Universität Potsdam

Institut für Informatik Lehrstuhl Maschinelles Lernen

Confidence Intervals and Hypothesis Testing

Niels Landwehr

Agenda

- Confidence Intervals
- Statistical Tests

Agenda

- Confidence Intervals
- Statistical Tests

Recap: Risk Estimation

- Recap: risk estimation.
- We have learned a model $f_{\theta} : \mathcal{X} \to \mathcal{Y}$.
- Interested in risk of model: the expected loss on novel test instances (\mathbf{x}, y) drawn from the data distribution $p(\mathbf{x}, y)$.

$$R(\theta) = E[\ell(y, f_{\theta}(\mathbf{x}))] = \iint \ell(y, f_{\theta}(\mathbf{x})) p(\mathbf{x}, y) d\mathbf{x} dy$$

- Because p(x, y) is unknown, risk needs to be estimated from sample S = (x₁, y₁),...,(x_n, y_n) where (x_i, y_i) ~ p(x, y) are independent samples.
- Risk estimate ("empirical risk") $\hat{R}_{s}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_{i}, f_{\theta}(\mathbf{x}_{i}))$
- If context is clear, we denote risk by R and empirical risk by \hat{R}_s .

Recap: Risk Estimation Zero-one loss

- For this lecture, we will assume
 - Learning task is binary classification, $\mathcal{Y} = \{0,1\}$.
 - Loss is zero-one loss,

 $\ell(y, f_{\theta}(\mathbf{x})) = \begin{cases} 0 : y = f_{\theta}(\mathbf{x}) \\ 1 : \text{ otherwise} \end{cases}$

- This means that $\ell(y_i, f_{\theta}(\mathbf{x}_i))$ for $(\mathbf{x}_i, y_i) \sim p(\mathbf{x}, y)$ follows a Bernoulli distribution: there is either a mistake or not (coin toss).
- We also assume that model is evaluated on independent test set, such that the error estimate is unbiased.

Idea Confidence Intervals

- Risk estimate is always uncertain depends on sample S.
- Idea confidence interval:
 - Specify interval around risk estimate \hat{R}_{s}
 - Such that the true risk R lies within the interval "most of the time".
 - Quantifies uncertainty of risk estimate.

• Route to confidence interval: analyse the distribution of the random variable \hat{R}_s .

Central Limit Theorem

• Central Limit Theorem. Let $z_1, ..., z_n$ be independent draws from a distribution p(z) with $\mathbb{E}[z] = \mu$ and $\operatorname{Var}[z] = \sigma^2$. Then it holds that

$$\sqrt{n} \left(\frac{1}{n} \sum_{j=1}^{n} z_j - \mu\right) \rightarrow \mathcal{N}(0, \sigma^2)$$
average of z_1, \dots, z_n .
Convergence in distribution (for $n \rightarrow \infty$)

Central limit theorem gives approximate distribution of mean:

$$\sqrt{n}(\frac{1}{n}\sum_{j=1}^{n}z_{j}-\mu) \sim \mathcal{N}(0,\sigma^{2})$$
 (approximately, for large *n*)

$$\Rightarrow \frac{1}{n} \sum_{j=1}^{n} z_j \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$$

divide by \sqrt{n} , add μ

(approximately, for large *n*)

Example Central Limit Theorem

- Example central limit theorem: average of Bernoulli variables.
- Let $z_1, ..., z_n$ be independent draws from a Bernoulli distribution, that is
 - $z_i \sim \text{Bern}(z_i | \mu)$ (coin toss with success probability μ)
- Average $\frac{1}{n} \sum_{j=1}^{n} z_{j}$ follows (rescaled) Binomial distribution.
- Binomial distribution approaches Normal distribution.

Central Limit Theorem: Error Estimator

- Application of central limit theorem to error estimator.
- Error estimator

$$\hat{R}_{s} = \frac{1}{n} \sum_{j=1}^{n} \ell(y_{j}, f_{\theta}(\mathbf{x}_{j}))$$

is an average over the Bernoulli-distributed variables $\ell(y_i, f_{\theta}(\mathbf{x}_i))$.

- Because the error estimate is unbiased, $\mathbb{E}[\ell(y_j, f_{\theta}(\mathbf{x}_j))] = R$.
- Variance of Bernoulli random variable is $Var[\ell(y_j, f_{\theta}(\mathbf{x}_j))] = R(1-R)$.
- Central limit theorem says:

$$\hat{R}_{s} \sim \mathcal{N}(R, \frac{R(1-R)}{n})$$
 (approximately, large enough *n*)

• First result for distribution of \hat{R}_s , but depends on R.

Mean and Variance of Error Estimator

First result: Approximate distribution of error estimator is

$$\hat{R}_{s} \sim \mathcal{N}(R, \frac{R(1-R)}{n}).$$

- Unbiased estimator, therefore the mean is the true risk *R*.
- The variance of the estimator falls with *n*: the more instances in the test set *S*, the less variance.

• Variance
$$\sigma_{\hat{R}_{S}}^{2} = \frac{R(1-R)}{n}$$
.
• Standard deviation ("standard error") $\sigma_{\hat{R}_{S}} = \sqrt{\frac{R(1-R)}{n}}$.
Characterizes how much risk estimate fluctuates with *S*

Distribution of Error Estimator

Distribution of error estimator:

$$\hat{R}_{s} \sim \mathcal{N}(R, \sigma_{\hat{R}_{s}}^{2})$$
$$\Rightarrow \frac{\hat{R}_{s} - R}{\sigma_{\hat{R}_{s}}} \sim \mathcal{N}(0, 1)$$

Problem: true risk *R* has to be known in order to determine variance

$$\sigma_{\hat{R}_s}^2 = \frac{R(1-R)}{n}$$

Idea: replace true variance $\sigma_{\hat{R}_s}^2$ by variance estimate

$$s_{\hat{R}_{S}}^{2} = \frac{\hat{R}_{S}(1-\hat{R}_{S})}{n}$$

Variance Estimate and t-Distribution

If true variance is replaced by variance estimate, the normal distribution becomes a Student's t-distribution:

$$\frac{\hat{R}_{S} - R}{s_{\hat{R}_{S}}} \sim t(n) \qquad \qquad n \text{ degrees of freedom}$$

 However, for large *n* the t-distribution becomes a normal distribution again, so we can keep working with the normal.

Bound For True Risk

- So what does the empirical risk \hat{R}_s tell us about the true risk?
- From empirical risk \hat{R}_s compute empirical variance $s_{\hat{R}_s}^2$.
- One-sided upper bound for true risk: probability that true risk is at most ϵ above estimated risk.

$$\Phi(x) = \int_{-\infty}^{x} \mathcal{N}(x \mid 0, 1) dx$$

"cumulative distribution function of standard normal distribution"

Bound For True Risk

Symmetric lower bound: because the distribution of \hat{R}_s is symmetric around *R* (normal distribution), we can similarly compute probability that true risk is at most ϵ below estimated risk.

Two-sided interval: What is the probability that true risk is at most
e away from estimated risk?

$$p(|R - \hat{R}_{s}| \le \varepsilon) = 1 - p(R - \hat{R}_{s} > \varepsilon) - p(\hat{R}_{s} - R > \varepsilon)$$

$$\approx 1 - 2\left(1 - \Phi\left(\frac{\varepsilon}{s_{\hat{R}_{s}}}\right)\right)$$

One-sided and Two-sided Intervals

- So far, we have computed probability that a bound holds for a particular interval size ϵ .
- Idea: choose ε in such a way that bounds hold with a certain prespecified probability 1- δ (e.g. δ =0.05).
- One-sided 1- δ -confidence interval: bound ϵ such that

$$p(R \le \hat{R}_{S} + \varepsilon) = 1 - \delta$$

• Two-sided 1- δ -confidence interval: bound ϵ such that

$$p(\mid R - \hat{R}_{s} \mid \leq \varepsilon) = 1 - \delta$$

- For symmetric distributions (here: normal) it always holds that:
 - ε for one-sided 1- δ -interval = ε for two-sided 1- 2δ interval.
 - ε for one-sided 95%-interval = ε for two-sided 90% interval.
 - Thus, it suffices to derive ε for one-sided interval.

Size of Interval

 Compute one-sided 1-δ-confidence interval: Determine ε such that bound holds with probability 1-δ.

• Two-sided confidence interval is $[\hat{R}_s - \varepsilon, \hat{R}_s + \varepsilon]$ (confidence level 1-2 δ)

Confidence Interval: Example

- Example:
 - We have observed an empirical risk of $\hat{R}_s = 0.08$ on m = 100 test instances.

• Compute $s_{\hat{R}_s} = \sqrt{\frac{0.08 \cdot 0.92}{100}} \approx 0.027$ empirical standard deviation

- Choosing confidence level $\delta = 0.05$ (one-sided level, two-sided will be 2δ)
- **Compute** $\varepsilon = s_{\hat{R}_s} \Phi^{-1} (1 \delta) \approx 0.027 \cdot 1.645 \approx 0.045.$
- The confidence interval $[\hat{R}_s \epsilon, \hat{R}_s + \epsilon]$ contains the true risk in 90% of the cases.

Interpretation of Confidence Intervals

• Care should be used when interpreting confidence intervals: the random variable is the empirical risk \hat{R}_s and the resulting interval, not the true risk *R*.

Correct:

"The probability of obtaining a confidence interval ϵ that contains the true risk from an experiment is 95%"

• Wrong:

"We have obtained a confidence interval ϵ from an experiment. The probability that the interval contains the true risk is 95%".

Agenda

- Confidence Intervals
- Statistical Tests

Statistical Tests: Motivation

 Motivation: we have developed a new learning algorithm (Algorithm 1) and compare it to an older algorithm (Algorithm 2) on 10 data sets.

	+	+	-	•	+			+	+	+
Accuracy Algorithm 1	0.85	0.76	0.60	0.70	0.95	0.88	0.73	0.89	0.98	0.74
Accuracy Algorithm 2	0.81	0.73	0.61	0.66	0.91	0.89	0.65	0.82	0.97	0.70

- Algorithm 1 seems better (won on 8 data sets, lost on 2).
 - But maybe this is just a random result, based on the particular choice of data sets?
- Statistical test: rigorous procedure to decide whether it is likely that Algorithm 1 is indeed giving better accuracy.

Statistical Tests: Framework

- Formulate a null hypothesis H_0 .
 - For example, H_0 could be "Algorithm 1 and Algorithm 2 perform equally well".
 - If the observations are very unlikely under H₀, we reject it and conclude the alternative hypothesis H₁: one algorithm is better.
- Formulate a *test statistic T* that can be computed from data.
 - For example, the observed number of "wins".
- We will reject the null hypothesis if the test statistic exceeds a threshold c.
 - For example, reject if one algorithm wins more than 90 times out of 100.

Statistical Tests: Framework

 Asymmetry in test: we can only reject the null hypothesis, never conclude that it is true.

 H_0 rejected \Rightarrow conclude H_1 .

 H_0 not rejected \Rightarrow cannot conclude anything, no new information.

Possible outcomes of hypothesis testing:

	H_0 rejected	H_0 not rejected
H_0 true	Type I error (wrong conclusion, very bad)	no new information but also no error (ok)
H_1 true	correct conclusion (good)	Type II error (not enough power, kind of bad)

 Type I error is worst case (publish a study claiming that new drug cures cancer when in fact it does not).

Statistical Tests: More Formally

- More formally, let $\omega \in \Omega$ denote a true parameter of interest (for example, ω is the probability that Algorithm 1 wins over Algorithm 2 on a randomly drawn data set).
- Let the null hypothesis be $H_0: \omega \in \Omega_0$ (for example, $H_0: \omega = 0.5$).
- The alternative hypothesis is $H_1: \omega \in \Omega_1 = \Omega \setminus \Omega_0$.
- Let $X \in \mathcal{X}$ be the observations (for example, accuracies of algorithms on the multiple data sets).
- Let $T: \mathcal{X} \to \mathbb{R}$ be the test statistic.
- We reject the null hypothesis H_0 (and conclude that the alternative hypothesis H_1 is true) if T(X) > c.

Statistical Tests: Size

 Size of a test: (maximal) probability of rejecting the null hypothesis when the null hypothesis is true (bad!).

 $\alpha = \sup_{\omega \in \Omega_0} p(T > c \mid \omega).$

- We don't want Type I errors, so we have to limit α .
- For example, $\alpha = 0.05$: formulate test in such a way that there is at most 5% probability of rejecting null hypothesis wrongly.
- Of course, α depends on c
 - If we choose c very large, we are conservative and α is low.
 - If we choose c smaller, we are less conservative.
 - Trading Type I for Type II error.

Sign Test

- Sign test: decide whether the medians of two populations differ.
- Motivation: we evaluate two learning algorithms on 10 datasets.

	+	+	-	+	+	-	+	+	+	+
Accuracy Algorithm 1	0.85	0.76	0.60	0.70	0.95	0.88	0.73	0.89	0.98	0.74
Accuracy Algorithm 2	0.81	0.73	0.61	0.66	0.91	0.89	0.65	0.82	0.97	0.70

- More formally: Let $(a_1, b_1), ..., (a_m, b_m) \in \mathbb{R}^2$ be independently sampled as $(a_i, b_i) \sim p(a, b)$.
- Let $\omega = p(a > b) \in [0,1]$ ("probability that Algorithm 1 wins on randomly drawn data set").

• Let
$$H_0: \omega = 0.5$$
, $H_1: \omega \in [0,1] \setminus \{0.5\}$.

Sign Test

- Sign test: decide whether the medians of two populations differ.
- Motivation: we evaluate two learning algorithms on 10 datasets.

	+	+	-	+	+	-	+	+	+	+
Accuracy Algorithm 1	0.85	0.76	0.60	0.70	0.95	0.88	0.73	0.89	0.98	0.74
Accuracy Algorithm 2	0.81	0.73	0.61	0.66	0.91	0.89	0.65	0.82	0.97	0.70

- Let $X = \{(a_1, b_1), \dots, (a_m, b_m)\}$ (observed accuracies).
- Let $T = \max(|\{i \mid a_i > b_i\}|, |\{i \mid a_i < b_i\}|)$. "#wins of better algorithm"
- We will reject the null hypothesis if T > c, that is, if we see more than c wins of either algorithm.

Sign Test: Distribution under H₀

- How do we choose *c* ?
- Limit probability of Type I error, given by $\alpha = p(T > c | \omega = 0.5)$.
- Because $(a_i, b_i) \sim p(a, b)$ are sampled independently, the logical variable $(a_i > b_i)$ behaves like a coin toss.
- Thus, the probability of seeing *i* wins for Algorithm 1 is given by a Binomial distribution.
- How likely is it to observe more than c wins (for either algorithm) if $\omega = 0.5$?

Sign Test: Distribution under H₀

• So
$$\alpha = p(T > c \mid \omega = 0.5)$$

 $= 2 \sum_{i=c+1}^{m} \operatorname{Bin}_{0.5,m}(i)$
 $= 2(1 - \operatorname{BinCDF}_{0.5,m}(c))$

- So far, computed α for a given threshold *c*.
- We can ensure any prespecified α by solving for c:

 $c = \operatorname{BinCDF}_{0.5,m}^{-1}(1 - \alpha / 2).$

• E.g. for $\alpha = 0.05$ we set $c = \text{BinCDF}_{0.5,m}^{-1}(0.975)$.

Sign Test: p-value

• After observing the value *T* of the test statistics, we can also compute α for the maximum threshold c=T-1 that would still reject the null hypothesis. This is called the *p*-value.

$$p = 2(1 - \text{BinCDF}_{0.5,m}(T - 1))$$

- The p-value is the smallest α for which the test would reject H_0 .
- Typically,
 - p < 0.001: very sure that H_0 can be rejected.
 - p < 0.01: sure that H_0 can be rejected.
 - p < 0.05 reasonably sure that H_0 can be rejected.
 - p < 0.1 likely that H_0 can be rejected.

Sign Test: Example

Example sign test:

	+	+	-	+	+	-	+	+	+	+
Accuracy Algorithm 1	0.85	0.76	0.60	0.70	0.95	0.88	0.73	0.89	0.98	0.74
Accuracy Algorithm 2	0.81	0.73	0.61	0.66	0.91	0.89	0.65	0.82	0.97	0.70

- Compute test statistic: T=8.
- Compute p-value:

 $p = 2(1 - \text{BinCDF}_{0.5,10}(7)) = 0.1094$

Sign Test: Discussion

Summary: sign test can be applied when we have paired data $(a_1, b_1), ..., (a_m, b_m) \in \mathbb{R}^2$ and want to decide if $p(a > b) \neq 0.5$.

- Advantages of sign test:
 - Few assumptions: the (a_i, b_i) only need to be independent.
- Disadvantages:
 - Only uses whether a_i > b_i or a_i < b_i, not the actual values. This discards some information and can make it harder to reject the null hypothesis.
 - Compares medians rather than means: if algorithm is usually slightly better but in some cases much worse, it would be declared the winner.

Two-Tailed Paired t-Test

- Paired t-test: standard test to determine if means between populations differ (example: do risks of two models differ?).
- Let $(a_1, b_1), ..., (a_m, b_m) \in \mathbb{R}^2$ be independently sampled from p(a, b), that is, $(a_i, b_i) \sim p(a, b)$.

• Let
$$\delta_i = a_i - b_i$$
, let $\Delta = \frac{1}{m} \sum_{i=1}^m \delta_i$, and let $s^2 = \frac{1}{m} \sum_{i=1}^m (\delta_i - \Delta)^2$.
Variance estimate δ_i

- Let $\omega = \mathbb{E}[a] \mathbb{E}[b]$ denote the difference in population means.
- Null hypothesis $H_0: \omega = 0$, that is, $\mathbb{E}[a] = \mathbb{E}[b]$.

• Test statistic
$$T = \frac{|\sqrt{m\Delta}|}{s}$$
, reject if $T > c$.

Paired t-Test: Probability of Type I Error

- Paired t-test intuition: if null hypothesis $\mathbb{E}[a] = \mathbb{E}[b]$ holds, would expect small Δ and therefore *T*. Seeing a large (absolute) *T* is thus very unlikely under the null hypothesis.
- What is the probability of rejecting the null hypothesis when the null hypothesis is true?

$$\alpha = p(T > c \mid \omega = 0)$$

Paired t-Test: Probability of Type I Error

- Distribution of *T* if $\omega = 0$:
 - Because δ_i are independent, Central Limit Theorem says:

true variance of δ_i $\frac{\sqrt{m\Delta}}{\sigma} \sim \mathcal{N}(0,1)$ zero mean because $\omega = 0$

With estimated variance, becomes t-distributed:

estimated variance
$$\sqrt{m\Delta} \sim t(m-1)$$

- Thus, test statistic *T* follows a t-distribution.
- Probability that *T* exceeds *c*:

$$\alpha = p\left(\left|\frac{\sqrt{m\Delta}}{s}\right| > c \mid \omega = 0\right) = 2\int_{c}^{\infty} t(x \mid m-1)dx \quad (m-1)dx$$

Paired t-Test: p-Value

• Formulate using cumulative distribution function:

- Can again compute a threshold *c* for a prespecified α : if we set $c = tCDF_{m-1}^{-1}(1-\alpha/2)$, we ensure that the Type I error is at most α (for example, $\alpha = 0.05$).
- For observed value *T* of test statistic, we can again compute the *p*-value: the smallest α for which H_0 would be rejected.

Example Paired t-Test

- Example: Comparing the risks of two predictive models.
- We evaluate models f_{old} and f_{new} on test set of size m=20.
- Let $\delta_1, ..., \delta_{20}$ be the difference in loss on the different test examples, that is, $\delta_i = \ell(y_i, f_{old}(\mathbf{x}_i)) \ell(y_i, f_{new}(\mathbf{x}_i))$.

• Compute
$$\Delta = \frac{1}{20} \sum_{i=1}^{20} \delta_i$$
 and $s^2 = \frac{1}{20} \sum_{i=1}^{20} (\delta_i - \Delta_T)^2$.

• Let's say $\Delta = 0.25$ and $s^2 = 0.3026$

• Compute
$$T = \frac{|\sqrt{m}\Delta|}{s} = \frac{\sqrt{20} \cdot 0.25}{\sqrt{0.3026}} \approx 2.03.$$

- **Compute** $p = 2(1 tCDF_{m-1}(2.03)) \approx 0.056.$
- We can reject H_0 for $\alpha = 0.1$, but not for $\alpha = 0.05$.
- Weakly significant.

Discussion t-Test

- Summary: paired t-test test can be applied when we have paired data $(a_1, b_1), ..., (a_m, b_m) \in \mathbb{R}^2$ and want to decide if $\mathbb{E}[a] \neq \mathbb{E}[b]$.
- Advantages t-test
 - Compares means rather than medians (often more adequate).
 - Usually more powerful than sign test.
- Disadvantages t-test
 - It critically relies on assuming that the test statistics is tdistributed. This holds in the limit according to central limit theorem, but might not be satisfied for small m.
 - The test can give wrong results when this assumption is not satisfied.

Statistical Tests: Summary and Outlook

- Statistical testing can determine whether observed empirical differences likely indicate true differences between populations.
 - Formulate a null hypothesis.
 - Define a test statistic based on the observations.
 - Reject null hypothesis if observed value for test statistic is very unlikely under null hypothesis.
- Statistical testing is a large field, and many more tests exist
 - Unpaired test, would have to be used when models are evaluated on different test sets.
 - Wilcoxon signed rank test, χ^2 test, ...
 - One-tailed vs. two-tailed tests.