Universitit Potsdam

Institut fur Informatik
Lehrstuhl Maschinelles Lernen

Indexing and Search

Uwe Dick

Overview

s Index data structures
Inverted index
Suffix tries and suffix arrays

= Search algorithms
Boolean search
Sequential Search without index
String matching
String matching with index

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

Inverted Index

1

69 11 1719 24 28

This is a text. A text has many words. Words are made from letters.

33 40 46 50 55 60

Terme | Vorkommen| Mapping from terms to
Letters | 60 documents / text

Made 50 positions.

Many 28 = Additional information can
Text 11, 19 also be stored

words 33, 40 Typeset, HTML tags

0]
o
>
@
—h
@
=
~~
)
o
x~
—
Q
-
Q
c
Q
Q
@
_|
(9]
o
>
>
o
o
Q
<

Inverted Index
Tries

= Elementary data structure for retrieval tasks
s Edges are labeled with letters.

= Nodes are either empty or labeled with words and
position
1 69 11 1719 24 28 33 40 46 50 55 60

This is a text. A text has many words. Words are made from letters.

/4 Letters: 60

P Made: 50
I d
A el
m n

t
A Text: 11,19

w
w Words:33,40

0]
o
>
@
—h
@
=
~~
)
o
x~
—
Q
-
Q
c
Q
Q
@
_|
(9]
o
>
>
o
o
Q
<

"4 Many: 28

Inverted Index
Construction of Tries

s Start with empty trie and iteratively insert words into
the trie:

s Start at root, iterate over letters

If a terminal node is reached that is labeled with the
same word, add position; done.

If a terminal node Is reached that is labeled with a
different word, replace node with internal nodes until
there is a difference between old and new word. Add
two new terminal node. Done.

If an edge accepts current letter, follow edge.

Otherwise add new edge, label with current letter,
and add new terminal node that is labeled with
current word and position.

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

Inverted Index
Construction of an Inverted Index

= [terate over all texts, iterate over all positions in text
where a new word start.

Insert (word, position) into a trie (s.t. trie is ordered).

m |raverse trie and write words into inverted index.

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

Inverted Index

1

69 11 1719 24 28

This is a text. A text has many words. Words are made from letters.

33 40 46 50 55 60

Terme | Vorkommen| Mapping from terms to
Letters | 60 documents / text

Made 50 positions.

Many 28 = Unfortunately, memory
Text 11,19 usage is usually a
words 33, 40 problem for real world

Index construction.

0]
o
>
@
—h
@
=
~~
)
o
x~
—
Q
-
Q
c
Q
Q
@
_|
(9]
o
>
>
o
o
Q
<

Inverted Index
Construction of an Inverted Index

= [terate over all texts, iterate over all positions in text
where a new word start.

Insert (word, position) into a trie (s.t. trie is ordered).

If memory full, store trie, load a subtree in memory,
consider only words contained in this subtree. Store
and take next subtree, reiterate .

m |raverse trie and write words into inverted index.

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

Inverted Index

= Memory usage for vocabulary: between n®# and
n0.6_

= Memory usage for position lists: between 0.3 x
length of text and 0.4 x length of text.

= If only documents are indexed (no word positions),
0.2 to 0.3 x length of text.

= Problem: High memory usage.

= Solution: Memory reduction by block addressing:
e.g. division of texts into 256 blocks, uses only 0.05
X length of text.

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

Inverted Index
Block Addressing

1

This is a text.

2

A text has many

3

words. Words are made from letters.

4

Terme Vorkommen
Letters 4

Made 4

Many 2

Text 1,2

words 3

= EXact text position can be
determined with
sequential search.

10

0]
o
>
@
—h
@
=
~~
)
o
x~
—
Q
-
Q
c
Q
Q
@
_|
(9]
o
>
>
o
o
Q
<

Inverted Index
Large Data Collections

= [terate over documents, parse tokens (words).
m Insert tokens and text positions into unordered list.
= Concatenate all unsorted lists.

= Eliminate duplicate terms, merge all positions into a
list.

s Sort list.

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

= Requirement: List has to fit into memory.

11

Inverted Index
Large Data Collections

s Read n documents in k blocks.
s Create term list for each block.
s Sort local index for block, store block.

= Merge local indices in log, k layers.
c.f. merge sort

For layer index [=0 ... log, k — 1:
k _ 1

"2(1+1) '

« Merge blocks block,; and block,, . by sequentially
reading both blocks and writing new block with

size 2(1 + 1)+

*» For block index b =0 ..

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

12

Inverted Index
Search

s Let g be a search query.

= Search for individual terms from g In index. Use
binary search in term list.

m Access retrieved documents.

s Solve phrase-, neighbor-/context-, and boolean
gueries by comparing documents.

= (In case of block addressing, search in blocks.)

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

13

Inverted Index
Application: Spell Checking

= Occasionally, search queries do not return
answers:

E.g. if query contains misspellings.

= Alter query by adding terms that have edit distance
of at most n.

= May slow down search speed significantly.

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

14

Inverted Index
Context Queries

= Find list of occurrences of each query term.
Lists are ordered according to position.

= Set pointer on first element.

= [terate until one of the lists is empty:

If positions of all list elements are consecutive (or at
least close to each other), add range to return list.

Increment list pointer that points to lowest text
position. Continue.

= Complexity: O(n04---0.8)

15

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

Inverted Index
Problems

= Not suited for neighbor queries.

= Needs tokenization (Doesn't work for DNA-
Sequences).

m Better: Do not consider tokens. Consider all suffixes
of a text.

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

= |dea of Suffix trees: Complete text is a string. Each
position is a suffix (From position to end of text).

m [rie over all suffixes.

16

Inverted Index
Suffix Trie

= Index pointers can be beginning of words or all
string positions.

= Text starting at index pointer: Suffix.

This is a text. A text has many words. Words are made from letters.

[I A T T

Suffixes:

text. A text has many words. Words are made from letters.
text has many words. Words are made from letters.

many words. Words are made from letters.

words. Words are made from letters.

Words are made from letters.

made from letters.

letters.

0]
o
>
@
—h
@
=
~~
)
o
x~
—
Q
-
Q
c
Q
Q
@
_|
(9]
o
>
>
o
o
Q
<

17

Inverted Index
Suffix Trie

s Construction of a suffix trie:

= For all index points:
Insert suffix starting at index pointer into trie.

1 69 11 1719 24 28 33 40 46 50 55 60

! ! r 1 I I I

This is a text. A text has many words. Words are made from letters.

Suffix-Trie:
60 4 50
4 11

%@@@@ Ie
e e

18

0]
o
>
@
—h
@
=
~~
)
o
x~
—
Q
-
Q
c
Q
Q
@
_|
(9]
o
>
>
o
o
Q
<

Inverted Index
Patricia Trie / Radix Tree

s Replace sequences of internal nodes which only
have a single child with a single node and label it
with number of letters to skip until next letter
comparison.

60

/450

11

Suffix trie: Qé@ O O,@ PE:
@@@@@ :

0 <]
Patricia trie: Q<

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

~

’@%n/» 28

3

//>19

/V
@4 N 19

—

=

Inverted Index
Search in Suffix Tries

= |nput: search string s, root node.
. L =0,n=root
2. Iterate

If n leaf node, check whether s can be found at

given text positions and return positions. Stop.

Seti=1i+1.

1. Ifi > len(s), find all leaf nodes in subtree starting at
n and return list of all occurrences. Stop.

2. Follow edge which accepts i-th letter of s. If there is
none, return empty list and stop. Otherwise set n to
current node.

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

20

Inverted Index
Search in Patricia Tries

= |nput: search string s, root node.
. L =0,n=root
2. Iterate

If n leaf node, check whether s can be found at
given text position and return position.

n is skip node with label k, seti =i + k.

1. Ifi > len(s), find all leaf nodes in subtree starting at
n and check each text position for s. Return list of all
occurrences. Stop.

2. Follow edge which accepts i-th letter of search string.
If there is none, return empty list. Otherwise set n to
current node.

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

21

Inverted Index
Suffix Trie

= Construction: O(Length of text).
= Algorithm not optimal if trie doesn't fit into memory.

= Problem: Memory consumption rather high

approx. 120-240% of texts, even if only beginnings of
words are indexed.

s Solution: Suffix arrays
More compact representation.

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

22

Inverted Index
Suffix Array

m Sort suffix trie lexicographically.
s Suffix array = Sequence of index positions.

#/,ﬂ/-"”’#//////} 60
|

Lexicographically

m " 50
sorted suffix trie. \Qa»©<

t n
T 28

E@r@d@@

60 50 28 11 19 33 40

23

0]
o
>
@
—h
@
=
~~
)
o
x~
—
Q
-
Q
c
Q
Q
@
_|
(9]
o
>
>
o
o
Q
<

Inverted Index
Search in Suffix Arrays: Binary Search

= |nput: search string s, suffix array S
. A =1
2 E =|5]
3. Repeatuntil A =F
M=(A+E)/2.
If s = Text(S[M]), return text position. Stop
If s < Text(S[M]), E = M.
Otherwise A = M.

0]
o
>
@
—h
@
=
~~
)
o
x~
—
Q
-
Q
c
Q
Q
@
_|
(9]
o
>
>
o
o
Q
<

s Suffix tries: O(|s|)
s Suffix arrays: O(log(len(text)))

Runtime i1s worse!! 24

Inverted Index
Search in Suffix Arrays

Binary search: log(len(text))
Problem: Many data base accesses
Solution: Accelerate with supra index.

Store first letters of every k-th entry in array.

Perform binary search in this supra index, without
data base access.

Then binary search in corresponding part of suffix
array with data base access.

25

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

Inverted Index
Search in Suffix Arrays with Supra Index

Supra Index: Lett text word

Suffix Array: 60 | | 50| 28 | 11| |19 | | 33|]|| 40

= Binary search in supra index (Without data base
access)

= Then binary search in corresponding part of suffix
array (With data base access)

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

= Storage size comparable to inverted index.

26

Inverted Index
Suffix Arrays for Large Data Collections

s Read text blockwise, create local suffix arrays, store.

= For all local suffix arrays:
Read full text incrementally.

Search all suffixes in local array and count how many
suffixes are ,missing’ between entries. This yields
positions in global suffix array for each entry in local
array. Store position in local array.

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

= Merge arrays incrementally without access to text.
Use stored positions only.

27

Sequential Search

m Search string of length m in text of length n without
Index.

m Brute Force:

For all positions of text, iterate over search string and
compare.

» Full Match: return position.

» Otherwise: next text position.

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

| O(nm)
= O(n) possible?

28

Knuth-Morris-Pratt

= Algorithm for finding string patterns

Uses structure of search pattern by skipping
characters / symbols in case of a mismatch.

= Consists of two parts:

Preprocessing / table building algorithm:

» Generates prefix table, which defines by how many
positions the pattern can be shifted in case of a
mismatch.

Search algorithm:
x Searches text for pattern using the prefix table.

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

29

Knuth-Morris-Pratt

Table Building Algorithm
kmpPreprocess(p) wn
b[ﬁllz ?_; v Example: 7Pattern %
wnitle (I<m (0] . =g
it (plj] == plil) // Match J 01234 e _ E
bi] = + 1; P dadab” | Prefixarray fg
EIESSEIEEE b[j] 00120/ 3
else /I Missmatch 2
if (j >0) C_D|
j = b[j-1]; 2
else ; "y =
b[i] = 0; v TR I
=1+ 1; N - <

= Runtime O(m)

= D[j] is longest suffix of p[0...j] which is prefix of p[O...
m]. 30

Knuth-Morris-Pratt

Search Algorithm

precomputed
kmpSearch(t,p) ' 01234 »
ot Gaaay | [
while (i < n) do b] 00120 S
if (p[j] == t[i]) // Match 2
if (j == m-1) =
return i-m+1; Example: a
| =i+1;) = j+1; : é
else // Mismatch | | 0123456789 C_D|
if > 0) t dadacdadab 3
J = b[-1]; D dadab =
else S
=i+ 1; <

= Runtime O(n)

31

Knuth-Morris-Pratt

Search Algorithm
kmpSearch(t.p) j 01234 0
= P : 5
o O;rjn[:) Or;eprocess(p) 0 | dadab %
while (i < n) do b] 00120 S
if (p[j] == t[i]) // Match 3
if (j == m-1) i i=4 |I8
return i-m+1; Example: Mlsmﬁtch ati=4 E
| =1+1;] = j+1; : and] = 4: é
else /l Mismatch | ! 01234)j=p[4-1]1=2 ®
if (j > 0) t dadac e
= b1} v dadapt " -
else S
=i+ 1; <

= Runtime O(n)

32

Knuth-Morris-Pratt

Search Algorithm
lgmpsearch(t,p)] 01234 %
= P : ?T
o O;rjn[:) Or;eprocess(p) 0 | dadab %
while (i < n) do bjf] 00120 S
if (p[j] == t[i]) // Match 2
if ==m-1) &
return i-m+1; Example: a
i = i+1; = j+1; ; I5
else // Mismatch | | 0123456789 ‘_°|
if > 0) t dadacdadab 3
J = i1k p dadab =
else)
=i+ 1 dadab S

= Runtime O(n)

33

Knuth-Morris-Pratt

Search Algorithm
kmpSearch(:p)] 01234 T
= P : 5
o O;rjn[:) Or;eprocess(p) 0 | dadab %
while (i < n) do bjf] 00120 S
if (p[j] == t[i]) // Match g
if ==m-1) &
return i-m+1; Example: Mismatch ati=4 |
i =i+1;] = j+1; . S 5
else // Mismatch || 01234 _and | =2 2
if (j > 0) t dadac|(j=Db[2-1]1=0 D
j = b[j-1];]
i p dadab ~Z " S
— i1 dadab =

= Runtime O(n)

34

Knuth-Morris-Pratt
Search Algorithm

kmpSearch(t,p)
b = kmpPreprocess(p);
1=0;)=0;
while (i< n)do
if (p[j] == t[i]) // Match
if j ==m-1)
return i-m+1;
| =1+1;] = j+1;
else // Mismatch
if (j >0)
J = b[-1J;
else
=1+ 1;

= Runtime O(n)

| 01234
dadab
00120

P
b[j]

Example:

i 0123456789
t dadacdadab
o dadab
dadab
dadab

35

0]
o
>
@
—h
@
=
~~
)
o
x~
—
Q
-
Q
c
Q
Q
@
_|
(9]
o
>
>
o
o
Q
<

Knuth-Morris-Pratt

Search Algorithm

lgmpsearch(t,p) | 01234 0
= kmpP ; =
o O;rjn[:) Or;eprocess(p) 0 | dadab %
while (i < n) do b] 00120 =
if (p[j] == t[i]) // Match 2
if (j == m-1) =
| rgtum i-m+1; Example: =
ellsz i :JJ/rllli/Iismatch | 01234 MismatCh at1=4 %
if (j > 0) t dadagand=0: :
e p dadaticS §-,
i dada" :

dadab

= Runtime O(n)

36

Knuth-Morris-Pratt
Search Algorithm

kmpSearch(t,p)
b = kmpPreprocess(p);
1=0;)=0;
while (i< n)do
if (p[j] == t[i]) // Match
if j ==m-1)
return i-m+1;
| =1+1;] = j+1;
else // Mismatch
if (j >0)
J = b[-1J;
else
=1+ 1;

= Runtime O(n)

| 01234
dadab
00120

P
b[j]

Example:

i 0123456789
t dadacdadab
o dadab
dadab
dadab
dadab

37

0]
o
>
@
—h
@
=
~~
)
o
x~
—
Q
-
Q
c
Q
Q
@
_|
(9]
o
>
>
o
o
Q
<

Knuth-Morris-Pratt

Runtime Analysis

= Preprocessing algorithm has runtime of O(m).
At most 2m — 1 comparisons.

= Search algorithm has runtime of O(n).
At most 2n — m + 1 comparisons.

= In general, m is much smaller than n. This yields an
overall runtime of O(n).

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

= Overall, there will be at most 2n + m comparisons.

38

Aho-Corasick-Trie

s Aho-Corasick-Trie

= |dea: We want to search for several strings
simultaneously.

Search strings are stored in automaton.
Edges accept characters.

If there is no edge that accepts the next term, jump to
state that has largest agreement between text and a
prefix of the search string.

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

39

Aho-Corasick-Trie
Construction

= 1. Construction of a prefix tree which contains all
search terms.

Mark states that contain search terms.
s 2. Generate failure transitions:

For each node (except root), add a failure transition
to the node that is longest suffix of the string of that
node.

Example: a, ab, bc, c O

(@) @~ ©
l —

(ab) (bc)

40

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

Aho-Corasick-Trie
Search

m State S = root

m [terate over characters c of text.

If there exists edge from S labeled with ¢, follow edge
to new state S.

Otherwise, follow failure transitions until a state is
reached that has an outgoing edge labeled with c.
Follow that edge to new state S.

Otherwise, Set S = root.

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

Output: Follow failure transitions from S to root.
Return all strings of accepted states on path.

41

Aho-Corasick-Trie
Search Example

Automaton accepts strings a,ab,bc,bca,c,caa

String State Next State Output
(a) (b) (c)) abccab () 0 ->(a) a:l
l 4 bccab (a) (a) -> (ab) ab:2
ccab (ab) (ab) -> (b) -> (bc) c:3, bc:3

(ab) (be) @ cab (b (bc) > (c) > () -> c:4

l ()

ab (c) (c) -> (ca) a:b
(bca) (caa)
(ca) (ca) -> (a) -> (ab) ab:6

42

0]
o
>
@
—h
@
=
~~
)
o
x~
—
Q
-
Q
c
Q
Q
@
_|
(9]
o
>
>
o
o
Q
<

Other String Matching Algorithms

= Wide Topic. — Bio informatics.

s Boyer-Moore. Idea: Compare strings from back to
front. On average, more characters can be skipped.

s Suffix automata.

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

43

Approximate String Matching

= Search substrings in y which are similar to x. Their
distance to x should be at most k.

= What is a good distance measure?
Edit distance.
Model for typing errors.
Language Model.
Semantic Model.

wn
e
=
®
=
®
=
)
o
~
=
Q
>
Q
c
D
Q
)
_|
®
O
=
>
o
@)
Q
<

44

Approximate String Matching

= Search substrings in y which are similar to x. Their
distance to x should be at most k.

= Dynamic programming (similar to Forward-
Backward or Viterbi).

s Computation of C[0...m, 0...n]; CJ[i,j] = minimal #
errors for matching x[1...1] with y[1...j].

ABojouyda] abenbue ‘Y21Q/1a)8yds

= C[0,)] =]
« ClL,Ol=i_
. Cli, il :{C[I-l,j-l],lfx[l]—y[j]

1+min {C[i-1,], C[i, j-11, C[i-1, j-1]}, otherwise

s Complexity: O0(nm)

45

Approximate String Matching

Example
= C[O,J] =]
" 0Ol i i = i
= C[I,] ={ 1+min {C[i-1, j], C[i, j-11, C[i-1, j-1]}, otherwis

C a b b b a
1 2 3 4 5 6 7 8 9

0]
o
>
@
—h
@
=
~~
)
o
x~
—
Q
-
Q
c
Q
Q
@
_|
(9]
o
>
>
o
o
Q
<

O |19 |9 |T|(O
OO~ WIN|F|O

46

Approximate String Matching

Example
= C[O,J] =]
" 0Ol i i = i
= C[I,] ={ 1+min {C[i-1, j], C[i, j-11, C[i-1, j-1]}, otherwis

C a b b b a
1 2 3 4 5 6 7 8 9

0]
o
>
@
—h
@
=
~~
)
o
x~
—
Q
-
Q
c
Q
Q
@
_|
(9]
o
>
>
o
o
Q
<

O |19 |9 |T|(O
O~ W[IN|IF|O

a7

Approximate String Matching

Example
= C[O,J] =]
" 0Ol i i = i
= C[I,] ={ 1+min {C[i-1, j], C[i, j-11, C[i-1, j-1]}, otherwis

C a b b b a
1 2 3 4 5 6 7 8 9
1 2 2

0]
o
>
@
—h
@
=
~~
)
o
x~
—
Q
-
Q
c
Q
Q
@
_|
(9]
o
>
>
o
o
Q
<

O |19 |9 |T|(O
O~ W[IN|IF|O

48

Approximate String Matching

Example

Scheffer/Dick, Language Technology

Cli-1, J-1] , if x[i] = y[j]

{

= C[O, J] =]
= C[i,0] =i
]

1+min {C[i-1, jl, C[i, j-1], C[i-1, j-1]}, otherwise

49

Approximate String Matching

Example

=

l Deletion

——> |nsertion

\ Substitution
R No Change

(A |lOT|O|T

NIlW| W |~ |OT1|T

/J
Ml lO|OT|O |N|T
|| (N|00|D

ol
f/(J'ICDCD\IOO@QJ

Y

w

Aoooo/oooohm
11

WIWIWINININ| WO
(W

O |19 | T|9 |T|(O
OO~ WIN|[PF
G| [WIN[IDN
AITWINIDN

0]
o
>
@
—h
@
=
~~
)
o
x~
—
Q
-
Q
c
Q
Q
@
_|
(9]
o
>
>
o
o
Q
<

cbabac -> ababac -> abcabac -> abcabbac ->
abcabbbac -> abcabbbaa

50

Scheffer/Dick, Language Technology

Q.
N
-
O

4
N
D
-

O

54

