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Agenda 

 

 

 Graphical models: syntax and semantics. 

 

 Inference in graphical models (exact, approximate) 

 

 Graphical models in machine learning. 
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Recap: Graphical Models 

 Graphical model for „Alarm“ scenario 
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Graphical model:

- There is one node for each random variable

- For each factor of the form ( | ,..., )

  there is a directed edge from the  to  in the graph

- Model is parameterized with conditiona

k
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Recap: Problem Setting Inference 

 Given: graphical model over random variables {X1,…,XN }. 

 

 Problem setting inference: 

 Variables with evidence 

 Query variable 

 

 Task: compute distribution over query variable given 

evidence. 
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1
Compute     ( | ,..., ) 

ma i ip x x x

1

Evidence: observed values 

for variables ,...,
miiX X

Conditional distribution

over random variable aX

1 1,...,            { ,... } {1,.., ., }
mi i mi iX X N

1                                a {1,..., { ,..., }} maX N i i
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More generally also      ( ,..., | ,..., ) 
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Recap: Message Passing Algorithm 

 Algorithm: Message Passing on a linear chain 

 Input:  

 

 

 Recursively compute messages: 

 

 

 

 

 

 

 Output: 
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Recap: Inference on Factor Graphs 

 If the orginial graph was a polytree, the resulting factor graph 

is an undirected tree (that is, it has no cycles). 

 

 

 

 

 

 

 Inference is then carried out on factor graph: 

 Take the query node       as the root of the undirected tree. 

 Send messages from the leaves to the root (there is always a 

unique path, because factor graph is undirected tree). 

 There are now two types of messages: factor messages and 

variable messages. 
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aX

Leaves Special case  

linear chain: 

aX aX
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Agenda 

 

 

 Graphical models: syntax and semantics. 

 

 Inference in graphical models  

 Exact inference 

 Approximate inference 

 

 Graphical models in machine learning. 
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Approximate Inference 

 Exact inference in general graphical models is NP-hard. 

 In practice, approximate inference algorithms therefore 

play an important role. 

 

 We look at sampling-based approximate inference 

 Relatively easy to understand/implement. 

 Anytime algorithms (the longer the algorithm runs, the 

more accurate the result). 
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Sampling-based Inference 

 General idea sampling: 

 We are interested in a distribution          , where     is a set 

of random variables (e.g. conditional distribution over 

query variables in graphical model). 

 It is difficult to compute          directly. 

 Instead, we will generate „samples“  

 

 

every sample          completely assigns values to the 

random variables in   . 

 

 The samples                      approximate the distribution 

 It is often easier to design a procedure for generating 

the         than it is to compute   
9 

( )p z
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Sampling-based Inference 

 Example:  

 One-dimensional distribution, 

 Discrete variable with states {0,…,6}: number of „Heads“ 

from 6 coin tosses. 

 Tossing a coin 6 times gives us one sample. 

 K=100 experiments, with 6 coin tosses each. 

10 

Proportion 

of samples

with value  z

Sample histogram

{ }.zz

z

True distribution (Binomial)

K 
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Sampling Inference for Graphical Models 

 Given a graphical model that represents a distribution by 

 

 

 

 Slightly more general problem setting: set of query variables 

 

 

 

 

 Distribution               will be approximated by a set of samples. 

 

 We first look at inference without evidence: 
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Sampling Inference for Graphical Models 

 Goal: Drawing samples from marginal distribution  

 

 

 It suffices to draw samples from the joint distribution 

 

 

 

 We obtain samples from the marginal distribution               

simply by projecting to the                 . 
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Inference: Ancestral Sampling 

 How do we generate samples              ? 

 

 Easy for directed graphical models: „Ancestral 

Sampling“ 

 Exploit factorization of joint distribution 

 

 

 

 

 

 

 „Draw following the edges“ 
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states of previous variables 
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Inference: Ancestral Sampling 

 We draw a sample                           by successively 

drawing the individual   

 

 

 

 

 

 Example 
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Inference: Ancestral Sampling 

 We draw a sample                           by successively 

drawing the individual   
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Inference: Ancestral Sampling 

 We draw a sample                           by successively 

drawing the individual   
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Inference: Ancestral Sampling 

 We draw a sample                           by successively 

drawing the individual   
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Inference: Ancestral Sampling 

 We draw a sample                           by successively 

drawing the individual   
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Inference: Ancestral Sampling 

 We draw a sample                           by successively 

drawing the individual   
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Inference: Ancestral Sampling 

 We draw a sample                           by successively 

drawing the individual   

 

 

 

 

 

 Example 
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Example: Ancestral Sampling 

 Example for estimation of marginal distribution from 

samples: 

 

 

 

 

 

 

 Analysis of Ancestral Sampling 

 + Directly draws from the right distribution. 

 + Efficient. 

 + Works for any graph structure. 

 - Only works without evidence. 
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Inference: Logic Sampling 

 How do we obtain samples conditioned on evidence? 

 

 

 

 Logic Sampling: Ancestral Sampling + reject samples that are 

not consistent with observations. 

 We generating complete samples  

 

      

    as before (ignoring the evidence). 

 We throw away samples in which the values drawn for the 

evidence variables do not correspond to the observations. 

 Problem: often almost all samples are rejected (specifically if there 

are many evidence variables). 

 Takes a long time to generate enough samples, often not practical. 
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Inference: MCMC 

 Alternative strategy to generate samples: Markov Chain Monte 

Carlo („MCMC“) 

 Idea: 

 Difficult to generate samples directly from  

 Alternative strategy: construct sequence of samples 

 

 

 

 

by iterative probabilistic update steps                              . 

 If updates are chosen appropriately, asymptotically it holds that 
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Markov Chains 

 We study the sequence of samples 

 

 

as random variables,        is called state of chain at time t. 

 

 These random variables form a linear chain: 

 

 

 

 

 Such linear chains are also called Markov chains. 
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Markov Chains 

 The distribution over        can be computed based on the 

distribution over 

 

 

 

 

 A distribution            is called stationary, if  

 If chain has reached a stationary distribution at time t , the 

stationary distribution will be preserved: 

 

 

 Under certain assumptions („ergodic chains“), Markov chains 

converge to a unique stationary distribution („equilibrium 

distribution“). 
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MCMC in Graphical Models 

 Given a graphical model over random variables x = {x1,…,xN}, 

the model defines a distribution p(x). 

 For the time being we assume that there is no evidence. 

 „Markov Chain Monte Carlo“ methods 

 From the graphical model, construct a sequence of samples by 

iterative probabilistic updates 

 

 

 

 

 Goal: choose updates in such a way that we get an ergodic 

Markov chain with equilibrium distribution  

 Most simple method: successively locally redraw a single 

variable conditioned on states of all other variables („Gibbs-

Sampling“). 
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Inference: Gibbs Sampling 

 Gibbs Sampling: one variant of MCMC. 

 Probabilistic update step given by successively locally drawing a 

single random variable conditioned on state of all other 

variables. 

 Given old state 

 Draw new state                        : 
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states sampled in
last update step

1 1 2

2 3

1

2 1

3 3

2 1

2 4

1

' ~ ( | )

' ~ ( | ' , )

' ~ ( | ', ', ...,

...

' ~ ( | ' ', ')

,...,

, ...,

, )

, ...,

N

N

N N N

N

x p x x

x p x x

x p x x x x

x

x x

x

x p xx x x 

1,..., )( Nx xx

1 ,...,' ' )( 'Nx xx

Random initialization 

in the beginning. 
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Inference: Gibbs Sampling 

 Theorem: If                           for all i and all possible  xi ,         , 

then the resulting Markov chain is ergodic with equilibrium 

distribution 

 

 Single Gibbs-step is easy: all variables except current query 

variable are observed, naive inference in time O(M N). 
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Gibbs Sampling With Evidence 

 So far we have looked at inference without evidence. 

 

 How do we obtain samples from the conditional 

distribution? 

 

 

 

 Slight modification of Gibbs sampling algorithm: 

 Gibbs sampling always redraws a variable xi ,  conditioned 

on the states of the other variables. 

 With evidence: only redraw the unobserved variables, the 

observed variables are fixed to their observed values. 
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( )Goal:    ~ ( | )             approximately, for very large T
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Inference: Gibbs Sampling 

 Summary Gibbs sampling algorithm: 

    

   

   

 

   

 

 Gibbs sampling gives reasonably good results in many 

practical applications 

 Individual update steps are efficient 

 Convergence is guaranteed (for          )  

 Can draw samples from                 without becoming very 

inefficient if evidence set is large (in contrast to logic sampling).   
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(0) random initialization of all random variables, consistent with evidence Dx x

( 1) ( )Gibbs-update(For 1,..., :   )            [Slide 27]t tt T   xx

(1) (2) (3)The samples , ,...  are asymptotically distributed according to ( |, )Dpx x xx x

)( | Dp x x

 t 
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Inference: Gibbs Sampling 

 Gibbs sampling: convergence 

 Convergence of Markov chain                      is only 

guaranteed for  t → ∞. 

 Practical solution: „burn-in“ iterations before samples are 

used (discard samples        for              ).   

 There are also convergence tests to determine the number 

of burn-in iterations to use. 

 

 

 

31 

( )t
x Burn int T 

(1) (2) (3), .  , ,..x xx



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II 

Inference: Summary 

 Exact inference 

 Message passing algorithm. 

 Exact inference on polytrees (with Junction-Tree extension 

to general graphs). 

 Running time depends on graph structure, exponential in 

worst-case. 

 

 Approximate inference 

 Sampling methods: approximation through a set of 

samples, exact results for t → ∞. 

 Ancestral sampling: simple, fast, no evidence. 

 Logic sampling: with evidence, but rarely feasible. 

 MCMC/Gibbs sampling: efficient approximate drawing of 

samples conditioned on evidence. 
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Agenda 

 

 

 Graphical models: syntax and semantics. 

 

 Inference in graphical models (exact, approximate) 

 

 Graphical models in machine learning. 
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Recap: Parameter Estimate for Coin Tosses 

 Recap: coin toss 

 Individual coin toss Bernoulli distributed with parameter μ 

 

 

 

 Parameter estimation problem: 

 We have observed  N  independent coin tosses, in the 

form of observations L={x1,…, xN }  of the random variables 

X1,…, XN . 

 The true parameter μ is unknown, our goal is an estimate    

     or a posterior distribution  

 Bayesian approach: posterior     prior x likelihood 
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Recap: Parameter Estimate for Coin Tosses 

 Prior: Beta distribution over coin toss parameter μ  

 

 

 

 

 

 

 Likelihood of N  independent coin tosses: 
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Coin Tosses as a Graphical Model 

 Coin toss scenario as a graphical model? 

 Random variables in coin toss scenario are   

 Joint distribution of data and parameter: prior x likelihood 

 

 

 

 Representation as a graphical model: 
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Coin Tosses as a Graphical Model 

 Coin toss scenario as a graphical model? 

 Random variables in coin toss scenario are   

 Joint distribution of data and parameter: prior x likelihood 

 

 

 

 Representation as a graphical model: 
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Coin Tosses as a Graphical Model 

 Independent coin tosses: representation as a graphical 

model. 

 

 

 

 

 D-separation 

 Does                           hold? 
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Coin Tosses as a Graphical Model 

 Independent coin tosses: representation as a graphical 

model. 

 

 

 

 

 D-separation 

 Does                           hold? 

 No, path through μ is not blocked.   

 Intuitively:   

 The unknown parameter μ  couples the random variables 

X1,…, XN. 

 But it holds that  
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Parameter Estimation as Inference Problem 

 MAP parameter estimation coin tosses: 

 

 

 Inference problem: 

 

 

 

 

 

 

 

 Evidence on the nodes  X1,…, XN. 

 Want: distribution                            
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Plate Models 

 Extension of graphical models: Plate notation. 

 Independent coin tosses: representation as graphical 

model. 

 

 

 

 

 Nodes X1,…, XN  are of the same form 

 Same domain (binary) 

 Same conditional distribution  

 

 Shorthand notation in form of a „template“: Plate notation. 
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Plate Models 

 Plate notation for coin tosses: 

 

 

 

 

 

 

 A „Plate“ is a shorthand notation for  N  variables of the 

same form 

 Labeled with the number of variables, N  

 Variables have index (e.g. Xi ). 

 Plate models are often used in graphical models for 

machine learning. 
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Plate Models: Hyperparameters 

 Role of „hyperparameters“          ? 

 Not random variables, we only model the joint distribution of  

                    given hyperparameters. 

 

 

 Hyperparameters are not nodes in the graphical model, but 

are often additionally depicted (with point instead of circle). 
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