Advanced Data Analysis II

Exercise Sheet 13

Prof. Tobias Scheffer Dr. Niels Landwehr Uwe Dick Winter term 2015/2016

Handed out: 26.01.16 Tutorial: 02.02.16

Exercise 1

Policy Iteration

Let a Markov decision process (S, A, P, R, γ) be defined as follows. Let state space $S = \{s_1, s_2, s_3\}$, action space $A = \{a_1, a_2, a_3\}$, and deterministic transition probabilities

 $P(s_i|s, a_j) = 1$, if i = j and 0 otherwise.

The immediate reward R is defined in the graph and the discount factor is $\gamma = 0.5$. The goal is to learn the value function of a deterministic policy π_1 , which is defined as:

$$\pi_1(s_1) = a_2, \pi_1(s_2) = a_1, \pi_1(s_3) = a_2$$

- a) Compute an approximation of the value function $Q^{\pi_1}(s, a), \forall s, a$, starting from an initial $\hat{Q}_0(s, a) = 0, \forall s, a$ using value iteration for policy evaluation. Assume the model is fully defined. Stop the computation after 2 full iterations.
- b) Assume that the following state action sequence is observed while using a behavior policy π_b .

$$s_1, a_2, s_2, a_1, s_1, a_3, s_3, a_3, s_3, a_2, s_2, a_3, s_3, a_1, s_1, a_1, s_1, a_3, s_3$$

Compute an approximation of Q^{π_1} .

- c) Compute an approximation of Q^{π_1} after 10 steps if the state-action sequence is drawn on-policy, starting from s_3 .
- d) Compute the next policy π_2 using the greedy policy improvement step based on each of the three approximations of Q^{π_1} .

Exercise 2

Use the above MDP to approximate the optimal value function.

Value Iteration

- a) Compute an approximation of the optimal value function $Q^*(s, a), \forall s, a$, starting from an initial $\hat{Q}_0(s, a) = 0, \forall s, a$ using Value Iteration. Assume the model is fully defined. Stop the computations after 2 full iterations.
- b) Compute an approximation of Q^* when the following sequence is drawn off-policy by a behavior policy π_b :

$$s_1, a_2, s_2, a_1, s_1, a_3, s_3, a_3, s_3, a_2, s_2, a_3, s_3, a_1, s_1, a_1, s_1, a_3, s_3$$

Exercise 3

 $TD(\lambda)$

Compute an approximation of Q^{π} using $TD(\lambda)$ and $\lambda = 0.5$, where the following on-policy samples are drawn using π .

$$s_1, a_2, s_2, a_2, s_2, a_1, s_1, a_3, s_3, a_3, s_3, a_2, s_2, a_1, s_1, a_3, s_3, a_3, s_3$$

Try both update rules for the additional table e of the eligibility traces and show the differences.

$$e(s) \leftarrow e(s) + 1$$
 Accumulating Traces (1)

$$e(s) \leftarrow 1$$
 Replacing Traces (2)

What problems would appear if one would augment the off-policy method *Q*-Learning with eligibility traces?