Please Enroll for the Course in PULS

= Everyone, including Cognitive Systems students.
= We no longer support paper enroliment lists.
= Do it now.

= The hard deadline for resolving any issues is
October 31.
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Overview

= Risk, empirical risk
= Precision, recall

= ROC curves

= Evaluation protocols
= Model selection
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Learning and Evaluation

= Learning problem

Input: data S = (X1, y1), ..., Xp, ¥n)
Output: model fg: X - Y

= When model is applied, it is used to make predictions for new
iInstances x.

=]
@
5
)
S
—
O
£
&
>
5
L
<
0,
7

= How well will fg perform at application time?
What does “well” even mean?
How can it be determined?




Model Evaluation

= Central assumption about data: drawn according to single
(unknown) distribution p(x, y).

= “lID assumption”: Instances (x{,y4), ..., X, ¥,) @re drawn
Independently and from an identical distribution.

= Independent: p ((xi+j:3’i+j)|(xi;Yi)) =p ((Xi+j;37i+j))-
= lIdentical distribution: Vi: (x;, y;)~p(X,y)
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Model Evaluation

= “lID assumption”: Instances (x4, y4), ..., (X, y,) are drawn
independently and from an identical distribution.

= Independent: p ((Xi+j;Yi+j)|(xi;yi)) =p ((Xi+j,3/i+j))-
Counter example: people who are surveyed at a random but
fixed geographical location.

Conseqguence: a dependent sample contains less variance than
an independent sample.

= Identical distribution: Vi: (x;, y;)~p(X, v)

Counter example: first half of the data generated under
laboratory conditions, second half collected “in the wild”.

Consequence: model trained on laboratory data may perform
less well on data “in the wild”.
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Loss Function

s Loss function: How bad is it if the model predicts value
fo(x;) when the true value of the target variable is y;?

(fo(X1), yi)
= Example loss functions:
Zero-one loss (classification):

£0/1(f9(Xi),yi) = {O if fo(x;) = ;

1 otherwise

Quadratic loss (regression):

£, (fo(x), yi) = (fo(x;) — ¥;)°

Perceptron loss, hinge loss, e-insensitive loss, ...
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Risk

Risk of model fy: expected loss over underlying
distribution p(x, y).

Finite set Y (classification):
R(O) = Eguyypun [ 0] = ) [ 2(f5(x), y)p(x, y)dx
yeY

Infinite Y (regression):
R(0) = Exyy~pan L& ] = [ [ £(fo(x), y)p(x, y)dxdy

Expected zero-one loss (risk for zero-one loss function)
Is called error rate.

1-error rate is called accuracy.
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Risk

= Risk of model fy: expected loss over underlying
distribution p(x, y).

s Finite set Y (classification):
R(O) = Eguyypun [ 0] = ) [ 2(f5(x), y)p(x, y)dx
yeY

= Infinite Y (regression):
R(0) = Exyy~pan L& ] = [ [ £(fo(x), y)p(x, y)dxdy

= Itis generally impossible to determine the risk:
p(x,y) is not known.
Generally impossible to integrate over all instances x.
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Empirical Risk

= Impossible to calculate risk
R(0) = E(x,y)~p(x,y) [f(fe (x), y)]

= — Empirical risk: estimate on sample S~p(x,y)™.

. 1
Rs(0) == ) £(fa (6)
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= Empirical risk is a random variable; depends on the
Instances S that are drawn.

= If Sis drawn IID, then it is governed by
p((xlryl) X +ee X (an:Vn)) = p(x»Y)n-

10




Estimators

= In statistics, an estimator is any rule for calculating
an estimate of a quantity.

= A procedure for that determines the empirical risk is
an estimator of the risk.

= An estimator is called unbiased if the expected
value of the estimate is the true quantity:

R(8)is unbiased & Eg_px,)n|Rs(0) | = R(6)
s An estimator that is not unbiased has a bias:
B(R(0)) = Es-pxyyn[Rs(8) ] — R(6)

11
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Bias of the Empirical Risk

= Bias of the empirical risk:
B(R(6)) = Eg-pexyyn[Rs(8) ] - R(6)
= Empirical risk is unbiased estimator if:
Es pxy)m [R\S(H) ] = R(6)

= Empirical risk is optimistic estimator Iif:

Espxyn|Rs(0) | — R(6) <0
= Empirical risk is pessimistic estimator If:

Es pxyn|Rs(6) | —R(6) >0
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Bias of the Empirical Risk

= Bias of the empirical risk:
B (R(60)) = Es-pxyyn[Rs(8) ] — R(6)
= The bias is a systematical offset between risk and
empirical risk.

m It can be caused by a particular experimental
setting used to determine the empirical risk.

s Large bias: risk is systematically estimated too low
or too high.
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Variance of an Estimator

= Estimator R¢(0) has a variance
Var[Rs(0)] = E[Rs(8)2] — E[Rs(0)]”

= The variance is caused by the fact that the empirical risk
IS calculated on a finite sample.

= Zero-one loss: empirical risk R<(6) follows binomial
distribution with mean value R(6).

= High variance: empirical risk is a crude estimate of the
risk.

= The larger a sample the empirical risk is based on, the
lower its variance becomes.
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Bias and Variance of Empirical Risk

= Empirical risk Rs(6) determined repeatedly on multiple

=1
samples Sy, ..., S =
=
Py U
e Value of Rg, for sample §; 2
>
>
D
‘<
@,
| . : @

| e@emm®® | arge bias, small variance

R
oo oo Large variance,

R small or no bias
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Estimation Error

= Estimation error: expected quadratic difference between
empirical risk and risk.

Es-pxyn [(}?5(8) - R (9))2]
s Can be decomposed into bias and variance
Es-pxy)n l(ﬁs(é’) - R(H))Zl
= E|Rs(8)? — 2R(8)Rs5(9) + R(6)?]
=E :ﬁs(e)z] — 2R(0)E[Rs(0)] + R(9)?
= E[Rs(0)]" - 2R(9)E[§5(9)] +R(0)* + E[ﬁs(e)z] — E[Rs(0)]"
= (E[Rs(0)] - R(®))" + E[R(8)?] — E[Rs(0)]’

= Bias [R(f)] +Var|R(f)] Algebraic formula
for the variance
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Alternative Measures to Risk

= Risk is not always a meaningful measure.

= Not always possible to specify a meaningful loss
function

Mine detector: what is the cost of exploding?

On the other hand, a mine detector that always says
“there could be a mine here” is useless.

= Error rate / accuracy are not meaningful for rare
classes.

Earth quake prediction tool that always says “there
will be no earthquake today” has accuracy of >99.9%
(in most countries).

17
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Alternative Measures to Risk

= Alternative performance measures for binary classification.
= Let decision function fy(x) return continuous value.
= Decision rule for binary classification:

(41 iffpx) =6
ye(x)‘{q iffe(x)<03
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= By adjusting threshold 6, decision rule can be made more
sensitive or more conservative.

=  We will now study measures that quantify how well the
decision function separates positive from negative instances,
independent of any threshold value 6,.

Precision-recall curves
ROC curves

18




Overview

= Precision, recall

= ROC curves

= Evaluation protocols
s Model selection
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Precision and Recall

= Alternative performance measure for binary classification.

-}
Example: diagnosis of rare disease. ‘:i
Patient x; has disease if y; = +1. L‘?i',
Classifier diagnoses disease for patient x if yg(x;) = +1. ;U:
= True positives: ";i
Patient has disease (y; = +1), classifier recognizes (yy(x;) = Ei
+ 1) Z
= False positives:
Patient is healthy (y; = —1), but classifier diagnoses disease
(Ve (x;) = +1)

= True negatives:

Patient is healthy (y; = —1), classifier recognizes (yp(x;) = —1)
= [alse negatives:

Patient has disease (y; = +1), classifier misses (yg(x;) = —1)

20




Precision and Recall

s Letn;yp be the number of true positives.
s Letngp be the number of false positives.
s Let npyy be the number of true negatives.
s Let ngy be the number of false negatives.

= Precision; P = —2F
nrp+ngp
“Rate of true positives among all instances that are classified as
positives”
Answers: “How accurate is classifier when it says +17?”
» Recal: R = —%
nrp+nen

“Rate of true positives among all positive instances”

Answers: “How many of the positive instances does the classifier
detect?”

21
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Precision-Recall Curves

= Evaluates decision function fy(x) independent of threshold 6,.

= Shows which pairs of
precision and recall can be
obtained by varying B
threshold 6,.

= Each point on the curve is
a classification rule with a
particular values of 6,.

=  Which decision function is
better — A or B?

1_

=]
@
5
)
S
—
O
£
&
>
5
L
<
0,
7

precision

Lower&

recall
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F Measures

s [, measures combine precision and recall values

Into single value:
nrp
F, =

a(nrp +npp) + (1 — a)(npp + npy)
m o = 1: Precision
s a = 0: Recall

= a = 0.5: "“F-measure”, harmonic mean of precision
and recall.

m Alternative definition: Fg measures.
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i in o = ——
Relationship: a = oy
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Side Note on F Measures

s [, measures (incl. precision and recall) are defined
as empirical quantities.

= What do F-measures estimate?

s Generalized risk:

Yy [ £(fo(X), WX, y, fo)p(x, y)dx
Yy J wx, y, fo)p(x,y)dx

s [, measures are estimates of special cases.

s Special cases:
Risk: w(x,y, fp) = 1.
Precision: w(Xx,y, fg) = 1if fg(x) = 1, 0 otherwise

G =
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Overview

m ROC curves
= Evaluation protocols
s Model selection
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ROC Analysis

= Alternative measure of how well the decision
function separates positive from negative instances,
Independent of any threshold value 6,.
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True-positive rate

False-positive rate
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ROC Analysis

= Each curve characterizes a decision function fy.

=1

o)

= Each point is a classification rule for a value of 6,. S

= Which is better, A or B? o

QD

nrp o

m T = 1 >

T8 npptnpy S

r Nnrgp A E’

| — )
FP ™ npptnrp B

True-positive rate

False-positive rate
27




ROC Analysis

s Equal error rate (EER): value rpp = 1 — 15p.

m Scalar aggregate of curve: Area under ROC curve
(AUC).
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True-positive rate

False-positive rate
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ROC Analysis

= Area under the ROC curve (AUC):
Let x, be a randomly drawn positive instance.
Let x_ be a randomly drawn negative instance.

AUC(0) = P(fo(x4) > fo(x-)).
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ROC Analysis

= ROC analysis is often used

When positive instances are rare (accuracy of 99.9%
IS meaningless if positive class Is extremely rare)

When no meaningful probability of meeting positive
Instances can be defined (probability of stepping on a
mine varies by country).
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Overview

= Evaluation protocols
= Model selection
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Evaluation Protocols

= Usually, model fy is not given and evaluation data
cannot be drawn from p(x, y).

ms Typical case, data S = (x4,y4), ..., Xy, y») and
learning method are given.

= Data S have to be used for training and evaluation.
= Desired output: model f, and risk estimate.
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Evaluation Protocols

= Can we first train model fy on S and then evaluate
the model on the same data?

= Will R;(8) be unbiased, optimistic, or pessimistic?
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Evaluation Protocols

= Every model 8; € © has a risk R(6,).

= Its empirical risk R¢(6;) follows a distribution with
mean value R(6;).
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Model 6;

RiSk, R(Hl)

Empirical risk, R¢(6;) 34



Evaluation Protocols

= Some models get lucky (upper-left area), some are

-}
®
unlucky ( ). &
-]
)
)
)
1
Parameter space, 6; € 0 =
g.
Models whose empirical
risk is an optimistic
— estimate
)
e
N
2 Models whose
A empirical risk is a
Pessimistic estimate

Empirical risk, R¢(6;) 35




Evaluation Protocols

= Learning algorithm will choose a model with small
empirical risk (on the far left).

= In this area, most models’ empirical risk is an
optimistic estimate.

Parameter space, 6; € 0
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Models whose empirical
risk is an optimistic
estimate

Models whose
empirical risk is a
Pessimistic estimate

Risk, R(6,)
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Evaluation Protocols

= Learning algorithm will choose a model with small
empirical risk (on the far left).

= For those 0, on the left: E5|Rs(6.) | < R(6.)
(otherwise they would be further right).

= This is called Parameter space, 0; € ©
selection bias.

= Empirical risk on
training data is
optimistic.
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Holdout Testing

= ldea: error estimation on independent test data
s Given: data S = (x4,v1), ..., (X, V)
= Divide the data into
Training data L = (X4, v1), ..., (X, Vi )and
Testdata T = (Xym+1, Yma1)s 0 (X0, Vi)

Total number of examples

Training Set Test Set
L T

38
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Holdout Testing

= Start learning algorithm with data L and obtain

model fy, from it. %
= Determine empirical risk R+(8") from data T. %
s Start learning algorithm with all data S and obtain §
Model f, from it. B
= Output: model fy & R-(8") as the estimator of R(6). 2
I
/ 6" > R, (6" |
( : \
Training Set Test Set

L T 39




Holdout Testing: Analysis

= |s the estimator R;(8") of the risk of model R(6)

unbiased, %
optimistic, =
. . . QD
pessimistic? 5);*
= Hint: the more training data, the better the model. é
f
/ 0' > Ru(6) |
( |
Training Set Test Set

L T 40




Holdout Testing: Analysis

s Estimate R-(6') is obtained on a small part of the

available data. %

= Therefore, its variance is relatively high, especially =
If the overall sample is small. 5

>

= Holdout testing Is used in practice for large e
available samples. -

f
/ 0' > Ru(6) |
( \
Training Set Test Set

L T 41




Holdout Testing: Analysis

= Using empirical risk R-(6") is an optimistic

estimator of the risk R(8). %

s Because 0’ is trained with fewer training instances =
than 6. 5

1

=

f
/ 6’ > R, (8" \
( \
Training Set Test Set

L T 42



Holdout Testing: Analysis

s One could instead return model 6’.

= Empirical risk R+(8’) would be an unbiased S
estimate of R(8"). =
s But since 8’ was trained on fewer data, it would §
result in an inferior model. é
I
/ 0' > Ru(6) |
( \
Training Set Test Set

L T 43




K-Fold Cross Validation

s Given: data § = (X, v1), .., Xy, Vi)
= Partition S into k equally sized portions S, ..., Sg.
m Repeatfori=1..k

Train fp. with training set S = S\S;.

Calculate empirical risk R, (6;) on S;.
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= Calculate average Rg = % Ziﬁgi(Hi)

S1 ] 52 | 53 | Sa

Total number of instances
< >

| Training instances
Experiment 1 &

Experiment 2

Experiment 3

/ Test instances
Experiment 4 a4




Cross Validation

= Then, train fy on all data S.
= Return model f, and estimator Rs.
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Total number of instances

_ /Training instances
Experiment 1 e

Experiment 2

Experiment 3

Test instances
Experiment 4 /
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Leave-One-Out Cross Validation

m Special case k = n is also called leave-one-out
error estimation

Total number of instances
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Experiment 1

Experiment 2

Experiment 3

/ Single test instance

Experiment n
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Cross Validation: Analysis

= IS the estimator
optimistic / pessimistic / unbiased?
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Cross Validation: Analysis

= IS the estimator
optimistic / pessimistic / unbiased?
= Estimator is slightly pessimistic:

Model fy. is trained on a (k — 1) /k-th fraction of the
available data.

Model fy Is trained on the entire data.
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Cross Validation Holdout

Total number of instances

/ Training instances
Experiment 1 &

A

Total number of instances

- -

Experiment 2

Training Set Test Set

Experiment 3

/ Test instances

Experiment 4
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Cross Validation: Analysis

= Bias/Variance compared to holdout testing?

=
. . . . T
= Variance is lower than with holdout testing 5
. . @
Averaging over several holdout experiments reduces the =
estimator’s variance. 5
QD
All data is incorporated into the estimator. >
D
= Bias similar to holdout testing, depending on the split 5.
. 0]
ratios.
Cross Validation Holdout
Total number of instances
Experiment 1 4—/ Training instances

Total number of instances

- -

Experiment 2

Training Set Test Set

Experiment 3

/ Test instances

Experiment 4
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Model Selection

= Compare several different learning approaches
Should one use decision trees?
SVMs? Logistic Regression?

= Set regularization parameter for a learning
approach

For instance, set value for A for regularized empirical
risk minimization.
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Model Selection: Example

= Regqularization parameter A in optimization criterion
0" = argmin ) £(fo(x),y) +A6IZ  2=?
0 }

= (Hyper)parameters that specify the model class;
e.g. the degree for polynomial regression

d
fox) = > wix/  d=?
JZ )
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= Desired output: hyperparameter (4, d), model fy,
and estimate of the model’s risk.

s How do we use available data to achieve this?

52




Example: Polynomial Regression

= Polynomial model of degree d: f§'(x) = X9_, wjx/

= Regularized empirical risk minimization:
* . 2 2
0" = argmin Y (fe ) —yi)” + 2161

[ Learned Model 1\1
t

]
[ Actual Model ——

fData points = actual
model plus Gaussian
noise

/
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Polynomial Regression

= Success of the learning depends on the selected polynomial
degree d, which controls the complexity of the model.
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Polynomial Regression: Empirical Risk on
Training vs. Test Sample

= Empirical risk on training vs. test data for different
polynomial degrees.

= "Overfitting”: empirical risk on training data decreases as
d is increased. Empirical risk on test data has a

minimum, then increases again.
1

—©— Training
—O— Test
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Example: Polynomial Regression

= If more data are available, more complex models
can be fitted.

10 instances, d = 9 100 instances, d = 9

0 .| 0 [

= Given fixed amount of data, optimal d has to be
found.

56
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Example: Polynomial Regression

= Regularization factor A has a similar effect to d.

s Both A and d constrain
the model complexity.

4

l I
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Regularized Polynomial Regression

= Empirical risk on training vs. test sample.

= Empirical risk on training sample decreases when
regularization decreases.

= There is a regularization factor that minimizes the risk.

|

Training
Test
2 0.5 /
&3 /
0 / L .
—00 In \ 0

58

=]
@
5
)
S
—
O
£
&
>
5
L
<
0,
7




Regularized Polynomial Regression

= Regularizer acts like a limitation on the model
complexity and prevents overfitting.

= In practice it is best to control model complexity through
regularization (direct parameters like the polynomial
degree often are not available).

= Regularizer has to be tuned on available data.

—©— Training
—6— Test

Training
Test

/_

)

In A
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Model Selection, Setting Hyperparameters

= Desired output: hyperparameter (4, d), model fy,
and estimate of the model’s risk.

= |dea: Iterate over values of (4, d), train model,
evaluate; take best values and train final model.

= Cannot tune hyperparameters on training data
because low regularization leads to low empirical
risk on training data but high risk on test data.

= Evaluating multiple models (for different values of
A, d) on the same test set results in an optimistic
bias.

= Therefore, triple or nested cross validation.
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Triple Cross Validation

= [terate over all values of the hyperparameters A
(grid search)

Train model £ on L.

Evaluate f3,on T' by calculating R (f3ir)

=]
@
5
)
S
—
O
£
&
>
5
L
<
0,
7

s Use hyperparameter 1* that gave lowest ﬁT,(fQ%t).
= Train model £}y on LU T’ 0

: A~ [ /
= Determine R, (6"). 0

= Trainmodel f§ onLUT' UT. —

= Return model f;* and ! : i
eSt|mate R\T (fQA ) Test instances Training instances

T Tuning instances L
!/
r 61




Triple Cross Validation: Analysis

= Empirical risk R+(8") is a pessimistic estimator

forR(6) because 6’ is trained on less data than 6. %
= A" may be a poor estimate of the optimal %
parameters because T' may be small. 5
= The variance of R(8") may high because T may be g
small. &
= Protocol is used when the 0
total sample S is very large. 6 |
{ 9" |
4 4 4

Test instances Training instances

T Tuning instances L
!/
r 62




Nested Cross Validation

m Fori=1..k Sl SZ 53 54_
lterate over values 14 0!
« Forj=1..k\i { L |
« Train f on S\ S;\S; P Ay B "
fBU \Si\ J RSl(lfH{) }352 8111
|| Il |

+ Determine Rg, (fg’lij) ’

« Average Rc. to determine Rqs. (2
] \ 2 Qi
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Choose 2] that minimizes Rg\, (fe’l_,)

Train f;i" onS\S;

Determine Rs, (fe'l_,i>

= Average Ry, (fe’:i) to determine }?S(fgi*)
= Determine 1* by averaging A}
= Trainfj onS

=  Return fg’l* and ﬁs(fe%**)

63




Nested Cross Validation: Analysis

= Complextiy: k? models have to be S1 ] S | 53| S
trained and evaluated 0!

= Slightly pessimistic because f3*° .~
has been trained on more data Rg, (feg) ffsz Q11
||

Ar [
than the fei‘.

= Lower variance than triple cross
validation because all data is used
for evaluation

m Better estimate of A* because
almost all data is used for tuning.

= Best tuning protocol when few
data are available.
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Summary

= Risk: expected loss over input distribution p(x,y).
= Empirical risk: estimate of risk on data.

= Precision-recall curves and ROC curves
characterize decision function. Each point on curve
IS classifier for some threshold 6,.

= Evaluation protocols:
Hold-out testing: good for large samples
K-fold Cross Validation: good for small samples.
= Model selection: tune model hyperparameters.
Triple cross validation: good for large samples.
Nested cross validation: good for small samples.

=]
@
5
)
S
—
O
£
&
>
5
L
<
0,
7

65




