AVEIS)£...
SOV,

Universitat Potsdam

Institut fir Informatik i “m‘“
Lehrstuhl Maschinelles Lernen O,:p Jmp
™ ?'am
@

Reinforcement Learning

Uwe Dick

Overview

s Problem Statements
s Examples

s Markov Decision Processes

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= Planning — Fully defined MDPs
= Learning — Partly defined MDPs
= Monte-Carlo

= Temporal Difference

Problem Statements in
Machine Learning

= Supervised Learning:
Learn a decision function from examples of correct
decisions.

= Unsupervised Learning:
Learn e.g. how to partition a data set (clustering)
without knowledge of a correct partitioning.

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= Reinforcement Learning:
Learn how to make a sequence of decisions. The
guality of each decision may depend on the
complete decision seguence.
— Temporal Credit Assignment Problem.

Examples

= Backgammon: How much does one move influence
the outcome of a game?

= Robot Football: We want to score a goal. But which
sequence of moves gives highest chance to do so?

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= Helicopter Flight: What do we have to do to fly a
maneuver without crashing in unknown
environments?

Learning from Interactions

(

Environment

‘Reward

Observation Action

>
~—t
@
=
)
S
~—+
)
)
)
>
5
Q
<
28
»

O O

Agent
Controller

N

When Reinforcement Learning?

= Delayed reward for actions.
(Temporal credit assignment problem)

= Control problems.

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= Agents — The full Al problem.

What is Reinforcement Learning?
= RL methods are ,Sampling based methods to solve
optimal control problems “ (Richard Sutton)

s Search for an optimal policy (function from states to
actions).

= Optimality: Policy with highest expected reward.

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= Other definitions for optimal learning: Fast learning
without making too many mistakes.

Example: Gridworld

|| SisAjeuy ereq juabijjaiu|

Markov Decision Processes

= (Finite) Markov Decision Process: Tuple (S,A,R,P)
= S : Finite state space (set of states).
= A : Finite action space (set of actions).

s P Transition probabilities.
P(s'|s,a) s,s' € S,ae A

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= R : Expected Immediate Reward.

R:(SxA)—R

s Discount factor 0 <~y <1,

Example: Gridworld

m State space S
Start state S, € S
Target state S, €S @

|| SisAjeuy ereq juabijjaiu|

Example : Gridworld

m State space S

= Action space A
A=(left, right, up, down) @

|| SisAjeuy ereq juabijjaiu|

Example: Gridworld

m State space S
= Action space A

= Transition probabilities P ©
P((1,2)[(1,1), right) = 1

|| SisAjeuy ereq juabijjaiu|

Example: Gridworld

m State space S
= Action space A
= Transition probabilities P

s Immediate Reward R
R((1,1),right) =0

|| SisAjeuy ereq juabijjaiu|

Example: Gridworld

m State space S
= Action space A
= Transition probabilities P

s Immediate Reward R
R((4,5),down) =1

|| SisAjeuy ereq juabijjaiu|

Markov Decision Processes

= (Finite) Markov Decision Process: Tuple (S,A,R,P)
= S : Finite state space (set of states).
= A : Finite action space (set of actions).

s P Transition probabilities.
P(s'|s,a) s,s' € S,ae A

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= R : Expected Immediate Reward.

R:(SxA)—R

s Discount factor 0 <~y <1,

MDP

= A deterministic stationary policy maps states to
actions.

T:S — A

= Stochastic Policy: Function from states to
distribution of actions.

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

s Goal: Find policy =, that maximizes the expected
cumulative (discounted) reward.

E,p Zfﬁmst,w(sm}

Example: Gridworld

m State space S
= Action space A
= Transition probabilities P
= Immediate Reward R
= Discount factor ¥ =0,9
= Policy n
Good Policy 7, =
= Expected discounted Reward

|| SisAjeuy ereq juabijjaiu|

e &= =

44-4-4-4-@

Eyz,P [tzé)th(St’ﬂ'(St)) | So = Ss:| =0,9’

Example : Gridworld

m State space S
= Action space A
= Transition probabilities P
= Immediate Reward R
= Discount factor ¥ =0,9
= Policy «
Bad Policy 7z, =
= Expected discounted Reward

|| SisAjeuy ereq juabijjaiu|

Eﬁ,p[tzo 7RG, 7(5)) I8, =ss]=o,923

Markov Property

= Markov Property:

P(St—|—1|8t7at78t—17at—lv"'9807(1’0) — P(St—I—l‘St)at)

R(Staa’tast—laat—la"'7807a0) — R(Staat)

= In order to model real world scenarios as MDPs,
sequences of observations and actions have to be
aggregated into states.

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= Markov property rarely fulfilled in reality.

Value Functions

= Value function V7(s) for a state s and policy =

describes the expected discounted cumulative reward
that will be observed when starting in s and performing
actions according to. .

V7 (s1) = Ex.p | > Y R(stik, m(st1k))
k=0

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= There always exists an optimal deterministic stationary
policy 7, which maximizes the value function.

V*(s) = max V™ (s)

T

V™ (s) = V*(s)

Example: Gridworld

m State space S
= Action space A
= Transition probabilities P
= Immediate Reward R
= Discount factor ¥ =0,9
= Policy n
Good Policy 7, =
= Expected discounted Reward

|| SisAjeuy ereq juabijjaiu|

%44—4-#4-

0

V™ (St) — E;z,P |:|§6 7/kR(St+k’7T(St+k)):|

Value Functions

= Value function for state action pair:

QW(St, at) — R(Staat) -+ EW,P Zf}/kR(St—{—kj W(3t+k))
k=1
= Optimal value function:

Q" (st;a) = R(st,a) + vEp[V " (st41)]
und V*(s;) = maXQ (s¢,a)

) =
Q" (s,a) = maxQ”(s a)
T (s) =

=1
~—t
@
=
)
S
—
)
)
)
>
5
Q
<
<3
»

arg max Q" (s, a)

= Assumption: Value function can be stored in (large)
table (One entry for each state-action pair).

Continuous State Spaces

= In the real world state spaces are (often) continuous
or very large.

= The same can hold for action spaces.

= Representation of value function and/or policy via
function approximation methods.

E.g. representation of value function as parametric
function with parameter vector 6 and features (basis

functions) ¢ :SxA—>R:

O(s.,0) =Y i (5,2)-

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

Continuous State Spaces

= Alternatively, use representation of policy as
parametric function of state-dependent features

7(s,0) = _#(s) 6

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= Such problems will be covered next week!

s Today: ,ldealized” problems with small and discrete
state and action spaces.

Bellman Equations

s Bellman equations describe a recursive property of
value functions. (Because of Markov property)

V7™ (s¢)

: _Z'YkR(StJrkaW(StJrk))]

k=0

|
&
3
}U

=1
~—t
@
=
)
S
—
)
)
)
>
5
Q
<
<3
»

= Eﬁ’p (s¢,m(s¢) —I—’)/Z’)/ (Stpht1, T St+k+1))]

= Lnp :R(Sta’”(st))‘l‘ﬂ/v (3t+1))]

= R(se,m(se))+7 Y, Plsipalse, m(s0)V7 (s141)

st4+1E€S

Bellman Equations

s State action value functions:

Q"(st.ar) = R(st,a) +7Brp|Q(s111,7(s11)]

3

D

g

= The Bellman equations constitute a system of linear &
equations. =

VT = R+7P"VT”
- V" = (I-~vP")"'R

Bellman Operators

= Notation using (linear) operators:
Vﬂ' — T’;‘TV’JT

= Wwith linear operator 1™

(T™V)(s) = R(s,m(s)) +~) P(s/|s,m(s))V(s)

s’es

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

> V7is a fixed point of the Bellman operator 1™.

Bellman Optimality Equations

= Bellman Equations for control problem.

= Recursive property of optimal value functions.
V*(sy) = max Err [R(st, a) + q/V*(st+1)]

Q(st.a) = R(si, @) +7En | maxQ*(sis1,a)

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

Model Knowledge

= Different problem formulations for differing
knowledge about MDPs.

= MDP fully defined.
— Planning.

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= MDP only partly defined.
We can gather experience by interacting with the
environment.
— Reinforcement Learning.

Types of Reinforcement Learning

s Reinforcement Learning methods can be
distinguished w.r.t. their usage of those interactions.

s Indirect methods:
Model learning.

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= Direct methods:
Direct policy search.

Value function estimation
= Policy Iteration.
* Value lteration.

MDP Fully Defined -
Planning with Policy Iteration

= Both reward function R and transition probabilities
P are defined.

= Policy Iteration is a general algorithm for
computing the optimal policy.

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= [terate the following 2 Steps for computation of
optimal policy for k=0,1,... Initialize 7, randomly.
Policy Evaluation: Compute Q~ for fixed
Policy Improvement: Determine next m, .

Policy Evaluation

m First step in each iteration: Evaluate quality of
current (approximation of optimal) policy.

= Policy Evaluation computes value function V™ or Q™
for fixed 7.

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= Bellman Equations constitute system of linear
equations.

= However, state space is usually too large to solve
system of linear equations with standard solvers.

Policy Evaluation with Value Iteration

= Value lteration for policy evaluation is an iterative
algorithm that computes value function Q™ for

current policy , as the limit of a sequence of
approximations Q..

VseS,ae A:
Qui(s.8)=E, .| R(s,a)+7Q (s 7, (s")]
=R(s,@)+72 P(s'[5,a)Q, (5" 7,(s))

=1
~—t
@
=
)
S
—
)
)
)
>
5
Q
<
28
»

Policy Evaluation with Value Iteration

= Value lteration for policy evaluation is an iterative
algorithm that computes value function V™ for

current policy , as the limit of a sequence of
approximations:

VseS:
Vii(8)=E, | R(S, 7, (8)) + 2V, (5]
= R(s. 7, () +7 2 P(s'| s, 7, ()V; (5)

=1
~—t
@
=
)
S
—
)
)
)
>
5
Q
<
28
»

Policy Iteration

k=0. Repeat until VseS:z.(S)=rm_,(8)

Evaluate current policy, e.g. using Value Iteration.
fori=1...:
VseS,ace A:

=1
~—t
@
=
)
S
—
)
)
)
>
5
Q
<
28
»

Q.i(s.8)=E, .| R(s,@)+7Q (' 7, (s)) |
=R(s,@)+72 P(s'[5,8)Q, (5" 7,(s)

J

Greedy Policy Improvement:

VseS: 7Tk—|—1(5) — argmgx@”(s,a)

Example: Gridworld

= Discount factor ¥ =0,9
= Start Policy =, =

= Policy Iteration:

Compute V™
with sequence of
approximations V.

|| SisAjeuy ereq juabijjaiu|

Example: Gridworld

= Discount factor ¥ =0,9
= Start Policy =, =

= Policy Iteration:

Compute V™
with sequence of
approximations V.

|| SisAjeuy ereq juabijjaiu|

Example: Gridworld

= Discount factor ¥ =0,9
= Start Policy =, =

= Policy Iteration:

Compute V™
with sequence of
approximations V.

|| SisAjeuy ereq juabijjaiu|

Example: Gridworld

= Discount factor ¥ =0,9
= Start Policy =, =

= Policy Iteration:

Compute V™
with sequence of
approximations V.

|| SisAjeuy ereq juabijjaiu|

Example: Gridworld

= Discount factor ¥ =0,9
= Start Policy =, =

= Policy Iteration:

Compute V™
with sequence of
approximations V.

|| SisAjeuy ereq juabijjaiu|

Example: Gridworld

= Discount factor ¥ =0,9
= Start Policy =, =

= Policy Iteration:

Compute V™
with sequence of
approximations V.

Policy Improvement:
Compute greedy Policy 77,
(Q™(s,a)=R(s,a) +yE[V ™ (s)])

\VA

|| SisAjeuy ereq juabijjaiu|

o

4m’ qum 4

o

o

-

AN
oo

o

J’?g

o

JoidmGem g g

o
0¢]

i

Policy Evaluation

= In the limit £&—o0, V, converges to V7.
Rate of convergence O(~"): ||V, — V|| = O(¥%)

= Proof e.g. using Banach fixed-point theorem.
s Let B=(B,||.||) be a Banach space.
s Let T be an operator T: B— B, such that
17U = IV]| < ~ ||U = V]| with 7<1.
T Is a y-contraction mapping.
= Then T admits a unique fixed-point V. Furthermore,

for all V. € B, the sequence V,, =T'V,, k > oo
converges to V. Also, ||V, — V]| = O(%)

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

Policy Evaluation

= The Bellman operator 1™

(T™V)(s) = R(s,m(s)) +7) P(s/|s,n(s))V(s)

s’esS
IS a contraction mapping with contraction constant
~. It follows that the sequence that results from
iteratively applying the operator
Vir1(s) = (T™Vi)(s) = R(s,m(s)) +7 Y P(s'|s,m(s))Vi(s')

s'eS

=]
@
=
)

S

—
O
£
&

>
5

L
<

0,
7

converges to V7.

Policy Evaluation: Contraction Mapping

= What is a contraction mapping?

[T Vigr =T7Vie|| < A|[Vieyr — V|
= According to the algorithm:

Vit2 = Vit < 9|Vt — V||

= Distance to the real value function reduces per
iteration by a factor v (using sup norm).

VT = Vi = IT"VT = T7Vi|| < A[[VT = Vi

=]
@
=
)

S

—
O
£
&

>
5

L
<

0,
7

Policy Improvement

= Greedy Policy Improvement

Tht1(s) = argmax@Q™(s,a)
a

= Policy Improvement Theorem:

=]
@
=
)

S

—
O
£
&

>
5

L
<

0,
7

Let 7' and 7 be deterministic policies with: For all
s€S: Qm(s,m(s)) > V(s).

Then V7 (s) > V7(s)

Value lteration

= Value lteration for control problem:

3

Vir1(sy) = max [R(st, a) + Z T(s¢a1|S¢, a)Vk(sH_l)} g
St41 g

QD

Qiti(s,a) = R(s,a)+7) T(s's,a) maxQu(s', a’) 5
a’ Qo

s’ <

s Converges to Q" for k—oo
= Similar proof.

Value lteration

= Algorithm: =
Initialize Q, e.g. Q=0 =

for k=0,1,2,...: g

x foreach (s,a) in (S x A): 5

>

Qrsi(s,a) = R(s,a)+7y> T(s]s,a) max Qx(s',a) B

until Q.,; =Q, =

= Alternative convergence criterion:
Max distance to optimal Q" smaller than ¢.

Conservative Choice: K =log, 2

MDP Partially Undefined—
Reinforcement Learning

= Indirect Reinforcement Learning: Model based.

s Learn Modell of MDP:
Reward function R

Transition probabilities P

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= Apply planning algorithm as before, e.g. Policy
Iteration.

Policy Iteration (Again)

= Even without learning a model of the MDP, we can
apply the same principles.

= As before: Iterate the following 2 Steps for
computation of optimal policy:
Policy Evaluation: Compute Q~ for fixed
Policy Improvement: Determine next m,, .

= Policy Evaluation step changes for partly defined
MDPs.

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

Policy Evaluation: Monte-Carlo Methods

= Learn from episodic interactions with the
environment.

s Goal: Learn QQ™(s,a).

= Monte-Carlo Estimation of Q7(s,a): Compute mean
of sampled cumulative rewards.

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

s Unbiased Estimation of real rewards. Variance
reduces with 1/n.

Policy Evaluation: Monte-Carlo Methods

= Computation time of estimation is independent from
size of state space.

= Problem: If 7 Is deterministic, many state action
pairs (Q(s,a) will never be observed.

= Problems in Policy Improvement step.

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= Solution: stochastic policies, e.g. e-greedy policies.

Greedy and e-Greedy Policies
= Greedy: 7z(s)=arg max Q(s,a)

s e-greedy:

argmax Q(s,a) with probability &
7(s) = ’

random action with probability 1—¢
Notation as distribution:

=1
~—t
@
=
)
S
~—+
)
)
)
>
5
Q
<
28
»

-

g If a=argmaxQ(s,a’)
7Z'(S,a)=< 1-¢ ;

——— otherwise

|A-1

= c-greedy allows for exploration.

Stochastic Policy: Softmax

s Current estimation of value function should have
Influence on probabilities.
— soft max

s Example: Gibbs distribution:

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

eQi(a)/Te
SAL eQ(ai) /T

m(a) =

= 7, IS also called the temperature parameter.

Temporal Difference Learning

= |dea: Update states based on estimates of other
states. Natural formulation as online learning
method.

= Also applicable to incomplete episodes.

= Disadvantage compared to Monte-Carlo:

Stronger influence (more damage) if Markov property
violated.

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

Policy Evaluation: Value Iteration

s ldea: Update states based on estimates of other
states. Natural formulation as online learning
method.

= Same idea as before in fully defined case.

= Value Iteration for Policy Evaluation.
lteratively sample action a, and observe next state
si+1- Update Q according to:

(s0a) =By | R(5,2) +7Q (50,2 |
=R(s,,a,) + 72 7(s,a)Q ™ (s,,,,a")

=1
~—t
@
=
)
S
—
)
)
)
>
5
Q
<
<3
»

Policy Evaluation: Value Iteration

= Exploration / exploitation problem. Same as for
Monte-Carlo methods.

= If policy stochastic: Sample state-action sequence
s,a,5,a,5,a,5,a,... on-policy according to &, ~ 7(s,).

= Or sample s &s,a,S;,a,S,a,... off-policy according to
stochastic off-policy a, ~ 7, (s,) .

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

Policy Iteration (Again)

= As before: Iterate the following 2 Steps for
computation of optimal policy:

Policy Evaluation: Compute Q~ for fixed
Policy Improvement: Determine next m, .

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= Policy Evaluation either with Monte-Carlo sampling
or value iteration.

N-step Returns

= General update rule:
V(St) < (1 — Odt)V(St) -+ OétAV(St)

= Temporal difference methods perform 1-step
updates: A1V (st) = Ry + 7V (8141)

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= Monte-Carlo methods make updates, that are
based on complete episodes:

AV (st)=Ro+vR1+7 Re+7’Rs + ...

= N-Step Updates:
A,V (st)=Ro+yRi+v’Ra+...+7" " "Ry_1 + 7"V (sp)

Ry Ry R R3
Ro+~V (s1)

Ro+~Ri+ 7V (s2)
Ro+yRi+ v Ro+ 7V (s3)

Ry, Ri41

=1
~—t
@
=
)
S
—
)
)
)
>
5
Q
<
28
»

Wi

Woo

R, R, Ry, Rs ... Ry Risr
Ay Ro+~V(s1)

Ay Ro+~vRi+ ’)/2‘/(82)

Az: Ro+vRi+ Y?Ra+ 73V (s3)

Ak : R0—|— ’)/Rl—f— ’)/2R2—|— ")/SRQ, + ... +’)/kV(Sk)

=1
~—t
@
=
)
S
—
)
)
)
>
5
Q
<
28
»

As : Ro+7vRi+ V?Ro+ V3R +... +9*Rp+ " 1R+ ...

= Idea: Weighted sum over all n-step returns.

A = Z kakV(SO)
k=1

Ry Ry R Rs ... R
(1—=X) A1 Ro+~vyV(s1)
(1 — /\))\ Ay Ro+~vRi+ ’Y2V(82)
(]. — /\))\2 A3 . R0—|— ’)/R1—|— ’72R2—|— ’}/3V(83)

(1 —)\))\k_l Ap: Ro+~vRi+ ’)/2R2—|— ’)/SRg + ... +’)/kV(Sk)

=1
~—t
@
=
)
S
—
)
)
)
>
5
Q
<
28
»

= TD()\) Update: A(N) = i(l — MMNTLALV (s0)

k=1

s 0<)<1 interpolates between 1-step and MC.

Bias-Variance-Tradeoff

Ry Ry Ry R ... Ry Riiq
Ar: | Ro+~V(s1)
Ao : Ro+~vR1+ ’)/2V(82)
As: | Ro+~vRi+ ¥*Rao+ vV (s3)

More variance

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

Ak : R0+ ’)/R1—|— ")/2R2—|— 73R3 + ... —F’YkV(Sk

As | Ro+~vRi+ V?Ra+ V2R3 +... +7*Rp+~+*" T 1Ry 1+ ...

Eligibility Traces

= Algorithmic view on TD(\)
= Use additional variable e(s) for every state s<S.

= After observation <s,,a,,R,,s,,,>, compute
51& — Rt + ")/V(St_|_1) — V(St)
e(s;) <« e(sy)+1

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= Update for all states
Vi(s) <+ V(s)+ aidie(s)

M Conventional
e(s) «+ Ave(s) Traces

_M Replace
Traces

l | | I | I | Visit Times

Q-Learning

= Q-Learning Update:

Q(st,ar) <+ (1 —ap)Q(se,ay)
+ay (R(St; at) + max Q(St41, a’))

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

m Converges to Q" if

Every state will be observed infinitely often.
Step size parameters follow:

oo oo
E Qi = OO E oz? < o0

Q-Learning

s Off-Policy method. No exploration / exploitation
problem.

= Learn optimal policy «* while following another
behavior policy 7.

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= Policy 7' could e.g. be a stochastic policy with
m(s,a)>0 for all s and a to guarantee convergence

of Q).

SARSA

= SARSA: On-Policy Temporal Difference Method.

Q(st,ar) +— (1 —ou)Q(se,ar)
o (R(st,at) + vQ(St41, 1))

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= Exploration / Exploitation Problem.
Use stochastic policy.

s SARSA performs 1-step temporal difference
updates.

Problem Formulations

= Learn optimal policy.
Or best possible approximation.

= Optimal Learning: Make as few as possible
mistakes during learning.

Exploration / exploitation problem.

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

Exploration / Exploitation Problem

m Tradeoff between

z

5

. . o Z
using the current best policy to maximize (greedy) >
reward. 5
(Exploitation) z
<

and exploring currently suboptimal actions whose
values are still uncertain in order to find a potentially
better policy.

(Exploration)

Bandit Problem

= N-armed bandit problem:
n actions (arms / slot machines) .
Each action has different expected reward.
Expected reward unknown.

Problem: find best action without losing too much on
the way.

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

s Expected reward for action a is Q" (a).
s Estimated expected reward after ¢ trials:
R+ Ro+--+ Ry)
Qt(a) — na(t)

Greedy and e-Greedy Policies

s Greedy: =
m = argmax Q¢(a) %

a D

o

=

= e-greedy 3
5

o { arg max, Q+(a) mit Wahrscheinlichkeit 1 — € §

zufallige Aktion mit Wahrscheinlichkeit e

= c-greedy allows for random exploration.

e-Greedy Policies

= 10-armed bandit
= 2000 experiments

= For each experiment
draw Q" (a) for all a:

Q*((J,) ~ N(Oa 1)

s Rewards are drawn
from

Ri(a) ~ N(Q*(a),1)

€= 01
€ =0.01 =
- et llf'm g
€ =0 (greedy) =
Average L(‘?)
reward >
0.5 U
Q
4+
QD
0 1 1 1 1 1 >
)
0 250 500 750 1000[K_Y}
Pl <
ays 3
(7))
1009 —_
8% — o o
O/o 60% — e=Dol
Dptimal :
action 409 -
€ =0 (greedy)
20% -1

1 1 I 1
250 500 750 1000]
Plays

Optimism under Uncertainty

= One possible principle for solving the
exploration/exploitation dilemma is
,optimism under uncertainty”.

s Doesn‘t work in all environments.

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= Could for example be implemented by using large
Initial values for Q).

Optimism under Uncertainty

= Upper Confidence Bound (UCB): [Auer et al. 02]
Assume that rewards are bounded by [0,1].

T = arg max {Qt(a) + \/Ce log(t)} , Ce > 2

2n4(t)

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

s Good results for stationary environments and i.i.d.
rewards.

Problem Formulations

s P R known. F(s|s,a) can be gueried.

= P, R not explicitly known. But we can sample from

the distributions F(s'|s,a). Assumption: Generative
model of Pand R.

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= P, R not or only partly known. We can gain

experience by interacting with the environment.
— Reinforcement Learning.

= Batch Reinforcement Learning: We have to learn
from a fixed set of episodes.

Large and Infinite State Spaces

= In realistic applications state spaces are usually
very large or continuous.

s SO far: Assumption that value function could be
stored as a table.

= Different approaches:
Planning:
x Monte-Carlo Sampling
x Discretization with subsequent Value Iteration (or PI)

Approximation of value function with function
approximation methods.

Direct learning of policy.

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

Approximation

= Types of approximations

» Online learning via interactions.
x Sample from generative model of environment.

5

Representation, e.g. &
« Value function Q(s,a;0) =¢' (s,a)0 2
* Policy 7(s,a;0) =h(¢' (s,a)-0) =

I >
Sampling z
G

Maximization

x Find the good action instead of best action for current
state.

Monte-Carlo Sampling

= Assume that S'is very large

» Goal: Find Q, s.t. [|Q-Q'|| .<e. -
s Sparse Lookahead Trees: >
[Kearns et al. 02] &l
Monte-Carlo: Sample sparse action- i
state tree. /
Depth of tree: Effective horizon H(e)\:/’
O(1/(1-v) log(1/e(1-7))) (

MC independent of |S]

But exponential in H(e):

minimal size of tree.
C|A|H(e)

Sparse Lookahead Trees

Upper Confidence Bounds for Trees

= Improvement: Only inspect those parts of the tree
that look promising.
= Optimism under uncertainty!

Same principle as for the bandit problem.

UCT: UCB for Trees.
[Kocsis & Szepesvari 06]

7(s,a) = arg max {Qt(s,a) 4 \/ce log(t)} o> 2

2n5.4(1)

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

UCT Performance: Go

= Very good results in Go.
= 9x9 & 19x19

= Computer Olympics 2007 - 2009:

2007 & 2008: 1st to 3rd places employed variants of
UCT.

More general: Monte-Carlo Search Trees (MCST).

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

2009: At least 2nd and 3rd employed variants of
UCT.

Discretization

= Continuous state space S.

= Random Discretization Method: [Rust 97]

Sample states S according to uniform distribution
over state space.

Value iteration.
s Continuous value iteration:

Vig1(s) = max [R(s, a) + ’y/, p(s'|s, a)Vt(s’)ds’}

S

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

= Discretization: Weighted Importance Sampling
Zf;il p(sils, a)V (s;)
Zj'\]:() p(Sj‘S, CL)

> / p(s'|s,a)V(s'") , fiir N— oo

Discretization

= Compute value function V{s) for states that are not
In sample set 5"

= Bellman update step:

N
a i=1 Zj:o p(Sj‘S, a)

V™ (s:)

s Guaranteed performance: [Rust97]
Assumption: S=[0,1]¢
Cd|A|>/4
(1=)2N1/!

B[V (s) = V™ (s)ll%] <

=]
@
=
)
S
—
O
£
&
>
5
L
<
0,
7

