Advanced Data Analysis II

Exercise Sheet 13

Prof. Tobias Scheffer Dr. Niels Landwehr Uwe Dick

Winter term 2015/2016
Handed out: 26.01.16
Tutorial: 02.02.16

Exercise 1

Policy Iteration

Let a Markov decision process (S, A, P, R, γ) be defined as follows. Let state space $S=$ $\left\{s_{1}, s_{2}, s_{3}\right\}$, action space $A=\left\{a_{1}, a_{2}, a_{3}\right\}$, and deterministic transition probabilities

$$
P\left(s_{i} \mid s, a_{j}\right)=1, \text { if } i=j \text { and } 0 \text { otherwise. }
$$

The immediate reward R is defined in the graph and the discount factor is $\gamma=0.5$.
The goal is to learn the value function of a deterministic policy π_{1}, which is defined as:

$$
\pi_{1}\left(s_{1}\right)=a_{2}, \pi_{1}\left(s_{2}\right)=a_{1}, \pi_{1}\left(s_{3}\right)=a_{2}
$$

a) Compute an approximation of the value function $Q^{\pi_{1}}(s, a), \forall s, a$, starting from an initial $\hat{Q}_{0}(s, a)=0, \forall s, a$ using value iteration for policy evaluation. Assume the model is fully defined. Stop the computation after 2 full iterations.
b) Assume that the following state action sequence is observed while using a behavior policy π_{b}.

$$
s_{1}, a_{2}, s_{2}, a_{1}, s_{1}, a_{3}, s_{3}, a_{3}, s_{3}, a_{2}, s_{2}, a_{3}, s_{3}, a_{1}, s_{1}, a_{1}, s_{1}, a_{3}, s_{3}
$$

Compute an approximation of $Q^{\pi_{1}}$.
c) Compute an approximation of $Q^{\pi_{1}}$ after 10 steps if the state-action sequence is drawn on-policy, starting from s_{3}.
d) Compute the next policy π_{2} using the greedy policy improvement step based on each of the three approximations of $Q^{\pi_{1}}$.

Exercise 2
Value Iteration
Use the above MDP to approximate the optimal value function.
a) Compute an approximation of the optimal value function $Q^{*}(s, a), \forall s, a$, starting from an initial $\hat{Q}_{0}(s, a)=0, \forall s, a$ using Value Iteration. Assume the model is fully defined. Stop the computations after 2 full iterations.
b) Compute an approximation of Q^{*} when the following sequence is drawn off-policy by a behavior policy π_{b} :

$$
s_{1}, a_{2}, s_{2}, a_{1}, s_{1}, a_{3}, s_{3}, a_{3}, s_{3}, a_{2}, s_{2}, a_{3}, s_{3}, a_{1}, s_{1}, a_{1}, s_{1}, a_{3}, s_{3}
$$

Exercise 3

Compute an approximation of Q^{π} using $\operatorname{TD}(\lambda)$ and $\lambda=0.5$, where the following on-policy samples are drawn using π.

$$
s_{1}, a_{2}, s_{2}, a_{2}, s_{2}, a_{1}, s_{1}, a_{3}, s_{3}, a_{3}, s_{3}, a_{2}, s_{2}, a_{1}, s_{1}, a_{3}, s_{3}, a_{3}, s_{3}
$$

Try both update rules for the additional table e of the eligibility traces and show the differences.

$$
\begin{array}{lll}
e(s) \leftarrow & e(s)+1 & \text { Accumulating Traces } \\
e(s) \leftarrow & 1 & \text { Replacing Traces } \tag{2}
\end{array}
$$

What problems would appear if one would augment the off-policy method Q-Learning with eligibility traces?

