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Markov Decision Processes 

 (Finite) Markov Decision Process: Tuple (𝑆, 𝐴, 𝑅, 𝑃) 

 𝑆 : Finite state space (set of states).  

 𝐴 : Finite action space (set of actions). 

 𝑃 : Transition probabilities. 

 

 𝑅 : Expected Immediate Reward.  

 

 

 

 Discount factor                  . 
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Function Approximation 

 Modelling 

 Value Iteration 

 Least-Squares Methods 

 Gradient Methods 

 Policy Iteration 

 Least-Squares Methods 

 Gradient Methods 

 Policy Gradient 

 Actor-Critic Methods  
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Function Approximation 

 Represent Value Function as parametric function 

from function space 𝐹 with parameter vector µ. 

 

 

 Approximation e.g. with linear function  

 𝑄 𝑠, 𝑎; 𝜃 = 𝜙𝑠,𝑎
⊤ 𝜃  with feature vector 𝜙𝑠,𝑎 and 

parameter vector 𝜃. 

 𝑉 𝑠; 𝜃 = 𝜙𝑠
⊤𝜃  with feature vector 𝜙𝑠 and parameter 

vector 𝜃. 

 Or you could learn a deep neural net. 
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Function Approximation 

 Prediction problem: Find parameter vector µ, such 

that 𝑉𝜋, or 𝑄𝜋 resp., will be approximated best.  

 

 

 

 

 

 Unfortunately, we normally do not know 𝑉𝜋, or 𝑄𝜋, 

resp.  
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Function Approximation 

 Generative Model 

 Assumption: We can sample from 𝑃 and 𝑅 at time. 

 But we cannot query 𝑃(𝑠‘|𝑠, 𝑎) directly. 

 

 The Reinforcement Learning Problem: 

 Examples < 𝑠𝑡, 𝑎𝑡 , 𝑅𝑡, 𝑠𝑡+1 > from interaction with the 

environment. 

 One possibility: Interaction according to policy we are 

currently learning. 

 On-policy distribution of states 𝜇(𝑠). 
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Batch Reinforcement Learning 

 Episode sampled according to (behavior) policy 𝜋𝑏. 

 

 At time of training only this one episode is available. 
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Approximate Policy Iteration 

 Initialize Policy  

 

 Iterate 

 Approximate Policy Evaluation 

 Find      , an element of F, as an approximation of     

via 

 Interaction 

 Fixed training set 

 

 Policy Improvement 

 Find       , such that  
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Approximate Policy Iteration 

 If samples of 𝑄𝜋(𝑠, 𝑎) are known, learn 𝑄𝜋 based 

on training sample with the help of a supervised 

regression method. 

 

 Problem: Often training examples are sampled off-

policy, that is, examples are observed when 

following a (different) behavior policy. 

 Sample Selection Bias (Differing training and test 

distributions 𝑝(𝑠, 𝑎))  
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Approximate Policy Evaluation 

 Idea: Minimize the quadratic difference between 

𝑄 and 𝑇𝑄.  

 Mean Squared Bellman Error  

 

 Unfortunately 𝑇𝑄 is not necessarily in F.  

 

 Better: Minimize 

 

 

 Mean Squared Projected Bellman Error 

 

 

More on that later! 
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Bellman Residual Minimization 

 Temporal Difference method.  

 Bellman equation as fixed point equation. 

 

 Interpret left hand side as error: Bellman Residual. 

𝜇 is stationary distribution of states. 

 

 Empirical: Draw samples < 𝑠𝑡 , 𝑎𝑡 , 𝑅𝑡 , 𝑠𝑡+1>, e.g. by 

using 𝜋 in the environment.  
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Bellman Residual Minimization 

 Problem: Estimation             is biased. 

 

 Because 

 

  

 

 It follows: 
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Bellman Residual Minimization 

 But let                                                           . Then 

 

 

 

 

 

 

 But the following holds for expected values of 

random variables 𝑋: 
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Bellman Residual Minimization 

 Application of inner expected value: 

 

 

 

 

 

 

 It follows that the estimation based on samples as 

above is biased. 
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Bellman Residual Minimization 

 How can we get an unbiased sample of    

                                                           

                                                          ? 

 

 

 Define the sampled temporal difference error  
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Bellman Residual Minimization 

 Alternative derivation for BRM with function 

approximation. 

 Optimization criterion. Minimize 

 

 

 

 

 Gradient 
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Bellman Residual Minimization 

 That is why we should draw two independent next 

states in order to get an unbiased estimate 

 Not very practical and often unrealistic. 

 

 Instead, it was proposed to just draw one sample of 

next state  and make the updates with only this 

sample. 

 But then the algorithm does not converge towards 

the fixed point of 𝑇𝜋.  
 

any more. 
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Residual Gradient 

 This new solution is called the Residual Gradient 

(RG) solution. 

 

 Usually this solution is not as good as the exact 

BRM solution. 

 

 On the bright side, we compute a stochastic ‚real‘ 

gradient (though not for the original optimization 

problem) 

 (more on that later)   
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BRM 

 Proposition: [Antos et. al. 07] 

Unbiased estimation with the help of a helper 

function ℎ ∈ 𝐹.  
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Least-Squares Temporal Difference 

 𝑄 is a member of function space 𝐹. 

 𝑇𝜋𝑄 might not. 

 LSTD minimizes the quadratic distance between 𝑄 

and the projection of on  𝑇𝜋𝑄 on 𝐹. 

 

 

 

 

 Unbiased. 

 LSTD often gives better results. 
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Fitted Policy Evaluation with Samples 

 

 𝑄 = 0. 

 Draw 𝑁 samples 𝑠, 𝑎 from 𝜇 𝑠 ,𝑝(𝑎). Draw 𝑀 

samples of 𝑅 and next state 𝑠′ according to the 

model. 

 Iterate: 

 Use those samples < 𝑠, 𝑎, 𝑅, 𝑠‘ > to do a Bellman 

update step: 

 

 

 Do least-squares fitting: 

1

1
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M

k k

i

Q s a R s a Q s s 

2

1 1 2
1

ˆ ( , ) arg min ( , ) ( , ) 




 
M

k k i i i i
f

i

Q s a Q s a f s a



In
te

llig
e
n

t D
a

ta
 A

n
a
ly

s
is

 II 

Projected Bellman Equation 

 Linear approximation of 𝑄 function 

 

 Fixed point of Bellman equation 

 Projection: Least-Squares 

 Define  
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Projected Bellman Equation 

 Linear approximation 

 Define 

 

 

 It follows 

 

 With the help of                                                    , 

 

𝑄𝜋 can be computed as the solution of 

1( )T T    

πT (Q) = r + pπQ

 πQ T (Q)

Q =

,  ,      T T Tz    pπ r

z      
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LSTD-Q 

 Given a set of n samples 

 

 

 

 

 

 

 

Solve for 
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LSPE-Q 

 Given a set of n samples 
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Convergence 

 For 𝑛 → ∞, both solutions 𝜃 𝑖
𝜋 converge to the 

solution 𝜃𝑖
𝜋 of the projected Bellman equation. 

Convergence can be proven for both algorithm if 

samples are drawn from 𝜋. 

 Intuitively correct because 

 

 

 But  𝜋 should not be deterministic. Use e.g. 𝜖-

greedy policy instead. 

 

1 1 1
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Least-Squares Methods 

 LSPE-Q is an incremental algorithm. It could be 

used as an online on-policy method. That way it 

could e.g. make use of a good starting point 𝜃 𝑖
𝜋 . 

 

 LSTD-Q on the other hand computes the solution in 

one step. This generally means better stability in 

comparison to LSPE.  
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Gradient Based Policy Evaluation 

 Another option for (online) policy evaluation are 

gradient based methods. 

 

 

 

 

 

 𝑄𝜋(𝑠𝑡 , 𝑎𝑡) is unknown. We approximate it using a 

stochastic approximation of a Bellman update (1 

Sample)  
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TD(0) 

 The following update rule for TD(0) follows: 

 

 

 Special case for linear function approximation 

 

 

 Again, it holds that the policy should not be 

deterministic. 

 

 But: This is not a sample of a real gradient! 
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Gradient Based Policy Evaluation 

 „Real“ gradient is Residual Gradient  

 

 

 

 

 Empirical gradient (1 Sample) 
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Convergence 

 Convergence for TD(0) can be shown under 

specific assumptions and using an on-policy 

sample process.  

 Like always for on-policy learning: Use stochastic 

policy. 

 In order to learn a (nearly) deterministic policy, the 

epsilon of an 𝜖-greedy policy can be adjusted 

(lowered) over time. 

 Unfortunately, for very small epsilon the 

convergence is not guaranteed anymore! 



In
te

llig
e
n

t D
a

ta
 A

n
a
ly

s
is

 II 

Convergence 

 Residual Gradient has better convergence 

properties. One reason for that is that it is a ‚real‘ 

gradient. 

 

 For off-policy TD(0) policy evaluation, no 

convergence can be shown. (It might still converge 

in practice.) 
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Off-Policy Policy Evaluation 

 Off-policy policy evaluation means that the samples 

𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1   are sampled using a behavior policy 𝜋𝑏 

while we want to learn the value function of another  

policy 𝜋.  

 𝜋𝑏 is generally stochastic in order to guarantee that 

all state-action pairs are observed. 

 

 Practical realization dependent on 𝜋𝑏 

 If 𝜋𝑏 deterministic, realization via subsampling. 

 If 𝜋𝑏 stochastic, realization via importance sampling. 
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Off-Policy Policy Evaluation 

 Subsampling: 

 Ignore all examples (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) that are not in line 

with policy 𝜋. 

 

 Importance Sampling: 

 Reweight each example in the update step. E.g. 

TD(0): 

 

     

 

 TD(0) with Importance Sampling: 

 1 ( ) ( , )t t t t t t ts a        

[ ( ) ] [ ( ) ]

( , )

( , )

t t t t t

t t
t

b t t

E E

s a

s a

      












In
te

llig
e
n

t D
a

ta
 A

n
a
ly

s
is

 II 

Divergence of Q-Learning 
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Off-Policy Policy Evaluation 

 New algorithms that also show convergence under 

off-policy learning. 

 E.g. GTD algorithm. (Gradient TD) 

 Idea: New Optimization criterion: Minimize the 𝑙2-

norm of TD(0) updates.  

 

 

 Because update can be considered as error of 

current solution 𝜃, this minimization criterion makes 

intuitive sense. 

[ ( ) ] [ ( ) ]T

t t t tE E     
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GTD-Algorithm 

 The gradient can be computed as follows: 

 

 

 

 For approximations based on samples (for 

stochastic gradient), only one of the two 

expectations will be sampled directly. 
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Approximate PI – Theoretical Guarantees 

 Convergence of approximate Policy Iteration 

algorithms is not provable in general. 

 

 It is possible to state suboptimality bounds, 

depending on errors in policy evaluation and policy 

improvement steps. 
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Approximate PI – Theoretical Guarantees 

 If the error for Policy Evaluation is upper bounded 

by 

 

 

 If the error for Policy Improvement is upper 

bounded by 

 

 

 Then the overall error can be upper bounded by 
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Approximate Value Iteration 

 Analoguously to approximate Policy Evaluation: 

Find fixed point of Bellman equations for the control 

problem. 

 

 

 

 With parametric approximation with parameter 

vector 𝜃:  

 

 

 

 

Q T Q

( )T Q 
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Approximate Value Iteration 

 The Bellman operator is defined as 

 

 

 

 The projection is realized using least-squares 

approximation 
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Fitted Value Iteration with Samples 

 [Szepesvári & Munos 05] 

 𝑉 = 0. 

 Draw 𝑁 states s according to 𝜇(𝑠). 

 For each 𝑠 and 𝑎 ∈ 𝐴, draw 𝑀 next states 𝑠‘ from 

𝑃(𝑠′|𝑠, 𝑎) and rewards 𝑅(𝑠, 𝑎).  

 Iterate: 

 Use those sample < 𝑠, 𝑎, 𝑅, 𝑠‘ > to perform one 

Bellman update step: 

 

 

 least-squares fitting: 
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Error Estimation 
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Approximate Q-Learning 

 Linear parametrization of 𝑄-function. 

 

 In each iteration, update: 

 

 

 

 Analogously to TD(0), the unknown 𝑄∗ 𝑠𝑡 , 𝑎𝑡  will 

be approximated with a Bellman update  

2
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Approximate Q-Learning 

 Stochastic gradient method. The expectation is 

approximated by stochastic samples.  

 

 

 

 

 

 It is possible to show convergence of approximate 

Q-Learning under specific assumptions. 

Restrictions on type of policy and feature vectors 

have to be met. 

1 1
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Approximate Value Iteration 

 Proofs of convergence for Value Iteration are 

usually based on provability of non-expansion 

mapping of projection and function approximation, 

so that 

 

 

 I.e.:  

 

 and 
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Approximate Value Iteration 

                                             can be guaranteed by 

normalizing the feature vectors 𝜙. 

 

 

 

 Projection is harder to show. 
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Approximate SARSA 

 On-Policy method for control problem. 

 

 

 

 

 

 Convergence can be shown under mild 

assumptions. But convergence only holds if 

decisions are not ‚too deterministic‘. (e.g. only with 

large enough epsilon in 𝜖-greedy policies) 
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TD(¸) 

 

 

 

 

 

 

 Update rule: 

 TD(¸) update: 

 0·¸·1 interpolates between 1-step and MC.  
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Eligibility Traces 

 Algorithmic view on TD(¸) 

 Use additional variable e(s) for every state s2S. 

  

 After observation <st,at,Rt,st+1>, compute  

 

 

 Update for all states 
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FA for Reinforcement Learning 

 TD(¸) 

 Eligibility traces: 

 

 

 

 Linear method: convergence guarantee only on-policy. 

 Error estimation: 
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SARSA(¸) 

 Control problem: SARSA(¸) (On-Policy) 

 

 

 

 

 

 

 Off-policy can diverge. 
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SARSA(¸) 
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SARSA(¸) 
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Policy Gradient 

 Learn stochastic policy. 

 The policy will be represented explicitly, e.g. as 

Gibbs distribution 

 

 

 Learn 𝜋, such that 

 will be maximized. 

 

 Idea: (stochastic) gradient method 
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Policy Gradient 

 The gradient is defined with the help of the  

Policy Gradient Theorem 

 

 Define discounted state probabilities 

 

 

 

 Then 
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Policy Gradient Theorem 

 From the Policy Gradient Theorem: 

 Let 𝐿 be defined as above. The gradient is defined as 

 

 

 

 

 That is, the gradient will be computed based on the 

same expected state distribution and the value 

function. 
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Policy Gradient: Log-Trick 

 The gradient can be rewritten with the help of the 

„log-trick“ 

 

 

 

 It follows for the empirical gradient 

 

 

 The gradient will be approximated without bias, if 

the samples are drawn from the on-policy 

distribution. 
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Policy Gradient: Baseline 

 In order to reduce the variance of the gradient, a 

baseline function can be introduced. 

 

 

 The baseline does not change the expected value, 

because                                      .  

 

This follows from                          .  

 Empirical gradient: 
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Actor-Critic 

 In order to compute the gradient, we need the value 

function 𝑄. 

 

 Possible to compute e.g. with MC.  

 

 Other possibility: Approximate the Value Function 

with a linear function. 

 

 Methods in which both the actor (the policy) and the 

critic (the Value Function) are learned are called 

Actor-Critic methods. 
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