Universität Potsdam Institut für Informatik
Lehrstuhl Maschinelles Lernen

Graphical Models

Niels Landwehr

Overview: Graphical Models

- Graphical models: tool for modelling domain with several random variables.
- For example medical domains: joint distribution over attributes of patients, symptoms, and diseases.
- Can be used to answer any probabilistic query.

Agenda

- Graphical models: syntax and semantics.
- Inference in graphical models (exact, approximate)
- Graphical models in machine learning.

Agenda

- Graphical models: syntax and semantics.
- Inference in graphical models (exact, approximate)
- Graphical models in machine learning.

Recap: Random Variables, Distributions

- Random variables: X, Y, Z, \ldots
- discrete random variables: distributions defined by probabilities for possible values.
- continuous random variables: distributions defined by densities.
- Joint distribution $p(X, Y)$
- Conditional distribution $p(X \mid Y)=\frac{p(X, Y)}{p(Y)}$
- Product rule:

$$
p(X, Y)=p(X \mid Y) p(Y) \quad \text { discrete or continuous }
$$

- Sum rule: $\quad p(x)=\sum_{y} p(x, y) \quad$ discrete random variables

$$
p(x)=\int_{-\infty}^{\infty} p(x, y) d y \quad \text { continuous random variables }
$$

Independence of Random Variables

- Independence (discrete or continuous)
X, Y independent if and only if $p(X, Y)=p(X) p(Y)$
X, Y independent if and only if $p(X \mid Y)=p(X)$
X, Y independent if and only if $p(Y \mid X)=p(Y)$
- Conditional independence (discrete or continuous)
X, Y independent given Z if and only if $p(X, Y \mid Z)=p(X \mid Z) p(Y \mid Z)$
X, Y independent given Z if and only if $p(Y \mid X, Z)=p(Y \mid Z)$
X, Y independent given Z if and only if $p(X \mid Y, Z)=p(X \mid Z)$
... simply application of the notion of independence
to the conditional joint distribution $\mathrm{p}(\mathrm{X}, \mathrm{Y} \mid \mathrm{Z})$

Graphical Models: Idea/Goal

- Goal: Model for the joint distribution $p\left(X_{1}, \ldots, X_{N}\right)$ of a set of random variables X_{1}, \ldots, X_{N}
- Given $p\left(X_{l}, \ldots, X_{N}\right)$, we can compute...
- All marginal distributions (by sum rule)

$$
p\left(X_{i_{i}}, \ldots, X_{i_{m}}\right), \quad\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, N\}
$$

- All conditional distributions (from marginal distributions)

$$
p\left(X_{i}, \ldots, X_{i_{n}} \mid X_{i_{m+1}}, \ldots, X_{i_{n+k}}\right), \quad\left\{i_{1}, \ldots, i_{m+k}\right\} \subseteq\{1, \ldots, N\}
$$

- Enough to answer all probabilistic queries (,inference problems") over the random variables X_{1}, \ldots, X_{N}

Graphical Models: Idea/Goal

- Graphical models: combination of probability theory and graph theory.
- Compact, intuitive modeling of $p\left(X_{l}, \ldots, X_{N}\right)$.
- Graph structure represents structure of the distributions (dependencies between variables X_{l}, \ldots, X_{N}).
- Insight into structure of the model; easy to inject prior knowledge.
- Efficient algorithms for inference that exploit the graph structure.
- Many machine learning methods can be represented as graphical models.
- Tasks such as finding the MAP model or computing Bayes-optimal predictions can be formulated as inference problems in graphical models.

Graphical Models: Example

- Example: „Alarm" scenario
- Our house in Los Angeles has an alarm system.
- We are on holidays. Our neighbor calls in case he hears the alarm going off. In case of a burglary we would like to return.
- Unfortunately, our neigbor is not always at home.
- Unfortunately, the alarm can also be triggered by earthquakes.
- 5 binary random variables
(B) Burglary - burglary has taken place
(E) Earthquake - earthquake has taken place
(A) Alarm - alarm is triggered
(N) NeighborCalls - neighbor calls us
(R) RadioReport - Report about an earthquake on the radio

Graphical Models: Example

- Random variables have a joint distribution $p(B, E, A, N, R)$. How to specify? Which dependencies hold?
- Example for inference problem: neighbor has called $(N=1)$, how likely that there was a burglary $(B=1)$?
- Depends on several factors
* How likely is a burglary a priori?
* How likely is an earthquake a priori?
^ How likely that alarm is triggered?
* ...
(Naive) inference: $p(B=1 \mid N=1)=\frac{p(B=1, N=1)}{p(N=1)}$

$$
\begin{aligned}
& \sum_{E} \sum_{A} \sum_{R} p(B=1, E, A, N=1, R) \\
& \sum_{B} \sum_{E} \sum_{A} \sum_{R} p(B, E, A, N=1, R)
\end{aligned}
$$

Graphical Models: Example

- How do we model $p(B, E, A, N, R)$?
- 1. Attempt: complete table of probabilities
$2^{N}\left\{\begin{array}{|l|l|l|l|l|l|}\hline B & E & A & N & R & P(B, E, A, N, R) \\ \hline 0 & 0 & 0 & 0 & 0 & 0.6 \\ \hline 1 & 0 & 0 & 0 & 0 & 0.005 \\ \hline 0 & 1 & 0 & 0 & 0 & 0.01 \\ \hline \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ \hline\end{array}\right.$
+Any distribution $p(B, E, A, N, R)$ can be represented
- Exponential number of parameters
- Difficult to specify for humans
- 2. Attempt: everything is independent
$p(B, E, A, N, R)=p(B) p(E) p(A) p(N) p(R)$
+ linear number of parameters
- too restrictive, independence assumption does not allow any meaningful inference

Graphical Models: Example

- Graphical model: selective independence assumptions, motivated by prior knowledge.
- Choose variable ordering: e.g. $B<E<A<N<R$
- Product rule:

$$
\begin{aligned}
p(B, E, A, N, R) & =p(B, E, A, N) p(R \mid B, E, A, N) \\
& =p(B, E, A) p(N \mid B, E, A) p(R \mid B, E, A, N) \\
& =p(B, E) p(A \mid B, E) p(N \mid B, E, A) p(R \mid B, E, A, N) \\
& =p(B) p(E \mid B) p(A \mid B, E) p(N \mid B, E, A) p(R \mid B, E, A, N)
\end{aligned}
$$

Factors describe distribution of one random variable as a function of other random variables.

Can we simplify these factors?
Which dependencies really hold in our domain?

Graphical Models: Example

- Decomposition into factors according to product rule:

$$
p(B, E, A, N, R)=p(B) p(E \mid B) p(A \mid B, E) p(N \mid B, E, A) p(R \mid B, E, A, N)
$$

- Conditional independence assumptions (remove variables from conditional expression)

$$
\begin{aligned}
& p(E \mid B)=p(E) \\
& p(A \mid B, E)=p(A \mid B, E) \\
& p(N \mid B, E, A)=p(N \mid A) \\
& p(R \mid B, E, A, N)=p(R \mid E)
\end{aligned}
$$

Earthquake does not depend on burglary
Alarm does depend on burglary and earthquake
Whether neighbor calls only depends on alarm
Report on the radio only depends on earthquake

- Arriving at simplified form of joint distribution:

Graphical Models: Example

- Graphical model for „Alarm" scenario

Graphical Models: Example

- Graphical model for „Alarm" scenario

- Number of parameters: $O\left(N 2^{K}\right), K=$ max. number of parents of a node.
- Here $1+1+2+2+4$ instead of $2^{5}-1$ parameters for full table.
- These directed graphical models are also called Bayesian networks.

Directed Graphical Models: Definition

- Given a set of random variables $\left\{X_{1}, \ldots, X_{N}\right\}$
- A directed graphical model over the random variables $\left\{X_{1}, \ldots, X_{N}\right\}$ is a directed graph with
- Node set X_{1}, \ldots, X_{N}
- There are no directed cycles $X_{i_{1}} \rightarrow X_{i_{2}} \rightarrow \ldots \rightarrow X_{i_{k}} \rightarrow X_{i_{1}}$
- Nodes are associated with parameterized conditional distributions $p\left(X_{i} \mid p a\left(X_{i}\right)\right)$, where $p a\left(X_{i}\right)=\left\{X_{j} \mid X_{j} \rightarrow X_{i}\right\}$ denotes the set of parent nodes of a node.
- The graphical model represents a joint distribution over X_{l}, \ldots, X_{N} by

$$
p\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1}^{N} p\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

Directed Graphical Models: Definition

- Why does the graph have to be acyclic?
- Theorem from graph theory:
G is acyclic \Leftrightarrow there is an ordering \leq_{G} of the nodes such that all directed edges respect the ordering $\left(N \rightarrow N^{\prime} \Rightarrow N \leq_{G} N^{\prime}\right)$
- For such an ordering, we can factorize

$$
p\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1}^{N} p(X_{i} \mid p \underbrace{\text { Before } X_{i} \text { in variable ordering }}
$$

according to product rule + conditional independence assumptions (variables sorted according to \leq_{G})

- Counterexample (not a graphical model)

Graphical Models: Independence

- The graph structure of a graphical model implies (conditional) independencies between random variables.
- Notation: for variables X, Y, Z we write

$$
X \perp Y \mid Z \Leftrightarrow p(X \mid Y, Z)=p(X \mid Z)
$$

" X independent of Y given Z "

- Extension to disjoint sets A, B, C of random variables:

$$
\mathrm{A} \perp \mathrm{~B} \mid C \Leftrightarrow p(A \mid B, C)=p(A \mid C)
$$

Graphical Models: Independence

- Which independence assumptions of the form $\mathrm{A} \perp \mathrm{B} \mid C$ are modeled by the graph structure?
- Can be checked by sum/product rule starting from the modeled joint distribution (lots of work!)
- For graphical models, independence assumptions can be read off the graph structure \rightarrow much easier.
* "D-separation": Set of simple rules from which all independence assumptions encoded in the graph can be derived.
* „D" in „D-separation" stands for „Directed", because we are talking about directed graphical models (similar mechanism exists for „undirected" models, which we do not cover).

Graphical Models: Independence

- D-separation: Which indepence assumptions $\mathrm{A} \perp \mathrm{B} \mid C$ are modeled by the graph structure?
- Idea: can be checked by looking at pathes connecting random variables.
- Notation:

Path between X and Z has a diverging connection at Y (,,tail to tail").

Path between X and Z has a converging connection at Y (,,head to head").

Path between X and Z has a serial connection at Y (,,head to tail").

Diverging Connections

Joint distribution:

$$
\begin{aligned}
& p(B, E, A, N, R)= \\
& \quad p(B) p(E) p(A \mid E, B) p(N \mid A) p(R \mid E)
\end{aligned}
$$

$$
\begin{array}{ll}
B=,, \text { Burglary" } & N=,, \text { Neighbor calls" " } \\
E=,, \text { Earthquake" } & R=,, \text { Radio report" } \\
\text { A=,,Alarm" } &
\end{array}
$$

- Looking at path $A \leftarrow E \rightarrow R$. Does A $\perp R \mid \varnothing$ hold?

Diverging Connections

Joint distribution:

$$
\begin{aligned}
& p(B, E, A, N, R)= \\
& \quad p(B) p(E) p(A \mid E, B) p(N \mid A) p(R \mid E) \\
& \\
& B=, \text { Burglary" } \quad N=, \text { Neighbor calls" } \\
& E=, \text { Earthquake" } \quad R=\text {,,Radio report" } \\
& A=,, \text { Alarm" }
\end{aligned}
$$

- Looking at path $A \leftarrow E \rightarrow R$. Does A $\perp R \mid \varnothing$ hold?
\bullet No, $p(A \mid R) \neq p(A) \quad$ [Can be derived from joint distribution]
- Intuitively:

Radio report \Rightarrow probably earthquake \Rightarrow probably alarm
$p(A=1 \mid R=1)>p(A=1 \mid R=0)$
Variable R influences variable A through the diverging connection $R \leftarrow E \rightarrow A$

Diverging Connections

Joint distribution:
$p(B, E, A, N, R)=$
$p(B) p(E) p(A \mid E, B) p(N \mid A) p(R \mid E)$observed variable

- Looking at path $A \leftarrow E \rightarrow R$. Does A $\perp R \mid E$ hold?

Diverging Connections

Joint distribution:

$$
\begin{aligned}
& p(B, E, A, N, R)= \\
& \quad p(B) p(E) p(A \mid E, B) p(N \mid A) p(R \mid E)
\end{aligned}
$$

- Looking at path $A \leftarrow E \rightarrow R$. Does A $\perp R \mid E$ hold?
$-\quad$ Yes, $p(A \mid R, E)=p(A \mid E) \quad$ [Can be derived from joint distribution]
- Intuitively:

If we allready know that an earthquake has occured the probably for alarm is not increased or decreased because of radio report.
$-\quad$ The diverging path $\mathrm{A} \leftarrow E \rightarrow R$ is blocked by the observation of E .

Serial Connections

Joint distribution:

$$
\begin{aligned}
& p(B, E, A, N, R)= \\
& \quad p(B) p(E) p(A \mid E, B) p(N \mid A) p(R \mid E)
\end{aligned}
$$

- Looking at path $N \leftarrow A \leftarrow B$. Does $\mathrm{B} \perp \mathrm{N} \mid \varnothing$ hold?
- No, $p(B \mid N) \neq p(B) \quad$ [Can be derived from joint distribution]
- Intuitively:

Neighbor calls \Rightarrow probably alarm \Rightarrow probably burglary

$$
p(B=1 \mid N=1)>p(B=1 \mid N=0)
$$

- Variable N influences variable B through the serial connection $\mathrm{N} \leftarrow A \leftarrow B$

Serial Connections

Joint distribution:

$$
\begin{aligned}
& p(B, E, A, N, R)= \\
& \quad p(B) p(E) p(A \mid E, B) p(N \mid A) p(R \mid E)
\end{aligned}
$$observed variable

- Looking at path $N \leftarrow A \leftarrow B$. Does $\mathrm{B} \perp \mathrm{N} \mid A$ hold?

Serial Connections

Joint distribution:
$p(B, E, A, N, R)=$ $p(B) p(E) p(A \mid E, B) p(N \mid A) p(R \mid E)$observed variable

- Looking at path $N \leftarrow A \leftarrow B$. Does $\mathrm{B} \perp \mathrm{N} \mid A$ hold?
- Yes, $p(B \mid N, A)=p(B \mid A) \quad$ [Can be derived from joint distribution]
- Intuitively:

If we already know that alarm was triggered, the probably for burglary does not increase or decrease because the neighbor calls.

- The serial connection $N \leftarrow A \leftarrow B$ is blocked by the observation of A.

Converging Connections

> Joint distribution:
> $p(B, E, A, N, R)=$ $\quad p(B) p(E) p(A \mid E, B) p(N \mid A) p(R \mid E)$

- Looking at path $B \rightarrow A \leftarrow E$. Does $\mathrm{B} \perp \mathrm{E} \mid \varnothing$ hold?

Converging Connections

- Looking at path $B \rightarrow A \leftarrow E$. Does $\mathrm{B} \perp \mathrm{E} \mid \varnothing$ hold?
- Yes, $p(B \mid E)=p(B) \quad$ [Can be derived from joint distribution]
- Intuitively:

Burglaries are not more/less frequent on days with earthquakes
The converging path $\mathrm{B} \rightarrow A \leftarrow E$ is blocked if A is not observed

Converging Connections

Joint distribution:

$$
\begin{aligned}
& p(B, E, A, N, R)= \\
& \quad p(B) p(E) p(A \mid E, B) p(N \mid A) p(R \mid E)
\end{aligned}
$$observed variable

- Looking at path $B \rightarrow A \leftarrow E$. Does $\mathrm{B} \perp \mathrm{E} \mid A$ hold?
- No, $p(B \mid E, A) \neq p(B \mid A) \quad$ [Derive from joint distribution]
- Intuitively:

Alarm was triggered. If we observed an earthquake, this explains the alarm, thus probability for burglary is reduced ("explaining away" phenomenon).
$\checkmark \quad$ The converging path $\mathrm{B} \rightarrow A \leftarrow E$ is unblocked by observation of A

Converging connections

Joint distribution:

$$
\begin{aligned}
& p(B, E, A, N, R)= \\
& \quad p(B) p(E) p(A \mid E, B) p(N \mid A) p(R \mid E)
\end{aligned}
$$observed variable

- Looking at path $B \rightarrow A \leftarrow E$. Does $\mathrm{B} \perp \mathrm{E} \mid N$ hold?
- No, $p(B \mid N, A) \neq p(B \mid A) \quad$ [Derive from joint distribution]
- Intuitively:

Neighbor calls is an indirect observation of alarm. Observation of an earthquake explains the alarm, probability for burglary is reduced ("explaining away").
\checkmark The converging path $\mathrm{B} \rightarrow A \leftarrow E$ is unblocked by observing N .

Summary Pathes

Joint distribution:

$$
\begin{aligned}
& p(B, E, A, N, R)= \\
& \quad p(B) p(E) p(A \mid E, B) p(N \mid A) p(R \mid E)
\end{aligned}
$$

- Summary: a path ...-X-Y-Z-... is
- Blocked at Y, if
* Diverging connection, and Y is observed, or
* Serial connection, and Y is observed, or
* Converging connection, and neither Y nor one of its descendents $Y^{‘} \in$ Descendants (Y) is observed
* Descendants $(Y)=\left\{Y^{\prime} \mid\right.$ there is a directed path from Y zu $\left.Y^{\prime}\right\}$
- If the path it not blocked at Y, it is free at Y.

D-Separation: Are All Pathes Blocked?

- So far we have defined if a path is blocked at a particular node.
- A path is blocked overall, if it is blocked at one of its nodes:
- Let X, X^{*} be random variables, C a set of observed random variables, $X, X^{\star} \notin C$
- A path $X-X_{1}-\ldots-X_{n}-X^{\prime}$ between X and X^{\prime} is blocked given C if and only if there is a node X_{i} such that the path is blocked at the node X_{i} given C.
- D-Separation: are all pathes blocked?
- Let X, Y be random variables, C a set of random variables with $X, Y \notin C$.
- Definition: X and Y are d-separated given C if and only if every path from X to Y is blocked given C.

D-Separation: Correct and Complete

- Given a graphical model over random variables $\left\{X_{l}, \ldots, X_{N}\right\}$ with graph structure G.
- The graphical model defines a joint distribution by

$$
p\left(X_{1}, \ldots, X_{N}\right)=\prod_{i=1}^{N} p\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

that depends on the conditional distributions $p\left(X_{i} \mid p a\left(X_{i}\right)\right)$.

- Theorem (D-separation is correct and complete)
- If X, Y are d-separated given C in G, then $X \perp Y \mid C$.
- There are no other independencies that hold irrespective of the choice of the conditional distribution $p\left(X_{i} \mid p a\left(X_{i}\right)\right)$.
- Of course, additional independencies can exists because of the choice of particular $p\left(X_{i} \mid p a\left(X_{i}\right)\right)$.

D-Separation: Example

- A path ...-X-Y-Z-... is
- Blocked at Y, if
* Diverging connection, and Y is observed, or
* Serial connection, and Y is observed, or
* Converging connection, and neither Y nor any of ist descendants $Y^{\star} \in \operatorname{Descendants}(Y)$ is observed.
- Otherwise the path is free at Y.

D-Separation: Example

Does $\mathrm{A} \perp \mathrm{F} \mid D$ hold? Yes

Does $\mathrm{B} \perp \mathrm{E} \mid C$ hold? No: $\mathrm{B}-G-E$
Does $A \perp \mathrm{E} \mid C$ hold? \quad No: $A-C-B-G-E$

- A path ...-X-Y-Z-... is
- Blocked at Y, if
* Diverging connection, and Y is observed, or
* Serial connection, and Y is observed, or
* Converging connection, and neither Y nor any of ist descendants $Y^{‘} \in$ Descendants (Y) is observed.
- Otherwise the path is free at Y.

Bayesian Networks: Causality

- Often Bayesian networks are constructed in such a way that directed edges correspond to causal influences
$G(E) \longrightarrow$ A \longrightarrow,Earthquakes trigger the alarm system"
- However, equivalent model:

- Definition: $\mathrm{I}(\mathrm{G})=\{(\mathrm{X} \perp Y \mid C): X$ and Y are d-separated given C in $G\}$
„All independence assumptions encoded in G "
- $I(G)=I\left(G^{\prime}\right)=\varnothing$:
- Not statistical reasons to prefer one of the models.
- We cannot distinguish between the models based on data.
- But „causal" models often more intuitive.

Models of Different Complexity

- Complexity of a model depends on the number (and location) of edges in the graph
- Many edges: few independence assumptions, many parameters, large class of distributions can be represented.
- Few edges: many independence assumptions, few parameters, small class of distributions can be represented.

Models of Different Complexity

- Adding edges: family of representable distributions becomes larger, $I(G)$ becomes smaller.
- Extreme cases: graph without any edges, graph completely connected (as an undirected graph)

N parameter (for binary variables)
$I(G)=\{(X \perp Y \mid C): X, Y \mathrm{RV}, C$ set of RV $\}$

$2^{N}-1$ parameters (for binary variables)
$I(G)=\varnothing$

