Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen

Recommendation

Tobias Scheffer

Recommendation Engines

- Recommendation of products, music, contacts, ..
- Based on user features, item features, and past transactions: sales, reviews, clicks, ...
- User-specific recommendations, no global ranking of items.
- Feedback loop: choice of recommendations influences available transaction and click data.

Netflix Prize

- Data analysis challenge, 2006-2009
- Netflix made rating data available: 500,000 users, 18,000 movies, 100 million ratings
- Challenge: predict ratings that were held back for evaluation; improve by 10\% over Netflix's recommendation
- Award: \$ 1 million.

Problem Setting

- Users $U=\{1, \ldots, m\}$
- Items $X=\left\{1, \ldots, m^{\prime}\right\}$
- Ratings $Y=\left\{\left(u_{1}, x_{1}, y_{1}\right) \ldots,\left(u_{n}, x_{n}, y_{n}\right)\right\}$
- Rating space $y_{i} \in Y$
- E.g., $Y=\{-1,+1\}, Y=\{\star, \ldots ., \star \star \star \star \star\}$
- Loss function $\ell\left(y_{i}, y_{j}\right)$
- E.g., missing a good movie is bad but watching a terrible movie is worse.
- Find rating model: $f_{\theta}:(u, x) \mapsto y$.

Problem Setting: Matrix Notation

- Users $U=\{1, \ldots, m\}$
- Items $X=\left\{1, \ldots, m^{\prime}\right\}$

Incomplete matrix

- Ratings $Y=\left[\begin{array}{ll}y_{11} & y_{12} \\ y_{21} & \end{array}\right.$

- Rating space $y_{i} \in \Upsilon$
- E.g., $Y=\{-1,+1\}, Y=\{\star, \ldots, \star * * * *\}$
- Loss function $\ell\left(y_{i}, y_{j}\right)$

Problem Setting

- Model $f_{\theta}(u, x)$
- Find model parameters that minimize risk

$$
\theta^{*}=\operatorname{argmin}_{\theta} \iiint \ell\left(y, f_{\theta}(u, x)\right) p(u, x, y) d x d u d r
$$

- As usual: $p(u, x, y)$ is unknown \rightarrow minimize regularized empirical risk

$$
\theta^{*}=\operatorname{argmin}_{\theta} \sum_{i=1}^{n} \ell\left(y_{i}, f_{\theta}\left(u_{i}, x_{i}\right)\right)+\lambda \Omega(\theta)
$$

Content-Based Recommendation

- Idea: User may like movies that are similar to other movies which they like.
- Requirement: attributes of items, e.g.,
- Tags,
- Genre,
- Actors,
- Director,

Content-Based Recommendation

- Feature space for items
- E.g., $\Phi=(\text { comedy, action, year, dir tarantino, dir cameron })^{\top}$
- ϕ (avatar $)=(0,1,2009,0,1)^{\top}$

Content-Based Recommendation

- Users $U=\{1, \ldots, m\}$
- Items $X=\left\{1, \ldots, m^{\prime}\right\}$
- Ratings $Y=\left\{\left(u_{1}, x_{1}, y_{1}\right) \ldots,\left(u_{n}, x_{n}, y_{n}\right)\right\}$
- Rating space $y_{i} \in Y$
- E.g., $Y=\{-1,+1\}, \Upsilon=\{\star, \ldots, * \star * * * *\}$
- Loss function $\ell\left(y_{i}, y_{j}\right)$
- E.g., missing a good movie is bad but watching a terrible movie is worse.
- Feature function for items: $\phi: x \mapsto \mathbb{R}^{d}$
- Find rating model: $f_{\theta}:(u, x) \mapsto y$.

Independent Learning Problems for Users

- Minimize regularized empirical risk

$$
\theta^{*}=\operatorname{argmin}_{\theta} \sum_{i=1}^{n} \ell\left(y_{i}, f_{\theta}\left(u_{i}, x_{i}\right)\right)+\lambda \Omega(\theta)
$$

- One model per user:

$$
f_{\theta_{u}}(x) \mapsto \Upsilon
$$

- One learning problem per user:

$$
\theta_{u}^{*}=\operatorname{argmin}_{\theta_{u}} \sum_{i: u_{i}=u} \ell\left(y_{i}, f_{\theta_{u}}\left(x_{i}\right)\right)+\lambda \Omega\left(\theta_{u}\right)
$$

Independent Learning Problems for Users

- One learning problem per user:
$\forall u: \theta_{u}^{*}=\operatorname{argmin}_{\theta_{u}} \sum_{i: u_{i}=u} \ell\left(y_{i}, f_{\theta_{u}}\left(x_{i}\right)\right)+\lambda \Omega\left(\theta_{u}\right)$
- Use any model class and learning mechanism; e.g.,
- $f_{\theta_{u}}\left(x_{i}\right)=\phi\left(x_{i}\right)^{\mathrm{T}} \theta_{u}$
- Logistic loss $+\ell_{2}$ regularization: logistic regression
- Hinge loss $+\ell_{2}$ regularization: SVM
- Squared loss $+\ell_{2}$ regularization: ridge regression

Independent Learning Problems for Users

- Obvious disadvantages of independent problems:
- Commonalities of users are not exploited,
- User does not benefit from ratings given by other users,
- Poor recommendations for users who gave few ratings.
- Rather use joint prediction model:
- Recommendations for each user should benefit from other osers' ratings.

Independent Learning Problems

Joint Learning Problem

Joint Learning Problem

- Standard ℓ_{2} regularization follows from the assumption that model parameters are governed by normal distribution with mean vector zero.
- Instead assume that there is a non-zero population mean vector.

Joint Learning Problem

Graphical model of hierarchical prior

Joint Learning Problem

- Population mean vector

$$
\bar{\theta} \sim N\left[0, \frac{1}{\bar{\lambda}} I\right]
$$

- User-specific mean vector:

$$
\theta_{u} \sim N\left[\bar{\theta}, \frac{1}{\lambda} I\right]
$$

- Substitution: $\theta_{u}=\bar{\theta}+\theta_{u}^{\prime}$; now $\bar{\theta}$ and θ_{u}^{\prime} have mean vector zero.
- -Log-prior = regularizer

$$
\Omega\left(\bar{\theta}+\theta_{u}^{\prime}\right)=\bar{\lambda}\|\bar{\theta}\|^{2}+\lambda\left\|\theta_{u}^{\prime}\right\|^{2}
$$

Joint Learning Problem

- Joint optimization problem:
- Parameters θ_{u}^{\prime} are independent, $\bar{\theta}$ is shared.
- Hence, θ_{u} are coupled.

Discussion

- Each user benefits from other users‘ ratings.
- Does not take into account that users have different tastes.
- Two sci-fi fans may have similar preferences, but a horror-movie fan and a romantic-comedy fan do not.
- Idea: look at ratings to determine how similar users are.

Collaborative Filtering

- Idea: People like items that are liked by people who have similar preferences.
- People who give similar ratings to items probably have similar preferences.
- This is independent of item features.

Collaborative Filtering

- Users $U=\{1, \ldots, m\}$
- Items $X=\left\{1, \ldots, m^{\prime}\right\}$
- Ratings $Y=\left\{\left(u_{1}, x_{1}, y_{1}\right) \ldots,\left(u_{n}, x_{n}, y_{n}\right)\right\}$
- Rating space $y_{i} \in \Upsilon$
- E.g., $Y=\{-1,+1\}, \Upsilon=\{\star, \ldots, \star \star \star \star \star *\}$
- Loss function $\ell\left(y_{i}, y_{j}\right)$
- Find rating model: $f_{\theta}:(u, x) \mapsto y$.

Collaborative Filtering by Nearest Neighbor

- Define distance function on users:

$$
d\left(u, u^{\prime}\right)
$$

- Predicted rating:

$$
f_{\theta}(u, x)=\sum_{\substack{k \text { nearest } \\ \text { neighbors } u_{i} \text { of } u}} \frac{1}{k} y_{u_{i}, x}
$$

- Predicted rating is the average rating of the k nearest neighbors in terms of $d\left(u, u^{\prime}\right)$.
- No learning involved.
- Performance hinges on $d\left(u, u^{\prime}\right)$.

Collaborative Filtering by Nearest Neighbor

- Define distance function on users:

$$
d\left(u, u^{\prime}\right)=\sqrt{\frac{1}{m^{\prime}} \sum_{x=1}^{m^{\prime}}\left(y_{u^{\prime}, x},-y_{u, x}\right)^{2}}
$$

- Euclidean distance between ratings for all items.
- Skip items that have not been rated by both users.

Extensions

- Normalize ratings (subtract mean rating of user, divide by user's standard deviation)
- Weight influence of neighbors by inverse of distance.
- Weight influence of neighbors with number of jointly rated items.

$$
f_{\theta}(u, x)=\frac{\sum_{\begin{array}{c}
k \text { nearest } \\
\text { neighbors } u_{i} \text { of } u
\end{array}} \frac{1}{d\left(u, u_{i}\right)} y_{u_{i}, x}}{\sum_{\begin{array}{c}
k \text { nearest } \\
\text { neighbors } u_{i} \text { of } u
\end{array}} \frac{1}{d\left(u, u_{i}\right)}}
$$

Collaborative Filtering: Example

$$
\begin{aligned}
& \text { - } Y=\left[\begin{array}{llll}
4 & & 5 & 4 \\
5 & 5 & 1 & \\
5 & 3 & & 4
\end{array}\right] \begin{array}{l}
\text { Alice } \\
\left.\begin{array}{l}
\text { Bob } \\
\text { Carol }
\end{array}\right]
\end{array}
\end{aligned}
$$

- How much would Alice enjoy Zombiland?

Collaborative Filtering: Example

$$
\begin{aligned}
& \Sigma N \vdash 0 \\
& \text { - } Y=\left[\begin{array}{llll}
4 & & 5 & 4 \\
5 & 5 & 1 & \\
5 & 3 & & 4
\end{array}\right] \begin{array}{l}
\text { Alice } \\
\begin{array}{l}
\text { Bob } \\
\text { Carol }
\end{array}
\end{array} \\
& \text { - } d\left(u, u^{\prime}\right)=\sqrt{\frac{1}{m^{\prime}} \sum_{x=1}^{m^{\prime}}\left(y_{u^{\prime}, x},-y_{u, x}\right)^{2}} \\
& \text { - } d(A, B)= \\
& \text { - } d(A, C)= \\
& \text { - } d(B, C)=
\end{aligned}
$$

Collaborative Filtering: Example

$$
\begin{aligned}
& \Sigma N \vdash 0 \\
& \text { - } Y=\left[\begin{array}{llll}
4 & & 5 & 4 \\
5 & 5 & 1 & \\
5 & 3 & & 4
\end{array}\right] \begin{array}{l}
\text { Alice } \\
\left.\begin{array}{l}
\text { Bob } \\
\text { Carol }
\end{array}\right]
\end{array} \\
& \text { - } d\left(u, u^{\prime}\right)=\sqrt{\frac{1}{m^{\prime}} \sum_{x=1}^{m^{\prime}}\left(y_{u^{\prime}, x},-y_{u, x}\right)^{2}} \\
& \text { - } d(A, B)=2.9 \\
& \text { - } d(A, C)=1 \\
& \text { - } d(B, C)=1.4
\end{aligned}
$$

Collaborative Filtering: Example

$$
\begin{aligned}
& \Sigma N \vdash 0 \\
& \text { - } Y=\left[\begin{array}{cccc}
4 & & 5 & 4 \\
5 & 5 & 1 & \\
5 & 3 & & 4
\end{array}\right] \begin{array}{l}
\text { Alice } \\
\text { Bob } \\
\text { Carol }
\end{array}
\end{aligned}
$$

Collaborative Filtering: Example

$$
\begin{aligned}
& \Sigma N \vdash 0 \\
& \text { - } Y=\left[\begin{array}{cccc}
4 & & 5 & 4 \\
5 & 5 & 1 & \\
5 & 3 & & 4
\end{array}\right] \begin{array}{l}
\text { Alice } \\
\begin{array}{l}
\text { Bob } \\
\text { Carol }
\end{array}
\end{array} \\
& \text { - } f_{\theta}(A, Z)=\frac{\sum_{\text {neighbors } u_{i} \text { of } A}^{2} \frac{1}{d\left(A, u_{i}\right)} y_{u_{i}, Z}}{\sum_{\text {neighbors } u_{i} \text { of } A}^{2 \text { nearest }} \frac{1}{\overline{d\left(A, u_{i}\right)}}}=\frac{\frac{1}{2.9} 5+\frac{1}{1} 3}{\frac{1}{2.9}+\frac{1}{1}}
\end{aligned}
$$

Collaborative Filtering: Discussion

- K nearest neigbor and similar methods are called memory-based approaches.
- There are no model parameters, no optimization criterion is being optimized.
- Each prediction reuqires an iteration over all training instances \rightarrow impractical!
- Better to train a model by minimizing an appropriate loss function over a space of model parameter, then use model to make predictions quickly.

Latent Features

- Idea: Instead of ad-hoc definition of distance between users, learn features that actually represent preferences.
- If, for every user u, we had a feature vector ψ_{u} that describes their preferences,
- Then we could learn parameters θ_{x} for item x such that $\theta_{x}^{\mathrm{T}} \psi_{u}$ quantifies how much u enjoys x.

Latent Features

- Or, turned around,
- If, for every item x we had a feature vector ϕ_{x} that characterizes its properties,
- We could learn parameters θ_{u} such that $\theta_{u}^{\mathrm{T}} \phi_{x}$ quantifies how much u enjoys x.
- In practice some user attributes ψ_{u} and item attributes ϕ_{x} are usually available, but they are insufficient to understand u 's preferences and x 's relevant properties.

Latent Features

- Idea: construct user attributes ψ_{u} and item attributes ϕ_{x} such that ratings in training data can be predicted accurately.
- Decision function:

$$
f_{\Psi, \Phi}(u, x)=\psi_{u}^{\mathrm{T}} \phi_{x}
$$

- Prediction is product of user preferences and item properties.
- Model parameters:
- Matrix Ψ of user features ψ_{u} for all users,
- Matrix Φ of item features ϕ_{x} for all items.

Latent Features

- Optimization criterion:

$$
\left(\Psi^{*}, \Phi^{*}\right)
$$

$$
\begin{aligned}
& =\operatorname{argmin}_{\Psi, \Phi} \sum_{x, u} \ell\left(y_{u, x}, f_{\Psi, \Phi}(u, x)\right) \\
& +\lambda\left[\sum_{u}\left\|\psi_{u}\right\|^{2}+\sum_{x}\left\|\phi_{x}\right\|^{2}\right]
\end{aligned}
$$

Feature vectors of all users and all Items are regularized

Latent Features

- Both item and user features are the solution of an optimization problem.
- Number of features k has to be set.
- Meaning of the features is not pre-determined.
- Sometimes they turn out to be interpretable.

Matrix Factorization

- Decision function:

$$
f_{\Psi, \Phi}(u, x)=\psi_{u}^{\mathrm{T}} \phi_{x}
$$

- In matrix notation:

$$
\hat{Y}_{\Psi, \Phi}=\Psi \Phi^{T}
$$

- Matrix elements:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\hat{y}_{11} & \ldots & \hat{y}_{1 m^{\prime}} \\
\hat{y}_{m 1} & \ddots & \hat{y}_{m m^{\prime}}
\end{array}\right] } \\
&=\left[\begin{array}{ccc}
\psi_{11} & \ldots & \psi_{1 k} \\
& \ddots & \\
\psi_{m 1} & & \psi_{m k}
\end{array}\right]\left[\begin{array}{lll}
\phi_{11} & \ldots & \phi_{m^{\prime} 1} \\
& \ddots & \\
\phi_{1 k} & & \phi_{m^{\prime} k}
\end{array}\right]
\end{aligned}
$$

Matrix Factorization

- Decision function in matrix notation:

Matrix Factorization

- Decision function in matrix notation:

Matrix Factorization

- Optimization criterion:

$$
\begin{aligned}
& \left(\Psi^{*}, \Phi^{*}\right) \\
& \quad=\operatorname{argmin}_{\Psi, \Phi} \sum_{x, u} \ell\left(y_{u, x}, f_{\Psi, \Phi}(u, x)\right) \\
& \quad+\lambda\left(| | \Psi\left\|^{2}+| | \Phi\right\|^{2}\right)
\end{aligned}
$$

- Criterion is not convex:
- For instance, multiplying all feature vectors with -1 gives an equally good solution:

$$
f_{\Psi, \Phi}(u, x)=\psi_{u}^{\mathrm{T}} \phi_{x}=\left(-\psi_{u}^{\mathrm{T}}\right)\left(-\phi_{x}\right)
$$

- Limiting the number of latent features to k restricts the rank of matrix \hat{Y}.

Matrix Factorization

- Optimization criterion:

$$
\begin{aligned}
& \left(\Psi^{*}, \Phi^{*}\right) \\
& \quad=\operatorname{argmin}_{\Psi, \Phi} \sum_{x, u} \ell\left(y_{x, u}, f_{\Psi, \Phi}(u, x)\right) \\
& \quad+\lambda\left(| | \Psi\left\|^{2}+| | \Phi\right\|^{2}\right)
\end{aligned}
$$

- Optimization by
- Stochastic gradient descent or
- Alternating least squares.

Matrix Factorization by Stochastic Gradient Descent

- Iterate through ratings $y_{u, x}$ in training sample

$$
\begin{aligned}
& \text { Let } \psi_{u}^{\prime} \leftarrow \psi_{u}-\alpha \frac{\partial f_{\Psi, \Phi}(u, x)}{\partial \psi_{u}} \\
& \text { Let } \phi_{x}^{\prime} \leftarrow \phi_{x}-\alpha \frac{\partial f_{\Psi, \Phi}(u, x)}{\partial \phi_{x}}
\end{aligned}
$$

- Until convergence.
- Requires differentiable loss function; e.g., squared loss, ...

Matrix Factorization by Alternating Least Squares

- For squared loss and parallel architectures.
- Alternate between 2 optimization processes:
- Keep Φ fixed, optimize ψ_{u} in parallel for all u.
- Keep Ψ fixed, optimize ϕ_{x} in parallel for all x.

Matrix Factorization by Alternating Least Squares

- For squared loss and parallel architectures.
- Alternate between 2 optimization processes:
- Keep Φ fixed, optimize ψ_{u} in parallel for all u.
- Keep Ψ fixed, optimize ϕ_{x} in parallel for all x.
- Optimization criterion for Ψ :

$$
\begin{aligned}
& \psi_{u}^{*}= \operatorname{argmin}_{\psi_{u}}\left(y_{u}-\hat{y}_{u}\right)^{2}-\lambda\left\|\mid \psi_{u}\right\|^{2} \\
&=\operatorname{argmin}_{\psi_{u}}\left(y_{u}-\psi_{u}^{\mathrm{T}} \Phi^{\mathrm{T}}\right)^{2}-\lambda\left\|\psi_{u}\right\|^{2} \\
& {\left[\begin{array}{lll}
\hat{y}_{u 1} & \ldots & \hat{y}_{u m^{\prime}}
\end{array}\right]=\left[\begin{array}{lll}
\psi_{u 1} & \ldots & \psi_{u k}
\end{array}\right]\left[\begin{array}{lll}
\phi_{11} & \ldots & \phi_{m^{\prime} 1} \\
& \ddots & \\
\phi_{1 k} & & \phi_{m^{\prime} k}
\end{array}\right] }
\end{aligned}
$$

Matrix Factorization by Alternating Least Squares

- For squared loss and parallel architectures.
- Alternate between 2 optimization processes:
- Keep Φ fixed, optimize ψ_{u} in parallel for all u.
- Keep Ψ fixed, optimize ϕ_{x} in parallel for all x.
- Optimization criterion for Ψ :

$$
\begin{aligned}
& \psi_{u}^{*}=\operatorname{argmin}_{\psi_{u}}\left(y_{u}-\psi_{u}^{\mathrm{T}} \Phi^{\mathrm{T}}\right)^{2}-\lambda| | \psi_{u} \|^{2} \\
& \psi_{u}^{*}=\left(\Phi \Phi^{\mathrm{T}}+\lambda I\right)^{-1} \Phi y_{u}
\end{aligned}
$$

Matrix Factorization by Alternating Least Squares

- For squared loss and parallel architectures.
- Alternate between 2 optimization processes:
- Keep Φ fixed, optimize ψ_{u} in parallel for all u.
- Keep Ψ fixed, optimize ϕ_{x} in parallel for all x.
- Optimization criterion for Ψ :

$$
\begin{aligned}
& \psi_{u}^{*}=\operatorname{argmin}_{\psi_{u}}\left(y_{u}-\psi_{u}^{\mathrm{T}} \Phi^{\mathrm{T}}\right)^{2}-\lambda\left\|\psi_{u}\right\|^{2} \\
& \psi_{u}^{*}=\left(\Phi \Phi^{\mathrm{T}}+\lambda I\right)^{-1} \Phi y_{u}
\end{aligned}
$$

- Optimization criterion for Φ :

$$
\begin{aligned}
& \phi_{x}^{*}=\operatorname{argmin}_{\phi_{x}}\left(y_{x}-\phi_{x}^{\mathrm{T}} \Psi^{\mathrm{T}}\right)^{2}-\lambda\left\|\phi_{x}\right\|^{2} \\
& \phi_{x}^{*}=\left(\Psi \Psi^{\mathrm{T}}+\lambda I\right)^{-1} \Psi y_{x}
\end{aligned}
$$

Matrix Factorization by Alternating Least Squares

- For squared loss and parallel architectures.
- Initialize Ψ, Φ randomly.
- Repeat until convergence:
- Keep Ψ fixed, for all u in parallel:

$$
\star \psi_{u}=\left(\Phi \Phi^{T}+\lambda I\right)^{-1} \Phi y_{u}
$$

- Keep Φ fixed, for all x in parallel:

$$
\star \phi_{u}=\left(\Psi \Psi^{\mathrm{T}}+\lambda I\right)^{-1} \Psi y_{x}
$$

Extensions: Biases

- Some users just give optimistic or pessimistic ratings; some items are hyped. Decision function:

$$
f_{\Psi, \Phi, B_{u}, B_{x}}(u, x)=b_{u}+b_{x}+\psi_{u}^{\mathrm{T}} \phi_{x}
$$

- Optimization criterion:

$$
\begin{aligned}
& \left(\Psi^{*}, \Phi^{*}, B_{u}, B_{x}\right) \\
& \quad=\operatorname{argmin}_{\Psi, \Phi} \sum_{x, u} \ell\left(y_{x, u}, f_{\Psi, \Phi, B_{u}, B_{x}}(u, x)\right) \\
& \quad+\lambda\left(| | \Psi \left\|^{2}+\left|\left|\Phi \left\|^{2}+\left|\left|B_{u}\left\|^{2}+| | B_{x}\right\|^{2}\right)\right.\right.\right.\right.\right.\right.
\end{aligned}
$$

Extensions: Explicit Features

- Often, explicit user and item features are available.
- Concatenate vectors ψ_{u} and ϕ_{x}; explicit features are fixed, latent features are free paremeters.

Extensions: Temporal Dynamics

- How much a user likes an item depends on the point in time when the rating takes place.

$$
f_{\Psi, \Phi, B_{u}, B_{x}, t}(u, x)=b_{u}(t)+b_{x}(t)+\psi_{u}(t)^{\mathrm{T}} \phi_{x}
$$

Summary

- Purely content-based recommendation: users don't benefit from other users' ratings.
- Collaborative filtering by nearest neighbors: fixed definition of similarity of users. No model parameters, no learning. Has to iterate over data to make recommendation.
- Latent factor models, matrix factorization: user preferences and item properties are free parameters, optimized to minimized discrepancy between inferred and actual ratings.

