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Agenda

= Graphical models: syntax and semantics.

= Inference in graphical models (exact, approximate)
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= Graphical models in machine learning.




Recap: Graphical Models

s Graphical model for ,Alarm® scenario

P(B=1)
0.1
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P(E=1) Distribution modeled:

0.2 P(B,E,A,N,R)=p(B)p(E)p(A|E,B)p(N[A)p(R|E)
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Graphical model:
- There Is one node for each random variable
- For each factor of the form p(X | X,,..., X,)

0.95

A4 |Piv=114)

there is a directed edge from the X, to X in the graph

0 101

- Model is parameterized with conditional distributions

07 POX | Xy X,)




Recap: Problem Setting Inference

= Given: graphical model over random variables {X,,.... X, }.
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= Problem setting inference: %
Variables with evidence X, ..., X; {i,,...,1_}={L....,N} o
Query variable X, acfl,... NINdi,...i } z
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Task: compute distribution over query variable given
evidence.

[Conditional distribution

over random variable X i
: for variables X ,..., X

Evidence: observed values}

Compute  p(X, | X ..., X

)

More generally also  p(x, ,..., X, |X

Im
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Recap: Message Passing Algorithm

= Algorithm: Message Passing on a linear chain
Input:

P(X, e Xy) = Wi (X, %,), e NN (Xn-10 Xy)
Query: p(x,) =?

Recursively compute messages:
luﬂ(XN) =1

Fork=N-1,...a: /uﬁ(xk) = Z Wk,k+1(xk , Xk+1):uﬂ(xk+l) O—-O0—0—0~

Xk

|| SISAjeuy ereq uabijeiu|

H, (%) =1

Fork=2,..,a: H, (Xk) = Z Wik (Xk—l’ Xk)lua (Xk—l) O:_.C_.C O——)

Xk

Output:

P(X,) = a4, (X, ) 115 (X,) (function of x,, that is, distribution over x,)




Recap: Inference on Factor Graphs

= |f the orginial graph was a polytree, the resulting factor graph
IS an undirected tree (that is, it has no cycles).
Leaves S_pecial case
linear chain:

—_— = —— e e— e
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= Inference is then carried out on factor graph:
Take the query node X, as the root of the undirected tree.

Send messages from the leaves to the root (there is always a
unigue path, because factor graph is undirected tree).

There are now two types of messages: factor messages and
variable messages.




Agenda

= Inference in graphical models
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Approximate inference




Approximate Inference

s EXxact inference in general graphical models is NP-hard.

= In practice, approximate inference algorithms therefore
play an important role.

= We look at sampling-based approximate inference
Relatively easy to understand/implement.

Anytime algorithms (the longer the algorithm runs, the
more accurate the result).
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Sampling-based Inference

= General idea sampling:

We are interested in a distribution p(z) , where Z is a set
of random variables (e.g. conditional distribution over
query variables in graphical model).

It is difficult to compute p(z) directly.
Instead, we will generate ,samples”

2% ~ p(2) iid, k=1..,K,
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every sample z%™ completely assigns values to the
random variables in Z.

s The samples z%,z%,...,z*) approximate the distribution p(z).

= Itis often easier to design a procedure for generating
the z than it is to compute p(z).




Sampling-based Inference

= Example: 2
One-dimensional distribution, z ={z}. S
Discrete variable with states {0,...,6}: number of ,Heads" @
from 6 coin tosses. =
Tossing a coin 6 times gives us one sample. g%j
K=100 experiments, with 6 coin tosses each. §

Sample histogram True distribution (Binomial)
Proportion
of samples K—>w
with value z - I

il




Sampling Inference for Graphical Models

= Given a graphical model that represents a distribution by

=1
D
N Q
p(X1 """ XN) = H p(xi | pa(xi ). g
i=1 )
=
QO
= Slightly more general problem setting: set of query variables g:jf
i
(0)]
Xy © X={X,.... Xy } set of query variables =
P(Xa[Xp) = ? X, = X={X,..X,} setofevidence variables

= Distribution p(x,[X,) will be approximated by a set of samples.

s We first look at inference without evidence:

p(x,)="? Xp ={X; 000 X FS{X 0 X0}
11




Sampling Inference for Graphical Models

= Goal: Drawing samples from marginal distribution p(X,) = p(X, ;-1 X, ).

m

X"~ p(x,) k=1..K

m [t suffices to draw samples from the joint distribution
P(X) = P(X;,.ey Xy ) :

X(k) :(X1(k)""’xr(\1k))~ IO(Xl,---,XN) k=1,...,K
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=  We obtain samples from the marginal distribution p(xal,.--,Xam)
simply by projecting to the {Xa v %}

X(k) :(ka)’".,xl(\lk)),\, p(X11---1XN) k:].,...,K
projection
X' :(xglk),...,xgr'?) ~ P(X, 1eenr X, ) k=1..K

12




Inference: Ancestral Sampling

= How do we generate samples x" ~ p(x) ?
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<
= Easy for directed graphical models: ,Ancestral ;o:
Sampling” 5)5
Exploit factorization of joint distribution D
<
28
X"~ p(x) = p(Xs.mns Xy) o
_ ﬁ o(x. | pa(x)) ,,Draw following the edges*
B ® @
Draw each new variable given \ / \
states of previous variables
()
,Draw following the edges” l

13




Inference: Ancestral Sampling

= We draw a sample x =(x{,..,x{) by successively

Already drawn _ .
values Topological ordering: pa(x.) c{X,,..., X .}

5
3

drawing the individual x 5
X~ p(x) N S
x® ~ p(x, | pax,)) x® ~p(x) =[] p(x | pa(x)) >
i=1 )

2

Xr(\lk) - p(XN | pa(XN ))

= Example B@ @E
K~ p(x) x=l \ /
Xék) ~ p(X,) — X, =0 A® R
Xék)~p(X3|X1=1,X2=O) - X =1 l
XM ~ p(x, | x, =0) — X, =0
L(lk) L 4 N @
X5 ~ P(Xs | % =1) - %=1
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Inference: Ancestral Sampling

= We draw a sample x =(x{,..,x{) by successively

=1

T

drawing the individual x* &
>

X~ p(x) X 9
X" ~ p(X, | pa(x,)) X~ p(x) =[] p(x | pa(x)) ‘;;i
_ Already drawn = D

" vinliian Topological ordering: pa(x,) = {X,,... X} rJ

Xv' ~ P(Xy | P P(B=1) 2

0.1
B E
s Example () ()
Xl(k) ~ p(x) - X% =1 /
x¥) ~ p(x,) — X, =0 RO R
Xék)~p(X3|X1=1,X2=O) - X =1 l
XM ~ p(x, | x, =0) — X, =0
z(tk) 4172 4 N @
X5 ~ P(Xs | % =1) - %=1
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Inference: Ancestral Sampling

= We draw a sample x =(x{,..,x{) by successively

Already drawn _ .
values Topological ordering: pa(x.) c{X,,..., X .}

Xr(\lk) - p(XN | pa(XN ))

5
3

drawing the individual x 5
X~ p(x) N S
x® ~ p(x, | pax,)) x® ~p(x) =[] p(x | pa(x)) >
i=1 )

2

= Example B@ @E
Xl(k) ~ p(x) - X% =1 /
Xék) ~ p()(2 — X, =0 A® R
Xék)~p(X3|X1=1,X2=O) - X =1 l
XM ~ p(x, | x, =0) — X, =0
L(lk) L 4 N ()
X5 ~ P(Xs | % =1) - %=1
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Inference: Ancestral Sampling

= We draw a sample x =(x%,...x{) by successively =]
drawing the individual x 5
-
X"~ p(x) X S
X ~ p(x, | pa%x})) X" ~ p(x) =1__1[ p(x, | pa(x)) >
' B |E |P(A=1|B.E) \ Topological ordering: pa(x.) c{X,,..., X .} %_J
X~ PP T oo 5
0 |1 105
. Example 1 10 |09 B@ @ E
1 |1 1095
X ~ p(x,) — /
40~ p(x,) %, =0 Re _
Xék)~p(X3|X1=1,X2=O) =X =1 l
(k) _ _ _
Xz(Lk) p(X4 | X :O) - X4_— 0 N @
X5 ~ P(Xs | % =1) - %=1

17




Inference: Ancestral Sampling

= We draw a sample x =(x{,..,x{) by successively

=]
o)
drawing the individual x* &
-
X~ p(x,) N 5
X ~ p(x, | pa(x,)) x¥ ~p(x) =] p(x | pa(x)) >
Already drawn Topological olr:cllering pa(x) c{x,... X .} =
vialina : i) SaXias 1oy
X~ p(xy | P&~ N @
E |PR=1E)
s Example 0 |0.01 B@ @E
Xl(k) _ p(x1) 1 0.5 \ /
X$) ~ p(x,) % NS R
Xék)~p(X3| = <=0) - X =1 l
XM ~ p(X; | x, =0) — X, =0
L(lk) L 4 N G
X5 ~ P(Xs | % =1) - %=1

18




Inference: Ancestral Sampling

= We draw a sample x =(x{,..,x{) by successively

=1

T

drawing the individual x 5
)

X~ p(x,) N S
7~ pix, | Pac.) X~ p0) =] ] 0% | atx) >
Already drawn o= >
. values Topological ordering: pa(x,) = {X,,... X} rJ
Xl(\l) - p(XN | pa(XN ) 2

4 A

m Example A4 |P(N=1|4) B@ @ -
X1(k) - p(x1) 0 0.1 \ /
1 o7
X" ~ p(x,) NG R
Xék) ~ P(%s | % = / l
x(k)~p(x|x — X, =0
e | v
Xg ~p(X5|X3:1) _)X5:1

19




Inference: Ancestral Sampling

= We draw a sample x =(x{,..,x{) by successively
drawing the individual x

X ~ p(x)

X" ~ p(x, | pa(x,))
Already drawn

values
Xr(\lk) - p(XN | pa(XN ))
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s Example
X~ p(x) X =1
X\~ p(x,) —X, =0
X~ p(x | % =1%=0) —>x,=1 —> x¥=(0101)
X'~ p(x, | X, =0) — X, =0
X~ p(x | X, =1) — X =1

20




Example: Ancestral Sampling

= Example for estimation of marginal distribution from 2
samples: S
>
x® =(1,0,1,0,1) B® © E 5
Q
x® =(0,0,0,0,0) p(x, =1) ~0.4 \ / >
x® =(0,1,0,1,0) :> p(x, =1) ~ 0.2 @ %_J
x“ =(0,1,1,0,1) p(x, =1) ~ 0.4 A R W

x® =(0,0,0,0,0) l

N ()

= Analysis of Ancestral Sampling
+ Directly draws from the right distribution.
+ Efficient.
+ Works for any graph structure.

- Only works without evidence. .




Inference: Logic Sampling

= How do we obtain samples conditioned on evidence?

Observed variables
Xp' ~ P(Xa[Xp) = P(Xg vee Xg X500 %)

= Logic Sampling: Ancestral Sampling + reject samples that are
not consistent with observations.

We generating complete samples
X = (%) ~ p(x)

as before (ignoring the evidence).

We throw away samples in which the values drawn for the
evidence variables do not correspond to the observations.

Problem: often almost all samples are rejected (specifically if there
are many evidence variables).

Takes a long time to generate enough samples, often not practical.
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Inference: MCMC

= Alternative strategy to generate samples: Markov Chain Monte
Carlo (,MCMC")

s l|dea:
Difficult to generate samples directly from p(z).
Alternative strategy: construct sequence of samples

7@ 5 70 5 70 & 54 50 5
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z® randomly initialized 2 ~ p(z" | zM)

by iterative probabilistic update steps z"* ~ p(z"*™® |z") .
If updates are chosen appropriately, asymptotically it holds that

2" ~ p(2) approximately, for very large T

Random variable: T-th sample

23




Markov Chains

= We study the sequence of samples

7@ 5 70 5 7@ & 54 570 5

as random variables, 7z is called state of chain at time t.

s  These random variables form a linear chain:
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Z(0) - p(Z(O)) Z(1) - p(z(l) | Z(0)) Z(2) - p(Z(Z) | Z(1)) Z(3) - p(z(?») |Z(2))

O—— O @ ——

m  Such linear chains are also called Markov chains.

24




Markov Chains

= The distribution over z'*? can be computed based on the
distribution over z®

new state \ / current state

p(z*) =2 pE"™ 2" p(z")

o)
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= Adistribution p(z") is called stationary, if p(z“™)=p(z").

= |f chain has reached a stationary distribution at time ¢, the
stationary distribution will be preserved:

p(z"") = p(z") forallk >0

= Under certain assumptions (,ergodic chains®), Markov chains
converge to a unique stationary distribution (,equilibrium
distribution®).

25




MCMC in Graphical Models

= Given a graphical model over random variables x = {x,,...,x,},
the model defines a distribution p(x).

= For the time being we assume that there is no evidence.

s ,Markov Chain Monte Carlo®“ methods

From the graphical model, construct a sequence of samples by
iterative probabilistic updates

=
—
@
5
Q)
S
—
O
=4
Q
>
S
D
<
28
n

® asi
X? — xP -5 x® 5 x® 5 x5 x® 5 each x™ assignment

of values to all nodes
x randomly initialized X ~ p(x™ | xW)

Goal: choose updates in such a way that we get an ergodic
Markov chain with equilibrium distribution p(x).

Most simple method: successively locally redraw a single
variable conditioned on states of all other variables (,Gibbs-
Sampling®).

26




Inference: Gibbs Sampling

s  Gibbs Sampling: one variant of MCMC.

=
T
= Probabilistic update step given by successively locally drawing a &
single random variable conditioned on state of all other =]
variables. 5
. Q
Given old state  X=(X,..., Xy) >
Draw new state X'=(X',... Xy ): 2
B
states sampled in —
last update step
1
X~ PO Xy Xy ) Random initialization
X, "~ P(X, | X' Xgers Xy ) In the beginning.

X3~ POG XX, Xy Xy)

Xy ~ p(XN |X1" Xy 'yeeey Xy 1 )

27




Inference: Gibbs Sampling

= Theorem: If p(X | pa(x))#0 for all i and all possible x;, pa(x),
then the resulting Markov chain is ergodic with equilibrium
distribution p(Xx).

= Single Gibbs-step is easy: all variables except current query
variable are observed, naive inference in time O(M N).
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Gibbs Sampling With Evidence

s So far we have looked at inference without evidence.

= How do we obtain samples from the conditional
distribution?

Goal: x'" ~ p(x|xy) approximately, for very large T
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= Slight modification of Gibbs sampling algorithm:

Gibbs sampling always redraws a variable x;, conditioned
on the states of the other variables.

With evidence: only redraw the unobserved variables, the
observed variables are fixed to their observed values.

29




Inference: Gibbs Sampling

=  Summary Gibbs sampling algorithm:

x® = random initialization of all random variables, consistent with evidence X,
Fort=1..T: x"" =Gibbs-update(x™) [Slide 27]

The samples x®,x® ,x® ... are asymptotically distributed according to p(x|x,)
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= Gibbs sampling gives reasonably good results in many
practical applications

Individual update steps are efficient
Convergence is guaranteed (for t —> )

Can draw samples from p(X|Xy) without becoming very
inefficient if evidence set is large (in contrast to logic sampling).

30




Inference: Gibbs Sampling

s Gibbs sampling: convergence

Convergence of Markov chain x®,x?,x®,... is only
guaranteed for ¢ — oo.

Practical solution: ,burn-in“ iterations before samples are
used (discard samples x® for t<T,,. .. ).

There are also convergence tests to determine the number
of burn-in iterations to use.
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Inference: Summary

= Exact inference
Message passing algorithm.

Exact inference on polytrees (with Junction-Tree extension
to general graphs).

Running time depends on graph structure, exponential in
worst-case.
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= Approximate inference
Sampling methods: approximation through a set of
samples, exact results for t — oo.
x Ancestral sampling: simple, fast, no evidence.
» Logic sampling: with evidence, but rarely feasible.

x MCMC/Gibbs sampling: efficient approximate drawing of
samples conditioned on evidence.
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= Graphical models in machine learning.
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Recap: Parameter Estimate for Coin Tosses

= Recap: coin toss

Individual coin toss Bernoulli distributed with parameter p
X €{0,1}
X ~Bern(X | p) = u” (1—u)”
u=p(X =1| 1) unknown parameter
= Parameter estimation problem:

We have observed N independent coin tosses, in the

form of observations L={x,,..., x,,} of the random variables
X], ooy XN.

The true parameter u is unknown, our goal is an estimate
£ or a posterior distribution p(x|L).

Bayesian approach: posterior o prior x likelihood
Pl L) oc p(L| u) pu).

posterior Iikel?ﬁood prior

34
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Recap: Parameter Estimate for Coin Tosses

= Prior: Beta distribution over coin toss parameter y

Beta(u| 2,2
p(u) =Beta(u| o, ,,) - (1]2,2)
= F(ak +az) ﬂak_l(l_ﬂ)az_l |
F(ak )F(az)
00 05 |

= Likelihood of N independent coin tosses:

P(Xy,.ss XNl/J):Hp(Xil:u) L1.d.

N
= [ Bem(X; | )
i=1
N

=] ]#" @)

i=1

35
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Coin Tosses as a Graphical Model

= Coin toss scenario as a graphical model?
= Random variables in coin toss scenario are  X,,..., X, &
= Joint distribution of data and parameter: prior x likelihood

P(Xyseeey Xy £8) = P() P(X ey Xy [ 1) = p(,u)H P(X; | )

=1 Bernoulli

=]
—
@
(5.
®
- |
—
O
=
QD
>
>
L
<
)
0]

= Representation as a graphical model:

36




Coin Tosses as a Graphical Model

= Coin toss scenario as a graphical model?
= Random variables in coin toss scenario are  X,,..., X, &
= Joint distribution of data and parameter: prior x likelihood

P(Xysees Xygs ) = P P(Kps ey X | 1) = ()] | PCXi | 12)

=1 Bernoulli
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= Representation as a graphical model:

()
N, R

37




Coin Tosses as a Graphical Model

= Independent coin tosses: representation as a graphical

model. @
@6/6'9\@

= D-separation
Does X, LX,,...X,,|& hold?
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Coin Tosses as a Graphical Model

= |Independent coin tosses: representation as a graphical

model. @
@é/é}\@

= D-separation
Does X, L X,...X,,|@ hold?
No, path through u is not blocked.
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Intuitively: X, =X, =...= X, =1= probably x>0.5 = probably X, =1
The unknown parameter y couples the random variables
X,y ooy Xy

But it holds that X, L X,,..., X, |
39




Parameter Estimation as Inference Problem

= MAP parameter estimation coin tosses:
p=argmax,, p(| X, ..., Xy)-

= Inference problem:

p(X | 1) //‘\ P(X | 4)

®® - H
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Evidence on the nodes X, ..., X,
Want: distribution p(z| X;,..., X)-

40




Plate Models

s Extension of graphical models: Plate notation.
= Independent coin tosses: representation as graphical

model. @
AN

= Nodes X, ..., X, are of the same form
Same domain (binary)
Same conditional distribution p(X; | )= p(X; | x).
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= Shorthand notation in form of a ,template”: Plate notation.
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Plate Models

s Plate notation for coin tosses:

@ ion
AN

X - ) g P'ate

s A Plate" is a shorthand notation for N variables of the
same form

Labeled with the number of variables, N
Variables have index (e.g. X;).

= Plate models are often used in graphical models for
machine learning.
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Plate Models: Hyperparameters

= Role of ,hyperparameters” ¢,,q,

Not random variables, we only model the joint distribution of
X, Xy 4 given hyperparameters.

N
P(X oo X el @) = Plat| o) [ POX, | 12)
i=1

Hyperparameters are not nodes in the graphical model, but
are often additionally depicted (with point instead of circle).

p(ﬂ'%“) TSN Pulaa)

0o ()
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