Universität Potsdam Institut für Informatik
Lehrstuhl Maschinelles Lernen

Confidence Intervals and Hypothesis Testing

Niels Landwehr

Agenda

- Confidence Intervals
- Statistical Tests

Agenda

- Confidence Intervals
- Statistical Tests

Recap: Risk Estimation

- Recap: risk estimation.
- We have learned a model $f_{\theta}: \mathcal{X} \rightarrow \mathcal{Y}$.
- Interested in risk of model: the expected loss on novel test instances (\mathbf{x}, y) drawn from the data distribution $p(\mathbf{x}, y)$.

$$
R(\theta)=E\left[\ell\left(y, f_{\theta}(\mathbf{x})\right)\right]=\iint \ell\left(y, f_{\theta}(\mathbf{x})\right) p(\mathbf{x}, y) d \mathbf{x} d y
$$

- Because $p(\mathbf{x}, y)$ is unknown, risk needs to be estimated from sample $S=\left(\mathbf{x}_{1}, y_{1}\right), \ldots,\left(\mathbf{x}_{n}, y_{n}\right)$ where $\left(\mathbf{x}_{i}, y_{i}\right) \sim p(\mathbf{x}, y)$ are independent samples.
- Risk estimate („empirical risk") $\quad \hat{R}_{S}(\theta)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, f_{\theta}\left(\mathbf{x}_{i}\right)\right)$
- If context is clear, we denote risk by R and empirical risk by \hat{R}_{s}.

Recap: Risk Estimation Zero-one loss

- For this lecture, we will assume
- Learning task is binary classification, $\mathcal{Y}=\{0,1\}$.
- Loss is zero-one loss,

$$
\ell\left(y, f_{\theta}(\mathbf{x})\right)=\left\{\begin{array}{l}
0: y=f_{\theta}(\mathbf{x}) \\
1: \text { otherwise }
\end{array}\right.
$$

- This means that $\ell\left(y_{i}, f_{\theta}\left(\mathbf{x}_{i}\right)\right)$ for $\left(\mathbf{x}_{i}, y_{i}\right) \sim p(\mathbf{x}, y)$ follows a Bernoulli distribution: there is either a mistake or not (coin toss).
- We also assume that model is evaluated on independent test set, such that the error estimate is unbiased.

Idea Confidence Intervals

- Risk estimate is always uncertain - depends on sample S.
- Idea confidence interval:
- Specify interval around risk estimate \hat{R}_{s}
- Such that the true risk R lies within the interval „most of the time".
- Quantifies uncertainty of risk estimate.

- Route to confidence interval: analyse the distribution of the random variable \hat{R}_{s}.

Central Limit Theorem

- Central Limit Theorem. Let z_{1}, \ldots, z_{n} be independent draws from a distribution $p(z)$ with $\mathbb{E}[z]=\mu$ and $\operatorname{Var}[z]=\sigma^{2}$.
Then it holds that

- Central limit theorem gives approximate distribution of mean:

$$
\begin{aligned}
\sqrt{n}\left(\frac{1}{n} \sum_{j=1}^{n} z_{j}-\mu\right) \sim \mathcal{N}\left(0, \sigma^{2}\right) & \text { (approximately, for large } n) \\
\Rightarrow \frac{1}{n} \sum_{j=1}^{n} z_{j} \sim \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right) & \text { (approximately, for large } n \text {) }
\end{aligned}
$$

Example Central Limit Theorem

- Example central limit theorem: average of Bernoulli variables.
- Let z_{1}, \ldots, z_{n} be independent draws from a Bernoulli distribution, that is

$$
z_{i} \sim \operatorname{Bern}\left(z_{i} \mid \mu\right) \quad(\text { coin toss with success probability } \mu)
$$

- Average $\frac{1}{n} \sum_{j=1}^{n} z_{j}$ follows (rescaled) Binomial distribution.
- Binomial distribution approaches Normal distribution.

Central Limit Theorem: Error Estimator

- Application of central limit theorem to error estimator.
- Error estimator

$$
\hat{R}_{S}=\frac{1}{n} \sum_{j=1}^{n} \ell\left(y_{j}, f_{\theta}\left(\mathbf{x}_{j}\right)\right)
$$

is an average over the Bernoulli-distributed variables $\ell\left(y_{j}, f_{\theta}\left(\mathbf{x}_{j}\right)\right)$.

- Because the error estimate is unbiased, $\mathbb{E}\left[\ell\left(y_{j}, f_{\theta}\left(\mathbf{x}_{j}\right)\right)\right]=R$.
- Variance of Bernoulli random variable is $\operatorname{Var}\left[\ell\left(y_{j}, f_{\theta}\left(\mathbf{x}_{j}\right)\right]=R(1-R)\right.$.
- Central limit theorem says:

$$
\hat{R}_{S} \sim \mathcal{N}\left(R, \frac{R(1-R)}{n}\right) \quad(\text { approximately, large enough } n)
$$

- First result for distribution of \hat{R}_{S}, but depends on R.

Mean and Variance of Error Estimator

- First result: Approximate distribution of error estimator is

$$
\hat{R}_{S} \sim \mathcal{N}\left(R, \frac{R(1-R)}{n}\right) .
$$

- Unbiased estimator, therefore the mean is the true risk R.
- The variance of the estimator falls with n : the more instances in the test set S, the less variance.
- Variance $\sigma_{\hat{R}_{s}}^{2}=\frac{R(1-R)}{n}$.
- Standard deviation („standard error") $\sigma_{\hat{R}_{s}}=\sqrt{\frac{R(1-R)}{n}}$.

Characterizes how much risk estimate fluctuates with S

Distribution of Error Estimator

- Distribution of error estimator:

$$
\begin{aligned}
& \hat{R}_{s} \sim \mathcal{N}\left(R, \sigma_{\hat{R}_{s}}^{2}\right) . \\
\Rightarrow & \frac{\hat{R}_{s}-R}{\sigma_{\hat{R}_{s}}} \sim \mathcal{N}(0,1)
\end{aligned}
$$

- Problem: true risk R has to be known in order to determine variance

$$
\sigma_{\hat{R}_{s}}^{2}=\frac{R(1-R)}{n} .
$$

- Idea: replace true variance $\sigma_{\hat{R}_{s}}^{2}$ by variance estimate

$$
s_{\hat{R}_{s}}^{2}=\frac{\hat{R}_{S}\left(1-\hat{R}_{S}\right)}{n} .
$$

Variance Estimate and t-Distribution

- If true variance is replaced by variance estimate, the normal distribution becomes a Student's t-distribution:

$$
\frac{\hat{R}_{S}-R}{s_{\hat{R}_{S}}} \sim t(n) \curvearrowright n \text { degrees of freedom }
$$

- However, for large n the t-distribution becomes a normal distribution again, so we can keep working with the normal.

Bound For True Risk

- So what does the empirical risk \hat{R}_{S} tell us about the true risk?
- From empirical risk \hat{R}_{S} compute empirical variance $s_{\hat{R}_{s}}^{2}$.
- One-sided upper bound for true risk: probability that true risk is at most ϵ above estimated risk.

$$
\begin{aligned}
p\left(R \leq \hat{R}_{S}+\varepsilon\right) & =p\left(R-\hat{R}_{S} \leq \varepsilon\right) \\
& =p\left(\frac{R-\hat{R}_{S}}{s_{\hat{R}_{S}}} \leq \frac{\varepsilon}{s_{\hat{R}_{S}}}\right)
\end{aligned}
$$

$$
\frac{\hat{R}_{S}-R}{s_{\hat{R}_{S}}} \sim \mathcal{N}(0,1) \quad \approx \Phi\left(\frac{\varepsilon}{s_{\hat{R}_{S}}}\right)
$$

$\Phi(x)=\int_{-\infty}^{x} \mathcal{N}(x \mid 0,1) d x$
"cumulative distribution function of standard normal distribution"

Bound For True Risk

- Symmetric lower bound: because the distribution of \hat{R}_{S} is symmetric around R (normal distribution), we can similarly compute probability that true risk is at most ϵ below estimated risk.

$$
p\left(R \geq \hat{R}_{S}-\varepsilon\right) \approx \Phi\left(\frac{\varepsilon}{s_{\hat{R}_{S}}}\right)
$$

- Two-sided interval: What is the probability that true risk is at most ϵ away from estimated risk?

$$
\begin{gathered}
p\left(\left|R-\hat{R}_{S}\right| \leq \varepsilon\right)=1-\stackrel{\overbrace{\left(R-\hat{R}_{S}>\varepsilon\right)}^{\text {above interval }}-\stackrel{\text { pelow interval }}{\text { b(} \left.\hat{R}_{S}-R>\varepsilon\right)}}{ } \\
\approx 1-2\left(1-\Phi\left(\frac{\varepsilon}{s_{\hat{R}_{S}}}\right)\right)
\end{gathered}
$$

One-sided and Two-sided Intervals

- So far, we have computed probability that a bound holds for a particular interval size ε.
- Idea: choose ε in such a way that bounds hold with a certain prespecified probability $1-\delta$ (e.g. $\delta=0.05$).
- One-sided 1- δ-confidence interval: bound ε such that

$$
p\left(R \leq \hat{R}_{S}+\varepsilon\right)=1-\delta
$$

- Two-sided 1- δ-confidence interval: bound ε such that

$$
p\left(\left|R-\hat{R}_{S}\right| \leq \varepsilon\right)=1-\delta
$$

- For symmetric distributions (here: normal) it always holds that:
- ε for one-sided 1- δ-interval $=\varepsilon$ for two-sided 1-2 interval.
- ε for one-sided 95%-interval $=\varepsilon$ for two-sided 90% interval.
- Thus, it suffices to derive ε for one-sided interval.

Size of Interval

- Compute one-sided 1- δ-confidence interval: Determine ε such that bound holds with probability 1- δ.

- Two-sided confidence interval is $\left[\hat{R}_{s}-\varepsilon, \hat{R}_{S}+\varepsilon\right]$ (confidence level 1-28)

Confidence Interval: Example

- Example:
- We have observed an empirical risk of $\hat{R}_{S}=0.08$ on $m=100$ test instances.
- Compute $s_{\hat{R}_{s}}=\sqrt{\frac{0.08 \cdot 0.92}{100}} \approx 0.027$ empirical standard deviation
- Choosing confidence level $\delta=0.05$ (one-sided level, twosided will be 2δ)
- Compute $\varepsilon=s_{\hat{R}_{s}} \Phi^{-1}(1-\delta) \approx 0.027 \cdot 1.645 \approx 0.045$.
- The confidence interval $\left[\hat{R}_{S}-\epsilon, \hat{R}_{S}+\epsilon\right]$ contains the true risk in 90% of the cases.

Interpretation of Confidence Intervals

- Care should be used when interpreting confidence intervals: the random variable is the empirical risk \hat{R}_{S} and the resulting interval, not the true risk R.
- Correct:
"The probability of obtaining a confidence interval ϵ that contains the true risk from an experiment is 95% "
- Wrong:
"We have obtained a confidence interval ϵ from an experiment. The probability that the interval contains the true risk is 95% ".

Agenda

- Confidence Intervals
- Statistical Tests

Statistical Tests: Motivation

- Motivation: we have developed a new learning algorithm (Algorithm 1) and compare it to an older algorithm (Algorithm 2) on 10 data sets.

	+	+	-	+	+	-	+	+	+	+
Accuracy Algorithm 1	0.85	0.76	0.60	0.70	0.95	0.88	0.73	0.89	0.98	0.74
Accuracy Algorithm 2	0.81	0.73	0.61	0.66	0.91	0.89	0.65	0.82	0.97	0.70

- Algorithm 1 seems better (won on 8 data sets, lost on 2).
- But maybe this is just a random result, based on the particular choice of data sets?
- Statistical test: rigorous procedure to decide whether it is likely that Algorithm 1 is indeed giving better accuracy.

Statistical Tests: Framework

- Formulate a null hypothesis H_{0}.
- For example, H_{0} could be „Algorithm 1 and Algorithm 2 perform equally well".
- If the observations are very unlikely under H_{0}, we reject it and conclude the alternative hypothesis H_{l} : one algorithm is better.
- Formulate a test statistic T that can be computed from data.
- For example, the observed number of "wins".
- We will reject the null hypothesis if the test statistic exceeds a threshold c.
- For example, reject if one algorithm wins more than 90 times out of 100.

Statistical Tests: Framework

- Asymmetry in test: we can only reject the null hypothesis, never conclude that it is true.
H_{0} rejected \Rightarrow conclude H_{1}.
H_{0} not rejected \Rightarrow cannot conclude anything, no new information.
- Possible outcomes of hypothesis testing:

	H_{0} rejected	H_{0} not rejected
H_{0} true	Type I error (wrong conclusion, very bad)	no new information but also no error (ok)
H_{1} true	correct conclusion (good)	Type II error (not enough power, kind of bad)

- Type I error is worst case (publish a study claiming that new drug cures cancer when in fact it does not).

Statistical Tests: More Formally

- More formally, let $\omega \in \Omega$ denote a true parameter of interest (for example, ω is the probability that Algorithm 1 wins over Algorithm 2 on a randomly drawn data set).
- Let the null hypothesis be $H_{0}: \omega \in \Omega_{0}$ (for example, $H_{0}: \omega=0.5$).
- The alternative hypothesis is $H_{1}: \omega \in \Omega_{1}=\Omega \backslash \Omega_{0}$.
- Let $X \in \mathcal{X}$ be the observations (for example, accuracies of algorithms on the multiple data sets).
- Let $T: \mathcal{X} \rightarrow \mathbb{R}$ be the test statistic.
- We reject the null hypothesis H_{0} (and conclude that the alternative hypothesis H_{1} is true) if $T(X)>c$.

Statistical Tests: Size

- Size of a test: (maximal) probability of rejecting the null hypothesis when the null hypothesis is true (bad!).

$$
\alpha=\sup _{\omega \in \Omega_{0}} p(T>c \mid \omega) .
$$

- We don't want Type I errors, so we have to limit α.
- For example, $\alpha=0.05$: formulate test in such a way that there is at most 5% probability of rejecting null hypothesis wrongly.
- Of course, α depends on c
- If we choose c very large, we are conservative and α is low.
- If we choose c smaller, we are less conservative.
- Trading Type I for Type II error.

Sign Test

- Sign test: decide whether the medians of two populations differ.
- Motivation: we evaluate two learning algorithms on 10 datasets.

	+	+	-	+	+	-	+	+	+	+
Accuracy Algorithm 1	0.85	0.76	0.60	0.70	0.95	0.88	0.73	0.89	0.98	0.74
Accuracy Algorithm 2	0.81	0.73	0.61	0.66	0.91	0.89	0.65	0.82	0.97	0.70

- More formally: Let $\left(a_{1}, b_{1}\right), \ldots,\left(a_{m}, b_{m}\right) \in \mathbb{R}^{2}$ be independently sampled as $\left(a_{i}, b_{i}\right) \sim p(a, b)$.
- Let $\omega=p(a>b) \in[0,1]$ (,,probability that Algorithm 1 wins on randomly drawn data set").
- Let $H_{0}: \omega=0.5, H_{1}: \omega \in[0,1] \backslash\{0.5\}$.

Sign Test

- Sign test: decide whether the medians of two populations differ.
- Motivation: we evaluate two learning algorithms on 10 datasets.

	+	+	-	+	+	-	+	+	+	+
Accuracy Algorithm 1	0.85	0.76	0.60	0.70	0.95	0.88	0.73	0.89	0.98	0.74
Accuracy Algorithm 2	0.81	0.73	0.61	0.66	0.91	0.89	0.65	0.82	0.97	0.70

- Let $X=\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{m}, b_{m}\right)\right\}$ (observed accuracies).
- Let $T=\max \left(\left|\left\{i \mid a_{i}>b_{i}\right\}\right|,\left|\left\{i \mid a_{i}<b_{i}\right\}\right|\right)$. „\#wins of better algorithm"
- We will reject the null hypothesis if $T>c$, that is, if we see more than c wins of either algorithm.

Sign Test: Distribution under H_{0}

- How do we choose c ?
- Limit probability of Type I error, given by $\alpha=p(T>c \mid \omega=0.5)$.
- Because $\left(a_{i}, b_{i}\right) \sim p(a, b)$ are sampled independently, the logical variable $\left(a_{i}>b_{i}\right)$ behaves like a coin toss.
- Thus, the probability of seeing i wins for Algorithm 1 is given by a Binomial distribution.
- How likely is it to observe more than c wins (for either algorithm) if $\omega=0.5$?

Sign Test: Distribution under H_{0}

- So $\alpha=p(T>c \mid \omega=0.5)$

$$
\begin{aligned}
& =2 \sum_{i=c+1}^{m} \operatorname{Bin}_{0.5, m}(i) \\
& =2\left(1-\operatorname{BinCDF}_{0.5, m}(c)\right)
\end{aligned}
$$

- So far, computed α for a given threshold c.
- We can ensure any prespecified α by solving for c :

$$
c=\operatorname{BinCDF}_{0.5, m}^{-1}(1-\alpha / 2)
$$

- E.g. for $\alpha=0.05$ we set $c=\operatorname{BinCDF}_{0.5, m}^{-1}(0.975)$.

Sign Test: p-value

- After observing the value T of the test statistics, we can also compute α for the maximum threshold $c=T-1$ that would still reject the null hypothesis. This is called the p-value.

$$
p=2\left(1-\operatorname{BinCDF}_{0.5, m}(T-1)\right)
$$

- The p-value is the smallest α for which the test would reject H_{0}.
- Typically,
- $\mathrm{p}<0.001$: very sure that H_{0} can be rejected.
- $\mathrm{p}<0.01$: sure that H_{0} can be rejected.
- $\mathrm{p}<0.05$ reasonably sure that H_{0} can be rejected.
- $\mathrm{p}<0.1$ likely that H_{0} can be rejected.

Sign Test: Example

- Example sign test:

	+ +		- +		+	-	+	+	+	+
Accuracy Algorithm 1	0.85	0.76	0.60	0.70	0.95	0.88	0.73	0.89	0.98	0.74
Accuracy Algorithm 2	0.81	0.73	0.61	0.66	0.91	0.89	0.65	0.82	0.97	0.70

- Compute test statistic: $T=8$.
- Compute p-value:

$$
p=2\left(1-\operatorname{BinCDF}_{0.5,10}(7)\right)=0.1094
$$

- Test would reject null hypothesis for $\alpha=0.2$, but not for $\alpha=0.1$. This is not considered statistically significant.

Sign Test: Discussion

- Summary: sign test can be applied when we have paired data $\left(a_{1}, b_{1}\right), \ldots,\left(a_{m}, b_{m}\right) \in \mathbb{R}^{2}$ and want to decide if $p(a>b) \neq 0.5$.
- Advantages of sign test:
- Few assumptions: the $\left(a_{i}, b_{i}\right)$ only need to be independent.
- Disadvantages:
- Only uses whether $a_{i}>b_{i}$ or $a_{i}<b_{i}$, not the actual values. This discards some information and can make it harder to reject the null hypothesis.
- Compares medians rather than means: if algorithm is usually slightly better but in some cases much worse, it would be declared the winner.

Two-Tailed Paired t-Test

- Paired t-test: standard test to determine if means between populations differ (example: do risks of two models differ?).
- Let $\left(a_{1}, b_{1}\right), \ldots,\left(a_{m}, b_{m}\right) \in \mathbb{R}^{2}$ be independently sampled from $p(a, b)$, that is, $\left(a_{i}, b_{i}\right) \sim p(a, b)$.
- Let $\delta_{i}=a_{i}-b_{i}$, let $\Delta=\frac{1}{m} \sum_{i=1}^{m} \delta_{i}$, and let $\underbrace{s^{2}}_{\text {Variance estimate } \delta_{i}} \frac{1}{m} \sum_{i=1}^{m}\left(\delta_{i}-\Delta\right)^{2}$.
- Let $\omega=\mathbb{E}[a]-\mathbb{E}[b]$ denote the difference in population means.
- Null hypothesis $H_{0}: \omega=0$, that is, $\mathbb{E}[a]=\mathbb{E}[b]$.
- Test statistic $T=\frac{|\sqrt{m} \Delta|}{s}$, reject if $T>c$.

Paired t-Test: Probability of Type I Error

- Paired t-test intuition: if null hypothesis $\mathbb{E}[a]=\mathbb{E}[b]$ holds, would expect small Δ and therefore T. Seeing a large (absolute) T is thus very unlikely under the null hypothesis.
- What is the probability of rejecting the null hypothesis when the null hypothesis is true?

$$
\alpha=p(T>c \mid \omega=0)
$$

Paired t-Test: Probability of Type I Error

- Distribution of T if $\omega=0$:
- Because δ_{i} are independent, Central Limit Theorem says:

- With estimated variance, becomes t-distributed:

- Thus, test statistic T follows a t-distribution.
- Probability that T exceeds c :

$$
\alpha=p\left(\left.\left|\frac{\sqrt{m} \Delta}{s}\right|>c \right\rvert\, \omega=0\right)=2 \int_{c}^{\infty} t(x \mid m-1) d x
$$

Paired t-Test: p-Value

- Formulate using cumulative distribution function:

$$
\begin{aligned}
\alpha= & 2 \int_{c}^{\infty} t(x \mid m-1) d x=2\left(1-\operatorname{tCDF}_{m-1}(c)\right) \\
& \text { cumulative distribution function of t-distribution }
\end{aligned}
$$

- Can again compute a threshold c for a prespecified α : if we set $c=\operatorname{tCDF}_{m-1}^{-1}(1-\alpha / 2)$, we ensure that the Type I error is at most α (for example, $\alpha=0.05$).
- For observed value T of test statistic, we can again compute the p-value: the smallest α for which H_{0} would be rejected.

$$
\begin{array}{r}
p=2 \int_{T}^{\infty} t(x \mid m-1) d x=2\left(1-\mathrm{tCDF}_{m-1}(T)\right) \\
\operatorname{set} c \text { to } T
\end{array}
$$

Example Paired t-Test

- Example: Comparing the risks of two predictive models.
- We evaluate models $f_{\text {old }}$ and $f_{\text {new }}$ on test set of size $m=20$.
- Let $\delta_{1}, \ldots, \delta_{20}$ be the difference in loss on the different test examples, that is, $\delta_{i}=\ell\left(y_{i}, f_{\text {old }}\left(\mathbf{x}_{i}\right)\right)-\ell\left(y_{i}, f_{\text {new }}\left(\mathbf{x}_{i}\right)\right)$.
- Compute $\Delta=\frac{1}{20} \sum_{i=1}^{20} \delta_{i}$ and $s^{2}=\frac{1}{20} \sum_{i=1}^{20}\left(\delta_{i}-\Delta_{T}\right)^{2}$.
- Let's say $\Delta=0.25$ and $s^{2}=0.3026$
- Compute $T=\frac{|\sqrt{m} \Delta|}{s}=\frac{\sqrt{20} \cdot 0.25}{\sqrt{0.3026}} \approx 2.03$.
- Compute $p=2\left(1-\operatorname{tCDF}_{m-1}(2.03)\right) \approx 0.056$.
- We can reject H_{0} for $\alpha=0.1$, but not for $\alpha=0.05$.
- Weakly significant.

Discussion t-Test

- Summary: paired t-test test can be applied when we have paired data $\left(a_{1}, b_{1}\right), \ldots,\left(a_{m}, b_{m}\right) \in \mathbb{R}^{2}$ and want to decide if $\mathbb{E}[a] \neq \mathbb{E}[b]$.
- Advantages t-test
- Compares means rather than medians (often more adequate).
- Usually more powerful than sign test.
- Disadvantages t-test
- It critically relies on assuming that the test statistics is tdistributed. This holds in the limit according to central limit theorem, but might not be satisfied for small m.
- The test can give wrong results when this assumption is not satisfied.

Statistical Tests: Summary and Outlook

- Statistical testing can determine whether observed empirical differences likely indicate true differences between populations.
- Formulate a null hypothesis.
- Define a test statistic based on the observations.
- Reject null hypothesis if observed value for test statistic is very unlikely under null hypothesis.
- Statistical testing is a large field, and many more tests exist
- Unpaired test, would have to be used when models are evaluated on different test sets.
- Wilcoxon signed rank test, χ^{2} - test, ...
- One-tailed vs. two-tailed tests.

