
Universität Potsdam
Institut für Informatik

Lehrstuhl Maschinelles Lernen

Reinforcement Learning

Uwe Dick

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Overview

 Problem Statements

 Examples

 Markov Decision Processes

 Planning – Fully defined MDPs

 Learning – Partly defined MDPs

 Monte-Carlo

 Temporal Difference

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Problem Statements in
Machine Learning

 Supervised Learning:
Learn a decision function from examples of correct
decisions.

 Unsupervised Learning:
Learn e.g. how to partition a data set (clustering)
without knowledge of a correct partitioning.

 Reinforcement Learning:
Learn how to make a sequence of decisions. The
quality of each decision may depend on the
complete decision sequence.
 Temporal Credit Assignment Problem.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Examples

 Backgammon: How much does one move influence

the outcome of a game?

 Robot Football: We want to score a goal. But which

sequence of moves gives highest chance to do so?

 Helicopter Flight: What do we have to do to fly a

maneuver without crashing in unknown

environments?

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Learning from Interactions

Environment

Agent

Controller

Action
•Reward

•Observation

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

When Reinforcement Learning?

 Delayed reward for actions.

(Temporal credit assignment problem)

 Control problems.

 Agents – The full AI problem.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

What is Reinforcement Learning?

 RL methods are „Sampling based methods to solve

optimal control problems “ (Richard Sutton)

 Search for an optimal policy (function from states to

actions).

 Optimality: Policy with highest expected reward.

 Other definitions for optimal learning: Fast learning

without making too many mistakes.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Example: Gridworld

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Markov Decision Processes

 (Finite) Markov Decision Process: Tuple (S,A,R,P)

 S : Finite state space (set of states).

 A : Finite action space (set of actions).

 P : Transition probabilities.

 R : Expected Immediate Reward.

 Discount factor .

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

 State space S

 Start state

 Target state

Example: Gridworld

ss S

zs S

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

 State space S

 Action space A

 A=(left, right, up, down)

Example : Gridworld

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

 State space S

 Action space A

 Transition probabilities P

 P((1,2)|(1,1), right) = 1

Example: Gridworld

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

 State space S

 Action space A

 Transition probabilities P

 Immediate Reward R

 R((1,1),right) = 0

Example: Gridworld

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

 State space S

 Action space A

 Transition probabilities P

 Immediate Reward R

 R((4,5),down) = 1

Example: Gridworld

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Markov Decision Processes

 (Finite) Markov Decision Process: Tuple (S,A,R,P)

 S : Finite state space (set of states).

 A : Finite action space (set of actions).

 P : Transition probabilities.

 R : Expected Immediate Reward.

 Discount factor .

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

MDP

 A deterministic stationary policy maps states to

actions.

 Stochastic Policy: Function from states to

distribution of actions.

 Goal: Find policy ¼, that maximizes the expected

cumulative (discounted) reward.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

 State space S

 Action space A

 Transition probabilities P

 Immediate Reward R

 Discount factor

 Policy

 Good Policy

 Expected discounted Reward

Example: Gridworld

2

0,9

7

, 0
0

(, ()) | 0,9t

P t t s
t

E R s s s s

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Example : Gridworld

1

0,9

23

, 0
0

(, ()) | 0,9t

P t t s
t

E R s s s s

 State space S

 Action space A

 Transition probabilities P

 Immediate Reward R

 Discount factor

 Policy

 Bad Policy

 Expected discounted Reward

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Markov Property

 Markov Property:

 In order to model real world scenarios as MDPs,

sequences of observations and actions have to be

aggregated into states.

 Markov property rarely fulfilled in reality.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Value Functions

 Value function V¼(s) for a state s and policy ¼

describes the expected discounted cumulative reward
that will be observed when starting in s and performing

actions according to. ¼.

 There always exists an optimal deterministic stationary
policy ¼*, which maximizes the value function.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

 State space S

 Action space A

 Transition probabilities P

 Immediate Reward R

 Discount factor

 Policy

 Good Policy

 Expected discounted Reward

Example: Gridworld

2

0,9

1 3

,
0

() (, ()) 0,9k

t P t k t k
k

V s E R s s

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Value Functions

 Value function for state action pair:

 Optimal value function:

 Assumption: Value function can be stored in (large)

table (One entry for each state-action pair).

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Continuous State Spaces

 In the real world state spaces are (often) continuous

or very large.

 The same can hold for action spaces.

 Representation of value function and/or policy via

function approximation methods.

 E.g. representation of value function as parametric
function with parameter vector µ and features (basis

functions) :

1

ˆ (, ;) (,)
N

i i

i

Q s a s a

:i S A

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Continuous State Spaces

 Alternatively, use representation of policy as

parametric function of state-dependent features

 Such problems will be covered next week!

 Today: „Idealized“ problems with small and discrete

state and action spaces.

1

(;) ()
N

i i

i

s s

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Bellman Equations

 Bellman equations describe a recursive property of

value functions. (Because of Markov property)

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Bellman Equations

 State action value functions:

 The Bellman equations constitute a system of linear

equations.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Bellman Operators

 Notation using (linear) operators:

 with linear operator T¼:

 V¼ is a fixed point of the Bellman operator T¼.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Bellman Optimality Equations

 Bellman Equations for control problem.

 Recursive property of optimal value functions.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Model Knowledge

 Different problem formulations for differing

knowledge about MDPs.

 MDP fully defined.

 Planning.

 MDP only partly defined.

We can gather experience by interacting with the

environment.

 Reinforcement Learning.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Types of Reinforcement Learning

 Reinforcement Learning methods can be

distinguished w.r.t. their usage of those interactions.

 Indirect methods:

 Model learning.

 Direct methods:

 Direct policy search.

 Value function estimation

 Policy Iteration.

 Value Iteration.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

MDP Fully Defined –
Planning with Policy Iteration

 Both reward function R and transition probabilities

P are defined.

 Policy Iteration is a general algorithm for

computing the optimal policy.

 Iterate the following 2 Steps for computation of
optimal policy for k=0,1,… Initialize ¼0 randomly.

 Policy Evaluation: Compute Q¼ for fixed ¼k.

 Policy Improvement: Determine next ¼k+1.

 (Policy Improvement Theorem)

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Evaluation

 First step in each iteration: Evaluate quality of

current (approximation of optimal) policy.

 Policy Evaluation computes value function V¼’ or Q¼’

for fixed ¼‘.

 Bellman Equations constitute system of linear

equations.

 However, state space is usually too large to solve

system of linear equations with standard solvers.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Evaluation with Value Iteration

 Value Iteration for policy evaluation is an iterative
algorithm that computes value function for

current policy as the limit of a sequence of
approximations Qi.

1 ,

'

(,) (,) (', ('))

(,) (' | ,) (', ('))

i P i k

i k

s

Q s a E R s a Q s s

R s a P s s a Q s s

kQ

k

, : s S a A

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Evaluation with Value Iteration

 Value Iteration for policy evaluation is an iterative
algorithm that computes value function for

current policy as the limit of a sequence of

approximations:

kV

k

: s S

1 ,

'

() (, ()) (')

(, ()) (' | , ()) (')

i P k i

k k i

s

V s E R s s V s

R s s P s s s V s

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Iteration

k=0. Repeat until :

 Evaluate current policy, e.g. using Value Iteration.

 Greedy Policy Improvement:

1: () () k ks S s s

: s S

1 ,

'

(,) (,) (', ('))

(,) (' | ,) (', ('))

i P i k

i k

s

Q s a E R s a Q s s

R s a P s s a Q s s

, : s S a A

for 1... :i

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Example: Gridworld

1

0,9 Discount factor

 Start Policy

 Policy Iteration:

 Compute

with sequence of

approximations

1V

iV

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Example: Gridworld

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

0,9 Discount factor

 Start Policy

 Policy Iteration:

 Compute

with sequence of

approximations

1V

iV

0V

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Example: Gridworld

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0.9 1

1

0,9 Discount factor

 Start Policy

 Policy Iteration:

 Compute

with sequence of

approximations

1V

iV

1V

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Example: Gridworld

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0.81 0.9 1

2V
1

0,9 Discount factor

 Start Policy

 Policy Iteration:

 Compute

with sequence of

approximations

1V

iV

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Example: Gridworld

0 0 0 0 0

0 0 0 0 0

0.. 0.. 0.. 0.. 0..

0.59 0.53 0.48 0.43 0…

0.66 0.73 0.81 0.9 1

nV
1

0,9 Discount factor

 Start Policy

 Policy Iteration:

 Compute

with sequence of

approximations

1V

iV

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Example: Gridworld

0 0 0 0 0

0 0 0 0 0

0.. 0.. 0.. 0.. 0..

0.59 0.53 0.48 0.43 0…

0.66 0.73 0.81 0.9 1

1

0,9 Discount factor

 Start Policy

 Policy Iteration:

 Compute

with sequence of

approximations

 Policy Improvement:

Compute greedy Policy

()

1V

1V

2
(,) (,) [(')]k kQ s a R s a E V s

iV

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Evaluation

 In the limit k1, Vk converges to V¼.

Rate of convergence O(°k): ||Vk – V¼|| = O(°k)

 Proof e.g. using Banach fixed-point theorem.

 Let B=(B,||.||) be a Banach space.

 Let T be an operator T:BB, such that

||TU – TV|| · ° ||U – V|| with °<1.

T is a °-contraction mapping.

 Then T admits a unique fixed-point V . Furthermore,

for all V0 2 B, the sequence Vk+1=T Vk, k 1

converges to V. Also, ||Vk – V|| = O(°k)

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Evaluation

 The Bellman operator T¼

is a contraction mapping with contraction constant

°. It follows that the sequence that results from

iteratively applying the operator

converges to V¼.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Evaluation: Contraction Mapping

 What is a contraction mapping?

 According to the algorithm:

 Distance to the real value function reduces per
iteration by a factor ° (using sup norm).

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Improvement

 Greedy Policy Improvement

 Policy Improvement Theorem:

Let ¼‘ and ¼ be deterministic policies with: For all

s2S: Q¼(s,¼‘(s)) ¸ V¼(s).

Then V¼‘(s) ¸ V¼(s)

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Value Iteration

 Value Iteration for control problem:

 Converges to Q* for k1

 Similar proof.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Value Iteration

 Algorithm:

 Initialize Q, e.g. Q = 0

 for k=0,1,2,…:

 foreach (s,a) in (S x A):

 until

 Alternative convergence criterion:

 Max distance to optimal Q* smaller than .

 Conservative Choice:

1k kQ Q

2(1)
log

2
K

R

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

MDP Partially Undefined—
Reinforcement Learning

 Indirect Reinforcement Learning: Model based.

 Learn Modell of MDP:

 Reward function R

 Transition probabilities P

 Apply planning algorithm as before, e.g. Policy

Iteration.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Iteration (Again)

 Even without learning a model of the MDP, we can

apply the same principles.

 As before: Iterate the following 2 Steps for

computation of optimal policy:

 Policy Evaluation: Compute Q¼ for fixed ¼k.

 Policy Improvement: Determine next ¼k+1.

 Policy Evaluation step changes for partly defined

MDPs.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Evaluation: Monte-Carlo Methods

 Learn from episodic interactions with the

environment.

 Goal: Learn Q¼(s,a).

 Monte-Carlo Estimation of Q¼(s,a): Compute mean

of sampled cumulative rewards.

 Unbiased Estimation of real rewards. Variance
reduces with 1/n.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Evaluation: Monte-Carlo Methods

 Computation time of estimation is independent from

size of state space.

 Problem: If ¼ is deterministic, many state action

pairs Q(s,a) will never be observed.

 Problems in Policy Improvement step.

 Solution: stochastic policies, e.g. ²-greedy policies.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Greedy and ²-Greedy Policies

 Greedy:

 ²-greedy:

 Notation as distribution:

 ²-greedy allows for exploration.

() arg max (,)
a

s Q s a

arg max (,) with probability
()

random action with probability 1

a
Q s a

s

'
 if arg max (, ')

(,) 1
 otherwise

1

a
a Q s a

s a

A

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Stochastic Policy: Softmax

 Current estimation of value function should have

influence on probabilities.

 soft max

 Example: Gibbs distribution:

 ¿t is also called the temperature parameter.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Temporal Difference Learning

 Idea: Update states based on estimates of other

states. Natural formulation as online learning

method.

 Also applicable to incomplete episodes.

 Disadvantage compared to Monte-Carlo:

 Stronger influence (more damage) if Markov property

violated.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Evaluation: Value Iteration

 Idea: Update states based on estimates of other

states. Natural formulation as online learning

method.

 Same idea as before in fully defined case.

 Value Iteration for Policy Evaluation.
Iteratively sample action at and observe next state

st+1. Update Q according to:

1 '~ 1

1

'

(,) (,) (, ')

(,) (, ') (, ')

k k

k

t t t a t t t t

t t t t

a

Q s a E R s a Q s a

R s a s a Q s a

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Evaluation: Value Iteration

 Exploration / exploitation problem. Same as for

Monte-Carlo methods.

 If policy stochastic: Sample state-action sequence

 on-policy according to .

 Or sample off-policy according to

stochastic off-policy .

1 1 2 2 3 3 4 4...s a s a s a s a ~ ()t ta s

1 1 2 2 3 3 4 4...s a s a s a s a

~ ()t b ta s

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Iteration (Again)

 As before: Iterate the following 2 Steps for

computation of optimal policy:

 Policy Evaluation: Compute Q¼ for fixed ¼k.

 Policy Improvement: Determine next ¼k+1.

 Policy Evaluation either with Monte-Carlo sampling

or value iteration.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

N-step Returns

 General update rule:

 Temporal difference methods perform 1-step

updates:

 Monte-Carlo methods make updates, that are

based on complete episodes:

 N-Step Updates:

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

TD(¸)

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

TD(¸)

 Idea: Weighted sum over all n-step returns.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

TD(¸)

 TD(¸) Update:

 0·¸·1 interpolates between 1-step and MC.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Bias-Variance-Tradeoff

Less

Bias

More variance

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Eligibility Traces

 Algorithmic view on TD(¸)

 Use additional variable e(s) for every state s2S.

 After observation <st,at,Rt,st+1>, compute

 Update for all states

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Q-Learning

 Q-Learning Update:

 Converges to Q* if

 Every state will be observed infinitely often.

 Step size parameters follow:

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Q-Learning

 Off-Policy method. No exploration / exploitation

problem.

 Learn optimal policy ¼* while following another

behavior policy ¼‘.

 Policy ¼‘ could e.g. be a stochastic policy with

¼(s,a)>0 for all s and a to guarantee convergence

of Q.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

SARSA

 SARSA: On-Policy Temporal Difference Method.

 Exploration / Exploitation Problem.

 Use stochastic policy.

 SARSA performs 1-step temporal difference

updates.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Problem Formulations

 Learn optimal policy.

 Or best possible approximation.

 Optimal Learning: Make as few as possible

mistakes during learning.

 Exploration / exploitation problem.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Exploration / Exploitation Problem

 Tradeoff between

 using the current best policy to maximize (greedy)

reward.

(Exploitation)

 and exploring currently suboptimal actions whose

values are still uncertain in order to find a potentially

better policy.

(Exploration)

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Bandit Problem

 n-armed bandit problem:

 n actions (arms / slot machines) .

 Each action has different expected reward.

 Expected reward unknown.

 Problem: find best action without losing too much on

the way.

 Expected reward for action a is Q*(a).

 Estimated expected reward after t trials:

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Greedy and ²-Greedy Policies

 Greedy:

 ²-greedy

 ²-greedy allows for random exploration.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

²-Greedy Policies

 10-armed bandit

 2000 experiments

 For each experiment
draw Q*(a) for all a:

 Rewards are drawn

from

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Optimism under Uncertainty

 One possible principle for solving the

exploration/exploitation dilemma is

„optimism under uncertainty“.

 Doesn‘t work in all environments.

 Could for example be implemented by using large
initial values for Q.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Optimism under Uncertainty

 Upper Confidence Bound (UCB): [Auer et al. 02]

 Assume that rewards are bounded by [0,1].

 Good results for stationary environments and i.i.d.

rewards.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Problem Formulations

 P,R known. P(s‘|s,a) can be queried.

 P,R not explicitly known. But we can sample from

the distributions P(s‘|s,a). Assumption: Generative

model of P and R.

 P,R not or only partly known. We can gain

experience by interacting with the environment.

 Reinforcement Learning.

 Batch Reinforcement Learning: We have to learn

from a fixed set of episodes.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Large and Infinite State Spaces

 In realistic applications state spaces are usually

very large or continuous.

 So far: Assumption that value function could be

stored as a table.

 Different approaches:

 Planning:

 Monte-Carlo Sampling

 Discretization with subsequent Value Iteration (or PI)

 Approximation of value function with function

approximation methods.

 Direct learning of policy.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Approximation

 Types of approximations

 Representation, e.g.

 Value function

 Policy

 Sampling

 Online learning via interactions.

 Sample from generative model of environment.

 Maximization

 Find the good action instead of best action for current

state.

ˆ (, ;) (,)TQ s a s a

(, ;) ((,))Ts a h s a

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Monte-Carlo Sampling

 Assume that S is very large

 Goal: Find Q, s.t. ||Q-Q*||1<².

 Sparse Lookahead Trees:

[Kearns et al. 02]

 Monte-Carlo: Sample sparse action-

state tree.

 Depth of tree: Effective horizon H(²) =

O(1/(1-°) log(1/²(1-°)))

 MC independent of |S|

 But exponential in H(²):

minimal size of tree.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Sparse Lookahead Trees

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Upper Confidence Bounds for Trees

 Improvement: Only inspect those parts of the tree

that look promising.

 Optimism under uncertainty!

 Same principle as for the bandit problem.

 UCT: UCB for Trees.

[Kocsis & Szepesvári 06]

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

UCT Performance: Go

 Very good results in Go.

 9x9 & 19x19

 Computer Olympics 2007 - 2009:

 2007 & 2008: 1st to 3rd places employed variants of

UCT.

 More general: Monte-Carlo Search Trees (MCST).

 2009: At least 2nd and 3rd employed variants of

UCT.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Discretization

 Continuous state space S.

 Random Discretization Method: [Rust 97]

 Sample states S‘ according to uniform distribution

over state space.

 Value iteration.

 Continuous value iteration:

 Discretization: Weighted Importance Sampling

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Discretization

 Compute value function V(s) for states that are not

in sample set S‘:

 Bellman update step:

 Guaranteed performance: [Rust97]
Assumption: S=[0,1]d

