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Problem Setting Inference 

 Given: graphical model over random variables {X1,…,XN }. 

 

 Problem setting inference: 

 Variables with evidence 

 Query variable 

 

 Task: compute distribution over query variable given evidence. 
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1
Compute     ( | ,..., ) 

ma i ip x x x

1

Evidence: observed values 

for variables ,...,
miiX X

Conditional distribution

over random variable aX

1 1,...,            { ,... } {1,.., ., }
mi i mi iX X N

1                                a {1,..., { ,..., }} maX N i i

11
More generally also      ( ,..., | ,..., ) 

k ma a i ip x x x x
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Graphical models: inference 

 Example „Alarm“ domain 

 Variables with evidence:  N, R 

 Query variable: B 

 

 

 

 

 

 

 

 

 

 Posterior over parameters,  Bayesian prediction, … 
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Probability for burglary given 

that neighbor has called and radio report yes/no? 

( 1| 1, 0) 0.7               

( 0 | 1, 0) 0.3

            

For example:

    

 ( 1| 1, 1) 0.2

( 0 | 1, 1) 0.8 

p B N R

p B N R

p B N R

p B N R
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Graphical Models: Inference 

 Inference a difficult problem in general 

 General graphical models: exact inference is NP-hard. 

 There are algorithms for exact inference in general 

graphical models whose execution time depends on 

properties of the graph structure („Message-Passing“) 

 There are several techniques for approximate inference 

(Sampling, Variational Inference, Expectation Propagation). 

 

 We will look at 

 Message-Passing algorithm: special cases. 

 Sampling-based approximate inference. 
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Inference: Discrete vs. Continuous 
Variables 

 We will discuss inference only for discrete variables. 

 

 Discussed inference algorithms are also applicable to 

continuous variables 

 Replace sums by integrals  

 Distribution families have to be chosen in such a way that 

integrals can indeed be computed (in closed form). 
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Exact Inference: Naive Computation 

 Graphical model: representation of  

 

 Naive inference computation: 
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Compute for each value :    ( | ,..., )
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                                                                         ( , ,..., )
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p x x
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1 2

1

1
                                             ( ,..., ) 

j kj jx x

N

x

p x x
Z

    is a normalizer, easy to compute 

explicitly for univariate distributions

Z

Central problem: summing out all remaining 

variables  (exponential time if done naively) 

1,...,( ).Np X X

1 1

query variable evidence variables remaining variables

1Notation :{ } { , ,..., , ,...,,..., }
m kN i j ja iX X X X XX X
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More Efficient Inference 

 More efficient method than naive inference computation? 

 For general graphs probably impossible (NP-hard problem). 

 But if there is the right structure in the model (independencies), we 

can potentially exploit this structure to speed up inference. 

 Idea: Local computations that are propagated along the graph 

structure 

 Nodes send each other „messages“ that contain results of partial 

calculations. 

 „Message Passing“, „Belief Propagation“. 

 Execution time of the methods depends on the graph structure 

(exponential in worst case). 
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Graphical Model: Inference on Linear Chain 

 We now study the Message Passing algorithm in a special 

case with particularly simple structure: linear chain of random 

variables. 

 

 

 

 

 Notation: represent the joint distribution as a product of 

potential functions over pairs of random variables. 
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1x 2x 3x 4x … 

1 1 2 1 3 2 1( ,...., ) ( ) ( ) ( | ) ... ( || )N N Np x x p x p x p x x p x xx   

1 2 1

1 2,3 2 32 11,1 1,2

3 2 1)( | ( |( ) ( | ))

( ( , ) ( , ) ... (,. , ).., )N NN NN

N Np x x p x xp x p x x

p x x x x x x xx     



  

1x 2x 3x 4x … 

1,2 2,3
3,4 4,5

Nx
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Inference: Linear Chain of Random 
Variables 

 Introduction of Message Passing algorithm by an example. 

 Linear chain of 5 random variables: 

 

 

 Compute marginal distribution of 3. variable (without evidence). 

 

 

 

 

 

 

 Naive computation exponential (because of nested sums). 

 Idea: exploit structure (linear chain) for more efficient 

computation. 
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2 4 5

2 51 4

1

13

2 3 3 4 4 5

2 3 4 5

1,2 1 2 2,3 3,4 4,5

( ) (

  

, , , , )

, ) , ) , )      , ( ( )( (

x x x x

x x x x

p x p x

x x x

x x x x

x x xxx   





   

   

query variable remaining variables (being summed out) 

1x 2x 3x 4x 5x
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Inference: Message Passing 

 Exploit factorization of joint distribution into potentials (that is, 

exploit independence assumptions encoded in chain). 

 

 

 

 

 

 Local partial computation: „message“   

 

 Compute for all values of 

 

 Message is function of the state of variable  x4  (coded e.g. as a 

vector whose elements are message values for different states). 

 In the message the node  X5  has been summed out. 
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2 4 5

2 4 5

1

1

1,2 2 2,3 3,4 4,5

1,2 2 2,3

3 1 2 3 3 4 4 5

1 2 3 3 4 43,4 4, 55

 

( ) ( , ) ( , ) ( , ) ( , )

        ( , ) ( , ) ( , ) ( , )

x x x x

x x x x

p x x x x x x x x x

x x x x x x x x

   

   





   

   

5

4,54 4 4 5:  ( ) ( , )        
x

x x x x 

4( )x

4local, partial computation: "messag " )e (x
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Inference: Message Passing 

 Exploit factorization of joint distribution into potentials (that is, 

exploit independence assumptions encoded in chain). 

 

 

 

 

 

 Local partial computation: „message“   

 

 Compute for all values of 

 

 Message is function of the state of variable  x4  (coded e.g. as a 

vector whose elements are message values for different states). 

 In the message the node  X5  has been summed out. 
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2 4 5

2 4 5

1

1

1,2 2 2,3 3,4 4,5

1,2 2 2,3

3 1 2 3 3 4 4 5

1 2 3 3 4 43,4 4, 55

 

( ) ( , ) ( , ) ( , ) ( , )

        ( , ) ( , ) ( , ) ( , )

x x x x

x x x x

p x x x x x x x x x

x x x x x x x x
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4,54 4 4 5:  ( ) ( , )        
x

x x x x 

4( )x

4local, partial computation: "messag " )e (x

5

5

54

4 5

4

5

,5

,

(0, )

Coding as vector: ( )         
(1, )

x

x

x

x
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Inference: Message Passing 

 

 

 

 Intuition: We sum out the node X5 , and send the result 

along to node X4 . 
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4( )x

1x 2x 3x 4x
1,2

2,3
3,4 4,5

5x
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Inference: Message Passing 

 We apply the same idea to the next variable that has to be 

summed out: 

 

 

 

 

 

 

 Local partial computation: „message“  

   

 

 Message is function of the state of variable x3 

 In the message, the nodes  X5,  X4  have been summed out.  
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33 3 3 4 4,4Compute for all values of :  ( ) ( , ) ( )          
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x x x x x   

2 4

2 4
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1

1,2 2 2,3 3,4 4

1,2

3 1 2

2

3 3 4

2,31 2 3 3, 444 3
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( , ) ( , ) ( , ) (  )
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3Local partial computation: "messag " )e (x
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Inference: Message Passing 

 

 

 

 Intuition: We sum out the node X4 , and send the result 

along to node X3 . 

 

 

 

 

 

 

 

 X3  is query node, so we do not want to sum it out… 
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3( )x

1x 2x 3x 4x
1,2

2,3
3,4 4,5

5x

4( )x
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Inference: Message Passing 

 Apply the same idea to the variables to the left of the query 

variable 

 

 

 

 

 

 

 

 Local partial computation: „message“   

   

 

 Message is function of the state of variable  x2. 

 In the message the node  X1  has been summed out. 
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1

1,22 2 1 2Compute for all values of  :  ( ) ( , )          
x

x x x x 

1

2 1

2 1

2

1,2 2 2,3 3

3 2,3 1,2 2

3 2,3 1

3 1 2 3

2 3 1

2 3 1,2 2

( ) ( , ) ( , ) (
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         ( ( , ) ( )

)

,
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x x
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2"message" ) (x

change summation  

order, rearrange terms 
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Inference: Message Passing 

 

 

 

 Intuition: We sum out the node X1 , and send the result 

along to node X2 . 
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3( )x

1x 2x 3x 4x
1,2

2,3
3,4 4,5

5x

4( )x2( )x
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Inference: Message Passing 

 Summing out last variable X2 : 

 

 

 

 

 

 

 Result: marginal distribution we wanted to compute is product of 

messages arriving at query node: 

 

 

 The messages are a function of     , so this gives us a 

distribution.  
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2

3 2,3 3 22 3) )( ) ( ( , ) (
x

p x x x x x   

3"message" ) (x

3 3 3) ) )( ( (p x x x  

3 3) ( )(x x  
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Inference: Message Passing 

 Schema of how to pass messages: 
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3( )x

1x 2x 3x 4x
1,2

2,3
3,4 4,5

5x

4( )x2( )x 3( )x

33 3( ) ( ) ( )p x x x  

Final result: marginal distribution is product of messages. 

 



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II 

Inference: Message Passing 

 Execution time: 

 Computation of a single message: 

 

 

 

 

 N-1  messages overall 

 

 

 

 Much better than naive inference which takes time  
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2( ) for computation of a message  (assuming variables with  discrete states)O M M

2( ) total running time.O NM

( ).NO M

4

33 3 3 4 4,4Compute for all values of :  ( ) ( , ) ( )          
x

x x x x x   
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Inference: Message Passing Algorithm 

 Algorithm: Message Passing on a linear chain 

 Input:  

 

 

 Recursively compute messages: 

 

 

 

 

 

 

 Output: 
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1 1,2 1 1,2 1( ( , ),....,,. ( , )
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1( )x 1
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Message Passing with Evidence 

 So far we have computed marginal         without evidence. 

 What about conditional distributions given evidence? 

 

 

 

 Goal: Conditional distribution  

 

 

 

 

 

 Z is easy to compute: normalizer of a univariate distribution.  

 Therefore we need to compute  
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Message Passing with Evidence 

 Goal:  

 Slight modification of Message Passing algorithm 

 Like in the old version, we still compute messages 

 

 

 

 

 If  xk+1 is not observed, we sum out this node: 

 

 

 If  xk+1 is observed,  we use only the summand corresponding to 

the observation: 
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1x   observed value (evidence)k

1 ( ),...,  ( )N ax x  

2 ( ),...,  ( )ax x  

1

11 11 , 1 { }      ( ) ( , ). ., (, . )
k

m kk k kk k

x

k i x x x xi    
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Message Passing with Evidence 

 Analogously for  

 

 

 

 

 Now it holds that 

 

 

 Execution time for inference with evidence is still  
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Example: Markov Models 

 Example for inference on linear chain: Markov models. 

 

 Markov model: simple model for dynamic probabilistic 

process 

 Process that can take on different states 

 Random variable Xt  represents state at time t 

 Discrete time steps  t=1,…,T 

 

 Example: weather 

 Random variable Xt  = weather at day t. 

 Two possible states, rain and sunshine. 
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Example: Markov Models 

 Dynamic model: 

 Process is started in a random state: 

 

 

 At each time step, the process randomly changes into a new state, 

where the transition probability only depends on the current state 

(simplifying assumption!). 

 

 

 Independence assumption 

 

 

 Transition probabilities do not depend on t: 
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1Distribution over initial states  ( )p x

1 1:  ( | | )                 "Sta) tionary" process(t t t tt p x xx xp 

1Distribution for state transitions   (  | )t tp x x

1 1 1:  ( | ,..., | )                 "Markov" prop) er( tyt t t tpx xxt p x x 
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Example: Markov Models 

 Example Markov model: 

 State xt  = weather at day t 

 Two possible states, rain and sunshine 

 

 

 

 

 

 Distributions 
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1x 2x 3x 4x … 

1

1 ) 0.

( ) 0.5

5(

p x s

p rx  

  1

1

1

1

( | ) 0.8

( | ) 0.2

( | ) 0.4

( | ) 0.6
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p x s x s

p x r x s

p x s x r

p x r x r
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Example: Markov Models 

 Markov models correspond to probabilistic finite 

automata: 

 Start in randomly chosen state 

 At each time step, randomly transition to a novel state, 

based on the current state. 
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0.5 0.5 

0.8 

0.2 

0.6 

0.4 

Automaton model 
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Example: Markov Models 

 Example for inference problem: 

 How likely is it that the sun shines the day after tomorrow, 

given that it rains today?  

 

 

 

 Computation with message passing algorithm. 

 

 Messages: 
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13( | ) ?p x x r  1x 2x 3x

1x 2x 3x

1 2 3 3 ( ), ( ), ( );   ( ).x x x x      

2( )x1( )x 3( )x
3( )x
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Example: Markov Models 

 Computation of messages: according to Slides 28/29, 

plugging in values from Slide 32. 
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1 ( ) 1x s  

1 ( ) 1x r  

2 1 2 1 1( ) ( ) ( | ) · 0.4 ( ) 0.5 · 1 0.2x s p x r p x s x r x r        

2 1 2 1 1( ) ( ) ( | ) · 0.6 ( ) 0.5 · 1 0.3x r p x r p x r x r x r        

3 3 2 2 3 2 2 · 0.2 0.4 · 0.3( ) ( | ) ( ) ( | ) 0.28( ) 0.8 x s p x s x s x s p x s x r x r             

3 3 2 2 3 2 2 · 0.2 0.6 · 0.3( ) ( | ) ( ) ( | ) 0.22( ) 0.2 x r p x r x s x s p x r x r x r             

3 ( ) 1x s  

3 ( ) 1x r  

Initialization
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Example: Markov Models 

 Computation of messages: according to Slides 25/26, 

plugging in values from Slide 29. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33 

1 ( ) 1x s  

1 ( ) 1x r  

2 1 2 1 1( ) ( ) ( | ) · 0.4 ( ) 0.5 · 1 0.2x s p x r p x s x r x r        

2 1 2 1 1( ) ( ) ( | ) · 0.6 ( ) 0.5 · 1 0.3x r p x r p x r x r x r        

3 3 2 2 3 2 2 · 0.2 0.4 · 0.3( ) ( | ) ( ) ( | ) 0.28( ) 0.8 x s p x s x s x s p x s x r x r             

3 ( ) 1x s  

1Preceeding node   observed: no summationx

3 3 2 2 3 2 2 · 0.2 0.6 · 0.3( ) ( | ) ( ) ( | ) 0.22( ) 0.2 x r p x r x s x s p x r x r x r             

3 ( ) 1x r  
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Example: Markov Models 

 Computation of messages: according to Slides 25/26, 

plugging in values from Slide 29. 
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1 ( ) 1x s  

1 ( ) 1x r  

2 1 2 1 1( ) ( ) ( | ) · 0.4 ( ) 0.5 · 1 0.2x s p x r p x s x r x r        

2 1 2 1 1( ) ( ) ( | ) · 0.6 ( ) 0.5 · 1 0.3x r p x r p x r x r x r        

3 3 2 2 3 2 2 · 0.2 0.4 · 0.3( ) ( | ) ( ) ( | ) 0.28( ) 0.8 x s p x s x s x s p x s x r x r             

3 ( ) 1x s  

2Preceeding node   not observed: sum outx

3 3 2 2 3 2 2 · 0.2 0.6 · 0.3( ) ( | ) ( ) ( | ) 0.22( ) 0.2 x r p x r x s x s p x r x r x r             

3 ( ) 1x r  
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Example: Markov Models 

 Computation of messages: according to Slides 25/26, 

plugging in values from Slide 29. 
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1 ( ) 1x s  

1 ( ) 1x r  

2 1 2 1 1( ) ( ) ( | ) · 0.4 ( ) 0.5 · 1 0.2x s p x r p x s x r x r        

2 1 2 1 1( ) ( ) ( | ) · 0.6 ( ) 0.5 · 1 0.3x r p x r p x r x r x r        

3 3 2 2 3 2 2 · 0.2 0.4 · 0.3( ) ( | ) ( ) ( | ) 0.28( ) 0.8 x s p x s x s x s p x s x r x r             

3 ( ) 1x s  
Initialization

3 3 2 2 3 2 2 · 0.2 0.6 · 0.3( ) ( | ) ( ) ( | ) 0.22( ) 0.2 x r p x r x s x s p x r x r x r             

3 ( ) 1x r  
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Example: Markov Models 

 Result: Product of messages arriving at query node. 

 

 

 

 

 

 

 

 

 Likelihood that the sun shines the day after tomorrow, given 

that it rains today: 56%. 
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Inference in General Graphs 

 So far only looked at special case: inference on linear 

chain. 

 The general idea of message passing also applies to 

more general graphs. 

 Extension: exact inference on polytrees 

 Polytree: directed graph in which there is exactly one 

undirected path between any two nodes. 

 Slightly more general concept than directed tree. 
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Directed tree Polytree 
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Factor Graphs 

 General idea for message passing on polytrees: 

Transformation into factor graph. 

 

 Given a graphical model over random variables {X1,…,XN}  with 

graph structure G. 

 The graphical model defines a joint distribution by 

 

 

 Definition: The factor graph of the graphical model is a 

bipartite undirected graph with  

 node set {X1,…,XN} ∪ {𝑓1, … , 𝑓𝑁} (𝑓𝑖 are called factor nodes) 

 edge between Xi  and fi  for 𝑖 = 1, … , 𝑁 

 edge between Xj  and fi  if 
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Factor Graphs: Example 

 Factor graph: make factors in joint distribution  

explicit.   

 For each variable, there is a variable node (circles). 

 For each factor, there is a factor node (rectangles). 

 Variables are connected to factors they appear in.                         
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Initial graph 
Factor graph 
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Inference on Factor Graphs 

 If the orginial graph was a polytree, the resulting factor graph 

is an undirected tree (that is, it has no cycles). 

 

 

 

 

 

 

 Inference is then carried out on factor graph: 

 Take the query node       as the root of the undirected tree. 

 Send messages from the leaves to the root (there is always a 

unique path, because factor graph is undirected tree). 

 There are now two types of messages: factor messages and 

variable messages. 
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Inference on Factor Graphs 

 

 

 

 

 

 

 Messages are merged, at this point we have to sum over 

several variables (execution time becomes non-linear). 

 Basic idea carries over from inference on linear chain: sum 

out variables successively. 

 Details in the Bishop textbook („Sum-Product“ algorithm) 
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Loopy Belief Propagation 

 Inference in graphs that are not polytrees? 

 Iterative message passing scheme, not exact anymore 

because of cycles in the graph (=approximate inference 

algorithm). 

 

 

 

 

 

 

 

 

 Exact inference in non-polytree graphs: Transform graph into 

equivalent acyclic graph („Junction Tree“ algorithm).  
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„Loopy Belief  

Propagation“ 
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