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Please Enroll for the Course in PULS 

 Everyone, including Cognitive Systems students. 

 We no longer support paper enrollment lists. 

 Do it now. 

 The hard deadline for resolving any issues is 

October 31. 
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Overview  

 Risk, empirical risk 

 Precision, recall 

 ROC curves 

 Evaluation protocols 

 Model selection 

 

3 



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 

4 

Learning and Evaluation 

 Learning problem 

 Input: data S = 𝐱1, 𝑦1 , … , 𝐱𝑛, 𝑦𝑛  

 Output: model 𝑓𝜃: 𝑋 → 𝑌 

 

 When model is applied, it is used to make predictions for new 

instances 𝐱. 

 

 How well will 𝑓𝜃 perform at application time?  

 What does “well” even mean? 

 How can it be determined? 
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Model Evaluation 

 Central assumption about data: drawn according to single 

(unknown) distribution 𝑝 𝐱, 𝑦 . 

 

 “IID assumption”: Instances 𝐱1, 𝑦1 , … , 𝐱𝑚, 𝑦𝑚  are drawn 

independently and from an identical distribution. 

 Independent: 𝑝 𝐱𝑖+𝑗 , 𝑦𝑖+𝑗 | 𝐱𝑖 , 𝑦𝑖 = 𝑝 𝐱𝑖+𝑗 , 𝑦𝑖+𝑗 . 

 Identical distribution: ∀𝑖: 𝐱𝑖 , 𝑦𝑖 ~𝑝 𝐱, 𝑦  
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Model Evaluation 

 “IID assumption”: Instances 𝐱1, 𝑦1 , … , 𝐱𝑛, 𝑦𝑛  are drawn 

independently and from an identical distribution. 

 Independent: 𝑝 𝐱𝑖+𝑗 , 𝑦𝑖+𝑗 | 𝐱𝑖 , 𝑦𝑖 = 𝑝 𝐱𝑖+𝑗 , 𝑦𝑖+𝑗 . 

 Counter example: people who are surveyed at a random but 

fixed geographical location. 

 Consequence: a dependent sample contains less variance than 

an independent sample. 

 Identical distribution: ∀𝑖: 𝐱𝑖 , 𝑦𝑖 ~𝑝 𝐱, 𝑦  

 Counter example: first half of the data generated under 

laboratory conditions, second half collected “in the wild”.  

 Consequence: model trained on laboratory data may perform 

less well on data “in the wild”. 
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Loss Function 

 Loss function: How bad is it if the model predicts value 

𝑓𝛉 𝐱𝑖  when the true value of the target variable is 𝑦𝑖? 

ℓ 𝑓𝛉 𝐱𝑖 , 𝑦𝑖  

 Example loss functions: 

 Zero-one loss (classification):   

ℓ0/1 𝑓𝛉 𝐱𝑖 , 𝑦𝑖 =  
0 if 𝑓𝛉 𝐱𝑖 = 𝑦𝑖
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 Quadratic loss (regression): 

ℓ2 𝑓𝛉 𝐱𝑖 , 𝑦𝑖 = 𝑓𝛉 𝐱𝑖 − 𝑦𝑖
2 

 

 Perceptron loss, hinge loss, 𝜀-insensitive loss, … 
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Risk 

 Risk of model 𝑓𝜃: expected loss over underlying 

distribution 𝑝 𝐱, 𝑦 . 

 Finite set 𝑌 (classification): 

𝑅 𝜃 = 𝐸(𝐱,𝑦)~𝑝(𝐱,𝑦) ℓ(𝐱, 𝑦) =  ∫ ℓ(𝑓𝜃 𝐱), 𝑦 𝑝 𝐱, 𝑦 𝑑𝐱
𝑦∈𝑌

 

 Infinite 𝑌 (regression): 
𝑅 𝜃 = 𝐸(𝐱,𝑦)~𝑝(𝐱,𝑦) ℓ(𝐱, 𝑦) = ∫ ∫ ℓ(𝑓𝜃 𝐱), 𝑦 𝑝 𝐱, 𝑦 𝑑𝐱𝑑𝑦 

 

 Expected zero-one loss (risk for zero-one loss function) 

is called error rate. 

 1-error rate is called accuracy. 
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Risk 

 Risk of model 𝑓𝜃: expected loss over underlying 

distribution 𝑝 𝐱, 𝑦 . 

 Finite set 𝑌 (classification): 

𝑅 𝜃 = 𝐸(𝐱,𝑦)~𝑝(𝐱,𝑦) ℓ(𝐱, 𝑦) =  ∫ ℓ(𝑓𝜃 𝐱), 𝑦 𝑝 𝐱, 𝑦 𝑑𝐱
𝑦∈𝑌

 

 Infinite 𝑌 (regression): 
𝑅 𝜃 = 𝐸(𝐱,𝑦)~𝑝(𝐱,𝑦) ℓ(𝐱, 𝑦) = ∫ ∫ ℓ(𝑓𝜃 𝐱), 𝑦 𝑝 𝐱, 𝑦 𝑑𝐱𝑑𝑦 

 

 It is generally impossible to determine the risk: 

 𝑝 𝐱, 𝑦  is not known. 

 Generally impossible to integrate over all instances 𝐱. 
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Empirical Risk 

 Impossible to calculate risk  

𝑅 𝜃 = 𝐸 𝐱,𝑦 ~𝑝(𝐱,𝑦) ℓ(𝑓𝜃 𝐱 , 𝑦)  

 

 → Empirical risk: estimate on sample S~𝑝 𝐱, 𝑦 𝑛.  

𝑅 𝑆 𝜃 =
1

𝑛
 ℓ(𝑓𝜃

𝑛

𝑖=1
𝐱, 𝑦 ) 

 

 Empirical risk is a random variable; depends on the 

instances S that are drawn. 

 If S is drawn IID, then it is governed by 

𝑝 𝐱1, 𝑦1 ×⋯× 𝐱𝑛, 𝑦𝑛 = 𝑝 𝐱, 𝑦 𝑛. 
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Estimators 

 In statistics, an estimator is any rule for calculating 

an estimate of a quantity. 

 A procedure for that determines the empirical risk is 

an estimator of the risk. 

 

 An estimator is called unbiased if the expected 

value of the estimate is the true quantity:  
𝑅 𝜃 is unbiased ⇔ 𝐸𝑆~𝑝 𝐱,𝑦 𝑛 𝑅 𝑆(𝜃) = 𝑅 𝜃  

 An estimator that is not unbiased has a bias:  

𝐵 𝑅 𝜃 = 𝐸𝑆~𝑝 𝐱,𝑦 𝑛 𝑅 𝑆(𝜃) − 𝑅 𝜃  
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Bias of the Empirical Risk 

 Bias of the empirical risk: 

𝐵 𝑅 𝜃 = 𝐸𝑆~𝑝 𝐱,𝑦 𝑛 𝑅 𝑆(𝜃) − 𝑅 𝜃  

 Empirical risk is unbiased estimator if: 

𝐸𝑆~𝑝 𝐱,𝑦 𝑛 𝑅 𝑆(𝜃) = 𝑅 𝜃  

 Empirical risk is optimistic estimator if:  

𝐸𝑆~𝑝 𝐱,𝑦 𝑛 𝑅 𝑆(𝜃) − 𝑅 𝜃 < 0 

 Empirical risk is pessimistic estimator if:  

𝐸𝑆~𝑝 𝐱,𝑦 𝑛 𝑅 𝑆(𝜃) − 𝑅 𝜃 > 0 
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Bias of the Empirical Risk 

 Bias of the empirical risk: 

𝐵 𝑅 𝜃 = 𝐸𝑆~𝑝 𝐱,𝑦 𝑛 𝑅 𝑆(𝜃) − 𝑅 𝜃  

 The bias is a systematical offset between risk and 

empirical risk. 

 It can be caused by a particular experimental 

setting used to determine the empirical risk. 

 Large bias: risk is systematically estimated too low 

or too high. 

13 
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Variance of an Estimator 

 Estimator 𝑅 𝑆 𝜃  has a variance 

𝑉𝑎𝑟 𝑅 𝑆 𝜃 = E 𝑅 𝑆 𝜃 2 − E 𝑅 𝑆 𝜃
2
 

 

 The variance is caused by the fact that the empirical risk 

is calculated on a finite sample. 

 Zero-one loss: empirical risk 𝑅 𝑆 𝜃  follows binomial 

distribution with mean value 𝑅 𝜃 . 

 High variance: empirical risk is a crude estimate of the 

risk. 

 The larger a sample the empirical risk is based on, the 

lower its variance becomes. 
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Bias and Variance of Empirical Risk 

 Empirical risk 𝑅 𝑆 𝜃  determined repeatedly on multiple 

samples 𝑆1, … , 𝑆𝑘 

 

 

 

 

𝑅 

𝑅 

Large bias, small variance 

Large variance,  

small or no bias 

Value of 𝑅 𝑆𝑖  for sample 𝑆𝑖 
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Estimation Error 

 Estimation error: expected quadratic difference between 

empirical risk and risk. 

E𝑆~𝑝 𝐱,𝑦 𝑛 𝑅 𝑆 𝜃 − 𝑅 𝜃
2

 

 Can be decomposed into bias and variance 

E𝑆~𝑝 𝐱,𝑦 𝑛 𝑅 𝑆 𝜃 − 𝑅 𝜃
2

 

= E 𝑅 𝑆 𝜃 2 − 2𝑅 𝜃 𝑅 𝑆 𝜃 + 𝑅(𝜃)2  

= E 𝑅 𝑆 𝜃 2 − 2𝑅(𝜃)E 𝑅 𝑆 𝜃 + 𝑅(𝜃)2 

= E 𝑅 𝑆 𝜃
2
− 2𝑅(𝜃)E 𝑅 𝑆 𝜃 + 𝑅 𝜃 2 + E 𝑅 𝑆 𝜃 2 − E 𝑅 𝑆 𝜃

2
 

= E 𝑅 𝑆 𝜃 − 𝑅(𝜃)
2
+ E 𝑅 𝑆 𝜃 2 − E 𝑅 𝑆 𝜃

2
 

= 𝐵𝑖𝑎𝑠 𝑅 𝑓
2
+ 𝑉𝑎𝑟 𝑅 𝑓  Algebraic formula  

for the variance 
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Alternative Measures to Risk 

 Risk is not always a meaningful measure. 

 Not always possible to specify a meaningful loss 

function 

 Mine detector: what is the cost of exploding?  

 On the other hand, a mine detector that always says 

“there could be a mine here” is useless. 

 Error rate / accuracy are not meaningful for rare 

classes. 

 Earth quake prediction tool that always says “there 

will be no earthquake today” has accuracy of >99.9% 

(in most countries). 

17 
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Alternative Measures to Risk 

 Alternative performance measures for binary classification. 

 Let decision function 𝑓𝜃 𝐱  return continuous value. 

 Decision rule for binary classification: 

𝑦𝜃 𝐱 =  
+1 if 𝑓𝜃 𝐱 ≥ 𝜃0
−1 if 𝑓𝜃 𝐱 < 𝜃0

 

 

 By adjusting threshold 𝜃0 decision rule can be made more 

sensitive or more conservative.  

 We will now study measures that quantify how well the 

decision function separates positive from negative instances, 

independent of any threshold value 𝜃0. 

 Precision-recall curves 

 ROC curves 
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Overview  

 Risk, empirical risk 

 Precision, recall 

 ROC curves 

 Evaluation protocols 

 Model selection 
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Precision and Recall 

 Alternative performance measure for binary classification. 

 Example: diagnosis of rare disease. 

 Patient 𝐱𝑖  has disease if 𝑦𝑖 = +1. 

 Classifier diagnoses disease for patient 𝐱 if 𝑦𝜃 𝐱𝑖 = +1. 

 True positives:  

 Patient has disease (𝑦𝑖 = +1), classifier recognizes (𝑦𝜃 𝐱𝑖 =
+ 1) 

 False positives: 

 Patient is healthy (𝑦𝑖 = −1), but classifier diagnoses disease 

(𝑦𝜃 𝐱𝑖 = +1) 

 True negatives:  

 Patient is healthy (𝑦𝑖 = −1), classifier recognizes (𝑦𝜃 𝐱𝑖 = −1) 

 False negatives:  

 Patient has disease (𝑦𝑖 = +1), classifier misses (𝑦𝜃 𝐱𝑖 = −1) 
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Precision and Recall 

 Let 𝑛𝑇𝑃 be the number of true positives. 

 Let 𝑛𝐹𝑃 be the number of false positives. 

 Let 𝑛𝑇𝑁 be the number of true negatives. 

 Let 𝑛𝐹𝑁 be the number of false negatives. 

 Precision: 𝑃 =
𝑛𝑇𝑃

𝑛𝑇𝑃+𝑛𝐹𝑃
 

 “Rate of true positives among all instances that are classified as 

positives” 

 Answers: “How accurate is classifier when it says +1?” 

 Recall: 𝑅 =
𝑛𝑇𝑃

𝑛𝑇𝑃+𝑛𝐹𝑁
 

 “Rate of true positives among all positive instances” 

 Answers: “How many of the positive instances does the classifier 

detect?” 
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Precision-Recall Curves 

 Evaluates decision function 𝑓𝜃 𝐱  independent of threshold 𝜃0.  

 Shows which pairs of 

precision and recall can be  

obtained by varying  

threshold 𝜃0. 

 Each point on the curve is 

a classification rule with a 

particular values of 𝜃0. 

 Which decision function is 

better – A or B? 

Lower 𝜃0 

Higher 𝜃0  
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F Measures 

 𝐹𝛼 measures combine precision and recall values 

into single value:  

𝐹𝛼 =
𝑛𝑇𝑃

𝛼(𝑛𝑇𝑃 + 𝑛𝐹𝑃) + (1 − 𝛼)(𝑛𝑇𝑃 + 𝑛𝐹𝑁)
 

 𝛼 = 1: Precision 

 𝛼 = 0: Recall 

 𝛼 = 0.5: “F-measure”, harmonic mean of precision 

and recall. 

 Alternative definition: 𝐹𝛽 measures. 

 Relationship: 𝛼 =
1

1+𝛽
 

 

23 
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Side Note on F Measures 

 𝐹𝛼 measures (incl. precision and recall) are defined 

as empirical quantities. 

 What do F-measures estimate? 

 Generalized risk: 

𝐺 =
 ∫ ℓ 𝑓𝜃 𝐱 , 𝑦 𝑤 𝐱, 𝑦, 𝑓𝜃 𝑝 𝐱, 𝑦 𝑑𝐱𝑦

 ∫𝑤 𝐱, 𝑦, 𝑓𝜃 𝑝 𝐱, 𝑦 𝑑𝐱𝑦

 

 𝐹𝛼 measures are estimates of special cases. 

 Special cases: 

 Risk: 𝑤 𝐱, 𝑦, 𝑓𝜃 = 1. 

 Precision: 𝑤 𝐱, 𝑦, 𝑓𝜃 = 1 if 𝑓𝜃 𝐱 = 1, 0 otherwise 

 … 
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ROC Analysis 

 Alternative measure of how well the decision 

function separates positive from negative instances, 

independent of any threshold value 𝜃0. 
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ROC Analysis 

 Each curve characterizes a decision function 𝑓𝜃. 

 Each point is a classification rule for a value of 𝜃0. 

 Which is better, A or B? 

 𝑟𝑇𝑃 =
𝑛𝑇𝑃

𝑛𝑇𝑃+𝑛𝐹𝑁
 

 𝑟𝐹𝑃 =
𝑛𝐹𝑃

𝑛𝐹𝑃+𝑛𝑇𝑃
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ROC Analysis 

 Equal error rate (EER): value 𝑟𝑇𝑃 = 1 − 𝑟𝐹𝑃 . 

 Scalar aggregate of curve: Area under ROC curve 

(AUC). 
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ROC Analysis 

 Area under the ROC curve (AUC):  

 Let 𝐱+ be a randomly drawn positive instance. 

 Let 𝐱− be a randomly drawn negative instance. 

 𝐴𝑈𝐶(𝜃) = 𝑃(𝑓𝜃 𝐱+ > 𝑓𝜃 𝐱− ). 
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ROC Analysis 

 ROC analysis is often used   

 When positive instances are rare (accuracy of 99.9% 

is meaningless if positive class is extremely rare) 

 When no meaningful probability of meeting positive 

instances can be defined (probability of stepping on a 

mine varies by country). 
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Evaluation Protocols 

 Usually, model 𝑓𝜃 is not given and evaluation data 

cannot be drawn from 𝑝 𝐱, 𝑦 . 

 Typical case, data S = 𝐱1, 𝑦1 , … , 𝐱𝑛, 𝑦𝑛  and 

learning method are given. 

 Data S have to be used for training and evaluation. 

 Desired output: model 𝑓𝜃 and risk estimate. 
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Evaluation Protocols 

 Can we first train model 𝑓𝜃 on S and then evaluate 

the model on the same data? 

 Will 𝑅 𝑆(𝜃) be unbiased, optimistic, or pessimistic? 

 

33 
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Evaluation Protocols 

 Every model 𝜃𝑖 ∈ Θ has a risk 𝑅(𝜃𝑖). 

 Its empirical risk 𝑅 𝑆(𝜃𝑖) follows a distribution with 

mean value 𝑅(𝜃𝑖). 
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Model 𝜃𝑖 

Empirical risk, 𝑅 𝑆(𝜃𝑖) 

R
is

k
, 
𝑅
(𝜃

𝑖)
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Evaluation Protocols 

 Some models get lucky (upper-left area), some are 

unlucky (lower-right area). 
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Parameter space, 𝜃𝑖 ∈ Θ 

Empirical risk, 𝑅 𝑆(𝜃𝑖) 
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estimate 

Models whose  

empirical risk is a 

Pessimistic estimate 
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 Learning algorithm will choose a model with small 

empirical risk (on the far left). 

 In this area, most models‘ empirical risk is an 

optimistic estimate.  

 

 

Evaluation Protocols 
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Parameter space, 𝜃𝑖 ∈ Θ 

Empirical risk, 𝑅 𝑆(𝜃𝑖) 
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Evaluation Protocols 

 Learning algorithm will choose a model with small 

empirical risk (on the far left). 

 For those 𝜃∗ on the left: 𝐸𝑆 𝑅 𝑆 𝜃∗  < 𝑅 𝜃∗  

(otherwise they would be further right). 

 This is called  

selection bias. 

 Empirical risk on  

training data is  

optimistic. 
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Parameter space, 𝜃𝑖 ∈ Θ 

Empirical risk, 𝑅 𝑆(𝜃𝑖) 
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Holdout Testing 

 Idea: error estimation on independent test data 

 Given: data 𝑆 = 𝐱1, 𝑦1 , … , 𝐱𝑛, 𝑦𝑛  

 Divide the data into 

 Training data 𝐿 = 𝐱1, 𝑦1 , … , 𝐱𝑚, 𝑦𝑚 and 

 Test data 𝑇 = 𝐱𝑚+1, 𝑦𝑚+1 , … , 𝐱𝑛, 𝑦𝑛  

𝐿 𝑇 
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Holdout Testing 

 Start learning algorithm with data 𝐿 and obtain 

model 𝑓𝜃′ from it. 

 Determine empirical risk 𝑅 𝑇 𝜃′  from data 𝑇. 

 Start learning algorithm with all data 𝑆 and obtain 

Model 𝑓𝜃 from it. 

 Output: model 𝑓𝜃 & 𝑅 𝑇 𝜃′  as the estimator of 𝑅(𝜃). 

𝐿 𝑇 

𝜃′ → 𝑅 𝐿(𝜃
′) 

𝜃 
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Holdout Testing: Analysis 

 Is the estimator 𝑅 𝑇 𝜃′  of the risk of model 𝑅 𝜃  

 unbiased, 

 optimistic, 

 pessimistic? 

 Hint: the more training data, the better the model. 

 

𝐿 𝑇 

𝜃′ → 𝑅 𝐿(𝜃
′) 

𝜃 
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Holdout Testing: Analysis 

 Estimate 𝑅 𝑇 𝜃′  is obtained on a small part of the 

available data. 

 Therefore, its variance is relatively high, especially 

if the overall sample is small. 

 Holdout testing is used in practice for large 

available samples. 

 

𝐿 𝑇 

𝜃′ → 𝑅 𝐿(𝜃
′) 

𝜃 
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Holdout Testing: Analysis 

 Using empirical risk 𝑅 𝑇 𝜃′  is an optimistic 

estimator of the risk 𝑅 𝜃 . 

 Because 𝜃′ is trained with fewer training instances 

than 𝜃. 

 

𝐿 𝑇 

𝜃′ → 𝑅 𝐿(𝜃
′) 

𝜃 
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Holdout Testing: Analysis 

 One could instead return model 𝜃′. 

 Empirical risk 𝑅 𝑇 𝜃′  would be an unbiased 

estimate of 𝑅(𝜃′). 

 But since 𝜃′ was trained on fewer data, it would 

result in an inferior model. 

 

𝐿 𝑇 

𝜃′ → 𝑅 𝐿(𝜃
′) 

𝜃 
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K-Fold Cross Validation 

 Given: data 𝑆 = 𝐱1, 𝑦1 , … , 𝐱𝑛, 𝑦𝑛  

 Partition 𝑆 into 𝑘 equally sized portions 𝑆1, … , 𝑆𝑘. 

 Repeat for 𝑖 = 1…𝑘  

 Train 𝑓𝜃𝑖 with training set 𝑆 = 𝑆\𝑆𝑖. 

 Calculate empirical risk 𝑅 𝑆𝑖 𝜃𝑖  on 𝑆𝑖. 

 Calculate average 𝑅 𝑆 =
1

𝑘
  𝑅 𝑆𝑖(𝜃𝑖)𝑖  

Training instances 

𝑆1 𝑆2 𝑆3 𝑆4 

Test instances 

Total number of instances 

Experiment 1 

Experiment 2 

Experiment 3 

Experiment 4 
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Cross Validation 

 Then, train 𝑓𝜃  on all data 𝑆. 

 Return model 𝑓𝜃 and estimator 𝑅 𝑆. 

 

Test samples 

Training instances 

Test instances 

Total number of instances 

Experiment 1 

Experiment 2 

Experiment 3 

Experiment 4 
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Leave-One-Out Cross Validation 

 Special case 𝑘 = 𝑛 is also called leave-one-out 

error estimation 

46 

d 

Total number of instances 

Single test instance 

Experiment 1 

Experiment 2 

Experiment 3 

Experiment 𝑛 
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Cross Validation: Analysis 

 Is the estimator     

 optimistic / pessimistic / unbiased?  
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Cross Validation: Analysis 

 Is the estimator     

 optimistic / pessimistic / unbiased?  

 Estimator is slightly pessimistic: 

 Model 𝑓𝜃𝑖 is trained on a 𝑘 − 1 𝑘 -th fraction of the 

available data. 

 Model 𝑓𝜃 is trained on the entire data. 

Training instances 

Cross Validation Holdout 

Test instances 

Total number of instances 

Experiment 1 

Experiment 2 

Experiment 3 

Experiment 4 

Total number of instances 
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Cross Validation: Analysis 

 Bias/Variance compared to holdout testing? 

 Variance is lower than with holdout testing 

 Averaging over several holdout experiments reduces the 

estimator’s variance. 

 All data is incorporated into the estimator. 

 Bias similar to holdout testing, depending on the split 

ratios. 

  

  
Training instances 

Cross Validation Holdout 

Test instances 

Total number of instances 

Experiment 1 

Experiment 2 

Experiment 3 

Experiment 4 

Total number of instances 
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Overview  

 Risk, empirical risk 

 Precision, recall 

 ROC curves 

 Evaluation protocols 

 Model selection 
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Model Selection 

 Compare several different learning approaches 

 Should one use decision trees?  

 SVMs? Logistic Regression? 

 Set regularization parameter for a learning 

approach 

 For instance, set value for 𝜆 for regularized empirical 

risk minimization.  
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Model Selection: Example 

 Regularization parameter 𝜆 in optimization criterion 

𝜃∗ = argmin
𝜃

 ℓ 𝑓 𝜃 𝐱𝑖 , 𝑦𝑖
𝑖

+ 𝜆 𝜃 2        𝜆 =? 

 (Hyper)parameters that specify the model class; 

e.g. the degree for polynomial regression 

𝑓𝜽 𝑥 =  𝑤𝑗𝑥
𝑗

𝑑

𝑗=0

       𝑑 =? 

 Desired output: hyperparameter (𝜆, 𝑑), model 𝑓𝜃, 

and estimate of the model’s risk. 

 How do we use available data to achieve this? 
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Example: Polynomial Regression 

 Polynomial model of degree 𝑑: 𝑓𝜃
𝑑 𝑥 =  𝑤𝑗𝑥

𝑗𝑑
𝑗=0  

 

 Regularized empirical risk minimization: 

𝜃∗ = argmin
𝜽

 𝑓𝜃
𝑑 𝑥𝑖 − 𝑦𝑖

2𝑛
𝑖=1 + 𝜆 𝜃

2
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Learned Model 

Actual Model Data points = actual  

model plus Gaussian  

noise 

𝑑 = 3, 𝜆 = 0 
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Polynomial Regression 

 Success of the learning depends on the selected polynomial 

degree 𝑑, which controls the complexity of the model. 

54 

𝑑 = 0, 𝜆 = 0 𝑑 = 1, 𝜆 = 0 

𝑑 = 3, 𝜆 = 0 𝑑 = 9, 𝜆 = 0 
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Polynomial Regression: Empirical Risk on 
Training vs. Test Sample 

 Empirical risk on training vs. test data for different 

polynomial degrees. 

 “Overfitting”: empirical risk on training data decreases as 

d is increased. Empirical risk on test data has a 

minimum, then increases again. 

55 d    
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Example: Polynomial Regression 

 If more data are available, more complex models 

can be fitted. 

 

 

 

 

 

 

 Given fixed amount of data, optimal d has to be 

found.  
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10 instances, d = 9 100 instances, d = 9 

d=9 d=100 
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Example: Polynomial Regression 

 Regularization factor 𝜆 has a similar effect to 𝑑. 

 

 

 

 

 

 

 Both 𝜆 and 𝑑 constrain  

the model complexity. 
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𝑑 = 3, 𝜆 = 0 𝑑 = 9, 𝜆 = 0 

𝑑 = 9, ln 𝜆 = −18 
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Regularized Polynomial Regression 

 Empirical risk on training vs. test sample. 

 Empirical risk on training sample decreases when 

regularization decreases. 

 There is a regularization factor that minimizes the risk. 

58 
 0
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Regularized Polynomial Regression 

 Regularizer acts like a limitation on the model 

complexity and prevents overfitting. 

 In practice it is best to control model complexity through 

regularization (direct parameters like the polynomial 

degree often are not available). 

 Regularizer has to be tuned on available data. 
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Model Selection, Setting Hyperparameters 

 Desired output: hyperparameter (𝜆, 𝑑), model 𝑓𝜃, 

and estimate of the model’s risk. 

 Idea: Iterate over values of (𝜆, 𝑑), train model, 

evaluate; take best values and train final model. 

 Cannot tune hyperparameters on training data 

because low regularization leads to low empirical 

risk on training data but high risk on test data. 

 Evaluating multiple models (for different values of 

𝜆, 𝑑) on the same test set results in an optimistic 

bias.  

 Therefore, triple or nested cross validation. 
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Triple Cross Validation 

 Iterate over all values of the hyperparameters 𝜆 

(grid search) 

 Train model 𝑓𝜃′′
𝜆  on 𝐿. 

 Evaluate 𝑓𝜃′′
𝜆 on 𝑇′ by calculating 𝑅 𝑇′(𝑓𝜃′′

𝜆 ) 

 Use hyperparameter 𝜆∗ that gave lowest 𝑅 𝑇′(𝑓𝜃′′
𝜆∗).  

 Train model 𝑓𝜃′
𝜆∗ on 𝐿 ∪ 𝑇′. 

 Determine 𝑅 𝑇(𝜃
′). 

 Train model 𝑓𝜃
𝜆∗ on 𝐿 ∪ 𝑇′ ∪ 𝑇. 

 Return model 𝑓𝜃
𝜆∗ and  

estimate 𝑅 𝑇(𝑓𝜃
𝜆∗). 

 61 

Training instances  

𝐿 
Test instances  

𝑇 Tuning instances  

𝑇′ 

𝜃′′ 

𝜃′  

𝜃   
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Triple Cross Validation: Analysis 

 Empirical risk 𝑅 𝑇(𝜃
′) is a pessimistic estimator 

for𝑅(𝜃) because 𝜃′ is trained on less data than 𝜃.  

 𝜆∗ may be a poor estimate of the optimal 

parameters because 𝑇′ may be small. 

 The variance of 𝑅 𝑇(𝜃
′) may high because 𝑇 may be 

small. 

 Protocol is used when the  

total sample 𝑆 is very large. 
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Training instances  

𝐿 
Test instances  

𝑇 Tuning instances  

𝑇′ 

𝜃′′ 

𝜃′  

𝜃   
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Nested Cross Validation 

 For 𝑖 = 1…𝑘 

 Iterate over values 𝜆 

 For 𝑗 = 1…𝑘 ∖ 𝑖 

• Train 𝑓𝜃𝑖𝑗
𝜆  on 𝑆 ∖ 𝑆𝑖 ∖ 𝑆𝑗 

• Determine  𝑅 𝑆𝑗 𝑓𝜃𝑖𝑗
𝜆  

 Average 𝑅 𝑆𝑗 to determine 𝑅 𝑆∖𝑆𝑖 𝑓
𝜃𝑖
′
𝜆  

 Choose 𝜆𝑖
∗ that minimizes 𝑅 𝑆∖𝑆𝑖 𝑓

𝜃𝑖
′
𝜆  

 Train 𝑓𝜃𝑖
𝜆𝑖
∗

 on 𝑆 ∖ 𝑆𝑖 

 Determine  𝑅 𝑆𝑖 𝑓
𝜃𝑖
′

𝜆𝑖
∗

 

 Average 𝑅 𝑆𝑖 𝑓𝜃𝑖
𝜆𝑖
∗

 to determine 𝑅 𝑆 𝑓𝜃∗
𝜆∗  

 Determine 𝜆∗ by averaging 𝜆𝑖
∗ 

 Train 𝑓𝜃
𝜆∗ on 𝑆 

 Return 𝑓𝜃
𝜆∗ and 𝑅 𝑆 𝑓𝜃∗

𝜆∗  
63 

𝜃11
′′  

𝑆1        𝑆2         𝑆3        𝑆4 

… 

𝜃1
′  

𝑅 𝑆2   𝑅 𝑆1(𝑓𝜃1′
𝜆∗)   
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Nested Cross Validation: Analysis 

 Complextiy: 𝑘2 models have to be 

trained and evaluated 

 Slightly pessimistic because 𝑓𝜃
𝜆∗ 

has been trained on more data 

than the 𝑓𝜃𝑖
𝜆𝑖
∗

. 

 Lower variance than triple cross 

validation because all data is used 

for evaluation 

 Better estimate of 𝜆∗ because 

almost all data is used for tuning. 

 Best tuning protocol when few 

data are available. 
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𝜃11
′′  

𝑆1        𝑆2         𝑆3        𝑆4 

… 

𝜃1
′  

𝑅 𝑆2   𝑅 𝑆1(𝑓𝜃1′
𝜆∗)   
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Summary 

 Risk: expected loss over input distribution 𝑝(𝐱, 𝑦). 

 Empirical risk: estimate of risk on data. 

 Precision-recall curves and ROC curves 

characterize decision function. Each point on curve 

is classifier for some threshold 𝜃0. 

 Evaluation protocols:  

 Hold-out testing: good for large samples 

 K-fold Cross Validation: good for small samples. 

 Model selection: tune model hyperparameters. 

 Triple cross validation: good for large samples. 

 Nested cross validation: good for small samples. 
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