Universität Potsdam

Institut für Informatik Lehrstuhl Maschinelles Lernen

Graphical Models

Niels Landwehr

Agenda

- Graphical models: syntax and semantics.
- Inference in graphical models (exact, approximate)
- Graphical models in machine learning.

Recap: Graphical Models

Graphical model for "Alarm" scenario

Distribution modeled:

 $p(B, E, A, N, R) = p(B)p(E)p(A \mid E, B)p(N \mid A)p(R \mid E)$

Graphical model:

- There is one node for each random variable
- For each factor of the form $p(X | X_1, ..., X_k)$ there is a directed edge from the X_i to X in the graph
- Model is parameterized with conditional distributions $p(X | X_1, ..., X_k)$

Recap: Problem Setting Inference

- Given: graphical model over random variables $\{X_1, ..., X_N\}$.
- Problem setting inference:
 - Variables with evidence $X_{i_1}, ..., X_{i_m}$ { $i_1, ..., i_m$ } \subseteq {1, ..., N}
 - Query variable X_a $a \in \{1, ..., N\} \setminus \{i_1, ..., i_m\}$
 - Task: compute distribution over query variable given evidence.

Recap: Message Passing Algorithm

- Algorithm: Message Passing on a linear chain
 - Input:

$$p(x_1,...,x_N) = \psi_{1,2}(x_1,x_2),...,\psi_{N-1,N}(x_{N-1},x_N)$$

Query: $p(x_a) = ?$

Recursively compute messages:

$$\mu_{\beta}(x_{N}) = \mathbf{1}$$

For $k = N - 1, ..., a$: $\mu_{\beta}(x_{k}) = \sum_{x_{k+1}} \psi_{k,k+1}(x_{k}, x_{k+1}) \mu_{\beta}(x_{k+1})$ $\bigoplus_{x_{1}} \cdots \bigoplus_{x_{n-1}} \bigoplus_{x_{n}} \cdots \bigoplus_{x_{n+1}} \cdots \bigoplus_{x_{N}} \mu_{\alpha}(x_{1}) = \mathbf{1}$
For $k = 2, ..., a$: $\mu_{\alpha}(x_{k}) = \sum_{x_{k-1}} \psi_{k-1,k}(x_{k-1}, x_{k}) \mu_{\alpha}(x_{k-1})$ $\bigoplus_{x_{1}} \cdots \bigoplus_{x_{n-1}} \bigoplus_{x_{n}} \cdots \bigoplus_{x_{n+1}} \cdots \bigoplus_{x_{N}} \mu_{\alpha}(x_{k-1})$

Output:

 $p(x_a) = \mu_{\alpha}(x_a)\mu_{\beta}(x_a)$ (function of x_a , that is, distribution over x_a)

Recap: Inference on Factor Graphs

If the orginial graph was a polytree, the resulting factor graph is an undirected tree (that is, it has no cycles).

- Inference is then carried out on factor graph:
 - Take the query node X_a as the root of the undirected tree.
 - Send messages from the leaves to the root (there is always a unique path, because factor graph is undirected tree).
 - There are now two types of messages: factor messages and variable messages.

Graphical models: syntax and semantics.

Inference in graphical models

- Exact inference
- Approximate inference
- Graphical models in machine learning.

Approximate Inference

- Exact inference in general graphical models is NP-hard.
- In practice, *approximate* inference algorithms therefore play an important role.
- We look at sampling-based approximate inference
 - Relatively easy to understand/implement.
 - Anytime algorithms (the longer the algorithm runs, the more accurate the result).

Sampling-based Inference

- General idea sampling:
 - We are interested in a distribution p(z), where z is a set of random variables (e.g. conditional distribution over query variables in graphical model).
 - It is difficult to compute $p(\mathbf{z})$ directly.
 - Instead, we will generate "samples"

 $\mathbf{z}^{(k)} \sim p(\mathbf{z})$ i.i.d., k = 1, ..., K,

every sample $\mathbf{z}^{(k)}$ completely assigns values to the random variables in \mathbf{z} .

- The samples $\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, ..., \mathbf{z}^{(K)}$ approximate the distribution $p(\mathbf{z})$.
- It is often easier to design a procedure for generating the z^(k) than it is to compute p(z).

Sampling-based Inference

- Example:
 - One-dimensional distribution, $\mathbf{z} = \{z\}$.
 - Discrete variable with states {0,...,6}: number of "Heads" from 6 coin tosses.
 - Tossing a coin 6 times gives us one sample.
 - K=100 experiments, with 6 coin tosses each.

Sampling Inference for Graphical Models

• Given a graphical model that represents a distribution by

$$p(x_1,...,x_N) = \prod_{i=1}^N p(x_i \mid pa(x_i)).$$

Slightly more general problem setting: set of query variables

$$p(\mathbf{x}_A | \mathbf{x}_D) \approx ?$$

$$\mathbf{x}_A \subseteq \mathbf{x} = \{x_1, ..., x_N\}$$
set of query variables
$$\mathbf{x}_D \subseteq \mathbf{x} = \{x_1, ..., x_N\}$$
set of evidence variables

- Distribution $p(\mathbf{x}_A | \mathbf{x}_D)$ will be approximated by a set of samples.
- We first look at inference without evidence:

$$p(\mathbf{x}_A) \approx ?$$
 $\mathbf{x}_A = \{x_{a_1}, ..., x_{a_m}\} \subseteq \{x_1, ..., x_N\}$

Sampling Inference for Graphical Models

$$\mathbf{x}_{A}^{(k)} \sim p(\mathbf{x}_{A}) \qquad \qquad k = 1, \dots, K$$

Goal: Drawing samples from marginal distribution $p(\mathbf{x}_A) = p(x_{a_1}, ..., x_{a_m})$. $\mathbf{x}_A^{(k)} \sim p(\mathbf{x}_A)$ k = 1, ..., KIt suffices to draw samples from the joint distribution $p(\mathbf{x}) = p(x_1, ..., x_N)$: $\mathbf{x}^{(k)} = (x_1^{(k)}, ..., x_N^{(k)}) \sim p(x_1, ..., x_N)$ k = 1, ..., K

$$\mathbf{x}^{(k)} = (x_1^{(k)}, \dots, x_N^{(k)}) \sim p(x_1, \dots, x_N) \qquad k = 1, \dots, K$$

We obtain samples from the marginal distribution $p(x_{a_1},...,x_{a_m})$ simply by projecting to the $\{x_{a_1}, ..., x_{a_m}\}$.

$$\mathbf{x}^{(k)} = (x_1^{(k)}, \dots, x_N^{(k)}) \sim p(x_1, \dots, x_N) \qquad k = 1, \dots, K$$

$$\prod_{k=1}^{k} \text{ projection}$$

$$\mathbf{x}^{(k)}_A = (x_{a_1}^{(k)}, \dots, x_{a_m}^{(k)}) \sim p(x_{a_1}, \dots, x_{a_m}) \qquad k = 1, \dots, K$$

- How do we generate samples $\mathbf{x}^{(k)} \sim p(\mathbf{x})$?
- Easy for directed graphical models: "Ancestral Sampling"
 - Exploit factorization of joint distribution

$$\mathbf{x}^{(k)} \sim p(\mathbf{x}) = p(x_1, \dots, x_N)$$
$$= \prod_{i=1}^N p(x_i \mid pa(x_i))$$

Draw each new variable given states of previous variables

"Draw following the edges"

"Draw following the edges"

• We draw a sample $\mathbf{x}^{(k)} = (x_1^{(k)}, ..., x_N^{(k)})$ by successively drawing the individual $x_i^{(k)}$

$$x_{1}^{(k)} \sim p(x_{1})$$

$$x_{2}^{(k)} \sim p(x_{2} | pa(x_{2}))$$

$$\dots$$
Already drawn
values
$$x_{N}^{(k)} \sim p(x_{N} | pa(x_{N}))$$

$$\mathbf{x}^{(k)} \sim p(\mathbf{x}) = \prod_{i=1}^{N} p(x_i \mid pa(x_i))$$

Topological ordering: $pa(x_i) \subseteq \{x_1, ..., x_{i-1}\}$

Example

 $\begin{aligned} x_1^{(k)} &\sim p(x_1) & \longrightarrow x_1 = 1 \\ x_2^{(k)} &\sim p(x_2) & \longrightarrow x_2 = 0 \\ x_3^{(k)} &\sim p(x_3 \mid x_1 = 1, x_2 = 0) & \longrightarrow x_3 = 1 \\ x_4^{(k)} &\sim p(x_4 \mid x_2 = 0) & \longrightarrow x_4 = 0 \\ x_5^{(k)} &\sim p(x_5 \mid x_3 = 1) & \longrightarrow x_5 = 1 \end{aligned}$

• We draw a sample $\mathbf{x}^{(k)} = (x_1^{(k)}, ..., x_N^{(k)})$ by successively drawing the individual $x_i^{(k)}$

$$\mathbf{x}^{(k)} \sim p(\mathbf{x}) = \prod_{i=1}^{N} p(x_i \mid pa(x_i))$$

Topological ordering: $pa(x_i) \subseteq \{x_1, ..., x_{i-1}\}$

• We draw a sample $\mathbf{x}^{(k)} = (x_1^{(k)}, ..., x_N^{(k)})$ by successively drawing the individual $x_i^{(k)}$

$$\mathbf{x}^{(k)} \sim p(\mathbf{x}) = \prod_{i=1}^{N} p(x_i \mid pa(x_i))$$

Topological ordering: $pa(x_i) \subseteq \{x_1, ..., x_{i-1}\}$

• We draw a sample $\mathbf{x}^{(k)} = (x_1^{(k)}, ..., x_N^{(k)})$ by successively drawing the individual $x_i^{(k)}$

• We draw a sample $\mathbf{x}^{(k)} = (x_1^{(k)}, ..., x_N^{(k)})$ by successively drawing the individual $x_i^{(k)}$

• We draw a sample $\mathbf{x}^{(k)} = (x_1^{(k)}, ..., x_N^{(k)})$ by successively drawing the individual $x_i^{(k)}$

$$p^{(k)} \sim p(\mathbf{x}) = \prod_{i=1}^{N} p(x_i \mid pa(x_i))$$

Topological ordering: $pa(x_i) \subseteq \{x_1, ..., x_{i-1}\}$

• We draw a sample $\mathbf{x}^{(k)} = (x_1^{(k)}, ..., x_N^{(k)})$ by successively drawing the individual $x_i^{(k)}$

$$x_{1}^{(k)} \sim p(x_{1})$$

$$x_{2}^{(k)} \sim p(x_{2} | pa(x_{2}))$$

$$\dots$$
Already drawn
values
$$x_{N}^{(k)} \sim p(x_{N} | pa(x_{N}))$$

Example

 $\begin{aligned} x_1^{(k)} &\sim p(x_1) & \to x_1 = 1 \\ x_2^{(k)} &\sim p(x_2) & \to x_2 = 0 \\ x_3^{(k)} &\sim p(x_3 \mid x_1 = 1, x_2 = 0) & \to x_3 = 1 \\ x_4^{(k)} &\sim p(x_4 \mid x_2 = 0) & \to x_4 = 0 \\ x_5^{(k)} &\sim p(x_5 \mid x_3 = 1) & \to x_5 = 1 \end{aligned}$

Example: Ancestral Sampling

• Example for estimation of marginal distribution from samples:

$$\mathbf{x}^{(1)} = (1,0,1,0,1)$$

$$\mathbf{x}^{(2)} = (0,0,0,0,0)$$

$$\mathbf{x}^{(3)} = (0,1,0,1,0)$$

$$\mathbf{x}^{(4)} = (0,1,1,0,1)$$

$$\mathbf{x}^{(5)} = (0,0,0,0,0)$$

$$p(x_{3} = 1) \approx 0.4$$

$$p(x_{4} = 1) \approx 0.2$$

$$p(x_{5} = 1) \approx 0.4$$

- Analysis of Ancestral Sampling
 - + Directly draws from the right distribution.
 - + Efficient.
 - + Works for any graph structure.
 - Only works without evidence.

Inference: Logic Sampling

• How do we obtain samples conditioned on evidence?

$$\mathbf{x}_{A}^{(k)} \sim p(\mathbf{x}_{A} | \mathbf{x}_{D}) = p(x_{a_{1}}, ..., x_{a_{m}} | \mathbf{x}_{i_{1}}, ..., \mathbf{x}_{i_{l}})$$
Observed variables

- Logic Sampling: Ancestral Sampling + reject samples that are not consistent with observations.
 - We generating complete samples

$$\mathbf{x}^{(k)} = (x_1^{(k)}, ..., x_N^{(k)}) \sim p(\mathbf{x})$$

as before (ignoring the evidence).

- We throw away samples in which the values drawn for the evidence variables do not correspond to the observations.
- Problem: often almost all samples are rejected (specifically if there are many evidence variables).
- Takes a long time to generate enough samples, often not practical.

Inference: MCMC

- Alternative strategy to generate samples: Markov Chain Monte Carlo ("MCMC")
- Idea:
 - Difficult to generate samples directly from $p(\mathbf{z})$.
 - Alternative strategy: construct sequence of samples

$$\mathbf{z}^{(0)} \rightarrow \mathbf{z}^{(1)} \rightarrow \mathbf{z}^{(2)} \rightarrow \mathbf{z}^{(3)} \rightarrow \mathbf{z}^{(4)} \rightarrow \mathbf{z}^{(5)} \rightarrow \dots$$

 $\mathbf{z}^{(0)}$ randomly initialized $\mathbf{z}^{(t+1)} \sim p(\mathbf{z}^{(t+1)} | \mathbf{z}^{(t)})$

by iterative probabilistic update steps $\mathbf{z}^{(t+1)} \sim p(\mathbf{z}^{(t+1)} | \mathbf{z}^{(t)})$.

If updates are chosen appropriately, asymptotically it holds that

$$\mathbf{z}^{(T)} \sim p(\mathbf{z})$$

Random variable: T-th sample

approximately, for very large *T*

Markov Chains

We study the sequence of samples

$$\mathbf{z}^{(0)} \rightarrow \mathbf{z}^{(1)} \rightarrow \mathbf{z}^{(2)} \rightarrow \mathbf{z}^{(3)} \rightarrow \mathbf{z}^{(4)} \rightarrow \mathbf{z}^{(5)} \rightarrow \dots$$

as random variables, $\mathbf{z}^{(t)}$ is called state of chain at time *t*.

These random variables form a linear chain:

Such linear chains are also called Markov chains.

Markov Chains

The distribution over z^(t+1) can be computed based on the distribution over z^(t):

new state
$$p(\mathbf{z}^{(t+1)}) = \sum_{\mathbf{z}^{(t)}} p(\mathbf{z}^{(t+1)} | \mathbf{z}^{(t)}) p(\mathbf{z}^{(t)})$$

- A distribution $p(\mathbf{z}^{(t)})$ is called stationary, if $p(\mathbf{z}^{(t+1)}) = p(\mathbf{z}^{(t)})$.
- If chain has reached a stationary distribution at time t, the stationary distribution will be preserved:

$$p(\mathbf{z}^{(t+k)}) = p(\mathbf{z}^{(t)})$$
 for all $k \ge 0$

 Under certain assumptions ("ergodic chains"), Markov chains converge to a unique stationary distribution ("equilibrium distribution").

MCMC in Graphical Models

- Given a graphical model over random variables $\mathbf{x} = \{x_1, ..., x_N\}$, the model defines a distribution $p(\mathbf{x})$.
- For the time being we assume that there is no evidence.
- "Markov Chain Monte Carlo" methods
 - From the graphical model, construct a sequence of samples by iterative probabilistic updates
 - $\mathbf{x}^{(0)} \rightarrow \mathbf{x}^{(1)} \rightarrow \mathbf{x}^{(2)} \rightarrow \mathbf{x}^{(3)} \rightarrow \mathbf{x}^{(4)} \rightarrow \mathbf{x}^{(5)} \rightarrow \dots \qquad \text{each } \mathbf{x}^{(t)} \text{ assignment}$ of values to all nodes $\mathbf{x}^{(0)} \text{ randomly initialized} \qquad \mathbf{x}^{(t+1)} \sim p(\mathbf{x}^{(t+1)} | \mathbf{x}^{(t)})$
 - Goal: choose updates in such a way that we get an ergodic Markov chain with equilibrium distribution p(x).
 - Most simple method: successively locally redraw a single variable conditioned on states of all other variables ("Gibbs-Sampling").

Inference: Gibbs Sampling

- Gibbs Sampling: one variant of MCMC.
- Probabilistic update step given by successively locally drawing a single random variable conditioned on state of all other variables.
 - Given old state $\mathbf{x} = (x_1, ..., x_N)$
 - Draw new state $\mathbf{x}' = (x_1', ..., x_N')$:

states sampled in
last update step
$$x_1 \sim p(x_1 \mid x_2, ..., x_N)$$

 $x_2 \sim p(x_2 \mid x_1', x_3, ..., x_N)$
 $x_3 \sim p(x_3 \mid x_1', x_2', x_4, ..., x_N)$

Random initialization in the beginning.

$$x_N' \sim p(x_N | x_1', x_2', ..., x_{N-1}')$$

Inference: Gibbs Sampling

- Theorem: If $p(x_i | pa(x_i)) \neq 0$ for all *i* and all possible x_i , $pa(x_i)$, then the resulting Markov chain is ergodic with equilibrium distribution $p(\mathbf{x})$.
- Single Gibbs-step is easy: all variables except current query variable are observed, naive inference in time O(M N).

Gibbs Sampling With Evidence

- So far we have looked at inference without evidence.
- How do we obtain samples from the conditional distribution?

Goal: $\mathbf{x}^{(T)} \sim p(\mathbf{x} | \mathbf{x}_D)$ approximately, for very large T

- Slight modification of Gibbs sampling algorithm:
 - Gibbs sampling always redraws a variable x_i, conditioned on the states of the other variables.
 - With evidence: only redraw the unobserved variables, the observed variables are fixed to their observed values.

Inference: Gibbs Sampling

- Summary Gibbs sampling algorithm:
 - $\mathbf{x}^{(0)}$ = random initialization of all random variables, consistent with evidence \mathbf{x}_D
 - For t = 1, ..., T: $\mathbf{x}^{(t+1)} = \text{Gibbs-update}(\mathbf{x}^{(t)})$ [Slide 27]

• The samples $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \dots$ are asymptotically distributed according to $p(\mathbf{x} | \mathbf{x}_D)$

- Gibbs sampling gives reasonably good results in many practical applications
 - Individual update steps are efficient
 - Convergence is guaranteed (for $t \rightarrow \infty$)
 - Can draw samples from p(x | x_D) without becoming very inefficient if evidence set is large (in contrast to logic sampling).

Inference: Gibbs Sampling

- Gibbs sampling: convergence
 - Convergence of Markov chain $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \dots$ is only guaranteed for $t \to \infty$.
 - Practical solution: "burn-in" iterations before samples are used (discard samples $\mathbf{x}^{(t)}$ for $t \leq T_{Burn-in}$).
 - There are also convergence tests to determine the number of burn-in iterations to use.

Inference: Summary

- Exact inference
 - Message passing algorithm.
 - Exact inference on polytrees (with Junction-Tree extension to general graphs).
 - Running time depends on graph structure, exponential in worst-case.
- Approximate inference
 - Sampling methods: approximation through a set of samples, exact results for $t \rightarrow \infty$.
 - ★ Ancestral sampling: simple, fast, no evidence.
 - ★ Logic sampling: with evidence, but rarely feasible.
 - MCMC/Gibbs sampling: efficient approximate drawing of samples conditioned on evidence.

Agenda

- Graphical models: syntax and semantics.
- Inference in graphical models (exact, approximate)
- Graphical models in machine learning.

Recap: Parameter Estimate for Coin Tosses

- Recap: coin toss
 - Individual coin toss Bernoulli distributed with parameter µ

 $X \in \{0,1\}$

 $X \sim \operatorname{Bern}(X \mid \mu) = \mu^X (1 - \mu)^{1 - X}$

 $\mu = p(X = 1 | \mu)$ unknown parameter

- Parameter estimation problem:
 - We have observed N independent coin tosses, in the form of observations L={x₁,..., x_N} of the random variables X₁,..., X_N.
 - The true parameter μ is unknown, our goal is an estimate $\hat{\mu}$ or a posterior distribution $p(\mu | L)$.
 - Bayesian approach: posterior ∞ prior x likelihood

 $\underline{p(\mu \mid L)} \propto \underline{p(L \mid \mu)} p(\mu).$ likelihood posterior

Recap: Parameter Estimate for Coin Tosses

• Prior: Beta distribution over coin toss parameter μ

• Likelihood of *N* independent coin tosses:

$$p(X_{1},...,X_{N} | \mu) = \prod_{i=1}^{N} p(X_{i} | \mu) \qquad i.i.d.$$
$$= \prod_{i=1}^{N} \text{Bern}(X_{i} | \mu)$$
$$= \prod_{i=1}^{N} \mu^{X_{i}} (1-\mu)^{1-X_{i}}$$

- Coin toss scenario as a graphical model?
- Random variables in coin toss scenario are $X_1, ..., X_N, \mu$.
- Joint distribution of data and parameter: prior x likelihood

$$p(X_1,...,X_N,\mu) = p(\mu)p(X_1,...,X_N \mid \mu) = p(\mu)\prod_{i=1}^N \underbrace{p(X_i \mid \mu)}_{\text{Bernoulli}}$$

Representation as a graphical model:

- Coin toss scenario as a graphical model?
- Random variables in coin toss scenario are $X_1, ..., X_N, \mu$.
- Joint distribution of data and parameter: prior x likelihood

$$p(X_1,...,X_N,\mu) = p(\mu)p(X_1,...,X_N \mid \mu) = p(\mu)\prod_{i=1}^N \underbrace{p(X_i \mid \mu)}_{\text{Bernoulli}}$$

Representation as a graphical model:

$$f(x) = \emptyset$$

Independent coin tosses: representation as a graphical model.

- D-separation
 - Does $X_N \perp X_1, ..., X_{N-1} | \emptyset$ hold?

Independent coin tosses: representation as a graphical model.

D-separation

- Does $X_N \perp X_1, ..., X_{N-1} | \emptyset$ hold?
- No, path through μ is not blocked.
- Intuitively: $X_1 = X_2 = ... = X_{N-1} = 1 \Rightarrow$ probably $\mu > 0.5 \Rightarrow$ probably $X_N = 1$
- The unknown parameter μ couples the random variables $X_1, ..., X_N$.
- But it holds that $X_N \perp X_1, ..., X_{N-1} \mid \mu$.

Parameter Estimation as Inference Problem

• MAP parameter estimation coin tosses:

$$\widehat{\mu} = \arg \max_{\mu} p(\mu \mid x_1, ..., x_N).$$

Inference problem:

- Evidence on the nodes $X_1, ..., X_N$.
- Want: distribution $p(\mu | X_1, ..., X_N)$.

Plate Models

- Extension of graphical models: Plate notation.
- Independent coin tosses: representation as graphical model.

- Nodes $X_1, ..., X_N$ are of the same form
 - Same domain (binary)
 - Same conditional distribution $p(X_i | \mu) = p(X_j | \mu)$.
- Shorthand notation in form of a "template": Plate notation.

Plate Models

Plate notation for coin tosses:

- A "Plate" is a shorthand notation for N variables of the same form
 - Labeled with the number of variables, N
 - Variables have index (e.g. X_i).
- Plate models are often used in graphical models for machine learning.

Plate Models: Hyperparameters

- Role of "hyperparameters" α_k, α_z ?
 - Not random variables, we only model the joint distribution of X₁,...,X_N, μ given hyperparameters.

$$p(X_1,...,X_N,\mu | \alpha_k,\alpha_z) = p(\mu | \alpha_k,\alpha_z) \prod_{i=1}^N p(X_i | \mu)$$

 Hyperparameters are not nodes in the graphical model, but are often additionally depicted (with point instead of circle).

