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Text Classification 

 Mapping of text to semantic category: 

 “Amount is due within 10 business days” → invoice. 

 Can be multi-class classification problems: 

 “I tried this product today and it broke down within a 

few minutes” → very negative. 

 Or multiple binary classification problems.  

 “China joins the world trade organization” → {politics, 

economics}. 

 Or mapping to nodes in class taxonomy.  

 “wineries, faced with mounting inventory as well as 

downward price pressure, are forced to reduce their 

intake of grapes” → economics/agriculture/viniculture  
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Overview 

 Document representation for classification. 

 Classification methods. 

 Multi-class classification and class taxonomies.  

 Evaluation of text classifiers. 
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Vector-Space Model 

 Representations that map documents to a point in a 

vetor space. 

 𝐱𝑑 =

0
⋮
0
1
0
⋮
0
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Dictionary: 

Aardvark

⋮
Hippie

Hippopotamus

Hipster
⋮

Zyzzogeton

  

Hippopotamus 
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Bag-of-Words Representation 

 Term frequency vector: word count for each word . 

 High-dimensional but sparse vector. 

 𝐱𝑑
TF =

0
⋮
2
1
0
⋮
0
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Dictionary: 

Aardvark

⋮
Hippie

Hippopotamus

Hipster
⋮

Zyzzogeton

  

Hippopotamus 

“One hippie was killed by the hippopotamus,  

a second hippie survived but was injured.” 
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Bag-of-Words Representation 

 Some words and are not relevant for classification. 

 E.g., “was”, “by”, “the”, “a”, “but”. 

 Typically, these words occur all the time. 

 Often, words that occur in few documents have 

relevance for classification. 

 E.g., “hippie”, “hippopotamus”, “survived”, “injured”. 
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“One hippie was killed by the hippopotamus,  

a second hippie survived but was injured.” 
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Inverse Document Frequency 

 Measure of how rare a term is. 

 𝐼𝐷𝐹 term𝑖 = log 
#of documents in corpus

#of documents that include term𝑖
  

 

 𝐼𝐷𝐹 hippopotamus = log 
10 000

85
= 2.07 

 𝐼𝐷𝐹 and = log 
10 000

9 876
= 0.0054189  

 

 Inverse-document-frequency vector: 

 𝐱IDF =
𝐼𝐷𝐹(Aarvark)

⋮
𝐼𝐷𝐹(Zyzzogeton)
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TF-IDF Representation 

 Product of term-frquency and inverse-document-

frequency vectors.  

 𝐱𝑑
TFIDF = 𝐱𝑑

TF ⊙𝐱IDF 

 𝐱𝑑
TFIDF =

0
⋮
2
1
0
⋮
0

⊙

2.8
⋮

2.07
1.68
0.43
⋮
2.9

=

0
⋮

4.14
1.68
0
⋮
0
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“One hippie was killed by the hippopotamus,  

a second hippie survived but was injured.” 
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TF-IDF Representation 

 In linear classifiers, vectors with large norms result 

in large decision-function values. 

 Therefore: normalized TD-IDF representation: 

 𝐱 𝑑
TFIDF =

𝐱𝑑
TFIDF

|𝐱𝑑
TFIDF|

 

 𝐱 𝑑
TFIDF =

0
⋮

4.14
1.68
0
⋮
0

4.142+1.682+⋯
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TF-IDF Representation 

 Several alternative weighting schemes are 

common. 

 

 

 

 

 

 
 Manning, et.al.: Introduction to Information Retrieval: http://nlp.stanford.edu/IR-book/ 
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Bag-of-Words Representations 

 Vector space representations disregard any word 

ordering. 

 “product is broken, not great!” ≈ “product is great, not 

broken”! 
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𝑵-Gram Vectors 

 One dimension for each term 𝑛-gram that occurs at 

least 𝑘 times in the corpus.  

 𝐱𝑑 =

0
⋮
0
1
0
⋮
0
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Dictionary: 

Aardvark been

⋮
Hippie was

Hippopotamus a

Hipster has
⋮

Zyzzogeton zone 

  

“Hippopotamus, a” 

“One hippie was killed by the hippopotamus,  

a second hippie survived but was injured.” 
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𝑵-Gram Vectors 

 One dimension for each term 𝑛-gram that occurs at 

least 𝑘 times in the corpus.  

 Number of 𝑛-grams grows exponentially in 𝑛. 

 Semantically similar 𝑛-grams have independent 

dimensions → not ideal for generalization. 
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Skip-Gram Vectors 

 𝑛-gram vectors with wild-card symbol. 

 Several similar coding schemes are common, for 

instance orthogonal sparse bigrams (bigrams that 

occur within 𝑘 words of each other). 

 𝐱𝑑 =

0
⋮
0
1
0
⋮
0
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“Hippopotamus * hippie” 

“One hippie was killed by the hippopotamus,  

a second hippie survived but was injured.” 

Dictionary: 

Aardvark * ant

⋮
Hippie * smoke

Hippopotamus* hippie

Hipster * skinny
⋮

Zyzzogeton * zone 
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Skip-Gram Vectors 

 Semantically related terms still have unrelated 

representations.  

 Text classifier cannot “know” that when a term 

correlates with a category, semantically similar 

terms may also correlate with the same category.  
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Semantic Representations 

 Several attempts at semantic representations have 

been made, and basically failed. 

 Latent semantic indexing.  

 Latent Dirichlet allocation.  

 Classes of “semantically similar” terms are too 

heterogenous, adds noise to classification problem. 

 

 Continuous-space (“neural”) language models 

seem to actually work. 
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Neural Language Model 

 

 

 

 Output          … 𝐱𝑡−1   𝐱𝑡    𝐱𝑡+1 …  𝐱𝑇  

 

 

 

 Input        𝐱1   … 𝐱𝑡−𝑛+1  …   𝐱𝑡−1 … 𝐱𝑇. 
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=

0
⋮
0
1
0
⋮
0

 =

0
⋮
1
0
0
⋮
0

 

0.001
⋮
0.6
0.1
0.02
⋮
0

= 

                            
𝜙(𝐱𝑡) 

Softmax output layer 

Rectified linear units 

Also uses Markov  

assumption of order 𝑛 − 1! 

“Term-frequency 

vector” for single term 
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Neural Text Representations 

 Process all term 𝑛-grams in the document, infer 

hidden representation 𝜙(𝐱𝑡) for each term.  

 𝐱𝑑
AVG =

1

𝑇
 𝜙(𝐱𝑡)
𝑇
𝑖  

 Dramatically reduces dimensionality of vector 

space.  

 Can improve text classification accuracy. 

 “Product is broken, not great” and “product is great, 

not broken” can have distinct representations. 

 Context information still limited to 𝑛 subsequent 

terms.  

18 
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Paragraph Vectors 

 Semantic representation of paragraphs. 

 Can also be applied with different levels of 

granularities: 

 Semantic representation of sentences. 

 Semantic representation of documents. 

 

 Semantically related paragraphs (or documents, 

sentences) have similar representation. 

19 
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Paragraph Vectors 

 

 

 

 Output                   … 𝐱𝑡−1   𝐱𝑡    𝐱𝑡+1 …  𝐱𝑇 

 

 

 

 

 Input    𝐩𝑡            𝐱1   … 𝐱𝑡−𝑛+1  …   𝐱𝑡−1 … 𝐱𝑇. 
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=

0
⋮
0
1
0
⋮
0

 =

0
⋮
1
0
0
⋮
0

 

0.001
⋮

0.6
0.1
0.02
⋮
0

= 

                            
𝜙(𝐱𝑡) 

=

1
⋮
0
0
0
⋮
0

 
One-hot coded paragraph  

ID. One dimension per  

paragraph in the corpus. 
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Paragraph Vectors 

 

 

 

 Output                   … 𝐱𝑡−1   𝐱𝑡    𝐱𝑡+1 …  𝐱𝑇 

 

 

 

 

 Input    𝐩𝑡            𝐱1   … 𝐱𝑡−𝑛+1  …   𝐱𝑡−1 … 𝐱𝑇. 
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=

0
⋮
0
1
0
⋮
0

 =

0
⋮
1
0
0
⋮
0

 

0.001
⋮

0.6
0.1
0.02
⋮
0

= 

                            
𝜙(𝐱𝑡) 

=

1
⋮
0
0
0
⋮
0

 
One-hot coded paragraph  

ID. One dimension per  

paragraph in the corpus. 

Weights between hidden states and  

paragraph ID: Embedding of paragraph ID 

in semantic feature space Φ. 
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Training Paragraph-Vector Models 

 

 

 

                     … 𝐱𝑡−1   𝐱𝑡    𝐱𝑡+1 …  𝐱𝑇 

 

 

 

 

    𝐩𝑡            𝐱1   … 𝐱𝑡−𝑛+1  …   𝐱𝑡−1 … 𝐱𝑇. 
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=

0
⋮
0
1
0
⋮
0

 =

0
⋮
1
0
0
⋮
0

 

0.001
⋮

0.6
0.1
0.02
⋮
0

= 

                            
𝜙(𝐱𝑡) 

=

1
⋮
0
0
0
⋮
0

 

 Train by back propagation. 

 Iterate over training corpus. 

 Input paragraph ID,  

term (𝑛 − 1)-gram,  

 Use 𝑛-th term as target. 

 

 → Model is trained to  

predict next term, 

given paragraph ID 

and preceding terms.  
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Applying Paragraph-Vector Models 

 

 

 

                     … 𝐱𝑡−1   𝐱𝑡    𝐱𝑡+1 …  𝐱𝑇 

 

 

 

 

    𝐩𝑡            𝐱1   … 𝐱𝑡−𝑛+1  …   𝐱𝑡−1 … 𝐱𝑇. 
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=

0
⋮
0
1
0
⋮
0

 =

0
⋮
1
0
0
⋮
0

 

0.001
⋮

0.6
0.1
0.02
⋮
0

= 

                            
𝜙(𝐱𝑡) 

=

1
⋮
0
0
0
⋮
0

 

 Inference of paragraph vector 

for new paragraph. 

 New dimension is added 

to paragraph ID vector.  

 Weights from new  

paragraph ID to hidden  

units are trained on  

𝑛-grams from new  

paragraph. 

 Other weights are 

frozen. 
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Paragraph Vector Representation  

 Weights from paragraph ID to hidden units for 

document 𝑑 are used as representation of 𝑑. 

 𝐱𝑑
PAR =

𝜃𝑑1
⋮

𝜃𝑑𝑘
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                     … 𝐱𝑡−1   𝐱𝑡    𝐱𝑡+1 …  𝐱𝑇 

 

 

 

 

    𝐩𝑡            𝐱1   … 𝐱𝑡−𝑛+1  …   𝐱𝑡−1 … 𝐱𝑇. 

 

                            
𝜙(𝐱𝑡) 

=

1
⋮
0
0
0
⋮
0

 

𝜃11 
𝜃1𝑘 
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Overview 

 Document representation for classification. 

 Classification methods. 

 Multi-class classification and class taxonomies.  

 Evaluation of text classifiers. 
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Text Classification 

 Most often, linear classification models are used for 

text classification.  

 Example: 𝑋 = ℝ2 

 

 Decision function: 

    𝑓𝜽 𝐱 = 𝐱T𝛉 + 𝜃0 

 For binary classification,  

𝑦 ∈ {+1,−1}:  

    𝑦𝜽 𝐱 = sign 𝑓𝛉 𝐱  
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𝑥2 

𝑥1 

𝑓𝛉 𝐱 > 𝟎 

𝑓𝛉 𝐱 = 𝟎 

𝑓𝛉 𝐱 < 𝟎 
𝛉 − 𝜽𝟎

𝛉
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Regularized Empirical Risk Minimization 

 Solve 

argmin
𝛉

 ℓ 𝑓𝛉 𝐱𝑖 , 𝑦𝑖

𝑛

𝑖=1

+ 𝜆 Ω 𝛉  

 Loss function ℓ 𝑓𝛉 𝐱𝑖 , 𝑦𝑖 : cost of the model’s 

output 𝑓𝛉 𝐱  when the true value is 𝑦. 

 The empirical risk is  𝑅 𝑛 𝛉 =  ℓ 𝑓𝛉 𝐱𝑖 , 𝑦𝑖
𝑛
𝑖=1  

 Regularizer Ω 𝛉  & trade-off parameter 𝜆 ≥ 0: 

 Background information about preferred solutions  

 Provides numerical stability (Tikhonov-Regularizer) 

 allows for tighter error bounds (PAC-Theory) 

 

 

 

 

27 



S
c
h
e
ffe

r: L
a
n
g
u
a
g
e

 T
e
c
h
n
o
lo

g
y
 

Regularized Empirical Risk Minimization 

 Linear classification model: minimize 

𝑳 𝜽 = ℓ 𝐱T𝜽, 𝑦𝑖

𝑛

𝑖=1

+ 𝜆 Ω 𝜽  

 Gradient: 

 Vector of the derivatives 

with respect to each individual 

parameter 

 Direction of the steepest 

increase of the function 𝐿 𝜽 . 

 

 

 

 
28 

𝛻𝐿 𝛉 =

𝜕𝐿 𝛉

𝜕𝜃1
⋮

𝜕𝐿 𝛉

𝜕𝜃𝑚
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Regularized Empirical Risk Minimization 

 Linear classification model: minimize 

𝑳 𝜽 = ℓ 𝐱T𝜽, 𝑦𝑖

𝑛

𝑖=1

+ 𝜆 Ω 𝜽  

 Gradient descent method: 
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Starting soln. 

𝐿 𝛉0  

𝐿 𝛉1  

𝐿 

𝛻𝐿 𝛉  

𝛉 𝛉0 𝛉1 

 

  RegERM(Data: 𝐱1, 𝑦1 , … , 𝐱𝑛, 𝑦𝑛 ) 

 Set 𝛉0 = 𝟎 and 𝑡 = 0 

 DO 

      Compute gradient 𝛻𝐿 𝛉𝑡   

      Compute step size 𝛼𝑡 

      Set 𝛉𝑡+1 = 𝛉𝑡 − 𝛼𝑡𝛻𝐿 𝛉𝑡   

      Set 𝑡 = 𝑡 + 1 

 WHILE 𝛉𝑡 − 𝛉𝑡+1 > 𝜀 

RETURN 𝛉𝑡 
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Regularized Empirical Risk Minimization 

 Linear classification model: minimize 

𝑳 𝜽 = ℓ 𝐱T𝜽, 𝑦𝑖

𝑛

𝑖=1

+ 𝜆 Ω 𝜽  

 Large training sets: 

stochastic gradient descent. 
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Starting soln. 

𝐿 𝛉0  

𝐿 𝛉1  

𝐿 

𝛻𝐿 𝛉  

𝛉 𝛉0 𝛉1 

 

  RegERM-Stoch(Data: 𝐱1, 𝑦1 , … , 𝐱𝑛, 𝑦𝑛 ) 

 Set 𝛉0 = 𝟎 and 𝑡 = 0 

 DO 

      Shuffle data randomly 

      FOR 𝑖 = 1,… , 𝑛 

       Compute subset gradient 𝛻𝐱𝑖𝐿 𝛉𝑡  

       Compute step size 𝛼𝑡 

       Set 𝛉𝑡+1 = 𝛉𝑡 − 𝛼𝑡𝛻𝐱𝑖𝐿 𝛉𝑡   

       Set 𝑡 = 𝑡 + 1 

      END 

 WHILE 𝛉𝑡 − 𝛉𝑡+1 > 𝜀  

RETURN 𝛉𝑡  
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ERM: Support Vector Machine (SVM) 

 Class 𝑦 ∈ −1,+1   

 Loss function: 

 ℓℎ 𝑓𝛉 𝐱𝑖 , 𝑦𝑖 =  
1 − 𝑦𝑖𝑓𝛉 𝐱𝑖 if  1 − 𝑦𝑖𝑓𝛉 𝐱𝑖 > 0

0 if  1 − 𝑦𝑖𝑓𝛉 𝐱𝑖 ≤ 0
 

                           = max 0,1 − 𝑦𝑖𝑓𝛉 𝐱𝑖   

 

 Regularizer: 

 Ω2 𝛉 = 𝛉T𝛉 =  𝜃𝑗
2𝑚

𝑗=1 = 𝛉 2
2 
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0 −1 1 

1 

ℓ 

𝑦𝑖𝑓𝛉 𝐱𝑖  
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Support Vector Machine (SVM) 

 𝑳 𝜽  can be minimized using stochastic gradient 

descent method (“Pegasos”) 

 Very fast, often used in practice 

 𝑳 𝜽  can be minimized using gradient descent 

method (“Primal SVM”) 
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Logistic Regression 

 „Logistic regression“ is a model for classification! 

 For now, binary classification with  

 

 Need: model for 

 Model defines probability 

 Probability  

 

 Idea: transformation of a linear model 
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{ 1,1}.iy  
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to [0,1]. 
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Logistic Regression 

 Model logistic regression 

 Given by parameter vector 

 Defines conditional distribution                  by 

 

 

 

 

 

 

 

 Prediction function                           : 
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Learning Logistic Regression Models 

 MAP model: minimize regularized loss. 

 

 

 

 

 

 

 Convex optimization problem, global minimum. 

 Compare earlier lecture on „Linear models“. 
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Overview 

 Document representation for classification. 

 Classification methods. 

 Multi-class classification and class taxonomies.  

 Evaluation of text classifiers. 
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Multi-Class Classification 

 Text classification problems with more than 2 

classes. 

 𝑌 = 1,… , 𝑘  

 

 Problem: we cannot separate 𝑘 classes with a 

single hyperplane. 

 

 Idea: Each class 𝑦 has a separate function 𝑓𝛉 𝐱, 𝑦  

that is used to predict how likely 𝑦 is given 𝐱. 

 Each function is modeled as linear. 

 We predict class 𝑦 with the highest scoring function   

for 𝐱. 

37 



S
c
h
e
ffe

r: L
a
n
g
u
a
g
e

 T
e
c
h
n
o
lo

g
y
 

Multi-Class Classification 

 Decision functions: 

   𝑓𝛉 𝐱, 𝑦 = 𝐱T𝛉𝑦 

 Classifier:  

   𝑦𝛉 𝐱 = argmax
𝑦∈𝑌

𝑓𝛉 𝐱, 𝑦  

 Model parameters (𝑘 classes): 

𝛉 =
𝛉1

⋮
𝛉𝑘
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Multi-Class Classification 

 Decision functions: 

   𝑓𝛉 𝐱, 𝑦 = 𝐱T𝛉𝑦 

 Classifier:  

   𝑦𝛉 𝐱 = argmax
𝑦∈𝑌

𝑓𝛉 𝐱, 𝑦  
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𝑥1 

𝛉𝟏 −𝜽𝟎
𝟏

𝛉𝟏
 

𝑥2 
𝛉𝟐 

𝛉𝟑 
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Multi-Class Classification 

 Decision function: 

   𝑓𝛉 𝐱, 𝑦 = 𝐱T𝛉𝑦 with 𝛉 =
𝛉1

⋮
𝛉𝑘

 

 Decision function in terms of a joint feature 

mapping of input and output: 

𝑓𝛉 𝐱, 𝑦 = Φ(𝐱, 𝑦)T𝛉 with Φ(𝐱, 𝑦) =
𝐱 𝑦 = 1  

⋮
𝐱 𝑦 = 𝑘
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Multi-Class Classification 

 Decision function in terms of a joint feature 

mapping of input and output: 

𝑓𝛉 𝐱, 𝑦 = Φ(𝐱, 𝑦)T𝛉 with Φ(𝐱, 𝑦) =
𝐱 𝑦 = 1  

⋮
𝐱 𝑦 = 𝑘

 

 Example: 3-class classification  
𝑓𝛉 𝐱, 2 = Φ(𝐱, 2)T𝛉

= 𝐱 2 = 1 𝐱 2 = 2 𝐱 2 = 3
𝛉1

𝛉2

𝛉3

= (0 𝐱 0)
𝛉1

𝛉2

𝛉3

= 𝐱T𝛉2 
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Multi-Class Classification 

 Decision function in terms of a joint feature 

mapping of input and output: 

𝑓𝛉 𝐱, 𝑦 = Φ(𝐱, 𝑦)T𝛉 with Φ 𝐱, 𝑦 = Φ 𝐱 × Λ(𝑦), 

Φ 𝐱 = 𝐱, and Λ 𝑦 =
𝑦 = 1  

⋮
𝑦 = 𝑘

 

 Example: 3-class classification  
Φ 𝐱, 𝑦 = Φ 𝐱 × Λ 𝑦  

= 𝐱 ×

𝑦 = 1  

𝑦 = 2

𝑦 = 3

=

𝐱 𝑦 = 1  

𝐱 𝑦 = 2

𝐱 𝑦 = 3
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 minimize 

𝑳 𝜽 = max 0,1 − 𝑦𝑖𝐱𝑖
T𝜽 + 𝜆𝜽T𝜽

𝑛

𝑖=1

 

 Equivalent to: minimize 

𝑳 𝜽 = 𝜉𝑖 + 𝜆𝜽T𝜽𝑛
𝑖=1  subject to the constraints 

 𝑦𝑖𝑓𝛉 𝐱𝑖 ≥ 1 − 𝜉𝑖 

 𝜉𝑖 ≥ 0 

 

 

 

 

 

 

 

 Verallgemeinerung für k Klassen? 

 

  

 

 

Binary SVM: Optimization Problem 
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 minimize 

𝑳 𝜽 = max
𝑦≠𝑦𝑖

0, 𝑓𝛉 𝐱𝑖 , 𝑦 + 1 − 𝑓𝛉 𝐱𝑖 , 𝑦𝑖 + 𝜆𝜽T𝜽

𝑛

𝑖=1

 

 Minimize 

𝑳 𝜽 = 𝜉𝑖 + 𝜆𝜽T𝜽𝑛
𝑖=1  subject to the constraints 

 ∀𝑦 ≠ 𝑦𝑖: 𝑓𝛉 𝐱𝑖 , 𝑦𝑖 ≥ 𝑓𝛉 𝐱𝑖 , 𝑦 + 1 − 𝜉𝑖 

 𝜉𝑖 ≥ 0 

 

  

 

 

Multi-Class SVM: Optimization Problem 

𝑥1 

𝛉𝟏 −𝜽𝟎
𝟏

𝛉𝟏
 

𝑥2 
𝛉𝟐 

𝛉𝟑 
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SVM-Struct: Learning 

 Large-margin optimization criterion: minimize 

𝑳 𝜽 = max
𝑦≠𝑦𝑖

0, 𝑓𝛉 𝐱𝑖 , 𝐲 + 1 − 𝑓𝛉 𝐱𝑖 , 𝐲𝑖 + 𝜆𝜽T𝜽

𝑛

𝑖=1

 

 Equivalent to minimize 

𝑳 𝜽 = 𝜉𝑖 + 𝜆𝜽T𝜽𝑛
𝑖=1  subject to the constraints 

 ∀𝐲 ≠ 𝐲𝑖: 𝑓𝛉 𝐱𝑖 , 𝐲𝑖 ≥ 𝑓𝛉 𝐱𝑖 , 𝐲 + 1 − 𝜉𝑖 

 𝜉𝑖 ≥ 0 

 

 ∀𝐲 ≠ 𝐲𝑖: number of constraints is exponential in 𝑇. 

 Iterative training: explicit training constraint is added 

when some 𝐲 ≠ 𝐲𝑖 violates margin during training. 
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SVM-Struct: Learning Algorithm 

 Minimize 

𝑳 𝜽 = 𝜉𝑖 + 𝜆𝜽T𝜽𝑛
𝑖=1  subject to the constraints 

 ∀𝐲 ≠ 𝑦𝑖: 𝑓𝛉 𝐱𝑖 , 𝐲𝑖 ≥ 𝑓𝛉 𝐱𝑖 , 𝐲 + 1 − 𝜉𝑖 

 𝜉𝑖 ≥ 0 

 

 Start with empty working set of constraints 

 Iterate over training instances  

 Find argmax
𝐲 ≠𝐲𝑖

𝑓𝛉 𝐱𝑖 , 𝐲  

 While 𝑓𝛉 𝐱𝑖 , 𝐲𝑖 < 𝑓𝛉 𝐱𝑖 , 𝐲 + 1 − 𝜉𝑖, add this 

constraint to the working set of training constraints 

and solve minimization problem over current working 

set (e.g., using stochastic gradient descent). 
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Classification with Class Taxonomies 

 Taxonomic tree of classes 

    

   

   
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 Let 𝐱 be a document 

                    is a path in a subject taxonomy tree 

Classification with Class Taxonomies 
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 Let 𝐱 be a document 

                    is a path in a subject taxonomy tree 

Classification with Class Taxonomies 
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Overview 

 Document representation for classification. 

 Classification methods. 

 Multi-class classification and class taxonomies.  

 Evaluation of text classifiers. 
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51 

Evaluating Text Classifiers 

 Accuracy (proportion of documents which are classified 

correctly) is often used for multi-class text classification. 

 Downside: rare classes have only small influence. 

 Classifier that only recognizes frequent classes can have a 

high accuracy.  
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Evaluating Text Classifiers 

 Decision function 𝑓𝜃 𝐱  returns continuous value. 

 Decision rule for binary classification: 

𝑦𝜃 𝐱 =  
+1 if 𝑓𝜃 𝐱 ≥ 𝜃0
−1 if 𝑓𝜃 𝐱 < 𝜃0

 

 

 By adjusting threshold 𝜃0 decision rule can be made more 

sensitive or more conservative.  

 Decision function for each category can be evaluated 

separately.  
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Precision and Recall 

 Performance measure for binary classification. 

 Example: class invoice against all other classes.  

 Dociment 𝐱𝑖  is in category if 𝑦𝑖 = +1. 

 Classifier recognizes category if 𝑦𝜃 𝐱𝑖 = +1. 

 True positives:  

 Document in category (𝑦𝑖 = +1), classifier recognizes (𝑦𝜃 𝐱𝑖 =
+ 1) 

 False positives: 

 Document not in catrgory (𝑦𝑖 = −1), but classifier thinks it is 

(𝑦𝜃 𝐱𝑖 = +1). 

 True negatives:  

 Patient is healthy Document not in catrgory (𝑦𝑖 = −1), classifier 

recognizes (𝑦𝜃 𝐱𝑖 = −1) 

 False negatives:  

 Document in category (𝑦𝑖 = +1), classifier misses (𝑦𝜃 𝐱𝑖 = −1) 
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Precision and Recall 

 Let 𝑛𝑇𝑃 be the number of true positives. 

 Let 𝑛𝐹𝑃 be the number of false positives. 

 Let 𝑛𝑇𝑁 be the number of true negatives. 

 Let 𝑛𝐹𝑁 be the number of false negatives. 

 Precision: 𝑃 =
𝑛𝑇𝑃

𝑛𝑇𝑃+𝑛𝐹𝑃
 

 “Rate of true positives among all instances that are classified as 

positives” 

 Answers: “How accurate is classifier when it says +1?” 

 Recall: 𝑅 =
𝑛𝑇𝑃

𝑛𝑇𝑃+𝑛𝐹𝑁
 

 “Rate of true positives among all positive instances” 

 Answers: “How many of the positive instances does the classifier 

detect?” 
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Precision-Recall Curves 

 Evaluates decision function 𝑓𝜃 𝐱  independent of threshold 𝜃0.  

 Shows which pairs of 

precision and recall can be  

obtained by varying  

threshold 𝜃0. 

 Each point on the curve is 

a classification rule with a 

particular values of 𝜃0. 

 Which decision function is 

better – A or B? 

Lower 𝜃0 

Higher 𝜃0  



S
c
h
e
ffe

r: L
a
n
g
u
a
g
e

 T
e
c
h
n
o
lo

g
y
 

F Measures 

 𝐹𝛼 measures combine precision and recall values 

into single value:  

𝐹𝛼 =
𝑛𝑇𝑃

𝛼(𝑛𝑇𝑃 + 𝑛𝐹𝑃) + (1 − 𝛼)(𝑛𝑇𝑃 + 𝑛𝐹𝑁)
 

 𝛼 = 1: Precision 

 𝛼 = 0: Recall 

 𝛼 = 0.5: “F-measure”, harmonic mean of precision 

and recall. 

 Alternative definition: 𝐹𝛽 measures. 

 Relationship: 𝛼 =
1

1+𝛽
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ROC Analysis 

 Alternative measure of how well the decision 

function separates positive from negative instances, 

independent of any threshold value 𝜃0. 

 

57 

False-positive rate 

T
ru

e
-p

o
s
it
iv

e
 r

a
te

 



S
c
h
e
ffe

r: L
a
n
g
u
a
g
e

 T
e
c
h
n
o
lo

g
y
 

ROC Analysis 

 Each curve characterizes a decision function 𝑓𝜃. 

 Each point is a classification rule for a value of 𝜃0. 

 Which is better, A or B? 

 𝑟𝑇𝑃 =
𝑛𝑇𝑃

𝑛𝑇𝑃+𝑛𝐹𝑁
 

 𝑟𝐹𝑃 =
𝑛𝐹𝑃

𝑛𝐹𝑃+𝑛𝑇𝑁
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False-positive rate 
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ROC Analysis 

 Equal error rate (EER): value 𝑟𝑇𝑃 = 1 − 𝑟𝐹𝑃 . 

 Scalar aggregate of curve: Area under ROC curve 

(AUC). 
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False-positive rate 
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ROC Analysis 

 Area under the ROC curve (AUC):  

 Let 𝐱+ be a randomly drawn positive instance. 

 Let 𝐱− be a randomly drawn negative instance. 

 𝐴𝑈𝐶(𝜃) = 𝑃(𝑓𝜃 𝐱+ > 𝑓𝜃 𝐱− ). 
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False-positive rate 
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ROC Analysis 

 ROC analysis is often used   

 When positive instances are rare (accuracy of 99.9% 

is meaningless if positive class is extremely rare) 

 When no meaningful probability of meeting positive 

instances can be defined (prior probability of news 

categories changes every day based on events). 
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False-positive rate 
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Drawing ROC Curves 

 For all positive examples 𝑋𝑝 in test set: 

 Insert 𝑓(𝑥𝑝) in decreasing order in ordered 

list 𝐿𝑝. 

 For all negative examples 𝑋𝑛 in test set: 

 Insert 𝑓(𝑥𝑛) in decreasing order in ordered 
list 𝐿𝑛. 

 Let TP = FP = 0. 

 Repeat as long as 𝐿𝑝 and 𝐿𝑛 are not empty: 

 If 𝐿𝑝  element > 𝐿𝑛  element, then 

increment(TP) and 𝐿𝑝 = 𝐿𝑝  Next. 

 Elsif 𝐿𝑛  element < 𝐿𝑝  element, then 

increment(FP) and 𝐿𝑛 = 𝐿𝑛  Next. 

 Else increment(TP, FP), 𝐿𝑝 = 𝐿𝑝  Next,  

𝐿𝑛 = 𝐿𝑛  Next. 

 Plot next point (FP, TP). 
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Evaluation Protocols 

 Usually, model 𝑓𝜃 is not given and evaluation data 

cannot be drawn from 𝑝 𝐱, 𝑦 . 

 Typical case, data S = 𝐱1, 𝑦1 , … , 𝐱𝑛, 𝑦𝑛  and 

learning method are given. 

 Data S have to be used for training and evaluation. 

 Desired output: model 𝑓𝜃 and risk estimate. 

 Cannot evaluate on training data because 

performance on training data is always high (higher 

than on unseen test data). 

 

63 



S
c
h
e
ffe

r: L
a
n
g
u
a
g
e

 T
e
c
h
n
o
lo

g
y
 

64 

Holdout Testing 

 Idea: error estimation on independent test data 

 Given: data 𝑆 = 𝐱1, 𝑦1 , … , 𝐱𝑛, 𝑦𝑛  

 Divide the data into 

 Training data 𝐿 = 𝐱1, 𝑦1 , … , 𝐱𝑚, 𝑦𝑚 and 

 Test data 𝑇 = 𝐱𝑚+1, 𝑦𝑚+1 , … , 𝐱𝑛, 𝑦𝑛  

𝐿 𝑇 
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Holdout Testing 

 Start learning algorithm with data 𝐿 and obtain 

model 𝑓𝜃′ from it. 

 Determine performance 𝑅 𝑇 𝜃′  on data 𝑇. 

 Start learning algorithm with all data 𝑆 and obtain 

Model 𝑓𝜃 from it. 

 Output: model 𝑓𝜃 & 𝑅 𝑇 𝜃′  as the estimator of 𝑅(𝜃). 

𝐿 𝑇 

𝜃′ 

𝜃 

→ 𝑅 𝑇(𝜃
′) 
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Holdout Testing: Analysis 

 Is the estimator 𝑅 𝑇 𝜃′  of the risk of model 𝑅 𝜃  

 unbiased, 

 optimistic, 

 pessimistic? 

 Hint: the more training data, the better the model. 

 

𝐿 𝑇 

𝜃′ → 𝑅 𝑇(𝜃
′) 

𝜃 
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Holdout Testing: Analysis 

 Estimate 𝑅 𝑇 𝜃′  is obtained on a small part of the 

available data. 

 Therefore, its variance is relatively high, especially 

if the overall sample is small. 

 Holdout testing is used in practice for large 

available samples. 

 

𝐿 𝑇 

𝜃′ → 𝑅 𝑇(𝜃
′) 

𝜃 
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Holdout Testing: Analysis 

 Using empirical risk 𝑅 𝑇 𝜃′  is an pessimistic 

estimator of the risk 𝑅 𝜃 . 

 Because 𝜃′ is trained with fewer training instances 

than 𝜃. 

 

𝐿 𝑇 

𝜃′ → 𝑅 𝑇(𝜃
′) 

𝜃 
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Holdout Testing: Analysis 

 One could instead return model 𝜃′. 

 Empirical risk 𝑅 𝑇 𝜃′  would be an unbiased 

estimate of 𝑅(𝜃′). 

 But since 𝜃′ was trained on fewer data, it would 

result in an inferior model. 

 

𝐿 𝑇 

𝜃′ → 𝑅 𝑇(𝜃
′) 

𝜃 
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K-Fold Cross Validation 

 Given: data 𝑆 = 𝐱1, 𝑦1 , … , 𝐱𝑛, 𝑦𝑛  

 Partition 𝑆 into 𝑘 equally sized portions 𝑆1, … , 𝑆𝑘. 

 Repeat for 𝑖 = 1…𝑘  

 Train 𝑓𝜃𝑖
 with training set 𝑆 = 𝑆\𝑆𝑖. 

 Calculate empirical risk 𝑅 𝑆𝑖 𝜃𝑖  on 𝑆𝑖. 

 Calculate average 𝑅 𝑆 =
1

𝑘
  𝑅 𝑆𝑖(𝜃𝑖)𝑖  

Training instances 

𝑆1 𝑆2 𝑆3 𝑆4 

Test instances 

Total number of instances 

Experiment 1 

Experiment 2 

Experiment 3 

Experiment 4 
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Cross Validation 

 Then, train 𝑓𝜃  on all data 𝑆. 

 Return model 𝑓𝜃 and estimator 𝑅 𝑆. 

 

Test samples 

Training instances 

Test instances 

Total number of instances 

Experiment 1 

Experiment 2 

Experiment 3 

Experiment 4 
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Summary 

 Document representation for classification: 

 Bag-of-words, TF-IDF, 

 Neural language models. 

 Classification methods: 

 Linear models, regularized empirical risk 

minimization, 

 Logiscic regression 

 Multi-class classification and class taxonomies.  

 Evaluation of text classifiers: 

 Precision-recall, ROC curves, 

 Hold-out testing, cross validation. 
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