Universität Potsdam

Institut für Informatik Lehrstuhl Maschinelles Lernen

Graphical Models

Niels Landwehr

Agenda

- Graphical models: syntax and semantics.
- Inference in graphical models (exact, approximate)
- Graphical models in machine learning.

- Graphical models: syntax and semantics.
- Inference in graphical models (exact, approximate)
- Graphical models in machine learning.

Problem Setting Inference

- Given: graphical model over random variables $\{X_1, ..., X_N\}$.
- Problem setting inference:
 - Variables with evidence $X_{i_1}, ..., X_{i_m}$ $\{i_1, ..., i_m\} \subseteq \{1, ..., N\}$
 - Query variable X_a

- $\{i_1, \dots, i_m\} \subseteq \{1, \dots, N\}$ $a \in \{1, \dots, N\} \setminus \{i_1, \dots, i_m\}$
- Task: compute distribution over query variable given evidence.

Graphical models: inference

- Example "Alarm" domain
 - Variables with evidence: N, R
 - Query variable: B

Probability for burglary given

that neighbor has called and radio report yes/no?

For example:

$$p(B=1 | N=1, R=0) = 0.7$$

p(B=0 | N=1, R=0) = 0.3

p(B=1 | N=1, R=1) = 0.2p(B=0 | N=1, R=1) = 0.8

Posterior over parameters, Bayesian prediction, ...

Graphical Models: Inference

- Inference a difficult problem in general
 - General graphical models: exact inference is NP-hard.
 - There are algorithms for exact inference in general graphical models whose execution time depends on properties of the graph structure ("Message-Passing")
 - There are several techniques for approximate inference (Sampling, Variational Inference, Expectation Propagation).
- We will look at
 - Message-Passing algorithm: special cases.
 - Sampling-based approximate inference.

Inference: Discrete vs. Continuous Variables

- We will discuss inference only for discrete variables.
- Discussed inference algorithms are also applicable to continuous variables
 - Replace sums by integrals
 - Distribution families have to be chosen in such a way that integrals can indeed be computed (in closed form).

Graphical models: syntax and semantics.

Inference in graphical models

- Exact inference
- Approximate inference
- Graphical models in machine learning.

Exact Inference: Naive Computation

- Graphical model: representation of $p(X_1,...,X_N)$.
- Naive inference computation:

Z is

Notation: $\{X_1, ..., X_N\} = \{X_a, X_{i_1}, ..., X_{i_m}, X_{j_1}, ..., X_{j_k}\}$ evidence variables variables remaining variables

Compute for each value
$$x_a$$
: $p(x_a | x_{i_1}, ..., x_{i_m}) = \frac{p(x_a, x_{i_1}, ..., x_{i_m})}{p(x_{i_1}, ..., x_{i_m})}$

$$= \frac{1}{Z} p(x_a, x_{i_1}, ..., x_{i_m})$$

$$Z \text{ is a normalizer, easy to compute}$$

$$= \frac{1}{Z} \sum_{x_{j_1}} \sum_{x_{j_2}} \cdots \sum_{x_{j_k}} p(x_1, ..., x_N)$$

Central problem: summing out all remaining variables (exponential time if done naively)

More Efficient Inference

- More efficient method than naive inference computation?
 - For general graphs probably impossible (NP-hard problem).
 - But if there is the right structure in the model (independencies), we can potentially exploit this structure to speed up inference.
- Idea: Local computations that are propagated along the graph structure
 - Nodes send each other "messages" that contain results of partial calculations.
 - "Message Passing", "Belief Propagation".
 - Execution time of the methods depends on the graph structure (exponential in worst case).

Graphical Model: Inference on Linear Chain

 We now study the Message Passing algorithm in a special case with particularly simple structure: linear chain of random variables.

 $p(x_1,...,x_N) = p(x_1)p(x_2 | x_1)p(x_3 | x_2) \cdot ... \cdot p(x_N | x_{N-1})$

 Notation: represent the joint distribution as a product of potential functions over pairs of random variables.

 $p(x_1,...,x_N) = \underbrace{\psi_{1,2}(x_1,x_2)}_{p(x_1,x_2)} \underbrace{\psi_{2,3}(x_2,x_3)}_{p(x_2,x_3)} \cdots \underbrace{\psi_{N-1,N}(x_{N-1},x_N)}_{p(x_{N-1,N}(x_{N-1},x_N)}$

Inference: Linear Chain of Random Variables

- Introduction of Message Passing algorithm by an example.
- Linear chain of 5 random variables:

• Compute marginal distribution of 3. variable (without evidence).

query variable

remaining variables (being summed out)

$$p(x_3) = \sum_{x_1} \sum_{x_2} \sum_{x_4} \sum_{x_5} p(x_1, x_2, x_3, x_4, x_5)$$

= $\sum_{x_1} \sum_{x_2} \sum_{x_4} \sum_{x_5} \psi_{1,2}(x_1, x_2)\psi_{2,3}(x_2, x_3)\psi_{3,4}(x_3, x_4)\psi_{4,5}(x_4, x_5)$

- Naive computation exponential (because of nested sums).
- Idea: exploit structure (linear chain) for more efficient computation.

 Exploit factorization of joint distribution into potentials (that is, exploit independence assumptions encoded in chain).

$$p(x_3) = \sum_{x_1} \sum_{x_2} \sum_{x_4} \sum_{x_5} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \psi_{3,4}(x_3, x_4) \psi_{4,5}(x_4, x_5)$$
$$= \sum_{x_1} \sum_{x_2} \sum_{x_4} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \psi_{3,4}(x_3, x_4) \sum_{x_5} \psi_{4,5}(x_4, x_5)$$

local, partial computation: "message" $\mu_{\beta}(x_4)$

- Local partial computation: "message" $\mu_{\beta}(x_4)$
 - Compute for all values of x_4 : $\mu_\beta(x_4) = \sum_{x_5} \psi_{4,5}(x_4, x_5)$
 - Message is function of the state of variable x₄ (coded e.g. as a vector whose elements are message values for different states).
 - In the message the node X_5 has been summed out.

 Exploit factorization of joint distribution into potentials (that is, exploit independence assumptions encoded in chain).

$$p(x_3) = \sum_{x_1} \sum_{x_2} \sum_{x_4} \sum_{x_5} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \psi_{3,4}(x_3, x_4) \psi_{4,5}(x_4, x_5)$$
$$= \sum_{x_1} \sum_{x_2} \sum_{x_4} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \psi_{3,4}(x_3, x_4) \sum_{x_5} \psi_{4,5}(x_4, x_5)$$

local, partial computation: "message" $\mu_{\beta}(x_4)$

- Local partial • Coding as vector: $\mu_{\beta}(x_4) = \begin{pmatrix} \sum_{x_5} \psi_{4,5}(0, x_5) \\ \sum_{x_5} \psi_{4,5}(1, x_5) \end{pmatrix}$
 - Message is function of the state of variable x_4 (coded e.g. as a vector whose elements are message values for different states).
 - In the message the node X_5 has been summed out.

• Intuition: We sum out the node X_5 , and send the result along to node X_4 .

We apply the same idea to the next variable that has to be summed out:

$$p(x_3) = \sum_{x_1} \sum_{x_2} \sum_{x_4} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \psi_{3,4}(x_3, x_4) \mu_{\beta}(x_4)$$
$$= \sum_{x_1} \sum_{x_2} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \sum_{x_4} \psi_{3,4}(x_3, x_4) \mu_{\beta}(x_4)$$

Local partial computation: "message" $\mu_{\beta}(x_3)$

• Local partial computation: "message" $\mu_{\beta}(x_3)$

Compute for all values of x_3 : $\mu_\beta(x_3) = \sum_{x_4} \psi_{3,4}(x_3, x_4) \mu_\beta(x_4)$

- Message is function of the state of variable x₃
- In the message, the nodes X_5 , X_4 have been summed out.

• Intuition: We sum out the node X_4 , and send the result along to node X_{3} .

• X_3 is query node, so we do not want to sum it out...

Apply the same idea to the variables to the left of the query variable

 $p(x_{3}) = \sum_{x_{1}} \sum_{x_{2}} \psi_{1,2}(x_{1}, x_{2})\psi_{2,3}(x_{2}, x_{3})\mu_{\beta}(x_{3})$ change summation order, rearrange terms $\Rightarrow = \mu_{\beta}(x_{3})\sum_{x_{2}} \sum_{x_{1}} \psi_{2,3}(x_{2}, x_{3})\psi_{1,2}(x_{1}, x_{2})$ $= \mu_{\beta}(x_{3})\sum_{x_{2}} \psi_{2,3}(x_{2}, x_{3}) \sum_{x_{1}} \psi_{1,2}(x_{1}, x_{2})$ "message" $\mu_{\alpha}(x_{2})$

- Local partial computation: "message" $\mu_{\alpha}(x_2)$
 - Compute for all values of x_2 : $\mu_{\alpha}(x_2) = \sum_{x_1} \psi_{1,2}(x_1, x_2)$
 - Message is function of the state of variable x₂.
 - In the message the node X_I has been summed out.

• Intuition: We sum out the node X_1 , and send the result along to node X_2 .

• Summing out last variable *X*₂:

$$p(x_3) = \mu_{\beta}(x_3) \underbrace{\sum_{x_2} \psi_{2,3}(x_2, x_3) \mu_{\alpha}(x_2)}_{\text{"message"} \mu_{\alpha}(x_3)}$$

 $= \mu_{\beta}(x_3)\mu_{\alpha}(x_3)$

 Result: marginal distribution we wanted to compute is product of messages arriving at query node:

$$p(x_3) = \mu_\beta(x_3)\mu_\alpha(x_3)$$

• The messages are a function of x_3 , so this gives us a distribution.

Schema of how to pass messages:

- Execution time:
 - Computation of a single message:

Compute for all values of x_3 : $\mu_{\beta}(x_3) = \sum_{x_4} \psi_{3,4}(x_3, x_4) \mu_{\beta}(x_4)$

 $\Rightarrow O(M^2)$ for computation of a message (assuming variables with M discrete states)

N-1 messages overall

 $\Rightarrow O(NM^2)$ total running time.

• Much better than naive inference which takes time $O(M^N)$.

Inference: Message Passing Algorithm

- Algorithm: Message Passing on a linear chain
 - Input:

$$p(x_1,...,x_N) = \psi_{1,2}(x_1,x_2),...,\psi_{N-1,N}(x_{N-1},x_N)$$

Query: $p(x_a) = ?$

Recursively compute messages:

$$\mu_{\beta}(x_{N}) = \mathbf{1}$$

For $k = N - 1, ..., a$: $\mu_{\beta}(x_{k}) = \sum_{x_{k+1}} \psi_{k,k+1}(x_{k}, x_{k+1}) \mu_{\beta}(x_{k+1})$ $\bigoplus_{x_{1}} \cdots \bigoplus_{x_{n-1}} \bigoplus_{x_{n}} \cdots \bigoplus_{x_{n+1}} \cdots \bigoplus_{x_{N}} \mu_{\alpha}(x_{1}) = \mathbf{1}$
For $k = 2, ..., a$: $\mu_{\alpha}(x_{k}) = \sum_{x_{k-1}} \psi_{k-1,k}(x_{k-1}, x_{k}) \mu_{\alpha}(x_{k-1})$ $\bigoplus_{x_{1}} \cdots \bigoplus_{x_{n-1}} \bigoplus_{x_{n}} \cdots \bigoplus_{x_{n+1}} \cdots \bigoplus_{x_{N}} \mu_{\alpha}(x_{k-1})$

Output:

 $p(x_a) = \mu_{\alpha}(x_a)\mu_{\beta}(x_a)$ (function of x_a , that is, distribution over x_a)

Intelligent Data Analysis

Message Passing with Evidence

- So far we have computed marginal $p(x_a)$ without evidence.
- What about conditional distributions given evidence?

Notation:
$$\{X_1, ..., X_N\} = \{X_a, X_{i_1}, ..., X_{i_m}, X_{j_1}, ..., X_{j_k}\}$$

evidence variables, $X_{j_1}, ..., X_{j_k}$

Goal: Conditional distribution

$$p(x_a \mid x_{i_1}, ..., x_{i_m}) = \frac{p(x_a, x_{i_1}, ..., x_{i_m})}{p(x_{i_1}, ..., x_{i_m})}$$
$$= \frac{1}{Z} p(x_a, x_{i_1}, ..., x_{i_m})$$

- Z is easy to compute: normalizer of a univariate distribution.
- Therefore we need to compute $p(x_a, x_{i_1}, ..., x_{i_m})$.

Message Passing with Evidence

• Goal:
$$p(x_a, x_{i_1}, ..., x_{i_m}) = ?$$

- Slight modification of Message Passing algorithm
 - Like in the old version, we still compute messages

• If x_{k+1} is not observed, we sum out this node:

$$k+1 \notin \{i_1,...,i_m\} \implies \mu_\beta(x_k) = \sum_{x_{k+1}} \psi_{k,k+1}(x_k,x_{k+1})\mu_\beta(x_{k+1})$$

• If x_{k+1} is observed, we use only the summand corresponding to the observation: x_{k+1} observed value (evidence)

$$k+1 \in \{i_1, ..., i_m\} \implies \mu_\beta(x_k) = \psi_{k,k+1}(x_k, x_{k+1}) \mu_\beta(x_{k+1})$$

Message Passing with Evidence

• Analogously for $\mu_{\alpha}(x_k)$

$$\mu_{\alpha}(x_{k}) = \begin{cases} \sum_{x_{k-1}} \psi_{k-1,k}(x_{k-1}, x_{k}) \mu_{\alpha}(x_{k-1}) : k - 1 \notin \{i_{1}, \dots, i_{m}\} & \text{(node not observed)} \\ \psi_{k-1,k}(x_{k-1}, x_{k}) \mu_{\alpha}(x_{k-1}) : k - 1 \in \{i_{1}, \dots, i_{m}\} & \text{(node observed)} \end{cases}$$

Now it holds that

$$p(x_a, x_{i_1}, ..., x_{i_m}) = \mu_{\alpha}(x_a)\mu_{\beta}(x_a).$$

Execution time for inference with evidence is still O(NM²).

- Example for inference on linear chain: Markov models.
- Markov model: simple model for dynamic probabilistic process
 - Process that can take on different states
 - Random variable X_t represents state at time t
 - Discrete time steps t=1,...,T
- Example: weather
 - Random variable X_t = weather at day *t*.
 - Two possible states, rain and sunshine.

- Dynamic model:
 - Process is started in a random state:

Distribution over initial states $p(x_1)$

 At each time step, the process randomly changes into a new state, where the transition probability only depends on the current state (simplifying assumption!).

Distribution for state transitions $p(x_{t+1} | x_t)$

Independence assumption

 $\forall t: p(x_{t+1} \mid x_1, \dots, x_t) = p(x_{t+1} \mid x_t)$ "Markov" property

Transition probabilities do not depend on t:

 $\forall t: p(x_{t+1} | x_t) = p(x_t | x_{t-1})$ "Stationary" process

- Example Markov model:
 - State x_t = weather at day t
 - Two possible states, rain and sunshine

Distributions

$$p(x_{1} = s) = 0.5$$

$$p(x_{t+1} = s \mid x_{t} = s) = 0.8$$

$$p(x_{t+1} = r \mid x_{t} = s) = 0.2$$

$$p(x_{t+1} = s \mid x_{t} = r) = 0.4$$

$$p(x_{t+1} = r \mid x_{t} = r) = 0.6$$

- Markov models correspond to probabilistic finite automata:
 - Start in randomly chosen state
 - At each time step, randomly transition to a novel state, based on the current state.

Automaton model

- Example for inference problem:
 - How likely is it that the sun shines the day after tomorrow, given that it rains today?

$$p(x_3 | x_1 = r) = ? \qquad \qquad \textbf{x}_1 \longrightarrow \textbf{x}_2 \longrightarrow \textbf{x}_3$$

- Computation with message passing algorithm.
- Messages: $\mu_{\alpha}(x_1), \mu_{\alpha}(x_2), \mu_{\alpha}(x_3); \mu_{\beta}(x_3).$

 Computation of messages: according to Slides 28/29, plugging in values from Slide 32.

$$\mu_{\alpha}(x_{1} = s) = 1$$

$$\mu_{\alpha}(x_{1} = r) = 1$$
Initialization

$$\mu_{\alpha}(x_{2} = s) = p(x_{1} = r)p(x_{2} = s \mid x_{1} = r)\mu_{\alpha}(x_{1} = r) = 0.5 \cdot 0.4 \cdot 1 = 0.2$$

$$\mu_{\alpha}(x_{2} = r) = p(x_{1} = r)p(x_{2} = r \mid x_{1} = r)\mu_{\alpha}(x_{1} = r) = 0.5 \cdot 0.6 \cdot 1 = 0.3$$

 $\mu_{\alpha}(x_{3} = s) = p(x_{3} = s \mid x_{2} = s)\mu_{\alpha}(x_{2} = s) + p(x_{3} = s \mid x_{2} = r)\mu_{\alpha}(x_{2} = r) = 0.8 \cdot 0.2 + 0.4 \cdot 0.3 = 0.28$ $\mu_{\alpha}(x_{3} = r) = p(x_{3} = r \mid x_{2} = s)\mu_{\alpha}(x_{2} = s) + p(x_{3} = r \mid x_{2} = r)\mu_{\alpha}(x_{2} = r) = 0.2 \cdot 0.2 + 0.6 \cdot 0.3 = 0.22$

 $\mu_{\beta}(x_3 = s) = 1$ $\mu_{\beta}(x_3 = r) = 1$

 Computation of messages: according to Slides 25/26, plugging in values from Slide 29.

$$\mu_{\alpha}(x_{1} = s) = 1$$

$$\mu_{\alpha}(x_{1} = r) = 1$$
Preceeding node x_{1} observed: no summation
$$\mu_{\alpha}(x_{2} = s) = p(x_{1} = r)p(x_{2} = s \mid x_{1} = r)\mu_{\alpha}(x_{1} = r) = 0.5 \cdot 0.4 \cdot 1 = 0.2$$

$$\mu_{\alpha}(x_{2} = r) = p(x_{1} = r)p(x_{2} = r \mid x_{1} = r)\mu_{\alpha}(x_{1} = r) = 0.5 \cdot 0.6 \cdot 1 = 0.3$$

 $\mu_{\alpha}(x_{3}=s) = p(x_{3}=s \mid x_{2}=s)\mu_{\alpha}(x_{2}=s) + p(x_{3}=s \mid x_{2}=r)\mu_{\alpha}(x_{2}=r) = 0.8 \cdot 0.2 + 0.4 \cdot 0.3 = 0.28$ $\mu_{\alpha}(x_{3}=r) = p(x_{3}=r \mid x_{2}=s)\mu_{\alpha}(x_{2}=s) + p(x_{3}=r \mid x_{2}=r)\mu_{\alpha}(x_{2}=r) = 0.2 \cdot 0.2 + 0.6 \cdot 0.3 = 0.22$

$$\mu_{\beta}(x_3 = s) = 1$$
$$\mu_{\beta}(x_3 = r) = 1$$

 Computation of messages: according to Slides 25/26, plugging in values from Slide 29.

$$\mu_{\alpha}(x_1 = s) = 1$$
$$\mu_{\alpha}(x_1 = r) = 1$$

$$\mu_{\alpha}(x_{2} = s) = p(x_{1} = r)p(x_{2} = s \mid x_{1} = r)\mu_{\alpha}(x_{1} = r) = 0.5 \cdot 0.4 \cdot 1 = 0.2$$

$$\mu_{\alpha}(x_{2} = r) = p(x_{1} = r)p(x_{2} = r \mid x_{1} = r)\mu_{\alpha}(x_{1} = r) = 0.5 \cdot 0.6 \cdot 1 = 0.3$$
Preceeding node x_{2} not observed: sum out
$$\mu_{\alpha}(x_{3} = s) = p(x_{3} = s \mid x_{2} = s)\mu_{\alpha}(x_{2} = s) + p(x_{3} = s \mid x_{2} = r)\mu_{\alpha}(x_{2} = r) = 0.8 \cdot 0.2 + 0.4 \cdot 0.3 = 0.28$$

$$\mu_{\alpha}(x_{3} = r) = p(x_{3} = r \mid x_{2} = s)\mu_{\alpha}(x_{2} = s) + p(x_{3} = r \mid x_{2} = r)\mu_{\alpha}(x_{2} = r) = 0.2 \cdot 0.2 + 0.6 \cdot 0.3 = 0.22$$

$$\mu_{\beta}(x_3 = s) = 1$$
$$\mu_{\beta}(x_3 = r) = 1$$

 Computation of messages: according to Slides 25/26, plugging in values from Slide 29.

$$\mu_{\alpha}(x_1 = s) = 1$$
$$\mu_{\alpha}(x_1 = r) = 1$$

$$\mu_{\alpha}(x_{2} = s) = p(x_{1} = r)p(x_{2} = s \mid x_{1} = r)\mu_{\alpha}(x_{1} = r) = 0.5 \cdot 0.4 \cdot 1 = 0.2$$

$$\mu_{\alpha}(x_{2} = r) = p(x_{1} = r)p(x_{2} = r \mid x_{1} = r)\mu_{\alpha}(x_{1} = r) = 0.5 \cdot 0.6 \cdot 1 = 0.3$$

 $\mu_{\alpha}(x_{3}=s) = p(x_{3}=s \mid x_{2}=s)\mu_{\alpha}(x_{2}=s) + p(x_{3}=s \mid x_{2}=r)\mu_{\alpha}(x_{2}=r) = 0.8 \cdot 0.2 + 0.4 \cdot 0.3 = 0.28$ $\mu_{\alpha}(x_{3}=r) = p(x_{3}=r \mid x_{2}=s)\mu_{\alpha}(x_{2}=s) + p(x_{3}=r \mid x_{2}=r)\mu_{\alpha}(x_{2}=r) = 0.2 \cdot 0.2 + 0.6 \cdot 0.3 = 0.22$

$$\mu_{\beta}(x_3 = s) = 1$$
Initialization
$$\mu_{\beta}(x_3 = r) = 1$$

Result: Product of messages arriving at query node.

$$p(x_3 = s \mid x_1 = r) = \frac{1}{Z} \mu_{\alpha}(x_3 = s) \mu_{\beta}(x_3 = s) = \frac{1}{Z} 0.28$$

$$p(x_3 = r \mid x_1 = r) = \frac{1}{Z} \mu_{\alpha}(x_3 = r) \mu_{\beta}(x_3 = r) = \frac{1}{Z} 0.22$$

$$Z = 0.28 + 0.22 = 0.5$$

$$p(x_3 = s \mid x_1 = r) = 0.56$$
$$p(x_3 = r \mid x_1 = r) = 0.44$$

 Likelihood that the sun shines the day after tomorrow, given that it rains today: 56%.

Inference in General Graphs

- So far only looked at special case: inference on linear chain.
- The general idea of message passing also applies to more general graphs.
- Extension: exact inference on polytrees
 - Polytree: directed graph in which there is exactly one undirected path between any two nodes.
 - Slightly more general concept than directed tree.

Directed tree

Factor Graphs

- General idea for message passing on polytrees: Transformation into *factor graph*.
- Given a graphical model over random variables $\{X_1, ..., X_N\}$ with graph structure *G*.
- The graphical model defines a joint distribution by

$$p(X_1,...,X_N) = \prod_{i=1}^N p(X_i \mid pa(X_i)).$$

- Definition: The *factor graph* of the graphical model is a bipartite undirected graph with
 - node set $\{X_1, \dots, X_N\} \cup \{f_1, \dots, f_N\}$ (f_i are called factor nodes)
 - edge between X_i and f_i for i = 1, ..., N
 - edge between X_j and f_i if $X_j \in pa(X_i)$.

Factor Graphs: Example

- Factor graph: make factors in joint distribution $\prod_{i=1}^{n} p(X_i | pa(X_i))$ explicit.
 - For each variable, there is a variable node (circles).
 - For each factor, there is a factor node (rectangles).
 - Variables are connected to factors they appear in.

Joint distribution: $p(X_1, X_2, X_3, X_4, X_5) = p(X_1)p(X_2)p(X_3 | X_1, X_2)p(X_4) \underbrace{p(X_5 | X_3, X_4)}_{f_5}$

Inference on Factor Graphs

If the orginial graph was a polytree, the resulting factor graph is an undirected tree (that is, it has no cycles).

- Inference is then carried out on factor graph:
 - Take the query node X_a as the root of the undirected tree.
 - Send messages from the leaves to the root (there is always a unique path, because factor graph is undirected tree).
 - There are now two types of messages: factor messages and variable messages.

Inference on Factor Graphs

- Messages are merged, at this point we have to sum over several variables (execution time becomes non-linear).
- Basic idea carries over from inference on linear chain: sum out variables successively.
- Details in the Bishop textbook ("Sum-Product" algorithm)

Loopy Belief Propagation

- Inference in graphs that are not polytrees?
- Iterative message passing scheme, not exact anymore because of cycles in the graph (=approximate inference algorithm).

 $p(X_1, X_2, X_3, X_4) = p(X_1)p(X_2 | X_1)p(X_3 | X_1)p(X_4 | X_2, X_3)$

 Exact inference in non-polytree graphs: Transform graph into equivalent acyclic graph ("Junction Tree" algorithm).