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Overview 
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 Kernel-PCA 

 Fisher Linear Discriminant Analysis 
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PCA: Motivation  

 Data compression 

 Preprocessing (Feature Selection / Noisy Features) 

 Data visualization 
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PCA: Example 

 

 

 

 Representation of Digits as an 𝑚 ×𝑚 pixel matrix 

 The actual number of degrees of freedom is 

significantly smaller because many features 

 Are meaningless or 

 Are composites of several pixels 

 Goal: Reduce to a 𝑑-dimensional subspace 
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PCA: Example 

 

 

 

 Representation of faces as an 𝑚 ×𝑚 pixel matrix 

 The actual number of degrees of freedom is significantly 

smaller because many combinations of pixels cannot 

occur in faces 

 Reduce to a 𝑑-dimensional subspace 
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PCA: Projection 

 A Projection is an idempotent linear Transformation 
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Center point: 

𝐱 =
1

𝑛
 𝐱𝑖

𝑛

𝑖=1

 

Covariance: 

𝚺 =
1

𝑛
 𝐱𝑖 − 𝐱 𝐱𝑖 − 𝐱 T

𝑛

𝑖=1

 

 

Data points 𝐱𝑖 

Projected data points proj𝐮𝐱 = 𝐮𝐱𝑖  

𝐮 
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PCA: Projection 

 A Projection is an idempotent linear Transformation 

 

 Let 𝐮1 ∈ ℝ𝑚 with 𝐮1
T𝐮1 = 1 

 𝑦1 𝐱 = 𝐮1
T𝐱 constitutes a  

projection onto a  

one-dimensional subspace   

 

 For data in the projection‘s space, it follows that: 

 Center (mean): 𝑦1  𝐱 = 𝐮1
T 𝐱 

 Variance:  
1

𝑛
 𝐮1

T𝐱𝑖 − 𝐮1
T 𝐱

2𝑛
𝑖=1 = 𝐮1

T𝚺 𝐮1 
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PCA: Problem Setting 

 Given: data 𝐗 =

𝐱1

𝐱𝑛

=

𝑥11 … 𝑥1𝑚
⋱

𝑥𝑛1 … 𝑥𝑛1

 

 Find matrix 𝐔 =
| |
𝐮1 ⋯ 𝐮𝑑
| |

 such that 

 Vectors 𝐮𝑖 are orthonormal basis. 

 Vector 𝐮1 preserves maximal variance of data: 

max
𝐮1: 𝐮1 =1

𝐮1
T1
𝑛𝐗𝐗

T𝐮1 

 Vector 𝐮𝑖 preserves maximal residual variance. 

max
𝐮𝑖: 𝐮𝑖 =1,𝐮𝑖⊥𝐮1,…,𝐮𝑖⊥𝐮𝑖−1

𝐮𝑖
T1
𝑛𝐗𝐗

T𝐮𝑖 
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PCA: Problem Setting 

 Given: data 𝐗 =

𝐱1

𝐱𝑛

=

𝑥11 … 𝑥1𝑚
⋱

𝑥𝑛1 … 𝑥𝑛1

 

 Find matrix 𝐔 =
| |
𝐮1 ⋯ 𝐮𝑑
| |

 such that 

 Value 𝐮𝑘
T𝐱𝑖 is projection of 𝐱𝑖 onto dimension 𝐮𝑘. 

 Vector 𝐔T𝐱𝑖 is projection of 𝐱𝑖 onto coordinates 𝐔. 

 Matrix 𝐘 = 𝐗𝐔 is projection of 𝐗 onto coordinates 𝐔: 

𝐘 = 𝐗𝐔 =

𝐱1𝐮1 … 𝐱1𝐮𝑑
⋱

𝐱𝑛𝐮1 … 𝐱𝑛𝐮𝑑
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PCA: Assumption 

 To simplify the notation, assume centered data. 

 𝐱 = 0. 

 Can be achieved by subtracting mean value 

 𝐱𝑖
𝑐 = 𝐱𝑖 − 𝐱  
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PCA: Direction of Maximum Variance 

 Find direction 𝐮1 that maximizes projected variance 

 Instances 𝐱~𝑃𝑋 (assume mean 𝐱 = 0). 

 The projected variance onto (normalized) 𝐮1 is 

E proj𝐮1𝐱
2
= E 𝐮1

T𝐱𝐱T𝐮1 = 𝐮1
T 𝐸 𝐱𝐱T

𝚺𝐱𝐱

𝐮1 

𝐸 𝐱𝐱T = 

𝑥𝑖1
⋮

𝑥𝑖𝑚

𝑥𝑖1 … 𝑥𝑖𝑚
𝑛

𝑖=1

= 
𝑥𝑖1 − 𝑥 𝑖1

2 𝑥𝑖1 − 𝑥 𝑖1 𝑥𝑖𝑚 − 𝑥 𝑖𝑚
⋱

𝑥𝑖𝑚 − 𝑥 𝑖𝑚 𝑥í1 − 𝑥 𝑖1 𝑥𝑖𝑚 − 𝑥 𝑖𝑚
2

𝑛

𝑖=1
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PCA: Direction of Maximum Variance 

 Find direction 𝐰 that maximizes projected variance 

 Instances 𝐱~𝑃𝑋 (assume mean 𝐱 = 0). 

 The projected variance onto (normalized) 𝐮1 is 

E proj𝐮1𝐱
2
= E 𝐮1

T𝐱𝐱T𝐮1 = 𝐮1
T 𝐸 𝐱𝐱T

𝚺𝐱𝐱

𝐮1 

12 

 The empirical covariance 

matrix (of centered data) is 

𝚺 𝑥𝑥 =
1
𝑛𝐗𝐗

T 

 How can we find direction 𝐮1 

to maximize  𝐮1
T𝚺 𝑥𝑥𝐮1?  

 How can we kernelize it? 



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II 

PCA: Optimization Problem 

 Solution for  𝐮1: max variance of the projected data: 

max
𝐮1

 𝐮1
T𝚺 𝑥𝑥 𝐮1, such that 

𝐮1
T𝐮1 = 1 

 

 Lagrangian:  𝐮1
T𝚺 𝑥𝑥  𝐮1+ 𝜆1 1 − 𝐮1

T𝐮1  
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PCA: Optimization Problem 

 Solution for  𝐮1: max variance of the projected data: 

max
𝐮1

 𝐮1
T𝚺 𝑥𝑥 𝐮1, such that 

𝐮1
T𝐮1 = 1 

 

 Lagrangian:  𝐮1
T𝚺 𝑥𝑥  𝐮1+ 𝜆1 1 − 𝐮1

T𝐮1  

 Taking its derivative & setting it to 0:  𝚺 𝑥𝑥𝐮1 = 𝜆1𝐮1 

  The solution 𝐮1 must be an eigenvector of 𝚺 𝑥𝑥 

 Variance of the projected data: 

𝐮1
T𝚺 𝑥𝑥𝐮1 = 𝐮1

T𝜆1𝐮1 = 𝜆1 

 The solution is the eigenvector 𝐮1 of 𝚺 𝑥𝑥 with greatest 

eigenvalue 𝜆1, called the 1st principal component 
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PCA: Optimization Problem 

 Solution for  𝐮𝑖: max variance of the projected data: 

max
𝐮𝑖

 𝐮𝑖
T𝚺 𝑥𝑥 𝐮𝑖 , such that 

𝐮𝑖
T𝐮𝑖 = 1 

𝐮𝑖 ⊥ 𝐮1, … , 𝐮𝑖 ⊥ 𝐮𝑖−1 

 Lagrangian:  𝐮𝑖
T𝚺 𝑥𝑥  𝐮𝑖+ 𝜆𝑖 1 − 𝐮𝑖

T𝐮𝑖  

 Taking its derivative & setting it to 0:  𝚺 𝑥𝑥𝐮𝑖 = 𝜆𝑖𝐮𝑖 

  The solution 𝐮𝑖 must be an eigenvector of 𝚺 𝑥𝑥 

 To maximize variance of the projected data: 

𝐮𝑖
T𝚺 𝑥𝑥𝐮𝑖 = 𝐮𝑖

T𝜆𝑖𝐮𝑖 = 𝜆𝑖 

 And to assure that 𝐮𝑖 are orthogonal: 

 𝐮𝑖 is eigenvector with next-best eigenvalue 𝜆𝑖 < 𝜆𝑖−1. 

15 



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II 

PCA: Optimization Problem 

 Eigenvector decomposition implies: 

𝚺 𝑥𝑥 = 𝐔𝚲𝐔T 

 With 𝚲 =
𝜆1 0 0
0 ⋱ 0
0 0 𝜆𝑚

 

 However, if 𝐔1:𝑑 contains the first 𝑑 eigenvectors, 

then 𝐘 = 𝐗𝐔1:𝑑has only a fraction of the variance: 

 𝜆𝑖
𝑑
𝑖=1

𝑡𝑟(𝚺 𝑥𝑥)
 

 Choose 𝑑 smaller than 𝑚 but large enough to cover 

most of the variance. 
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PCA 

 Projection of 𝐱 to the eigenspace: 

            

𝑦1 𝐱 = 𝐮1
T𝐱           𝑦 𝐱 = 𝐔T𝐱  with 𝐔 =

| |
𝐮1 ⋯ 𝐮𝑑
| |

 

 

 

 Largest eigenvector is 1st principal component 

 The remaining principal components are orthogonal 

directions which maximize the residual variance 

 𝑑 principal components  vectors of the 𝑑 largest 

eigenvalues 
17 

𝐘 = 𝐗𝐔 
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PCA: Reverse Projection 

 Observation: 𝐮𝑗  form a basis for ℝ𝑚 & 𝑦𝑗 𝐱  are 

the coordinates of 𝐱 in that basis 

 Data 𝐱𝑖 can thus be reconstructed in that basis: 

𝐱𝑖 = 𝐱𝑖
T𝐮𝑗

𝑚

𝑗=1

𝐮𝑗     or    𝐗 = 𝐔𝐔T𝐗 

 If data lies (mostly) in 𝑑-dimensional principal 

subspace, we can also reconstruct the data there: 

𝐱 𝑖 = 𝐱𝑖
T𝐮𝑗

𝑑

𝑗=1

𝐮𝑗     or    𝐗 = 𝐔1:𝑑𝐔1:𝑑
T𝐗 

 where 𝐔1:𝑑 is the matrix of 1st 𝑑 eigenvectors 
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Reverse Projection: Example 

 Morphace (Universität Basel) 

 3D face model of 200 persons (150,000 features) 

 PCA with 199 principal components. 
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PCA: Algorithm 

 PCA finds dataset’s principal components, which 

maximize the projected variance 

 Algorithm: 

1. Compute data’s mean:  𝛍 = 1

𝑛
 𝐱𝑖
𝑛
𝑖=1  

2. Compute data’s covariance:  

𝚺 𝑥𝑥 =
1

𝑛
 𝐱𝑖 − 𝛍 𝐱𝑖 − 𝛍 T𝑛
𝑖=1  

3. Find principal axes: 𝐔 = eigenvektors  𝚺 𝑥𝑥  

4. Project data onto 1st d eigenvectors 

𝐱 𝑖 ← 𝐔1:𝑑
T 𝐱𝑖 − 𝛍  
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Difference Between PCA and Autoencoder 

 PCA: Linear mapping 𝑦 𝐱 = 𝐔T𝐱 from 𝐱 to 𝐲. 

 Autoencoder: Linear mapping from 𝐱 to 𝐡, then 

nonlinear activation function 𝐲 = 𝝈(𝐱). 

 Autoencoder with squared loss and linear activation 

function = PCA. 

 Stacked autoencoder: more nonlinearity, more 

complex mappings. 

 Kernel-PCA: linear mapping in feature space 𝚽. 
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Overview 

 Principal Component Analysis (PCA) 

 Kernel-PCA 

 Fisher Linear Discriminant Analysis 

 t-SNE 
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Kernel PCA 

25 

 Requirements: Data only interact through inner 

product 

 

 PCA can only capture linear subspaces 

 More complex features can capture non-linearity  

 Want to use PCA in high-dimensional spaces 
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Kernel PCA: Example 

26 



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II 

Kernel PCA: Example 

 PCA fails to capture the data’s two ring structure—

rings are not separated in the first 2 components. 
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Kernel PCA: Kernel Recap 
 

 Linear classifiers: 

 Often adequate, but not always. 

 Idea: data implicitly mapped to 

another space, in which they are 

linearly classifiable  

 Image mapping: 

𝐱 ↦ 𝜙 𝐱  

 Associated kernel: 

𝜅 𝐱𝑖 , 𝐱𝑗 = 𝜙 𝐱𝑖
T𝜙 𝐱𝑗  

 Kernel = inner product  = 

similarity of Examples. 

- 

- 

- 
+ 

+ 

+ 

+ 

- 

- 

- 

- 

- 

- 

+ 

(-) 

(-) 

(-) 

(-) 

(-) 

(-) 

(-) 

(-) 
(-) 

(+) 

(+) 

(+) 

(+) (+) 
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Kernel PCA 

 Covariance of centered data: 

𝚺 𝑥𝑥 =
1

𝑛
 𝐱𝑖𝐱𝑖

T

𝑖
= 

𝑥𝑖1
⋮

𝑥𝑖𝑚

𝑥𝑖1 … 𝑥𝑖𝑚
𝑖

 

 Eigenvectors: 𝚺 𝑥𝑥𝐮 = 𝝀𝐮. 

 In feature space, centered: 

𝚺 𝜙 𝑥 𝜙 𝑥 = 𝜙 𝐱𝑖 𝜙 𝐱𝑖
T

𝑖
 

 Eigenvectors:  
𝚺 𝜙 𝑥 𝜙 𝑥 𝐮 = 𝝀𝐮 

 𝜙 𝐱𝑖 𝜙 𝐱𝑖
T

𝑖
𝐮 = 𝝀𝐮 

 All solutions live in the span of 𝜙 𝐱1 , …𝜙 𝐱𝑛  

 29 
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Kernel PCA 

 All solutions live in the span of 𝜙 𝐱1 , …𝜙 𝐱𝑛  

 Hence, all eigenvectors 𝐮 must be linear 

combination of 𝜙 𝐱1 , …𝜙 𝐱𝑛 : 

∃𝛼𝑘: 𝐮 = 𝛼𝑖𝜙(𝒙𝑖)
𝑛

𝑖=1
 

 Hence, 𝚺 𝜙 𝑥 𝜙 𝑥 𝐮 = 𝝀𝐮 is satisfied if 𝑛 projected 

equations are satisfied: 

∀𝑖: 𝜙 𝑥𝑖
T𝚺 𝜙 𝑥 𝜙 𝑥 𝐮 = 𝜆𝜙 𝑥𝑖 𝐮 

⇒ 𝜙 𝑥𝑖
T 𝜙 𝐱𝑗 𝜙 𝐱𝑗

T

𝑗
 𝛼𝑘𝜙(𝒙𝑘)

𝑛

𝑘=1

= 𝜆𝜙 𝐱𝑗
T
 𝛼𝑘𝜙(𝒙𝑘)

𝑛

𝑘=1
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Kernel PCA 

 𝑛 projected equations: 

∀𝑖: 𝜙 𝐱𝑖
T𝚺 𝜙 𝑥 𝜙 𝑥 𝐮 = 𝜆𝜙 𝑥𝑖 𝐮 

⇒ 𝜙 𝐱𝑖
T
1

𝑛
 𝜙 𝐱𝑗 𝜙 𝐱𝑗

T

𝑗
 𝛼𝑘𝜙(𝐱𝑘)

𝑛

𝑘=1

= 𝜆𝜙 𝐱𝑗
T
 𝛼𝑘𝜙(𝐱𝑘)

𝑛

𝑘=1
 

⇒
1

𝑛
 𝛼𝑘 𝜙 𝐱𝑖

T𝜙 𝐱𝑗 𝜙(𝐱𝑗) 
T𝜙(𝐱𝑘)

𝑗,𝑘
 

= 𝜆 𝛼𝑘 𝜙 𝐱𝑖
T𝜙(𝐱𝑘)

𝑛

𝑘=1
 

⇔ 𝐊𝟐𝜶 = 𝑛𝜆𝐊𝜶 

⇐ 𝐊𝜶 = 𝑛𝜆𝜶 
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𝐊 = 𝜙 𝐗 𝜙 𝐗 T 
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Kernel PCA 

 Results in eigenvalue problem: 

𝐊𝜶 = 𝑛𝜆𝜶 

 

 Centering data in feature space: 

𝐊𝑖𝑗
𝑐 = 𝜙 𝐱𝑖 −

1

𝑛
 𝜙(𝐱𝑘

𝑘
) 𝜙 𝐱𝑗 −

1

𝑛
 𝜙(𝐱𝑘

𝑘
)

= 𝐊𝑖𝑗 − 𝐤𝑖𝟏𝑗
T − 𝟏𝑖𝐤𝑗

T + 𝐤𝟏𝑖𝟏𝑗
T 

32 

𝐤𝑖 =
1

𝑛
 𝐊𝑖𝑘

𝑘
 𝐤 =

1

𝑛2
 𝐊𝒋𝑘

𝑗,𝑘
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Kernel-PCA 
 Algorithm 

 Kernel-PCA finds dataset’s principal components in 

an implicitly defined feature space 

 Algorithm: 

1. Compute kernel matrix 𝐊:      𝐾𝑖𝑗 = 𝜅 𝐱𝑖 , 𝐱𝑗  

2. Center the kernel matrix:   

𝐊 = 𝐊 −
1

𝑛
𝟏𝟏T𝐊 −

1

𝑛
𝐊𝟏𝟏T +

𝟏T𝐊𝟏

𝑛𝟐
𝟏𝟏T 

3. Find its eigenvectors:  𝐔, 𝐕 = eig  𝐊   

4. Find the dual vectors:  𝛂𝑘 = 𝜆𝑘
−1 2 𝐮𝑘 

5. Project the data onto the subspace: 

𝐱 𝑗 ←  𝛼𝑘,𝑖𝐾 𝑖𝑗
𝑛

𝑖=1
𝑘=1

𝑑

= 𝛂𝑘
T𝐊 ∗,𝑗 𝑘=1

𝑑
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Kernel PCA 
 Ring Data Example 

 Kernel PCA (RBF) does capture the data’s structure 

& resulting projections separate the 2 rings 

35 
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Overview 

 Principal Component Analysis (PCA) 

 Kernel-PCA 

 Fisher Linear Discriminant Analysis 

 t-SNE 

 

39 



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II 

Fisher-Discriminant Analysis (FDA) 

 The subspace induced by PCA maximally captures 

variance from all data 

 Not the correct criterion for classification… 

40 
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Fisher-Discriminant Analysis (FDA) 

 Optimization criterion of PCA: 

 Maximize the data‘s variance in the subspace. 

max𝐮𝑖𝐮
T𝚺𝐮, where 𝐮𝑖

T𝐮𝑗 = 1, 𝐮𝑖 ⊥ 𝐮𝑗 

 

 Optimization criterion of FDA: 

 Maximize between-class variance and minimize within-

class variance within the subspace. 

max𝐮   
𝐮T𝚺𝑏𝐮

𝐮T𝚺𝑤𝐮
,  where   

𝚺𝑤 = 𝚺+1 + 𝚺−1
𝚺𝑏 = 𝐱+1 − 𝐱−1 𝐱+1 − 𝐱−1

T 
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Variance 

per class  
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Fisher-Discriminant Analysis (FDA) 

 Optimization criterion of FDA for 𝑘 classes: 

 Maximize between-class variance and minimize within-

class variance within the subspace. 

max𝐮   
𝐮T𝚺𝑏𝐮

𝐮T𝚺𝑤𝐮
,  where   

𝚺𝑤 = 𝚺1 +⋯+ 𝚺𝑘
𝚺𝑏 =  𝑛𝑖 𝐱𝑖 − 𝐱 𝐱𝑖 − 𝐱 T𝑘

𝑖=1
 

 

 

 

 Generalized eigenvalue problem has 𝑘 − 1 different 

solutions 
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Number of instances per class Leads to the generalized 

eigenvalue problem 𝚺𝑏𝐮 = 𝜆𝚺𝑤𝐮 
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Fisher-Discriminant Analysis (FDA) 

 The subspace induced by PCA maximally captures 

variance from all data 

 Not the correct criterion for classification… 
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Overview 

 Principal Component Analysis (PCA) 

 Kernel-PCA 

 Fisher Linear Discriminant Analysis 

 t-SNE 
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t-SNE 

 Impossible to preserve all distances when projecting data into 

lower-dimensional space.  

 PCA: Preserve maximum variance. 

 Variance is squared distance. 

 Sum is dominated by instances that are far apart. 

 → Instances that are far apart from each other shall remain 

as far apart in the projected space. 

 

 Idea of t-SNE: Preserve local neighborhood. 

 Instances that are close to each other shall remain close in 

the projected space. 

 Instances that are far apart may be moved further apart by 

the projection. 
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2D PCA for MNIST Handwritten Digits 

 PAC is poor at preserving closeness between 

similar bitmaps. 
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Local Neighborhood in Original Space 

 Probability that 𝐱𝑖 would pick 𝐱𝑗 as neighbor if 

neighbors were picked by Gaussian distribution 

centered at 𝐱𝑖: 

𝑝𝑗|𝑖 =

exp 
− 𝐱𝑖 − 𝐱𝑗

2

2𝜎𝑖
2

 exp 
− 𝐱𝑖 − 𝐱𝑗

2

2𝜎𝑖
2𝑗≠𝑖

 

 Set each 𝜎𝑖 such that conditional has fixed entropy.  
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Distance in Projected Space 

 Probability that 𝐱𝑖 would pick 𝐱𝑗 as neighbor if 

neighbors were picked by Student‘s 𝑡-distribution 

centered at 𝐱𝑖: 

𝑞𝑗|𝑖 =
 1 + 𝐲𝑖 − 𝐲𝑗

2 −1

 1 + 𝐲𝑖 − 𝐲𝑗
2 −1

𝑗≠𝑖

 

 Student‘s 𝑡-distribution has heavier tails: very large 

distances are more likely than under Gaussian. 

 Moving far instances further apart incurs less 

penalty. 
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t-SNE: Optimization Criterion 

 Move instances around in projected space to 

minimize Kullback-Leibler divergence: 

𝐾𝐿(𝑝| 𝑞 =  𝑝𝑗|𝑖 log
𝑝𝑗|𝑖

𝑞𝑗|𝑖
𝑗≠ 𝑖𝑖

 

 If 𝑝𝑗|𝑖 is large but 𝑞𝑗|𝑖 is small: large penalty. 

 If 𝑞𝑗|𝑖 is large but 𝑝𝑗|𝑖 is small: smaller penalty. 

 Hence, preserves local neighborhood structure of 

the data. 
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t-SNE: Optimization 

 Move instances around in projected space to 

minimize Kullback-Leibler divergence 

 Gradient for projected instance 𝐲𝑖: 
𝜕𝐾𝐿(𝑝| 𝑞

𝜕𝐲𝑖

= 4 (𝑝𝑗|𝑖−𝑞𝑗|𝑖) 1 + 𝐲𝑖 − 𝐲𝑗
2 −1

(𝐲𝑖 − 𝐲𝑗)

𝑗≠𝑖

 

 Implementation for large samples: 

 Build quadtree over data 

 Approximate 𝑝𝑗|𝑖 and 𝑞𝑗|𝑖 of instances in distinct 

branches by distances between centers of mass. 
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2D t-SNE for MNIST Handwritten Digits 

 Local similarities are preserved better. 
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Summary 

 PCA constructs lower-dimensional space that 

preserves most of the variance. 

 Kernel PCA works on the kernel matrix; good when 

there are fewer instances than there are features. 

 Fisher linear discriminant analysis maximizes 

between-class and minimizes within-class variance 

 t-SNE finds a projection that preserves local 

neighborhood relations.  
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