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Agenda 

 

 

 Graphical models: syntax and semantics. 

 

 Inference in graphical models (exact, approximate) 

 

 Graphical models in machine learning 

 Recap: Coin Tosses 

 Recap: Bayesian linear regression 

 Latent Dirichlet allocation 

 Hidden Markov models 
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Recap: Bayesian Linear Regression 

 Solving regression problems 

 

 

 

 

 

 Linear regression 
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Recap: Bayesian Linear Regression 

 

 Discriminative setting: xi  fixed input,  yi  generated from 

xi  and w  plus Gaussian noise. 

 

 

 

 

 

 

 Bayesian approach: posterior      prior x likelihood 
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Recap: Bayesian Linear Regression 

 Likelihood of data under model w: 

 

 

 

 

 

 Normally distributed prior over models: 
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Bayesian Linear Regression as a 
Graphical Model 

 What are the random variables? 

 Labels  y1,…, yN , model w  

 Not: x1,…, xN , hyperparameters 

 Inputs xi  behave like hyperparameters (fixed quantities) 

 

 Joint distribution over labels and parameter vector 

 

 

 

 

 

 Representation of Bayesian linear regression as a graphical 

model: structure can be seen from the form of the joint 

distribution. 
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Bayesian Linear Regression as a 
Graphical Model 
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Bayes-optimal Prediction 

 When applying model, need prediction for novel test 

instance x: 

 

 Bayesian prediction 
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 Graphical model representation of Bayesian linear 

regression, including a novel test instance. 

 

 

 

 

 

 

 

 

 

Bayesian Linear Regression as a 
Graphical Model 
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 Bayesian prediction 

   

 

 Inference problem: what is the most likely state of node y, given 

observed nodes y1,…, yN ? 

Bayesian Linear Regression as a 
Graphical Model 
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Agenda 

 

 

 Graphical models: syntax and semantics. 

 

 Inference in graphical models (exact, approximate) 

 

 Graphical models in machine learning 

 Recap: Bayesian linear regression 

 Latent Dirichlet Allocation 

 Hidden Markov models 
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Topic Models 

 „Topic models“: class of models for the (unsupervised) 

analysis of text corpora. 

 

 Given a collection of text documents: 

 Discover the hidden themes  

(“topics”) that pervade the collection. 

 Describe topics by the words 

that most frequently appear. 

 Describe documents by the  

topics they are about. 

 Inferred annotations can be  

used to organize, summarize,  

and make predictions. 

 

 Analysis is unsupervised, exploratory in nature. 
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Latent Dirichlet Allocation 

 We will discuss latent Dirichlet allocation (LDA) 

 Well-funded probabilistic model. 

 Many practical applications. 

 Easily expressed as a graphical model. 
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Primer: Categorical and Dirichlet 
Distributions 

 Let 𝑋 ∈ 𝑣1, … , 𝑣𝐾  denote a discrete random variable that 

takes on one of  K  values. 

 

 The categorical distribution over  X  is given by 

 

 

where 𝜽 = 𝜃1, … , 𝜃𝐾
𝑇 ∈ 𝑅𝐾 is a vector of probabilities, that is, 

 𝜃𝑘
𝐾
𝑘=1 = 1. 

 

 The categorical distribution generalizes the Bernouilli 

distribution. 

 

 We also write  

 

 Example: rolling a fair dice, 𝜽 = 1/6,… , 1/6 𝑇. 14 

( )k kp X v  

~ ( | )CatX X θ
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Primer: Categorical and Dirichlet 
Distributions 

 The Dirichlet distribution, given by 

 

 

 

 

 

 

generalizes the Beta-distribution (identical to Beta for K=2). 

 

 

 Reminder:  

 

 Conjugate prior: Dirichlet + categorical behaves like Beta + 

Bernoulli 
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Primer: Categorical and Dirichlet 
Distributions 

 Recap: Beta is conjugate to Bernoulli 

 If  

 

 

 Then 

 

 

 Dirichlet is conjugate to categorical 

 If  

 

 

 Then  
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Primer: Symmetric Dirichlet Distribution 

 Dirichlet distribution „smoothes“ probability estimates towards 

the prior information in the vector 𝜶 ∈ 𝑅𝐾. 

 Example (K=3): 

 

 

 

 

 

 

 We often study symmetric  Dirichlet distributions 

parameterized by a single 𝛼 ∈ 𝑅. 
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Prior:  ~ ( | (5,5,5)Dir θθ
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Topic Models: Motivating Example 

 Example: Analyze the following five sentences (=documents): 

 

 

 

 

 

 LDA: automatically discover topics that sentences contain. 

 Possible answer: 

 Sentences (1) and (2): 100% Topic 1. 

 Sentences (3) and (4): 100% Topic 2. 

 Sentence 5: 60% Topic 1, 40% Topic 2.  

 Topic 1: 30% broccoli, 15% bananas, 10% breakfast,  

10% munching, … 

 Topic 2: 20% chinchillas, 20% kittens, 20% cute, 15% hamster, … 

 

 

 

 

18 

(1)  I like to eat broccoli and bananas. 

(2)  I ate a banana and spinach smoothie for breakfast. 

(3)  Chinchillas and kittens are cute. 

(4)  My sister adopted a kitten yesterday.  

(5)  Look at this cute hamster munching on a piece of broccoli. 
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Topic Models: Motivating Example 

 Example: Analyze the following five sentences (=documents): 

 

 

 

 

 

 LDA: automatically discover topics that sentences contain. 

 Possible answer: 

 Sentences (1) and (2): 100% Topic 1. 

 Sentences (3) and (4): 100% Topic 2. 

 Sentence 5: 60% Topic 1, 40% Topic 2.  

 Topic 1: 30% broccoli, 15% bananas, 10% breakfast,  

10% munching, … 

 Topic 2: 20% chinchillas, 20% kittens, 20% cute, 15% hamster, … 
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(1)  I like to eat broccoli and bananas. 

(2)  I ate a banana and spinach smoothie for breakfast. 

(3)  Chinchillas and kittens are cute. 

(4)  My sister adopted a kitten yesterday.  

(5)  Look at this cute hamster munching on a piece of broccoli. 

Topic:  food 

Topic:   

cute animals 
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Latent Dirichlet Allocation 

 Formalization: documents, words, and topics. 

 There are  𝐷  documents, indexed by 𝑑 = 1,… , 𝐷. 

 There is a vocabulary of  𝑉 different words.  

 Each document contains (up to) 𝑁 words, denoted by 𝑤𝑑,1, … , 𝑤𝑑,𝑁. 

 There are  𝐾  topics, indexed by 𝑘 = 1,… , 𝐾. 

 

 Each topic 𝑘 is described by a categorical distribution over 

words, represented by a parameter vector 𝜷𝑘 ∈ 𝑅
𝑉. 
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Vocabulary {bananas,  broccoli,  breakfast,  chincillas,  cute,  hamster,  } 

T

1 (0.15     0.3      0.1      0.01     0.01    0.01  ...) VR β

T

2 (0.01     0.01    0.01    0.2       0.2      0.15  ...) VR β
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Latent Dirichlet Allocation 

 Formalization: documents, words, and topics. 

 There are  𝐷  documents, indexed by 𝑑 = 1,… , 𝐷. 

 There is a vocabulary of  𝑉 different words.  

 Each document contains (up to) 𝑁 words, denoted by 𝑤𝑑,1, … , 𝑤𝑑,𝑁. 

 There are  𝐾  topics, indexed by 𝑘 = 1,… , 𝐾. 

 

 Each document 𝑑 is described by a categorical distribution over 

topics, represented by a parameter vector 𝜽𝑑 ∈ 𝑅
𝐾. 
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2 (1.0   0.0) KR θ

1 (1.0   0.0) KR θ

4 (0.0   1.0) KR θ

5 (0.6   0.4) KR θ

3 (0.0   1.0) KR θ
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LDA: Generative Process 

 Latent Dirichlet Allocation is a generative model, defining a 

generative process for the words appearing in the D documents. 

 

 For topics  𝑘 = 1, … , 𝐾: 

 Draw the categorical distribution over words, 𝜷𝑘 ∼ 𝐷𝑖𝑟(𝜷|𝜂). 

 

 For documents 𝑑 = 1, … , 𝐷: 

 Draw the categorial distribution over topics, 𝜽𝑑 ∼ 𝐷𝑖𝑟(𝜽|𝛼). 

 For each word 𝑤𝑑,1, … ,𝑤𝑑,𝑁: 

 Draw a topic  𝑍𝑑,𝑛 ∼ 𝐶𝑎𝑡(𝑍|𝜽𝑑) for the word at position n. 

 Draw the word 𝑤𝑑,𝑛 ∼ 𝐶𝑎𝑡(𝑤|𝜷𝑍𝑑,𝑛) 
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Dirichlet prior 

Dirichlet prior 

Distribution over words 

in the selected topic. 
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Chinchillas and kittens are cute. 

I like to eat broccoli and bananas. 

LDA: Generative Process 

 Visualization of generative process for documents. 
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Topic 1 

Topic 2 
Look at this cute hamster munching on 

a piece of broccoli. 

1.0 

1.0 

0.4 

0.6 

Topic:  distribution over words, given by  𝜷𝑘 

  

Doc 1 

Doc 5 

Doc 3 
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Chinchillas and kittens are cute. 

I like to eat broccoli and bananas. 

LDA: Generative Process 

 Visualization of generative process for documents. 
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Topic 1 

Topic 2 
Look at this cute hamster munching on 

a piece of broccoli. 

1.0 

1.0 

0.4 

0.6 

Document: distribution over topics , given by  𝜽𝑑 

  

Doc 1 

Doc 5 

Doc 3 
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Chinchillas and kittens are cute. 

I like to eat broccoli and bananas. 

LDA: Generative Process 

 Visualization of generative process for documents. 
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Topic 1 

Topic 2 
Look at this cute hamster munching on 

a piece of broccoli. 

1.0 

1.0 

0.4 

0.6 

Doc 1 

Doc 5 

Doc 3 

For each position, pick topic which will  

generate word (variable 𝑍𝑑,𝑛, color coding). 

Then pick actual word from topic. 
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LDA: Graphical Model 

 LDA as a graphical model (nested plate notation). 
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For documents d=1,…,D:  

distribution over topics.  

For each word position n=1,…,N  in  

document: indicator selecting topic from 

which word is generated. 

Word generated  

at position from  

selected topic. 

  

For topics k=1,…,K: 

distribution over words. 
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LDA: Graphical Model 

 LDA as a graphical model (nested plate notation). 

 

 

 

 

 

 Unrolled graphical model for small example (D=N=K=2): 
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LDA: Graphical Model 

 LDA as a graphical model (nested plate notation). 

 

 

 

 

 

 

 Collect all 𝜽𝑑 in stacked vector 𝜽 = 𝜽1, … , 𝜽𝐷
T. 

 Collect all 𝜷𝑘 in stacked vector 𝜷 = 𝜷1, … , 𝜷𝐾
T. 

 Collect all 𝑍𝑑,𝑛 in matrix 𝒁 ∈ 𝑅𝐷×𝑁. 

  Collect all 𝑤𝑑,𝑛 in matrix 𝐖 ∈ 𝑅𝐷×𝑁. 

 Joint distribution: 
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LDA For Text Analysis 

 Although LDA is a generative model, it is not actually good at 

generating natural language texts. 

 

 LDA is a bag of words model: 

 To generate a word in a document,  pick a random topic (𝑍𝑑,𝑛 

variable) and generate a word from that topic (𝑤𝑑,𝑛). 

 No sequential information: likely to generate texts like „breakfast 

broccoli bananas munching“ or „kitten cute hamster look“. 

 

 

 Practical application is in text analysis: 

 Document collection is given. Discover hidden topics present in 

given document collection. 

 Annotate documents with topics. 

 This actually works well. 
29 
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LDA For Text Analysis: Inference Problem 

 Problem setting: given document collection, infer topic structure.  

 Given: collection of D documents with N words each, represented 

by variables 𝑤𝑑,𝑛 (d = 1, … , D, n = 1, …N). 

 Infer:  

 topic distribution for each document (variables 𝜽𝑑),  

 word distribution for each topic (variables 𝜷𝑘)  

 which topic has generated a word (𝑍𝑑,𝑛). 

 Inference problem: compute  𝑝 𝜽, 𝜷, 𝒁 𝑾 . 

 

 

 

 

 All variables except the word information 𝑾 are latent variables, 

that is, they are never observed.  

 30 
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Chinchillas and kittens are cute. 

I like to eat broccoli and bananas. 

LDA For Text Analysis: Inference Problem 

 Need to infer all other variables given word information. 
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Topic 1 

Topic 2 
Look at this cute hamster munching on 

a piece of broccoli. 

? 

? 

? 

? 

? ? ? ? ? ? ? 

? ? ? ? ? ? ? 

? ? ? ? 

? ? ? ? ? 
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LDA: Inference Algorithms 

 Computing 𝑝 𝜽, 𝜷, 𝒁 𝑾  means solving an inference problem 

in the graphical model representing LDA. 

 

 Different approximate inference algorithms have been studied: 

 Gibbs sampler (Pritchard et al., 2000) 

 Collapsed Gibbs sampler (Griffiths & Steyvers, 2004) 

 Variational methods (Blei et al., 2003) 

 Expectation propagation (Minka and Lafferty, 2002) 

 … 

 

 

 Sampling-based approaches very popular. 

32 
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LDA: Gibbs Sampling 

 Recap: Gibbs sampling resamples each variable given all other 

variables. 

 Sample discrete variables 𝑍𝑑,𝑛, 𝑤𝑑,𝑛: as discussed.   

 Sample continuous variables 𝜽𝑑 (topic distribution for document): 
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LDA: Gibbs Sampling 

 Sample continuous variables 𝜷𝑘 (word distribution for topic): 

 

 

 

 

 

 

 

 

 

 

 

 We can easily sample 𝜽𝑑 and 𝜷𝑘 from their respective Dirichlet 

posterior. 
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LDA: Sampling Inference 

 We obtain samples  (𝜽𝑡, 𝜷𝒕, 𝒁𝒕)  for t=1,…,T from Gibbs sampler. 

 

 Values for variables of interest are usually derived by averaging 

over samples (= expected value under distribution): 

 

 

 

 In practice, full Gibbs sampling rarely used. 

 

 The popular „collapsed“ Gibbs sampler exploits conjugacy of the 

priors over 𝜽 and 𝜷 to integrate out these variables and only run 

the Gibbs sampler over the topic assignments 𝒁. 
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LDA: Example 
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 100-Topic model trained on a corpus of 16.000 Associated 

Press documents. 

 

Top words 

for 4 topics. 

Document  

about these 

topics 
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LDA: Summary and Remarks 

 LDA: probabilistic model for discovering hidden topics in a 

document collection, and describing documents by these topics. 

 

 Generative model: 

 A topic is a distribution over words. 

 A document is a distribution over topics. 

 For each position in document, pick topic and generate word. 

 

 All variables except words are latent, inferred during inference. 

 

 For simplicity, we have defined the model assuming that the 

number N of words is the same in each document 

 Straightforward to generalize to  N  differing over documents. 

 Generate  N  from model (Poisson distribution). 
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Agenda 

 

 

 Graphical models: syntax and semantics. 

 

 Inference in graphical models (exact, approximate) 

 

 Graphical models in machine learning 

 Recap: Bayesian linear regression 

 Latent Dirichlet allocation 

 Hidden Markov models 
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Hidden Markov Model: Probabilistic 
Automaton with Hidden States 

 Hidden Markov model: probabilistic model for sequences.  

 Temporal view: discrete time steps 1,….,T (= sequence elements). 

 Models a probabilistic automaton that takes on a state from a finite 

set of states at each point in time. 

 At each point in time, the automaton probabilistically changes into a 

novel state, based on the current state. 
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Example:  

Model for natural language 

Time steps = words in text 

States = grammatical category of word 

 

Probabilities for  

state transitions 
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Hidden Markov Model: Probabilistic 
Automaton with Hidden States 

 Sequence of states is not directly observable. 

 Instead: states emit observations, these form the observable sequence. 

 Distribution over possible observations depends on the current state.  
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Noun 

Adjective 

0.9 

0.1 

0.1 

0.2 

0.7 

0.1 

0.5 

0.4 
0.6 

0.4 

der 0.2
die 0.2
das 0.3
...

 
 
 
 

...
weise 0.0013
weiß 0.0012
will 0.002
...

 
 
 
 
  ...

weich 0.0016
weise 0.0013
weiß 0.0012
...

 
 
 
 
 

...
Weiche 0.0010
Weise   0.0015
...

 
 
 
 

Observations: actual  
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Formalization: States 

 State at time t: random variable 

 Automaton model:  

 Distribution over random initial state: 

 Distribution over next state given current state: 

  

 This results in joint distribution over all states: 

 

 

 

 As a graphical model: 

 

 

 „Markov“-Assumption: 
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Formalization: Observations 

 Observation at time t: random variable 

 Automaton model: observation is generated depending on 

current state, from distribution 

 

 Joint distribution over all random variables: 

 

 

 

 As graphical model („Hidden Markov Model“ or „HMM“) 

42 

1 1 1 1 1 1

2

) ( ) ( | )  ( ) ( | )( ,...., , ,..., |
T

T t t t t

t

Tp q q O p q p O q p q p O qO q 



 

1q … 2q
3q 4q

1{ ,..., }.MtO o o

|( ).t tp O q

1O
2O 3O 4O … 

States 

(hidden) 

 

 

 

Observations 



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II 

HMM Parameterization 

 To define a hidden Markov model, we need to specify the 

following distributions: 

 

 

 

 

 Notation for the corresponding probability values: 

 

 

 

 

 

 A hidden Markov mode is defined by the triple 
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HMM Problem Settings 

 Three basic problem settings for hidden Markov models: 

 

 1. Likelihood of an observation sequence: How likely is a 

sequence of observations                  given a model    ?  

 

 

 2. Most probable state, given observations: 

 

 

 

 3. Given several observation sequences, find a model that 

best explains the data: 
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1. Likelihood of an Observation Sequence 

 Likelihood of an observation sequence: How likely is an 

observation sequence                   given a model     ?  

 Sum rule: 

 

 

 

 

 

 Goal: polynomial-time algorithm.  

 Solution:  

 Forward-Backward algorithm: dynamic programming. 

 Forward-Backward is special case of (general) message passing. 

 Also solves Problem 2.a) 
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Forward-Backward Algorithm 

 Define auxiliary variables  

 

 

 

 

 Theorem: 
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Forward-Backward Algorithm 

 If we have computed all         and         :  
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Forward-Backward Algorithm 

 If we have computed all         and         :  
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Outlook 

 Problem 2.b): Solution with Viterbi algorithm (same idea 

as in Forward-Backward) 

 Problem 3: Solution with Baum-Welch algorithm 

 Instance of EM-Algorithm (see also Gaussian Mixture 

Models) 

 Makes use of Forward-Backward in E-step. 

 

 Alternative approaches for modeling sequential data:  

discriminative models 

 HM-SVM 

 Conditional Random Fields 

 

 More details in the lecture „speech technology“. 
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Applications HMMs 

 Part-of-speech tagging in natural language texts 

 Hidden states correspond to grammatical categories (article, 

verb, noun, etc). 

 Observations are words in text. 

 Goal: assign grammatical categories to words (= find most likely 

hidden state sequence). 

 

 Speech recognition: acoustic model 

 Hidden states are spoken words. 

 Observation is the acoustic signal. 

 Goal: reconstruct spoken words from acoustic signal. 

 Partially superseeded by deep learning. 

 

 Bioinformatics 

 Localization or annotation of genes. 

 Usually extensions of the basic hidden Markov model. 50 


