cdots & \left\langle \mathbf{x}_1, \mathbf{y}_n \right\rangle \\ \vdots & \ddots & \vdots \\ \left\langle \mathbf{x}_m, \mathbf{y}_1 \right\rangle & \cdots & \left\langle \mathbf{x}_m, \mathbf{y}_n \right\rangle \end{bmatrix}$$

Linear Algebra Matrices

$$\mathbf{A} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \in \mathbb{R}^{m \times n}$$

Quadratic: n=m

■ Symmetric: $A = A^T$

■ Positive definite: $\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} > 0 \quad \forall \mathbf{x} \neq \mathbf{0} \text{ if } \mathbf{A} \text{ symmetric}$

trace: $tr(\mathbf{A}) = \sum_{i=1}^{m} a_{ii}$

rank: $rk(\mathbf{A}) = \text{#linearly independent rows/columns}$

Linear Algebra Special Matrices

- Vector / Matrix of all ones:
- Unit vector:

Diagonal matrix:

$$\mathbf{1} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}, \quad \mathbf{1} = \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}$$

$$\mathbf{e}_i = \begin{bmatrix} 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}^{\mathrm{T}}$$

$$diag(\mathbf{a}) = [a_1 \mathbf{e}_1 \quad \cdots \quad a_m \mathbf{e}_m] = \begin{bmatrix} a_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_m \end{bmatrix}$$

Matrix-vector product:

$$\mathbf{X}\mathbf{y} = \begin{bmatrix} \mathbf{x}_1^{\mathrm{T}} \\ \vdots \\ \mathbf{x}_m^{\mathrm{T}} \end{bmatrix} \mathbf{y} = \begin{bmatrix} \left\langle \mathbf{x}_1, \mathbf{y} \right\rangle \\ \vdots \\ \left\langle \mathbf{x}_m, \mathbf{y} \right\rangle \end{bmatrix}$$

Linear Algebra **Distances and Norms**

Examples for vector distances and norms:

p-norm:

$$\left\|\mathbf{x}\right\|_{p} = \sqrt[p]{\sum_{i=1}^{m} \left|x_{i}\right|^{p}}$$

 $\|\mathbf{x}\|_{_{1}}$ Manhattan norm:

Euclidian norm:

$$\|\mathbf{x}\|_2 = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle} = \sqrt{\sum_{i=1}^m x_i^2}$$

Distance between

x and y:

$$d(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$$

Examples of matrix norms:

p-norm

$$\|\mathbf{X}\| = \left(\sum_{i=1}^{m} \sum_{j=1}^{n} \left| \mathbf{x} \right|_{ij}^{p} \right)^{\frac{1}{p}}$$

Frobenius norm:

$$\|\mathbf{X}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n x_{ij}^2}$$

Distance between

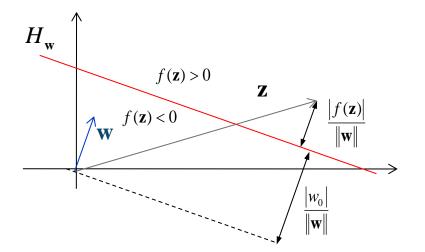
X and Y:

$$d(\mathbf{X}, \mathbf{Y}) = \|\mathbf{X} - \mathbf{Y}\|$$

Linear Algebra Geometry

Hyperplane:

$$\boldsymbol{H}_{\mathbf{w}} = \{ \mathbf{x} \mid f(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{w} + w_0 = 0 \}$$



Mahalanobis distance
 (w.r.t. covariance matrix A > 0):

$$d_{\mathbf{A}}(\mathbf{x}, \mathbf{y}) = \sqrt{(\mathbf{x} - \mathbf{y})^{\mathrm{T}} \mathbf{A}^{-1} (\mathbf{x} - \mathbf{y})}$$

Linear Algebra Representations & Operations

Representation of data

Instance with *m* features:
$$\mathbf{x} = [x_1, ..., x_m]^T$$

- *n* instances (data matrix): $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_n]$
- Decision values (linear function)

• of a point:
$$f(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \mathbf{x} + w_0$$

• of a data matrix:
$$f(\mathbf{X}) = \mathbf{w}^{\mathrm{T}} \mathbf{X} + w_0 \mathbf{1}$$

■ Affine-linear transformations of data from \mathbb{R}^{m_1} to \mathbb{R}^{m_2} :

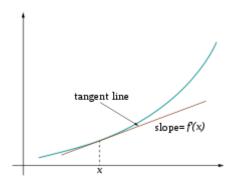
• of a point:
$$A(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$$
 $\mathbf{A} \in \mathbb{R}^{m_2 \times m_1}, \mathbf{b} \in \mathbb{R}^{m_2 \times 1}$

• of a data matrix :
$$A(\mathbf{X}) = \mathbf{A}\mathbf{X} + \mathbf{B}$$
 $\mathbf{A} \in \mathbb{R}^{m_2 \times m_1}, \mathbf{B} \in \mathbb{R}^{m_2 \times n}$

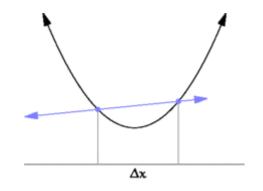
• Results in reduction of features if $m_2 < m_1$

Analysis Differentiation

 Derivative of a function is the slope of the tangent line to the graph of the function.

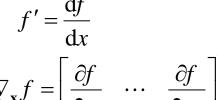


$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$



AnalysisDifferentiation

- First derivative of a function
 - of a scalar x:
 - of a vector x:



Partial derivative

Second derivative of a function

$$f'' = \frac{\mathrm{d}^2 f}{\mathrm{d}x^2}$$

Gradient

of a vector x:

$$\nabla_{\mathbf{x}}^{2} f = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{m} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{m}^{2}} \end{bmatrix}$$

Hessian Matrix

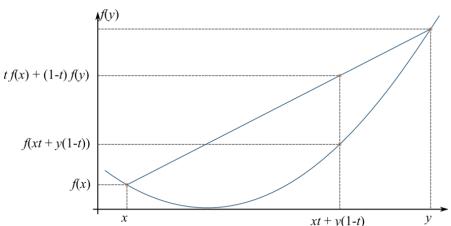
AnalysisConvex & concave functions

Convex function:

$$f(tx+(1-t)y) \le tf(x)+(1-t)f(y)$$

Concave function:

$$f(tx+(1-t)y) \ge tf(x)+(1-t)f(y)$$



- Strictly convex and concave, resp.:
 - "≤" and "≥" become "<" and ">".
 - There exist no more than one minimum or maximum, resp.
- Second gradient is non-negative everywhere (nonpositive for strictly concave functions)
- Any tangent of f(x) is a lower bound on f (upper bound for concave functions)

OptimizationDefinitions

Optimization problem (OP):

$$f^* = \min_{x \in S} f(x)$$
 with $x^* = \arg\min_{x \in S} f(x)$

- f: target function.
- S feasible region (defined by constraints).
- ◆ f* optimal value.
- ⋆ x* optimal solution.
- Any $x \in S$ is called *feasible solution*.
- Convex optimization problem:
 - Target function and feasible region are convex.
 - Local Optimum = global Optimum.

Stochastics Application 1: Diagnostics

- New test has been developed.
- Question: What is the likelihood of a person being sick if the test is positive?
- Study: Apply test on both healthy and sick probands (real state is known).

Stochastics Application 2: Vaccine

- New vaccine has been developed.
- Question: How good is it? How often does it prevent an infection?
- Study: Test persons are vaccinated and later tested if they got an infection.

What are we investigating?

- Descriptive statistics: Describing and investigating attributes of samples.
 - What is the fraction of probands that got an infection?
 (= counting)
- Inductive statistics: Which conclusions regarding the population can be drawn from a sample? (Machine Learning).
 - How many persons will stay healthy in the future?
 - How confident are we regarding that number?

Probabilities

- Frequentist "objective" probabilities
 - Probabilities as relative frequency of an event in large number of independent and repeated experiments.
- Bayesian "subjective" probabilities
 - Probabilities as personal belief that an event will appear.
 - Uncertainty translates to lack of information.
 - ★ How likely is it that the vaccination works?
 - ★ New information (e.g. new studies) can change these subjective probabilities.

Probability theory

- Random experiment: Defined process in which an observation ω is generated (elementary event / outcome).
- Sample space Ω: Set of all possible elementary events. Number of events is |Ω|.
- Event A: Subset of sample space.
- Probability P: Function that distributes probability mass to events A in Ω.

$$P(A) := P(\{\omega \in A\})$$

Probability theory

- Probability = normed measure
- Defined via Kolmogorov axioms:
 - Probability of event $A \subseteq \Omega$: $0 \le P(A) \le 1$
 - Unit measure: $P(\Omega) = 1$
 - Probability of event $A \subseteq \Omega$ or event $B \subseteq \Omega$ with $A \cap B = \emptyset$ (Events are mutually exclusive): $P(A \cup B) = P(A) + P(B)$
 - In general: $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Random variables

- Random variable X is a measurable function from elementary events
 - to numerical value $X: \omega \in \Omega \mapsto x \in \mathbb{R}$
 - or to *m*-dimensional vector $X: \omega \in \Omega \mapsto \mathbf{x} \in \mathbb{R}^m$
 - Machine Learning: Mappings to trees and other structures are also possible.
 - Machine Learning: Used synonymously to sample space.
- Image (or range) of random variable:

$$\mathcal{X} \coloneqq \big\{ X(\omega) \mid \omega \in \Omega \big\}$$

Discrete random variable

- X is called a discrete random variable if its set of possible outcomes is discrete.
- Probability function P assigns a probability to every possible value of the random variable.

$$P(X=x) \in [0;1]$$

Sum of probability function over all values:

$$\sum_{x \in \mathcal{X}} P(X = x) = 1$$

Continuous random variable

- X is a continuous random variable if its set of possible outcomes is continuous.
- The values of the distribution function *P* are defined as the cumulated probabilities

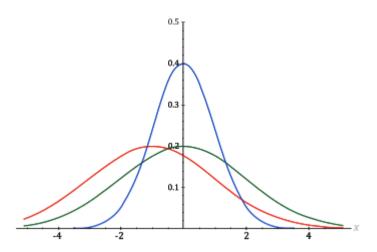
$$P_X(x) = P(X \le x) \in [0;1]$$

■ The values of the probability density function *p* correspond to the change in the distribution function.

$$p_X(a) = \frac{\partial P_X(x)}{\partial x}$$
 with $\int_{-\infty}^{\infty} p_X(x) dx = 1$

Random variables

- Discrete:
 - E.g. coin toss.
- Continuous:
 - E.g. Gaussian normal distribution.



Notational subtleties

P(X) p_X

- Probability function or probability density function over all values of X
- P(X = x) specific probability value or $p_X(x)$ specific value of probability density function
- shortened notation of P(X = x) or $p_X(x)$ p(x) if the identity of the random variable is unambiguous.

Expectation and variance

- The expected value E(X) is the weighted average over all possible values of X
 - Discrete random variable:

$$E(X) = \sum_{x \in \mathcal{X}} x P(X = x)$$

Continuous random variable:

$$E(X) = \int_{\mathcal{X}} x p_X(x) dx$$

■ The variance Var(X) is the expected quadratic distance to the expected value of X

$$Var(X) = E[(X - E(X))^{2}]$$

Expectation: Example

- St. Petersburg Lottery:
 - Toss a coin until head appears for the first time.
 - Pot starts at 1€.
 - Each time tail appears, the pot is doubled.
 - Value of pot is random variable X.
 - Expected (average) profit:

$$E(X) = \sum_{x \in \mathcal{X}} xP(X = x)$$
$$= 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 4 \cdot \frac{1}{8} + \dots = \infty$$

How much are you willing to pay to enter the game?

Joint Probability

- $P(X_1, X_2)$ is the joint probability distribution of random variables X_1 and X_2
- Joint image:

Cartesian product

E.g.:

$$\mathcal{X}_1 \times \mathcal{X}_2$$

$$\mathcal{X}_1 \times \mathcal{X}_2 = \{ \text{ (sick, sick), (sick, healthy), }$$
 (healthy, sick), (healthy, healthy) }

Conditional Probabilities

- Conditional Probability: Probability of values of X with additional information:
 - Discrete random variable:

$$P(X = x | Additional Information)$$

Continuous random variable:

$$p_{X}(x | Additional Information)$$

Definition of conditional probability:

$$P(X|Y = y) = \frac{P(X,Y=y)}{P(Y=y)}$$

Rules for Calculating Probabilities

Product rule:

$$P(X,Y) = P(X)P(Y|X)$$

• General product rule (chain rule): $P(X_1, X_2, \dots, X_n) = P(X_1) \prod_{i=2}^n P(X_i | X_1, \dots, X_{i-1})$

- Sum rule:
 - If two events, A and B, are mutually exclusive: $P(A \cup B) = P(A) + P(B)$
- Marginal distribution:

$$P(X) = \sum_{y \in \mathcal{Y}} P(X, Y = y) = \sum_{y \in \mathcal{Y}} P(X|Y = y)P(Y = y)$$

Rules for Calculating Probabilities

- Bayes' theorem:
 - Infer P(X|Y) from P(Y|X), P(X), and P(Y)

$$P(X,Y) = P(Y,X)$$

$$\Leftrightarrow P(X|Y)P(Y) = P(Y|X)P(X)$$

$$\Leftrightarrow P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$

Dependent Random Variables

- Random variables X_1 and X_2 can either be dependent or independent.
- Independent: $P(X_1, X_2) = P(X_1) P(X_2)$
 - Example:
 - ★ 2 consecutive coin tosses (fair coin).
 - ★ Result of second event does not dependent on first event.
 - Implies: $P(X_2 / X_1) = P(X_2)$
- Dependent: $P(X_1, X_2) = P(X_1) P(X_2 | X_1) \neq P(X_1) P(X_2)$
 - Example:
 - ★ Flu symptoms of 2 people sitting next to each other.

Conditional Independence

- Random variables can be dependent and at the same time independent given another random variable.
- The random variables X_1 and X_2 are conditional independent given Y if:
 - $P(X_1, X_2/Y) = P(X_1/Y) P(X_2/Y)$

Example:

- Effectiveness of vaccinate known → probabilities of infections independent
- ◆ Effectiveness of vaccinate unknown → Observation of probands gives clues for other probands.

Application 1: Diagnostics

- New test has been developed.
- Question: What is the likelihood of a person being sick if the test is positive?
- Study: Apply test on both healthy and sick probands (real state is known).

Application 2: Vaccine

- New vaccine has been developed.
- Question: How good is it? How often does it prevent an infection?
- Study: Test persons are vaccinated and later tested if they got an infection.

Bayes' Theorem: Example

- Diagnostics example:
 - $P(positive \mid sick) = 0.98$
 - $P(positive \mid healthy) = 0.05$
 - P(sick) = 0.02
- Given test result *Test*, we want to know:
 - Probability that the patient is sick:
 P(sick | Test)
 - Most plausible cause $\underset{S \in \{sick, healthy\}}{\operatorname{arg max}} P(Test \mid S)$
 - Most probable cause $\underset{S \in \{sick, healthy\}}{\operatorname{arg max}} P(S \mid Test)$

Bayes' Theorem

Probability of real cause Cau. for observation Obs.:

$$P(\text{Cau} | \text{Obs}) = P(\text{Obs} | \text{Cau}) \frac{P(\text{Cau})}{P(\text{Obs})}$$

$$P(\text{Obs}) = \sum_{c \in Causes} P(\text{Obs} \mid c) P(c)$$

 \blacksquare P(Cau): Prior probability, "Prior".

■ *P*(Obs|Cau): Likelihood.

■ P(Cau|Obs): Poster probability, "Posterior".

Prior, Likelihood, and Posterior

- Subjective estimate, before we have seen any data: prior distribution over models
 - **♦** *P*(*Health*)
 - $P(\theta)$, θ effectiveness of vaccination
- How well does data fit to model: Likelihood
 - ♦ P(Test | Health)
 - $P(Study | \theta)$,
- Subjective estimate, after we have seen data: posterior distribution
 - ◆ P(Health | Test)
 - $P(\theta | Study)$

Prior

- Where do we get a prior distribution from?
 - ◆ P(Health) relatively easy; discrete.
 - $P(\theta)$: harder; continuous; could e.g. be estimated from all current studies on other vaccinations.
- By definition, a prior expresses one's belief about a random variable. There is no ,correct' prior.
 - But: Choice of prior distribution influences the quality of future predictions.
- Posterior distribution is computable from prior and likelihood of the observations.
 - using Bayes' theorem

Example for Likelihood: Bernoulli Distribution

- A discrete distribution with two possible outcomes 0 and 1 is a Bernoulli distribution.
- Determined by exactly one parameter:

$$\theta \in [0;1]$$

Distribution function:

$$P(X = 1|\theta) = \theta$$
$$P(X = 0|\theta) = 1 - \theta$$

Example for Likelihood: Binomial Distribution

- Collection of several Bernoulli distributed random variables $X_1, ..., X_n$ with same parameter θ .
 - New random variable Y, which determines how many of the X_i are positive: $Y = \sum_{i=1}^{n} X_i$
 - Y is binomially distributed with parameters θ and n
 - Distribution function:

$$P(Y = y \mid \theta, n) = \binom{n}{y} \theta^{y} (1 - \theta)^{n-y}$$

Binomial coefficient: number of possibilities to draw y elements out of a set of n elements.

Probability that n-y random variables X_i are negative.

Probability that y random variables X_i are positive.

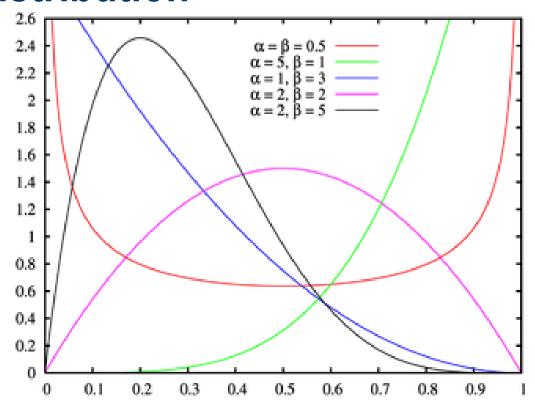
Example for Prior: Beta Distribution

- Distribution over all possible effectiveness rates.
- Continuous distribution.
- \blacksquare $P(\theta)$ is a density function
- Common choice (with parameter $\theta \in [0; 1]$):
 - Beta distribution
 - defined by 2 parameters α and β

$$P(\theta) = \frac{\theta^{\alpha - 1} (1 - \theta)^{\beta - 1}}{B(\alpha, \beta)}$$

Beta function; used for normalization

Example for Prior: Beta Distribution



• Special case: $\alpha = \beta = 1$ is uniform distribution

$$P(\theta) = \frac{\theta^{\alpha - 1} (1 - \theta)^{\beta - 1}}{B(\alpha, \beta)} = \frac{\theta^{0} (1 - \theta)^{0}}{1} = 1$$

General Pattern for Computation of the Posterior Distribution

- We have:
 - Prior distribution $P(\theta)$
 - Observation $x_1, ..., x_n$
 - Likelihood $P(x_1,...,x_n \mid \theta)$
- We want: Posterior distribution $P(\theta | x_1,...,x_n)$
- 1. Apply Bayes' theorem.

$$P(\theta|x_1,\ldots,x_n) = P(x_1,\ldots,x_n|\theta)P(\theta)/P(x_1,\ldots,x_n)$$

 2. Apply marginal distribution for continuous parameters.

$$P(x_1, \dots, x_n) = \int P(x_1, \dots, x_n | \theta) P(\theta) d\theta$$

Computation of the Posterior Distribution: Practical Example

Given:

- Model parameter space $\theta \in [0; 1]$
- Beta prior with parameters α and β : $P(\theta)=Beta(\theta/\alpha,\beta)$
- Bernoulli likelihood
- Binary observations $x_1, ..., x_n$, conditionally independent given model parameter θ
 - $\star a$ positive observations, b negative

Compute:

• Posterior $P(\theta | x_1, ..., x_n)$

Computation of the Posterior Distribution

$$P(\theta \mid x_{1},...,x_{n})$$

$$= P(x_{1},...,x_{n} \mid \theta) P(\theta) / P(x_{1},...,x_{n})$$

$$= \left[\prod_{i=1}^{n} P(x_{i} \mid \theta)\right] P(\theta) / P(x_{1},...,x_{n})$$

$$= P(X = 1 \mid \theta)^{a} P(X = 0 \mid \theta)^{b} P(\theta) / P(x_{1},...,x_{n})$$

$$= \theta^{a} (1 - \theta)^{b} \frac{\theta^{\alpha-1} (1 - \theta)^{\beta-1}}{B(\alpha,\beta)} / P(x_{1},...,x_{n})$$

$$= \frac{\theta^{a+\alpha-1} (1 - \theta)^{b+\beta-1}}{B(\alpha,\beta)} / \left[\int \frac{\theta^{a+\alpha-1} (1 - \theta)^{b+\beta-1}}{B(\alpha,\beta)} d\theta\right]$$

$$= \frac{\theta^{a+\alpha-1} (1 - \theta)^{b+\beta-1}}{B(\alpha,\beta)} / \left[\frac{B(a + \alpha, b + \beta)}{B(\alpha,\beta)}\right]$$

$$= Beta(\theta \mid a + \alpha, b + \beta)$$

Bayes' theorem

Conditional independence

a positive, b negative

Bernoulli and Beta distributions

Shorten expressions, marginal distribution formula

Definition of Beta function

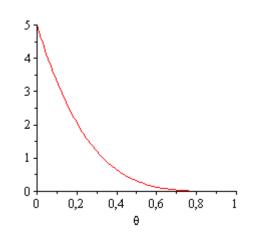
Canceling,
Definition of Beta distribution

Conjugate Prior

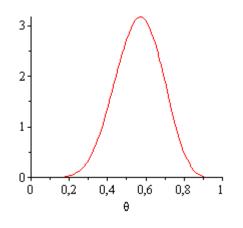
- Previous example:
 - Starting from prior $Beta(\theta/\alpha,\beta)$
 - using a positive and b negative observations
 - we computed posterior $Beta(\theta/\alpha+a,\beta+b)$
 - Algebraic forms of posterior and prior are identical.
- Beta distribution is conjugate prior of Bernoulli likelihood.
- It is generally good to use the conjugate prior, in order to guarantee that the posterior is efficiently computable.

Practical Example: Vaccination Study

• Prior: Beta with α =1, β =5



- 8 healthy probands, 2 infected
- Corresponding posterior: Beta with α =9, β =7
- Parameters of Beta distribution take role of pseudo counts.



Prediction / Inference

- Which observations can we expect in the future, given our belief about the probability distribution?
 - Prediction of test data, given distribution parameters, e.g. $P(X_{new}/\widehat{\theta})$, e.g. belief that vaccination effectiveness is $\widehat{\theta} = 0.7$
 - or $P(X_{new}) = \int_{\theta} P(X_{new} | \theta) P(\theta)$, e.g. belief that vaccination effectiveness is Beta distributed with (9,7)
- Which observations can we expect in the future, given past observation?
 - Prediction of test data, given a set of training data $P(X_{new} \mid X_{old})$. This is also called inference in graphical models (next lecture).

Parameter Estimation

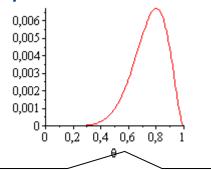
- Bayesian inference doesn't yield model parameters but distribution over model parameters.
- Estimation of model with highest probability: MAP estimation
 - "maximum-a-posteriori" = maximizes the posterior
 - $\theta_{MAP} = \operatorname{argmax}_{\theta} P(\theta \mid observations)$
- In contrast: most *plausible* model = ML estimation
 - "maximum-likelihood" = maximizes likelihood
 - without considering Priors
 - $\theta_{ML} = \operatorname{argmax}_{\theta} P(observations / \theta)$

Parameter Estimation: Example

- Vaccination study:
 - Prior: Beta with α =1, β =5
 - 8 healthy probands, 2 infected
 - Corresponding posterior: Beta with α =9, β =7
- ML estimation:

•
$$\theta_{ML} = \operatorname{argmax}_{\theta} P(Obs / \theta)$$

•
$$\theta_{ML} = \arg\max_{\theta} \theta^8 (1 - \theta)^2 = \frac{4}{5}$$



- MAP estimation:
 - $\theta_{MAP} = \operatorname{argmax}_{\theta} P(\theta / Obs)$

$$\theta_{MAP} = \arg\max_{\theta} \frac{\theta^8 (1 - \theta)^6}{B(9, 7)} = \frac{4}{7}$$

Parameter Estimation: MAP

- We want: The parameter that maximizes the posterior distribution $P(\theta | x_1, ..., x_n)$.
- Before: Compute posterior distribution.
 - 1. Apply Bayes' theorem.

$$P(\theta|x_1,\ldots,x_n) = P(x_1,\ldots,x_n|\theta)P(\theta)/P(x_1,\ldots,x_n)$$

 ◆ 2. Apply marginal distribution for continuous parameters.

$$P(x_1, \dots, x_n) = \int P(x_1, \dots, x_n | \theta) P(\theta) d\theta$$

• We don't need the marginal distribution $P(x_1,...,x_n)$ to compute the MAP parameter!

Prediction / Inference

- Which observations can we expect in the future, given past observation?
 - Prediction of test data, given a set of training data $P(X_{new} \mid X_{old})$
- Prediction using MAP estimation:
 - Compute θ_{MAP} via $\theta_{MAP} = argmax_{\theta} P(\theta \mid X_{old})$
 - Then compute $P(X_{new} / \theta_{MAP})$ (Likelihood distribution)
 - Loss of information:
 - \star θ_{MAP} is not the "real" parameter but the most likely.
 - ⋆ Approach ignores that other models are also possible.

Bayes Optimal Prediction

No intermediate step using the MAP model. Instead, direct derivation of the prediction:

$$P(X_{new} \mid X_{old})$$

- 1. Marginal $= \int\limits_{\theta} P\big(X_{new} \mid \theta, X_{old}\big) P\big(\theta \mid X_{old}\big) d\theta$ distribution
- 2. Conditional independence $= \int_{\theta} P(X_{new} | \theta) P(\theta | X_{old}) d\theta$

Average over *all* models (Bayesian Model Averaging)

Weighted by how good model fits to previous observations. (Posterior)

Prediction given model

Prediction: Example

- Vaccination study: What is the probability of a person staying healthy, given the study?
- Prediction using MAP model:

•
$$\theta_{MAP} = \operatorname{argmax}_{\theta} P(\theta / Obs) = 4/7$$

•
$$P(healthy/\theta_{MAP}) = \theta_{MAP} = 4/7$$

Bayes optimal prediction:

$$\begin{split} P\big(healthy \,|\, X_{old}\big) &= \int_{\theta} P\big(healthy \,|\, \theta\big) P\big(\theta \,|\, X_{old}\big) d\theta \\ &= \int_{\theta} \theta \cdot Beta\big(\theta \,|\, 9,7\big) d\theta \end{split} = \frac{9}{16} \end{split}$$

Summary

simpler \rightarrow

- Bayesian Learning:
 - Prior: subjective start distribution over models
 - Past observations: Likelihood given model parameters
 - With Bayes' theorem: Posterior: Distribution over models given data.
 - Possible ways of future predictions:
 - ★ Compute MAP model (maximization of posterior), afterwards prediction with MAP Model
 - ★ Bayes optimal prediction: average over all models,
 er → weighted with posterior.

Questions?