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Recap: Risk Estimation 

 Recap: risk estimation. 

 We have learned a model 

 

 Interested in risk of model: the expected loss on novel test 

instances           drawn from the data distribution  

 

 

 

 Because             is unknown, risk needs to be estimated from 

sample                                  where                          are 

independent samples.   

 

 Risk estimate („empirical risk“) 
 

 If context is clear, we denote risk by R and empirical risk by 
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Recap: Risk Estimation Zero-one loss 

 

 For this lecture, we will assume  

 Learning task is binary classification, 

 Loss is zero-one loss,   

 

 

 

 

 This means that                     for                          follows a 

Bernoulli distribution: there is either a mistake or not (coin toss). 

 

 We also assume that model is evaluated on independent test 

set, such that the error estimate is unbiased. 

 

 

 

 

5 

0 : ( )
( , ( ))

1:  otherwise

y f
y f






 


x
x

{0,1}.

( , ( ))
i i

y f


x , ) ~ ,( ( ) 
i i

y p yxx



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 

6 

Idea Confidence Intervals 

 Risk estimate is always uncertain – depends on sample S. 

 Idea confidence interval:  

 Specify interval around risk estimate  

 Such that the true risk      lies within the interval „most of 

the time“. 

 Quantifies uncertainty of risk estimate. 

 

 

 

 

 

 Route to confidence interval: analyse the distribution of the 

random variable  

ˆ
S

R
[ ] 

ˆ
S

R

ˆ .
S

R

R

 of confidence inwidt teh rval
R



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 

7 

Central Limit Theorem 

 Central Limit Theorem. Let              be independent draws 

from a distribution            with                and                    .  

Then it holds that 

 

 

 

 

 

 Central limit theorem gives approximate distribution of mean: 
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Example Central Limit Theorem 

 Example central limit theorem: average of Bernoulli variables. 

 Let                be independent draws from a Bernoulli 

distribution, that is  

 

 

 Average                follows (rescaled) Binomial distribution. 

 

 Binomial distribution approaches Normal distribution.  
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Central Limit Theorem: Error Estimator 

 Application of central limit theorem to error estimator. 

 Error estimator   

 

      

     is an average over the Bernoulli-distributed variables 

  

 Because the error estimate is unbiased, 

 Variance of Bernoulli random variable is  

 

 Central limit theorem says: 

 

 

 First result for distribution of      , but depends on   
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Mean and Variance of Error Estimator 

 

 First result: Approximate distribution of error estimator is 

 

 

 Unbiased estimator, therefore the mean is the true risk  

 

 The variance of the estimator falls with n: the more instances 

in the test set  S, the less variance. 

 

 Variance 

 

 Standard deviation („standard error“) 
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Distribution of Error Estimator 

 Distribution of error estimator: 

 

 

 

 

 

 Problem: true risk      has to be known in order to determine 

variance 

 

 

 Idea: replace true variance        by variance estimate                 
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Variance Estimate and t-Distribution 

 If true variance is replaced by variance estimate, the normal 

distribution becomes a Student‘s t-distribution: 

 

 

 

 However, for large n the t-distribution becomes a normal 

distribution again, so we can keep working with the normal. 
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Bound For True Risk 

 So what does the empirical risk      tell us about the true risk? 

 From empirical risk      compute empirical variance  

 One-sided upper bound for true risk: probability that true risk is 

at most    above estimated risk. 
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Bound For True Risk 

 Symmetric lower bound: because the distribution of        is 

symmetric around      (normal distribution), we can similarly 

compute probability that true risk is at most    below estimated 

risk. 

 

 

 

 

 Two-sided interval: What is the probability that true risk is at 

most    away from estimated risk? 
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One-sided and Two-sided Intervals 

 So far, we have computed probability that a bound holds 

for a particular interval size  . 

 Idea: choose  in such a way that bounds hold with a 

certain prespecified probability 1- (e.g.  =0.05). 

 One-sided 1--confidence interval: bound  such that 

 
 Two-sided 1--confidence interval: bound  such that 

 
 For symmetric distributions (here: normal) it always holds that:  

  for one-sided 1--interval =  for two-sided 1-2 interval. 

  for one-sided 95%-interval =  for two-sided 90% interval. 

 Thus, it suffices to derive  for one-sided interval.  
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Size of Interval 

 Compute one-sided 1--confidence interval: Determine  such 

that bound holds with probability 1-.  
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Confidence Interval: Example 

 Example: 

 We have observed an empirical risk of                on 

test instances.  

 

 Compute  

 

 Choosing confidence level              (one-sided level, two-

sided will be      )   

 

 Compute 

 

 The confidence interval                       contains the true risk in 

90% of the cases.   
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Interpretation of Confidence Intervals 

 Care should be used when interpreting confidence intervals: 

the random variable is the empirical risk       and the resulting 

interval, not the true risk  

 

 Correct:  

 

 

 Wrong: 

 

"The probability of obtaining a confidence interval that 

contains the true risk from an experiment is 
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Statistical Tests: Motivation 

 Motivation: we have developed a new learning algorithm 

(Algorithm 1) and compare it to an older algorithm (Algorithm 2) 

on 10 data sets. 

 

 

 

 

 Algorithm 1 seems better (won on 8 data sets, lost on 2). 

 But maybe this is just a random result, based on the 

particular choice of data sets? 

 

 Statistical test: rigorous procedure to decide whether it is likely 

that Algorithm 1 is indeed giving better accuracy.  

20 
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Statistical Tests: Framework 

 Formulate a null hypothesis  H0. 

 For example, H0  could be „Algorithm 1 and Algorithm 2 

perform equally well“. 

 If the observations are very unlikely under H0, we reject it 

and conclude the alternative hypothesis  H1: one algorithm 

is better. 

 

 Formulate a test statistic  T  that can be computed from data. 

 For example, the observed number of „wins“. 

 

 We will reject the null hypothesis if the test statistic exceeds a 

threshold c. 

 For example, reject  if one algorithm wins more than 90 

times out of 100. 

 

 

21 



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 

Statistical Tests: Framework 

 Asymmetry in test: we can only reject the null hypothesis, 

never conclude that it is true. 

 

 

 

 Possible outcomes of hypothesis testing: 

 

 

 

 

 

 

 Type I error is worst case (publish a study claiming that new 

drug cures cancer when in fact it does not). 
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Statistical Tests: More Formally 

 More formally, let           denote a true parameter of interest 

(for example,     is the probability that Algorithm 1 wins over 

Algorithm 2 on a randomly drawn data set).                           

 

 Let the null hypothesis be                  (for example,                 ). 

 The alternative hypothesis is     

 

 Let             be the observations (for example, accuracies of 

algorithms on the multiple data sets). 

 Let                 be the test statistic.  

 

 We reject the null hypothesis       (and conclude that the 

alternative hypothesis       is true) if              
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Statistical Tests: Size 

 Size of a test: (maximal) probability of rejecting the null 

hypothesis when the null hypothesis is true (bad!).  

 

 

 We don‘t want Type I errors, so we have to limit  

 For example,            : formulate test in such a way that there is 

at most  5% probability of rejecting null hypothesis wrongly. 

 

 Of course,     depends on c  

 If we choose c very large, we are conservative and    is low. 

 If we choose c smaller, we are less conservative. 

 Trading Type I for Type II error. 
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Sign Test 

 Sign test: decide whether the medians of two populations differ. 

 Motivation: we evaluate two learning algorithms on 10 datasets. 

 

 

 

 

 

 More formally: Let                                be independently 

sampled as  

 

 Let                             („probability that Algorithm 1 wins on 

randomly drawn data set“). 

 

 Let                 ,    
25 

2

1 1( , ),..., ,( )m mba b a 

( , ) ~ ( , ).i ia b p a b

( ) [0,1]p a b   

0 0: .5H  
1 [0,1] \{0: .5}.H 

0.85 0.76 0.60 0.70 0.95 0.88 0.73 0.89 0.98 0.74 

0.81 0.73 0.61 0.66 0.91 0.89 0.65 0.82 0.97 0.70 

Accuracy Algorithm 1 

Accuracy Algorithm 2 

+        +       -        +        +       -         +       +        +        + 



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 

Sign Test 

 Sign test: decide whether the medians of two populations differ. 

 Motivation: we evaluate two learning algorithms on 10 datasets. 

 

 

 

 

 

 Let                                   (observed accuracies).  

 

 Let  

 

 We will reject the null hypothesis if          , that is, if we see 

more than c wins of either algorithm.  
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Sign Test: Distribution under H0 

 How do we choose c ?  

 Limit probability of Type I error, given by  

 

 Because                         are sampled independently, the logical 

variable             behaves like a coin toss. 

 Thus, the probability of seeing  i  wins for Algorithm 1 is given 

by a Binomial distribution. 

 How likely is it to observe more than c wins (for either 

algorithm) if            ? 
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Sign Test: Distribution under H0 

 So  

 

 

 

 

 So far, computed      for a given threshold c. 

 We can ensure any prespecified     by solving for c: 

 

 

 E.g. for               we set   
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Sign Test: p-value 

 After observing the value T of the test statistics, we can also 

compute     for the maximum threshold c=T-1 that would still 

reject the null hypothesis. This is called the p-value. 

 

 

 

 

 

 The p-value is the smallest     for which the test would reject H0. 

 Typically, 

 p < 0.001: very sure that H0 can be rejected. 

 p < 0.01: sure that H0 can be rejected. 

 p < 0.05 reasonably sure that H0 can be rejected. 

 p < 0.1 likely that H0 can be rejected. 
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Sign Test: Example 

 Example sign test:  

 

 

 

 

 Compute test statistic:  T=8. 

 Compute p-value:  

 

 

 

 

 Test would reject null hypothesis for           , but not for    

This is not considered statistically significant.   
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Sign Test: Discussion 

 Summary: sign test can be applied when we have paired data  

                               and want to decide if  

 

 

 Advantages of sign test: 

 Few assumptions: the            only need to be independent.  

 

 Disadvantages: 

 Only uses whether           or           , not the actual values. 

This discards some information and can make it harder to 

reject the null hypothesis. 

 Compares medians rather than means: if algorithm is 

usually slightly better but in some cases much worse, it 

would be declared the winner. 
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Two-Tailed Paired t-Test 

 Paired t-test: standard test to determine if means between 

populations differ (example: do risks of two models differ?). 

 

 Let                                 be independently sampled from          , 

that is,  

 

 Let                ,  let                    , and let                       

 

 

 Let                        denote the difference in population means.  

 Null hypothesis              , that is, 

 

 Test statistic               , reject if    
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Paired t-Test: Probability of Type I Error 

 Paired t-test intuition: if null hypothesis                   holds, 

would expect small     and therefore  T.  Seeing a large 

(absolute)  T  is thus very unlikely under the null hypothesis.      

 

 What is the probability of rejecting the null hypothesis when 

the null hypothesis is true?  
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Paired t-Test: Probability of Type I Error 

 Distribution of  T  if         : 

 Because     are independent, Central Limit Theorem says: 

 

 

 With estimated variance, becomes t-distributed: 

 

 

 

 Thus, test statistic  T  follows a t-distribution. 

 Probability that T exceeds c: 
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Paired t-Test: p-Value 

 Formulate using cumulative distribution function: 

 

 

 

 

 Can again compute a threshold c for a prespecified α: if we set                              

                              , we ensure that the Type I error is at most 

α (for example, α = 0.05).    

 

 For observed value T of test statistic, we can again compute 

the p-value: the smallest      for which H0  would be rejected. 
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Example Paired t-Test 

 Example: Comparing the risks of two predictive models. 

 We evaluate models        and        on test set of size m=20. 

 Let              be the difference in loss on the different test 

examples, that is,        

 

 Compute                       and 

 

 Let‘s say                and   

 

 Compute  

 

 Compute                                      

 We can reject  H0  for           , but not for 

 Weakly significant.   
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Discussion t-Test 

 Summary: paired t-test  test can be applied when we have 

paired data                                 and want to decide if 

 

 Advantages  t-test 

 Compares means rather than medians (often more 

adequate). 

 Usually more powerful than sign test. 

 

 Disadvantages t-test 

 It critically relies on assuming that the test statistics is t-

distributed. This holds in the limit according to central limit 

theorem, but might not be satisfied for small m. 

 The test can give wrong results when this assumption is 

not satisfied. 
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Statistical Tests: Summary and Outlook 

 Statistical testing can determine whether observed empirical 

differences likely indicate true differences between populations. 

 Formulate a null hypothesis. 

 Define a test statistic based on the observations. 

 Reject null hypothesis if observed value for test statistic is 

very unlikely under null hypothesis. 

 

 Statistical testing is a large field, and many more tests exist 

 Unpaired test, would have to be used when models are 

evaluated on different test sets. 

 Wilcoxon signed rank test,     - test, … 

 One-tailed vs. two-tailed tests. 
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