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Overview 

 Problem Statements 

 Examples 

 Markov Decision Processes 

 Planning – Fully defined MDPs 

 Learning – Partly defined MDPs 

 Monte-Carlo 

 Temporal Difference 
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Problem Statements in  
Machine Learning 

 Supervised Learning:  
Learn a decision function from examples of correct 
decisions. 
 

 Unsupervised Learning:  
Learn e.g. how to partition a data set (clustering) 
without knowledge of a correct partitioning. 
 

 Reinforcement Learning:  
Learn how to make a sequence of decisions. The 
quality of each decision may depend on the 
complete decision sequence.  
 Temporal Credit Assignment Problem. 
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Examples 

 Backgammon: How much does one move influence 

the outcome of a game? 

 

 Robot Football: We want to score a goal. But which 

sequence of moves gives highest chance to do so? 

 

 Helicopter Flight: What do we have to do to fly a 

maneuver without crashing in unknown 

environments? 
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Learning from Interactions 

 

Environment 

 

 
 

Agent 

Controller 

 

Action 
•Reward 

•Observation 
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When Reinforcement Learning? 

 Delayed reward for actions.  

(Temporal credit assignment problem) 

 

 Control problems. 

 

 Agents – The full AI problem. 
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What is Reinforcement Learning? 

 RL methods are „Sampling based methods to solve 

optimal control problems “  (Richard Sutton) 

 Search for an optimal policy (function from states to 

actions). 

 Optimality: Policy with highest expected reward.  

 Other definitions for optimal learning: Fast learning 

without making too many mistakes. 
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Example: Gridworld 
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Markov Decision Processes 

 (Finite) Markov Decision Process: Tuple (S,A,R,P) 

 S : Finite state space (set of states).  

 A : Finite action space (set of actions). 

 P : Transition probabilities. 

 

 R : Expected Immediate Reward.  

 

 

 

 Discount factor                  . 
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 State space S 

 Start state 

 Target state 

Example: Gridworld 

ss S

zs S
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 State space S 

 Action space A  

 A=(left, right, up, down) 

 

Example : Gridworld 
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 State space S 

 Action space A 

 Transition probabilities P 

 P((1,2)|(1,1), right) = 1  

 

Example: Gridworld 
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 State space S 

 Action space A 

 Transition probabilities P 

 Immediate Reward R 

 R((1,1),right) = 0 

Example: Gridworld 
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 State space S 

 Action space A 

 Transition probabilities P 

 Immediate Reward R 

 R((4,5),down) = 1 

Example: Gridworld 
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Markov Decision Processes 

 (Finite) Markov Decision Process: Tuple (S,A,R,P) 

 S : Finite state space (set of states).  

 A : Finite action space (set of actions). 

 P : Transition probabilities. 

 

 R : Expected Immediate Reward.  

 

 

 

 Discount factor                  . 
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MDP 

 A deterministic stationary policy maps states to 

actions. 

 

 Stochastic Policy: Function from states to 

distribution of actions. 

 

 Goal: Find policy ¼, that maximizes the expected 

cumulative (discounted) reward.  
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 State space S 

 Action space A 

 Transition probabilities P 

 Immediate Reward R 

 Discount factor 

 Policy 

 Good Policy  

 Expected discounted Reward 

Example: Gridworld 
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Example : Gridworld 
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 State space S 

 Action space A 

 Transition probabilities P 

 Immediate Reward R 

 Discount factor 

 Policy 

 Bad Policy  

 Expected discounted Reward 
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Markov Property 

 Markov Property:   

 

 

 

 In order to model real world scenarios as MDPs, 

sequences of observations and actions have to be 

aggregated into states.  

 

 Markov property rarely fulfilled in reality. 
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Value Functions 

 Value function V¼(s) for a state s and policy ¼ 

describes the expected discounted cumulative reward 
that will be observed when starting in s and performing 

actions according to. ¼. 

 

 

 

 There always exists an optimal deterministic stationary 
policy ¼*, which maximizes the value function.  
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 State space S 

 Action space A 

 Transition probabilities P 

 Immediate Reward R 

 Discount factor 

 Policy 

 Good Policy  

 Expected discounted Reward 

Example: Gridworld 
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Value Functions 

 Value function for state action pair: 

 

 

 Optimal value function: 

 

 

 

 

 Assumption: Value function can be stored in (large) 

table (One entry for each state-action pair). 
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Continuous State Spaces 

 In the real world state spaces are (often) continuous 

or very large. 

 The same can hold for action spaces.  

 Representation of value function and/or policy via 

function approximation methods. 

 E.g. representation of value function as parametric 
function with parameter vector µ and features (basis 

functions)                        :   

 

 
1
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Continuous State Spaces 

 Alternatively, use representation of policy as 

parametric function of state-dependent features 

 

 

 

 Such problems will be covered next week! 

 

 Today: „Idealized“ problems with small and discrete 

state and action spaces. 

1
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Bellman Equations 

 Bellman equations describe a recursive property of 

value functions. (Because of Markov property) 
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Bellman Equations 

 State action value functions: 

 

 

 

 The Bellman equations constitute a system of linear 

equations. 
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Bellman Operators 

 Notation using (linear) operators: 

 

 

 with linear operator T¼:  

 

 

 

 V¼ is a fixed point of the Bellman operator T¼. 
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Bellman Optimality Equations 

 Bellman Equations for control problem. 

 

 Recursive property of optimal value functions. 
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Model Knowledge 

 Different problem formulations for differing 

knowledge about MDPs.  

 

 MDP fully defined.   

  Planning. 

 

 MDP only partly defined.  

We can gather experience by interacting with the 

environment. 

   Reinforcement Learning.  
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Types of Reinforcement Learning 

 Reinforcement Learning methods can be 

distinguished w.r.t. their usage of those interactions. 

 

 Indirect methods:  

 Model learning. 

 

 Direct methods: 

 Direct policy search. 

 Value function estimation 

 Policy Iteration. 

 Value Iteration. 
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MDP Fully Defined –  
Planning with Policy Iteration 

 Both reward function R and transition probabilities 

P are defined. 

 

 Policy Iteration is a general algorithm for 

computing the optimal policy. 

 

 Iterate the following 2 Steps for computation of 
optimal policy for k=0,1,…  Initialize ¼0 randomly. 

 Policy Evaluation: Compute Q¼ for fixed ¼k. 

 Policy Improvement: Determine next ¼k+1. 

  

 

 

 

 (Policy Improvement Theorem) 
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Policy Evaluation 

 First step in each iteration: Evaluate quality of 

current (approximation of optimal) policy.  

 

 Policy Evaluation computes value function V¼’ or Q¼’ 

for fixed ¼‘.  

 

 Bellman Equations constitute system of linear 

equations.  

 However, state space is usually too large to solve 

system of linear equations with standard solvers. 
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Policy Evaluation with Value Iteration 

 Value Iteration for policy evaluation is an iterative 
algorithm that computes value function        for 

current policy      as the limit of a sequence of 
approximations Qi. 

1 ,
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Policy Evaluation with Value Iteration 

 Value Iteration for policy evaluation is an iterative 
algorithm that computes value function        for 

current policy      as the limit of a sequence of 

approximations: 
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Policy Iteration 

k=0. Repeat until                                        :   

 Evaluate current policy, e.g. using Value Iteration. 

 

 

 

 

 

 

 Greedy Policy Improvement: 
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Example: Gridworld 

1

0,9  Discount factor 

 Start Policy  

 

 Policy Iteration: 

 Compute 

with sequence of 

approximations 

 

1V 

iV



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II 

Example: Gridworld 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

1

0,9  Discount factor 

 Start Policy  

 

 Policy Iteration: 

 Compute 

with sequence of 

approximations 

 

1V 

iV

0V
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Example: Gridworld 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0.9 1 

1

0,9  Discount factor 

 Start Policy  

 

 Policy Iteration: 

 Compute 

with sequence of 

approximations 

 

1V 

iV

1V
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Example: Gridworld 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0.81 0.9 1 

2V
1

0,9  Discount factor 

 Start Policy  

 

 Policy Iteration: 

 Compute 

with sequence of 

approximations 

 

1V 

iV
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Example: Gridworld 

0 0 0 0 0 

0 0 0 0 0 

0.. 0.. 0.. 0.. 0.. 

0.59 0.53 0.48 0.43 0… 

0.66 0.73 0.81 0.9 1 

nV
1

0,9  Discount factor 

 Start Policy  

 

 Policy Iteration: 

 Compute 

with sequence of 

approximations 

 

1V 

iV
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Example: Gridworld 

0 0 0 0 0 

0 0 0 0 0 

0.. 0.. 0.. 0.. 0.. 

0.59 0.53 0.48 0.43 0… 

0.66 0.73 0.81 0.9 1 

1

0,9  Discount factor 

 Start Policy  

 

 Policy Iteration: 

 Compute 

with sequence of 

approximations 

 Policy Improvement: 

Compute greedy Policy 

(                                               ) 
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2
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Policy Evaluation  

 In the limit k1, Vk converges to V¼.  

Rate of convergence O(°k): ||Vk – V¼|| = O(°k)  

 

 Proof e.g. using Banach fixed-point theorem.  

 Let B=(B,||.||) be a Banach space.  

 Let T be an operator T:BB, such that 

||TU – TV|| · ° ||U – V|| with °<1.  

T is a °-contraction mapping. 

 Then T admits a unique fixed-point V . Furthermore, 

for all V0 2 B, the sequence Vk+1=T Vk, k  1 

converges to V. Also, ||Vk – V|| = O(°k) 
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Policy Evaluation 

 The Bellman operator T¼ 

 

 

is a contraction mapping with contraction constant 

°. It follows that the sequence that results from 

iteratively applying the operator 

 

 

converges to V¼. 

 



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II 

Policy Evaluation: Contraction Mapping 

 What is a contraction mapping? 

 

 

 According to the algorithm: 

 

 

 Distance to the real value function reduces per 
iteration by a factor ° (using sup norm).  
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Policy Improvement 

 Greedy Policy Improvement 

 

 

 

 Policy Improvement Theorem:  

 
Let ¼‘ and ¼ be deterministic policies with: For all  

s2S: Q¼(s,¼‘(s)) ¸ V¼(s). 

 
Then V¼‘(s) ¸ V¼(s) 
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Value Iteration 

 Value Iteration for control problem: 

 

 

 

 

 

 Converges to Q* for k1 

 Similar proof. 
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Value Iteration 

 Algorithm: 

 Initialize Q, e.g. Q = 0 

 for k=0,1,2,…: 

 foreach (s,a) in (S x A): 

 

 

 until  

 

 Alternative convergence criterion: 

 Max distance to optimal Q* smaller than   . 

 

 Conservative Choice: 

1k kQ Q 

2(1 )
log

2
K

R


 







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MDP Partially Undefined— 
Reinforcement Learning 

 Indirect Reinforcement Learning: Model based. 

 

 Learn Modell of MDP: 

 Reward function R 

 Transition probabilities P 

 

 Apply planning algorithm as before, e.g. Policy 

Iteration. 
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Policy Iteration (Again) 

 Even without learning a model of the MDP, we can 

apply the same principles. 

 

 As before: Iterate the following 2 Steps for 

computation of optimal policy: 

 Policy Evaluation: Compute Q¼ for fixed ¼k. 

 Policy Improvement: Determine next ¼k+1. 

 

 Policy Evaluation step changes for partly defined 

MDPs. 
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Policy Evaluation: Monte-Carlo Methods 

 Learn from episodic interactions with the 

environment. 

 Goal: Learn Q¼(s,a). 

 

 Monte-Carlo Estimation of Q¼(s,a): Compute mean 

of sampled cumulative rewards.  

 

 Unbiased Estimation of real rewards. Variance 
reduces with 1/n. 
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Policy Evaluation: Monte-Carlo Methods 

 Computation time of estimation is independent from 

size of state space. 

 

 Problem: If ¼ is deterministic, many state action 

pairs Q(s,a) will never be observed. 

 Problems in Policy Improvement step. 

 

 Solution: stochastic policies, e.g. ²-greedy policies.  
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Greedy and ²-Greedy Policies 

 Greedy: 

 

  ²-greedy: 

 

 

 Notation as distribution: 

 

 

 

 

 ²-greedy allows for exploration. 

( ) arg max ( , )
a

s Q s a

arg max ( , )    with probability 
( )

random action      with probability 1


 



a
Q s a

s





'
            if  arg max ( , ')    

( , ) 1
    otherwise

1




  




a
a Q s a

s a

A



 
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Stochastic Policy: Softmax  

 Current estimation of value function should have 

influence on probabilities. 

 soft max 

 

 Example: Gibbs distribution: 

 

 

 

  ¿t is also called the temperature parameter. 
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Temporal Difference Learning 

 Idea: Update states based on estimates of other 

states. Natural formulation as online learning 

method. 

 

 Also applicable to incomplete episodes. 

 

 Disadvantage compared to Monte-Carlo: 

 Stronger influence (more damage) if Markov property  

violated. 
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Policy Evaluation: Value Iteration 

 Idea: Update states based on estimates of other 

states. Natural formulation as online learning 

method. 

 Same idea as before in fully defined case. 

 Value Iteration for Policy Evaluation.  
Iteratively sample action at  and observe next state 

st+1. Update Q according to: 

 

 

 

1 '~ 1

1

'
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  
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Policy Evaluation: Value Iteration 

 Exploration / exploitation problem. Same as for 

Monte-Carlo methods. 

 

 If policy stochastic: Sample state-action sequence  

                              on-policy according to                .   

 

 Or sample                               off-policy according to 

stochastic off-policy                   .   

1 1 2 2 3 3 4 4...s a s a s a s a ~ ( )t ta s

1 1 2 2 3 3 4 4...s a s a s a s a

~ ( )t b ta s
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Policy Iteration (Again) 

 As before: Iterate the following 2 Steps for 

computation of optimal policy: 

 

 Policy Evaluation: Compute Q¼ for fixed ¼k. 

 Policy Improvement: Determine next ¼k+1. 

 

 

 Policy Evaluation either with Monte-Carlo sampling 

or value iteration. 
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N-step Returns 

 General update rule:  

 

 Temporal difference methods perform 1-step 

updates: 

 

 Monte-Carlo methods make updates, that are 

based on complete episodes: 

 

 

 N-Step Updates:  
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TD(¸) 
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TD(¸) 

 

 

 

 

 

 

 

 Idea: Weighted sum over all n-step returns. 
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TD(¸) 

 

 

 

 

 

 

 

 TD(¸) Update: 

 

 0·¸·1 interpolates between 1-step and MC.  
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Bias-Variance-Tradeoff 

Less  

Bias 

More variance 
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Eligibility Traces 

 Algorithmic view on TD(¸) 

 Use additional variable e(s) for every state s2S. 

  

 After observation <st,at,Rt,st+1>, compute  

 

 

 Update for all states 
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Q-Learning 

 Q-Learning Update: 

 

 

 

 

 Converges to Q* if 

 Every state will be observed infinitely often. 

 Step size parameters follow:  
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Q-Learning 

 Off-Policy method. No exploration / exploitation 

problem.  

 

 Learn optimal policy ¼* while following another 

behavior policy ¼‘. 

 

 Policy ¼‘ could e.g. be a stochastic policy with 

¼(s,a)>0 for all s and a to guarantee convergence 

of Q. 



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II 

SARSA 

 SARSA: On-Policy Temporal Difference Method.  

 

 

 

 

 Exploration / Exploitation Problem. 

 Use stochastic policy. 

 

 SARSA performs 1-step temporal difference 

updates. 
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Problem Formulations 

 Learn optimal policy. 

 Or best possible approximation. 

 

 Optimal Learning: Make as few as possible 

mistakes during learning. 

 Exploration / exploitation problem. 
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Exploration / Exploitation Problem 

 Tradeoff between  

 

 using the current best policy to maximize (greedy) 

reward.  

(Exploitation) 

 

 and exploring currently suboptimal actions whose 

values are still uncertain in order to find a potentially 

better policy.  

(Exploration) 
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Bandit Problem 

 n-armed bandit problem: 

 n actions (arms / slot machines) . 

 Each action has different expected reward. 

 Expected reward unknown. 

 Problem: find best action without losing too much on 

the way. 

 

 Expected reward for action a is Q*(a). 

 Estimated expected reward after t trials: 
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Greedy and ²-Greedy Policies 

 Greedy: 

 

 

  ²-greedy 

 

 

 

 ²-greedy allows for random exploration. 
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²-Greedy Policies 

 10-armed bandit 

 2000 experiments 

 For each experiment  
draw Q*(a) for all a: 

 

 Rewards are drawn  

from 
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Optimism under Uncertainty 

 One possible principle for solving the 

exploration/exploitation dilemma is 

„optimism under uncertainty“. 

 

 Doesn‘t work in all environments. 

 

 Could for example be implemented by using large 
initial values for Q. 
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Optimism under Uncertainty 

 Upper Confidence Bound (UCB): [Auer et al. 02 ] 

 Assume that rewards are bounded by [0,1]. 

 

 

 

 

 

 Good results for stationary environments and i.i.d. 

rewards. 
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Problem Formulations 

 P,R known. P(s‘|s,a) can be queried. 

 P,R not explicitly known. But we can sample from 

the distributions P(s‘|s,a).  Assumption: Generative 

model of P and R. 

 P,R not or only partly known. We can gain 

experience by interacting with the environment.  

   Reinforcement Learning.  

 Batch Reinforcement Learning: We have to learn 

from a fixed set of episodes. 
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Large and Infinite State Spaces 

 In realistic applications state spaces are usually 

very large or continuous. 

 So far: Assumption that value function could be 

stored as a table. 

 

 Different approaches: 

 Planning: 

 Monte-Carlo Sampling 

 Discretization with subsequent Value Iteration (or PI) 

 Approximation of value function with function 

approximation methods. 

 Direct learning of policy. 



In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II 

Approximation 

 Types of approximations 

 Representation, e.g. 

 Value function 

 Policy 

 Sampling 

 Online learning via interactions. 

 Sample from generative model of environment. 

 

 Maximization 

 Find the good action instead of best action for current 

state. 

ˆ ( , ; ) ( , )TQ s a s a  

( , ; ) ( ( , ) )Ts a h s a    
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Monte-Carlo Sampling 

 Assume that S is very large 

 Goal: Find Q, s.t. ||Q-Q*||1<². 

 

 Sparse Lookahead Trees:  

[Kearns et al. 02] 

 Monte-Carlo: Sample sparse action-

state tree. 

 Depth of tree: Effective horizon H(²) = 

O( 1/(1-°)  log(1/²(1-°)) ) 

 MC independent of |S| 

 But exponential in H(²): 

minimal size of tree. 
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Sparse Lookahead Trees 
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Upper Confidence Bounds for Trees 

 Improvement: Only inspect those parts of the tree 

that look promising. 

 Optimism under uncertainty! 

 Same principle as for the bandit problem. 

 UCT: UCB for Trees. 

[Kocsis & Szepesvári 06] 
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UCT Performance: Go 

 Very good results in Go. 

 9x9 & 19x19 

 

 Computer Olympics 2007 - 2009: 

 2007 & 2008: 1st to 3rd places employed variants of 

UCT.  

 More general: Monte-Carlo Search Trees (MCST). 

 2009: At least 2nd and 3rd employed variants of 

UCT. 
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Discretization 

 Continuous state space S. 

 Random Discretization Method: [Rust 97] 

 Sample states S‘ according to uniform distribution 

over state space. 

 Value iteration. 

 Continuous value iteration: 

 

 

 Discretization: Weighted Importance Sampling 
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Discretization 

 Compute value function V(s) for states that are not 

in sample set S‘: 

 Bellman update step: 

 

 

 

 

 Guaranteed performance: [Rust97]  
Assumption: S=[0,1]d 

 

 


