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Please Enroll for the Course in PULS 

 Everyone, including Cognitive Systems students. 

 We no longer support paper enrollment lists. 

 Do it now. 

 The hard deadline for resolving any issues is 

October 31. 
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Overview  

 Risk, empirical risk 

 Precision, recall 

 ROC curves 

 Evaluation protocols 

 Model selection 
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Learning and Evaluation 

 Learning problem 

 Input: data S = 𝐱1, 𝑦1 , … , 𝐱𝑛, 𝑦𝑛  

 Output: model 𝑓𝜃: 𝑋 → 𝑌 

 

 When model is applied, it is used to make predictions for new 

instances 𝐱. 

 

 How well will 𝑓𝜃 perform at application time?  

 What does “well” even mean? 

 How can it be determined? 
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Model Evaluation 

 Central assumption about data: drawn according to single 

(unknown) distribution 𝑝 𝐱, 𝑦 . 

 

 “IID assumption”: Instances 𝐱1, 𝑦1 , … , 𝐱𝑚, 𝑦𝑚  are drawn 

independently and from an identical distribution. 

 Independent: 𝑝 𝐱𝑖+𝑗 , 𝑦𝑖+𝑗 | 𝐱𝑖 , 𝑦𝑖 = 𝑝 𝐱𝑖+𝑗 , 𝑦𝑖+𝑗 . 

 Identical distribution: ∀𝑖: 𝐱𝑖 , 𝑦𝑖 ~𝑝 𝐱, 𝑦  
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Model Evaluation 

 “IID assumption”: Instances 𝐱1, 𝑦1 , … , 𝐱𝑛, 𝑦𝑛  are drawn 

independently and from an identical distribution. 

 Independent: 𝑝 𝐱𝑖+𝑗 , 𝑦𝑖+𝑗 | 𝐱𝑖 , 𝑦𝑖 = 𝑝 𝐱𝑖+𝑗 , 𝑦𝑖+𝑗 . 

 Counter example: people who are surveyed at a random but 

fixed geographical location. 

 Consequence: a dependent sample contains less variance than 

an independent sample. 

 Identical distribution: ∀𝑖: 𝐱𝑖 , 𝑦𝑖 ~𝑝 𝐱, 𝑦  

 Counter example: first half of the data generated under 

laboratory conditions, second half collected “in the wild”.  

 Consequence: model trained on laboratory data may perform 

less well on data “in the wild”. 
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Loss Function 

 Loss function: How bad is it if the model predicts value 

𝑓𝛉 𝐱𝑖  when the true value of the target variable is 𝑦𝑖? 

ℓ 𝑓𝛉 𝐱𝑖 , 𝑦𝑖  

 Example loss functions: 

 Zero-one loss (classification):   

ℓ0/1 𝑓𝛉 𝐱𝑖 , 𝑦𝑖 =  
0 if 𝑓𝛉 𝐱𝑖 = 𝑦𝑖
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 Quadratic loss (regression): 

ℓ2 𝑓𝛉 𝐱𝑖 , 𝑦𝑖 = 𝑓𝛉 𝐱𝑖 − 𝑦𝑖
2 

 

 Perceptron loss, hinge loss, 𝜀-insensitive loss, … 
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Risk 

 Risk of model 𝑓𝜃: expected loss over underlying 

distribution 𝑝 𝐱, 𝑦 . 

 Finite set 𝑌 (classification): 

𝑅 𝜃 = 𝐸(𝐱,𝑦)~𝑝(𝐱,𝑦) ℓ(𝐱, 𝑦) =  ∫ ℓ(𝑓𝜃 𝐱), 𝑦 𝑝 𝐱, 𝑦 𝑑𝐱
𝑦∈𝑌

 

 Infinite 𝑌 (regression): 
𝑅 𝜃 = 𝐸(𝐱,𝑦)~𝑝(𝐱,𝑦) ℓ(𝐱, 𝑦) = ∫ ∫ ℓ(𝑓𝜃 𝐱), 𝑦 𝑝 𝐱, 𝑦 𝑑𝐱𝑑𝑦 

 

 Expected zero-one loss (risk for zero-one loss function) 

is called error rate. 

 1-error rate is called accuracy. 
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Risk 

 Risk of model 𝑓𝜃: expected loss over underlying 

distribution 𝑝 𝐱, 𝑦 . 

 Finite set 𝑌 (classification): 

𝑅 𝜃 = 𝐸(𝐱,𝑦)~𝑝(𝐱,𝑦) ℓ(𝐱, 𝑦) =  ∫ ℓ(𝑓𝜃 𝐱), 𝑦 𝑝 𝐱, 𝑦 𝑑𝐱
𝑦∈𝑌

 

 Infinite 𝑌 (regression): 
𝑅 𝜃 = 𝐸(𝐱,𝑦)~𝑝(𝐱,𝑦) ℓ(𝐱, 𝑦) = ∫ ∫ ℓ(𝑓𝜃 𝐱), 𝑦 𝑝 𝐱, 𝑦 𝑑𝐱𝑑𝑦 

 

 It is generally impossible to determine the risk: 

 𝑝 𝐱, 𝑦  is not known. 

 Generally impossible to integrate over all instances 𝐱. 

 

 

 



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 

10 

Empirical Risk 

 Impossible to calculate risk  

𝑅 𝜃 = 𝐸 𝐱,𝑦 ~𝑝(𝐱,𝑦) ℓ(𝑓𝜃 𝐱 , 𝑦)  

 

 → Empirical risk: estimate on sample S~𝑝 𝐱, 𝑦 𝑛.  

𝑅 𝑆 𝜃 =
1

𝑛
 ℓ(𝑓𝜃

𝑛

𝑖=1
𝐱, 𝑦 ) 

 

 Empirical risk is a random variable; depends on the 

instances S that are drawn. 

 If S is drawn IID, then it is governed by 

𝑝 𝐱1, 𝑦1 ×⋯× 𝐱𝑛, 𝑦𝑛 = 𝑝 𝐱, 𝑦 𝑛. 
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Estimators 

 In statistics, an estimator is any rule for calculating 

an estimate of a quantity. 

 A procedure for that determines the empirical risk is 

an estimator of the risk. 

 

 An estimator is called unbiased if the expected 

value of the estimate is the true quantity:  
𝑅 𝜃 is unbiased ⇔ 𝐸𝑆~𝑝 𝐱,𝑦 𝑛 𝑅 𝑆(𝜃) = 𝑅 𝜃  

 An estimator that is not unbiased has a bias:  

𝐵 𝑅 𝜃 = 𝐸𝑆~𝑝 𝐱,𝑦 𝑛 𝑅 𝑆(𝜃) − 𝑅 𝜃  

 

11 
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Bias of the Empirical Risk 

 Bias of the empirical risk: 

𝐵 𝑅 𝜃 = 𝐸𝑆~𝑝 𝐱,𝑦 𝑛 𝑅 𝑆(𝜃) − 𝑅 𝜃  

 Empirical risk is unbiased estimator if: 

𝐸𝑆~𝑝 𝐱,𝑦 𝑛 𝑅 𝑆(𝜃) = 𝑅 𝜃  

 Empirical risk is optimistic estimator if:  

𝐸𝑆~𝑝 𝐱,𝑦 𝑛 𝑅 𝑆(𝜃) − 𝑅 𝜃 < 0 

 Empirical risk is pessimistic estimator if:  

𝐸𝑆~𝑝 𝐱,𝑦 𝑛 𝑅 𝑆(𝜃) − 𝑅 𝜃 > 0 

 

12 
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Bias of the Empirical Risk 

 Bias of the empirical risk: 

𝐵 𝑅 𝜃 = 𝐸𝑆~𝑝 𝐱,𝑦 𝑛 𝑅 𝑆(𝜃) − 𝑅 𝜃  

 The bias is a systematical offset between risk and 

empirical risk. 

 It can be caused by a particular experimental 

setting used to determine the empirical risk. 

 Large bias: risk is systematically estimated too low 

or too high. 

13 
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Variance of an Estimator 

 Estimator 𝑅 𝑆 𝜃  has a variance 

𝑉𝑎𝑟 𝑅 𝑆 𝜃 = E 𝑅 𝑆 𝜃 2 − E 𝑅 𝑆 𝜃
2
 

 

 The variance is caused by the fact that the empirical risk 

is calculated on a finite sample. 

 Zero-one loss: empirical risk 𝑅 𝑆 𝜃  follows binomial 

distribution with mean value 𝑅 𝜃 . 

 High variance: empirical risk is a crude estimate of the 

risk. 

 The larger a sample the empirical risk is based on, the 

lower its variance becomes. 
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Bias and Variance of Empirical Risk 

 Empirical risk 𝑅 𝑆 𝜃  determined repeatedly on multiple 

samples 𝑆1, … , 𝑆𝑘 

 

 

 

 

𝑅 

𝑅 

Large bias, small variance 

Large variance,  

small or no bias 

Value of 𝑅 𝑆𝑖  for sample 𝑆𝑖 
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Estimation Error 

 Estimation error: expected quadratic difference between 

empirical risk and risk. 

E𝑆~𝑝 𝐱,𝑦 𝑛 𝑅 𝑆 𝜃 − 𝑅 𝜃
2

 

 Can be decomposed into bias and variance 

E𝑆~𝑝 𝐱,𝑦 𝑛 𝑅 𝑆 𝜃 − 𝑅 𝜃
2

 

= E 𝑅 𝑆 𝜃 2 − 2𝑅 𝜃 𝑅 𝑆 𝜃 + 𝑅(𝜃)2  

= E 𝑅 𝑆 𝜃 2 − 2𝑅(𝜃)E 𝑅 𝑆 𝜃 + 𝑅(𝜃)2 

= E 𝑅 𝑆 𝜃
2
− 2𝑅(𝜃)E 𝑅 𝑆 𝜃 + 𝑅 𝜃 2 + E 𝑅 𝑆 𝜃 2 − E 𝑅 𝑆 𝜃

2
 

= E 𝑅 𝑆 𝜃 − 𝑅(𝜃)
2
+ E 𝑅 𝑆 𝜃 2 − E 𝑅 𝑆 𝜃

2
 

= 𝐵𝑖𝑎𝑠 𝑅 𝑓
2
+ 𝑉𝑎𝑟 𝑅 𝑓  Algebraic formula  

for the variance 
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Alternative Measures to Risk 

 Risk is not always a meaningful measure. 

 Not always possible to specify a meaningful loss 

function 

 Mine detector: what is the cost of exploding?  

 On the other hand, a mine detector that always says 

“there could be a mine here” is useless. 

 Error rate / accuracy are not meaningful for rare 

classes. 

 Earth quake prediction tool that always says “there 

will be no earthquake today” has accuracy of >99.9% 

(in most countries). 

17 
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Alternative Measures to Risk 

 Alternative performance measures for binary classification. 

 Let decision function 𝑓𝜃 𝐱  return continuous value. 

 Decision rule for binary classification: 

𝑦𝜃 𝐱 =  
+1 if 𝑓𝜃 𝐱 ≥ 𝜃0
−1 if 𝑓𝜃 𝐱 < 𝜃0

 

 

 By adjusting threshold 𝜃0 decision rule can be made more 

sensitive or more conservative.  

 We will now study measures that quantify how well the 

decision function separates positive from negative instances, 

independent of any threshold value 𝜃0. 

 Precision-recall curves 

 ROC curves 

 

 

 

 



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 

Overview  

 Risk, empirical risk 

 Precision, recall 

 ROC curves 

 Evaluation protocols 

 Model selection 

 

19 
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Precision and Recall 

 Alternative performance measure for binary classification. 

 Example: diagnosis of rare disease. 

 Patient 𝐱𝑖  has disease if 𝑦𝑖 = +1. 

 Classifier diagnoses disease for patient 𝐱 if 𝑦𝜃 𝐱𝑖 = +1. 

 True positives:  

 Patient has disease (𝑦𝑖 = +1), classifier recognizes (𝑦𝜃 𝐱𝑖 =
+ 1) 

 False positives: 

 Patient is healthy (𝑦𝑖 = −1), but classifier diagnoses disease 

(𝑦𝜃 𝐱𝑖 = +1) 

 True negatives:  

 Patient is healthy (𝑦𝑖 = −1), classifier recognizes (𝑦𝜃 𝐱𝑖 = −1) 

 False negatives:  

 Patient has disease (𝑦𝑖 = +1), classifier misses (𝑦𝜃 𝐱𝑖 = −1) 
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Precision and Recall 

 Let 𝑛𝑇𝑃 be the number of true positives. 

 Let 𝑛𝐹𝑃 be the number of false positives. 

 Let 𝑛𝑇𝑁 be the number of true negatives. 

 Let 𝑛𝐹𝑁 be the number of false negatives. 

 Precision: 𝑃 =
𝑛𝑇𝑃

𝑛𝑇𝑃+𝑛𝐹𝑃
 

 “Rate of true positives among all instances that are classified as 

positives” 

 Answers: “How accurate is classifier when it says +1?” 

 Recall: 𝑅 =
𝑛𝑇𝑃

𝑛𝑇𝑃+𝑛𝐹𝑁
 

 “Rate of true positives among all positive instances” 

 Answers: “How many of the positive instances does the classifier 

detect?” 
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Precision-Recall Curves 

 Evaluates decision function 𝑓𝜃 𝐱  independent of threshold 𝜃0.  

 Shows which pairs of 

precision and recall can be  

obtained by varying  

threshold 𝜃0. 

 Each point on the curve is 

a classification rule with a 

particular values of 𝜃0. 

 Which decision function is 

better – A or B? 

Lower 𝜃0 

Higher 𝜃0  
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F Measures 

 𝐹𝛼 measures combine precision and recall values 

into single value:  

𝐹𝛼 =
𝑛𝑇𝑃

𝛼(𝑛𝑇𝑃 + 𝑛𝐹𝑃) + (1 − 𝛼)(𝑛𝑇𝑃 + 𝑛𝐹𝑁)
 

 𝛼 = 1: Precision 

 𝛼 = 0: Recall 

 𝛼 = 0.5: “F-measure”, harmonic mean of precision 

and recall. 

 Alternative definition: 𝐹𝛽 measures. 

 Relationship: 𝛼 =
1

1+𝛽
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Side Note on F Measures 

 𝐹𝛼 measures (incl. precision and recall) are defined 

as empirical quantities. 

 What do F-measures estimate? 

 Generalized risk: 

𝐺 =
 ∫ ℓ 𝑓𝜃 𝐱 , 𝑦 𝑤 𝐱, 𝑦, 𝑓𝜃 𝑝 𝐱, 𝑦 𝑑𝐱𝑦

 ∫𝑤 𝐱, 𝑦, 𝑓𝜃 𝑝 𝐱, 𝑦 𝑑𝐱𝑦

 

 𝐹𝛼 measures are estimates of special cases. 

 Special cases: 

 Risk: 𝑤 𝐱, 𝑦, 𝑓𝜃 = 1. 

 Precision: 𝑤 𝐱, 𝑦, 𝑓𝜃 = 1 if 𝑓𝜃 𝐱 = 1, 0 otherwise 

 … 
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Overview  

 Risk, empirical risk 

 Precision, recall 

 ROC curves 

 Evaluation protocols 

 Model selection 
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ROC Analysis 

 Alternative measure of how well the decision 

function separates positive from negative instances, 

independent of any threshold value 𝜃0. 

 

26 
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ROC Analysis 

 Each curve characterizes a decision function 𝑓𝜃. 

 Each point is a classification rule for a value of 𝜃0. 

 Which is better, A or B? 

 𝑟𝑇𝑃 =
𝑛𝑇𝑃

𝑛𝑇𝑃+𝑛𝐹𝑁
 

 𝑟𝐹𝑃 =
𝑛𝐹𝑃

𝑛𝐹𝑃+𝑛𝑇𝑃
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False-positive rate 
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ROC Analysis 

 Equal error rate (EER): value 𝑟𝑇𝑃 = 1 − 𝑟𝐹𝑃 . 

 Scalar aggregate of curve: Area under ROC curve 

(AUC). 
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False-positive rate 
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ROC Analysis 

 Area under the ROC curve (AUC):  

 Let 𝐱+ be a randomly drawn positive instance. 

 Let 𝐱− be a randomly drawn negative instance. 

 𝐴𝑈𝐶(𝜃) = 𝑃(𝑓𝜃 𝐱+ > 𝑓𝜃 𝐱− ). 
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ROC Analysis 

 ROC analysis is often used   

 When positive instances are rare (accuracy of 99.9% 

is meaningless if positive class is extremely rare) 

 When no meaningful probability of meeting positive 

instances can be defined (probability of stepping on a 

mine varies by country). 
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Overview  

 Risk, empirical risk 

 Precision, recall 

 ROC curves 

 Evaluation protocols 

 Model selection 
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Evaluation Protocols 

 Usually, model 𝑓𝜃 is not given and evaluation data 

cannot be drawn from 𝑝 𝐱, 𝑦 . 

 Typical case, data S = 𝐱1, 𝑦1 , … , 𝐱𝑛, 𝑦𝑛  and 

learning method are given. 

 Data S have to be used for training and evaluation. 

 Desired output: model 𝑓𝜃 and risk estimate. 
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Evaluation Protocols 

 Can we first train model 𝑓𝜃 on S and then evaluate 

the model on the same data? 

 Will 𝑅 𝑆(𝜃) be unbiased, optimistic, or pessimistic? 
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Evaluation Protocols 

 Every model 𝜃𝑖 ∈ Θ has a risk 𝑅(𝜃𝑖). 

 Its empirical risk 𝑅 𝑆(𝜃𝑖) follows a distribution with 

mean value 𝑅(𝜃𝑖). 

 

34 

Model 𝜃𝑖 

Empirical risk, 𝑅 𝑆(𝜃𝑖) 

R
is

k
, 
𝑅
(𝜃

𝑖)
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Evaluation Protocols 

 Some models get lucky (upper-left area), some are 

unlucky (lower-right area). 
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Parameter space, 𝜃𝑖 ∈ Θ 

Empirical risk, 𝑅 𝑆(𝜃𝑖) 

R
is

k
, 
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 Learning algorithm will choose a model with small 

empirical risk (on the far left). 

 In this area, most models‘ empirical risk is an 

optimistic estimate.  

 

 

Evaluation Protocols 
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Parameter space, 𝜃𝑖 ∈ Θ 
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Evaluation Protocols 

 Learning algorithm will choose a model with small 

empirical risk (on the far left). 

 For those 𝜃∗ on the left: 𝐸𝑆 𝑅 𝑆 𝜃∗  < 𝑅 𝜃∗  

(otherwise they would be further right). 

 This is called  

selection bias. 

 Empirical risk on  

training data is  

optimistic. 
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Parameter space, 𝜃𝑖 ∈ Θ 

Empirical risk, 𝑅 𝑆(𝜃𝑖) 
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Holdout Testing 

 Idea: error estimation on independent test data 

 Given: data 𝑆 = 𝐱1, 𝑦1 , … , 𝐱𝑛, 𝑦𝑛  

 Divide the data into 

 Training data 𝐿 = 𝐱1, 𝑦1 , … , 𝐱𝑚, 𝑦𝑚 and 

 Test data 𝑇 = 𝐱𝑚+1, 𝑦𝑚+1 , … , 𝐱𝑛, 𝑦𝑛  

𝐿 𝑇 
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Holdout Testing 

 Start learning algorithm with data 𝐿 and obtain 

model 𝑓𝜃′ from it. 

 Determine empirical risk 𝑅 𝑇 𝜃′  from data 𝑇. 

 Start learning algorithm with all data 𝑆 and obtain 

Model 𝑓𝜃 from it. 

 Output: model 𝑓𝜃 & 𝑅 𝑇 𝜃′  as the estimator of 𝑅(𝜃). 

𝐿 𝑇 

𝜃′ → 𝑅 𝐿(𝜃
′) 

𝜃 
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Holdout Testing: Analysis 

 Is the estimator 𝑅 𝑇 𝜃′  of the risk of model 𝑅 𝜃  

 unbiased, 

 optimistic, 

 pessimistic? 

 Hint: the more training data, the better the model. 

 

𝐿 𝑇 

𝜃′ → 𝑅 𝐿(𝜃
′) 

𝜃 
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Holdout Testing: Analysis 

 Estimate 𝑅 𝑇 𝜃′  is obtained on a small part of the 

available data. 

 Therefore, its variance is relatively high, especially 

if the overall sample is small. 

 Holdout testing is used in practice for large 

available samples. 

 

𝐿 𝑇 

𝜃′ → 𝑅 𝐿(𝜃
′) 

𝜃 
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Holdout Testing: Analysis 

 Using empirical risk 𝑅 𝑇 𝜃′  is an optimistic 

estimator of the risk 𝑅 𝜃 . 

 Because 𝜃′ is trained with fewer training instances 

than 𝜃. 

 

𝐿 𝑇 

𝜃′ → 𝑅 𝐿(𝜃
′) 

𝜃 
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Holdout Testing: Analysis 

 One could instead return model 𝜃′. 

 Empirical risk 𝑅 𝑇 𝜃′  would be an unbiased 

estimate of 𝑅(𝜃′). 

 But since 𝜃′ was trained on fewer data, it would 

result in an inferior model. 

 

𝐿 𝑇 

𝜃′ → 𝑅 𝐿(𝜃
′) 

𝜃 
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K-Fold Cross Validation 

 Given: data 𝑆 = 𝐱1, 𝑦1 , … , 𝐱𝑛, 𝑦𝑛  

 Partition 𝑆 into 𝑘 equally sized portions 𝑆1, … , 𝑆𝑘. 

 Repeat for 𝑖 = 1…𝑘  

 Train 𝑓𝜃𝑖 with training set 𝑆 = 𝑆\𝑆𝑖. 

 Calculate empirical risk 𝑅 𝑆𝑖 𝜃𝑖  on 𝑆𝑖. 

 Calculate average 𝑅 𝑆 =
1

𝑘
  𝑅 𝑆𝑖(𝜃𝑖)𝑖  

Training instances 

𝑆1 𝑆2 𝑆3 𝑆4 

Test instances 

Total number of instances 

Experiment 1 

Experiment 2 

Experiment 3 

Experiment 4 
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Cross Validation 

 Then, train 𝑓𝜃  on all data 𝑆. 

 Return model 𝑓𝜃 and estimator 𝑅 𝑆. 

 

Test samples 

Training instances 

Test instances 

Total number of instances 

Experiment 1 

Experiment 2 

Experiment 3 

Experiment 4 
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Leave-One-Out Cross Validation 

 Special case 𝑘 = 𝑛 is also called leave-one-out 

error estimation 

46 

d 

Total number of instances 

Single test instance 

Experiment 1 

Experiment 2 

Experiment 3 

Experiment 𝑛 
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Cross Validation: Analysis 

 Is the estimator     

 optimistic / pessimistic / unbiased?  



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 

48 

Cross Validation: Analysis 

 Is the estimator     

 optimistic / pessimistic / unbiased?  

 Estimator is slightly pessimistic: 

 Model 𝑓𝜃𝑖 is trained on a 𝑘 − 1 𝑘 -th fraction of the 

available data. 

 Model 𝑓𝜃 is trained on the entire data. 

Training instances 

Cross Validation Holdout 

Test instances 

Total number of instances 

Experiment 1 

Experiment 2 

Experiment 3 

Experiment 4 

Total number of instances 
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Cross Validation: Analysis 

 Bias/Variance compared to holdout testing? 

 Variance is lower than with holdout testing 

 Averaging over several holdout experiments reduces the 

estimator’s variance. 

 All data is incorporated into the estimator. 

 Bias similar to holdout testing, depending on the split 

ratios. 

  

  
Training instances 

Cross Validation Holdout 

Test instances 

Total number of instances 

Experiment 1 

Experiment 2 

Experiment 3 

Experiment 4 

Total number of instances 
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Overview  

 Risk, empirical risk 

 Precision, recall 

 ROC curves 

 Evaluation protocols 

 Model selection 
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Model Selection 

 Compare several different learning approaches 

 Should one use decision trees?  

 SVMs? Logistic Regression? 

 Set regularization parameter for a learning 

approach 

 For instance, set value for 𝜆 for regularized empirical 

risk minimization.  
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Model Selection: Example 

 Regularization parameter 𝜆 in optimization criterion 

𝜃∗ = argmin
𝜃

 ℓ 𝑓 𝜃 𝐱𝑖 , 𝑦𝑖
𝑖

+ 𝜆 𝜃 2        𝜆 =? 

 (Hyper)parameters that specify the model class; 

e.g. the degree for polynomial regression 

𝑓𝜽 𝑥 =  𝑤𝑗𝑥
𝑗

𝑑

𝑗=0

       𝑑 =? 

 Desired output: hyperparameter (𝜆, 𝑑), model 𝑓𝜃, 

and estimate of the model’s risk. 

 How do we use available data to achieve this? 
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Example: Polynomial Regression 

 Polynomial model of degree 𝑑: 𝑓𝜃
𝑑 𝑥 =  𝑤𝑗𝑥

𝑗𝑑
𝑗=0  

 

 Regularized empirical risk minimization: 

𝜃∗ = argmin
𝜽

 𝑓𝜃
𝑑 𝑥𝑖 − 𝑦𝑖

2𝑛
𝑖=1 + 𝜆 𝜃

2
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Learned Model 

Actual Model Data points = actual  

model plus Gaussian  

noise 

𝑑 = 3, 𝜆 = 0 
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Polynomial Regression 

 Success of the learning depends on the selected polynomial 

degree 𝑑, which controls the complexity of the model. 

54 

𝑑 = 0, 𝜆 = 0 𝑑 = 1, 𝜆 = 0 

𝑑 = 3, 𝜆 = 0 𝑑 = 9, 𝜆 = 0 
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Polynomial Regression: Empirical Risk on 
Training vs. Test Sample 

 Empirical risk on training vs. test data for different 

polynomial degrees. 

 “Overfitting”: empirical risk on training data decreases as 

d is increased. Empirical risk on test data has a 

minimum, then increases again. 

55 d    
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Example: Polynomial Regression 

 If more data are available, more complex models 

can be fitted. 

 

 

 

 

 

 

 Given fixed amount of data, optimal d has to be 

found.  

56 

10 instances, d = 9 100 instances, d = 9 

d=9 d=100 
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Example: Polynomial Regression 

 Regularization factor 𝜆 has a similar effect to 𝑑. 

 

 

 

 

 

 

 Both 𝜆 and 𝑑 constrain  

the model complexity. 
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𝑑 = 3, 𝜆 = 0 𝑑 = 9, 𝜆 = 0 

𝑑 = 9, ln 𝜆 = −18 
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Regularized Polynomial Regression 

 Empirical risk on training vs. test sample. 

 Empirical risk on training sample decreases when 

regularization decreases. 

 There is a regularization factor that minimizes the risk. 

58 
 0
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Regularized Polynomial Regression 

 Regularizer acts like a limitation on the model 

complexity and prevents overfitting. 

 In practice it is best to control model complexity through 

regularization (direct parameters like the polynomial 

degree often are not available). 

 Regularizer has to be tuned on available data. 
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Model Selection, Setting Hyperparameters 

 Desired output: hyperparameter (𝜆, 𝑑), model 𝑓𝜃, 

and estimate of the model’s risk. 

 Idea: Iterate over values of (𝜆, 𝑑), train model, 

evaluate; take best values and train final model. 

 Cannot tune hyperparameters on training data 

because low regularization leads to low empirical 

risk on training data but high risk on test data. 

 Evaluating multiple models (for different values of 

𝜆, 𝑑) on the same test set results in an optimistic 

bias.  

 Therefore, triple or nested cross validation. 
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Triple Cross Validation 

 Iterate over all values of the hyperparameters 𝜆 

(grid search) 

 Train model 𝑓𝜃′′
𝜆  on 𝐿. 

 Evaluate 𝑓𝜃′′
𝜆 on 𝑇′ by calculating 𝑅 𝑇′(𝑓𝜃′′

𝜆 ) 

 Use hyperparameter 𝜆∗ that gave lowest 𝑅 𝑇′(𝑓𝜃′′
𝜆∗).  

 Train model 𝑓𝜃′
𝜆∗ on 𝐿 ∪ 𝑇′. 

 Determine 𝑅 𝑇(𝜃
′). 

 Train model 𝑓𝜃
𝜆∗ on 𝐿 ∪ 𝑇′ ∪ 𝑇. 

 Return model 𝑓𝜃
𝜆∗ and  

estimate 𝑅 𝑇(𝑓𝜃
𝜆∗). 

 61 

Training instances  

𝐿 
Test instances  

𝑇 Tuning instances  

𝑇′ 

𝜃′′ 

𝜃′  

𝜃   
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Triple Cross Validation: Analysis 

 Empirical risk 𝑅 𝑇(𝜃
′) is a pessimistic estimator 

for𝑅(𝜃) because 𝜃′ is trained on less data than 𝜃.  

 𝜆∗ may be a poor estimate of the optimal 

parameters because 𝑇′ may be small. 

 The variance of 𝑅 𝑇(𝜃
′) may high because 𝑇 may be 

small. 

 Protocol is used when the  

total sample 𝑆 is very large. 
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Training instances  

𝐿 
Test instances  

𝑇 Tuning instances  

𝑇′ 

𝜃′′ 

𝜃′  

𝜃   
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Nested Cross Validation 

 For 𝑖 = 1…𝑘 

 Iterate over values 𝜆 

 For 𝑗 = 1…𝑘 ∖ 𝑖 

• Train 𝑓𝜃𝑖𝑗
𝜆  on 𝑆 ∖ 𝑆𝑖 ∖ 𝑆𝑗 

• Determine  𝑅 𝑆𝑗 𝑓𝜃𝑖𝑗
𝜆  

 Average 𝑅 𝑆𝑗 to determine 𝑅 𝑆∖𝑆𝑖 𝑓
𝜃𝑖
′
𝜆  

 Choose 𝜆𝑖
∗ that minimizes 𝑅 𝑆∖𝑆𝑖 𝑓

𝜃𝑖
′
𝜆  

 Train 𝑓𝜃𝑖
𝜆𝑖
∗

 on 𝑆 ∖ 𝑆𝑖 

 Determine  𝑅 𝑆𝑖 𝑓
𝜃𝑖
′

𝜆𝑖
∗

 

 Average 𝑅 𝑆𝑖 𝑓𝜃𝑖
𝜆𝑖
∗

 to determine 𝑅 𝑆 𝑓𝜃∗
𝜆∗  

 Determine 𝜆∗ by averaging 𝜆𝑖
∗ 

 Train 𝑓𝜃
𝜆∗ on 𝑆 

 Return 𝑓𝜃
𝜆∗ and 𝑅 𝑆 𝑓𝜃∗

𝜆∗  
63 

𝜃11
′′  

𝑆1        𝑆2         𝑆3        𝑆4 

… 

𝜃1
′  

𝑅 𝑆2   𝑅 𝑆1(𝑓𝜃1′
𝜆∗)   
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Nested Cross Validation: Analysis 

 Complextiy: 𝑘2 models have to be 

trained and evaluated 

 Slightly pessimistic because 𝑓𝜃
𝜆∗ 

has been trained on more data 

than the 𝑓𝜃𝑖
𝜆𝑖
∗

. 

 Lower variance than triple cross 

validation because all data is used 

for evaluation 

 Better estimate of 𝜆∗ because 

almost all data is used for tuning. 

 Best tuning protocol when few 

data are available. 
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𝜃11
′′  

𝑆1        𝑆2         𝑆3        𝑆4 

… 

𝜃1
′  

𝑅 𝑆2   𝑅 𝑆1(𝑓𝜃1′
𝜆∗)   
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Summary 

 Risk: expected loss over input distribution 𝑝(𝐱, 𝑦). 

 Empirical risk: estimate of risk on data. 

 Precision-recall curves and ROC curves 

characterize decision function. Each point on curve 

is classifier for some threshold 𝜃0. 

 Evaluation protocols:  

 Hold-out testing: good for large samples 

 K-fold Cross Validation: good for small samples. 

 Model selection: tune model hyperparameters. 

 Triple cross validation: good for large samples. 

 Nested cross validation: good for small samples. 
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