Advanced Data Analysis II

8. Exercise

Prof. Tobias Scheffer Dr. Niels Landwehr Ahmed Abdelwahab

Winter 2015
From: 08.12.15
to: 15.12 .15

Exercise 1

Graphical models
We consider the following domain that describes how to start a car engine. We are trying to start the engine of our car. The engine could either start (engine $=1$) or not (engine $=$ $0)$. There are various reasons for failing to start the engine: the tank could be empty $($ tank $=0)$, or the starter motor does not rotate $($ starter $=0)$. The starter requires an intact battery (battery $=1$) and it must not be defective (starter defect $=0$). We can observe the condition of the tank indirectly through the electric fuel gauge: if the tank is full and the battery provides enough power for the fuel gauge to work, the fuel gauge shows full (display $=1$), otherwise it shows empty (display $=0$).

1. Construct a directed graphical model (Bayesian network) on the binary random variables battery, starter defect, starter, tank, display, and engine. Show the graph structure G and the respective (conditional) distributions in tabular form. Set realistic numerical probabilities (note: these are almost never exactly 0 or 1).
2. Check whether the following independences are true based on the D-separation criterion:

- starter defect \perp engine | battery
- battery $\perp \operatorname{tank} \mid \emptyset$
- battery \perp engine \mid starter
- tank \perp starter defect | engine

State for each independency why it applies/does not apply.
3. We observe that the fuel gauge indicating an empty tank (display $=0$). What is the probability that the tank is really empty $(\operatorname{tank}=0)$?

Let G be the graph structure of a graphical model, and let X be a node in G. We will study the question of which set M of nodes we have to observe such that the node X is independent of all other nodes in G given M. A minimal set M that has this property will be called separating set. That is, M is a minimal set with $X \notin M$ and

$$
\begin{equation*}
\forall X^{\prime} \in G \backslash\{X, M\}: X^{\prime} \perp X \mid M . \tag{1}
\end{equation*}
$$

Characterize the set M concisely and argue why it is minimal and has the separating property. Hint: D-separation.

Exercise 3
Acyclic graphs

Prove the following theorem from graph theory:
A graph G is acyclic if and only if there is an order \leq_{G} on the nodes of G such that for all $X, X^{\prime} \in G$ the following condition holds:
$X \rightarrow X^{\prime} \Longrightarrow X \leq_{G} X^{\prime}$.
$X \rightarrow X^{\prime}$ means there is a directed edge from node X to node X^{\prime} in G.

