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Overview 

 Problem Statements 

 Examples 

 Markov Decision Processes 

 Planning – Fully defined MDPs 

 Learning – Partly defined MDPs 

 Monte-Carlo 

 Temporal Difference 
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Problem Statements in  
Machine Learning 

 Supervised Learning:  
Learn a decision function from examples of correct 
decisions. 
 

 Unsupervised Learning:  
Learn e.g. how to partition a data set (clustering) 
without knowledge of a correct partitioning. 
 

 Reinforcement Learning:  
Learn how to make a sequence of decisions. The 
quality of each decision may depend on the 
complete decision sequence.  
 Temporal Credit Assignment Problem. 



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II 

Examples 

 Backgammon: How much does one move influence 

the outcome of a game? 

 

 Robot Football: We want to score a goal. But which 

sequence of moves gives highest chance to do so? 

 

 Helicopter Flight: What do we have to do to fly a 

maneuver without crashing in unknown 

environments? 
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Learning from Interactions 

 

Environment 

 

 
 

Agent 

Controller 

 

Action 
•Reward 

•Observation 
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When Reinforcement Learning? 

 Delayed reward for actions.  

(Temporal credit assignment problem) 

 

 Control problems. 

 

 Agents – The full AI problem. 

 



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II 

What is Reinforcement Learning? 

 RL methods are „Sampling based methods to solve 

optimal control problems “  (Richard Sutton) 

 Search for an optimal policy (function from states to 

actions). 

 Optimality: Policy with highest expected reward.  

 Other definitions for optimal learning: Fast learning 

without making too many mistakes. 
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Example: Gridworld 
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Markov Decision Processes 

 (Finite) Markov Decision Process: Tuple (S,A,R,P) 

 S : Finite state space (set of states).  

 A : Finite action space (set of actions). 

 P : Transition probabilities. 

 

 R : Expected Immediate Reward.  

 

 

 

 Discount factor                  . 
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 State space S 

 Start state 

 Target state 

Example: Gridworld 

ss S

zs S
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 State space S 

 Action space A  

 A=(left, right, up, down) 

 

Example : Gridworld 
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 State space S 

 Action space A 

 Transition probabilities P 

 P((1,2)|(1,1), right) = 1  

 

Example: Gridworld 
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 State space S 

 Action space A 

 Transition probabilities P 

 Immediate Reward R 

 R((1,1),right) = 0 

Example: Gridworld 
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 State space S 

 Action space A 

 Transition probabilities P 

 Immediate Reward R 

 R((4,5),down) = 1 

Example: Gridworld 
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Markov Decision Processes 

 (Finite) Markov Decision Process: Tuple (S,A,R,P) 

 S : Finite state space (set of states).  

 A : Finite action space (set of actions). 

 P : Transition probabilities. 

 

 R : Expected Immediate Reward.  

 

 

 

 Discount factor                  . 
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MDP 

 A deterministic stationary policy maps states to 

actions. 

 

 Stochastic Policy: Function from states to 

distribution of actions. 

 

 Goal: Find policy ¼, that maximizes the expected 

cumulative (discounted) reward.  
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 State space S 

 Action space A 

 Transition probabilities P 

 Immediate Reward R 

 Discount factor 

 Policy 

 Good Policy  

 Expected discounted Reward 

Example: Gridworld 
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Example : Gridworld 
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 State space S 

 Action space A 

 Transition probabilities P 

 Immediate Reward R 

 Discount factor 

 Policy 

 Bad Policy  

 Expected discounted Reward 
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Markov Property 

 Markov Property:   

 

 

 

 In order to model real world scenarios as MDPs, 

sequences of observations and actions have to be 

aggregated into states.  

 

 Markov property rarely fulfilled in reality. 
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Value Functions 

 Value function V¼(s) for a state s and policy ¼ 

describes the expected discounted cumulative reward 
that will be observed when starting in s and performing 

actions according to. ¼. 

 

 

 

 There always exists an optimal deterministic stationary 
policy ¼*, which maximizes the value function.  
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 State space S 

 Action space A 

 Transition probabilities P 

 Immediate Reward R 

 Discount factor 

 Policy 

 Good Policy  

 Expected discounted Reward 

Example: Gridworld 
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Value Functions 

 Value function for state action pair: 

 

 

 Optimal value function: 

 

 

 

 

 Assumption: Value function can be stored in (large) 

table (One entry for each state-action pair). 
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Continuous State Spaces 

 In the real world state spaces are (often) continuous 

or very large. 

 The same can hold for action spaces.  

 Representation of value function and/or policy via 

function approximation methods. 

 E.g. representation of value function as parametric 
function with parameter vector µ and features (basis 

functions)                        :   

 

 
1

ˆ ( , ; ) ( , )
N

i i

i

Q s a s a  
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Continuous State Spaces 

 Alternatively, use representation of policy as 

parametric function of state-dependent features 

 

 

 

 Such problems will be covered next week! 

 

 Today: „Idealized“ problems with small and discrete 

state and action spaces. 

1

( ; ) ( )
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Bellman Equations 

 Bellman equations describe a recursive property of 

value functions. (Because of Markov property) 

 

 

 

 

 

 



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II 

Bellman Equations 

 State action value functions: 

 

 

 

 The Bellman equations constitute a system of linear 

equations. 

  

 



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II 

Bellman Operators 

 Notation using (linear) operators: 

 

 

 with linear operator T¼:  

 

 

 

 V¼ is a fixed point of the Bellman operator T¼. 
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Bellman Optimality Equations 

 Bellman Equations for control problem. 

 

 Recursive property of optimal value functions. 

 

 

 

 

 

 

 



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II 

Model Knowledge 

 Different problem formulations for differing 

knowledge about MDPs.  

 

 MDP fully defined.   

  Planning. 

 

 MDP only partly defined.  

We can gather experience by interacting with the 

environment. 

   Reinforcement Learning.  
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Types of Reinforcement Learning 

 Reinforcement Learning methods can be 

distinguished w.r.t. their usage of those interactions. 

 

 Indirect methods:  

 Model learning. 

 

 Direct methods: 

 Direct policy search. 

 Value function estimation 

 Policy Iteration. 

 Value Iteration. 
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MDP Fully Defined –  
Planning with Policy Iteration 

 Both reward function R and transition probabilities 

P are defined. 

 

 Policy Iteration is a general algorithm for 

computing the optimal policy. 

 

 Iterate the following 2 Steps for computation of 
optimal policy for k=0,1,…  Initialize ¼0 randomly. 

 Policy Evaluation: Compute Q¼ for fixed ¼k. 

 Policy Improvement: Determine next ¼k+1. 

  

 

 

 

 (Policy Improvement Theorem) 
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Policy Evaluation 

 First step in each iteration: Evaluate quality of 

current (approximation of optimal) policy.  

 

 Policy Evaluation computes value function V¼’ or Q¼’ 

for fixed ¼‘.  

 

 Bellman Equations constitute system of linear 

equations.  

 However, state space is usually too large to solve 

system of linear equations with standard solvers. 
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Policy Evaluation with Value Iteration 

 Value Iteration for policy evaluation is an iterative 
algorithm that computes value function        for 

current policy      as the limit of a sequence of 
approximations Qi. 

1 ,
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Policy Evaluation with Value Iteration 

 Value Iteration for policy evaluation is an iterative 
algorithm that computes value function        for 

current policy      as the limit of a sequence of 

approximations: 

kV


k

: s S
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Policy Iteration 

k=0. Repeat until                                        :   

 Evaluate current policy, e.g. using Value Iteration. 

 

 

 

 

 

 

 Greedy Policy Improvement: 
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Example: Gridworld 

1

0,9  Discount factor 

 Start Policy  

 

 Policy Iteration: 

 Compute 

with sequence of 

approximations 
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Example: Gridworld 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

1

0,9  Discount factor 

 Start Policy  

 

 Policy Iteration: 

 Compute 

with sequence of 

approximations 

 

1V 

iV
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Example: Gridworld 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0.9 1 

1

0,9  Discount factor 

 Start Policy  

 

 Policy Iteration: 

 Compute 

with sequence of 

approximations 
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Example: Gridworld 

0 0 0 0 0 

0 0 0 0 0 
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 Start Policy  

 

 Policy Iteration: 
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approximations 
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Example: Gridworld 

0 0 0 0 0 

0 0 0 0 0 

0.. 0.. 0.. 0.. 0.. 

0.59 0.53 0.48 0.43 0… 
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 Start Policy  

 

 Policy Iteration: 

 Compute 

with sequence of 

approximations 
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Example: Gridworld 

0 0 0 0 0 

0 0 0 0 0 

0.. 0.. 0.. 0.. 0.. 

0.59 0.53 0.48 0.43 0… 

0.66 0.73 0.81 0.9 1 

1

0,9  Discount factor 

 Start Policy  

 

 Policy Iteration: 

 Compute 

with sequence of 

approximations 

 Policy Improvement: 

Compute greedy Policy 

(                                               ) 
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Policy Evaluation  

 In the limit k1, Vk converges to V¼.  

Rate of convergence O(°k): ||Vk – V¼|| = O(°k)  

 

 Proof e.g. using Banach fixed-point theorem.  

 Let B=(B,||.||) be a Banach space.  

 Let T be an operator T:BB, such that 

||TU – TV|| · ° ||U – V|| with °<1.  

T is a °-contraction mapping. 

 Then T admits a unique fixed-point V . Furthermore, 

for all V0 2 B, the sequence Vk+1=T Vk, k  1 

converges to V. Also, ||Vk – V|| = O(°k) 
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Policy Evaluation 

 The Bellman operator T¼ 

 

 

is a contraction mapping with contraction constant 

°. It follows that the sequence that results from 

iteratively applying the operator 

 

 

converges to V¼. 
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Policy Evaluation: Contraction Mapping 

 What is a contraction mapping? 

 

 

 According to the algorithm: 

 

 

 Distance to the real value function reduces per 
iteration by a factor ° (using sup norm).  
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Policy Improvement 

 Greedy Policy Improvement 

 

 

 

 Policy Improvement Theorem:  

 
Let ¼‘ and ¼ be deterministic policies with: For all  

s2S: Q¼(s,¼‘(s)) ¸ V¼(s). 

 
Then V¼‘(s) ¸ V¼(s) 
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Value Iteration 

 Value Iteration for control problem: 

 

 

 

 

 

 Converges to Q* for k1 

 Similar proof. 
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Value Iteration 

 Algorithm: 

 Initialize Q, e.g. Q = 0 

 for k=0,1,2,…: 

 foreach (s,a) in (S x A): 

 

 

 until  

 

 Alternative convergence criterion: 

 Max distance to optimal Q* smaller than   . 

 

 Conservative Choice: 

1k kQ Q 

2(1 )
log

2
K

R
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MDP Partially Undefined— 
Reinforcement Learning 

 Indirect Reinforcement Learning: Model based. 

 

 Learn Modell of MDP: 

 Reward function R 

 Transition probabilities P 

 

 Apply planning algorithm as before, e.g. Policy 

Iteration. 
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Policy Iteration (Again) 

 Even without learning a model of the MDP, we can 

apply the same principles. 

 

 As before: Iterate the following 2 Steps for 

computation of optimal policy: 

 Policy Evaluation: Compute Q¼ for fixed ¼k. 

 Policy Improvement: Determine next ¼k+1. 

 

 Policy Evaluation step changes for partly defined 

MDPs. 
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Policy Evaluation: Monte-Carlo Methods 

 Learn from episodic interactions with the 

environment. 

 Goal: Learn Q¼(s,a). 

 

 Monte-Carlo Estimation of Q¼(s,a): Compute mean 

of sampled cumulative rewards.  

 

 Unbiased Estimation of real rewards. Variance 
reduces with 1/n. 
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Policy Evaluation: Monte-Carlo Methods 

 Computation time of estimation is independent from 

size of state space. 

 

 Problem: If ¼ is deterministic, many state action 

pairs Q(s,a) will never be observed. 

 Problems in Policy Improvement step. 

 

 Solution: stochastic policies, e.g. ²-greedy policies.  



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II 

Greedy and ²-Greedy Policies 

 Greedy: 

 

  ²-greedy: 

 

 

 Notation as distribution: 

 

 

 

 

 ²-greedy allows for exploration. 

( ) arg max ( , )
a

s Q s a

arg max ( , )    with probability 
( )

random action      with probability 1


 



a
Q s a

s





'
            if  arg max ( , ')    

( , ) 1
    otherwise

1




  




a
a Q s a

s a

A
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Stochastic Policy: Softmax  

 Current estimation of value function should have 

influence on probabilities. 

 soft max 

 

 Example: Gibbs distribution: 

 

 

 

  ¿t is also called the temperature parameter. 
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Temporal Difference Learning 

 Idea: Update states based on estimates of other 

states. Natural formulation as online learning 

method. 

 

 Also applicable to incomplete episodes. 

 

 Disadvantage compared to Monte-Carlo: 

 Stronger influence (more damage) if Markov property  

violated. 
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Policy Evaluation: Value Iteration 

 Idea: Update states based on estimates of other 

states. Natural formulation as online learning 

method. 

 Same idea as before in fully defined case. 

 Value Iteration for Policy Evaluation.  
Iteratively sample action at  and observe next state 

st+1. Update Q according to: 

 

 

 

1 '~ 1

1

'

( , ) ( , ) ( , ')

( , ) ( , ') ( , ')

 



   

  

k k

k

t t t a t t t t

t t t t
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Q s a E R s a Q s a

R s a s a Q s a
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Policy Evaluation: Value Iteration 

 Exploration / exploitation problem. Same as for 

Monte-Carlo methods. 

 

 If policy stochastic: Sample state-action sequence  

                              on-policy according to                .   

 

 Or sample                               off-policy according to 

stochastic off-policy                   .   

1 1 2 2 3 3 4 4...s a s a s a s a ~ ( )t ta s

1 1 2 2 3 3 4 4...s a s a s a s a

~ ( )t b ta s
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Policy Iteration (Again) 

 As before: Iterate the following 2 Steps for 

computation of optimal policy: 

 

 Policy Evaluation: Compute Q¼ for fixed ¼k. 

 Policy Improvement: Determine next ¼k+1. 

 

 

 Policy Evaluation either with Monte-Carlo sampling 

or value iteration. 
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N-step Returns 

 General update rule:  

 

 Temporal difference methods perform 1-step 

updates: 

 

 Monte-Carlo methods make updates, that are 

based on complete episodes: 

 

 

 N-Step Updates:  
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TD(¸) 
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TD(¸) 

 

 

 

 

 

 

 

 Idea: Weighted sum over all n-step returns. 
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TD(¸) 

 

 

 

 

 

 

 

 TD(¸) Update: 

 

 0·¸·1 interpolates between 1-step and MC.  
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Bias-Variance-Tradeoff 

Less  

Bias 

More variance 
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Eligibility Traces 

 Algorithmic view on TD(¸) 

 Use additional variable e(s) for every state s2S. 

  

 After observation <st,at,Rt,st+1>, compute  

 

 

 Update for all states 
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Q-Learning 

 Q-Learning Update: 

 

 

 

 

 Converges to Q* if 

 Every state will be observed infinitely often. 

 Step size parameters follow:  
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Q-Learning 

 Off-Policy method. No exploration / exploitation 

problem.  

 

 Learn optimal policy ¼* while following another 

behavior policy ¼‘. 

 

 Policy ¼‘ could e.g. be a stochastic policy with 

¼(s,a)>0 for all s and a to guarantee convergence 

of Q. 
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SARSA 

 SARSA: On-Policy Temporal Difference Method.  

 

 

 

 

 Exploration / Exploitation Problem. 

 Use stochastic policy. 

 

 SARSA performs 1-step temporal difference 

updates. 
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Problem Formulations 

 Learn optimal policy. 

 Or best possible approximation. 

 

 Optimal Learning: Make as few as possible 

mistakes during learning. 

 Exploration / exploitation problem. 
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Exploration / Exploitation Problem 

 Tradeoff between  

 

 using the current best policy to maximize (greedy) 

reward.  

(Exploitation) 

 

 and exploring currently suboptimal actions whose 

values are still uncertain in order to find a potentially 

better policy.  

(Exploration) 
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Bandit Problem 

 n-armed bandit problem: 

 n actions (arms / slot machines) . 

 Each action has different expected reward. 

 Expected reward unknown. 

 Problem: find best action without losing too much on 

the way. 

 

 Expected reward for action a is Q*(a). 

 Estimated expected reward after t trials: 
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Greedy and ²-Greedy Policies 

 Greedy: 

 

 

  ²-greedy 

 

 

 

 ²-greedy allows for random exploration. 
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²-Greedy Policies 

 10-armed bandit 

 2000 experiments 

 For each experiment  
draw Q*(a) for all a: 

 

 Rewards are drawn  

from 
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Optimism under Uncertainty 

 One possible principle for solving the 

exploration/exploitation dilemma is 

„optimism under uncertainty“. 

 

 Doesn‘t work in all environments. 

 

 Could for example be implemented by using large 
initial values for Q. 
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Optimism under Uncertainty 

 Upper Confidence Bound (UCB): [Auer et al. 02 ] 

 Assume that rewards are bounded by [0,1]. 

 

 

 

 

 

 Good results for stationary environments and i.i.d. 

rewards. 
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Problem Formulations 

 P,R known. P(s‘|s,a) can be queried. 

 P,R not explicitly known. But we can sample from 

the distributions P(s‘|s,a).  Assumption: Generative 

model of P and R. 

 P,R not or only partly known. We can gain 

experience by interacting with the environment.  

   Reinforcement Learning.  

 Batch Reinforcement Learning: We have to learn 

from a fixed set of episodes. 
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Large and Infinite State Spaces 

 In realistic applications state spaces are usually 

very large or continuous. 

 So far: Assumption that value function could be 

stored as a table. 

 

 Different approaches: 

 Planning: 

 Monte-Carlo Sampling 

 Discretization with subsequent Value Iteration (or PI) 

 Approximation of value function with function 

approximation methods. 

 Direct learning of policy. 
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Approximation 

 Types of approximations 

 Representation, e.g. 

 Value function 

 Policy 

 Sampling 

 Online learning via interactions. 

 Sample from generative model of environment. 

 

 Maximization 

 Find the good action instead of best action for current 

state. 

ˆ ( , ; ) ( , )TQ s a s a  

( , ; ) ( ( , ) )Ts a h s a    
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Monte-Carlo Sampling 

 Assume that S is very large 

 Goal: Find Q, s.t. ||Q-Q*||1<². 

 

 Sparse Lookahead Trees:  

[Kearns et al. 02] 

 Monte-Carlo: Sample sparse action-

state tree. 

 Depth of tree: Effective horizon H(²) = 

O( 1/(1-°)  log(1/²(1-°)) ) 

 MC independent of |S| 

 But exponential in H(²): 

minimal size of tree. 
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Sparse Lookahead Trees 
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Upper Confidence Bounds for Trees 

 Improvement: Only inspect those parts of the tree 

that look promising. 

 Optimism under uncertainty! 

 Same principle as for the bandit problem. 

 UCT: UCB for Trees. 

[Kocsis & Szepesvári 06] 
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UCT Performance: Go 

 Very good results in Go. 

 9x9 & 19x19 

 

 Computer Olympics 2007 - 2009: 

 2007 & 2008: 1st to 3rd places employed variants of 

UCT.  

 More general: Monte-Carlo Search Trees (MCST). 

 2009: At least 2nd and 3rd employed variants of 

UCT. 
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Discretization 

 Continuous state space S. 

 Random Discretization Method: [Rust 97] 

 Sample states S‘ according to uniform distribution 

over state space. 

 Value iteration. 

 Continuous value iteration: 

 

 

 Discretization: Weighted Importance Sampling 
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Discretization 

 Compute value function V(s) for states that are not 

in sample set S‘: 

 Bellman update step: 

 

 

 

 

 Guaranteed performance: [Rust97]  
Assumption: S=[0,1]d 

 

 


