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Overview

= Neural information processing.

s Feed-forward networks.

= Training feed-forward networks, back propagation.
= Recurrent neural networks.

s LSTM networks.

—
Q
=
Q
-
Q
Q
®
)
o
=
>
=)
o
Q
<<




Learning Problems can be Impossible
without the Right Features
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Learning Problems can be Impossible
without the Right Features
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Learning Problems can be Impossible
without the Right Features

Abstract
features
(higher level)
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Neural Networks

= Model of neural information processing

= Waves of popularity

T Perceptron: Rosenblatt, 1960.

| Perceptron only linear classifier (Minsky, Papert, 69).
T Multilayer perceptrons (90s).

| Popularity of SVMs (late 90s).

T Deep learning (late 2000s).

Now state of the art for Voice Recognition (Google
DeepMind), Face Recognition (Deep Face, 2014)
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Deep Learning Records

= Neural networks best-performing algorithms for

Object classification (CIFAR/NORB/PASCAL VOC-
Benchmarks)

Video classification (various benchmarks)
Sentiment analysis (MR Benchmark)
Pedestrian detection
Speech recognition gz

Phychedelic art
(Deep Dream)
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Neural Information Processing
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Input signals

Axon:
output signal

{

Probability of an
output spike

Weighted input signals

Synaptic weights: =
strengthened and weakened _ _ _
by learning processes Output signals are electric spikes

Connections to other nerve cells
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Neural Information Processing: Model
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Probability of an
output spike

Weighted input signals

Input vector X

Weight vector 0 \




Feed Forward Networks

T indexk = Forward propagation: N
Index i q 0 Q
S XS Input vector x c
9o K K K Linear model: hi =0\ x"™*+4 ©
NS _ o
Each unit has parameter =
vector o, =(g, .. 6,) 2
XZ = o (W) 1 . . | i S
| ayer i has matrix (¢! (4, 0.,

he =0x +6,, | (
0% A A&
N DA
1 1
X = a(hk)mr Output layer

1l o
h =0,x" +0,

0! flg A A

N Hidden layers

of parameters ¢ = =

@

=

Hr:i L 0!

NNy

0 0
X, Xy, <— Input layer
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Feed Forward Networks

ndex k = Forward propagation: N

Index i q 0 Q
Xy Input vector x =

o'k X K Linear model: hi =0 x"™*+4 ?
Activation function and =

propagation: x' =o(h') S

2 2 Q
Xk‘“(hk)>$<, Output vector  x° =

2 _ 2.1 92 4
he=0x+6, |

0% A A&
NN

X, :G(hi)M' Output layer

1 _nlo
h =0,x" +0,

N_ADA A

Hidden layers

0 0
X, " Xy <— Input layer
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Feed Forward Networks

s Bias unit

Index i Index k , o _
- v x§ Linear modell: h, =0, x"*+4.,
o't £ X Constant element 8}, is

replaced by additional unit with
constant output 1: h, =0,x,",
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Feed Forward Networks

Index k s Forward propagation per layer in
ndext matrix notation:
9ir & X Linear model: h' =6'x"*

Activation function: x' =o(h")
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Classification: Softmax Layer

ndex k = One output unit per class: o

Index i : X4 é
[ { L ©

9l K A / xk = Usm(hk) e — o
NN Yy € e 2

/\ i \ xZ: predicted probability for 3

(@]

(@]

<<

X2 = a(hj)>$<\ class k.

91 "\K /\R ”V Cf*
1
X Xy
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Regression: Sigmoidal Activation

= [or target variable k: -

Index i Index)lzd 4 d 1 é
‘i Xk = US(hk) Y I3

Od % 1+e 'k ™
//‘“\ Sigmoidal activation function. 3

s

(@]

- =

Sigmoid Function
' -
09 /

02K A K X —

N N y Weighted input signals
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N
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g )
Activation

o A A K
1
X; Xy
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Internal Units: Rectified Linear Units

ndex k = Forinternal unit (i, k):
Index i : : -
Xd x,l( = O-RBLU(hIl() = maX(O, h;()
0° ”f Leads to sparse activations and

‘ prevents the gradient from
vanishing for deep networks.

—
Q
=

Q
-
Q

Q
®
)
o
=
>
=)
o

Q

<<

> X
X RPX P
|
=29
NOS
+
=~
o
= - - S
Activation

AN
1 T
Weighted input signals
0 0
X Xin

16




Feed Forward Networks: Learning

= Stochastic gradient descent
X R = Loss function

¥ A X P !
XX ] RO =23 ey xY)

s Gradient descent:

xf=a<hf>>$< 0'=0—aVR(0) = O—a%ﬁ(ﬂ)
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ot K A = Stochastic gradient for instance x;:

W 0’ = 0 — aly R(0)
0

=0-— aﬁf(yj,xd)
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Learning: Back Propagation

= Stochastic gradient for output units
for instance x;:

0¢(y;,x?) _ 0¢(y;,x?%) 0x® dh
009 x4 9hl 90¢
_0t(yx*)oa(hl) .
— X
x4 ohg
= §dx4-1

= With
sd _ 0¢(y;,x%) da(hi)
“ ox?  9h¢
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Learning: Back Propagation

= Stochastic gradient for hidden units  [§
Xd . (yg ) §¢  forinstance x;. =
. Q
¢ 7[\ f/l mf% af(yj,.xd) _ af(yj,.xd) ah;; _ §ixi-1 %
_ m 00L ohl  oeL " 3
g ¥ e With s
.+ i+1 Q
%? 6 sa _ 900, x%) =
x @% -2 kT gpi
o X' o) | = . d B (xi+1 i+1
g T el r/k»\ h\N k -69 af(y]’ ) (X ) an+1)
L? 1 - 18 a(xl+1’ x1ll+1 ) ah’k
XI— 6I— % n; +1 1+1
=. B 2 5{’(}’], d) ah;+1 axl+1
T W L ontt ox) oh
XO n;i+1 .
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Learning: Back Propagation

s Derivative of the loss function for N
X! (y=xt) — & classification. %
9d7 " /\~ k s Softmax activation function: %_BI
D
| K ; I S
@ i+1 i+1 Xk = Usm(hk - hd %
g)% I|+1 ﬁi Zk,e k! >
o _ @% oo 0G| h
A5 I R I —
< |f / / 9 .
ET o' F h; al g- Cost function:
Xl—l ﬁi—lm
2 £(y,x%) = ¥) yi log xf!
> 0¢(y,
T \/ = =i
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Learning: Back Propagation

= Derivative of the loss function for o
X! > (y=xt) > & regression. %
1 oK K X l = Logistic activation function: ©
N A o
3K _ _ :
% xk — Usm(hk) W a
%XM X" 8" dasm(h é
) @% | o ah(d J = Tgm () (1 = Tsm(hf))
=B 0 7O\ TRF U )
gT ' ‘i\,(/hk)/}% Zw Cost function:
S 7 K~ 7 3
o | ‘ T O 1 d 2
LL i 6'_1§ {(y’xd) = Ezk(xk o yk)
S a¢(yx4 )
T \/ v = -
XO
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Back Propagation: Algorithm

= [terate over training instances (X, y).

Forward propagation: for i=0...d:
x Fork=1...n; h =0 x"+6,
* X :O'(hi)
Back propagation:
0 0
* Fork=1...n;: &¢ :@a(hf)@ayk,xf)
0, '=0; —ao x"*
x Fori=d-/...1I:
* Fork=L1...n; & =0c'(h)> 56

0,'=0, —as,x"*
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Back Propagation

s Loss function is not convex

Each permutation of hidden units is a local minimum.

Learned features (hidden units) may be ok, but not
usually globally optimal.

n Hope:
Local minima can still be arbitrarily good.
Many local minima can be equally good.
= Reality:

Supervised learning often works with hundreds of
layers and millions of training instances.
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Regularization

= L2-regularized loss
R,(0) =25 . (¥, —X)* +4678
Corresponds to normal prior on parameters.
= Gradient: VR,(0) =3 &x' +70
= Update: 0'=0-5.x—7,0
= Called weight decay.
= Additional regularization schemes:
Early stopping (outdated): Stop before convergence.
Delete units with small weights.

Dropout: During training, set some units’ output to
zero at random.
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Regularization: Dropout

= In complex networks, complex co-adaptation
relationships can form between units.

Not robust for new data.

= Dropout: In each training set, draw a fraction of
units at random and set their output to zero.

= At application time, use all units.

= Improves overall robustness: each unit has to
function within varying combinations of units.
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Regularization: Stochastic Binary Units

= Deterministic units propagate xj = o (h).

= Stochastic-binary units calculate activation o(h}),
Then propagate x. = 1 with probability o(h%)
xL = 0 otherwise.

= Similar to dropout: with some probapkility, each unit
does not produce output.

= Biological neurons behave like this.
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Back Propagation: Tricks

= Stochastic gradient on small batches.
= Permute training data at random.
= Decrease learning rate during optimization

= Initialize weights randomly (origin can be saddle
point).

= Initialize weights via unsupervised pre-training.

—
Q
=
Q
-
Q
Q
®
)
o
=
>
=)
o
Q
<<

27




Parallel Inference

= Both forward and backward propagation can be
made much faster by parallel computation.

s GPUs are particularly suited.
= Pipelining in single-core CPU can be exploited.

s Forward- and backward-propagation can be written
as matrix multiplications.

= Columns of the weight matrix can be processed in
parallel.
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Parallel Inference

Index k s Forward propagation per layer in
ndext matrix notation:
Gd /// /\\\ /}$ h! = Glxl—l
NN

~ . S [ i i 171 - -
}35& ht 011 o O, |21
> ) [ : 1 -1

% = o )>$<\ _hni_ Tllil Hﬁini_l _xni—l_

% |« = Use vector coprocessor / GPU
Y — o) \1 roy-by-column multiplications.
Wox e T T 7 w Split up rows of @ between
LA 2 1% multiple cores.
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Software Packages

= Calffe: allows to easily apply deep learning with
standard units, loss functions, learning techniques.

= Torch, Theano (+Lasagne), TensorFlow (+Keras).
Deep learning libraries that allow development of
new architectures and learning techniques.
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Overview

s Recurrent neural networks.
s LSTM networks.
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Recurrent Neural Networks

= Input: time series x3, ..., x~.
= Output can be:

One output (vector) for entire time series: x¢.
One output at each time step: x4, ..., x%.
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Convolutional Neural Network

= Network moves over seguence of input vectors.
= Window of k vectors serves as input
= Long-term dependencies not captured by model.

= Output x% ..x%, x% x%.,.. x¢
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Hidden layers

s Input  x? xP ., xP xP .. x5
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Convolutional Neural Network

= This architecture is used in neural language
models.

= Here, each x, is a one-hot coded word vector, x¢ is
the next word.

= Output x% ..x%, x% x%.,.. x¢

N

Hidden layers
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s Input  xy ..xP, xP xP..xe
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Recurrent Neural Networks

= Hidden layer propagates information to itself.
= Hidden layer activation stores context information.
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= Output x% ..x%, x% x%.,.. x¢

Hidden

b

» Input  x?¥ x? . xP oxP .. x5
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Recurrent Neural Networks

= Propagation:

X¢
h% = 91 <X1 ); X%: O'(h%)

t—1
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= Output x% ..x%, x% x%,.. x¢

Hidden
Ee D

s Input  xy ..xP, xP xP..xe
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Recurrent Neural Networks

= |dentical network “unfolded” in time.
= Units on hidden layer propagate to the right.
= Hidden layer activation stores context information.

= Output x% ..x%, x% x%.,.. x¢

Hidden Hidden Hidden
layers layers layers
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» Input  x?¥ x? . xP oxP .. x5
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Recurrent Neural Networks

= Forward propagation
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Recurrent Neural Networks

= Output x% ..x%, x% x%.,.. x%

= Back propagation through time. N
= A copy of each model parameter exists for each =
time step. ®

= Gradient is averaged over all time steps i'é
S
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Memory in Recurrent Neural Networks

= Memory state at time t:

Activation function of (weights x memory state at time
t — 1, weights x input at time t).

= Memory state is almost always changed.

= Memory state has the same impact on the outcome
for almost al inputs.

= |Idea: Learn when to access, modify, reset memory
state - LSTM units.
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Overview
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s LSTM networks.
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LSTM Units

= Input gate scales input to memory.
s Forget gate scales old memory value.
= Output gate scales output.

¢t =fi Ociy +i; Ogt

Input gate Output gate
1 ® — ® X%
8t

=1

It 1

] ft R Forget TO%

gate

Lox 4 x (et)-G

0 o1 0 o1 0 o1 0 o1
X, Xi—1 X¢, X1 Xe,Xt—q Xt, X1
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LSTM Units

s Gradient propagated through gates:
z=x; OX;

OE _ OE 0z _aEQX
0x1 - 9z 0x1 9z 2

¢t =fi Ociy +i; Ogt

Input gate Output gate
N 1
1 ® X Xt
8t
-1
It 1
ft X Forget TO%

gate

| / /-y‘ / /‘.\‘ / «\‘ /
78 X A x

0 o1 0 o1 0 o1 0 o1
X, Xi—1 X¢, X1 Xe,Xt—q Xt, X1
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Sequence Prediction with LSTMs

= Output x$ x&.. .. x4
T 1 )
0l |87 — 01 —0"> 6"

I A R

s Input  x? xP . xP oxP .. x5
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= Input sequence mapped to output sequence;
sequences may differ in length:

= For instance, sentence in source language —
sentence in target language.
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Deep LSTM Networks

d d d
= Output Xt Xpyq - XT 5
T T T I
Q
0> |0°—03 03> |03 ®
)
(@)
>
-]
S
o)
02> |02—>02—>0%2> |02 =
Many paths through which
long-term dependencies
oll— |o! o! (4 R EN 0! can be propagated through
the network
0 0 0 0 0
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Summary

= Computational model of neural information
processing.

s Feed-forward networks: layer-wise matrix
multiplication + activation function.

= Back propagation: stochastic gradient descent.
Gradient computation by layer-wise matrix
multiplication + derivative of activation function.

s Recurrent neural networks: state information
passed on to next time step.

= LSTM networks: gating units decide whether to
update, delete memory, produce output.
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