Universität Potsdam

Institut für Informatik Lehrstuhl Maschinelles Lernen

Graphical Models

Niels Landwehr

Overview: Graphical Models

- Graphical models: tool for modelling domain with several random variables.
- For example medical domains: joint distribution over attributes of patients, symptoms, and diseases.
- Can be used to answer any probabilistic query.

Attribute name	Description				
Exposure	Exposure to ticks, e.g., patient visited a forest				
Duration	Duration of the disease				
Month	Month the patient reported to a doctor				
Rash	Whether the patient developed rash				
IgM, IgG	Serological tests				
Neuro	Neurological symptoms				
ACA, KNB, Carditis,	Various other symptoms				
Lymphocytom, And	et				

Agenda

- Graphical models: syntax and semantics.
- Inference in graphical models (exact, approximate)
- Graphical models in machine learning.

- Graphical models: syntax and semantics.
- Inference in graphical models (exact, approximate)
- Graphical models in machine learning.

Recap: Random Variables, Distributions

- Random variables: X, Y, Z,...
 - discrete random variables: distributions defined by probabilities for possible values.
 - continuous random variables: distributions defined by densities.
- Joint distribution *p*(*X*,*Y*)
- Conditional distribution $p(X | Y) = \frac{p(X, Y)}{p(Y)}$
- Product rule:

p(X,Y) = p(X | Y)p(Y) discrete or continuous

• Sum rule: $p(x) = \sum_{y} p(x, y)$ discrete random variables $p(x) = \int_{-\infty}^{\infty} p(x, y) dy$ continuous random variables

Independence of Random Variables

Independence (discrete or continuous)

X,Y independent if and only if p(X,Y) = p(X)p(Y)X,Y independent if and only if p(X | Y) = p(X)X,Y independent if and only if p(Y | X) = p(Y)

Conditional independence (discrete or continuous)

X,Y independent given Z if and only if p(X,Y|Z) = p(X|Z)p(Y|Z)X,Y independent given Z if and only if p(Y|X,Z) = p(Y|Z)X,Y independent given Z if and only if p(X|Y,Z) = p(X|Z)

... simply application of the notion of independence to the conditional joint distribution p(X,Y|Z)

Graphical Models: Idea/Goal

- Goal: Model for the joint distribution $p(X_1, ..., X_N)$ of a set of random variables $X_1, ..., X_N$
- Given $p(X_1, ..., X_N)$, we can compute...
 - All marginal distributions (by sum rule)

 $p(X_{i_1},...,X_{i_m}), \{i_1,...,i_m\} \subseteq \{1,...,N\}$

All conditional distributions (from marginal distributions)

$$p(X_{i_1},...,X_{i_m} | X_{i_{m+1}},...,X_{i_{m+k}}), \{i_1,...,i_{m+k}\} \subseteq \{1,...,N\}$$

• Enough to answer all probabilistic queries ("inference problems") over the random variables $X_1, ..., X_N$

Graphical Models: Idea/Goal

- Graphical models: combination of probability theory and graph theory.
- Compact, intuitive modeling of $p(X_1, ..., X_N)$.
 - Graph structure represents structure of the distributions (dependencies between variables X₁,...,X_N).
 - Insight into structure of the model; easy to inject prior knowledge.
 - Efficient algorithms for inference that exploit the graph structure.
- Many machine learning methods can be represented as graphical models.
- Tasks such as finding the MAP model or computing Bayes-optimal predictions can be formulated as inference problems in graphical models.

- Example: "Alarm" scenario
 - Our house in Los Angeles has an alarm system.
 - We are on holidays. Our neighbor calls in case he hears the alarm going off. In case of a burglary we would like to return.
 - Unfortunately, our neigbor is not always at home.
 - Unfortunately, the alarm can also be triggered by earthquakes.
- 5 binary random variables
 - (B)
 - Burglary burglary has taken place
 - (E)
 - Earthquake earthquake has taken place
 - (A)
- Alarm alarm is triggered

- NeighborCalls neighbor calls us
-) RadioReport Report about an earthquake on the radio

- Random variables have a joint distribution *p*(*B*,*E*,*A*,*N*,*R*).
 How to specify? Which dependencies hold?
- Example for inference problem: neighbor has called (N=1), how likely that there was a burglary (B=1)?
 - Depends on several factors
 - ★ How likely is a burglary a priori?
 - ★ How likely is an earthquake a priori?
 - ★ How likely that alarm is triggered?
 - * ...

(Naive) inference:
$$p(B=1|N=1) = \frac{p(B=1, N=1)}{p(N=1)}$$

= $\frac{\sum_{E} \sum_{A} \sum_{R} p(B=1, E, A, N=1, R)}{\sum_{B} \sum_{E} \sum_{A} \sum_{R} p(B, E, A, N=1, R)}$

- How do we model p(B,E,A,N,R)?
 - 1. Attempt: complete table of probabilities

	В	E	A	N	R	P(B,E,A,N,R)
	0	0	0	0	0	0.6
$2^N \prec$	1	0	0	0	0	0.005
	0	1	0	0	0	0.01

- +Any distribution p(B, E, A, N, R)can be represented
- Exponential number of parameters
- Difficult to specify for humans
- Attempt: everything is independent

p(B, E, A, N, R) = p(B)p(E)p(A)p(N)p(R)

- + linear number of parameters
- too restrictive, independence assumption does not allow any meaningful inference

- Graphical model: selective independence assumptions, motivated by prior knowledge.
- Choose variable ordering: e.g. $B \le E \le A \le N \le R$
- Product rule:

p(B, E, A, N, R) = p(B, E, A, N) p(R | B, E, A, N)= p(B, E, A) p(N | B, E, A) p(R | B, E, A, N)= p(B, E) p(A | B, E) p(N | B, E, A) p(R | B, E, A, N)= p(B) p(E | B) p(A | B, E) p(N | B, E, A) p(R | B, E, A, N)

Factors describe distribution of one random variable as a function of other random variables.

Can we simplify these factors? Which dependencies really hold in our domain?

Decomposition into factors according to product rule:

p(B, E, A, N, R) = p(B)p(E | B)p(A | B, E)p(N | B, E, A)p(R | B, E, A, N)

- Conditional independence assumptions (remove variables from conditional expression)
 - $p(E \mid B) = p(E)$ $p(A \mid B, E) = p(A \mid B, E)$ $p(N \mid B, E, A) = p(N \mid A)$ $p(R \mid B, E, A, N) = p(R \mid E)$

Earthquake does not depend on burglary Alarm does depend on burglary and earthquake Whether neighbor calls only depends on alarm Report on the radio only depends on earthquake

• Arriving at simplified form of joint distribution:

p(B, E, A, N, R) = p(B)p(E)p(A | E, B)p(N | A)p(R | E)

Simplified factors

Graphical model for "Alarm" scenario

Distribution modeled:

 $p(B, E, A, N, R) = p(B)p(E)p(A \mid E, B)p(N \mid A)p(R \mid E)$

Graphical model:

- There is one node for each random variable
- For each factor of the form $p(X | X_1, ..., X_k)$ there is a directed edge from the X_i to X in the graph
- Model is parameterized with conditional distributions $p(X | X_1, ..., X_k)$

Graphical model for "Alarm" scenario

- Number of parameters: O(N2^K), K= max. number of parents of a node.
- ♦ Here 1+1+2+2+4 instead of 2⁵-1 parameters for full table.
- These directed graphical models are also called Bayesian networks.

Directed Graphical Models: Definition

- Given a set of random variables $\{X_1, \dots, X_N\}$
- A directed graphical model over the random variables $\{X_1, ..., X_N\}$ is a directed graph with
 - Node set X_1, \dots, X_N
 - There are no directed cycles $X_{i_1} \rightarrow X_{i_2} \rightarrow ... \rightarrow X_{i_k} \rightarrow X_{i_1}$
 - Nodes are associated with parameterized conditional distributions $p(X_i | pa(X_i))$, where $pa(X_i) = \{X_j | X_j \rightarrow X_i\}$ denotes the set of parent nodes of a node.
- The graphical model represents a joint distribution over $X_1, ..., X_N$ by

$$p(X_1,...,X_N) = \prod_{i=1}^N p(X_i \mid pa(X_i))$$

Directed Graphical Models: Definition

- Why does the graph have to be acyclic?
 - Theorem from graph theory:

G is acyclic \Leftrightarrow there is an ordering \leq_G of the nodes such that all

directed edges respect the ordering $(N \rightarrow N' \implies N \leq_G N')$

• For such an ordering, we can factorize $p(X_1,...,X_N) = \prod_{i=1}^N p(X_i | pa(X_i))$ Before X in y

 \int_{1}^{2} Before X_i in variable ordering

according to product rule + conditional independence assumptions (variables sorted according to \leq_{G})

Counterexample (not a graphical model)

 $p(X,Y) \neq p(X \mid Y) p(Y \mid X)$

Graphical Models: Independence

- The graph structure of a graphical model implies (conditional) independencies between random variables.
- Notation: for variables *X*, *Y*, *Z* we write

 $X \perp Y \mid Z \Leftrightarrow p(X \mid Y, Z) = p(X \mid Z)$

"X independent of Y given Z"

• Extension to disjoint sets *A*, *B*, *C* of random variables:

 $A \perp B \mid C \Leftrightarrow p(A \mid B, C) = p(A \mid C)$

Graphical Models: Independence

- Which independence assumptions of the form $A \perp B \mid C$ are modeled by the graph structure?
 - Can be checked by sum/product rule starting from the modeled joint distribution (lots of work!)
 - For graphical models, independence assumptions can be read off the graph structure → much easier.
 - "D-separation": Set of simple rules from which all independence assumptions encoded in the graph can be derived.
 - "D" in "D-separation" stands for "Directed", because we are talking about directed graphical models (similar mechanism exists for "undirected" models, which we do not cover).

Graphical Models: Independence

- D-separation: Which indepence assumptions $A \perp B \mid C$ are modeled by the graph structure?
- Idea: can be checked by looking at pathes connecting random variables.
- Notation:

Path between X and Z has a **diverging** connection at Y (,,tail to tail").

Path between X and Z has a **converging connection** at Y ("head to head").

Path between X and Z has a **serial connection** at Y (,,head to tail").

Diverging Connections

Joint distribution: p(B, E, A, N, R) =p(B)p(E)p(A | E, B)p(N | A)p(R | E)

B=,, Burglary" E=,, Earthquake" A=,, Alarm" N=,,Neighbor calls" R=,,Radio report"

• Looking at path $A \leftarrow E \rightarrow R$. Does $A \perp R \mid \emptyset$ hold?

Diverging Connections

Joint distribution: p(B, E, A, N, R) =p(B)p(E)p(A | E, B)p(N | A)p(R | E)R

B=,,*Burglary*" *N*=,,*Neighbor calls*" *E*=,,*Earthquake* " *R*=,,*Radio report* "

- Looking at path $A \leftarrow E \rightarrow R$. Does $A \perp R \mid \emptyset$ hold?
 - No, $p(A | R) \neq p(A)$ [Can be derived from joint distribution]
 - Intuitively: ٠

Radio report \Rightarrow probably earthquake \Rightarrow probably alarm

p(A=1 | R=1) > p(A=1 | R=0)

Variable *R* influences variable *A* through the diverging connection $R \leftarrow E \rightarrow A$

A=,Alarm"

23

Diverging Connections

Joint distribution: p(B, E, A, N, R) =p(B)p(E)p(A | E, B)p(N | A)p(R | E)

observed variable

• Looking at path $A \leftarrow E \rightarrow R$. Does $A \perp R \mid E$ hold?

Diverging Connections

Joint distribution: p(B, E, A, N, R) =p(B)p(E)p(A | E, B)p(N | A)p(R | E)

observed variable

R

- Looking at path $A \leftarrow E \rightarrow R$. Does $A \perp R \mid E$ hold?
 - Yes, p(A | R, E) = p(A | E) [Can be derived from joint distribution]
 - Intuitively:

If we allready know that an earthquake has occured the probably for alarm is not increased or decreased because of radio report.

• The diverging path $A \leftarrow E \rightarrow R$ is *blocked* by the observation of E.

Serial Connections

B (E) (R) (R) (R)

Joint distribution: p(B, E, A, N, R) =p(B)p(E)p(A | E, B)p(N | A)p(R | E)

- Looking at path $N \leftarrow A \leftarrow B$. Does $B \perp N \mid \emptyset$ hold?
 - No, $p(B | N) \neq p(B)$ [Can be derived from joint distribution]
 - Intuitively: Neighbor calls \Rightarrow probably alarm \Rightarrow probably burglary

p(B=1|N=1) > p(B=1|N=0)

• Variable N influences variable B through the serial connection $N \leftarrow A \leftarrow B$

Serial Connections

Joint distribution: p(B, E, A, N, R) =p(B)p(E)p(A | E, B)p(N | A)p(R | E)

observed variable

• Looking at path $N \leftarrow A \leftarrow B$. Does $B \perp N \mid A$ hold?

Serial Connections

B

Joint distribution: p(B, E, A, N, R) = p(B)p(E)p(A | E, B)p(N | A)p(R | E)(R)

- Looking at path $N \leftarrow A \leftarrow B$. Does $B \perp N \mid A$ hold?
 - Yes, p(B | N, A) = p(B | A) [Can be derived from joint distribution]
 - Intuitively:

If we already know that alarm was triggered, the probably for burglary does not increase or decrease because the neighbor calls.

• The serial connection $N \leftarrow A \leftarrow B$ is *blocked* by the observation of A.

Intelligent Data Analysis II

Converging Connections

Joint distribution:

p(B, E, A, N, R) = p(B)p(E)p(A | E, B)p(N | A)p(R | E)

• Looking at path $B \rightarrow A \leftarrow E$. Does $B \perp E | \emptyset$ hold?

Converging Connections

Joint distribution: p(B, E, A, N, R) =p(B)p(E)p(A | E, B)p(N | A)p(R | E)

- Looking at path $B \rightarrow A \leftarrow E$. Does $B \perp E | \emptyset$ hold?
 - Yes, p(B | E) = p(B) [Can be derived from joint distribution]
 - Intuitively:

Burglaries are not more/less frequent on days with earthquakes

• The converging path $B \rightarrow A \leftarrow E$ is blocked if A is **not** observed

Converging Connections

Joint distribution: p(B, E, A, N, R) =p(B)p(E)p(A | E, B)p(N | A)p(R | E)

) observed variable

- Looking at path $B \rightarrow A \leftarrow E$. Does $B \perp E \mid A$ hold?
 - No, $p(B | E, A) \neq p(B | A)$ [Derive from joint distribution]
 - Intuitively:

Alarm was triggered. If we observed an earthquake, this explains the alarm, thus probability for burglary is reduced ("explaining away" phenomenon).

• The converging path $B \rightarrow A \leftarrow E$ is *unblocked* by observation of A

Converging connections

Joint distribution: p(B, E, A, N, R) =p(B)p(E)p(A | E, B)p(N | A)p(R | E)

) observed variable

- Looking at path $B \rightarrow A \leftarrow E$. Does $B \perp E \mid N$ hold?
 - No, $p(B | N, A) \neq p(B | A)$ [Derive from joint distribution]
 - Intuitively:

Neighbor calls is an indirect observation of alarm. Observation of an earthquake explains the alarm, probability for burglary is reduced ("explaining away").

• The converging path $B \rightarrow A \leftarrow E$ is *unblocked* by observing N.

Summary Pathes

Joint distribution:

p(B, E, A, N, R) = p(B)p(E)p(A | E, B)p(N | A)p(R | E)

- Summary: a path ...-X-Y-Z-... is
 - Blocked at Y, if
 - \star Diverging connection, and Y is observed, or
 - \star Serial connection, and Y is observed, or
 - ★ Converging connection, and neither Y nor one of its descendents Y'∈ Descendants(Y) is observed
 - * $Descendants(Y) = \{Y' | there is a directed path from Y zu Y'\}$
 - If the path it not blocked at Y, it is free at Y.

D-Separation: Are All Pathes Blocked?

- So far we have defined if a path is blocked at a particular node.
- A path is blocked overall, if it is blocked at one of its nodes:
 - Let X,X' be random variables, C a set of observed random variables, X,X' ∉ C
 - A path X−X₁−...−X_n−X[•] between X and X[•] is blocked given C if and only if there is a node X_i such that the path is blocked at the node X_i given C.
- D-Separation: are all pathes blocked?
 - Let X, Y be random variables, C a set of random variables with X, Y ∉ C.
 - Definition: X and Y are d-separated given C if and only if every path from X to Y is blocked given C.

D-Separation: Correct and Complete

- Given a graphical model over random variables $\{X_1, ..., X_N\}$ with graph structure *G*.
- The graphical model defines a joint distribution by

$$p(X_1,...,X_N) = \prod_{i=1}^N p(X_i \mid pa(X_i))$$

that depends on the conditional distributions $p(X_i | pa(X_i))$.

- Theorem (D-separation is correct and complete)
 - If *X*, *Y* are d-separated given *C* in *G*, then $X \perp Y \mid C$.
 - There are no other independencies that hold irrespective of the choice of the conditional distribution $p(X_i | pa(X_i))$.
- Of course, additional independencies can exists because of the choice of particular $p(X_i | pa(X_i))$.

D-Separation: Example

Does $A \perp F \mid D$ hold? Does $B \perp E \mid C$ hold? Does $A \perp E \mid C$ hold?

- A path ...-X-Y-Z-... is
 - Blocked at Y, if
 - \star Diverging connection, and Y is observed, or
 - \star Serial connection, and Y is observed, or
 - ★ Converging connection, and neither Y nor any of ist descendants Y'∈ Descendants(Y) is observed.
 - Otherwise the path is free at *Y*.

D-Separation: Example

Yes
No: $\mathbf{B} - \mathbf{G} - \mathbf{E}$
No: $A - C - B - G - E$

- A path ...-X-Y-Z-... is
 - Blocked at Y, if
 - \star Diverging connection, and Y is observed, or
 - \star Serial connection, and Y is observed, or
 - ★ Converging connection, and neither Y nor any of ist descendants Y'∈ Descendants(Y) is observed.
 - Otherwise the path is free at *Y*.

Bayesian Networks: Causality

- Often Bayesian networks are constructed in such a way that directed edges correspond to causal influences
 - $G \quad \textcircled{E} \longrightarrow \textcircled{A}$,,Earthquakes trigger the alarm system"
- However, equivalent model:

 $G' (E) \longleftarrow (A)$,,The alarm system triggers an earthquake"

• **Definition:** I(G) = { $(X \perp Y \mid C) : X$ and Y are d-separated given C in G}

"All independence assumptions encoded in G"

- $I(G) = I(G') = \emptyset$:
 - Not statistical reasons to prefer one of the models.
 - We cannot distinguish between the models based on data.
 - But "causal" models often more intuitive.

Models of Different Complexity

- Complexity of a model depends on the number (and location) of edges in the graph
 - Many edges: few independence assumptions, many parameters, large class of distributions can be represented.
 - Few edges: many independence assumptions, few parameters, small class of distributions can be represented.

Models of Different Complexity

- Adding edges: family of representable distributions becomes larger, *I(G)* becomes smaller.
- Extreme cases: graph without any edges, graph completely connected (as an undirected graph)

N parameter (for binary variables)

 $I(G) = \{ (X \perp Y \mid C) : X, Y \text{ RV}, C \text{ set of RV} \}$

 2^{N} -1 parameters (for binary variables)

$$I(G) = \emptyset$$