Universitit Potsdam

Institut fur Informatik
Lehrstuhl Maschinelles Lernen

Recommendation

Tobias Scheffer

Recommendation Engines

= Recommendation of products, music, contacts, ..

= Based on user features, item features, and past
transactions: sales, reviews, clicks, ...

= User-specific recommendations, no global ranking
of items.

s Feedback loop: choice of recommendations
Influences available transaction and click data.

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

Netflix Prize

= Data analysis challenge, 2006-2009

= Netflix made rating data available: 500,000 users,
18,000 movies, 100 million ratings

= Challenge: predict ratings that were held back for
evaluation; improve by 10% over Netflix's
recommendation

x Award: $ 1 million.

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

Problem Setting

m UsersU ={1,..,m}
s ltems X ={1,...,m’}
n Ratings Y = {(uyg, X1, Y1) - r (Un X, Y1)}
= Rating space y; €Y
Eg.,Y = {_1’ _|_1}, Y = {*, ____,*****}
= Loss function £(y;, y;)

=1
—t
o
6.
®
>
—
O
jb)
—
job)
>
>
L
<
o
n

E.g., missing a good movie is bad but watching a
terrible movie is worse.

= Find rating model: fg: (u,x) — y.

Problem Setting: Matrix Notation

Users U ={1,...,m}
ltems X = {1,...,m'}

Incomplete matrix

item1l 2 3/

Vi1 Y12
Ratings Y = |yy4

Rating space y; € Y

Y23

Y33

user 1
user 2
user 3

E.g..Y = {—1,+1}Y = {x, ... xkkx*}

Loss function £(y;, y;)

=1
—t
o
(5.
®
>
—
O
jb)
—t
D
>
>
=
<
o
n

Problem Setting

= Model fg(u, x)
= Find model parameters that minimize risk
0* = argming [| [(v, fo(u,x))p(u, x, y)dxdudr
s As usual: p(u, x,y) is unknown — minimize
regularized empirical risk

n
" = argming) €0y, fo(upx) + A0(6)
=

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

Content-Based Recommendation

= |dea: User may like movies that are similar to other CE
movies which they like.]

= Requirement: attributes of items, e.g., g
Tags, i:;
Genre, %—’
Actors, 2

Director,

Content-Based Recommendation

= Feature space for items

. E.g., ® = (comedy, action, year, dir tarantino, dir cameron)’

s ¢(avatar) = (0,1,2009,0,1)T

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

Content-Based Recommendation

m UsersU ={1,..,m}
s ltems X ={1,...,m’}
n Ratings Y = {(uyg, X1, Y1) - r (Un X, Y1)}
= Rating space y; €Y
E.g.Y= {_1, _|_1},Y = {*, ____,*****}
= Loss function £(y;, y;)

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

E.g., missing a good movie is bad but watching a
terrible movie is worse.

= Feature function for items: ¢: x — R%
= Find rating model: fg: (u,x) — y.

Independent Learning Problems for Users

= Minimize regularized empirical risk
n

6" = argming L(Yi, fo(uy, x;)) + AQ(6)

i=1
= One model per user:

fo,(x) » Y
= One learning problem per user:

0; = argming, > (v, fo, (D) + 10(6,)
Lu;=u

=1
—t
o
6'
®
>
—
O
jb)
—
job)
>
>
L
<
o
n

10

Independent Learning Problems for Users

= One learning problem per user:
Vu: 6, = argming_ z f(yi, fo, (xl-)) + AQ(6,)

Luj=u
= Use any model class and learning mechanism; e.g.,
fo, (xi) = d(x)" 6,
Logistic loss + £, regularization: logistic regression
Hinge loss + £, regularization: SVM
Squared loss + £, regularization: ridge regression

5
—+
o
5
D
>
o
O
Q
—+
QD
>
>
D
&,
wn

11

Independent Learning Problems for Users

= Obvious disadvantages of independent problems: CE
Commonalities of users are not exploited, “r'é
User does not benefit from ratings given by other g
users, >
Poor recommendations for users who gave few %
ratings. 2

= Rather use joint prediction model:

Recommendations for each user should benefit from
other osers’ ratings.

12

Independent Learning Problems

0

-

Regularizer 82

=1
—t
o
6'
®
>
—
O
jb)
—
job)
>
>
L
<
o
n

13

Joint Learning Problem

0

N/

Regularizer

/N

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

14

Joint Learning Problem

s Standard ¥, regularization follows from the
assumption that model parameters are governed by
normal distribution with mean vector zero.

= Instead assume that there is a non-zero population
mean vector.

=1
—t
o
6'
®
>
—
O
jb)
—
job)
>
>
L
<
o
n

15

Joint Learning Problem

ONS©
@/@b<®

Graphical model of
hierarchical prior

=
—
@
=
D
-]
—
O
Q
—
QD
>
>
D
<
28
(0)]

16

Joint Learning Problem

= Population mean vector 3
_ 1 2
6~ |03 :

A 5

= User-specific mean vector: >
_ 1 =

6,~N 9,11 Q

= Substitution: 8, = 8 + 6,; now 8 and 8,, have mean
vector zero.

= -Log-prior = reqgularizer
_ N T VY
0@ +6;) = ||| + l1e|”

17

Joint Learning Problem

= Joint optimization problem: 3
IS

DY 4 o) + 200 + Fa)

2

Wby) Coupllng GIobaI 93;

6,=6+6, strength regularization [

<<

= Parameters 9,, are independent, 6 is shared.
= Hence, 6, are coupled.

18

Discussion

= Each user benefits from other users' ratings.

s Does not take into account that users have different
tastes.

= Two sci-fi fans may have similar preferences, but a
horror-movie fan and a romantic-comedy fan do
not.

= |dea: look at ratings to determine how similar users
are.

19

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

Collaborative Filtering

= |Idea: People like items that are liked by people who
have similar preferences.

= People who give similar ratings to items probably
have similar preferences.

= This is independent of item features.

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

20

Collaborative Filtering

m UsersU ={1,..,m}
s ltems X ={1,...,m’}
n Ratings Y = {(uyg, X1, Y1) - r (Un X, Y1)}
= Rating space y; €Y
E.g.Y= {_1, _|_1},Y = {*, ____,*****}
= Loss function £(y;, y;)

=1
—t
o
6'
®
>
—
O
jb)
—
job)
>
>
L
<
o
n

= Find rating model: fg: (u,x) » y.

21

Collaborative Filtering by Nearest Neighbor

s Define distance function on users:
d(u,u’)
= Predicted rating:

1
fo(u,x) = z E:Vui,x

k nearest
neighbors u; of u

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

= Predicted rating is the average rating of the
k nearest neighbors in terms of d(u, u’).

= No learning involved.
= Performance hinges on d(u,u’).

22

Collaborative Filtering by Nearest Neighbor

s Define distance function on users:

!/ 1 m, 2
d(u,u’) = WE (Yu’,x» _Yu,x)
\ x=1

= Euclidean distance between ratings for all items.
= Skip items that have not been rated by both users.

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

23

Extensions

= Normalize ratings (subtract mean rating of user, CE
divide by user's standard deviation) 8
= Weight influence of neighbors by inverse of S
distance. >
= Weight influence of neighbors with number of jointly &
rated items. 2
3 1
¢ ux) = neihbors oy 00
g\U,X) =

1

Z k nearest
neighbors u; of u d(u’ ul)

24

Collaborative Filtering: Example

- =1
(@] —
2 O 2
© o Q
X o 2 £ =]
5 5§ S § 5
> N — A 0
>
4 5 4 Alice é
m Y=|5 5 1 Bob o
Carol —

5 3 4

= How much would Alice enjoy Zombiland?

25

Collaborative Filtering: Example

= N + O ‘%
4 5 4] Alice :
m Y=|5 5 1 Bob g
5 3 4 Carol QJ;
2
P
!/ 1 ! 2]
N d(u,u)= o T:l(yw,x'_yu;x)
u d(A,B)=
0 d(A,C)=

= d(B,C) =

26

Collaborative Filtering: Example

= N F 0O ‘%
4 5 4] Alice :
m Y=|5 5 1 Bob g
5 3 4 Carol QJ;
=
!/ 1 ! 2]
N d(u,u) — o T:l(yu’,x’ _yu,x)
| d(A, C) =1

« d(B,C) = 1.4

27

Collaborative Filtering: Example

> N - 0O =1
4 5 4 Alice (;'1
m Y=|5 5 1 Bob 93
5 3 4| carol >

1
D 2 nearest d(A—,ul-)yui'Z
__ neighborsu;ofA .
u f@ (A, Z) _ 1 —
d(Au;)

2 nearest
neighbors u; of A

28

Collaborative Filtering: Example

> N - O =1
L§
4 5 4 Alice %
m Y=|5 5 1 Bob D
5 3 4 Carol Q;;
5
<
28
wn
) =
2 2nearest dAu) wiZ 1_ .1
__ neighborsu;of A" "t _§5+13
u fQ(A’Z) T 1 o i+l
2 nearest d(Au;) 29 1

neighbors u; of A

29

Collaborative Filtering: Discussion

= K nearest neigbor and similar methods are called
memory-based approaches.

There are no model parameters, no optimization
criterion is being optimized.

Each prediction reuqires an iteration over all training
Instances — impracticall

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

= Better to train a model by minimizing an appropriate
loss function over a space of model parameter, then
use model to make predictions quickly.

30

Latent Features

= Idea: Instead of ad-hoc definition of distance
between users, learn features that actually
represent preferences.

» If, for every user u, we had a feature vector y,, that
describes their preferences,

= Then we could learn parameters 6, for item x such
that 6,'y,, quantifies how much u enjoys x.

=1
—t
o
6.
®
>
—
O
jb)
—
job)
>
>
L
<
o
n

31

Latent Features

s Or, turned around,

If, for every item x we had a feature vector ¢, that
characterizes its properties,

We could learn parameters 6, such that 6, ¢,
guantifies how much u enjoys x.

=1
—
D
5
D
-
o
O
=
X
>
-
L
&
7

= In practice some user attributes ,, and item
attributes ¢, are usually available, but they are
iInsufficient to understand u's preferences and x's
relevant properties.

32

Latent Features

= |dea: construct user attributes y,, and item
attributes ¢, such that ratings in training data can
be predicted accurately.

s Decision function:

f‘P,(D (u, .X') — l/}gqu

Prediction is product of user preferences and item
properties.

= Model parameters:

Matrix ¥ of user features y,, for all users,
Matrix @ of item features ¢, for all items.

33

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

Latent Features

= Optimization criterion:
(P, @)

— argminq’,d) z f(yu,x: f‘P,CD (u, X))

. A[z:u“%ﬁ'i leld)xllzl
A

Feature vectors of all users
and all Items are regularized

=
—
@
S
D
-]
—
O
Q
—
QD
>
>
D
<<
28
(0)]

34

Latent Features

s Both item and user features are the solution of an
optimization problem.

= Number of features k has to be set.
= Meaning of the features is not pre-determined.
= Sometimes they turn out to be interpretable.

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

35

Matrix Factorization

s Decision function:
fo o, x) = P,

= |In matrix notation:

s Matrix elements:

Y11

| Ym1

Yy o = POT
)71m’-
_ ymm’- -
lpll lplk ¢11
Ym1 Ymk| | Pk

36

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

Matrix Factorization

s Decision function in matrix notation:

= N = O

_}711 ylm’

i .

yml) ymm’
Y11

Predicted rating
of Matrix for Alice [W,,1

Latent features
of Alice

Alice

Bob

Carol
Yk || P11
Yk | [Pk

Latent features
of Matrix

¢m’1
¢m’k

37

=
—
@
=
D
-]
—
O
Q
—
QD
>
>
D
<<
28
(0)]

Matrix Factorization

= Decision function in matrix notation: g
E.
= N F 0 §
yll nee ylm' A|ice 13;
' Bob =
A A wn
Ym1 Ymm' Carol e
/ l/J11 1/J1k ¢11 ¢m’1
Latent features _l/)ml 1ljmk_ _¢1k ¢m’k_
of Alice / /
Latent features Latent features Latent features
of Carol of Matrix of Death Proof

38

Matrix Factorization

= Optimization criterion:
(P, ")

— argmin‘P,Cb z f(yu,x: f‘P,CD (u, X))
XU

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

+ (|1l + 1ol
s Criterion IS not convex:

For instance, multiplying all feature vectors with -1
gives an equally good solution:

fo.o,x) = Pidy = (—Pu) (—¢x)
= Limiting the number of latent features to k restricts
the rank of matrix Y.

39

Matrix Factorization
= Optimization criterion:
(¥*, ")
— argmin‘P,Cb z f(yx,u: f‘P,CD (u, X))

+2([1wl]” + |ic1>||2)

= Optimization by
Stochastic gradient descent or
Alternating least squares.

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

40

Matrix Factorization by Stochastic
Gradient Descent

= Until convergence.

= [terate through ratings y, , in training sample CE
) , =

Let ! « i, — a fq;z(ux) 2

iy 5

Let ¢ « ¢, — @ TLELD >

) 2

= Requires differentiable loss function; e.g., squared
loss, ...

41

Matrix Factorization by
Alternating Least Squares

s For squared loss and parallel architectures.

= Alternate between 2 optimization processes:
Keep @ fixed, optimize y,, in parallel for all u.
Keep ¥ fixed, optimize ¢, in parallel for all x.

42

=1
—t
o
6'
®
>
—
O
jb)
—
job)
>
>
L
<
o
n

Matrix Factorization by
Alternating Least Squares

s For squared loss and parallel architectures.

= Alternate between 2 optimization processes:
Keep @ fixed, optimize y,, in parallel for all u.
Keep W fixed, optimize ¢, in parallel for all x.
= Optimization criterion for ¥:

Yy = argmintpu(yu - yu)z - A“l/)u”Z
. 2 2
= argming, (¥, — Pu®")" — |||

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

(P11 o Porq)
Vur - Vum'l = Vw1 Yurl

43

Matrix Factorization by
Alternating Least Squares

s For squared loss and parallel architectures.

= Alternate between 2 optimization processes:
Keep @ fixed, optimize y,, in parallel for all u.
Keep W fixed, optimize ¢, in parallel for all x.
= Optimization criterion for ¥:

;= argming, (v — YT70T)" = A [yl
P = (00T + A1) Dy,

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

44

Matrix Factorization by
Alternating Least Squares

s For squared loss and parallel architectures.

= Alternate between 2 optimization processes:
Keep @ fixed, optimize y,, in parallel for all u.
Keep ¥ fixed, optimize ¢, in parallel for all x.

= Optimization criterion for ¥:
Yy, = argming, (v, — Pr@T)" = A|lyyl|°
P = (00T + A1) Dy,

= Optimization criterion for ®:
o3 = argming, (v — ¢T¥T)" = 2|1¢xl|”
dr = (PWT + A1) Wy,

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

45

Matrix Factorization by
Alternating Least Squares

s For squared loss and parallel architectures.
= Initialize ¥, & randomly.
= Repeat until convergence:
Keep ¥ fixed, for all u in parallel:
x Py = (@O + A1) Dy,
Keep @ fixed, for all x in parallel:
= (POT + A1) Wy,

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

46

Extensions: Biases

= Some users just give optimistic or pessimistic

ratings; some items are hyped. Decision function:

fLP,CD,Bu,Bx (u,x) = by, + by + l/JEbe
= Optimization criterion:
(V*, @*, B, B,)

= argming g z (Vs W &, B,,B, (u,x))
XU

2 (1] + 11 + 18| + [1B1[°)

47

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

Extensions: Explicit Features

s Often, explicit user and item features are available.

= Concatenate vectors Y, and ¢,; explicit features
are fixed, latent features are free paremeters.

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

48

Extensions: Temporal Dynamics

= How much a user likes an item depends on the
point in time when the rating takes place.

flP,CD,Bu,Bx,t(u: X) = bu(t) + b, (t) + l/)u(t)Tbe

091 T
60
e Pain
0505 90\123 mmm ith biases
50
n 180 e With implicit feedback
09 200 With temporal dynamics (v.1)] .
s \\fith temporal dynamics (v.2)
0895 N
"'é 100
= 200
0.89
0.885 =
m s Ly
038 w 500 1,000
’ 1,500
0.875
10 100 1,000 10,000 100,000

Millions of parameters

49

=
—
@
S
D
-]
—
O
Q
—
QD
>
>
D
<
28
(0)]

Summary

= Purely content-based recommendation: users don'‘t
benefit from other users’ ratings.

= Collaborative filtering by nearest neighbors: fixed
definition of similarity of users. No model
parameters, no learning. Has to iterate over data to
make recommendation.

= Latent factor models, matrix factorization: user
preferences and item properties are free
parameters, optimized to minimized discrepancy
between inferred and actual ratings.

=1
—
D
5
D
-
o
O
D
—
X
>
-
L
<
28
7

50

