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Overview: Graphical Models

= Graphical models: tool for modelling domain with several
random variables.

= For example medical domains: joint distribution over attributes
of patients, symptoms, and diseases.

= Can be used to answer any probabilistic query.
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| Attribute name Description

|

I Exposure Exposure to ticks, e.g., patient visited a forest
| Duration Duration of the disease

I Month Month the patient reported to a doctor

I Rash Whether the patient developed rash

I IgM. IgG Serological tests

I Neuro Neurological symptoms
i ACA, KNB, Carditis, Various other symptoms

Lymphocytom, Andet
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Agenda

= Graphical models: syntax and semantics.

= Inference in graphical models (exact, approximate)
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= Graphical models in machine learning.




Agenda

= Graphical models: syntax and semantics.
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Recap: Random Variables, Distributions

s Random variables: X,Y.Z,...

discrete random variables: distributions defined by probabilities
for possible values.

continuous random variables: distributions defined by densities.

s Joint distribution p(X,Y)

= Conditional distribution p(X|Y)= p%}j)

= Product rule:
P(X,Y)=p(X|Y)p(Y) discrete or continuous

= Sum rule: p(x) = Z p(x,y) discrete random variables
y

p(x) = j p(x,y)dy continuous random variables
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Independence of Random Variables

= Independence (discrete or continuous)
X,Y independent if and only if p(X,Y)=p(X)p(Y)
X,Y independent if and only if p(X |Y)= p(X)
X,Y independent if and only if p(Y | X) = p(Y)

= Conditional independence (discrete or continuous)
X,Y independent given Z if and only if p(X,Y |Z)=p(X|Z)p(Y |Z2)
X,Y independent given Z if and only if p(Y | X,Z)=p(Y |Z)
X,Y independent given Z if and only if p(X |Y,Z)=p(X |2)
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... simply application of the notion of independence
to the conditional joint distribution p(X,Y|2)




Graphical Models: Idea/Goal

= Goal: Model for the joint distribution p(X,,...,X,) of a set
of random variables X, ..., X},

= Given p(X, ....X3) , we can compute...
All marginal distributions (by sum rule)

(X, s X, )y Liyeonin b L N}

All conditional distributions (from marginal distributions)

e X 1K e X ) Ay i b S L N3

= Enough to answer all probabilistic queries (,inference
problems®) over the random variables X, ..., X},
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Graphical Models: Idea/Goal

= Graphical models: combination of probability theory and
graph theory.

= Compact, intuitive modeling of p(X,,....X,) .

Graph structure represents structure of the distributions
(dependencies between variables X, ..., Xy ).

Insight into structure of the model; easy to inject prior
knowledge.

Efficient algorithms for inference that exploit the graph
structure.

= Many machine learning methods can be represented as
graphical models.

= Tasks such as finding the MAP model or computing
Bayes-optimal predictions can be formulated as
Inference problems in graphical models.
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Graphical Models: Example

s Example: ,Alarm” scenario
Our house in Los Angeles has an alarm system.

We are on holidays. Our neighbor calls in case he hears the
alarm going off. In case of a burglary we would like to return.

Unfortunately, our neigbor is not always at home.
Unfortunately, the alarm can also be triggered by earthquakes.

= 5 binary random variables

Burglary — burglary has taken place

@ Earthquake — earthquake has taken place
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@ Alarm — alarm is triggered
@ NeighborCalls — neighbor calls us

@ RadioReport — Report about an earthquake on the radio




Graphical Models: Example

= Random variables have a joint distribution p(B,E,A,N,R).
How to specify? Which dependencies hold?

s Example for inference problem: neighbor has called
(N=1), how likely that there was a burglary (B=1)?

Depends on several factors
= How likely is a burglary a priori?
» How likely is an earthquake a priori?
x How likely that alarm is triggered?

* ...
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p(B=1N =1)
p(N =1)

Y'Y p(B=1E,AN =1R)

—__E A R

"S5y S p(B.E,AN=1R)

(Naive) inference: p(B=1|N =1) =

10




Graphical Models: Example

= How do we model p(B,E,A,N,R)? =
1. Attempt: complete table of probabilities §

-

B B |E |4 |N |R |PBEANR) 5

S +Any distribution p(B, E, A,N,R) 5

0100 o]0 |06 >

N can be represented 5
oN— |7 ]oJo Jo |o |000s c 1 number of , 2
7 o o 1o Too - Exponential number of parameters )

- Difficult to specify for humans =

~——

2. Attempt: everything is independent

p(B,E, A N,R) = p(B)p(E) p(A) p(N) p(R)
+ linear number of parameters
- too restrictive, independence assumption does not allow any meaningful inference
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Graphical Models: Example

s Graphical model: selective independence assumptions,
motivated by prior knowledge.

= Choose variable ordering: e.g. B<E<A<N<R
= Product rule:

p(B,E,AN,R) = p(B,E,A N)p(R|B,E, A N)
= p(B,E, A)p(N | B,E, A)p(R| B,E, A N)
= Pp(B,E)p(A|B,E)p(N|B,E, A)p(R|B,E,AN)
= Pp(B)p(E|B)p(A[B,E)p(N |B,E, A)p(R|B,E,AN)

/

Factors describe distribution of one random variable as a function
of other random variables.
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Can we simplify these factors?
Which dependencies really hold in our domain? 12




Graphical Models: Example

s Decomposition into factors according to product rule:

p(B,E,AN,R)=p(B)p(E|B)p(A|B,E)p(N|B,E,A)p(R|B,E,AN)

= Conditional independence assumptions (remove variables
from conditional expression)

p(E[B)=p(E) Earthquake does not depend on burglary
p(A|B,E)=p(A|B,E) Alarm does depend on burglary and earthquake
P(N|B,E,A)=p(N|A) Whether neighbor calls only depends on alarm
P(R|B,E,A,N)=p(R|E) Report on the radio only depends on earthquake

= Arriving at simplified form of joint distribution:

P(B,E,AN,R)=p(B)p(E)p(A|E,B)p(N|A)p(R|E)

Simplified factors
13
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Graphical Models: Example

s Graphical model for ,Alarm® scenario

P(B=1)
0.1

\ /\?z.zf

P(E=1) Distribution modeled:

0.2 P(B,E,A,N,R)=p(B)p(E)p(A|E,B)p(N[A)p(R|E)

P(A=1|B,E)

0.01

0.5

Nl NS S

NS~ S

0.9

P(R=1|E)
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Graphical model:
- There Is one node for each random variable
- For each factor of the form p(X | X,,..., X,)

0.95

A4 |Piv=114)

there is a directed edge from the X, to X in the graph

0 101

- Model is parameterized with conditional distributions

07 POX | Xy X,)
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Graphical Models: Example

s Graphical model for ,Alarm® scenario =

g

P(B=1) P(E=1) o)

0.1 0.2 2

@ @ E |PR=11E) QUJ

\ 0 |oor1 &

1 0:5 >

>

B |g |Paa=11BE) @ @ i_-’

0o lo |oo 28

0o |1 |os (0p)

T ] A =
™ =

Number of parameters: O(N2X), K= max. number of
parents of a node.

Here 1+1+2+2+4 instead of 2°-1 parameters for full table.

= These directed graphical models are also called

Bayesian networks.
15




Directed Graphical Models: Definition

= Given a set of random variables {X,, ..., X}
= A directed graphical model over the random variables
{X,,....Xy} Is adirected graph with
Node set X,.... X,
There are no directed cycles X, - X, —»..—> X, =X,

Nodes are associated with parameterized conditional
distributions p(X; | pa(X;)), where pa(X;)={X;[X; = X;}
denotes the set of parent nodes of a node.
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= The graphical model represents a joint distribution over
X,,....Xy by

P(Xyse Xy) =H p(X; | pa(X,))

16




Directed Graphical Models: Definition

= Why does the graph have to be acyclic?
Theorem from graph theory:

G isacyclic < there is an ordering <, of the nodes such that all
directed edges respect the ordering (N > N' = N <, N)

For such an ordering, we can factorize

N
p(Xyes X ) = T PCX, 1 PR(X,)
= Before X, in variable ordering }
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according to product rule + conditional independence
assumptions (variables sorted according to <; )

= Counterexample (not a graphical model)

GO (V) p)=p(X IV)R(Y ] X)
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Graphical Models: Independence

= The graph structure of a graphical model implies

(conditional) independencies between random variables.

s Notation: for variables X, Y, Z we write
X1Y|Z < p(X|Y,Z)=p(X|Z)
"X independent of Y given Z"

s Extension to disjoint sets 4, B, C of random variables:

A 1B|C < p(A|B,C)=p(A[C)

18
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Graphical Models: Independence

= Which independence assumptions of the form A LB|C
are modeled by the graph structure?

Can be checked by sum/product rule starting from the
modeled joint distribution (lots of work!)

For graphical models, independence assumptions can be
read off the graph structure — much easier.

,D-separation”: Set of simple rules from which all
independence assumptions encoded in the graph can be
derived.

,D“ in ,D-separation” stands for ,Directed”, because we are
talking about directed graphical models (similar mechanism
exists for ,undirected” models, which we do not cover).
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Graphical Models: Independence

s D-separation: Which indepence assumptions A LB|C are g
modeled by the graph structure? §
m |dea: can be checked by looking at pathes connecting %
random variables. 3
_ >
= Notation: D
‘<<
28
\ -
— Path between X and Z has a diverging =
o — ® O @ - connection at Y (,,tail to tail®).
TN X @ © — " Path between X and Z has a converging
- —_ S~ connection at'Y (,,head to head®).

TN X @ @) — Path between X and Z has a serial
- — ' ~ connection at Y (,,head to tail®).
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Diverging Connections

@ Joint distribution:
\ / \ pP(B,E,A N,R) =
0 B p(B)p(E)p(A|E,B)p(N[A)p(R|E)
l B=,, Burglary“ N=,, Neighbor calls “
E=,, Earthquake “ R=,,Radio report

@ A=, Alarm*

= Looking at path A«F—R. DoesA LR|< hold?

21
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Diverging Connections

® Joint distribution: g
\ / \ p(B’E!A!NiR): §
p(B)p(E)p(A|E,B)p(N|A)p(R|E) @

®» ® 3

X

l B=,, Burglary “ N=,, Neighbor calls “ >

E=,, Earthquake “ R=,,Radio report 93_3

@ A=, Alarm* E

n

= Looking at path A«F—R. DoesA LR|< hold?

No, p(A|R) # p(A) [Can be derived from joint distribution]
Intuitively:

Radio report = probably earthquake = probably alarm
p(A=1|R=1)> p(A=1|R=0)

Variable R influences variable A through the diverging connection R« E —» A

22




Diverging Connections

o =
@ Joint distribution: @
\ / \ p(B,E,A,N,R): LCED
0 D P(B)p(E)p(A|E,B)p(N|A)p(R|E) g

3

l >
@ Q observed variable 2

(7))

2

= Looking at path A<F—R. Does A LR|E hold?

23




Diverging Connections

o =
@ Joint distribution: @
\ /\ p(B,E,A N,R) = &
0 D P(B)p(E)p(A|E,B)p(N|A)p(R|E) @

3

| .

@ Q observed variable 2

(7))

B

= Looking at path A<F—R. Does A LR|E hold?
Yes, p(A|R,E)=p(A|E) [Can be derived from joint distribution]
Intuitively:

If we allready know that an earthquake has occured the probably for alarm
Is not increased or decreased because of radio report.

The diverging path A < E — R is blocked by the observation of E.

24




Serial Connections

(®) Joint distribution: =
\ / \ p(B,E,A N,R) = §
Q

%;

= Looking at path N« 4 «— B. Does BLN|@ hold?
No, p(B|N) = p(B) [Can be derived from joint distribution]
Intuitively:
Neighbor calls = probably alarm = probably burglary
p(B=1|N=1)>p(B=1|N =0)
Variable N influences variable B through the serial connection N «— A<« B

25




Serial Connections

@ Joint distribution:
\ / \ p(B,E,A N,R) =
D B P(B)p(E)p(A|E,B)p(N[A)p(R|E)
%D () observed variable

= Looking at path N« A «— B. Does BLN|A hold?

26
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Serial Connections

- - - - . 5

@ Joint distribution: @
\ / \ p(B,E,AN,R) = &
D B p(B)p(E)p(A|E,B)p(N | A)p(R|E) @

3

| >

® () observed variable 2

(7))

2

= Looking at path N« A «— B. Does BLN|A hold?
Yes, p(B|N,A)=p(B|A) [Can be derived from joint distribution]
Intuitively:

If we already know that alarm was triggered, the probably for burglary
does not increase or decrease because the neighbor calls.

The serial connection N «— A« B is blocked by the observation of A

27




Converging Connections

(®) Joint distribution: =
\ / \ p(B,E,A N,R) = §
(a) ® p(B)p(E)p(A|E,B)p(N | A)p(R|E) §

Q

%;

= Looking at path B— 4 < E. Does BLE|@ hold?

28




Converging Connections

(®) Joint distribution: =
\ / \ p(B,E,A N,R) = §
Q

%;

= Looking at path B— 4 < E. Does BLE|@ hold?

Yes, p(B|E)=p(B) [Can be derived from joint distribution]
Intuitively:
Burglaries are not more/less frequent on days with earthquakes

The converging path B— A <« E is blocked if A is not observed

29




Converging Connections

@ Joint distribution:
\ / \ p(B,E,A N,R) =
D B P(B)p(E)p(A|E,B)p(N[A)p(R|E)
%D () observed variable

= Looking at path B— 4 < E. Does B LE|A hold?
No, p(B|E,A)= p(B|A) [Derive from joint distribution]
Intuitively:
Alarm was triggered. If we observed an earthquake, this explains the alarm,
thus probability for burglary is reduced ("explaining away" phenomenon).

The converging path B— A <« E is unblocked by observation of A

30
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Converging connections

- - - - . 5

@ Joint distribution: @
\ / \ p(B,E,AN,R) = &
o B p(B)p(E)p(A|E,B)p(N | A)p(R|E) @

3

| >

® () observed variable 2

(7))

2

= Looking at path B— 4 «— E. Does B_LE|N hold?
No, p(B|N,A) = p(B|A) [Derive from joint distribution]
Intuitively:
Neighbor calls is an indirect observation of alarm. Observation of an earthquake
explains the alarm, probability for burglary is reduced (“explaining away").

The converging path B— A <« E is unblocked by observing N.

31




Summary Pathes

Joint distribution:

®)
\ /\ p(B,E,AN,R)=

(a) R p(B)p(E)p(A|E,B)p(N [ A)p(R|E)

|

O

= Summary: a path ...-X-Y-Z-... Is
Blocked at Y, if
= Diverging connection, and Y is observed, or
x Serial connection, and Y is observed, or

x Converging connection, and neither Y nor one of its
descendents Y‘€ Descendants(Y) is observed

x Descendants(Y)={Y ‘|there is a directed path from Y zu Y}
If the path it not blocked at Y, itisfreeat Y.

32
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D-Separation: Are All Pathes Blocked?

= So far we have defined if a path is blocked at a particular node.
= A path is blocked overall, if it is blocked at one of its nodes:

Let X.X° be random variables, C a set of observed random
variables, X X & C
Apath X-X,—..-X — X' between X and X* is blocked

given C if and only if there is a node X; such that the path is
blocked at the node X; given C.

=]
—
@
(5.
®
- |
—
O
=
QD
>
>
L
<
)
0]

s D-Separation: are all pathes blocked?

Let X, Y be random variables, C a set of random variables
with X, Y € C.

Definition: X and Y are d-separated given C if and only if
every path from X to Y is blocked given C.

33




D-Separation: Correct and Complete

= Given a graphical model over random variables {X,,...,X;} with
graph structure G.

= The graphical model defines a joint distribution by
Py Xy ) =] ] PCX 1 Pa(X)))

that depends on the conditional distributions p(X; | pa(X;)).
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= Theorem (D-separation is correct and complete)
If X,Y are d-separated given Cin G, then X LY |C.

There are no other independencies that hold irrespective
of the choice of the conditional distribution p(X; | pa(X;)).

s Of course, additional independencies can exists because of
the choice of particular p(X; | pa(X,)).
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D-Separation: Example
o,

Ore ©

=1

\ S
S N Does A LF|D hold? ‘c'é
© (D) Does B LE|C hold? S
Q

1 1 Does A_LE|C hold? &
L

QO

<<

23

0]

= Apath...-X-Y-Z-... is
Blocked at Y, if
= Diverging connection, and Y is observed, or
x Serial connection, and Y is observed, or

» Converging connection, and neither Y nor any of ist
descendants Y ‘€ Descendants(Y) Is observed.

Otherwise the path is free at Y.
35




D-Separation: Example
o,

Ore ©

=1

\ :
e . Does A LF|D hold? Yes E
© (D) Does B_LE|C hold? No:B-G-E o
Q

1 1 Does AL E|C hold? No:A-C-B-G-E [
=z

D

<<

%)

(0p)

= Apath...-X-Y-Z-... is
Blocked at Y, if
= Diverging connection, and Y is observed, or
x Serial connection, and Y is observed, or

» Converging connection, and neither Y nor any of ist
descendants Y ‘€ Descendants(Y) Is observed.

Otherwise the path is free at Y.
36




Bayesian Networks: Causality

= Often Bayesian networks are constructed in such a way that
directed edges correspond to causal influences

G @ EE—— @ ,Earthquakes trigger the alarm system*
= However, equivalent model:
G’ @ — @ ,,T'he alarm system triggers an earthquake*

s Definition: (G)={ (X LY|C): X and Y are d-separated given C in G}

,,All independence assumptions encoded in G *

m [(G)=1(G)=T:
Not statistical reasons to prefer one of the models.
We cannot distinguish between the models based on data.
But ,causal” models often more intuitive.

37
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Models of Different Complexity

= Complexity of a model depends on the number (and location) of
edges in the graph

Many edges: few independence assumptions, many parameters,
large class of distributions can be represented.

Few edges: many independence assumptions, few parameters, small
class of distributions can be represented.
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Models of Different Complexity

= Adding edges: family of representable distributions becomes
larger, I(G) becomes smaller.

s Extreme cases: graph without any edges, graph completely
connected (as an undirected graph)

® (8l (F)

NIAN

® ® (W4—(®)

. i

N parameter (for binary variables) 2" -1 parameters (for binary variables)

1(G)={(X LY|C):X,Y RV, C setof RV} 1(G)=2

39
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