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Exercise 1 Message Passing Algorithm

Consider the following Bayesian network over the six binary random variables x1, x2, x3,
x4, x5, x6.

x6

x5 x1

x2

x4 x3

p(x1 = 1)

0.5

p(x2 = 1 | x1) x1

0.6 0
0.3 1

p(x3 = 1 | x2) x2

0.7 0
0.4 1

p(x4 = 1 | x3) x3

0.2 0
0.5 1

p(x5 = 1 | x1, x4) x1 x4

0.3 0 0
0.6 1 0
0.5 0 1
0.1 1 1

p(x6 = 1 | x1, x5) x1 x5

0.5 0 0
0.1 1 0
0.3 0 1
0.4 1 1

We want to calculate the conditional distribution p(x3 | x1 = 0, x4 = 1) using the Message
Passing algorithm.

1. First show that the inference query p(x3 | x1 = 0, x4 = 1) in the original graphical
model yields the same result as the inference query p(x3 | x1 = 0, x4 = 1) in the
following simpler graphical model:
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x4 x3

Here, we assume the same (conditional) distributions for the variables x1, x2, x3, x4.

2. Calculate p(x3 | x1 = 0, x4 = 1) by Message Passing on the linear chain.
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Exercise 2 Independence, conditional independence

We study the following domain: a fair coin is tossed twice; the results of tosses are repre-
sented by the random variables X,Y ∈ {0, 1}. We define a third random variable Z by
Z = xor(X,Y ), that is, Z is one if exactly one of the two variables X,Y has the value
one.

1. What is the joint distribution p(X,Y, Z) over the three random variables X,Y, Z?

2. (a) Are X,Y, Z pairwise independent? That is, does it hold that p(X,Y ) =
p(X)p(Y ), p(X,Z) = p(X)p(Z), and p(Y, Z) = p(Y )p(Z)?

(b) Are X,Y, Z independent? That is, does it hold that p(X,Y, Z) =
p(X)p(Y )p(Z)?

(c) Specify all independencies that hold in the distribution p(X,Y, Z), in the form
of a set

I(p) := {(A ⊥ B|C) | p(A|B,C) = p(A|C)}

where A,B,C are any subsets of {X,Y, Z}.

3. Construct a Bayesian network for the distribution p(X,Y, Z). Does it hold that
I(G) = I(p)?
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Exercise 3 Parameter learning

We study the following simple graphical model over the three binary variables T (tank
filled), B (battery voltage ok) and M (motor starts):
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The joint distribution p(B,M, T ) = p(B)p(T )p(M |B, T ) is parameterized by the six
parameters θB, θT ,θM |00, ..., θM |11 given in the tables. Unfortunately, we do not know the
true parameter values. However, we have made the following 10 observations of the system:

B T M

1 1 1
1 1 1
1 0 0
1 0 0
1 0 0
1 0 1
0 1 0
0 1 0
0 1 1
0 0 0

1. We would like to estimate the true parameter values from the observations. In or-
der to do that, derive the likelihood of the observations as a function of the six
parameters. We assume as usual that individual observations are independent given
the model. Compute estimates θ̂B, θ̂T ,θ̂M |00, ..., θ̂M |11 of the true parameters that
maximize the likelihood (hint: logarithm, derivative).

2. Maximum likelihood parameter estimates often lead to unrealistic estimates of zero
or one for probabilities.

Argue which prior distribution would be suitable to prevent these cases. What is the
corresponding posterior distribution over parameters, and how can we calculate the
corresponding maximum a posteriori parameters?
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