Universitit Potsdam

Institut fur Informatik
Lehrstuhl Maschinelles Lernen

Neural Networks

Tobias Scheffer

Overview

= Neural information processing.
s Feed-forward networks.
= Training feed-forward networks, back propagation.

= Unsupervised learning:
Auto encoders.
Training auto encoders via back propagation.
Restricted Boltzmann machines.

s Convolutional networks.

=1
—
@
5
@
=1
O
D
—
©
>
5
D
<
2
®

Learning Problems can be Impossible
without the Right Features

=1
—
o)
=
D
-
(o ol
O
Q
—

> motorcycle 9’

>
>
D
<<
0}
0]

B8 |82 (84 |88 85|83 |80 |93 [102 |88 82|84 |88 85| &3 (8O 93 102

88 B0 |78 (80 BO |78 (73|94 |100(88 80|78 (80 80|78 |73 |84 100

B5 |79 (80|78 77|74 |65 |97 (98 |85 V9|80 |VE V7|74 |65 91|98 t)

38 |35 (40|35 39|74 |77 |70 |65 (38 35|40 |35 39| W |77 70|65 M

20 25|23 |28 37 | &9 (B4 |60 |57 (20 25|23 (28 |37 | &9 |64 |60 | 57 I

22 |26 (22 |25 40|65 |64 |59 (34 (22 26 |22 |28 40|65 (64 |59 |34 > mOtorCyce

24 125 |24 |30 37|00 (58 |56 |00 |24 | 25|24 (30 37|00 |58 |56 | 6o

21 22|23 |27 |38 |00 |67 |65 |67 |21 2223 |27 |38 |60 |67 |65 |6l

23 |22 |22 |25 38|59 |64 |67 |66 |23 |22 |22 |25 |38 |59 |64 67 |66

Learning Problems can be Impossible
without the Right Features

=1
—t
@
- 2 o
‘Handlebar #: Frame)
— 2 I =
e~ n D
=
> motorcycle >
-]
D
<
0,
()}
88 |82 (84 |88 B85 |83 |80 |93 [102(88 82|84 |88 85| &3 (8O 93 102
BB_BD 78 BEI_BEI 78 ?3_94 10 BB_BD T8 BD_EU 78 ?3_94 100
85 |79 (80|78 V7|74 |65 |91 (99 (85 V9|80 |VE V7|74 |65 91|98 ?
38 35 |40 (35 39|74 |77 | 70|65 |38 |35 |40 (35 38|74 |77 |70 |65 n
20 |25 (23 |28 37 |69 |64 |60 (57 [20 25|23 |28 37 | &8 |64 |60 | 57 |
2226 |22 |28 40|65 (B4 |59 |34 |22 |26 |22 (28 40|65 |64 |59 |34 > mOtorCyC e
24 |28 (24 |30 37 |60 |58 |56 (60 |24 28|24 |30 |37 |60 |58 |56 |06
271 | 22|23 |27 38|60 |67 |65 |67 |21 22|23 |27 38|60 |67 |65 |67
23 |22 |22 |25 38 |59 |64 |67 |66 |23 |22 |22 |25 |38 |50 |64 |67 |66

Learning Problems can be Impossible
without the Right Features

Abstract
features
(higher level)

=1
—
@
(5.
)
=
O
jab)
—
D
>
>
L
<
o
n

A
¢

85 78 |80 |78 77 91|90 |85 |79 |80 [78 |77 74 |65 |91 |%8
38 |35 |40 |35 |39 70 j.ﬁ_lﬁj_ 35 39| 74 |77 |70 |65
Raw data 20 |25 |23 |28 |37 |69)| 64 |60 | 57 |20 |25 |23 |b8 |37) 60 64 |60 | 57
(IOW'Ievel) 22 |26 |22 |28 |40 59134 |22 |26 |22 |28 |40) 65 |64 |59 |34
24 |28 |24 [30 |37 5666 |24 |28 |24 B0 |37 60 |58 56 |66
21|22|23 |27 |38 65 |67 |21 22(23 [P7 38|60 |67 |65 |67
23 |22 |22 |25 |38 |67 |66 |23 |22 |22 |25 |38 |59 |64 |67 |66 5

Neuronal Networks

= Model of neural information processing

= Waves of popularity

T Perceptron: Rosenblatt, 1960.

| Perceptron only linear classifier (Minsky, Papert, 69).
T Multilayer perceptrons (90s).

| Popularity of SVMs (late 90s).

T Deep learning (late 2000s).

Now state of the art for Voice Recognition (Google
DeepMind), Face Recognition (Deep Face, 2014)

=1
—
@
(5.
)
=
O
jab)
—
D
>
>
L
<
o
n

Neuronal Networks

s Deep learning, unsupervised feature learning

Unsupervised discovery of features which can then
be used for supervised learning

Implementation on GPU
Able to process vast amounts of data.
Seen as step towards Al

=1
—
@
5
@
=1
O
D
—
©
>
5
D
<
2
®

Deep Learning Records

= Neural networks best-performing algorithms for

Object classification (CIFAR/NORB/PASCAL VOC-
Benchmarks)

Video classification (various benchmarks)
Sentiment analysis (MR Benchmark)
Pedestrian detection
Speech recognition gz

Phychedelic art
(Deep Dream)

" |1 SisAfeuy ereq 1usbija1u]

Supervised and Unsupervised Learning

= Supervised learning
Entire network trained on labeled data.

= Unsupervised learning
Entire network trained on unlabeled data.

= Unsupervised pre-training + supervised learning

Network (except top-most layer) trained layer-wise on
unsupervised data.

Then, entire network is trained on labeled data.
Good for many unlabeled + few labeled data.

=1
—
@
5
@
=1
O
D
—
©
>
5
D
<
2
®

Neural Information Processing

\
/ q
\\

Input signals

Axon:
output signal

{

=
ﬁ
@
=
D
=
.
QD
—
QD
>
)
D
‘<<
@,
(0)]

Probability of an
output spike

Weighted input signals

Synaptic weights: =
strengthened and weakened _ _ _
by learning processes Output signals are electric spikes

Connections to other nerve cells

10

Neural Information Processing: Model

=1
—
@
(5.
)
=
O
jab)
—
D
>
>
L
<
o
n

Weighted input signals

Input vector X

Weight vector 0

11

Feed Forward Networks

= Forward propagation:

. Indexk =1
Index i q 0 o
X Input vector x &
U - . i i i-1 i 3
0 N Linear model: h, =0,x"+6,, S
Each unit has parameter 5);*
vector o, =(g, .. 6,) =
2 _ o (h2 , . | | . <
X, =0o(k)>$< Layer i has matrix 0! o, 0, 2.
h =0x" +60;, | (. o —
k k";;" e of parameters o =| |- =
O NA o 6, @
X, =o(h) Output layer
he :Oixo +Y,,)
0' ’Q //,r /;]V Hidden layers

0 0
X, Xy, <— Input layer

12

Feed Forward Networks

. Index k
Index i q
‘l § [X (‘ i
0dK A A&
N AL

X =o ()

2 2.1 D2 4
he=0x+6, |

AR

N |

290,
0 N

X, =o(h)
hi = Blkxo +

5

k0

N_ADA A

0

= Forward propagation:
Input vector x°
Linear model: h, =0,x"*+8,
Activation function and
propagation: x'=o(h")
Output vector x°

Output layer

Hidden layers

0
X Xm <— Input layer

13

=
—
@
=i
D
-
—
O
QO
—
job)
>
)
Q
<
0,
n

Feed Forward Networks

ndex k = Bias unit
Index i d : - i i i1 i
Y v XY Linear modell: h, =0,x"+6,,
o't £ X Constant element 8}, is

replaced by additional unit with
constant output 1: hy =0,x;",

=
—
@
=i
D
-
—
O
QO
—
job)
>
)
Q
<
0,
n

91 ’* /V ”V fk\
1
X, Xy

14

Feed Forward Networks

ndex k = Forward propagation per layer in
ndext xe vector notation:
0l K & h =0'x'*

=1
—+
@
5
D
-
~t+
O
Q
—t
QD
>
-]
)
<<
@,
()}

91 fv /v fv X
1
XXy

15

Feed Forward Networks

s Stochastic gradient descent

:
SO R s Squared loss: &
£ A3 A5 2 3
oK X X R(O) = —3¥m (v — x) 5
XK >
z
X = o(h?)>$< s Gradient: I
2 _ 2X1 2 ‘ . 3 (i
V=0 tte [1 0'=0-aVR(0) =0 o NO) =
ngv Al
1 1
x, =o(h) VLAY
hl 91X0+M' :O_Qaszj(yJ XJ)
- - - = ae]
0"’ KK = Stochastic gradient for instance x

1 U2
Olze_aaZ(y X)
0 00

XL

16

Feed Forward Nets: Back Propagation

= Stochastic gradient for instance x

1 ERVLAY

Xd 5"(y—"Xd) éﬁd Blze_aaZ(yaOX)
T i A &
NN

= For top-level weights:

A
>$< OL(y, — %) 0Ly, —o(8x")’
X2 1 ' ' aeg 1 aei d_d-1\\2 d_d-1 dd-1
A AF B e
N A A k k k
LR = (¥, — o(8ix")0 (B3x ")x*
= (Y, —x)o ' (he)x*

=
—
@
=i
D
-
—
O
QO
—
job)
>
)
Q
<
0,
n

o A A& _ it
w ithe s _ 9305~ %)

0 | WI '5k: d

X he

=o'(h)(Ye — %) 17

Feed Forward Nets: Back Propagation

= For weights at layer i:

S
- @
Xd % (y—»xd) *% 8d a%(yk fo)Z :a%()’k __XE)Z ah|_|< (5
U 00! ohi 00! g
c s With 5);*
o
= g S5 _8%(yk_x|?)2 a
(@)) XH‘1 |+1 6|+1 % k — 8h' =
g /l\ E i+1 |+1 %
De_ -8 03 (y —x)* 904,) —
-(.EU X (O'(h) % 8(x1'+1 X:{j) 8h|
MR T 5 230K o o
L i i1 S %, ohy
X 0

=3, 610, ()

\/ ~o ()Y, 5,
XO

—

18

Activation Function

= Any differentiable sigmoidal function is suitable
= Examples:

1
h) =
a(h) 1+e™"

o'(h)=o(h)d-o(h))

=1
—
@
5
@
=1
O
D
—
©
>
5
D
<
2
®

19

Back Propagation: Algorithm

= lIterate over training instances (X, Y):

Forward propagation: for i=0...d:
« Fork=1..n; h =0,x'"+6,,
* X :G(h')
Back propagation:
* Fork=1...n;: 5% =5'(h9)(y, —x%)
0, '=0; —as x"*
x Fori=d-/...1:
« Fork=1...n;; & =o'()Y 56"

0,'=0, —asx"*

=
—
@
=i
D
-
—
O
QO
—
job)
>
)
Q
<
0,
n

= Until concergence

20

Back Propagation

m Loss function is not convex

Each permutation of hidden units is a local minimum.

Learned features (hidden units) may be ok, but not
usually globally optimal.

= Hope:
Local minima can still be arbitrarily good.
Many local minima can be equally good.
= Reality:

Back propagation works well for few (1 or 2) hidden
layers.

21

=1
—
@
(5.
)
=
O
jab)
—
D
>
>
L
<
o
n

Regularization

s L2-regularized loss
R,(8) =55 (v, —x])* +4070
Corresponds to normal prior on parameters.
= Gradient: vR,(0')=43 &\x'+n8
= Update: 0'=0-6.x—70
= Called weight decay.
= Additional regularization schemes:

Early stopping: Stop training before convergence.
Delete units with small weights.

Dropout: During training, set some units’ output to
zero at random.

Normalize length of propagated vectors.

=1
—
18
5
@
=1
O
=
&
>
5
D
<
28
7

22

Regularization: Dropout

= In complex networks, complex co-adaptation
relationships can form between units.

Not robust for new data.

= Dropout: In each training set, draw a fraction of
units at random and set their output to zero.

= At application time, use all units.

= Improves overall robustness: each unit has to
function within varying combinations of units.

=1
—
@
(5.
)
=
O
jab)
—
D
>
>
L
<
o
n

23

Regularization: Stochastic Binary Units

= Deterministic units propagate xj, = o (h).

= Stochastic-binary units calculate activation o (h}),
Then propagate x,‘(= 1 with probability a(h;;)
xL = 0 otherwise.

= Similar to dropout: with some probapkility, each unit
does not produce output.

= Biological nneurons behave like this.

=1
—
@
(5.
)
=
O
jab)
—
D
>
>
L
<
o
n

24

Back Propagation: Tricks

s Use cross-entropy as loss for classification
= Stochastic gradient on small batches.

= Permute training data at random.

s Decrease learning rate during optimization

= Initialize weights randomly (origin can be saddle
point).

= Initialize weights via unsupervised pre-training.

=1
—
@
(5.
)
=
O
jab)
—
D
>
>
L
<
o
n

25

Overview

= Unsupervised learning:
Auto encoders.
Training auto encoders via back propagation.
Restricted Boltzmann machines.

s Convolutional networks.

=1
—
@
5
@
=1
O
D
—
©
>
5
D
<
2
®

26

Auto Encoders

= Auto encoders learn the identity function.

= 71, INput units to n,; hidden units to ny output units, «%
with ny > n;. S
= On the hidden layer, the input has to be ‘;,i
compressed. E’_J
= Learning algorithm derives a 2. 2 ﬁ

representation that preserves
the information from the input.

Auto Encoders: Example

= Input: binary vectors with a single 1.

= 4 input units, 2 hidden units, 4 output units «%

= [nputs: ;
0,0,0,1 5,);
0,0,1,0 i
0,1,0,0 X2, I
1,0,0,0 A - K

Auto Encoders: Example

= Possible activation of the hidden units after training

=
—
@
=i
D
-
—
O
QO
—
job)
>
)
Q
<
0,
n

Auto Encoders: Example

= Possible activation of the hidden units after training

S

ol

=

Q)

=

)

>

QD

>

)

Q

<<

28

2 2 7))

0010 X[¢ Xng =
2 / A
0 .\\\ | /\\

Auto Encoders: Example

= Possible activation of the hidden units after training

S

ol

=

Q)

=

)

>

QD

>

)

Q

<<

28

2 2 7))

0100 X[¢ Xng =
2 / A
0 .\\\ | /\\

Auto Encoders: Example

= Possible activation of the hidden units after training

S

ol

=

Q)

=

)

>

QD

>

)

Q

<<

28

2 2 7))

1000 X[¢ Xng =
2 / A
0 .\\\ | /\\

Auto Encoders: Example

m | here are several local minima of the loss functions

=1

(how many?) 5
=

)

5

QD

>

)

o

<<

v,

2 wn

1000 X . B

Auto Encoders: Example

= Input: 256 X 256 units

Each unit represents the grey value of a pixel. %

= Hidden layer: k units =
Q

s Output: 256 x 256 units n;*
D

3,

X; Xp,: =

—

0.23 0.18 0.87 0.43 R

Auto Encoders: Example

s Each of the hidden units is a detector for a “base face”

= The weights from one hidden unit to the output units encode
the image of the base face.

= |nput faces are represented as a combination of these base
faces.

L

0.23 0.18 0.87 0.43 R

=1
—
@
(5.
)
=
O
jab)
—
D
>
>
L
<
o
n

Auto Encoders: Example

= The weights from one hidden unit to the output units encode

=1
the image of the base face. i
IS

=

O

3

QD

>

>

D

<<

0}

2 2 &

X1 Xno —

Auto Encoders: Example

= Feeding an input of 1 into one of the hidden units produces

=
the base face that the hidden unit represents. od
IS

=}

O

2

QD

>

-]

D

<<

)

2 ? &

X1 X”o {' —

Auto Encoders: Example

= The weights from one hidden unit to the output units encode

5
the image of the base face. o
= Weights from all hidden units to output units after training with g
a set of aligned faces: 0
&
>
>
D
<<
)
X12 {/ Xﬁo {/ 2
2 X X
0 / /N)
1
ol N Xp,

Auto Encoders: Example

= After training on hand-written digits I Bl

EGAEE @
BanE =
313]1310 3

:

<<

2

., 2

il S S

Auto Encoders via Backpropagation

= Desired output: y; = x;.

= Empirical risk: R(8) = — i= (X _X])Z

= Train with standard back propagatlon, using the
Input as target output values.

=1
—
@
(5.
)
=
O
jab)
—
D
>
>
L
<
o
n

Auto Encoders via Backpropagation

= Additional regularization: hidden units should be

sparse (i.e., have activation O most of the time). %
D
B I\/Iinimi_ze KL d_ivergenc_e between p = (p, ..., p) and %
activation of hidden units. 5
>
KL(pllx") = 212, plog 5 + (1= p) log ;- fB) &
2 2 n
= Modified backprop update % AU -
52 3,3 P 1-p 0° ”/g 7\
=o'(h)D . &6k + 1 RN | AN _

Deep Learning: Stacked Autoencoders

= Multiple hidden layers, each layer has fewer units.
= Autoencoder has to reproduce the input vector.

- R(Q) _ ml(x —Xd) de Xndi'
d X x
- n0>n1>...>nd_1, 0 g I 7

=
—
@
=i
D
-
—
O
QO
—
job)
>
)
Q
<
0,
n

[| TlO — Tld. d-1

Stacked Autoencoders: Learning

= Step 1: Learn autoencoder using back propagation

=1
. . T
Run back propagation until convergence. 5
>
D _ 1 tm 0 22 =
= R(6) = %Zﬁl("j —X;) g
>
-]
Q.
2 2 I
X v XnO o
d X A B
e
1 § 4 1
X[X,
o A A A

Stacked Autoencoders: Learning

= Step 2: Freeze 01, add another layer.

=1
. . . o)
Train 64 and 03 using back propagation 5
D 1 2 X3 Y ans X3 v 3
s R(O) = —Zﬁl(xo — X-3) - s ¥
2m =J J J 3 _X A =
0 /g | / >
N, E
23 g 7 2 <
% I . Xn, o
o A =
1. 5 y 1
X o Xp,

Stacked Autoencoders: Learning

s Step d: Freeze 01,..., 0972, add another layer.

=1

T

Train 89471 and 6 using back propagation =

) 5 Xd x4 >

s R(O) = szFl(XJ X,) 0% £ B
==, E

44 S

X, X, B 2.

Stacked Autoencoders: Learning

s Step d + 1. Remove layer d.

\
T

=

= The result is a hierarchical feature representation. «%
s These features can be very useful for supervised -
learning, in particular for convolutional networks. S,i

5

¢ e e B

gt 7 A

1 . y . 1
Xl { []

] /] / 1 /
o 7 &

Denoising Autoencoders

= Additional regularization: Reconstruct input from
corrupted version of the input.

= Randomly set a fraction of the input to zero; use
uncorrupted input as target for loss function.

s Tends to lead to more robust

. - d-1

representations. X X
g K K
Xp o Xy

] /] / 1 /
o 7 &

=1
—
@
5
@
=1
O
D
—
©
>
5
D
<
2
®

Stacked Autoencoder: Example

= 2D visualization of a document corpus

= TF vector —» 500 hidden units — 250 hidden units
— 2 hidden units (dimensions)

B Reuters 2—-D Topic Space
.\/ ,\ /
Disasters and Accidents 2 units 03 g 7,
. EPT N A
w5 . . Government Borrowing M
European Community = . . .' AL ((
Monetary/Economic - - , fle M e \Y\ \%\
as . ~ >
o 250 units Q> - 7
A ~
e
7 : 500 units AN

Energy Markets '

AccountsIEamiﬁgs '

Term frequencies of many terms

=1
—
@
5
@
=1
O
D
—
©
>
5
D
<
2
®

48

Auto Encoders: What are they Good for?

= Hidden units represent a clustering of the inputs.

s Hidden units are features that can now be used for
a classification task.

For instance, face identification, hand-written letter

recognition.
d-1
Ng—1

d-1, y
X | X

gt 7 A

\
T

1 . y . 1
Xl { []

] /] / 1 /
o 7 &

=1
—
@
5
@
=1
O
D
—
©
>
5
D
<
2
®

Restricted Boltzmann Machine

= Unsupervised learning.

=
T
= Input layer and hidden layer. :
= Binary stochastic units, one bias unit per layer. o
Q
= Generative, probabilistic model. =
>
= Energy function: =
E(x° x') =—(6'x°)" x" 2
Bias units
o> o> 0 ! 1
o - Yon || Xg X5
:—/E L : : Xo 71 X X
1 1 0 1 X X X
gnlo cee gnlno Xn0 an 01 ‘/'r\ A A

=0 (Bias units x¥ =1 X10 x°
Are not connected)

Restricted Boltzmann Machine

= Energy function:

=
T
E(XO,Xl) _ —(Glxo Tyl %
= Energy function~ — log P(activation) S
0,1 =
0 1y _ 1 o—E0CX) o
P(xo,x)—ze o i;
—-E(x",x
P(x’)=>.Le &
o}
0 1 =
P(Xl |X0) _ P(X X) Bias units
P(x%)
_ et 1 RFL X A
Z 1%e‘E(XO’X1) 1+e™ ot K &
X PANA AN
= Zis normalization constant mo
X, =1 X Xin

Inference in RBM

= RMB is a generative model; generates states like a

Bayesian network. =

)

= Inference by Markov chain monte carlo: 3
lterate over units, alternate between input and hidden g’i

units. 2
Draw unit activation given activations of neighboring 2

units. =

= After burn-in phase, Markov chain of activations is
governed by distribution of the encoded RBM.

52

RBM: Sampling of States

s [nitialize states at random

|| SISAjeuy ereq juabijjaiu|

RBM: Sampling of States

s [nitialize states at random

m P(X?|X1) ==

0.1
1+e%0%

|| SISAjeuy ereq juabijjaiu|

RBM: Sampling of States

s [nitialize states at random

m P(X?|X1) ==

0.1
1+e%0%

1
Q%XO

m P(X% |XO) —

1+e

|| SISAjeuy ereq juabijjaiu|

RBM: Sampling of States

s [nitialize states at random

S
o]

0] 1 1 =

! 1+ef0x" =

1 S

11,0 2

| P(Xl X) — 1.0 D
1+e90X% EJ?

1 =

s P(x3|x1) = 5)

1
1+ef0X

RBM: Sampling of States

s [nitialize states at random

1
P(x?(xt) =
= (1|) 1+398Xl
1
P(x}|x%) =
u (1) 1+€9(1)X0
1
u P(xg Xl) — 90X1
1+e~0
1
[P(X% XO) — Q%XO

1+e

|| SISAjeuy ereq juabijjaiu|

RBM: Sampling of States

s [nitialize states at random

1
P(x?(xt) =
= (1|) 1+398Xl
1
P(x}|x%) =
u (1) 1+€9(1)X0
1
u P(xg Xl) — 90X1
1+e~0
1
[P(X% XO) — Q%XO

1+e

|| SISAjeuy ereq juabijjaiu|

Restricted Boltzmann Machine: Learning

= Learning: maximize log-likelihood of the input
vectors.

arg max ; —log P(x")

= Gradient: Energy gradient for observed input
_ 0dlog p(x)
00; /
01 Marginal energy gradient
=3, (et x0) EXX)
: o0,
_Z p(Xl XO) aE(XO’Xl) 1 1 1
x0 %t ! aejll XO = 1 XI . Xk
= Energy gradient: oA AR
B X) a-(0x)X PV
od, ag,
]l J1 sna

=1
—+
@
=
D
-
~t+
O
Q'_.)._
QD
>
-]
)
<<
@,
()}

Restricted Boltzmann Machine: Learning

s Gradient:
olog p(x°) 1y ooy OE(X, XY 11 ooy OE(X°,)
- =>» . p(x|x - L p(x|x
89; ZX p(x" | X") 89; ZX,X p(Xx" | X") 89;
. OE(X’,x) o-(0x")"x 0.1
Mlt agjll 89}, i

= Weight update

6. '= 0 +a(x’hi —x°hy)

/7

Observed input

Input inferred in an MCMC step

60

=
—
@
=i
D
-
—
O
QO
—
job)
>
)
Q
<
0,
n

Restricted Boltzman Machine: Example

s Unsupervised learning of a representation, similar
to hidden layer of an autoencoder.

= 25 weight vectors 07 after training with a set of
aligned faces:

=1
—
@
5
D
=
O
o
—
o
>
5
Q
<<
28
»

Restricted Boltzman Machine: Example

s Unsupervised learning of a representation, similar

to hidden layer of an autoencoder. %
D
= Weights 0] after training with a set of hand-written =
digits: 5
ights g
-.-.-..-.. Inputs Reconstrutions %
GBI 3
77 (BG5S 5 ¥ =
7B | Al S &R AT
[FEhe| 21 P18 4 |75 e 5
Illlllllll Bl o !
i o=l X ¢ %
& oA XA
X m

Stacked RBM Learning

s Stacked RBMs analogous to stacked
backpropagation autoencoders.

s Step 1: argmaxgi{—log P(x°)}

=1
—
@
5
@
=1
O
D
—
©
>
5
D
<
2
®

Stacked RBM Learning

s Stacked RBMs analogous to stacked

backpropagation autoencoders. %

s Step 1: argmaxgi{—log P(x°)} =
s Step 2: argmaxgz{—log P(x°)} g’i
... 2
X’ X @

RBM: What are they Good for?

= Hidden units represent a clustering of the inputs.

S

T

s Hidden units are features that can then be used for &
supervised learning. 2

&

>

>

=

X; X 7]

Overview

= Neural information processing.
s Feed-forward networks.
s Training feed-forward networks, back propagation.
s Unsupervised learning:
+ Auto encoders.

¢ Training auto encoders via back propagation.
¢ Restricted Boltzmann machines.

s Convolutional networks.

=
—
@
=
(D
=
O
Q
—
QD
>
>
D
<
28
)]

66

Convolutional Networks

= What happens when an autoencoder is trained with

=1

. . &

unaligned images of faces? =

>

O

D

QD

>

>

D

<

28

X2 Xr?of 2
T 2 X X
Training images °A = A

. 0 0
i 67

Convolutional Networks

= What happens when an autoencoder is trained with

=1
. . o
unaligned images of faces? =
>
O
D
QD
>
>
D
<
28
X12 .V naa leo 2
Training images oA K

¢

Convolutional Networks

= What happens when an autoencoder is trained with
unaligned images of faces?

= Weights 8 become blurry; hidden units tend to
represent different face positions rather than
different looks of faces.

Training images °A = A

- 1 ‘, !\., ; nl
(|
{1\ A=

X’ x°
/] :

=1
—
@
5
@
=1
O
D
—
©
>
5
D
<
2
®

Convolutional Networks

= |dea: Have detectors find common patterns at

different positions of the input image and at different &
scales. 3
o

3

>

D

S,

X12 Xﬁof 2

Training images A x P

Convolution

= Multiplication of a filter with an area of the input

gives intensity of the filter signal at the position. %
Z Z Xl+k j+ kI %

-nl=-n QO

= Pixel in result image x}; ;. IS the result of a ;nj
convolution. 5

= Used for images, audio signals.
E.g., detection of edges (greyvalue gradients).

a3
i —

71

Convolutional Networks

= Apply one or several filters to every

position and possibly at several scales. E= = ‘iﬁ
= Each unit produces output of same (‘E
filter for different position. ;D:
= All units for one filter have the same Q;i
weight. X | [X B
= Example convolutional network with 7§1 f}%l 7%1 &
fixed scale and a single filter. . " =
X [¢ | x/

1/ .\
7S B
‘0 ,

Multiple Convolutions

= Multiple detectors per location and scale
E.g., edges of varying orientation
Edges of varying scale

= Results in an array of convoluted result images.

0 deg & Scaled 3 23 deg & Scaled 3 45 deg & Scaled 3 66 deg & Scaled 3 90 deg & Scaled 3 113 deg & Scaled 3 135 deg & Scaled 3 156 deg & Scaled 3

0 deg & Scaled 6 23 deg & Scaled 6 45 deg & Scaled 6 68 deg & Scaled 6 90 deg & Scaled 6 113 deg & Scaled 6 135 deg & Scaled 6 158 deg & Scaled 6

23 deg & Scaled 13 45 deg & Scaled 13 68 deg & Scaled 13 90 deg & Scaled 13

0 deg & Scaled 28 23 deg & Scaled 28 45 deg & Scaled 28 68 deg & Scaled 28 90 deg & Scaled 28 113 deg & Scaled 28 135 deg & Scaled 28 158 deg & Scaled 28

1IN 7R

0 deg & Scaled 58 23 deg & Scaled 58 45 deg & Scaled 58 68 deg & Scaled 58 90 deg & Scaled 58 113 deg & Scaled 58 135 deg & Scaled 58 158 deg & Scaled 58

I\ N N = = 7Z; V7

73

=
—
@
S
D
-
—
O
QO
—
job)
>
)
Q
<
0,
n

Convolutional Networks: Example

0 deg & Scaled 3 23 deg & Scaled 3 45 deg & Scaled 3 68 deg & Scaled 3 90 deg & Scaled 3 113 deg & Scaled 3 135 deg & Scaled 3 158 deg & Scaled 3

0 deg & Scaled 6 23 deg & Scaled 6 45 deg & Scaled 6 68 deg & Scaled 6 90 deg & Scaled 6 113 deg & Scaled 6 135 deg & Scaled6 158 deg & Scaled 6

0 deg & Scaled 13

‘f’l"r‘lq“l 'l}'

0 deg & Scaled 28

0 deg & Scaled 58

68 deg & Scaled 13 135 deg & Scaled 13

45 deg & Scaled 28 68 deg & Scaled 28 90 deg & Scaled 28 113 deg & Scaled 28 135 deg & Scaled 28 158 deg & Scaled 28

L - ’,.’
N\ ﬁ-ﬁléf’;%l’

45 deg & Scaled 58 68 deg & Scaled 58 90 deg & Scaled 58 113 deg & Scaled 58 135 deg & Scaled 58 158 deg & Scaled 58

¥/

i

=
—
@
S
D
-
—
O
QO
—
job)
>
)
Q
<
0,
n

=
7
)y
4
\
N

' X knkll . anknk
. S S © .oy oy,
al 'pl/p1 \ ak "ok’ gk

q

1 ¢ rx Shared
XK X weights

74

Convolutional Networks: Example

= Convolutional layer with k filters
takes an input image and o s W
produces k images. mm'@ =T

= k images have to be aggregated WS S = =
by pooling layers.

=
—
@
=i
D
-
—
O
QO
—
job)
>
)
Q
<
0,
n

1 1 1
X1n1 i 2 Xlnn anl ann
Th1 a1 g1 ok Tgk gk
1 ool 1 1
Xlll Xlln Xkll i Xkln
M1 11 Nk Tar”gk

/ h

Convolutional Networks: Pooling Layers

= MaxPooling-Layer:
Split layer into non-overlapping areas.
For each area, pass on maximal value to next layer.

=1
—
@
5
@
=1
O
D
—
©
>
5
D
<
2
®

76

Stacked Convolutional Networks

= Local receptive fields are trained layer-wise
restricted Boltzmann machine.

= Weight coupling has to be observed in the
Implementation (one parameter vector per filter,
applied to all areas and at all scales).

= [teratively, train next layer on output of previous
pooling layer.

=1
—
@
5
@
=1
O
D
—
©
>
5
D
<
2
®

77

Stacked Convolutional RBM

= Trained on faces, cars, motorbikes, airplanes 5
\ \ \ D
il 2
4T B
X \ o
>
>
n B
; <
) 7))
! \/ \ n
\
X N
A\
R
P f
- 7*\
(N | AN
ioeal o
H.in N \
ALI" AEENEn
78

ion

t

ICa

: Face Identifi

DeepFace

Intelligent Data Analysis Il

o
)
©
©
©
Q
ps
©
- i V\ ~ V\ i V\
Q S THS S
= OM/ _wmvv\{@“/ _wmv\ N _wmv\
m RN ‘%;/\Aﬁ\ V \%_/\Aﬁ\
+— HMI N \/\\ N)\\ B
-
)
>
@ S S S
Q- o) M o) M = M
S . 5 &2 5 & 5 2
c S @) 3 o S Q
- a O o o o O
c

i B v L
o o o o
% oﬂﬁ,_wm\ @Mn%,_wm\ bm/%_wm\
o oNﬂﬂ_v\\v/@M.\%r\\ =S
o ~ R R ~ R
m > \HAA\,//\A.O\ V\\Lmﬂx/\A.O\ V\HAM./\A.O\
© Am| R A R 3
9
<
)
=
)
©
=
£
-
o
L
o

Convolutiopnal layers trained with unlabeled data

79

GPU Training

s GPUs are suitable to parallelize neural network
training

Matrix multiplications, convolutions, element-wise
operations
= GPUs oftware
CUDA: NVIDIA C-API
OPENCL.: not specific to NVIDIA
PyCUDA: Python-API

PYOPENCL.: not specific to NVIDIA

=1
—
@
(5.
)
=
O
jab)
—
D
>
>
L
<
o
n

80

Deep Learning

s Step-wise transformation of the input space into more abstract
feature spaces.

= Features emanate as solution of an optimization problem.

= |mage processing

Pixels — local grey-value gradients — object parts —
objects.

= Natural-language text

Characters — words — chunks — clauses — sentences.
= Spoken language

Signal — spectral band — phone — phoneme — word —

=1
—
@
(5.
)
=
O
jab)
—
D
>
>
L
<
o
n

81

Summary

= Supervised neural network learning
Stochastic gradient: back propagation.
= Unsupervised learning:

Autoencoders learn features that preserve the
lunformation in the training instances

Stacked autoencoders.

(Stacked) restricted Boltzmann machines: generative
models; inference by sampling

m (Stacked) convolutional networks:
Learn filters, apply filters to different regions, scales
Aggregate filter banks by pooling layers.
Increasingly abstract detectors applied to regions.

82

=1
—
@
(5.
)
=
O
jab)
—
D
>
>
L
<
o
n

Seminar Lecture on Neural Networks?

= 3 X 30 minutes lecture incl. some time for questions.

= Natural-language description of images.
= Word2vec.

= Speech recognition.

=1
—
@
5
@
=1
O
D
—
©
>
5
D
<
2
®

83

