Universität Potsdam Institut für Informatik
Lehrstuhl Maschinelles Lernen

Graphical Models

Niels Landwehr

Agenda

- Graphical models: syntax and semantics.
- Inference in graphical models (exact, approximate)
- Graphical models in machine learning.

Recap: Graphical Models

- Graphical model for „Alarm" scenario

Recap: Problem Setting Inference

- Given: graphical model over random variables $\left\{X_{1}, \ldots, X_{N}\right\}$.
- Problem setting inference:
- Variables with evidence $X_{i_{1}}, \ldots, X_{i_{m}} \quad\left\{i_{1}, \ldots, i_{m}\right\} \subseteq\{1, \ldots, N\}$
- Query variable X_{a} $\mathrm{a} \in\{1, \ldots, N\} \backslash\left\{i_{1}, \ldots, i_{m}\right\}$
- Task: compute distribution over query variable given evidence.

More generally also $\quad p\left(x_{a_{1}}, \ldots, x_{a_{k}} \mid x_{i}, \ldots, x_{i_{m}}\right)$

Recap: Message Passing Algorithm

- Algorithm: Message Passing on a linear chain
- Input:

$$
p\left(x_{1}, \ldots, x_{N}\right)=\psi_{1,2}\left(x_{1}, x_{2}\right), \ldots ., \psi_{N-1, N}\left(x_{N-1}, x_{N}\right)
$$

Query: $p\left(x_{a}\right)=$?

- Recursively compute messages:
$\mu_{\beta}\left(x_{N}\right)=\mathbf{1}$
For $k=N-1, \ldots, a: \quad \mu_{\beta}\left(x_{k}\right)=\sum_{x_{k+1}} \psi_{k, k+1}\left(x_{k}, x_{k+1}\right) \mu_{\beta}\left(x_{k+1}\right)$

$$
\mu_{\alpha}\left(x_{1}\right)=\mathbf{1}
$$

For $k=2, \ldots, a$:

$$
\mu_{\alpha}\left(x_{k}\right)=\sum_{x_{k-1}} \psi_{k-1, k}\left(x_{k-1}, x_{k}\right) \mu_{\alpha}\left(x_{k-1}\right)
$$

- Output:

$$
\left.p\left(x_{a}\right)=\mu_{\alpha}\left(x_{a}\right) \mu_{\beta}\left(x_{a}\right) \quad \text { (function of } x_{a}, \text { that is, distribution over } x_{a}\right)
$$

Recap: Inference on Factor Graphs

- If the orginial graph was a polytree, the resulting factor graph is an undirected tree (that is, it has no cycles).

- Inference is then carried out on factor graph:
- Take the query node X_{a} as the root of the undirected tree.
- Send messages from the leaves to the root (there is always a unique path, because factor graph is undirected tree).
- There are now two types of messages: factor messages and variable messages.

Agenda

- Graphical models: syntax and semantics.
- Inference in graphical models
- Exact inference
- Approximate inference
- Graphical models in machine learning.

Approximate Inference

- Exact inference in general graphical models is NP-hard.
- In practice, approximate inference algorithms therefore play an important role.
- We look at sampling-based approximate inference
- Relatively easy to understand/implement.
- Anytime algorithms (the longer the algorithm runs, the more accurate the result).

Sampling-based Inference

- General idea sampling:
- We are interested in a distribution $p(\mathbf{z})$, where \mathbf{z} is a set of random variables (e.g. conditional distribution over query variables in graphical model).
- It is difficult to compute $p(\mathbf{z})$ directly.
- Instead, we will generate „samples"

$$
\mathbf{z}^{(k)} \sim p(\mathbf{z}) \quad \text { i.i.d., } k=1, \ldots, K
$$

every sample $\mathbf{z}^{(k)}$ completely assigns values to the random variables in \mathbf{z}.

- The samples $\mathbf{z}^{(1)}, \mathbf{z}^{(2)}, \ldots, \mathbf{z}^{(K)}$ approximate the distribution $p(\mathbf{z})$.
- It is often easier to design a procedure for generating the $\mathbf{z}^{(k)}$ than it is to compute $p(\mathbf{z})$.

Sampling-based Inference

- Example:
- One-dimensional distribution, $\mathbf{z}=\{z\}$.
- Discrete variable with states $\{0, \ldots, 6\}$: number of „Heads" from 6 coin tosses.
- Tossing a coin 6 times gives us one sample.
- $\mathrm{K}=100$ experiments, with 6 coin tosses each.

Sampling Inference for Graphical Models

- Given a graphical model that represents a distribution by

$$
p\left(x_{1}, \ldots, x_{N}\right)=\prod_{i=1}^{N} p\left(x_{i} \mid p a\left(x_{i}\right)\right) .
$$

- Slightly more general problem setting: set of query variables

$$
\begin{array}{lll}
& \mathbf{x}_{A} \subseteq \mathbf{x}=\left\{x_{1}, \ldots, x_{N}\right\} & \text { set of query variables } \\
\left.\mathbf{x}_{A} \mid \mathbf{x}_{D}\right) \approx ? & \mathbf{x}_{D} \subseteq \mathbf{x}=\left\{x_{1}, \ldots, x_{N}\right\} & \text { set of evidence variables }
\end{array}
$$

- Distribution $p\left(\mathbf{x}_{A} \mid \mathbf{x}_{D}\right)$ will be approximated by a set of samples.
- We first look at inference without evidence:

$$
p\left(\mathbf{x}_{A}\right) \approx ? \quad \mathbf{x}_{A}=\left\{x_{a_{1}}, \ldots, x_{a_{m}}\right\} \subseteq\left\{x_{1}, \ldots, x_{N}\right\}
$$

Sampling Inference for Graphical Models

- Goal: Drawing samples from marginal distribution $p\left(\mathbf{x}_{A}\right)=p\left(x_{a_{1}}, \ldots, x_{a_{m}}\right)$.

$$
\mathbf{x}_{A}^{(k)} \sim p\left(\mathbf{x}_{A}\right) \quad k=1, \ldots, K
$$

- It suffices to draw samples from the joint distribution $p(\mathbf{x})=p\left(x_{1}, \ldots, x_{N}\right)$:

$$
\mathbf{x}^{(k)}=\left(x_{1}^{(k)}, \ldots, x_{N}^{(k)}\right) \sim p\left(x_{1}, \ldots, x_{N}\right) \quad k=1, \ldots, K
$$

- We obtain samples from the marginal distribution $p\left(x_{a_{1}}, \ldots, x_{a_{m}}\right)$ simply by projecting to the $\left\{x_{a_{1}}, \ldots, x_{a_{m}}\right\}$.

$$
\begin{array}{rlr}
\mathbf{x}^{(k)}= & \left(x_{1}^{(k)}, \ldots, x_{N}^{(k)}\right) \sim p\left(x_{1}, \ldots, x_{N}\right) & k=1, \ldots, K \\
& \square \text { projection } & \\
\mathbf{x}_{A}^{(k)}=\left(x_{a_{1}}^{(k)}, \ldots, x_{a_{m}}^{(k)}\right) \sim p\left(x_{a_{1}}, \ldots, x_{a_{m}}\right) & k=1, \ldots, K
\end{array}
$$

Inference: Ancestral Sampling

- How do we generate samples $\mathbf{x}^{(k)} \sim p(\mathbf{x})$?
- Easy for directed graphical models: „Ancestral Sampling"
- Exploit factorization of joint distribution

$$
\mathbf{x}^{(k)} \sim p(\mathbf{x})=p\left(x_{1}, \ldots, x_{N}\right)
$$

$$
=\prod_{i=1}^{N} p\left(x_{i} \mid p a\left(x_{i}\right)\right)
$$

Draw each new variable given states of previous variables

- "Draw following the edges"
„Draw following the edges"

Inference: Ancestral Sampling

- We draw a sample $\mathbf{x}^{(k)}=\left(x_{1}^{(k)}, \ldots, x_{N}^{(k)}\right)$ by successively drawing the individual $x_{i}^{(k)}$
$x_{1}^{(k)} \sim p\left(x_{1}\right)$
$x_{2}^{(k)} \sim p\left(x_{2} \mid p a\left(x_{2}\right)\right)$
\ldots Already drawn
$x_{N}^{(k)} \sim p\left(x_{N} \mid p a\left(x_{N}\right)\right)$
$\mathbf{x}^{(k)} \sim p(\mathbf{x})=\prod_{i=1}^{N} p\left(x_{i} \mid p a\left(x_{i}\right)\right)$
Topological ordering: $p a\left(x_{i}\right) \subseteq\left\{x_{1}, \ldots, x_{i-1}\right\}$

Inference: Ancestral Sampling

- We draw a sample $\mathbf{x}^{(k)}=\left(x_{1}^{(k)}, \ldots, x_{N}^{(k)}\right)$ by successively drawing the individual $x_{i}^{(k)}$
$x_{1}^{(k)} \sim p\left(x_{1}\right)$
$x_{2}^{(k)} \sim p\left(x_{2} \mid p a\left(x_{2}\right)\right)$
\ldots
$x_{N}^{(k)} \sim p(x_{N} \mid p \underbrace{0.1}_{P(B=1)}$
- Example

$$
\begin{array}{ll}
x_{1}^{(k)} \sim p\left(x_{1}\right) & \rightarrow x_{1}=1 \\
x_{2}^{(k)} \sim p\left(x_{2}\right) & \rightarrow x_{2}=0 \\
x_{3}^{(k)} \sim p\left(x_{3} \mid x_{1}=1, x_{2}=0\right) & \rightarrow x_{3}=1 \\
x_{4}^{(k)} \sim p\left(x_{4} \mid x_{2}=0\right) & \rightarrow x_{4}=0 \\
x_{5}^{(k)} \sim p\left(x_{5} \mid x_{3}=1\right) & \rightarrow x_{5}=1
\end{array}
$$

$\mathbf{x}^{(k)} \sim p(\mathbf{x})=\prod_{i=1}^{N} p\left(x_{i} \mid p a\left(x_{i}\right)\right)$
Topological ordering: $p a\left(x_{i}\right) \subseteq\left\{x_{1}, \ldots, x_{i-1}\right\}$

Inference: Ancestral Sampling

- We draw a sample $\mathbf{x}^{(k)}=\left(x_{1}^{(k)}, \ldots, x_{N}^{(k)}\right)$ by successively drawing the individual $x_{i}^{(k)}$
$x_{1}^{(k)} \sim p\left(x_{1}\right)$
$x_{2}^{(k)} \sim p\left(x_{2} \mid p a\left(x_{2}\right)\right)$
\ldots Already drawn
$x_{N}^{(k)} \sim p\left(x_{N} \mid p a\left(x_{N}\right)\right)$
$\mathbf{x}^{(k)} \sim p(\mathbf{x})=\prod_{i=1}^{N} p\left(x_{i} \mid p a\left(x_{i}\right)\right)$
Topological ordering: $p a\left(x_{i}\right) \subseteq\left\{x_{1}, \ldots, x_{i-1}\right\}$
$\begin{array}{ll}\text { Example } & \rightarrow x_{1}=1 \\ x_{1}^{(k)} \sim p\left(x_{1}\right) & \rightarrow x_{2}=0 \\ x_{2}^{(k)} \sim p\left(x_{2}\right) & \rightarrow x_{3}=1 \\ x_{3}^{(k)} \sim p\left(x_{3} \mid x_{1}=1, x_{2}=0\right) & \rightarrow x_{4}=0 \\ x_{4}^{(k)} \sim p\left(x_{4} \mid x_{2}=0\right) & \rightarrow x_{5}=1\end{array}$

Inference: Ancestral Sampling

- We draw a sample $\mathbf{x}^{(k)}=\left(x_{1}^{(k)}, \ldots, x_{N}^{(k)}\right)$ by successively drawing the individual $x_{i}^{(k)}$
$x_{1}^{(k)} \sim p\left(x_{1}\right)$
$x_{2}^{(k)} \sim p\left(x_{2} \mid p a\left(x_{2}\right)\right)$
\cdots
$x_{N}^{(k)} \sim p\left(x_{N} \mid p c\right.$
- Example

$$
\begin{array}{ll}
x_{1}^{(k)} \sim p\left(x_{1}\right) & \rightarrow x_{2}=0 \\
x_{2}^{(k)} \sim p\left(x_{2}\right) & \rightarrow x_{3}=1 \\
x_{3}^{(k)} \sim p\left(x_{3} \mid x_{1}=1, x_{2}=0\right) & \rightarrow x_{4}=0 \\
x_{4}^{(k)} \sim p\left(x_{4} \mid x_{2}=0\right) & \rightarrow x_{5}=1
\end{array}
$$

$\mathbf{x}^{(k)} \sim p(\mathbf{x})=\prod_{i=1}^{N} p\left(x_{i} \mid p a\left(x_{i}\right)\right)$
Topological ordering: $p a\left(x_{i}\right) \subseteq\left\{x_{1}, \ldots, x_{i-1}\right\}$

Inference: Ancestral Sampling

- We draw a sample $\mathbf{x}^{(k)}=\left(x_{1}^{(k)}, \ldots, x_{N}^{(k)}\right)$ by successively drawing the individual $x_{i}^{(k)}$
$x_{1}^{(k)} \sim p\left(x_{1}\right)$
$x_{2}^{(k)} \sim p\left(x_{2} \mid p a\left(x_{2}\right)\right)$
\ldots Topological ordering: $p a\left(x_{i}\right) \subseteq\left\{x_{1}, \ldots, x_{i-1}\right\}$
- Example

$$
x_{1}^{(k)} \sim p\left(x_{1}\right)
$$

$$
x_{2}^{(k)} \sim p\left(x_{2}\right)
$$

$$
x_{3}^{(k)} \sim p\left(x_{3} \mid x_{1}=\lambda_{2}=0\right) \quad \rightarrow x_{3}=1
$$

$$
x_{4}^{(k)} \sim p\left(x_{4} \mid x_{2}=0\right) \quad \rightarrow x_{4}=0
$$

$$
x_{5}^{(k)} \sim p\left(x_{5} \mid x_{3}=1\right) \quad \rightarrow x_{5}=1
$$

$\mathbf{x}^{(k)} \sim p(\mathbf{x})=\prod_{i=1}^{N} p\left(x_{i} \mid p a\left(x_{i}\right)\right)$

Inference: Ancestral Sampling

- We draw a sample $\mathbf{x}^{(k)}=\left(x_{1}^{(k)}, \ldots, x_{N}^{(k)}\right)$ by successively drawing the individual $x_{i}^{(k)}$
$x_{1}^{(k)} \sim p\left(x_{1}\right)$
$x_{2}^{(k)} \sim p\left(x_{2} \mid p a\left(x_{2}\right)\right)$
\ldots
$x^{(k)} \sim p\left(x_{2} \mid p a\left(x_{1}\right)\right)$ values
$\mathbf{x}^{(k)} \sim p(\mathbf{x})=\prod_{i=1}^{N} p\left(x_{i} \mid p a\left(x_{i}\right)\right)$
Topological ordering: $p a\left(x_{i}\right) \subseteq\left\{x_{1}, \ldots, x_{i-1}\right\}$
- Example
$x_{1}^{(k)} \sim p\left(x_{1}\right)$
$x_{2}^{(k)} \sim p\left(x_{2}\right)$
$x_{3}^{(k)} \sim p\left(x_{3} \mid x_{1}=\right.$ $x_{4}^{(k)} \sim p\left(x_{4} \mid x_{2}, \quad \rightarrow x_{4}=0\right.$
$x_{5}^{(k)} \sim p\left(x_{5} \mid x_{3}=1\right)$
$\rightarrow x_{5}=1$

Inference: Ancestral Sampling

- We draw a sample $\mathbf{x}^{(k)}=\left(x_{1}^{(k)}, \ldots, x_{N}^{(k)}\right)$ by successively drawing the individual $x_{i}^{(k)}$
$x_{1}^{(k)} \sim p\left(x_{1}\right)$
$x_{2}^{(k)} \sim p\left(x_{2} \mid p a\left(x_{2}\right)\right)$
\ldots
- Example

$$
\begin{array}{ll}
x_{1}^{(k)} \sim p\left(x_{1}\right) & \rightarrow x_{1}=1 \\
x_{2}^{(k)} \sim p\left(x_{2}\right) & \rightarrow x_{2}=0 \\
x_{3}^{(k)} \sim p\left(x_{3} \mid x_{1}=1, x_{2}=0\right) & \rightarrow x_{3}=1 \\
x_{4}^{(k)} \sim p\left(x_{4} \mid x_{2}=0\right) & \rightarrow x_{4}=0 \\
x_{5}^{(k)} \sim p\left(x_{5} \mid x_{3}=1\right) & \rightarrow x_{5}=1 \tag{k}
\end{array}
$$

Example: Ancestral Sampling

- Example for estimation of marginal distribution from samples:

$$
\begin{aligned}
& \mathbf{x}^{(1)}=(1,0,1,0,1) \\
& \mathbf{x}^{(2)}=(0,0,0,0,0) \\
& \mathbf{x}^{(3)}=(0,1,0,1,0) \\
& \mathbf{x}^{(4)}=(0,1,1,0,1) \\
& \mathbf{x}^{(5)}=(0,0,0,0,0)
\end{aligned} \quad \square \begin{aligned}
& \\
& p\left(x_{3}=1\right) \approx 0.4 \\
& p\left(x_{4}=1\right) \approx 0.2 \\
& p\left(x_{5}=1\right) \approx 0.4
\end{aligned}
$$

- Analysis of Ancestral Sampling
- + Directly draws from the right distribution.
- + Efficient.
- + Works for any graph structure.
- - Only works without evidence.

Inference: Logic Sampling

- How do we obtain samples conditioned on evidence?

$$
\mathbf{x}_{A}^{(k)} \sim p\left(\mathbf{x}_{A} \mid \mathbf{x}_{D}\right)=p\left(x_{a_{1}}, \ldots, x_{a_{m}} \mid x_{i_{1}}, \ldots, x_{i_{l}}\right)
$$

- Logic Sampling: Ancestral Sampling + reject samples that are not consistent with observations.
- We generating complete samples

$$
\mathbf{x}^{(k)}=\left(x_{1}^{(k)}, \ldots, x_{N}^{(k)}\right) \sim p(\mathbf{x})
$$

as before (ignoring the evidence).

- We throw away samples in which the values drawn for the evidence variables do not correspond to the observations.
- Problem: often almost all samples are rejected (specifically if there are many evidence variables).
- Takes a long time to generate enough samples, often not practical.

Inference: MCMC

- Alternative strategy to generate samples: Markov Chain Monte Carlo („MCMC")
- Idea:
- Difficult to generate samples directly from $p(\mathbf{z})$.
- Alternative strategy: construct sequence of samples

$$
\begin{aligned}
& \mathbf{z}^{(0)} \rightarrow \mathbf{z}^{(1)} \rightarrow \mathbf{z}^{(2)} \rightarrow \mathbf{z}^{(3)} \rightarrow \mathbf{z}^{(4)} \rightarrow \mathbf{z}^{(5)} \rightarrow \ldots \\
& \mathbf{z}^{(0)} \text { randomly initialized } \\
& \mathbf{z}^{(t+1)} \sim p\left(\mathbf{z}^{(t+1)} \mid \mathbf{z}^{(t)}\right)
\end{aligned}
$$

by iterative probabilistic update steps $\mathbf{z}^{(t+1)} \sim p\left(\mathbf{z}^{(t+1)} \mid \mathbf{z}^{(t)}\right)$.

- If updates are chosen appropriately, asymptotically it holds that

$$
\mathbf{z}^{(T)} \sim p(\mathbf{z}) \quad \text { approximately, for very large } T
$$

Random variable: T-th sample

Markov Chains

- We study the sequence of samples

$$
\mathbf{z}^{(0)} \rightarrow \mathbf{z}^{(1)} \rightarrow \mathbf{z}^{(2)} \rightarrow \mathbf{z}^{(3)} \rightarrow \mathbf{z}^{(4)} \rightarrow \mathbf{z}^{(5)} \rightarrow \ldots
$$

as random variables, $\mathbf{z}^{(t)}$ is called state of chain at time t.

- These random variables form a linear chain:

$$
\begin{array}{ccc}
\mathbf{z}^{(0)} \sim p\left(\mathbf{z}^{(0)}\right) & \mathbf{z}^{(1)} \sim p\left(\mathbf{z}^{(1)} \mid \mathbf{z}^{(0)}\right) & \mathbf{z}^{(2)} \sim p\left(\mathbf{z}^{(2)} \mid \mathbf{z}^{(1)}\right) \quad \mathbf{z}^{(3)} \sim p\left(\mathbf{z}^{(3)} \mid \mathbf{z}^{(2)}\right) \\
\mathbf{z}^{(0)} \longrightarrow & \mathbf{z}^{(1)} \longrightarrow
\end{array}
$$

- Such linear chains are also called Markov chains.

Markov Chains

- The distribution over $\mathbf{z}^{(t+1)}$ can be computed based on the distribution over $\mathbf{z}^{(t)}$:

- A distribution $p\left(\mathbf{z}^{(t)}\right)$ is called stationary, if $p\left(\mathbf{z}^{(t+1)}\right)=p\left(\mathbf{z}^{(t)}\right)$.
- If chain has reached a stationary distribution at time t, the stationary distribution will be preserved:

$$
p\left(\mathbf{z}^{(t+k)}\right)=p\left(\mathbf{z}^{(t)}\right) \quad \text { for all } \mathrm{k} \geq 0
$$

- Under certain assumptions („ergodic chains"), Markov chains converge to a unique stationary distribution („equilibrium distribution").

MCMC in Graphical Models

- Given a graphical model over random variables $\mathbf{x}=\left\{x_{1}, \ldots, x_{N}\right\}$, the model defines a distribution $p(\mathbf{x})$.
- For the time being we assume that there is no evidence.
- „Markov Chain Monte Carlo" methods
- From the graphical model, construct a sequence of samples by iterative probabilistic updates

$$
\begin{aligned}
& \mathbf{x}^{(0)} \rightarrow \mathbf{x}^{(1)} \rightarrow \mathbf{x}^{(2)} \rightarrow \mathbf{x}^{(3)} \rightarrow \mathbf{x}^{(4)} \rightarrow \mathbf{x}^{(5)} \rightarrow \ldots
\end{aligned} \quad \begin{aligned}
& \text { each } \mathbf{x}^{(t)} \text { assignment } \\
& \mathbf{x}^{(0)} \text { randomly initialized } \\
& \mathbf{x}^{(t+1)} \sim p\left(\mathbf{x}^{(t+1)} \mid \mathbf{x}^{(t)}\right)
\end{aligned}
$$

- Goal: choose updates in such a way that we get an ergodic Markov chain with equilibrium distribution $p(\mathbf{x})$.
- Most simple method: successively locally redraw a single variable conditioned on states of all other variables („GibbsSampling").

Inference: Gibbs Sampling

- Gibbs Sampling: one variant of MCMC.
- Probabilistic update step given by successively locally drawing a single random variable conditioned on state of all other variables.
- Given old state $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$
- Draw new state $\mathbf{x}^{\prime}=\left(x_{1}{ }^{\prime}, \ldots, x_{N}{ }^{\prime}\right)$:

$$
\begin{array}{ll}
x_{1}^{\prime} \sim p(x_{1} \mid \overbrace{x_{2}, \ldots, x_{N}}^{\substack{\text { states sampled in } \\
\text { last update step }}} & \text { Random initialization } \\
x_{2}^{\prime} \sim p\left(x_{2} \mid x_{1}^{\prime}, x_{3}, \ldots, x_{N}\right) & \text { in the beginning. } \\
x_{3}^{\prime} \sim p\left(x_{3} \mid x_{1}^{\prime}, x_{2}^{\prime}, x_{4}, \ldots, x_{N}\right) & \\
\ldots & \\
x_{N}^{\prime} \sim p\left(x_{N} \mid x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{N-1}^{\prime}\right) &
\end{array}
$$

Inference: Gibbs Sampling

- Theorem: If $p\left(x_{i} \mid p a\left(x_{i}\right)\right) \neq 0$ for all i and all possible x_{i}, $p a\left(x_{i}\right)$, then the resulting Markov chain is ergodic with equilibrium distribution $p(\mathbf{x})$.
- Single Gibbs-step is easy: all variables except current query variable are observed, naive inference in time $\mathrm{O}(\mathrm{M} \mathrm{N})$.

Gibbs Sampling With Evidence

- So far we have looked at inference without evidence.
- How do we obtain samples from the conditional distribution?
Goal: $\quad \mathbf{x}^{(T)} \sim p\left(\mathbf{x} \mid \mathbf{x}_{D}\right) \quad$ approximately, for very large T
- Slight modification of Gibbs sampling algorithm:
- Gibbs sampling always redraws a variable x_{i}, conditioned on the states of the other variables.
- With evidence: only redraw the unobserved variables, the observed variables are fixed to their observed values.

Inference: Gibbs Sampling

- Summary Gibbs sampling algorithm:
$\mathbf{x}^{(0)}=$ random initialization of all random variables, consistent with evidence \mathbf{x}_{D}
- For $t=1, \ldots, T: \mathbf{x}^{(t+1)}=\operatorname{Gibbs}-$ update $\left(\mathbf{x}^{(t)}\right) \quad$ [Slide 27]
- The samples $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \ldots$ are asymptotically distributed according to $p\left(\mathbf{x} \mid \mathbf{x}_{D}\right)$
- Gibbs sampling gives reasonably good results in many practical applications
- Individual update steps are efficient
- Convergence is guaranteed (for $t \rightarrow \infty$)
- Can draw samples from $p\left(\mathbf{x} \mid \mathbf{x}_{D}\right)$ without becoming very inefficient if evidence set is large (in contrast to logic sampling).

Inference: Gibbs Sampling

- Gibbs sampling: convergence
- Convergence of Markov chain $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \ldots$ is only guaranteed for $t \rightarrow \infty$.
- Practical solution: „burn-in" iterations before samples are used (discard samples $\mathbf{x}^{(t)}$ for $t \leq T_{\text {Bum-in }}$).
- There are also convergence tests to determine the number of burn-in iterations to use.

Inference: Summary

- Exact inference
- Message passing algorithm.
- Exact inference on polytrees (with Junction-Tree extension to general graphs).
- Running time depends on graph structure, exponential in worst-case.
- Approximate inference
- Sampling methods: approximation through a set of samples, exact results for $t \rightarrow \infty$.
* Ancestral sampling: simple, fast, no evidence.
* Logic sampling: with evidence, but rarely feasible.
* MCMC/Gibbs sampling: efficient approximate drawing of samples conditioned on evidence.

Agenda

- Graphical models: syntax and semantics.
- Inference in graphical models (exact, approximate)
- Graphical models in machine learning.

Recap: Parameter Estimate for Coin Tosses

- Recap: coin toss
- Individual coin toss Bernoulli distributed with parameter μ

$$
\begin{aligned}
& X \in\{0,1\} \\
& X \sim \operatorname{Bern}(X \mid \mu)=\mu^{X}(1-\mu)^{1-X} \\
& \mu=p(X=1 \mid \mu) \text { unknown parameter }
\end{aligned}
$$

- Parameter estimation problem:
- We have observed N independent coin tosses, in the form of observations $L=\left\{x_{l}, \ldots, x_{N}\right\}$ of the random variables X_{l}, \ldots, X_{N}.
- The true parameter μ is unknown, our goal is an estimate $\hat{\mu}$ or a posterior distribution $p(\mu \mid L)$.
- Bayesian approach: posterior \propto prior x likelihood

$$
\underbrace{p(\mu \mid L)}_{\text {posterior }} \propto \underbrace{p(L \mid \mu)}_{\text {likelihood }} p(\mu) .
$$

Recap: Parameter Estimate for Coin Tosses

- Prior: Beta distribution over coin toss parameter μ

$$
\begin{aligned}
p(\mu) & =\operatorname{Beta}\left(\mu \mid \alpha_{k}, \alpha_{z}\right) \\
& =\frac{\Gamma\left(\alpha_{k}+\alpha_{z}\right)}{\Gamma\left(\alpha_{k}\right) \Gamma\left(\alpha_{z}\right)} \mu^{\alpha_{k}-1}(1-\mu)^{\alpha_{z}-1}
\end{aligned}
$$

- Likelihood of N independent coin tosses:

$$
\begin{aligned}
p\left(X_{1}, \ldots, X_{N} \mid \mu\right) & =\prod_{i=1}^{N} p\left(X_{i} \mid \mu\right) \quad \text { i.i.d. } \\
& =\prod_{i=1}^{N} \operatorname{Bern}\left(X_{i} \mid \mu\right) \\
& =\prod_{i=1}^{N} \mu^{X_{i}}(1-\mu)^{1-X_{i}}
\end{aligned}
$$

Coin Tosses as a Graphical Model

- Coin toss scenario as a graphical model?
- Random variables in coin toss scenario are $X_{1}, \ldots, X_{N}, \mu$.
- Joint distribution of data and parameter: prior x likelihood

$$
p\left(X_{1}, \ldots, X_{N}, \mu\right)=p(\mu) p\left(X_{1}, \ldots, X_{N} \mid \mu\right)=p(\mu) \prod_{i=1}^{N} \underbrace{p\left(X_{i} \mid \mu\right)}_{\text {Bernouli }}
$$

- Representation as a graphical model:

Coin Tosses as a Graphical Model

- Coin toss scenario as a graphical model?
- Random variables in coin toss scenario are $X_{1}, \ldots, X_{N}, \mu$.
- Joint distribution of data and parameter: prior x likelihood

$$
p\left(X_{1}, \ldots, X_{N}, \mu\right)=p(\mu) p\left(X_{1}, \ldots, X_{N} \mid \mu\right)=p(\mu) \prod_{i=1}^{N} \underbrace{p\left(X_{i} \mid \mu\right)}_{\text {Bemoulli }}
$$

- Representation as a graphical model:

Coin Tosses as a Graphical Model

- Independent coin tosses: representation as a graphical model.

- D-separation
- Does $X_{N} \perp X_{1}, \ldots, X_{N-1} \mid \varnothing$ hold?

Coin Tosses as a Graphical Model

- Independent coin tosses: representation as a graphical model.

- D-separation
- Does $X_{N} \perp X_{1}, \ldots, X_{N-1} \mid \varnothing$ hold?
- No, path through μ is not blocked.
- Intuitively: $X_{1}=X_{2}=\ldots=X_{N-1}=1 \Rightarrow$ probably $\mu>0.5 \Rightarrow$ probably $X_{N}=1$
- The unknown parameter μ couples the random variables X_{1}, \ldots, X_{N}.
- But it holds that $X_{N} \perp X_{1}, \ldots, X_{N-1} \mid \mu$.

Parameter Estimation as Inference Problem

- MAP parameter estimation coin tosses:

$$
\widehat{\mu}=\arg \max _{\mu} p\left(\mu \mid x_{1}, \ldots, x_{N}\right)
$$

- Inference problem:

- Evidence on the nodes X_{1}, \ldots, X_{N}.
- Want: distribution $p\left(\mu \mid X_{1}, \ldots, X_{N}\right)$.

Plate Models

- Extension of graphical models: Plate notation.
- Independent coin tosses: representation as graphical model.

- Nodes X_{l}, \ldots, X_{N} are of the same form
- Same domain (binary)
- Same conditional distribution $p\left(X_{i} \mid \mu\right)=p\left(X_{j} \mid \mu\right)$.
- Shorthand notation in form of a „template": Plate notation.

Plate Models

- Plate notation for coin tosses:

- A „Plate" is a shorthand notation for N variables of the same form
- Labeled with the number of variables, N
- Variables have index (e.g. X_{i}).
- Plate models are often used in graphical models for machine learning.

Plate Models: Hyperparameters

- Role of "hyperparameters" α_{k}, α_{z} ?
- Not random variables, we only model the joint distribution of $X_{1}, \ldots, X_{N}, \mu$ given hyperparameters.

$$
p\left(X_{1}, \ldots, X_{N}, \mu \mid \alpha_{k}, \alpha_{z}\right)=p\left(\mu \mid \alpha_{k}, \alpha_{z}\right) \prod_{i=1}^{N} p\left(X_{i} \mid \mu\right)
$$

- Hyperparameters are not nodes in the graphical model, but are often additionally depicted (with point instead of circle).

