Universität Potsdam

Institut für Informatik Lehrstuhl Maschinelles Lernen

Text Classification

Tobias Scheffer

Text Classification

- Mapping of text to semantic category:
 - ◆ "Amount is due within 10 business days" → invoice.
- Can be multi-class classification problems:
 - I tried this product today and it broke down within a few minutes" → very negative.
- Or multiple binary classification problems.
 - China joins the world trade organization" → {politics, economics}.
- Or mapping to nodes in class taxonomy.
 - wineries, faced with mounting inventory as well as downward price pressure, are forced to reduce their intake of grapes" → economics/agriculture/viniculture

Overview

- Document representation for classification.
- Classification methods.
- Multi-class classification and class taxonomies.
- Evaluation of text classifiers.

Vector-Space Model

 Representations that map documents to a point in a vetor space.

Bag-of-Words Representation

- Term frequency vector: word count for each word.
- High-dimensional but sparse vector.

"One hippie was killed by the hippopotamus, a second hippie survived but was injured."

Bag-of-Words Representation

- Some words and are not relevant for classification.
 - E.g., "was", "by", "the", "a", "but".
- Typically, these words occur all the time.
- Often, words that occur in few documents have relevance for classification.
 - ◆ E.g., "hippie", "hippopotamus", "survived", "injured".

"One hippie was killed by the hippopotamus, a second hippie survived but was injured."

Inverse Document Frequency

- Measure of how rare a term is.
- $IDF(\text{term}_i) = \log \frac{\text{#of documents in corpus}}{\text{#of documents that include term}_i}$
- IDF(hippopotamus) = $\log \frac{10000}{85} = 2.07$ IDF(and) = $\log \frac{10000}{9876} = 0.0054189$
- Inverse-document-frequency vector:

•
$$\mathbf{x}^{\text{IDF}} = \begin{pmatrix} IDF(\text{Aarvark}) \\ \vdots \\ IDF(\text{Zyzzogeton}) \end{pmatrix}$$

TF-IDF Representation

 Product of term-frquency and inverse-documentfrequency vectors.

•
$$\mathbf{x}_d^{\text{TFIDF}} = \mathbf{x}_d^{\text{TF}} \odot \mathbf{x}^{\text{IDF}}$$

$$\mathbf{x}_{d}^{\text{TFIDF}} = \begin{pmatrix} 0 \\ \vdots \\ 2 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \odot \begin{pmatrix} 2.8 \\ \vdots \\ 2.07 \\ 1.68 \\ 0.43 \\ \vdots \\ 2.9 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 4.14 \\ 1.68 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

"One hippie was killed by the hippopotamus, a second hippie survived but was injured."

TF-IDF Representation

- In linear classifiers, vectors with large norms result in large decision-function values.
- Therefore: normalized TD-IDF representation:

•
$$\bar{\mathbf{x}}_d^{\text{TFIDF}} = \frac{\mathbf{x}_d^{\text{TFIDF}}}{|\mathbf{x}_d^{\text{TFIDF}}|}$$

$$\bar{\mathbf{x}}_{d}^{\text{TFIDF}} = \frac{\begin{pmatrix} \vdots \\ 4.14 \\ 1.68 \\ 0 \\ \vdots \\ 0 \end{pmatrix}}{\sqrt{4.14^2 + 1.68^2 + \cdots}}$$

TF-IDF Representation

 Several alternative weighting schemes are common.

Term frequency		Document frequency		Normalization	
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1
l (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{d}\mathrm{f}_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \dots + w_M^2}}$
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log\frac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/ <i>u</i> (Section 6.4.4)
b (boolean)	$\begin{cases} 1 & \text{if } tf_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/CharLength^{lpha}$, $lpha < 1$
L (log ave)	$\frac{1 + \log(tf_{t,d})}{1 + \log(ave_{t \in d}(tf_{t,d}))}$				

Manning, et.al.: Introduction to Information Retrieval: http://nlp.stanford.edu/IR-book/

Bag-of-Words Representations

- Vector space representations disregard any word ordering.
 - ◆ "product is broken, not great!" ≈ "product is great, not broken"!

N-Gram Vectors

 One dimension for each term n-gram that occurs at least k times in the corpus.

"One hippie was killed by the hippopotamus, a second hippie survived but was injured."

N-Gram Vectors

- One dimension for each term n-gram that occurs at least k times in the corpus.
- Number of n-grams grows exponentially in n.
- Semantically similar n-grams have independent dimensions \rightarrow not ideal for generalization.

Skip-Gram Vectors

- n-gram vectors with wild-card symbol.
- Several similar coding schemes are common, for instance orthogonal sparse bigrams (bigrams that occur within k words of each other).

"Hippopotamus * hippie"

$$\mathbf{x}_d = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 Dictionary:
$$\begin{bmatrix} \text{Aardvark * ant} \\ \vdots \\ \text{Hippie * smoke} \\ \text{Hippopotamus* hippie} \\ \text{Hipster * skinny} \\ \vdots \\ \text{Zyzzogeton * zone} \end{bmatrix}$$

"One hippie was killed by the hippopotamus, a second hippie survived but was injured."

Skip-Gram Vectors

- Semantically related terms still have unrelated representations.
- Text classifier cannot "know" that when a term correlates with a category, semantically similar terms may also correlate with the same category.

Semantic Representations

- Several attempts at semantic representations have been made, and basically failed.
 - Latent semantic indexing.
 - Latent Dirichlet allocation.
- Classes of "semantically similar" terms are too heterogenous, adds noise to classification problem.
- Continuous-space ("neural") language models seem to actually work.

Neural Language Model

Also uses Markov assumption of order n-1!

Softmax output layer

Output

 $\dots \mathbf{X}_{t-1} \quad \mathbf{X}_t \stackrel{\checkmark}{\mathbf{X}}_{t+1} \dots \mathbf{X}_T$

Input

 $\mathbf{X}_1 \dots \mathbf{X}_{t-n+1} \dots \mathbf{X}_{t-1} \dots \mathbf{X}_T$.

"Term-frequency
$$=\begin{pmatrix}0\\ \vdots\\0\\1\\0\\\vdots\\0\end{pmatrix}$$
 $=\begin{pmatrix}0\\ \vdots\\1\\0\\0\\\vdots\\0\end{pmatrix}$ vector" for single term

Neural Text Representations

■ Process all term n-grams in the document, infer hidden representation $\phi(\mathbf{x}_t)$ for each term.

•
$$\mathbf{x}_d^{\text{AVG}} = \frac{1}{T} \sum_i^T \phi(\mathbf{x}_t)$$

- Dramatically reduces dimensionality of vector space.
- Can improve text classification accuracy.
 - "Product is broken, not great" and "product is great, not broken" can have distinct representations.
- Context information still limited to n subsequent terms.

Paragraph Vectors

- Semantic representation of paragraphs.
- Can also be applied with different levels of granularities:
 - Semantic representation of sentences.
 - Semantic representation of documents.
- Semantically related paragraphs (or documents, sentences) have similar representation.

Paragraph Vectors

One-hot coded paragraph ID. One dimension per paragraph in the corpus.

Paragraph Vectors

Output

 $\ldots \mathbf{X}_{t-1} \ \mathbf{X}_t \ \mathbf{X}_{t+1} \ \ldots \ \mathbf{X}_T$

Weights between hidden states and paragraph ID: Embedding of paragraph ID in semantic feature space Φ .

 $\phi(\mathbf{x}_t)$

One-hot coded paragraph ID. One dimension per paragraph in the corpus.

Input
$$\mathbf{p}_t$$

$$= \begin{pmatrix} 1 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\mathbf{X}_{1} \quad \dots \mathbf{X}_{t-n+1} \quad \dots \quad \mathbf{X}_{t-1} \quad \dots \quad \mathbf{X}_{T}.$$

$$= \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ \vdots \\ 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Training Paragraph-Vector Models

 \mathbf{p}_t

- Train by back propagation.
- Iterate over training corpus.
- Input paragraph ID, term (n − 1)-gram,
- Use *n*-th term as target.
- → Model is trained to predict next term, given paragraph ID and preceding terms.

Applying Paragraph-Vector Models

- Inference of paragraph vector for new paragraph.
- New dimension is added to paragraph ID vector.
- Weights from new paragraph ID to hidden units are trained on n-grams from new paragraph.
- Other weights are frozen.

Paragraph Vector Representation

Weights from paragraph ID to hidden units for document d are used as representation of d.

$$\mathbf{x}_{d}^{\text{PAR}} = \begin{pmatrix} \theta_{d1} \\ \vdots \\ \theta_{dk} \end{pmatrix} \qquad \dots \mathbf{x}_{t-1} \quad \mathbf{x}_{t} \quad \mathbf{x}_{t+1} \dots \mathbf{x}_{T}$$

$$\begin{array}{c} \boldsymbol{\phi}(\mathbf{x}_{t}) \\ \boldsymbol{\phi}_{11} & \boldsymbol{\theta}_{1k} \\ \boldsymbol{\phi}_{11} & \boldsymbol{\phi}_{1k} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{11} & \boldsymbol{\phi}_{1k} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{11} & \boldsymbol{\phi}_{11} & \boldsymbol{\phi}_{12} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{11} & \boldsymbol{\phi}_{12} & \boldsymbol{\phi}_{12} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{12} & \boldsymbol{\phi}_{13} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{13} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_{0} & \boldsymbol{\phi}_{14} & \boldsymbol{\phi}_{14} \\ \vdots \\ \boldsymbol{\phi}_$$

Overview

- Document representation for classification.
- Classification methods.
- Multi-class classification and class taxonomies.
- Evaluation of text classifiers.

Text Classification

- Most often, linear classification models are used for text classification.
- Example: $X = \mathbb{R}^2$
- Decision function:

$$f_{\boldsymbol{\theta}}(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{\theta} + \theta_0$$

■ For binary classification, $y \in \{+1, -1\}$: $y_{\theta}(\mathbf{x}) = \text{sign}(f_{\theta}(\mathbf{x}))$

Solve

$$\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{i=1}^{n} \ell(f_{\boldsymbol{\theta}}(\mathbf{x}_i), y_i) + \lambda \Omega(\boldsymbol{\theta})$$

- Loss function $\ell(f_{\theta}(\mathbf{x}_i), y_i)$: cost of the model's output $f_{\theta}(\mathbf{x})$ when the true value is y.
 - The empirical risk is $\widehat{R}_n(\mathbf{\theta}) = \sum_{i=1}^n \ell(f_{\mathbf{\theta}}(\mathbf{x}_i), y_i)$
- Regularizer $\Omega(\theta)$ & trade-off parameter $\lambda \geq 0$:
 - Background information about preferred solutions
 - Provides numerical stability (Tikhonov-Regularizer)
 - allows for tighter error bounds (PAC-Theory)

Linear classification model: minimize

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \ell(\mathbf{x}^{\mathrm{T}}\boldsymbol{\theta}, y_i) + \lambda \Omega(\boldsymbol{\theta})$$

- Gradient:
 - Vector of the derivatives with respect to each individual parameter
 - Direction of the steepest increase of the function $L(\theta)$.

$$abla L(\mathbf{\theta}) = \begin{pmatrix} \frac{\partial L(\mathbf{\theta})}{\partial \theta_1} \\ \vdots \\ \frac{\partial L(\mathbf{\theta})}{\partial \theta_m} \end{pmatrix}$$

Linear classification model: minimize

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \ell(\mathbf{x}^{\mathrm{T}}\boldsymbol{\theta}, y_i) + \lambda \Omega(\boldsymbol{\theta})$$

Gradient descent method:

```
RegERM(Data: (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n))
Set \mathbf{\theta}^0 = \mathbf{0} and t = 0
DO

Compute gradient \nabla L(\mathbf{\theta}^t)
Compute step size \alpha^t
Set \mathbf{\theta}^{t+1} = \mathbf{\theta}^t - \alpha^t \nabla L(\mathbf{\theta}^t)
Set t = t+1
WHILE \|\mathbf{\theta}^t - \mathbf{\theta}^{t+1}\| > \varepsilon
RETURN \mathbf{\theta}^t
```


Linear classification model: minimize

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \ell(\mathbf{x}^{\mathrm{T}}\boldsymbol{\theta}, y_i) + \lambda \Omega(\boldsymbol{\theta})$$

 Large training sets: stochastic gradient descent.

RETURN $\mathbf{\theta}^t$

```
RegERM-Stoch (Data: (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n))
Set \mathbf{\theta}^0 = \mathbf{0} and t = 0
DO

Shuffle data randomly
FOR i = 1, \dots, n

Compute subset gradient \nabla_{\mathbf{x}_i} L(\mathbf{\theta}^t)
Compute step size \alpha^t
Set \mathbf{\theta}^{t+1} = \mathbf{\theta}^t - \alpha^t \nabla_{\mathbf{x}_i} L(\mathbf{\theta}^t)
Set t = t+1
END

WHILE ||\mathbf{\theta}^t - \mathbf{\theta}^{t+1}|| > \varepsilon
```


ERM: Support Vector Machine (SVM)

- Class $y \in \{-1, +1\}$
- Loss function:

$$\ell_h(f_{\theta}(\mathbf{x}_i), y_i) = \begin{cases} 1 - y_i f_{\theta}(\mathbf{x}_i) & \text{if } 1 - y_i f_{\theta}(\mathbf{x}_i) > 0 \\ 0 & \text{if } 1 - y_i f_{\theta}(\mathbf{x}_i) \le 0 \end{cases}$$
$$= \max(0, 1 - y_i f_{\theta}(\mathbf{x}_i))$$

 $y_i f_{\mathbf{\theta}}(\mathbf{x}_i)$

Support Vector Machine (SVM)

- $L(\theta)$ can be minimized using stochastic gradient descent method ("Pegasos")
 - Very fast, often used in practice
- $L(\theta)$ can be minimized using gradient descent method ("Primal SVM")

Logistic Regression

- "Logistic regression" is a model for classification!
- For now, binary classification with $y_i \in \{-1,1\}$.
- Need: model for $p(y | \mathbf{x}, \boldsymbol{\theta})$
 - Model defines probability $p(y = 1 | \mathbf{x}, \mathbf{\theta})$.
 - Probability $p(y = -1 \mid \mathbf{x}, \mathbf{\theta}) = 1 p(y = 1 \mid \mathbf{x}, \mathbf{\theta}).$
- Idea: transformation of a linear model $\mathbf{x}^{\mathrm{T}}\mathbf{\theta}$.

Logistic Regression

- Model logistic regression
 - Given by parameter vector $\mathbf{\theta} \in \mathbb{R}^m$.
 - Defines conditional distribution $p(y | \mathbf{x}, \boldsymbol{\theta})$ by

$$p(y=1 | \mathbf{x}, \mathbf{\theta}) = \sigma(\mathbf{x}^{\mathrm{T}}\mathbf{\theta}) = \frac{1}{1 + \exp(-\mathbf{x}^{\mathrm{T}}\mathbf{\theta})}$$

$$\sigma(z)$$

$$p(y = -1 \mid \mathbf{x}, \mathbf{\theta}) = 1 - p(y = 1 \mid \mathbf{x}, \mathbf{\theta})$$

• Prediction function $f_{\theta}: \mathbb{R}^m \to \{0,1\}$:

$$f_{\mathbf{\theta}}(\mathbf{x}) = \begin{cases} 1: \ \sigma(\mathbf{x}^{\mathrm{T}}\mathbf{\theta}) \ge 0.5 \\ 0: \ \text{sonst} \end{cases}$$

Learning Logistic Regression Models

MAP model: minimize regularized loss.

$$\begin{aligned} \mathbf{\theta}_{\text{MAP}} &= \arg \max_{\mathbf{\theta}} P(\mathbf{y} \mid \mathbf{X}, \mathbf{\theta}) p(\mathbf{\theta}) \\ &= \arg \min_{\mathbf{\theta}} \sum_{i=1}^{n} \log \left(1 + \exp(-y_{i} \mathbf{x}_{i}^{\text{T}} \mathbf{\theta}) \right) + \frac{1}{2\sigma_{p}^{2}} |\mathbf{\theta}|^{2} \\ &\qquad \qquad \qquad \text{loss function} \end{aligned}$$

- Convex optimization problem, global minimum.
- Compare earlier lecture on "Linear models".

Overview

- Document representation for classification.
- Classification methods.
- Multi-class classification and class taxonomies.
- Evaluation of text classifiers.

Text classification problems with more than 2 classes.

$$Y = \{1, ..., k\}$$

- Problem: we cannot separate k classes with a single hyperplane.
- Idea: Each class y has a separate function $f_{\theta}(\mathbf{x}, y)$ that is used to predict how likely y is given \mathbf{x} .
 - Each function is modeled as linear.
 - We predict class y with the highest scoring function for x.

Decision functions:

$$f_{\mathbf{\theta}}(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{\mathrm{T}} \mathbf{\theta}^{\mathbf{y}}$$

Classifier:

$$y_{\mathbf{\theta}}(\mathbf{x}) = \underset{y \in Y}{\operatorname{argmax}} f_{\mathbf{\theta}}(\mathbf{x}, y)$$

Model parameters (k classes):

$$\mathbf{\theta} = \begin{pmatrix} \mathbf{\theta}^1 \\ \vdots \\ \mathbf{\theta}^k \end{pmatrix}$$

Decision functions:

$$f_{\mathbf{\theta}}(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{\mathrm{T}} \mathbf{\theta}^{\mathbf{y}}$$

Classifier:

$$y_{\mathbf{\theta}}(\mathbf{x}) = \underset{y \in Y}{\operatorname{argmax}} f_{\mathbf{\theta}}(\mathbf{x}, y)$$

Decision function:

$$f_{\mathbf{\theta}}(\mathbf{x}, y) = \mathbf{x}^{\mathrm{T}} \mathbf{\theta}^{y} \text{ with } \mathbf{\theta} = \begin{pmatrix} \mathbf{\theta}^{\mathrm{T}} \\ \vdots \\ \mathbf{\theta}^{k} \end{pmatrix}$$

Decision function in terms of a joint feature mapping of input and output:

$$f_{\mathbf{\theta}}(\mathbf{x}, y) = \Phi(\mathbf{x}, y)^{\mathrm{T}} \mathbf{\theta} \text{ with } \Phi(\mathbf{x}, y) = \begin{pmatrix} \mathbf{x}[y = 1] \\ \vdots \\ \mathbf{x}[y = k] \end{pmatrix}$$

Decision function in terms of a joint feature mapping of input and output:

$$f_{\mathbf{\theta}}(\mathbf{x}, y) = \Phi(\mathbf{x}, y)^{\mathrm{T}} \mathbf{\theta} \text{ with } \Phi(\mathbf{x}, y) = \begin{pmatrix} \mathbf{x}[y = 1] \\ \vdots \\ \mathbf{x}[y = k] \end{pmatrix}$$

Example: 3-class classification $f_{\theta}(\mathbf{x}, 2) = \Phi(\mathbf{x}, 2)^{\mathrm{T}} \mathbf{\theta}$

$$= (\mathbf{x}[2=1] \quad \mathbf{x}[2=2] \quad \mathbf{x}[2=3]) \begin{pmatrix} \mathbf{\theta}^1 \\ \mathbf{\theta}^2 \\ \mathbf{\theta}^3 \end{pmatrix}$$

$$= (0 \quad \mathbf{x} \quad 0) \begin{pmatrix} \mathbf{\theta}^1 \\ \mathbf{\theta}^2 \\ \mathbf{\theta}^3 \end{pmatrix} = \mathbf{x}^{\mathrm{T}} \mathbf{\theta}^2$$

Decision function in terms of a joint feature mapping of input and output:

$$f_{\mathbf{\theta}}(\mathbf{x}, y) = \Phi(\mathbf{x}, y)^{\mathrm{T}} \mathbf{\theta} \text{ with } \Phi(\mathbf{x}, y) = \Phi(\mathbf{x}) \times \Lambda(y),$$

 $\Phi(\mathbf{x}) = \mathbf{x}, \text{ and } \Lambda(y) = \begin{pmatrix} [y = 1] \\ \vdots \\ [y = k] \end{pmatrix}$

Example: 3-class classification

$$\Phi(\mathbf{x}, y) = \Phi(\mathbf{x}) \times \Lambda(y)$$

$$= \mathbf{x} \times \begin{pmatrix} [y = 1] \\ [y = 2] \\ [y = 3] \end{pmatrix} = \begin{pmatrix} \mathbf{x}[y = 1] \\ \mathbf{x}[y = 2] \\ \mathbf{x}[y = 3] \end{pmatrix}$$

Binary SVM: Optimization Problem

minimize

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left[\max(0, 1 - y_i \mathbf{x}_i^{\mathrm{T}} \boldsymbol{\theta}) \right] + \lambda \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}$$

Equivalent to: minimize

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \xi_i + \lambda \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}$$
 subject to the constraints

- $y_i f_{\mathbf{\theta}}(\mathbf{x}_i) \ge 1 \xi_i$
- $\xi_i \geq 0$

Multi-Class SVM: Optimization Problem

minimize

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left[\max_{y \neq y_i} (0, f_{\boldsymbol{\theta}}(\mathbf{x}_i, y) + 1 - f_{\boldsymbol{\theta}}(\mathbf{x}_i, y_i)) \right] + \lambda \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}$$

Minimize

 $L(\theta) = \sum_{i=1}^{n} \xi_i + \lambda \theta^{\mathrm{T}} \theta$ subject to the constraints

- $\forall y \neq y_i : f_{\theta}(\mathbf{x}_i, y_i) \ge f_{\theta}(\mathbf{x}_i, y) + 1 \xi_i$
- $\xi_i \ge 0$

SVM-Struct: Learning

Large-margin optimization criterion: minimize

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left[\max_{y \neq y_i} (0, f_{\boldsymbol{\theta}}(\mathbf{x}_i, \mathbf{y}) + 1 - f_{\boldsymbol{\theta}}(\mathbf{x}_i, \mathbf{y}_i)) \right] + \lambda \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}$$

Equivalent to minimize

$$L(\theta) = \sum_{i=1}^{n} \xi_i + \lambda \theta^{\mathrm{T}} \theta$$
 subject to the constraints

- $\forall \mathbf{y} \neq \mathbf{y}_i : f_{\mathbf{\theta}}(\mathbf{x}_i, \mathbf{y}_i) \ge f_{\mathbf{\theta}}(\mathbf{x}_i, \mathbf{y}) + 1 \xi_i$
- $\xi_i \geq 0$
- $\forall y \neq y_i$: number of constraints is exponential in T.
- Iterative training: explicit training constraint is added when some $y \neq y_i$ violates margin during training.

SVM-Struct: Learning Algorithm

Minimize

$$L(\theta) = \sum_{i=1}^{n} \xi_i + \lambda \theta^{\mathrm{T}} \theta$$
 subject to the constraints

- $\forall \mathbf{y} \neq y_i : f_{\mathbf{\theta}}(\mathbf{x}_i, \mathbf{y}_i) \geq f_{\mathbf{\theta}}(\mathbf{x}_i, \mathbf{y}) + 1 \xi_i$
- $\xi_i \ge 0$
- Start with empty working set of constraints
- Iterate over training instances
 - Find $\arg \max_{\bar{\mathbf{y}} \neq \mathbf{y}_i} f_{\boldsymbol{\theta}}(\mathbf{x}_i, \bar{\mathbf{y}})$
 - While $f_{\theta}(\mathbf{x}_i, \mathbf{y}_i) < f_{\theta}(\mathbf{x}_i, \overline{\mathbf{y}}) + 1 \xi_i$, add this constraint to the working set of training constraints and solve minimization problem over current working set (e.g., using stochastic gradient descent).

Classification with Class Taxonomies

Taxonomic tree of classes

- $\hat{\mathbf{y}} = \arg\max_{\mathbf{v}} f_{\mathbf{\theta}}(\mathbf{x}, \mathbf{y})$

•
$$f_{\theta}(\mathbf{x}, \mathbf{y}) = \mathbf{\theta}^{T} \Phi(\mathbf{x}, \mathbf{y})$$

• $\mathbf{y} = (y^{1}, ..., y^{d})$
• $\Lambda(\mathbf{y}) = \begin{bmatrix} \Lambda(y^{1}) \\ \vdots \\ \Lambda(y^{d}) \end{bmatrix}$
• $\Phi(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x}) \otimes \Lambda(\mathbf{y}) = \phi(\mathbf{x}) \otimes \begin{bmatrix} \Lambda(y^{1}) \\ \vdots \\ \Lambda(y^{d}) \end{bmatrix} = \phi(\mathbf{x}) \otimes \begin{bmatrix} y^{1} = v_{1}^{1} \\ y^{1} = v_{n_{1}}^{1} \end{bmatrix}$
 \vdots
 $\begin{bmatrix} y^{1} = v_{n_{1}}^{1} \\ \vdots \\ y^{d} = v_{n_{d}}^{d} \end{bmatrix}$
 \vdots
 $\begin{bmatrix} y^{d} = v_{n_{d}}^{d} \end{bmatrix}$

$$\Phi(\mathbf{x}, \mathbf{y}) = \phi(\mathbf{x}) \otimes \Lambda(\mathbf{y}) = \phi(\mathbf{x}) \otimes \begin{pmatrix} \Lambda(\mathbf{y}^1) \\ \vdots \\ \Lambda(\mathbf{y}^d) \end{pmatrix} = \phi(\mathbf{x}) \otimes \begin{pmatrix} \Lambda(\mathbf{y}^1) \\ \vdots \\ \Lambda(\mathbf{y}^d) \end{pmatrix}$$

$$\begin{bmatrix} y^{1} = v_{1}^{1} \\ \vdots \\ y^{1} = v_{n_{1}}^{1} \end{bmatrix}$$

$$\vdots$$

$$\begin{bmatrix} y^{d} = v_{n_{1}}^{d} \\ \vdots \\ y^{d} = v_{n_{d}}^{d} \end{bmatrix}$$

$$\vdots$$

$$\begin{bmatrix} y^{d} = v_{n_{d}}^{d} \end{bmatrix}$$

Classification with Class Taxonomies

- Let x be a document
- $\mathbf{y} = (v_1^1, v_2^2, v_3^3)^T$ is a path in a subject taxonomy tree

Classification with Class Taxonomies

- Let x be a document
- $\mathbf{y} = (v_1^1, v_2^2, v_3^3)^T$ is a path in a subject taxonomy tree

Overview

- Document representation for classification.
- Classification methods.
- Multi-class classification and class taxonomies.
- Evaluation of text classifiers.

Evaluating Text Classifiers

- Accuracy (proportion of documents which are classified correctly) is often used for multi-class text classification.
- Downside: rare classes have only small influence.
- Classifier that only recognizes frequent classes can have a high accuracy.

Evaluating Text Classifiers

- Decision function $f_{\theta}(\mathbf{x})$ returns continuous value.
- Decision rule for binary classification:

$$y_{\theta}(\mathbf{x}) = \begin{cases} +1 & \text{if } f_{\theta}(\mathbf{x}) \ge \theta_0 \\ -1 & \text{if } f_{\theta}(\mathbf{x}) < \theta_0 \end{cases}$$

- By adjusting threshold θ_0 decision rule can be made more sensitive or more conservative.
- Decision function for each category can be evaluated separately.

Precision and Recall

- Performance measure for binary classification.
 - Example: class invoice against all other classes.
 - Dociment \mathbf{x}_i is in category if $y_i = +1$.
 - Classifier recognizes category if $y_{\theta}(\mathbf{x}_i) = +1$.
- True positives:
 - Document in category $(y_i = +1)$, classifier recognizes $(y_{\theta}(\mathbf{x}_i) = +1)$
- False positives:
 - Document not in catrgory $(y_i = -1)$, but classifier thinks it is $(y_\theta(\mathbf{x}_i) = +1)$.
- True negatives:
 - Patient is healthy Document not in catrgory $(y_i = -1)$, classifier recognizes $(y_{\theta}(\mathbf{x}_i) = -1)$
- False negatives:
 - Document in category $(y_i = +1)$, classifier misses $(y_\theta(\mathbf{x}_i) = -1)$

Precision and Recall

- Let n_{TP} be the number of true positives.
- Let n_{FP} be the number of false positives.
- Let n_{TN} be the number of true negatives.
- Let n_{FN} be the number of false negatives.
- Precision: $P = \frac{n_{TP}}{n_{TP} + n_{FP}}$
 - "Rate of true positives among all instances that are classified as positives"
 - Answers: "How accurate is classifier when it says +1?"
- $\blacksquare \quad \text{Recall: } R = \frac{n_{TP}}{n_{TP} + n_{FN}}$
 - "Rate of true positives among all positive instances"
 - Answers: "How many of the positive instances does the classifier detect?"

Precision-Recall Curves

- Evaluates decision function $f_{\theta}(\mathbf{x})$ independent of threshold θ_0 .
- Shows which pairs of precision and recall can be obtained by varying threshold θ_0 .
- Each point on the curve is a classification rule with a particular values of θ_0 .
- Which decision function is better – A or B?

F Measures

• F_{α} measures combine precision and recall values into single value:

$$F_{\alpha} = \frac{n_{TP}}{\alpha(n_{TP} + n_{FP}) + (1 - \alpha)(n_{TP} + n_{FN})}$$

- $\alpha = 1$: Precision
- $\alpha = 0$: Recall
- $\alpha = 0.5$: "F-measure", harmonic mean of precision and recall.
- Alternative definition: F_{β} measures.
 - Relationship: $\alpha = \frac{1}{1+\beta}$

• Alternative measure of how well the decision function separates positive from negative instances, independent of any threshold value θ_0 .

- Each curve characterizes a decision function f_{θ} .
- **Each** point is a classification rule for a value of θ_0 .
- Which is better, A or B?

True-positive rate

$$r_{TP} = \frac{n_{TP}}{n_{TP} + n_{FN}}$$

$$r_{FP} = \frac{n_{FP}}{n_{FP} + n_{TN}}$$

- Equal error rate (EER): value $r_{TP} = 1 r_{FP}$.
- Scalar aggregate of curve: Area under ROC curve (AUC).

- Area under the ROC curve (AUC):
 - \bullet Let x_+ be a randomly drawn positive instance.
 - Let x₋ be a randomly drawn negative instance.
 - $AUC(\theta) = P(f_{\theta}(\mathbf{x}_{+}) > f_{\theta}(\mathbf{x}_{-})).$

- ROC analysis is often used
 - When positive instances are rare (accuracy of 99.9% is meaningless if positive class is extremely rare)
 - When no meaningful probability of meeting positive instances can be defined (prior probability of news categories changes every day based on events).

Drawing ROC Curves

- For all positive examples X_p in test set:
 - Insert $f(x_p)$ in decreasing order in ordered list L_p .
- For all negative examples X_n in test set:
 - Insert $f(x_n)$ in decreasing order in ordered list L_n .
- Let TP = FP = 0.
- lacktriangle Repeat as long as L_p and L_n are not empty:
 - lacktriangledown If $L_p o$ element > $L_n o$ element, then increment(TP) and $L_p = L_p o$ Next.
 - lacktriangle Elsif $L_n o$ element $< L_p o$ element, then increment (FP) and $L_n = L_n o$ Next.
 - lacktriangledow Else increment(TP, FP), $L_p = L_p
 ightarrow$ Next, $L_n = L_n
 ightarrow$ Next.
 - ◆ Plot next point (FP, TP).

Evaluation Protocols

- Usually, model f_{θ} is not given and evaluation data cannot be drawn from $p(\mathbf{x}, y)$.
- Typical case, data $S = (\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)$ and learning method are given.
- Data S have to be used for training and evaluation.
- Desired output: model f_{θ} and risk estimate.
- Cannot evaluate on training data because performance on training data is always high (higher than on unseen test data).

Holdout Testing

- Idea: error estimation on independent test data
- Given: data $S = (\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)$
- Divide the data into
 - Training data $L = (\mathbf{x}_1, y_1), ..., (\mathbf{x}_m, y_m)$ and
 - Test data $T = (\mathbf{x}_{m+1}, y_{m+1}), ..., (\mathbf{x}_n, y_n)$

Holdout Testing

- Start learning algorithm with data L and obtain model f_{θ} , from it.
- Determine performance $\hat{R}_T(\theta')$ on data T.
- Start learning algorithm with all data S and obtain Model f_{θ} from it.
- Output: model f_{θ} & $\hat{R}_{T}(\theta')$ as the estimator of $R(\theta)$.

- Is the estimator $\hat{R}_T(\theta')$ of the risk of model $R(\theta)$
 - unbiased,
 - optimistic,
 - pessimistic?
- Hint: the more training data, the better the model.

- Estimate $\hat{R}_T(\theta')$ is obtained on a small part of the available data.
- Therefore, its variance is relatively high, especially if the overall sample is small.
- Holdout testing is used in practice for large available samples.

- Using empirical risk $\hat{R}_T(\theta')$ is an **pessimistic** estimator of the risk $R(\theta)$.
- Because θ' is trained with fewer training instances than θ .

- One could instead return model θ' .
- Empirical risk $\hat{R}_T(\theta')$ would be an unbiased estimate of $R(\theta')$.
- But since θ' was trained on fewer data, it would result in an inferior model.

K-Fold Cross Validation

- Given: data $S = (\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)$
- Partition S into k equally sized portions $S_1, ..., S_k$.
- Repeat for $i = 1 \dots k$
 - Train f_{θ_i} with training set $S = S \setminus S_i$.
 - Calculate empirical risk $\hat{R}_{S_i}(\theta_i)$ on S_i .
- Calculate average $\hat{R}_S = \frac{1}{k} \sum_i \hat{R}_{S_i}(\theta_i)$

Cross Validation

- Then, train f_{θ} on all data S.
- Return model f_{θ} and estimator \hat{R}_{S} .

Summary

- Document representation for classification:
 - Bag-of-words, TF-IDF,
 - Neural language models.
- Classification methods:
 - Linear models, regularized empirical risk minimization,
 - Logiscic regression
- Multi-class classification and class taxonomies.
- Evaluation of text classifiers:
 - Precision-recall, ROC curves,
 - Hold-out testing, cross validation.