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Agenda 

 

 

 Graphical models: syntax and semantics. 

 

 Inference in graphical models (exact, approximate) 

 

 Graphical models in machine learning. 
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Recap: Graphical Models 

 Graphical model for „Alarm“ scenario 
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Graphical model:

- There is one node for each random variable

- For each factor of the form ( | ,..., )

  there is a directed edge from the  to  in the graph

- Model is parameterized with conditiona

k
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p X X X
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Recap: Problem Setting Inference 

 Given: graphical model over random variables {X1,…,XN }. 

 

 Problem setting inference: 

 Variables with evidence 

 Query variable 

 

 Task: compute distribution over query variable given 

evidence. 
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1
Compute     ( | ,..., ) 

ma i ip x x x

1

Evidence: observed values 

for variables ,...,
miiX X

Conditional distribution

over random variable aX

1 1,...,            { ,... } {1,.., ., }
mi i mi iX X N

1                                a {1,..., { ,..., }} maX N i i

11
More generally also      ( ,..., | ,..., ) 

k ma a i ip x x x x
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Recap: Message Passing Algorithm 

 Algorithm: Message Passing on a linear chain 

 Input:  

 

 

 Recursively compute messages: 

 

 

 

 

 

 

 Output: 
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Recap: Inference on Factor Graphs 

 If the orginial graph was a polytree, the resulting factor graph 

is an undirected tree (that is, it has no cycles). 

 

 

 

 

 

 

 Inference is then carried out on factor graph: 

 Take the query node       as the root of the undirected tree. 

 Send messages from the leaves to the root (there is always a 

unique path, because factor graph is undirected tree). 

 There are now two types of messages: factor messages and 

variable messages. 

6 

aX

Leaves Special case  

linear chain: 

aX aX
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Agenda 

 

 

 Graphical models: syntax and semantics. 

 

 Inference in graphical models  

 Exact inference 

 Approximate inference 

 

 Graphical models in machine learning. 
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Approximate Inference 

 Exact inference in general graphical models is NP-hard. 

 In practice, approximate inference algorithms therefore 

play an important role. 

 

 We look at sampling-based approximate inference 

 Relatively easy to understand/implement. 

 Anytime algorithms (the longer the algorithm runs, the 

more accurate the result). 
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Sampling-based Inference 

 General idea sampling: 

 We are interested in a distribution          , where     is a set 

of random variables (e.g. conditional distribution over 

query variables in graphical model). 

 It is difficult to compute          directly. 

 Instead, we will generate „samples“  

 

 

every sample          completely assigns values to the 

random variables in   . 

 

 The samples                      approximate the distribution 

 It is often easier to design a procedure for generating 

the         than it is to compute   
9 

( )p z
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Sampling-based Inference 

 Example:  

 One-dimensional distribution, 

 Discrete variable with states {0,…,6}: number of „Heads“ 

from 6 coin tosses. 

 Tossing a coin 6 times gives us one sample. 

 K=100 experiments, with 6 coin tosses each. 

10 

Proportion 

of samples

with value  z

Sample histogram

{ }.zz

z

True distribution (Binomial)

K 
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Sampling Inference for Graphical Models 

 Given a graphical model that represents a distribution by 

 

 

 

 Slightly more general problem setting: set of query variables 

 

 

 

 

 Distribution               will be approximated by a set of samples. 

 

 We first look at inference without evidence: 
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Sampling Inference for Graphical Models 

 Goal: Drawing samples from marginal distribution  

 

 

 It suffices to draw samples from the joint distribution 

 

 

 

 We obtain samples from the marginal distribution               

simply by projecting to the                 . 
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Inference: Ancestral Sampling 

 How do we generate samples              ? 

 

 Easy for directed graphical models: „Ancestral 

Sampling“ 

 Exploit factorization of joint distribution 

 

 

 

 

 

 

 „Draw following the edges“ 
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„Draw following the edges“ 

Draw each new variable given 

states of previous variables 
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Inference: Ancestral Sampling 

 We draw a sample                           by successively 

drawing the individual   

 

 

 

 

 

 Example 
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Inference: Ancestral Sampling 

 We draw a sample                           by successively 

drawing the individual   
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15 

( )

1

1 1

) ( ))

Topological ordering: ( ) { ,...,

~ ( | (

}

i i

N
k

i

i i

p x

p

p pa

a x x

x

x









x x

( )

1 1

( )

2 2 2

3 1

1

( )

3 3

4

5

2

( )

4 4 2

( )

5 5 3

~ ( 1

~ ( )                             

~ ( | 1 0

|

)                             

0

, )       1

~ (                  0

~ ( | )              1

0

   

)

1

k

k

k

k

k

x p x

p x x

x p x x x

x

x

x

x

x

x

x p x

x p x x





  

 

 











x1 x2 

x3 

x5 

x4 

1

( ) ( )( ) ,..., )(k k

N

kx xx

( )

1

( )

2 2 2

(

1

)

~ (

~ ( |

)

)

...

| ( ))

( )

~ (

k

k

k

N N N

x p x

p x pa x

pax xp

x

x

( )k

ix

Already drawn  

values 

B E 

A R 

N 

P(B=1) 

0.1 



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II 

Inference: Ancestral Sampling 

 We draw a sample                           by successively 

drawing the individual   
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Inference: Ancestral Sampling 

 We draw a sample                           by successively 

drawing the individual   
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Inference: Ancestral Sampling 

 We draw a sample                           by successively 

drawing the individual   
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Inference: Ancestral Sampling 

 We draw a sample                           by successively 

drawing the individual   
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Inference: Ancestral Sampling 

 We draw a sample                           by successively 

drawing the individual   
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Example: Ancestral Sampling 

 Example for estimation of marginal distribution from 

samples: 

 

 

 

 

 

 

 Analysis of Ancestral Sampling 

 + Directly draws from the right distribution. 

 + Efficient. 

 + Works for any graph structure. 

 - Only works without evidence. 
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Inference: Logic Sampling 

 How do we obtain samples conditioned on evidence? 

 

 

 

 Logic Sampling: Ancestral Sampling + reject samples that are 

not consistent with observations. 

 We generating complete samples  

 

      

    as before (ignoring the evidence). 

 We throw away samples in which the values drawn for the 

evidence variables do not correspond to the observations. 

 Problem: often almost all samples are rejected (specifically if there 

are many evidence variables). 

 Takes a long time to generate enough samples, often not practical. 
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Inference: MCMC 

 Alternative strategy to generate samples: Markov Chain Monte 

Carlo („MCMC“) 

 Idea: 

 Difficult to generate samples directly from  

 Alternative strategy: construct sequence of samples 

 

 

 

 

by iterative probabilistic update steps                              . 

 If updates are chosen appropriately, asymptotically it holds that 
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Markov Chains 

 We study the sequence of samples 

 

 

as random variables,        is called state of chain at time t. 

 

 These random variables form a linear chain: 

 

 

 

 

 Such linear chains are also called Markov chains. 
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Markov Chains 

 The distribution over        can be computed based on the 

distribution over 

 

 

 

 

 A distribution            is called stationary, if  

 If chain has reached a stationary distribution at time t , the 

stationary distribution will be preserved: 

 

 

 Under certain assumptions („ergodic chains“), Markov chains 

converge to a unique stationary distribution („equilibrium 

distribution“). 
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MCMC in Graphical Models 

 Given a graphical model over random variables x = {x1,…,xN}, 

the model defines a distribution p(x). 

 For the time being we assume that there is no evidence. 

 „Markov Chain Monte Carlo“ methods 

 From the graphical model, construct a sequence of samples by 

iterative probabilistic updates 

 

 

 

 

 Goal: choose updates in such a way that we get an ergodic 

Markov chain with equilibrium distribution  

 Most simple method: successively locally redraw a single 

variable conditioned on states of all other variables („Gibbs-

Sampling“). 
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Inference: Gibbs Sampling 

 Gibbs Sampling: one variant of MCMC. 

 Probabilistic update step given by successively locally drawing a 

single random variable conditioned on state of all other 

variables. 

 Given old state 

 Draw new state                        : 
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Inference: Gibbs Sampling 

 Theorem: If                           for all i and all possible  xi ,         , 

then the resulting Markov chain is ergodic with equilibrium 

distribution 

 

 Single Gibbs-step is easy: all variables except current query 

variable are observed, naive inference in time O(M N). 
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Gibbs Sampling With Evidence 

 So far we have looked at inference without evidence. 

 

 How do we obtain samples from the conditional 

distribution? 

 

 

 

 Slight modification of Gibbs sampling algorithm: 

 Gibbs sampling always redraws a variable xi ,  conditioned 

on the states of the other variables. 

 With evidence: only redraw the unobserved variables, the 

observed variables are fixed to their observed values. 
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Inference: Gibbs Sampling 

 Summary Gibbs sampling algorithm: 

    

   

   

 

   

 

 Gibbs sampling gives reasonably good results in many 

practical applications 

 Individual update steps are efficient 

 Convergence is guaranteed (for          )  

 Can draw samples from                 without becoming very 

inefficient if evidence set is large (in contrast to logic sampling).   

30 

(0) random initialization of all random variables, consistent with evidence Dx x

( 1) ( )Gibbs-update(For 1,..., :   )            [Slide 27]t tt T   xx

(1) (2) (3)The samples , ,...  are asymptotically distributed according to ( |, )Dpx x xx x

)( | Dp x x

 t 



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II 

Inference: Gibbs Sampling 

 Gibbs sampling: convergence 

 Convergence of Markov chain                      is only 

guaranteed for  t → ∞. 

 Practical solution: „burn-in“ iterations before samples are 

used (discard samples        for              ).   

 There are also convergence tests to determine the number 

of burn-in iterations to use. 
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Inference: Summary 

 Exact inference 

 Message passing algorithm. 

 Exact inference on polytrees (with Junction-Tree extension 

to general graphs). 

 Running time depends on graph structure, exponential in 

worst-case. 

 

 Approximate inference 

 Sampling methods: approximation through a set of 

samples, exact results for t → ∞. 

 Ancestral sampling: simple, fast, no evidence. 

 Logic sampling: with evidence, but rarely feasible. 

 MCMC/Gibbs sampling: efficient approximate drawing of 

samples conditioned on evidence. 
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Agenda 

 

 

 Graphical models: syntax and semantics. 

 

 Inference in graphical models (exact, approximate) 

 

 Graphical models in machine learning. 
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Recap: Parameter Estimate for Coin Tosses 

 Recap: coin toss 

 Individual coin toss Bernoulli distributed with parameter μ 

 

 

 

 Parameter estimation problem: 

 We have observed  N  independent coin tosses, in the 

form of observations L={x1,…, xN }  of the random variables 

X1,…, XN . 

 The true parameter μ is unknown, our goal is an estimate    

     or a posterior distribution  

 Bayesian approach: posterior     prior x likelihood 
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Recap: Parameter Estimate for Coin Tosses 

 Prior: Beta distribution over coin toss parameter μ  

 

 

 

 

 

 

 Likelihood of N  independent coin tosses: 
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Coin Tosses as a Graphical Model 

 Coin toss scenario as a graphical model? 

 Random variables in coin toss scenario are   

 Joint distribution of data and parameter: prior x likelihood 

 

 

 

 Representation as a graphical model: 
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Coin Tosses as a Graphical Model 

 Coin toss scenario as a graphical model? 

 Random variables in coin toss scenario are   

 Joint distribution of data and parameter: prior x likelihood 

 

 

 

 Representation as a graphical model: 
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Coin Tosses as a Graphical Model 

 Independent coin tosses: representation as a graphical 

model. 

 

 

 

 

 D-separation 

 Does                           hold? 

38 



1X 2X
NX3X … 

… 

1 1,..., |N NX X X  



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II 

Coin Tosses as a Graphical Model 

 Independent coin tosses: representation as a graphical 

model. 

 

 

 

 

 D-separation 

 Does                           hold? 

 No, path through μ is not blocked.   

 Intuitively:   

 The unknown parameter μ  couples the random variables 

X1,…, XN. 

 But it holds that  
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Parameter Estimation as Inference Problem 

 MAP parameter estimation coin tosses: 

 

 

 Inference problem: 

 

 

 

 

 

 

 

 Evidence on the nodes  X1,…, XN. 

 Want: distribution                            
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Plate Models 

 Extension of graphical models: Plate notation. 

 Independent coin tosses: representation as graphical 

model. 

 

 

 

 

 Nodes X1,…, XN  are of the same form 

 Same domain (binary) 

 Same conditional distribution  

 

 Shorthand notation in form of a „template“: Plate notation. 
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Plate Models 

 Plate notation for coin tosses: 

 

 

 

 

 

 

 A „Plate“ is a shorthand notation for  N  variables of the 

same form 

 Labeled with the number of variables, N  

 Variables have index (e.g. Xi ). 

 Plate models are often used in graphical models for 

machine learning. 
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Plate Models: Hyperparameters 

 Role of „hyperparameters“          ? 

 Not random variables, we only model the joint distribution of  

                    given hyperparameters. 

 

 

 Hyperparameters are not nodes in the graphical model, but 

are often additionally depicted (with point instead of circle). 
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