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Text Classification

= Mapping of text to semantic category:
“Amount is due within 10 business days™ — invoice.
= Can be multi-class classification problems:

“I tried this product today and it broke down within a
few minutes” — very negative.

= Or multiple binary classification problems.

“China joins the world trade organization™ — {politics,
economics}.

= Or mapping to nodes In class taxonomy.

“‘wineries, faced with mounting inventory as well as
downward price pressure, are forced to reduce their
Intake of grapes” — economics/agriculture/viniculture
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Overview

= Document representation for classification.

m Classification methods.

s Multi-class classification and class taxonomies.
s Evaluation of text classifiers.
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Vector-Space Model

= Representations that map documents to a point in a
vetor space.
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Bag-of-Words Representation

s Term frequency vector: word count for each word . %
= High-dimensional but sparse vector. =
0 Hippopotamus - Aardvark g
/ \ 5 2
) Hippie @
- . 5
XgF =11 Dictionary: |Hippopotamus o
0 Hipster S
. o
s = S
\O / | Zyzzogeton |

“One hippie was killed by the hippopotamus,
a second hippie survived but was injured.”




Bag-of-Words Representation

m Some words and are not relevant for classification.

E.g., “WaS”, “by”, “the”, uau, “but”.
= Typically, these words occur all the time.

s Often, words that occur in few documents have
relevance for classification.

E.g., “hippie”, “hippopotamus”, “survived”, “injured”.

“One hippie was killed by the hippopotamus,
a second hippie survived but was injured.”
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Inverse Document Frequency

s Measure of how rare a term is.

#of documents in corpus
m [DF(term;) = lo
( l) 5 #of documents that include term;

10 000
85

= 0.0054189

= 2.07

s [DF(hippopotamus) = log

10 000
9876

s /IDF(and) = log
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= Inverse-document-frequency vector:

IDF (Aarvark)
<IDF _ :
IDF (Zyzzogeton)




TF-IDF Representation

= Product of term-frquency and inverse-document-
frequency vectors.

X'CII'FIDF — X'CIl'F @ XIDF

N (N [0
2 2.07 4.14
s xFIPP =110 1.68

0.43

NSV

“One hippie was killed by the hippopotamus,
a second hippie survived but was injured.”
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TF-IDF Representation

= In linear classifiers, vectors with large norms result
In large decision-function values.

= Therefore: normalized TD-IDF representation:

TFIDF
STFIDF _ X4

X —_— —_—_—_—_—_—_—
d |X'CIi'FIDF|

[
4.14
1.68

0

g 1FIDF __ \ 0 /

X o
d V4142+1.682+---
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TF-IDF Representation

= Several alternative weighting schemes are

commaon.
Term frequency Document frequency Normalization
n (natural) tf; 4 n (no) 1 n (none) 1
. . N . 1
1 (logarithm) 1+ log(tf; 4) t (idf) log ar ¢ (cosine) N e
a (augmented) 0.5+ Lgf“ p (probidf) max{0,log N ;fdff } | u(pivoted 1/u (Section 6.4.4)
maxt (Ut 4) f unique)
1 iftfy >0

b (boolean) 0 otherwise

L (log ave) 1+log (tf, 4)

T log(ave,cq(ta))

b (byte size) 1/CharLength®, « <1

= Manning, et.al.: Introduction to Information Retrieval: http://nlp.stanford.edu/IR-book/

10
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Bag-of-Words Representations

= Vector space representations disregard any word
ordering.

“product is broken, not great!” = “product is great, not
broken”!
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N-Gram Vectors

= One dimension for each term n-gram that occurs at
least k times in the corpus.

“Hippopotamus, a’ - Aardvark been 7

[\
6 / Hippié was
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Xg =11 Dictionary: | Hippopotamus a
0 Hipster has
\o/ | Zyzzogeton zone |

“One hippie was killed by the hippopotamus,
a second hippie survived but was injured.”
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N-Gram Vectors

= One dimension for each term n-gram that occurs at
least k times in the corpus.

= Number of n-grams grows exponentially in n.

= Semantically similar n-grams have independent
dimensions — not ideal for generalization.
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Skip-Gram Vectors

= n-gram vectors with wild-card symbol.

s Several similar coding schemes are common, for
Instance orthogonal sparse bigrams (bigrams that
occur within k words of each other).

“Hippopotamus * hippie”
/ O\ / " Aardvark * ant
0 Hippie « smoke
m Xg = 1

W

“One hippie was killed by the hippopotamus,
a second hippie survived but was injured.”
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Dictionary: |Hippopotamus™ hippie
Hipster * skinny

| Zyzzogeton * zone |
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Skip-Gram Vectors

s Semantically related terms still have unrelated
representations.

= Text classifier cannot “know” that when a term
correlates with a category, semantically similar
terms may also correlate with the same category.
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Semantic Representations

= Several attempts at semantic representations have
been made, and basically failed.

Latent semantic indexing.
Latent Dirichlet allocation.

s Classes of “semantically similar” terms are too
heterogenous, adds noise to classification problem.
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= Continuous-space (“neural”) language models
seem to actually work.
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Neural Language Model
/0.0501\

Also uses Markov
assumption of order n — 1!

SRR Vi )

R AN

A A j\

/T\ Rectified linear units

(0))

0.6 S
0.1 = C=Dn
0.02 ®
; / Softmax output layer —
[ | OUtpUt "'Xt—l Xt Xt+1 . XT QCJ
R &

o

(@)

o

o

o

(@]

<<

[ | |npUt Xl '"Xt—n+1 Xt—l XT
/) :
/ 0 /1\
“Term-frequency =11 =10
vector” for single term O O
\o/ \o/ ,




Neural Text Representations

s Process all term n-grams in the document, infer
hidden representation ¢(x;) for each term.

AVG - ZT b (X¢)

o Dramatlcally reduces dimensionality of vector
space.
= Can improve text classification accuracy.

“Product is broken, not great” and “product is great,
not broken” can have distinct representations.

= Context information still limited to n subsequent
terms.
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Paragraph Vectors

= Semantic representation of paragraphs.

= Can also be applied with different levels of
granularities:

Semantic representation of sentences.
Semantic representation of documents.

s Semantically related paragraphs (or documents,
sentences) have similar representation.
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Paragraph Vectors

0.001 wn
: (@)
: >
0.6 D
01 = =
0.02 5%
S —
0 5
] Output 'y Xt_l Xt Xt+1 Iy XT (8
Q
/]\ (9]
Y Vs )
— P {X¢) S
A A A S
— o
//T\ s
Q
<
= Input p; 1 X1 - Xpone1 X¢_q - X7
: 0 0
One-hot coded paragraph 0 0 |
oded paragraph | ¢ |3 |
ID. One dimension per 0 0 0
paragraph in the corpus. 0 ; i
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Paragraph Vectors

= Output o Xp_q Xp Xppq o X7
Weights between hidden states and VR p
paragraph ID: Embedding of paragraph ID \P\’Tt)
in semantic feature space ®. A /V A
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= [nput Pt xt 41 - Xp_q - X7

SO .-

One-hot coded paragraph .
ID. One dimension per — 0 0
paragraph in the corpus. ’

I
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Training Paragraph-Vector Models

= Train by back propagation. 0001
= [terate over training corpus. ool

= Input paragraph ID, i
term (n — 1)-gram,

0

o Xi_q X Xpyq o X7
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= Use n-th term as target. ? )
g ‘I/\)Tt
= — Model is trained to //
predict next term,
Pt o Xt—n+1 o Xg—1 o0 X7

given paragraph 1D
and preceding terms. _

S o000 R,
I

22




Applying Paragraph-Vector Models

0.001

0.6

01 |=
0.02

0

o Xi_q X Xpyq o X7

= Inference of paragraph vector
for new paragraph.

= New dimension is added
to paragraph ID vector.
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= Weights from new p
paragraph ID to hidden W\)Tt)
units are trained on A 7
n-grams from new //
paragraph. P: o Xpomiq o Xpeq e X7
= Other weights are (0) (2) j)
frozen. Bk =11 - |0
0 ; 5

23




Paragraph Vector Representation

= Weights from paragraph ID to hidden units for
document d are used as representation of d.

PAR Hdl
Xd = E wns Xt—l Xt Xt+1 pas XT
Oak ?
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| P {Xe)
| |, ‘\/
X A A )T
011
01k
Pt X1 o Xppt1 o Xg—q1 e X7
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Overview

s Classification methods.
s Multi-class classification and class taxonomies.
s Evaluation of text classifiers.
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Text Classification

s Most often, linear classification models are used for
text classification.

= Example: X = R? x5

= Decision function:
fo(x) =x"0 + 6,
= For binary classification,

y € {+1) _1} 9 /”lgﬁl fex) <0 :
Ve (X) = sign(fy(x)) et X
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Regularized Empirical Risk Minimization

m Solve
n
argmin Y (o (x0), 70 + 29(8)
=1

m Loss function ¢(fy(x;), y;): cost of the model’'s
output fg(x) when the true value is y.

The empirical risk is R,,(0) = Y™, 2(fy(x;), y;)

= Regularizer Q(0) & trade-off parameter 1 > 0:
Background information about preferred solutions
Provides numerical stability (Tikhonov-Regularizer)
allows for tighter error bounds (PAC-Theory)
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Regularized Empirical Risk Minimization

s Linear classification model: minimize
n
L(6) = z £(x70,y;) + 1.0(6)
i=1

s Gradient:
Vector of the derivatives / dL(0)
with respect to each individual
parameter VL(O) =

Direction of the steepest aL(e)
increase of the function L(0). \
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Regularized Empirical Risk Minimization

s Linear classification model: minimize
n
L(6) = z £(x70,y;) + 1.0(6)
i=1

s Gradient descent method:
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RegERM (Data: (Xq,¥1), -» Xy, ¥n)) L(8%) Ly
Set 09=0 and t=0
DO 7L(0)
Compute gradient VL(0%Y L(eY)
Compute step size at :
Set Ot =@t — ¢tVL(0Y) ! 0° o
Set t=t+1 Starting soln.
WHILE |0t -0 > ¢
RETURN 0f

29




Regularized Empirical Risk Minimization

s Linear classification model: minimize
n
L(6) = z £(x70,y;) + 1.0(6)
i=1

= Large training sets:
stochastic gradient descent. Leoy-Ly

RegERM-Stoch (Data: (X1,¥V1), - Xn, Yn))
Set =0 and t=0
VL(O
DO ) (0)
Shuffle data randomly L(B ) :
FOR i=1,..,n

wm
o
=
@
—h
@
-
=
Q
S
Q
c
Q
Q
o)
)
o
-
S
S
o
Q
<

1 0
Compute subset gradient ¥ L(8°) 0 0 0
Starting soln.

Compute step size at
set 01 =0 — o'V, L(6")
Set t=t+1

END
WHILE ||@% -0 >¢
RETURN Of 30




ERM: Support Vector Machine (SVM)

m Classy e {—1,+1}
s Loss function:

— v Y if 1= v .
= max(0,1 — y; fo(x;)) 1\
= Regularizer: -1 0 L yife(x)
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2
0,(0) =070 = Z}n:l|9j| =105
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Support Vector Machine (SVM)

= L(0) can be minimized using stochastic gradient
descent method (“Pegasos”)

Very fast, often used in practice

s L(0) can be minimized using gradient descent
method (“Primal SVM”)
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Logistic Regression

s ,Logistic regression® is a model for classification!
= For now, binary classification with 'y, e {-1,1}.

= Need: model for p(y|x,0)
Model defines probability p(y =1]|x,0).
Probability p(y =-1|x,0) =1-p(y=1|x,0).

= |dea: transformation of a linear model Xx'6.

~
N, T~
x
—i
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S Sigmoid function (,Squashing
Q\ function) maps interval [—o0, 0]
= to [0,1].

X0 33




Logistic Regression

= Model logistic regression
Given by parameter vector 9 e R".
Defines conditional distribution p(y|Xx,0) by

1 1
=1|x,0)=0(x'0) =
Py =11x0) =0 (0) = o2 f

yA

p(y =-1|x,0) =1-p(y =1|x,0)
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= Prediction function f,:R"™ —{0,1}:

f () = {1: o(x'0) > 0.5

0: sonst
34




Learning Logistic Regression Models

= MAP model: minimize regularized loss.

0,4 =argmax, P(y|X,0)p(0)
=argmin, > log (1+ exp(—yixiTO))+ 1 10
i=1 ZO'p

\ J
| \ Y '

loss function regularizer
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= Convex optimization problem, global minimum.
s Compare earlier lecture on ,Linear models”.
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Overview

s Multi-class classification and class taxonomies.
s Evaluation of text classifiers.
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Multi-Class Classification

= Text classification problems with more than 2
classes.

Yy ={1,.. k)

= Problem: we cannot separate k classes with a
single hyperplane.
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= |dea: Each class y has a separate function fy(x,y)
that is used to predict how likely y is given x.

Each function is modeled as linear.

We predict class y with the highest scoring function
for x.
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Multi-Class Classification

s Decision functions:

fox,y) =x"0Y
m Classifier:

ye(X) = argmax fo(X,y)
yeY

= Model parameters (k classes):

i
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Multi-Class Classification

s Decision functions:

m Classifier:

fG(X;y) — XTOy

ye(X) = argmax fo(X,y)
yeY

39
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Multi-Class Classification

s Decision function:

91
fo(x,y) =x70Y with@ = :
Gk
= Decision function in terms of a joint feature
mapping of input and output:
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fox,y) = ®(x,y)"'0 with d(x,y) =
X[y = k]
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Multi-Class Classification

= Decision function in terms of a joint feature
mapping of input and output:

(X[y = 1] )
fo(x,y) = D(x,)TO with d(x,y) = ;

s Example: 3-class classification
fo(x,2) =®(x,2)"6
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Multi-Class Classification

= Decision function in terms of a joint feature
mapping of input and output:

fo(x,y) = ®(x,y)"0 with O(x,y) = (x) x A(y),

ly = k]
s Example: 3-class classification
P(x,y) = ©(x) X A(y)

ly =1] X[y = 1]
=xX| [y=2] | =| x[y = 2]
ly = 3] x|y = 3]

Cy=ﬂ)
d(x) =x, and A(y) = :

42
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Binary SVM: Optimization Problem
= Minimize

n
L(8) = Z[max(o,l —y:x;70)] + 16780
i=1
= Equivalent to: minimize
L(B) =Y . & + 1076 subject to the constraints
w Yifo(X) =14
= 20
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Multi-Class SVM: Optimization Problem
= Minimize
L(6) =z [ggg}f(o»fe(xi;ﬁ +1-— fﬂ(xi'yi))] + 1070
¥ Minimizel_

L(@) =Y . & + 1070 subject to the constraints

s Vy #yifo(X, ) = fo(x;,y) +1-¢;
= §=20

x2 A
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SVM-Struct: Learning

= Large-margin optimization criterion: minimize
L(O) = ; [ggj%(o»fe(xi,}’) +1- fe(Xi,Yi))] +16'0

= Equivalent to minimize
L(@) =Y . & + 1070 subject to the constraints

s Vy £y fo(X,yi) = fo(Xp,y) +1 =4
= §20
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s Vy # y;: number of constraints is exponential in T.

= lterative training: explicit training constraint is added
when some y +# y; violates margin during training.
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SVM-Struct: Learning Algorithm

= Minimize
L(@) =Y . & + 1070 subject to the constraints

s Vy £y foXpyi) = fo(xp,y) +1-¢;
= §=20

= Start with empty working set of constraints
= Iterate over training instances

Find arg max fg(x;,y)
Y#Yi

While fg(Xi,yi) < fg(Xi,}_’) +1— S;i’ add this
constraint to the working set of training constraints
and solve minimization problem over current working
set (e.g., using stochastic gradient descent).
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Classification with Class Taxonomies

m Jaxonomic tree of classes

2
y =argmax, f,(x,y) %
fﬂ (X’y) — OT(D(X1y) :lj
Y=y ¥) | [ Y, =Y, } S
AHL A= o E
A= = ly=vl) B
A(y") 5
AGY) [y=v]|
D(X,Y)=g(X)®A(Y)=g(X)®|  |[=¢(X)® :
A(Y") [y =v{]
[y =v.l),,




Classification with Class Taxonomies

s Let x be a document

wm

T. . . =

= y=(v,v2,v;) is a path in a subject taxonomy tree 3

D

>

Iylzvﬂx X =

2 2 %

y =V |X 0 )

- (@)

Yo =V, x| | X -

(@]

O(xy)=||y =v|x|=]| 0 =
y=v;|x| |0
v =vi]x| | x
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Classification with Class Taxonomies

s Letx be a document

Yy =(v11,v§,v§’)T is a path in a subject taxonomy tree

[y =vi]x) (% (W)
y>=vi|x| [0
Y =v;|x| | x g W
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Overview

s Evaluation of text classifiers.
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Evaluating Text Classifiers

= Accuracy (proportion of documents which are classified
correctly) is often used for multi-class text classification.

= Downside: rare classes have only small influence.

= Classifier that only recognizes frequent classes can have a
high accuracy.
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Evaluating Text Classifiers

= Decision function fy(x) returns continuous value.
= Decision rule for binary classification:

_ 1 if fe(x) = 6,
ye(X) = {—1 if £,(x) < 8,

= By adjusting threshold 6, decision rule can be made more
sensitive or more conservative.

= Decision function for each category can be evaluated
separately.
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Precision and Recall

= Performance measure for binary classification.
Example: class invoice against all other classes.
Dociment x; is in category if y; = +1.
Classifier recognizes category if yg(x;) = +1.

= True positives:

Document in category (y; = +1), classifier recognizes (yy(Xx;) =
+ 1)

= False positives:

Document not in catrgory (y; = —1), but classifier thinks it is
(Vo (x;) = +1).
= True negatives:

Patient is healthy Document not in catrgory (y; = —1), classifier
recognizes (yg(x;) = —1)

= False negatives:

Document in category (y; = +1), classifier misses (ygy(x;) = —1)
53
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Precision and Recall

s Letn;yp be the number of true positives.
s Letngp be the number of false positives.
s Let npyy be the number of true negatives.
s Let ngy be the number of false negatives.

= Precision: P = —2£2
nrp+ngp
“Rate of true positives among all instances that are classified as
positives”
Answers: “How accurate is classifier when it says +17?”
n
s Recal: R = —%—
nrp+nen

“Rate of true positives among all positive instances”

Answers: “How many of the positive instances does the classifier
detect?”

54
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Precision-Recall Curves

= Evaluates decision function fy(x) independent of threshold 6,.

= Shows which pairs of -
precision and recall can be
obtained by varying
threshold 6,.

= Each point on the curve is

a classification rule with a
particular values of 6,.

= Which decision function is
better — A or B?

precision
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F Measures

= [, measures combine precision and recall values

Into single value:
nrp
F, =

~a(ngp +npp) + (1 — @)(npp + npy)
s a = 1: Precision
s a = 0: Recall

= a = 0.5: "“F-measure”, harmonic mean of precision
and recall.

s Alternative definition: Fg measures.

wm
o
=
@
—h
@
=
=
Q
S
Q
c
Q
Q
o)
)
o
-
S
S
o
Q
<

i in o = ——
Relationship: a = —y

56




ROC Analysis

= Alternative measure of how well the decision
function separates positive from negative instances,
Independent of any threshold value 6,.
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ROC Analysis

= Each curve characterizes a decision function fy.
= Each point is a classification rule for a value of 6,.
= Which is better, A or B?

m 7 — rp 1
TP nrp+ngn
Nnrgp A
m 7T =
FP Nppt+tnry B
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ROC Analysis

s Equal error rate (EER): value rpp = 1 — 15p.

s Scalar aggregate of curve: Area under ROC curve
(AUC).
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ROC Analysis

= Area under the ROC curve (AUC):
Let x, be a randomly drawn positive instance.
Let x_ be a randomly drawn negative instance.

AUC(0) = P(fo(x4) > fo(x2)).
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ROC Analysis

= ROC analysis is often used

When positive instances are rare (accuracy of 99.9%
IS meaningless if positive class Is extremely rare)

When no meaningful probability of meeting positive
Instances can be defined (prior probability of news
categories changes every day based on events).
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Drawing ROC Curves

m For all positive examples X, in test set:
Insert f(xp) in decreasing order in ordered
list Ly.

m For all negative examples X, in test set:
Insert f(x,) in decreasing order in ordered
list L,.

m Let TP = FP = 0.

= Repeat as long as L, and L, are not empty:

If L, > element > L, — element, then
increment (TP) and Lp = Lp — Next.

Elsif L, — element < L, — element, then
increment (FP) and L, = L, — Next.

Else increment (TP, FP), Lp = Lp — Next,
L, = L, — Next.
Plot next point (FP, TP).
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Evaluation Protocols

= Usually, model fy is not given and evaluation data
cannot be drawn from p(x, y).

ms Typical case, data S = (x4, y4), ..., Xy, y») and
learning method are given.

= Data S have to be used for training and evaluation.
= Desired output: model f, and risk estimate.

= Cannot evaluate on training data because
performance on training data is always high (higher
than on unseen test data).

wm
o
=
@
—h
@
=
=
Q
S
Q
c
Q
Q
o)
)
o
-
S
S
o
Q
<

63




Holdout Testing

= ldea: error estimation on independent test data
s Given: data S = (x4,v1), ..., (X, V)
= Divide the data into
Training data L = (X4, y1), ..., (X, Vi )and
Testdata T = (Xym+1, Yma1)s - (X0, Vi)

Total number of examples

Training Set Test Set
L T

64
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Holdout Testing

= Start learning algorithm with data L and obtain
model fg, from it.

= Determine performance R-(6") on data T.

s Start learning algorithm with all data S and obtain
Model f, from it.

= Output: model fy & R-(8") as the estimator of R(6).
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Holdout Testing: Analysis

= |s the estimator R;(8") of the risk of model R(6)
unbiased,
optimistic,
pessimistic?

= Hint: the more training data, the better the model.
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Holdout Testing: Analysis

s Estimate R-(6') is obtained on a small part of the
available data.

= Therefore, its variance is relatively high, especially
If the overall sample is small.

= Holdout testing is used in practice for large
available samples.
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Holdout Testing: Analysis

= Using empirical risk R-(6") is an pessimistic %
estimator of the risk R(9). %

= Because @’ is trained with fewer training instances 5
than 6. 3
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Holdout Testing: Analysis

s One could instead return model 6’.

= Empirical risk R;(6") would be an unbiased
estimate of R(6").

s But since 8’ was trained on fewer data, it would
result in an inferior model.
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K-Fold Cross Validation

s Given: data § = (X, v1), .., Xy, Vi)
= Partition S into k equally sized portions S, ..., Sg.
m Repeatfori=1..k

Train fp, with training set S = S\S;.

Calculate empirical risk R, (6;) on S;.

= Calculate average Rg = % Ziﬁgi(ﬂi)

S1 ] 52 | 53 | Sa

Total number of instances
< >
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Cross Validation

= Then, train fy on all data S.
= Return model f, and estimator Rs.
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_ /Training instances
Experiment 1 e

Experiment 2

Experiment 3

Test instances
Experiment 4 /
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Summary

= Document representation for classification:
Bag-of-words, TF-IDF,
Neural language models.

= Classification methods:
Linear models, regularized empirical risk
minimization,
Logiscic regression

s Multi-class classification and class taxonomies.

s Evaluation of text classifiers:
Precision-recall, ROC curves,
Hold-out testing, cross validation.

72

wm
o
=
@
—h
@
=
=
Q
S
Q
c
Q
Q
o)
)
o
-
S
S
o
Q
<




