
Universität Potsdam
Institut für Informatik

Lehrstuhl Maschinelles Lernen

Reinforcement Learning

Uwe Dick

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Overview

 Problem Statements

 Examples

 Markov Decision Processes

 Planning – Fully defined MDPs

 Learning – Partly defined MDPs

 Monte-Carlo

 Temporal Difference

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Problem Statements in
Machine Learning

 Supervised Learning:
Learn a decision function from examples of correct
decisions.

 Unsupervised Learning:
Learn e.g. how to partition a data set (clustering)
without knowledge of a correct partitioning.

 Reinforcement Learning:
Learn how to make a sequence of decisions. The
quality of each decision may depend on the
complete decision sequence.
 Temporal Credit Assignment Problem.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Examples

 Backgammon: How much does one move influence

the outcome of a game?

 Robot Football: We want to score a goal. But which

sequence of moves gives highest chance to do so?

 Helicopter Flight: What do we have to do to fly a

maneuver without crashing in unknown

environments?

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Learning from Interactions

Environment

Agent

Controller

Action
•Reward

•Observation

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

When Reinforcement Learning?

 Delayed reward for actions.

(Temporal credit assignment problem)

 Control problems.

 Agents – The full AI problem.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

What is Reinforcement Learning?

 RL methods are „Sampling based methods to solve

optimal control problems “ (Richard Sutton)

 Search for an optimal policy (function from states to

actions).

 Optimality: Policy with highest expected reward.

 Other definitions for optimal learning: Fast learning

without making too many mistakes.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Example: Gridworld

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Markov Decision Processes

 (Finite) Markov Decision Process: Tuple (S,A,R,P)

 S : Finite state space (set of states).

 A : Finite action space (set of actions).

 P : Transition probabilities.

 R : Expected Immediate Reward.

 Discount factor .

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

 State space S

 Start state

 Target state

Example: Gridworld

ss S

zs S

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

 State space S

 Action space A

 A=(left, right, up, down)

Example : Gridworld

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

 State space S

 Action space A

 Transition probabilities P

 P((1,2)|(1,1), right) = 1

Example: Gridworld

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

 State space S

 Action space A

 Transition probabilities P

 Immediate Reward R

 R((1,1),right) = 0

Example: Gridworld

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

 State space S

 Action space A

 Transition probabilities P

 Immediate Reward R

 R((4,5),down) = 1

Example: Gridworld

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Markov Decision Processes

 (Finite) Markov Decision Process: Tuple (S,A,R,P)

 S : Finite state space (set of states).

 A : Finite action space (set of actions).

 P : Transition probabilities.

 R : Expected Immediate Reward.

 Discount factor .

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

MDP

 A deterministic stationary policy maps states to

actions.

 Stochastic Policy: Function from states to

distribution of actions.

 Goal: Find policy ¼, that maximizes the expected

cumulative (discounted) reward.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

 State space S

 Action space A

 Transition probabilities P

 Immediate Reward R

 Discount factor

 Policy

 Good Policy

 Expected discounted Reward

Example: Gridworld

2



0,9 

7

, 0
0

(, ()) | 0,9t

P t t s
t

E R s s s s  




 
    

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Example : Gridworld

1



0,9 

23

, 0
0

(, ()) | 0,9t

P t t s
t

E R s s s s  




 
    

 State space S

 Action space A

 Transition probabilities P

 Immediate Reward R

 Discount factor

 Policy

 Bad Policy

 Expected discounted Reward

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Markov Property

 Markov Property:

 In order to model real world scenarios as MDPs,

sequences of observations and actions have to be

aggregated into states.

 Markov property rarely fulfilled in reality.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Value Functions

 Value function V¼(s) for a state s and policy ¼

describes the expected discounted cumulative reward
that will be observed when starting in s and performing

actions according to. ¼.

 There always exists an optimal deterministic stationary
policy ¼*, which maximizes the value function.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

 State space S

 Action space A

 Transition probabilities P

 Immediate Reward R

 Discount factor

 Policy

 Good Policy

 Expected discounted Reward

Example: Gridworld

2



0,9 

1 3

,
0

() (, ()) 0,9k

t P t k t k
k

V s E R s s

  


 


 
    

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Value Functions

 Value function for state action pair:

 Optimal value function:

 Assumption: Value function can be stored in (large)

table (One entry for each state-action pair).

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Continuous State Spaces

 In the real world state spaces are (often) continuous

or very large.

 The same can hold for action spaces.

 Representation of value function and/or policy via

function approximation methods.

 E.g. representation of value function as parametric
function with parameter vector µ and features (basis

functions) :

1

ˆ (, ;) (,)
N

i i

i

Q s a s a  


 

:i S A  

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Continuous State Spaces

 Alternatively, use representation of policy as

parametric function of state-dependent features

 Such problems will be covered next week!

 Today: „Idealized“ problems with small and discrete

state and action spaces.

1

(;) ()
N

i i

i

s s   


 

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Bellman Equations

 Bellman equations describe a recursive property of

value functions. (Because of Markov property)

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Bellman Equations

 State action value functions:

 The Bellman equations constitute a system of linear

equations.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Bellman Operators

 Notation using (linear) operators:

 with linear operator T¼:

 V¼ is a fixed point of the Bellman operator T¼.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Bellman Optimality Equations

 Bellman Equations for control problem.

 Recursive property of optimal value functions.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Model Knowledge

 Different problem formulations for differing

knowledge about MDPs.

 MDP fully defined.

 Planning.

 MDP only partly defined.

We can gather experience by interacting with the

environment.

  Reinforcement Learning.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Types of Reinforcement Learning

 Reinforcement Learning methods can be

distinguished w.r.t. their usage of those interactions.

 Indirect methods:

 Model learning.

 Direct methods:

 Direct policy search.

 Value function estimation

 Policy Iteration.

 Value Iteration.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

MDP Fully Defined –
Planning with Policy Iteration

 Both reward function R and transition probabilities

P are defined.

 Policy Iteration is a general algorithm for

computing the optimal policy.

 Iterate the following 2 Steps for computation of
optimal policy for k=0,1,… Initialize ¼0 randomly.

 Policy Evaluation: Compute Q¼ for fixed ¼k.

 Policy Improvement: Determine next ¼k+1.

 (Policy Improvement Theorem)

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Evaluation

 First step in each iteration: Evaluate quality of

current (approximation of optimal) policy.

 Policy Evaluation computes value function V¼’ or Q¼’

for fixed ¼‘.

 Bellman Equations constitute system of linear

equations.

 However, state space is usually too large to solve

system of linear equations with standard solvers.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Evaluation with Value Iteration

 Value Iteration for policy evaluation is an iterative
algorithm that computes value function for

current policy as the limit of a sequence of
approximations Qi.

1 ,

'

(,) (,) (', ('))

(,) (' | ,) (', ('))


   

  

i P i k

i k

s

Q s a E R s a Q s s

R s a P s s a Q s s

  

 

kQ


k

, :  s S a A

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Evaluation with Value Iteration

 Value Iteration for policy evaluation is an iterative
algorithm that computes value function for

current policy as the limit of a sequence of

approximations:

kV


k

: s S

1 ,

'

() (, ()) (')

(, ()) (' | , ()) (')


   

  

i P k i

k k i

s

V s E R s s V s

R s s P s s s V s

  

  

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Iteration

k=0. Repeat until :

 Evaluate current policy, e.g. using Value Iteration.

 Greedy Policy Improvement:

1: () ()  k ks S s s 

: s S

1 ,

'

(,) (,) (', ('))

(,) (' | ,) (', ('))


   

  

i P i k

i k

s

Q s a E R s a Q s s

R s a P s s a Q s s

  

 

, :  s S a A

for 1... :i

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Example: Gridworld

1

0,9  Discount factor

 Start Policy

 Policy Iteration:

 Compute

with sequence of

approximations

1V 

iV

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Example: Gridworld

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1

0,9  Discount factor

 Start Policy

 Policy Iteration:

 Compute

with sequence of

approximations

1V 

iV

0V

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Example: Gridworld

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0.9 1

1

0,9  Discount factor

 Start Policy

 Policy Iteration:

 Compute

with sequence of

approximations

1V 

iV

1V

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Example: Gridworld

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0.81 0.9 1

2V
1

0,9  Discount factor

 Start Policy

 Policy Iteration:

 Compute

with sequence of

approximations

1V 

iV

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Example: Gridworld

0 0 0 0 0

0 0 0 0 0

0.. 0.. 0.. 0.. 0..

0.59 0.53 0.48 0.43 0…

0.66 0.73 0.81 0.9 1

nV
1

0,9  Discount factor

 Start Policy

 Policy Iteration:

 Compute

with sequence of

approximations

1V 

iV

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Example: Gridworld

0 0 0 0 0

0 0 0 0 0

0.. 0.. 0.. 0.. 0..

0.59 0.53 0.48 0.43 0…

0.66 0.73 0.81 0.9 1

1

0,9  Discount factor

 Start Policy

 Policy Iteration:

 Compute

with sequence of

approximations

 Policy Improvement:

Compute greedy Policy

()

1V 

1V 

2
(,) (,) [(')]k kQ s a R s a E V s

  

iV

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Evaluation

 In the limit k1, Vk converges to V¼.

Rate of convergence O(°k): ||Vk – V¼|| = O(°k)

 Proof e.g. using Banach fixed-point theorem.

 Let B=(B,||.||) be a Banach space.

 Let T be an operator T:BB, such that

||TU – TV|| · ° ||U – V|| with °<1.

T is a °-contraction mapping.

 Then T admits a unique fixed-point V . Furthermore,

for all V0 2 B, the sequence Vk+1=T Vk, k  1

converges to V. Also, ||Vk – V|| = O(°k)

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Evaluation

 The Bellman operator T¼

is a contraction mapping with contraction constant

°. It follows that the sequence that results from

iteratively applying the operator

converges to V¼.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Evaluation: Contraction Mapping

 What is a contraction mapping?

 According to the algorithm:

 Distance to the real value function reduces per
iteration by a factor ° (using sup norm).

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Improvement

 Greedy Policy Improvement

 Policy Improvement Theorem:

Let ¼‘ and ¼ be deterministic policies with: For all

s2S: Q¼(s,¼‘(s)) ¸ V¼(s).

Then V¼‘(s) ¸ V¼(s)

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Value Iteration

 Value Iteration for control problem:

 Converges to Q* for k1

 Similar proof.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Value Iteration

 Algorithm:

 Initialize Q, e.g. Q = 0

 for k=0,1,2,…:

 foreach (s,a) in (S x A):

 until

 Alternative convergence criterion:

 Max distance to optimal Q* smaller than .

 Conservative Choice:

1k kQ Q 

2(1)
log

2
K

R


 








In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

MDP Partially Undefined—
Reinforcement Learning

 Indirect Reinforcement Learning: Model based.

 Learn Modell of MDP:

 Reward function R

 Transition probabilities P

 Apply planning algorithm as before, e.g. Policy

Iteration.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Iteration (Again)

 Even without learning a model of the MDP, we can

apply the same principles.

 As before: Iterate the following 2 Steps for

computation of optimal policy:

 Policy Evaluation: Compute Q¼ for fixed ¼k.

 Policy Improvement: Determine next ¼k+1.

 Policy Evaluation step changes for partly defined

MDPs.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Evaluation: Monte-Carlo Methods

 Learn from episodic interactions with the

environment.

 Goal: Learn Q¼(s,a).

 Monte-Carlo Estimation of Q¼(s,a): Compute mean

of sampled cumulative rewards.

 Unbiased Estimation of real rewards. Variance
reduces with 1/n.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Evaluation: Monte-Carlo Methods

 Computation time of estimation is independent from

size of state space.

 Problem: If ¼ is deterministic, many state action

pairs Q(s,a) will never be observed.

 Problems in Policy Improvement step.

 Solution: stochastic policies, e.g. ²-greedy policies.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Greedy and ²-Greedy Policies

 Greedy:

 ²-greedy:

 Notation as distribution:

 ²-greedy allows for exploration.

() arg max (,)
a

s Q s a

arg max (,) with probability
()

random action with probability 1


 



a
Q s a

s





'
 if arg max (, ')

(,) 1
 otherwise

1




  




a
a Q s a

s a

A



 

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Stochastic Policy: Softmax

 Current estimation of value function should have

influence on probabilities.

 soft max

 Example: Gibbs distribution:

 ¿t is also called the temperature parameter.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Temporal Difference Learning

 Idea: Update states based on estimates of other

states. Natural formulation as online learning

method.

 Also applicable to incomplete episodes.

 Disadvantage compared to Monte-Carlo:

 Stronger influence (more damage) if Markov property

violated.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Evaluation: Value Iteration

 Idea: Update states based on estimates of other

states. Natural formulation as online learning

method.

 Same idea as before in fully defined case.

 Value Iteration for Policy Evaluation.
Iteratively sample action at and observe next state

st+1. Update Q according to:

1 '~ 1

1

'

(,) (,) (, ')

(,) (, ') (, ')

 



   

  

k k

k

t t t a t t t t

t t t t

a

Q s a E R s a Q s a

R s a s a Q s a

 







 

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Evaluation: Value Iteration

 Exploration / exploitation problem. Same as for

Monte-Carlo methods.

 If policy stochastic: Sample state-action sequence

 on-policy according to .

 Or sample off-policy according to

stochastic off-policy .

1 1 2 2 3 3 4 4...s a s a s a s a ~ ()t ta s

1 1 2 2 3 3 4 4...s a s a s a s a

~ ()t b ta s

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Policy Iteration (Again)

 As before: Iterate the following 2 Steps for

computation of optimal policy:

 Policy Evaluation: Compute Q¼ for fixed ¼k.

 Policy Improvement: Determine next ¼k+1.

 Policy Evaluation either with Monte-Carlo sampling

or value iteration.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

N-step Returns

 General update rule:

 Temporal difference methods perform 1-step

updates:

 Monte-Carlo methods make updates, that are

based on complete episodes:

 N-Step Updates:

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

TD(¸)

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

TD(¸)

 Idea: Weighted sum over all n-step returns.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

TD(¸)

 TD(¸) Update:

 0·¸·1 interpolates between 1-step and MC.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Bias-Variance-Tradeoff

Less

Bias

More variance

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Eligibility Traces

 Algorithmic view on TD(¸)

 Use additional variable e(s) for every state s2S.

 After observation <st,at,Rt,st+1>, compute

 Update for all states

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Q-Learning

 Q-Learning Update:

 Converges to Q* if

 Every state will be observed infinitely often.

 Step size parameters follow:

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Q-Learning

 Off-Policy method. No exploration / exploitation

problem.

 Learn optimal policy ¼* while following another

behavior policy ¼‘.

 Policy ¼‘ could e.g. be a stochastic policy with

¼(s,a)>0 for all s and a to guarantee convergence

of Q.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

SARSA

 SARSA: On-Policy Temporal Difference Method.

 Exploration / Exploitation Problem.

 Use stochastic policy.

 SARSA performs 1-step temporal difference

updates.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Problem Formulations

 Learn optimal policy.

 Or best possible approximation.

 Optimal Learning: Make as few as possible

mistakes during learning.

 Exploration / exploitation problem.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Exploration / Exploitation Problem

 Tradeoff between

 using the current best policy to maximize (greedy)

reward.

(Exploitation)

 and exploring currently suboptimal actions whose

values are still uncertain in order to find a potentially

better policy.

(Exploration)

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Bandit Problem

 n-armed bandit problem:

 n actions (arms / slot machines) .

 Each action has different expected reward.

 Expected reward unknown.

 Problem: find best action without losing too much on

the way.

 Expected reward for action a is Q*(a).

 Estimated expected reward after t trials:

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Greedy and ²-Greedy Policies

 Greedy:

 ²-greedy

 ²-greedy allows for random exploration.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

²-Greedy Policies

 10-armed bandit

 2000 experiments

 For each experiment
draw Q*(a) for all a:

 Rewards are drawn

from

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Optimism under Uncertainty

 One possible principle for solving the

exploration/exploitation dilemma is

„optimism under uncertainty“.

 Doesn‘t work in all environments.

 Could for example be implemented by using large
initial values for Q.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Optimism under Uncertainty

 Upper Confidence Bound (UCB): [Auer et al. 02]

 Assume that rewards are bounded by [0,1].

 Good results for stationary environments and i.i.d.

rewards.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Problem Formulations

 P,R known. P(s‘|s,a) can be queried.

 P,R not explicitly known. But we can sample from

the distributions P(s‘|s,a). Assumption: Generative

model of P and R.

 P,R not or only partly known. We can gain

experience by interacting with the environment.

  Reinforcement Learning.

 Batch Reinforcement Learning: We have to learn

from a fixed set of episodes.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Large and Infinite State Spaces

 In realistic applications state spaces are usually

very large or continuous.

 So far: Assumption that value function could be

stored as a table.

 Different approaches:

 Planning:

 Monte-Carlo Sampling

 Discretization with subsequent Value Iteration (or PI)

 Approximation of value function with function

approximation methods.

 Direct learning of policy.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Approximation

 Types of approximations

 Representation, e.g.

 Value function

 Policy

 Sampling

 Online learning via interactions.

 Sample from generative model of environment.

 Maximization

 Find the good action instead of best action for current

state.

ˆ (, ;) (,)TQ s a s a  

(, ;) ((,))Ts a h s a    

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Monte-Carlo Sampling

 Assume that S is very large

 Goal: Find Q, s.t. ||Q-Q*||1<².

 Sparse Lookahead Trees:

[Kearns et al. 02]

 Monte-Carlo: Sample sparse action-

state tree.

 Depth of tree: Effective horizon H(²) =

O(1/(1-°) log(1/²(1-°)))

 MC independent of |S|

 But exponential in H(²):

minimal size of tree.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Sparse Lookahead Trees

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Upper Confidence Bounds for Trees

 Improvement: Only inspect those parts of the tree

that look promising.

 Optimism under uncertainty!

 Same principle as for the bandit problem.

 UCT: UCB for Trees.

[Kocsis & Szepesvári 06]

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

UCT Performance: Go

 Very good results in Go.

 9x9 & 19x19

 Computer Olympics 2007 - 2009:

 2007 & 2008: 1st to 3rd places employed variants of

UCT.

 More general: Monte-Carlo Search Trees (MCST).

 2009: At least 2nd and 3rd employed variants of

UCT.

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Discretization

 Continuous state space S.

 Random Discretization Method: [Rust 97]

 Sample states S‘ according to uniform distribution

over state space.

 Value iteration.

 Continuous value iteration:

 Discretization: Weighted Importance Sampling

In
te

llig
e
n
t D

a
ta

 A
n
a
ly

s
is

 II

Discretization

 Compute value function V(s) for states that are not

in sample set S‘:

 Bellman update step:

 Guaranteed performance: [Rust97]
Assumption: S=[0,1]d

