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Overview  

 Neural information processing. 

 Feed-forward networks. 

 Training feed-forward networks, back propagation. 

 Unsupervised learning: 

 Auto encoders. 

 Training auto encoders via back propagation. 

 Restricted Boltzmann machines. 

 Convolutional networks. 
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Learning Problems can be Impossible 
without the Right Features 
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Learning Problems can be Impossible 
without the Right Features 
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Neuronal Networks 

 Model of neural information processing 

 Waves of popularity 

 ↑ Perceptron: Rosenblatt, 1960. 

 ↓ Perceptron only linear classifier (Minsky, Papert, 69). 

 ↑ Multilayer perceptrons (90s). 

 ↓ Popularity of SVMs (late 90s). 

 ↑ Deep learning (late 2000s). 

 Now state of the art for Voice Recognition (Google 

DeepMind), Face Recognition (Deep Face, 2014) 
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Neuronal Networks 

 Deep learning, unsupervised feature learning 

 Unsupervised discovery of features which can then 

be used for supervised learning 

 Implementation on GPU 

 Able to process vast amounts of data. 

 Seen as step towards AI 
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Deep Learning Records 

 Neural networks best-performing algorithms for 

 Object classification (CIFAR/NORB/PASCAL VOC-

Benchmarks) 

 Video classification (various benchmarks) 

 Sentiment  analysis (MR Benchmark) 

 Pedestrian detection 

 Speech recognition 

 Phychedelic art 

(Deep Dream) 
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Supervised and Unsupervised Learning 

 Supervised learning 

 Entire network trained on labeled data. 

 Unsupervised learning 

 Entire network trained on unlabeled data. 

 Unsupervised pre-training + supervised learning 

 Network (except top-most layer) trained layer-wise on 

unsupervised data. 

 Then, entire network is trained on labeled data. 

 Good for many unlabeled + few labeled data. 
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Neural Information Processing 
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Neural Information Processing: Model 
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Feed Forward Networks 

 Forward propagation: 

 Input vector  

 Linear model: 

 Each unit has parameter  

vector 

 Layer 𝑖 has matrix 

of parameters 
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Feed Forward Networks 

 Forward propagation: 

 Input vector  

 Linear model: 

 Activation function and 

propagation: 

 Output vector 
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Feed Forward Networks 

 Bias unit 

 Linear modell: 

 Constant element 𝜃𝑘0
𝑖  is 

replaced by additional unit with 

constant output 1: 
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Feed Forward Networks 

 Forward propagation per layer in 

vector notation: 
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Feed Forward Networks 

 Stochastic gradient descent 

 Squared loss: 

𝑅 𝜃 =
1

2𝑚
 𝑦𝑗 − 𝑥𝑗

𝑑 2𝑚
𝑗=1  

 

 Gradient: 

   

 

 

 Stochastic gradient for instance x 
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Feed Forward Nets: Back Propagation 

 Stochastic gradient for instance x 

   

 

 For top-level weights: 

   

 

 

 

 

 

 with: 
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Feed Forward Nets: Back Propagation 

 For weights at layer 𝑖: 

   

 

 with 
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Activation Function 

 Any differentiable sigmoidal function is suitable 

 Examples: 
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Back Propagation: Algorithm 

 Iterate over training instances (x, y): 

 Forward propagation: for i=0…d: 

 For k=1…ni: 

    

 Back propagation: 

 For k=1…ni: 

 

 For i=d-1…1: 

• For k=1…ni: 

 

 Until concergence 
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Back Propagation 

 Loss function is not convex 

 Each permutation of hidden units is a local minimum. 

 Learned features (hidden units) may be ok, but not 

usually globally optimal. 

 Hope: 

 Local minima can still be arbitrarily good. 

 Many local minima can be equally good.  

 Reality: 

 Back propagation works well for few (1 or 2) hidden 

layers. 
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Regularization 

 L2-regularized loss 

   

 Corresponds to normal prior on parameters. 

 Gradient: 

 Update:  

 Called weight decay. 

 Additional regularization schemes: 

 Early stopping: Stop training before convergence. 

 Delete units with small weights. 

 Dropout: During training, set some units‘ output to 

zero at random. 

 Normalize length of propagated vectors. 
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Regularization: Dropout 

 In complex networks, complex co-adaptation 

relationships can form between units. 

 Not robust for new data. 

 Dropout: In each training set, draw a fraction of 

units at random and set their output to zero. 

 At application time, use all units. 

 Improves overall robustness: each unit has to 

function within varying combinations of units. 
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Regularization: Stochastic Binary Units 

 Deterministic units propagate 𝑥𝑘
𝑖 = 𝜎 ℎ𝑘

𝑖 . 

 Stochastic-binary units calculate activation 𝜎 ℎ𝑘
𝑖 , 

 Then propagate 𝑥𝑘
𝑖 = 1 with probability 𝜎(ℎ𝑘

𝑖 )  

 𝑥𝑘
𝑖 = 0 otherwise.  

 Similar to dropout: with some probability, each unit 

does not produce output.  

 Biological nneurons behave like this.  
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Back Propagation: Tricks 

 Use cross-entropy as loss for classification 

 Stochastic gradient on small batches.  

 Permute training data at random. 

 Decrease learning rate during optimization 

 Initialize weights randomly (origin can be saddle 

point). 

 Initialize weights via unsupervised pre-training. 
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Overview  

 Neural information processing. 

 Feed-forward networks. 

 Training feed-forward networks, back propagation. 

 Unsupervised learning: 

 Auto encoders. 

 Training auto encoders via back propagation. 

 Restricted Boltzmann machines. 

 Convolutional networks. 
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Auto Encoders 

 Auto encoders learn the identity function. 

 𝑛0 input units to 𝑛1 hidden units to 𝑛0 output units, 

with 𝑛0 > 𝑛1. 

 On the hidden layer, the input has to be 

compressed. 

 Learning algorithm derives a  

representation that preserves 

the information from the input. 

 

 

27 

1
θ

2
θ

0

1x ...
0

0

nx

...

1

1x ...
1

1

nx

2

1x ...
0

2

nx



In
te

llig
e
n

t D
a

ta
 A

n
a
ly

s
is

 II 

Auto Encoders: Example 

 Input: binary vectors with a single 1. 

 4 input units, 2 hidden units, 4 output units 

 Inputs: 

 0,0,0,1 

 0,0,1,0 

 0,1,0,0 

 1,0,0,0 
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Auto Encoders: Example 

 Possible activation of the hidden units after training 
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Auto Encoders: Example 

 Possible activation of the hidden units after training 
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Auto Encoders: Example 

 Possible activation of the hidden units after training 
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Auto Encoders: Example 

 Possible activation of the hidden units after training 

 

32 

1
θ

2
θ

0

1x ...
0

0

nx

...

1

1x ...
1

1

nx

2

1x ...
0

2

nx

1  0  0  0 

1  0  0  0 

0  1 



In
te

llig
e
n

t D
a

ta
 A

n
a
ly

s
is

 II 

Auto Encoders: Example 

 There are several local minima of the loss functions 

(how many?) 
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Auto Encoders: Example 

 Input: 256 × 256 units 

 Each unit represents the grey value of a pixel. 

 Hidden layer: 𝑘 units 

 Output: 256 × 256 units 
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Auto Encoders: Example 

 Each of the hidden units is a detector for a “base face” 

 The weights from one hidden unit to the output units encode 

the image of the base face. 

 Input faces are represented as a combination of these base 

faces. 
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Auto Encoders: Example 

 The weights from one hidden unit to the output units encode 

the image of the base face. 
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Auto Encoders: Example 

 Feeding an input of 1 into one of the hidden units produces 

the base face that the hidden unit represents. 
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Auto Encoders: Example 

 The weights from one hidden unit to the output units encode 

the image of the base face. 

 Weights from all hidden units to output units after training with 

a set of aligned faces: 
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Auto Encoders: Example 

 After training on hand-written digits 
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Auto Encoders via Backpropagation 

 Desired output: 𝑦𝑗 = 𝑥𝑗
0. 

 Empirical risk: 𝑅 𝜃 =
1

2𝑚
 𝐱𝑗

0 − 𝐱𝑗
1 2𝑚

𝑗=1  

 Train with standard back propagation, using the 

input as target output values. 
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Auto Encoders via Backpropagation 

 Additional regularization: hidden units should be 

sparse (i.e., have activation 0 most of the time). 

 Minimize KL divergence between 𝝆 = (𝜌,… , 𝜌) and 

activation of hidden units. 

 𝐾𝐿 𝝆||𝐱𝟏 =  𝜌 log
𝜌

𝑥𝑖
1 + (1 − 𝜌) log

(1−𝜌)

(1−𝑥𝑖
1)

𝑛1
𝑖=1  

 Modified backprop update: 
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Deep Learning: Stacked Autoencoders 

 Multiple hidden layers, each layer has fewer units. 

 Autoencoder has to reproduce the input vector.  

 𝑅 𝜃 =
1

2𝑚
 𝐱𝑗

0 − 𝐱𝑗
𝑑 2𝑚

𝑗=1  

 𝑛0 > 𝑛1 > ⋯ > 𝑛𝑑−1, 

 𝑛0 = 𝑛𝑑. 
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Stacked Autoencoders: Learning 

 Step 1: Learn autoencoder using back propagation 

 Run back propagation until convergence. 

 𝑅 𝜃 =
1

2𝑚
 𝐱𝑗

0 − 𝐱𝑗
2 2𝑚

𝑗=1  
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θ
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nx

Stacked Autoencoders: Learning 

 Step 2: Freeze 𝛉1, add another layer. 

 Train 𝛉2 and 𝛉3 using back propagation 

 𝑅 𝜃 =
1

2𝑚
 𝐱𝑗

0 − 𝐱𝑗
3 2𝑚

𝑗=1  
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Stacked Autoencoders: Learning 

 Step 𝑑: Freeze 𝛉1,…, 𝛉𝑑−2, add another layer. 

 Train 𝛉𝑑−1 and 𝛉𝑑 using back propagation 

 𝑅 𝜃 =
1

2𝑚
 𝐱𝑗

0 − 𝐱𝑗
𝑑 2𝑚

𝑗=1  
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Stacked Autoencoders: Learning 

 Step 𝑑 + 1: Remove layer 𝑑. 

 The result is a hierarchical feature representation. 

 These features can be very useful for supervised 

learning, in particular for convolutional networks. 
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Denoising Autoencoders 

 Additional regularization: Reconstruct input from 

corrupted version of the input. 

 Randomly set a fraction of the input to zero; use 

uncorrupted input as target for loss function. 

 Tends to lead to more robust 

representations. 
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Stacked Autoencoder: Example 

 2D visualization of a document corpus 

 TF vector  500  hidden units  250 hidden units 

 2 hidden units (dimensions) 
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Auto Encoders: What are they Good for?  

 Hidden units represent a clustering of the inputs.  

 Hidden units are features that can now be used for 

a classification task. 

 For instance,  face identification, hand-written letter 

recognition. 
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Restricted Boltzmann Machine 

 Unsupervised learning. 

 Input layer and hidden layer. 

 Binary stochastic units, one bias unit per layer. 

 Generative, probabilistic model. 

 Energy function: 
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Restricted Boltzmann Machine 

 Energy function: 

   

 Energy function~ − log 𝑃 activation  

   

    

 

   

 

 

 

 Z is normalization constant 
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Inference in RBM 

 RMB is a generative model; generates states like a 

Bayesian network. 

 Inference by Markov chain monte carlo: 

 Iterate over units, alternate between input and hidden 

units. 

 Draw unit activation given activations of neighboring 

units. 

 After burn-in phase, Markov chain of activations is 

governed by distribution of the encoded RBM. 
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RBM: Sampling of States 

 Initialize states at random 
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RBM: Sampling of States 

 Initialize states at random 

 𝑃 𝑥1
0 𝐱1 =

1

1+𝑒𝜃0
0𝐱1
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RBM: Sampling of States 

 Initialize states at random 

 𝑃 𝑥1
0 𝐱1 =

1

1+𝑒𝜃0
0𝐱1

 

 𝑃 𝑥1
1 𝐱0 =

1

1+𝑒𝜃0
1𝐱0
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RBM: Sampling of States 

 Initialize states at random 

 𝑃 𝑥1
0 𝐱1 =
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0𝐱1
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RBM: Sampling of States 

 Initialize states at random 

 𝑃 𝑥1
0 𝐱1 =

1
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0𝐱1
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RBM: Sampling of States 

 Initialize states at random 

 𝑃 𝑥1
0 𝐱1 =

1

1+𝑒𝜃0
0𝐱1

 

 𝑃 𝑥1
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1+𝑒𝜃0
1𝐱0

 

 … 
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Restricted Boltzmann Machine: Learning 

 Learning: maximize log-likelihood of the input 

vectors. 

   

 Gradient: 

   

 

 

 

 

 Energy gradient: 
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Restricted Boltzmann Machine: Learning 

 Gradient: 

   

 

 Mit  

 

 Weight update 
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Restricted Boltzman Machine: Example 

 Unsupervised learning of a representation, similar 

to hidden layer of an autoencoder.  

 25 weight vectors 𝛉𝑖
1 after training with a set of 

aligned faces: 
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Restricted Boltzman Machine: Example 

 Unsupervised learning of a representation, similar 

to hidden layer of an autoencoder.  

 Weights 𝛉𝑖
1 after training with a set of hand-written 

digits: 

62 

1
θ

0

1x ... 0

mx

1

1x ... 1

kx

0

0 1x 

1

0 1x 



In
te

llig
e
n

t D
a

ta
 A

n
a
ly

s
is

 II 

Stacked RBM Learning 

 Stacked RBMs analogous to stacked 

backpropagation autoencoders. 

 Step 1: argmax𝛉1{−log 𝑃 𝐱0 } 
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Stacked RBM Learning 

 Stacked RBMs analogous to stacked 

backpropagation autoencoders. 

 Step 1: argmax𝛉1{−log 𝑃 𝐱0 } 

 Step 2: argmax𝛉2{−log 𝑃 𝐱0 } 

 … 

 

 

64 

1
θ

0

1x ... 0

mx

1

1x ... 1

kx

0

0 1x 

1

0 1x 

2

0 1x  2
θ

2

1x ...
2

2

nx



In
te

llig
e
n

t D
a

ta
 A

n
a
ly

s
is

 II 

RBM: What are they Good for? 

 Hidden units represent a clustering of the inputs. 

 Hidden units are features that can then be used for 

supervised learning. 
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Overview  

 Neural information processing. 

 Feed-forward networks. 

 Training feed-forward networks, back propagation. 

 Unsupervised learning: 

 Auto encoders. 

 Training auto encoders via back propagation. 

 Restricted Boltzmann machines. 

 Convolutional networks. 
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Convolutional Networks 

 What happens when an autoencoder is trained with 

unaligned images of faces? 
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Convolutional Networks 

 What happens when an autoencoder is trained with 

unaligned images of faces? 
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Convolutional Networks 

 What happens when an autoencoder is trained with 

unaligned images of faces? 

 Weights 𝛉1 become blurry; hidden units tend to 

represent different face positions rather than 

different looks of faces.  

69 

1
θ

2
θ

0

1x ...
0

0

nx

...

1

1x ...
1

1

nx

2

1x ...
0

2

nx

Training images 



In
te

llig
e
n

t D
a

ta
 A

n
a
ly

s
is

 II 

Convolutional Networks 

 Idea: Have detectors find common patterns at 

different positions of the input image and at different 

scales.  
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Convolution 

 Multiplication of a filter with an area of the input 

gives intensity of the filter signal at the position. 

   
 

 Pixel in result image 𝑥 1…𝑛 1…𝑛
1  is the result of a 

convolution. 

 Used for images, audio signals. 

 E.g., detection of edges (greyvalue gradients). 

71 

1 0

,

n n

ij i k j l kl

k n l n

x x  

 

  



In
te

llig
e
n

t D
a

ta
 A

n
a
ly

s
is

 II 

72 
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Convolutional Networks 
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position and possibly at several scales. 

 Each unit produces output of same 

filter for different position. 

 All units for one filter have the same 

weight.  

 Example convolutional network with 

fixed scale and a single filter.  
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Multiple Convolutions 

 Multiple detectors per location and scale 

 E.g., edges of varying orientation 

 Edges of varying scale 

 Results in an array of convoluted result images.  
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Convolutional Networks: Example 

 

74 

...

1

111x ...
1

1

11nx

𝜽1 𝜽1 𝜽1 

1

1

1 1nx ...
1 1

1

1n nx

𝜽1 𝜽1 𝜽1 ...

1

11kx ... 1

1 kk nx

𝜽𝑘 𝜽𝑘 𝜽𝑘 

1

1kknx ... 1

k kkn nx

𝜽𝑘 𝜽𝑘 𝜽𝑘 ...

“Local receptive fields” 

Shared  

weights  



In
te

llig
e
n

t D
a

ta
 A

n
a
ly

s
is

 II 

Convolutional Networks: Example 

 Convolutional layer with 𝑘 filters 

takes an input image and  

produces 𝑘 images. 

 𝑘 images have to be aggregated 

by pooling layers. 
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Convolutional Networks: Pooling Layers 

 MaxPooling-Layer: 

 Split layer into non-overlapping areas. 

 For each area, pass on maximal value to next layer.  
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Receptive field 

Aggregated feature 
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Stacked Convolutional Networks 

 Local receptive fields are trained layer-wise 

restricted Boltzmann machine. 

 Weight coupling has to be observed in the 

implementation (one parameter vector per filter, 

applied to all areas and at all scales). 

 Iteratively, train next layer on output of previous 

pooling layer.  
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Stacked Convolutional RBM 

 Trained on faces, cars, motorbikes, airplanes 
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DeepFace: Face Identification 
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Discriminative layer: same person or not? Layer is trained on labeled data. 

Convolutiopnal layers trained with unlabeled data 
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GPU Training 

 GPUs are suitable to parallelize neural network 

training 

 Matrix multiplications, convolutions, element-wise 

operations 

 GPUs oftware 

 CUDA: NVIDIA C-API 

 OPENCL: not specific to NVIDIA 

 PyCUDA: Python-API 

 PyOPENCL: not specific to NVIDIA 
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Deep Learning 

 Step-wise transformation of the input space into more abstract 

feature spaces. 

 Features emanate as solution of an optimization problem. 

 

 Image processing 

 Pixels  local grey-value gradients  object parts  

objects. 

 Natural-language text 

 Characters  words  chunks  clauses  sentences. 

 Spoken language  

 Signal  spectral band  phone  phoneme  word  

… 
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Summary 

 Supervised neural network learning 

 Stochastic gradient: back propagation. 

 Unsupervised learning: 

 Autoencoders learn features that preserve the 

iunformation in the training instances 

 Stacked autoencoders. 

 (Stacked) restricted Boltzmann machines: generative 

models; inference by sampling 

 (Stacked) convolutional networks: 

 Learn filters, apply filters  to different regions, scales 

 Aggregate filter banks by pooling layers. 

 Increasingly abstract detectors applied to regions. 
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Seminar Lecture on Neural Networks? 

 3 x 30 minutes lecture incl. some time for questions. 

 

 Natural-language description of images. 

 Word2vec. 

 Speech recognition. 
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