Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen

PCA

Tobias Scheffer

Overview

- Principal Component Analysis (PCA)
- Kernel-PCA
- Fisher Linear Discriminant Analysis
- t-SNE

PCA: Motivation

- Data compression
- Preprocessing (Feature Selection / Noisy Features)
- Data visualization

PCA: Example

- Representation of Digits as an $m \times m$ pixel matrix
- The actual number of degrees of freedom is significantly smaller because many features
* Are meaningless or
* Are composites of several pixels
- Goal: Reduce to a d-dimensional subspace

PCA: Example

- Representation of faces as an $m \times m$ pixel matrix
- The actual number of degrees of freedom is significantly smaller because many combinations of pixels cannot occur in faces
- Reduce to a d-dimensional subspace

PCA: Projection

- A Projection is an idempotent linear Transformation

Center point:

$$
\overline{\mathbf{x}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}
$$

Covariance:
$\boldsymbol{\Sigma}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\mathrm{T}}$

PCA: Projection

- A Projection is an idempotent linear Transformation
- Let $\mathbf{u}_{1} \in \mathbb{R}^{m}$ with $\mathbf{u}_{1}{ }^{\mathrm{T}} \mathbf{u}_{1}=1$
- $y_{1}(\mathbf{x})=\mathbf{u}_{1}{ }^{\mathrm{T}} \mathbf{x}$ constitutes a projection onto a one-dimensional subspace

- For data in the projection's space, it follows that:
- Center (mean): $y_{1}(\overline{\mathbf{x}})=\mathbf{u}_{1}{ }^{\mathrm{T}} \overline{\mathbf{x}}$
- Variance: $\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{u}_{1}{ }^{\mathrm{T}} \mathbf{x}_{i}-\mathbf{u}_{1}{ }^{\mathrm{T}} \overline{\mathbf{x}}\right)^{2}=\mathbf{u}_{1}{ }^{\mathrm{T}} \boldsymbol{\Sigma} \mathbf{u}_{1}$

PCA: Problem Setting

- Given: data $\mathbf{X}=\left[\begin{array}{l}\mathbf{x}_{1} \\ \mathbf{x}_{n}\end{array}\right]=\left[\begin{array}{ccc}x_{11} & \ldots & x_{1 m} \\ & \ddots & \\ x_{n 1} & \ldots & x_{n 1}\end{array}\right]$
- Find matrix $\mathbf{U}=\left[\begin{array}{ccc}\mid & & \mid \\ \mathbf{u}_{1} & \cdots & \mathbf{u}_{d} \\ \mid & & \mid\end{array}\right]$ such that
- Vectors \mathbf{u}_{i} are orthonormal basis.
- Vector \mathbf{u}_{1} preserves maximal variance of data:

$$
\max _{\mathbf{u}_{1}:\left|\mathbf{u x}_{1}\right|=1} \mathbf{u}_{1}^{\mathrm{T} 1} \mathbf{n} \mathbf{X X} \mathbf{X}^{\mathrm{T}} \mathbf{u}_{1}
$$

- Vector \mathbf{u}_{i} preserves maximal residual variance.

$$
\max _{\mathbf{u}_{i}:\left|\mathbf{u}_{i}\right|=1, \mathbf{u}_{i} \perp \mathbf{u}_{1}, \ldots, \mathbf{u}_{i} \perp \mathbf{u}_{i-1}} \mathbf{u}_{i}^{\mathrm{T}} \frac{1}{n} \mathbf{X} \mathbf{X}^{\mathrm{T}} \mathbf{u}_{i}
$$

PCA: Problem Setting

- Given: data $\mathbf{X}=\left[\begin{array}{l}\mathbf{x}_{1} \\ \mathbf{x}_{n}\end{array}\right]=\left[\begin{array}{ccc}x_{11} & \ldots & x_{1 m} \\ & \ddots & \\ x_{n 1} & \ldots & x_{n 1}\end{array}\right]$
- Find matrix $\mathbf{U}=\left[\begin{array}{ccc}\mid & & \mid \\ \mathbf{u}_{1} & \cdots & \mathbf{u}_{d} \\ \mid & & \mid\end{array}\right]$ such that
- Value $\mathbf{u}_{k}^{\mathrm{T}} \mathbf{x}_{i}$ is projection of \mathbf{x}_{i} onto dimension \mathbf{u}_{k}.
- Vector $\mathbf{U}^{\mathrm{T}} \mathbf{x}_{i}$ is projection of \mathbf{x}_{i} onto coordinates \mathbf{U}.
- Matrix $\mathbf{Y}=\mathbf{X U}$ is projection of \mathbf{X} onto coordinates \mathbf{U} :

$$
\mathbf{Y}=\mathbf{X} \mathbf{U}=\left[\begin{array}{ccc}
\mathbf{x}_{1} \mathbf{u}_{1} & \ldots & \mathbf{x}_{1} \mathbf{u}_{d} \\
& \ddots & \\
\mathbf{x}_{n} \mathbf{u}_{1} & \ldots & \mathbf{x}_{n} \mathbf{u}_{d}
\end{array}\right]
$$

PCA: Assumption

- To simplify the notation, assume centered data.
- $\overline{\mathrm{x}}=0$.
- Can be achieved by subtracting mean value
- $\mathbf{x}_{i}^{c}=\mathbf{x}_{i}-\overline{\mathbf{x}}$

PCA: Direction of Maximum Variance

- Find direction \mathbf{u}_{1} that maximizes projected variance
- Instances $\mathbf{x} \sim P_{X}$ (assume mean $\overline{\mathbf{x}}=0$).
- The projected variance onto (normalized) \mathbf{u}_{1} is

$$
\begin{array}{r}
\mathrm{E}\left[\left(\operatorname{proj}_{\mathbf{u}_{1}} \mathbf{x}\right)^{2}\right]=\mathrm{E}\left[\mathbf{u}_{1}{ }^{\mathrm{T}} \mathbf{x x}^{\mathrm{T}} \mathbf{u}_{1}\right]=\mathbf{u}_{1}{ }^{\mathrm{T}} \underbrace{E\left[\mathbf{x x}^{\mathrm{T}}\right]}_{\Sigma_{\mathbf{x x}}} \mathbf{u}_{1} \\
\left.F\left[\mathbf{v y}^{\mathrm{T}}\right]-S^{n}\left[\begin{array}{c}
x_{i 1} \\
\vdots
\end{array}\right]_{\left[x_{i 1}\right.} \ldots x_{i m}\right]
\end{array}
$$

$$
\begin{aligned}
& \left.E\left[\mathbf{x x}^{\mathrm{T}}\right]=\sum_{i=1} \left\lvert\, \begin{array}{c}
\vdots \\
x_{i m}
\end{array}\right.\right]\left[\begin{array}{lll}
x_{i 1} & \ldots & \left.x_{i m}\right]
\end{array}\right. \\
& =\sum_{i=1}^{n}\left[\begin{array}{ccc}
\text { Covariance matrix } \\
\left(x_{i 1}-\bar{x}_{i 1}\right)^{2} & & \left(x_{i 1}-\bar{x}_{i 1}\right)\left(x_{i m}-\bar{x}_{i m}\right) \\
\left(x_{i m}-\bar{x}_{i m}\right)\left(x_{i 1}-\bar{x}_{i 1}\right) & \ddots & \left(x_{i m}-\bar{x}_{i m}\right)^{2}
\end{array}\right]
\end{aligned}
$$

PCA: Direction of Maximum Variance

- Find direction \mathbf{w} that maximizes projected variance
- Instances $\mathbf{x} \sim P_{X}$ (assume mean $\overline{\mathbf{x}}=0$).
- The projected variance onto (normalized) \mathbf{u}_{1} is

$$
\mathrm{E}\left[\left(\operatorname{proj}_{\mathbf{u}_{1}} \mathbf{x}\right)^{2}\right]=\mathrm{E}\left[\mathbf{u}_{1}{ }^{\mathrm{T}} \mathbf{x} \mathbf{x}^{\mathrm{T}} \mathbf{u}_{1}\right]=\mathbf{u}_{1} \underbrace{E\left[\mathbf{x x}^{\mathrm{T}}\right]}_{\Sigma_{\mathbf{x x}}} \mathbf{u}_{1}
$$

- The empirical covariance matrix (of centered data) is

$$
\widehat{\boldsymbol{\Sigma}}_{x x}=\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathrm{T}}
$$

- How can we find direction \mathbf{u}_{1} to maximize $\mathbf{u}_{1}{ }^{\mathrm{T}} \widehat{\boldsymbol{\Sigma}}_{x x} \mathbf{u}_{1}$?
- How can we kernelize it?

PCA: Optimization Problem

- Solution for \mathbf{u}_{1} : max variance of the projected data: $\max \mathbf{u}_{1}{ }^{\mathrm{T}} \widehat{\boldsymbol{\Sigma}}_{x x} \mathbf{u}_{1}$, such that $\mathbf{u}_{1}^{\mathbf{u}_{1}}{ }^{\mathrm{T}} \mathbf{u}_{1}=1$
- Lagrangian: $\mathbf{u}_{1}{ }^{\mathrm{T}} \widehat{\boldsymbol{\Sigma}}_{x x} \mathbf{u}_{1}+\lambda_{1}\left(1-\mathbf{u}_{1}{ }^{\mathrm{T}} \mathbf{u}_{1}\right)$

PCA: Optimization Problem

- Solution for \mathbf{u}_{1} : max variance of the projected data:
$\max _{\mathbf{u}_{1}} \mathbf{u}_{1}^{\mathrm{T}} \widehat{\boldsymbol{\Sigma}}_{x x} \mathbf{u}_{1}$, such that
$\mathbf{u}_{1}^{\mathrm{T}} \mathbf{u}_{1}=1$
- Lagrangian: $\mathbf{u}_{1}{ }^{\mathrm{T}} \widehat{\boldsymbol{\Sigma}}_{x x} \mathbf{u}_{1}+\lambda_{1}\left(1-\mathbf{u}_{1}{ }^{\mathrm{T}} \mathbf{u}_{1}\right)$
- Taking its derivative \& setting it to $0: \widehat{\boldsymbol{\Sigma}}_{x x} \mathbf{u}_{1}=\lambda_{1} \mathbf{u}_{1}$
- The solution \mathbf{u}_{1} must be an eigenvector of $\widehat{\boldsymbol{\Sigma}}_{x x}$
- Variance of the projected data:

$$
\mathbf{u}_{1}^{\mathrm{T}} \stackrel{\rightharpoonup}{\boldsymbol{\Sigma}}_{x x} \mathbf{u}_{1}=\mathbf{u}_{1}^{\mathrm{T}} \lambda_{1} \mathbf{u}_{1}=\lambda_{1}
$$

- The solution is the eigenvector \mathbf{u}_{1} of $\widehat{\boldsymbol{\Sigma}}_{x x}$ with greatest eigenvalue λ_{1}, called the $1^{\text {st }}$ principal component

PCA: Optimization Problem

- Solution for \mathbf{u}_{i} : max variance of the projected data: $\max _{\mathbf{u}_{i}} \mathbf{u}_{i}{ }^{\mathrm{T}} \widehat{\boldsymbol{\Sigma}}_{x x} \mathbf{u}_{i}$, such that

$$
\begin{aligned}
& \mathbf{u}_{i}^{\mathrm{T}} \mathbf{u}_{i}=1 \\
& \mathbf{u}_{i} \perp \mathbf{u}_{1}, \ldots, \mathbf{u}_{i} \perp \mathbf{u}_{i-1}
\end{aligned}
$$

- Lagrangian: $\mathbf{u}_{i}{ }^{\mathrm{T}} \widehat{\boldsymbol{\Sigma}}_{x x} \mathbf{u}_{i}+\lambda_{i}\left(1-\mathbf{u}_{i}{ }^{\mathrm{T}} \mathbf{u}_{i}\right)$
- Taking its derivative \& setting it to 0: $\widehat{\boldsymbol{\Sigma}}_{x x} \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i}$
- The solution \mathbf{u}_{i} must be an eigenvector of $\widehat{\boldsymbol{\Sigma}}_{x x}$
- To maximize variance of the projected data:

$$
\mathbf{u}_{i}^{\mathrm{T}} \widehat{\boldsymbol{\Sigma}}_{x x} \mathbf{u}_{i}=\mathbf{u}_{i}^{\mathrm{T}} \lambda_{i} \mathbf{u}_{i}=\lambda_{i}
$$

- And to assure that \mathbf{u}_{i} are orthogonal:
- \mathbf{u}_{i} is eigenvector with next-best eigenvalue $\lambda_{i}<\lambda_{i-1}$.

PCA: Optimization Problem

- Eigenvector decomposition implies:

$$
\stackrel{\rightharpoonup}{\boldsymbol{\Sigma}}_{x x}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{T}}
$$

- With $\boldsymbol{\Lambda}=\left[\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{m}\end{array}\right]$
- However, if $\mathbf{U}_{1: d}$ contains the first d eigenvectors, then $\mathbf{Y}=\mathbf{X U}_{1: d}$ has only a fraction of the variance:

$$
\frac{\sum_{i=1}^{d} \lambda_{i}}{\operatorname{tr}\left(\widehat{\boldsymbol{\Sigma}}_{x x}\right)}
$$

- Choose d smaller than m but large enough to cover most of the variance.
- Projection of \mathbf{x} to the eigenspace:

$$
\left.y_{1}(\mathbf{x})=\mathbf{u}_{1}{ }^{\mathrm{T}} \mathbf{x} \square \begin{array}{c}
\square(\mathbf{x})=\mathbf{U}^{\mathrm{T}} \mathbf{x} \text { with } \mathbf{U}=\left(\begin{array}{ccc}
\mid & & \mid \\
\mathbf{Y}=\mathbf{X} \mathbf{U}
\end{array}\right. \\
\mathbf{u}_{1} \\
\mid \\
\mid \\
\mathbf{u}_{d} \\
\mid
\end{array}\right)
$$

- Largest eigenvector is $1^{\text {st }}$ principal component
- The remaining principal components are orthogonal directions which maximize the residual variance
, d principal components \rightarrow vectors of the d largest eigenvalues

PCA: Reverse Projection

- Observation: $\left\{\mathbf{u}_{j}\right\}$ form a basis for $\mathbb{R}^{m} \&\left\langle y_{j}(\mathbf{x})\right\rangle$ are the coordinates of \mathbf{x} in that basis
- Data \mathbf{x}_{i} can thus be reconstructed in that basis:

$$
\mathbf{x}_{i}=\sum_{j=1}^{m}\left(\mathbf{x}_{i}^{\mathrm{T}} \mathbf{u}_{j}\right) \mathbf{u}_{j} \quad \text { or } \quad \mathbf{X}=\mathbf{U} \mathbf{U}^{\mathrm{T}} \mathbf{X}
$$

- If data lies (mostly) in d-dimensional principal subspace, we can also reconstruct the data there:

$$
\tilde{\mathbf{x}}_{i}=\sum_{j=1}^{d}\left(\mathbf{x}_{i}{ }^{\mathrm{T}} \mathbf{u}_{j}\right) \mathbf{u}_{j} \quad \text { or } \quad \widetilde{\mathbf{X}}=\mathbf{U}_{1: d} \mathbf{U}_{1: d}{ }^{\mathrm{T}} \mathbf{X}
$$

- where $\mathbf{U}_{1: d}$ is the matrix of $1^{\text {st }} d$ eigenvectors

Reverse Projection: Example

- Morphace (Universität Basel)
- 3D face model of 200 persons (150,000 features)
- PCA with 199 principal components.

PCA: Algorithm

- PCA finds dataset's principal components, which maximize the projected variance
- Algorithm:

1. Compute data's mean: $\widehat{\boldsymbol{\mu}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$
2. Compute data's covariance:

$$
\widehat{\boldsymbol{\Sigma}}_{x x}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\widehat{\boldsymbol{\mu}}\right)\left(\mathbf{x}_{i}-\widehat{\boldsymbol{\mu}}\right)^{\mathrm{T}}
$$

3. Find principal axes: $\mathbf{U}=$ eigenvektors $\left(\widehat{\boldsymbol{\Sigma}}_{x x}\right)$
4. Project data onto $1^{\text {st }} \mathrm{d}$ eigenvectors

$$
\tilde{\mathbf{x}}_{i} \leftarrow \mathbf{U}_{1: d}{ }^{\mathrm{T}}\left(\mathbf{x}_{i}-\widehat{\boldsymbol{\mu}}\right)
$$

Difference Between PCA and Autoencoder

- PCA: Linear mapping $y(\mathbf{x})=\mathbf{U}^{\mathrm{T}} \mathbf{x}$ from \mathbf{x} to \mathbf{y}.
- Autoencoder: Linear mapping from \mathbf{x} to \mathbf{h}, then nonlinear activation function $\mathbf{y}=\boldsymbol{\sigma}(\mathbf{x})$.
- Autoencoder with squared loss and linear activation function = PCA.
- Stacked autoencoder: more nonlinearity, more complex mappings.
- Kernel-PCA: linear mapping in feature space $\boldsymbol{\Phi}$.

Overview

- Principal Component Analysis (PCA)
- Kernel-PCA
- Fisher Linear Discriminant Analysis
- t-SNE

Kernel PCA

- PCA can only capture linear subspaces
- More complex features can capture non-linearity
- Want to use PCA in high-dimensional spaces

$$
\begin{aligned}
\Phi: \mathcal{X}=\mathbb{R}^{2} & \rightarrow \mathcal{H}=\mathbb{R}^{3} \\
\left(x_{1}, x_{2}\right) & \mapsto\left(x_{1}, x_{2}, x_{1}^{2}+x_{2}^{2}\right)
\end{aligned}
$$

- Requirements: Data only interact through inner product

Kernel PCA: Example

Kernel PCA: Example

- PCA fails to capture the data's two ring structurerings are not separated in the first 2 components.

Kernel PCA: Kernel Recap

- Linear classifiers:
- Often adequate, but not always.
- Idea: data implicitly mapped to another space, in which they are linearly classifiable
- Image mapping:

$$
\mathbf{x} \mapsto \phi(\mathbf{x})
$$

- Associated kernel:

$$
\kappa\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \phi\left(\mathbf{x}_{j}\right)
$$

- Kernel = inner product =
 similarity of Examples.

Kernel PCA

- Covariance of centered data:

$$
\widehat{\boldsymbol{\Sigma}}_{x x}=\frac{1}{n} \sum_{i} \mathbf{x}_{i} \mathbf{x}_{i}^{\mathrm{T}}=\sum_{i}\left[\begin{array}{c}
x_{i 1} \\
\vdots \\
x_{i m}
\end{array}\right]\left[\begin{array}{lll}
x_{i 1} & \ldots & x_{i m}
\end{array}\right]
$$

- Eigenvectors: $\widehat{\boldsymbol{\Sigma}}_{x x} \mathbf{u}=\lambda \mathbf{u}$.
- In feature space, centered:

$$
\widehat{\boldsymbol{\Sigma}}_{\phi(x) \phi(x)}=\sum_{i} \phi\left(\mathbf{x}_{i}\right) \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}}
$$

- Eigenvectors:

$$
\begin{aligned}
& \widehat{\mathbf{\Sigma}}_{\phi(x) \phi(x)} \mathbf{u}=\lambda \mathbf{u} \\
& \sum_{i} \phi\left(\mathbf{x}_{i}\right) \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \mathbf{u}=\lambda \mathbf{u}
\end{aligned}
$$

- All solutions live in the span of $\phi\left(\mathbf{x}_{1}\right), \ldots \phi\left(\mathbf{x}_{n}\right)$

Kernel PCA

- All solutions live in the span of $\phi\left(\mathbf{x}_{1}\right), \ldots \phi\left(\mathbf{x}_{n}\right)$
- Hence, all eigenvectors u must be linear combination of $\phi\left(\mathbf{x}_{1}\right), \ldots \phi\left(\mathbf{x}_{n}\right)$:

$$
\exists \alpha_{k}: \mathbf{u}=\sum_{i=1}^{n} \alpha_{i} \phi\left(\boldsymbol{x}_{i}\right)
$$

- Hence, $\widehat{\boldsymbol{\Sigma}}_{\phi(x) \phi(x)} \mathbf{u}=\lambda \mathbf{u}$ is satisfied if n projected equations are satisfied:

$$
\begin{aligned}
& \forall i: \phi\left(x_{i}\right)^{\mathrm{T}} \widehat{\boldsymbol{\Sigma}}_{\phi(x) \phi(x)} \mathbf{u}=\lambda \phi\left(x_{i}\right) \mathbf{u} \\
& \Rightarrow \phi\left(x_{i}\right)^{\mathrm{T}} \sum_{j} \phi\left(\mathbf{x}_{j}\right) \phi\left(\mathbf{x}_{j}\right)^{\mathrm{T}} \sum_{k=1}^{n} \alpha_{k} \phi\left(\boldsymbol{x}_{k}\right) \\
& \quad=\lambda \phi\left(\mathbf{x}_{j}\right)^{\mathrm{T}} \sum_{k=1}^{n} \alpha_{k} \phi\left(\boldsymbol{x}_{k}\right)
\end{aligned}
$$

Kernel PCA

- n projected equations:

$$
\begin{aligned}
& \forall i: \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \widehat{\boldsymbol{\Sigma}}_{\phi(x) \phi(x)} \mathbf{u}=\lambda \phi\left(x_{i}\right) \mathbf{u} \\
& \begin{aligned}
\Rightarrow \phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \frac{1}{n} \sum_{j} \phi\left(\mathbf{x}_{j}\right) \phi\left(\mathbf{x}_{j}\right)^{\mathrm{T}} \sum_{k=1}^{n} \alpha_{k} \phi\left(\mathbf{x}_{k}\right) \\
\quad=\lambda \phi\left(\mathbf{x}_{j}\right)^{\mathrm{T}} \sum_{k=1}^{n} \alpha_{k} \phi\left(\mathbf{x}_{k}\right) \\
\Rightarrow \frac{1}{n} \sum_{j, k} \alpha_{k}\left[\phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \phi\left(\mathbf{x}_{j}\right)\right]\left[\phi\left(\mathbf{x}_{j}\right)^{\mathrm{T}} \phi\left(\mathbf{x}_{k}\right)\right] \\
\quad=\lambda \sum_{k=1}^{n} \alpha_{k}\left[\phi\left(\mathbf{x}_{i}\right)^{\mathrm{T}} \phi\left(\mathbf{x}_{k}\right)\right] \\
\Leftrightarrow \mathbf{K}^{2} \boldsymbol{\alpha}=n \lambda \mathbf{K} \boldsymbol{\alpha}<\mathbf{K}=\phi(\mathbf{X}) \phi(\mathbf{X})^{\mathrm{T}}
\end{aligned}
\end{aligned}
$$

Kernel PCA

- Results in eigenvalue problem:

$$
\mathbf{K} \boldsymbol{\alpha}=n \lambda \boldsymbol{\alpha}
$$

- Centering data in feature space:

$$
\begin{aligned}
& \mathbf{K}_{i j}^{c}=\left(\phi\left(\mathbf{x}_{i}\right)-\frac{1}{n} \sum_{k} \phi\left(\mathbf{x}_{k}\right)\right)\left(\phi\left(\mathbf{x}_{j}\right)-\frac{1}{n} \sum_{k} \phi\left(\mathbf{x}_{k}\right)\right) \\
&= \mathbf{K}_{i j}-\mathbf{k}_{i} \mathbf{1}_{j}^{\mathrm{T}}-\mathbf{1}_{i} \mathbf{k}_{j}^{\mathrm{T}}+\mathbf{k 1}_{i} \mathbf{1}_{j}^{\mathrm{T}} \\
& \mathbf{k}_{i}=\frac{1}{n} \sum_{k} \mathbf{K}_{i k} \quad \mathbf{k}=\frac{1}{n^{2}} \sum_{j, k} \mathbf{K}_{j k}
\end{aligned}
$$

Kernel-PCA

Algorithm

- Kernel-PCA finds dataset's principal components in an implicitly defined feature space
- Algorithm:

1. Compute kernel matrix $\mathbf{K}: \quad K_{i j}=\kappa\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
2. Center the kernel matrix:

$$
\overline{\mathbf{K}}=\mathbf{K}-\frac{1}{n} \mathbf{1 1}^{\mathrm{T}} \mathbf{K}-\frac{1}{n} \mathbf{K} \mathbf{1 1} \mathbf{1}^{\mathrm{T}}+\frac{\mathbf{1}^{\mathrm{T}} \mathbf{K} \mathbf{1}}{n^{2}} \mathbf{1 1}^{\mathrm{T}}
$$

3. Find its eigenvectors: $\mathbf{U}, \mathbf{V}=\operatorname{eig}(\overline{\mathbf{K}})$
4. Find the dual vectors: $\boldsymbol{\alpha}_{k}=\lambda_{k}^{-1 / 2} \mathbf{u}_{k}$
5. Project the data onto the subspace:

$$
\tilde{\mathbf{x}}_{j} \leftarrow\left\langle\sum_{i=1}^{n} \alpha_{k, i} \bar{K}_{i j}\right\rangle_{k=1}^{d}=\left\langle\boldsymbol{\alpha}_{k}{ }^{\mathrm{T}} \overline{\mathbf{K}}_{*, j}\right\rangle_{k=1}^{d}
$$

Kernel PCA

Ring Data Example

- Kernel PCA (RBF) does capture the data's structure \& resulting projections separate the 2 rings

Overview

- Principal Component Analysis (PCA)
- Kernel-PCA
- Fisher Linear Discriminant Analysis
- t-SNE

Fisher-Discriminant Analysis (FDA)

- The subspace induced by PCA maximally captures variance from all data
- Not the correct criterion for classification...

Fisher-Discriminant Analysis (FDA)

- Optimization criterion of PCA:
- Maximize the data's variance in the subspace.

$$
\max _{\mathbf{u}_{i}} \mathbf{u}^{\mathrm{T}} \boldsymbol{\Sigma} \mathbf{u} \text {, where } \mathbf{u}_{i}^{\mathrm{T}} \mathbf{u}_{j}=1, \mathbf{u}_{i} \perp \mathbf{u}_{j}
$$

- Optimization criterion of FDA:
- Maximize between-class variance and minimize withinclass variance within the subspace.
$\max _{\mathbf{u}} \frac{\mathbf{u}^{\mathrm{T}} \boldsymbol{\Sigma}_{b} \mathbf{u}}{\mathbf{u}^{\mathrm{T}} \boldsymbol{\Sigma}_{w} \mathbf{u}}$, where

$$
\boldsymbol{\Sigma}_{b}=\left(\overline{\mathbf{x}}_{+1}-\overline{\mathbf{x}}_{-1}\right)\left(\overline{\mathbf{x}}_{+1}-\overline{\mathbf{x}}_{-1}\right)^{\mathrm{T}}
$$

Fisher-Discriminant Analysis (FDA)

- Optimization criterion of FDA for k classes:
- Maximize between-class variance and minimize withinclass variance within the subspace.

$$
\boldsymbol{\Sigma}_{w}=\boldsymbol{\Sigma}_{1}+\cdots+\boldsymbol{\Sigma}_{k}
$$

$$
\boldsymbol{\Sigma}_{b}=\sum_{i=1}^{k} n_{i}\left(\overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}\right)\left(\overline{\mathbf{x}}_{i}-\overline{\mathbf{x}}\right)^{\mathrm{T}}
$$

Number of instances per class

- Generalized eigenvalue problem has $k-1$ different solutions

Fisher-Discriminant Analysis (FDA)

- The subspace induced by PCA maximally captures variance from all data
- Not the correct criterion for classification...

Overview

- Principal Component Analysis (PCA)
- Kernel-PCA
- Fisher Linear Discriminant Analysis
- t-SNE

t-SNE

- Impossible to preserve all distances when projecting data into lower-dimensional space.
- PCA: Preserve maximum variance.
- Variance is squared distance.
- Sum is dominated by instances that are far apart.
$\rightarrow \rightarrow$ Instances that are far apart from each other shall remain as far apart in the projected space.
- Idea of t-SNE: Preserve local neighborhood.
- Instances that are close to each other shall remain close in the projected space.
- Instances that are far apart may be moved further apart by the projection.

2D PCA for MNIST Handwritten Digits

- PAC is poor at preserving closeness between similar bitmaps.

3	6	8	7	7	7	6	4	4	1
6	7	5	7	8	6	3	4	8	5
2	1	7	7	7	6	2	4	7	5
4	7	1	9	8	1	8	8	9	4
7	6	1	7	6	4	1	5	6	0
7	5	9	2	5	5	8	1	9	7
7	2	2	2	2	3	4	4	8	0
0	2	5	8	0	7	3	8	5	7
0	1	4	6	4	6	0	2	6	9
7	1	2	3	7	6	9	8	6	1

Local Neighborhood in Original Space

- Probability that \mathbf{x}_{i} would pick \mathbf{x}_{j} as neighbor if neighbors were picked by Gaussian distribution centered at \mathbf{x}_{i} :

$$
p_{j \mid i}=\frac{\exp \left(\frac{-\left|\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|\right|^{2}}{2 \sigma_{i}^{2}}\right)}{\sum_{j \neq i} \exp \left(\frac{-\left|\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|\right|^{2}}{2 \sigma_{i}^{2}}\right)}
$$

- Set each σ_{i} such that conditional has fixed entropy.

Distance in Projected Space

- Probability that \mathbf{x}_{i} would pick \mathbf{x}_{j} as neighbor if neighbors were picked by Student's t-distribution centered at \mathbf{x}_{i} :

$$
q_{j \mid i}=\frac{\left(1+\left|\left|\mathbf{y}_{i}-\mathbf{y}_{j}\right|^{2}\right)^{-1}\right.}{\sum_{j \neq i}\left(1+\left|\left|\mathbf{y}_{i}-\mathbf{y}_{j}\right|^{2}\right)^{-1}\right.}
$$

- Student's t-distribution has heavier tails: very large distances are more likely than under Gaussian.
- Moving far instances further apart incurs less penalty.

t-SNE: Optimization Criterion

- Move instances around in projected space to minimize Kullback-Leibler divergence:

$$
K L(p \| q)=\sum_{i} \sum_{j \neq i} p_{j \mid i} \log \frac{p_{j \mid i}}{q_{j \mid i}}
$$

- If $p_{j \mid i}$ is large but $q_{j \mid i}$ is small: large penalty.
- If $q_{j \mid i}$ is large but $p_{j \mid i}$ is small: smaller penalty.
- Hence, preserves local neighborhood structure of the data.

t-SNE: Optimization

- Move instances around in projected space to minimize Kullback-Leibler divergence
- Gradient for projected instance \mathbf{y}_{i} : $\frac{\partial K L(p \| q)}{\partial \mathbf{y}_{i}}$

$$
=4 \sum_{j \neq i}\left(p_{j \mid i}-q_{j \mid i}\right)\left(1+\left|\left|\mathbf{y}_{i}-\mathbf{y}_{j}\right|^{2}\right)^{-1}\left(\mathbf{y}_{i}-\mathbf{y}_{j}\right)\right.
$$

- Implementation for large samples:
- Build quadtree over data
- Approximate $p_{j \mid i}$ and $q_{j \mid i}$ of instances in distinct branches by distances between centers of mass.

2D t-SNE for MNIST Handwritten Digits

- Local similarities are preserved better.

Summary

- PCA constructs lower-dimensional space that preserves most of the variance.
- Kernel PCA works on the kernel matrix; good when there are fewer instances than there are features.
- Fisher linear discriminant analysis maximizes between-class and minimizes within-class variance
- t-SNE finds a projection that preserves local neighborhood relations.

