
Automating Proofs in Category Theory

Dexter Kozen1, Christoph Kreitz1,2, and Eva Richter2

1 Computer Science Department,
Cornell University, Ithaca, NY 14853-7501, USA

2 Institut für Informatik,
Universität Potsdam, 14482 Potsdam, Germany

Abstract. We introduce a semi-automated proof system for basic cate-
gory-theoretic reasoning. It is based on a first-order sequent calculus
that captures the basic properties of categories, functors and natural
transformations as well as a small set of proof tactics that automate proof
search in this calculus. We demonstrate our approach by automating the
proof that the functor categories Fun[C × D, E] and Fun[C, Fun[D, E]]
are naturally isomorphic.

1 Introduction

Category theory is a popular framework for expressing abstract properties of
mathematical structures. Since its invention in 1945 by Samuel Eilenberg and
Saunders Mac Lane [12], it has had a wide impact in many areas of mathematics
and computer science. The beauty of category theory is that it allows one to be
completely precise about general mathematical concepts. Abstract algebraic no-
tions such as free constructions, universality, naturality, adjointness, and duality
have precise formulations in the theory. Many algebraic constructions become
exceedingly elegant at this level of abstraction.

However, there are some disadvantages too. Many basic facts, although easy to
state, can be quite tedious to verify formally. Diagrams can be used to illustrate
essential insights, but complete proofs based on precise definitions often involve
an enormous number of low-level details that must be checked. In many cases, it
is not considered worth the effort to carry out such a detailed verification, and
readers are frequently asked to accept “obvious” assertions on faith.

Another issue is that category theory is considerably more abstract than many
other branches of mathematics. Because of this abstraction, it is easy to lose
sight of the connection with concrete motivating examples. One works in a rar-
ified atmosphere in which much of the intuition has been stripped away, so the
verification at the lowest level becomes a matter of pure symbol manipulation,
devoid of motivating intuition.

On the other hand, precise proofs in category theory often rely on standard
patterns of reasoning that may lend themselves well to automation. Provid-
ing such an automation serves two purposes. It enables users to generate com-
pletely formal proofs of elementary category-theoretic facts without having to go
through all the details themselves, thus providing assurance that the statement
is in fact true and allowing them to inspect details if desired. It also demon-
strates that the proofs that many authors do not bother to provide, which may

U. Furbach and N. Shankar (Eds.): IJCAR 2006, LNAI 4130, pp. 392–407, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Automating Proofs in Category Theory 393

be considered trivial from an intellectual point of view, actually may contain
a tremendous amount of hidden detail, and may identify conditions that for-
mally should be checked, but that the author might have taken for granted or
overlooked entirely.

In this paper we introduce a proof system for automating basic category-
theoretic reasoning. We first give a formal first-order axiomatization of
elementary category theory that is amenable to automation in Section 2. This
axiomatization is a slight modification of a system presented in [18]. We then
describe an implementation of this calculus within the proof environment of the
Nuprl system [9,1] in Section 3 and strategies for automated proof search in
Section 4. These strategies attempt to capture the general patterns of formal
reasoning that we have observed in hand-constructed proofs using this calculus.
These patterns were alluded to in [18], but the description there was quite vague
and there was no attempt at implementation.

We demonstrate the feasibility of our approach by giving a completely au-
tomated proof of the statement that the functor categories Fun[C × D, E] and
Fun[C, Fun[D, E]] are naturally isomorphic. The process of automating this
proof has given us significant insights into the formal structure of category-
theoretic proofs and has taught us much about how to streamline the au-
tomation. We describe these technical insights below in the context of the
proof itself.

1.1 Related Work

The published approaches to a formalization of category theory essentially aim
at three different purposes. The first is a formal reconstruction of mathemati-
cal knowledge in a computer-oriented environment. This is done in the Mizar
project of Bialystok University [29]. Mizar statements are formulated in first or-
der logic and proved using a declarative proof language. Mizar’s library contains
a comprehensive collection of theorems mostly proved already in 1990-1996, but
is still under active research. The last entries concerning special functor behav-
ior and duality of categories were done in 2001 [3,4,5]. One disadvantage of the
Mizar approach is that it has only little automation: although Mizar’s basic infer-
ence steps are quite expressive, it does not provide a mechanism for automating
domain-specific reasoning tasks.

A second purpose is to provide calculi for category theory to use its machin-
ery in several domains of computer science (for example denotational semantics).
One of these approaches is Caccamo’s and Winskel’s Higher order calculus for
categories [10]. The authors present a second order calculus for a fragment of
category theory. Their approach is at a level higher than ours. Their basic types
are (small) categories and the syntactic judgments describe functorial behav-
ior of expressions. The rules allow the construction of new functors. A conse-
quence of this approach is that for example Yoneda’s lemma occurs as a rule
rather than a theorem. Another approach to be mentioned here is Rydeheard’s
and Burstall’s Computational Category Theory [24]. This work is a program-
ming language representation of the subject, i.e., a collection of structures and

394 D. Kozen, C. Kreitz, and E. Richter

functions that represent the main concepts of category theory. One of the merits
of the book is that it emphasizes the constructive flavor of categorial concepts.
The representation is mainly regarded a basis for the use of category theory in
program design.

A third group consists of formalizations of category theory in interactive proof
systems. In these formalizations, practical issues like feasibility, automation and
elegance of the design (in the sense of [15]) play an important role. There are
at least two formalizations of category theory in Isabelle/HOL that should be
mentioned here. Glimming’s 2001 master thesis [13] describes a development of
basic category theory and a couple of concrete categories. As HOL does not admit
the definition of partial functions, Glimming had to address the problem of the
composition of uncomposable arrows. This problem is solved by the introduction
of an error object, which is never a member of any set of arrows. Since his
interests lie in a formalization of the Bird-Meertens formalism [7], there are no
attempts to improve automation beyond Isabelle’s generic prover.

Another formalization of category theory in Isabelle is O’Keefe’s work de-
scribed in [22]. His main focus is on the readability of the proofs, aiming at
a representation close to one in a mathematical textbook. Therefore he uses a
sectioning concept provided by Isabelle. This saves a lot of repetition and is
an elegant way to emulate informal mathematical reasoning. Although this for-
malization contains definitions of functors and natural transformations, it does
not include functor categories. O’Keefe mentions another formalization of cat-
egory theory in HOL by Lockwood Morris whose focus is on automation, but
unfortunately neither a description nor the sources have been published.

In the Coq library there are two contributions concerning category theory. The
development of Säıbi and Huet [16,26] contains definitions and constructions
up to cartesian closed categories, which are then applied to the category of
sets. The authors formulate the theory of functors including Freyd’s adjoint
functor theorem, i.e., their work covers nearly all of chapters I–V of [20]. The
formalization of Säıbi and Huet is directly based on the constructive type theory
of Coq. Simpson [27], on the other hand, makes only indirect use of it. Instead,
his formalization is set up in a ZFC-like environment. In addition to some basic
set theory and algebra, he develops category theory including functors, natural
transformations, limits and colimits, functor categories, and a theorem about the
existence of (co)limits in functor categories. Simpson has written some tactics
to improve the automation, but, as for the work of Säıbi and Huet, there are no
official papers available.

A key difference between these works and our approach is that we have iden-
tified an independent calculus for reasoning about category theory and given a
full implementation in Nuprl. In addition, we have provided a family of tactics
that allow many proofs to be automated. None of the other extant implementa-
tions we have encountered make any attempt to isolate an independent formal
axiomatization of the elementary theory. Instead, they embed category theory
into some other logic, and reasoning relies mostly on the underlying logic.

Automating Proofs in Category Theory 395

2 An Axiomatization of Elementary Category Theory

2.1 Notational Conventions

We assume familiarity with the basic definitions and notation of category theory
[6,20]. To simplify notation, we will adhere to the following conventions.
– Symbols in sans serif, such as C, always denote categories. The categories Set

and Cat are the categories of sets and set functions and of (small) categories
and functors, respectively.

– If C is a category, we use the symbol C to denote both the category C and
the set of objects of C.

– We write A : C to indicate that A is an object of C. Composition is denoted
by the symbol ◦ and the identity on object A : C is denoted 1A. The use of a
symbol in sans serif, such as C, implicitly carries the type assertion C : Cat.

– We write h : C(A, B) to indicate that h is an arrow of the category C with
domain A and codomain B.

– Fun[C, D] denotes the functor category whose objects are functors from C
to D and whose arrows are natural transformations on such functors. This is
the same as the category denoted DC in [20]. Thus F : Fun[C, D] indicates
that F is a functor from C to D and ϕ : Fun[C, D](F, G) indicates that ϕ is
a natural transformation with domain F and codomain G.

– Cop denotes the opposite category of C.
– f : X ⇒ Y indicates that f : Set(X, Y), that is, f is a set function from set

X to set Y . We use the symbol ⇒ only in this context. Function application
is written as juxtaposition and associates to the left.

– F 1 and F 2 denote the object and arrow components, respectively, of a functor
F . Thus if F : Fun[C, D], A, B : C, and h : C(A, B), then F 1A, F 1B : D and
F 2h : D(F 1A, F 1B).

– Function application binds tighter than the operators 1 and 2. Thus the
expression F 1A2 should be parsed (F 1A)2.

– C × D denotes the product of categories C and D. Its objects are pairs
(A, X) : C × D, where A : C and X : D, and its arrows are pairs (f, h) :
(C × D)((A, X), (B, Y)), where f : C(A, B) and h : D(X, Y). Composition
and identities are defined componentwise; that is,

(g, k) ◦ (f, h) def= (g ◦ f, k ◦ h) (1)

1(A,X)
def= (1A, 1X). (2)

2.2 Rules

The rules involve sequents Γ � α, where Γ is a type environment (set of type
judgments on atomic symbols) and α is either a type judgment or an equation.
There is a set of rules for functors and a set for natural transformations, as well as
some rules covering the basic properties of categories and equational reasoning.

The rules for functors and natural transformations are the most interesting.
They are divided into symmetric sets of rules for analysis (elimination) and
synthesis (introduction).

396 D. Kozen, C. Kreitz, and E. Richter

Categories. There is a collection of rules covering the basic properties of cat-
egories, which are essentially the rules of typed monoids. These rules include
typing rules for composition and identities

Γ � A, B, C : C, Γ � f : C(A, B), Γ � g : C(B, C)
Γ � g ◦ f : C(A,C)

(3)

Γ � A : C
Γ � 1A : C(A, A)

, (4)

as well as equational rules for associativity and two-sided identity.

Functors. A functor F from C to D is determined by its object and arrow
components F 1 and F 2. The components must be of the correct type and must
preserve composition and identities. These properties are captured in the follow-
ing rules.
Analysis

Γ � F : Fun[C, D], Γ � A : C
Γ � F 1A : D

(5)

Γ � F : Fun[C, D], Γ � A, B : C, Γ � f : C(A, B)
Γ � F 2f : D(F 1A, F 1B)

(6)

Γ � F : Fun[C, D], Γ � A, B, C : C, Γ � f : C(A, B), Γ � g : C(B, C)
Γ � F 2(g ◦ f) = F 2g ◦ F 2f

(7)

Γ � F : Fun[C, D], Γ � A : C
Γ � F 21A = 1F1A

(8)

Synthesis

Γ, A : C � F 1A : D
Γ, A,B : C, g : C(A, B) � F 2g : D(F 1A, F 1B)
Γ, A,B, C : C, f : C(A,B), g : C(B, C) � F 2(g ◦ f) = F 2g ◦ F 2f
Γ, A : C � F 21A = 1F1A

Γ � F : Fun[C, D]
(9)

Natural Transformations. A natural transformation ϕ : Fun[C, D](F, G) is a
function that for each object A : C gives an arrow ϕA : D(F 1A, G1A), called the
component of ϕ at A, such that for all arrows g : C(A, B), the following diagram
commutes:

F 1A
F 2g� F 1B

G1A

ϕA

�
G2g� G1B

ϕB

�

(10)

Composition and identities are defined by

(ϕ ◦ ψ)A def= ϕA ◦ ψA (11)

1F A
def= 1F 1A. (12)

Automating Proofs in Category Theory 397

The property (10), along with the typing of ϕ, are captured in the following rules.

Analysis

Γ � ϕ : Fun[C, D](F, G)
Γ � F, G : Fun[C, D]

(13)

Γ � ϕ : Fun[C, D](F, G), Γ � A : C
Γ � ϕA : D(F 1A, G1A)

(14)

Γ � ϕ : Fun[C, D](F, G), Γ � A, B : C, Γ � g : C(A, B)
Γ � ϕB ◦ F 2g = G2g ◦ ϕA

(15)

Synthesis
Γ � F, G : Fun[C, D]
Γ, A : C � ϕA : D(F 1A, G1A)
Γ, A, B : C, g : C(A, B) � ϕB ◦ F 2g = G2g ◦ ϕA

Γ � ϕ : Fun[C, D](F, G)
(16)

Equational Reasoning. Besides the usual domain-independent axioms of
typed equational logic (reflexivity, symmetry, transitivity, and congruence), cer-
tain domain-dependent equations on objects and arrows are assumed as axioms,
including the associativity of composition and two-sided identity rules for ar-
rows, the equations (1) and (2) for products, and the equations (11) and (12)
for natural transformations.

We also provide extensionality rules for objects of functional type:

Γ � F, G : Fun[C, D], Γ, A : C � F 1A = G1A

Γ � F 1 = G1 (17)

Γ � F, G : Fun[C, D], Γ, A, B : C, g : C(A, B) � F 2g = G2g

Γ � F 2 = G2 (18)

Γ � F, G : Fun[C, D], Γ � F 1 = G1, Γ � F 2 = G2

Γ � F = G
(19)

Γ � F, G : Fun[C, D], Γ � ϕ, ψ : Fun[C, D](F, G), Γ, A : C � ϕA = ψA

Γ � ϕ = ψ
(20)

Finally, we also allow equations on types and substitution of equals for equals
in type expressions. Any such equation α = β takes the form of a rule

Γ � A : α

Γ � A : β
. (21)

Other Rules. There are also various rules for products, weakening, and other
structural rules for manipulation of sequents. These are all quite standard and
do not bear explicit mention.

398 D. Kozen, C. Kreitz, and E. Richter

3 Implementation of the Formal Theory

As a platform for the implementation of our proof calculus we have selected
the Nuprl proof development system [9,2,19,1]. Nuprl is an environment for the
development of formalized mathematical knowledge that supports interactive
and tactic-based reasoning, decision procedures, language extensions through
user-defined concepts, and an extendable library of verified formal knowledge.
Most of the formal theories in this library are based on Nuprl’s Computational
Type Theory, but the system can accommodate other logics as well.

One of the key aspects of the implementation of a formal theory is faithfulness
with respect to the version on paper. Although Nuprl supports a much more
expressive formalism, reasoning mechanisms should be restricted to first-order
logic and the axiomatization of category theory given in the previous section.
To accomplish this we proceeded as follows.

Encoding Semantics and Syntax. We have used Nuprl’s definition mechanism to
implement the vocabulary of basic category theory. For each concept we have
added an abstraction object to the library that defines the semantics of a new
abstract term in terms of Nuprl’s Computational Type Theory. For instance,
the product of two categories C and D, each consisting of a set of objects, a
set of arrows, a domain and a codomain function, and composition and iden-
tity operations, is defined by an abstraction which states that objects and ar-
rows are the cartesian products of the respective sets for C and D, domain
and codomain functions are paired, and composition and identity are computed
pointwise.
CatProd(C,D) == < C×D, ArrC×ArrD, λ(f,h).<dom(f),dom(h)>,

λ(f,h).<cod(f),cod(h)>, λ((f,h),(g,k)).<f◦g,h◦k>, λ(A,X).<1A,1X> >

The outer appearance of abstract terms (display syntax) is defined separately
through display forms, which enable us to adjust the print and display represen-
tations of abstract terms to conform to a specific style without modifying the
term itself. Following [20], for instance, we denote the set of objects of a category
by the name of the category. For the product category, we use the same notation
as for the cartesian product.
C×D == CatProd(C,D)

Since the abstract terms are different, the proof system can easily distinguish
terms that look alike but have a different meaning. Display forms can also be
used to suppress information that is to be considered implicit. The composition
of two arrows f and g, for instance, depends on the category C to which f and
g belong, but it would be awkward to write down this information every time
the composition operator is used.

Currently, Nuprl’s display is restricted to a single 8-bit font. This limits the
use of symbols, subscripts and superscripts to the characters defined in this
font. Identities, usually written as 1A or 1(A,X), have to be presented as 1A and
1<A,X>. Apart from these restrictions, all the basic category-theoretic vocabulary
appears in the system as described in Section 2.

Automating Proofs in Category Theory 399

Inference rules. Given the formal representation of basic category theory, there
are several ways to implement the rules.

The standard approach would be to encode rules as tactics based on elemen-
tary inference rules. However, it is difficult to prove that these tactics actually
represent a specific category-theoretic rule. Furthermore, the tactics may require
executing hundreds of basic inferences for each category-theoretic inference step.
A more efficient way is to write tactics based on formal theorems that establish
properties of the fundamental concepts. For instance, rule (14) corresponds to
the theorem

∀C,D:Categories. ∀F,G:Fun[C,D]. ∀ϕ:Fun[C,D](F,G). ∀X:C. ϕ X ∈ D(F1X,G1X)

To apply the rule, one would instantiate the theorem accordingly. But this would
lead to proof obligations that do not occur in the original rule, such as showing
that C and D are categories and F and G are functors in Fun[C, D].

The Nuprl system supports a more direct approach to encoding formal theo-
ries. Experienced users can add rule objects to the system’s library that directly
represent the inference rules of the theory, then prove formal theorems like the
one above to justify the rules. Apart from the fact that rules have to be formu-
lated as top-down sequent rules to accommodate Nuprl’s goal-oriented reasoning
style, the representation of the rules in the system is identical to the version on
paper, which makes it easy to check its faithfulness. Rule (14), for instance, is
represented by a rule object NatTransApply with the following contents.

Nuprl’s rule compiler converts rule objects into rules that match the first line
of the object against the actual goal sequent and create the subgoal sequents by
instantiating the two lower lines. Note that the rule requires the category C to
be given as parameter, since it occurs in a subgoal but not in the main goal.

Since equalities in Nuprl are typed, we added types to all the inference rules
that deal with equalities. For example, rule (15) is represented as follows:

We have generated rule objects for all the rules described in Section 2, as
well as rules for dealing with products. Logical rules and rules dealing with
extensional equality and substitution are already provided by Nuprl.

400 D. Kozen, C. Kreitz, and E. Richter

For each inference rule, we have also proved formally that it is correct with re-
spect to our formalization of basic category theory. Although this is not strictly
necessary if one is mainly interested in automating proofs, it validates the consis-
tency of the implemented inference system relative to the consistency of Nuprl.

4 Proof Automation

The implementation of the proof calculus described above enables us to create
formal proofs for many theorems of basic category theory. But even the simplest
such theorems lead to proofs with hundreds or even thousands of inference steps,
as illustrated in [18]. Since most of these statements are considered mathemati-
cally trivial, it should be possible to find their proofs completely automatically.

We have developed strategies for automated proof search in basic category
theory that attempt to capture the general patterns of reasoning that we have
observed in hand-constructed proofs. In this section we discuss the key compo-
nents of these strategies and some of the issues that had to be reckoned with.

Automated Rule Application. Most of the inference rules are simple refinements
that describe how to decompose a proof obligation into simpler components.
Given a specific proof goal, there are only few rules that can be applied at all.
Thus to a large extent, proof search consists of determining applicable rules and
their parameters from the context, applying the rule, and then continuing the
search on all the subgoals.

To make this possible, all the basic inference rules had to be converted into
simple tactics that automatically determine their parameters. Generating names
for new variables in the subgoals, as in the case of the extensionality rules (17)–
(20), is straightforward. All other parameters occur as types in one of the sub-
goals of a rule and are determined through an extended type inference algorithm.

An important issue is loop control. Since the synthesis rules for functors and
natural transformations are the inverse of the corresponding analysis rules, we
have to avoid applying analysis rules if they create a subgoal that has already
been decomposed by a synthesis rule. Synthesis rules decrease the depth of func-
tor types in a proof goal. It is therefore sufficient to keep track of proof goals
to which a synthesis rule had been applied and block the application of analysis
rules that would generate one of these as a subgoal.

Performance Issues. One of the disadvantages of refinement style reasoning is
that proof trees may contain identical proof goals in different branches. This is
especially true after the application of synthesis and extensionality rules, which
must be used quite often in complex proofs. The first subgoal of rule (9) even-
tually reappears in the proof of the second, since F 1A occurs within the type
of that goal and both subgoals reappear in the proofs of the third and fourth
subgoals. In a bottom-up proof, one would prove these goals only once and reuse
them whenever they are needed to complete the proof of another goal, while a
standard refinement proof forces us to prove the same goal over and over again.

Obviously we could optimize the corresponding rules for top-down reasoning
and drop the redundant subgoals. To retain faithfulness of the implemented

Automating Proofs in Category Theory 401

inference system, however, we decided to leave the rules unchanged. Instead, we
have wrapped the corresponding tactic with a controlled application of the cut
rule: we assert the first two subgoals of rule (9) before applying the rule. As a
result they appear as hypotheses of all subgoals and have to be proved only once.

Although this method is a simple trick, it leads to a significant reduction in
the size of automatically generated proofs. A complete proof of the isomorphism
between Fun[C × D, E] and Fun[C, Fun[D, E]] without cuts consists of almost
30,000 inference steps. Using the wrapper reduces this number to 3,000.

Equality Reasoning. Equality reasoning is a key component in formal category-
theoretic proofs. Ten of the inference rules deal with equalities and can be used
to replace a term by one that is semantically equal.

Since equalities can be used both ways, they can easily lead to infinite loops
in an automated search for a proof. Our automated reasoning strategy therefore
has to assign a direction to each of the equalities and attempt to rewrite terms
into some normal form. Furthermore, it has to keep track of the types involved in
these equalities, which are sometimes crucial for finding a proper match and, as
in the case of rule (15), for determining the right-hand side of an equality from
the left-hand side. The inference rules described in Section 2, including those
dealing with associativity and identity, lead to the following typed rewrites.

Rewrite Type Rule
<g, k>◦<f, h> �→ <g◦f, k◦h> C×D(<A1, X1>,<A3, X3>) (01)
1<A,X> �→ <1A, 1X> C×D(<A, X>,<A, X>) (02)
1Y ◦f �→ f C(X, Y) (2a)
f◦1X �→ f C(X, Y) (2b)
h◦(g◦f) �→ (h◦g)◦f C(X, T) (2c)
F 2(g◦f) �→ F 2g◦F 2f D(F 1X, F 1Z) (07)
F 21X �→ 1F1X D(F 1X, F 1X) (08)
(ψ◦ϕ)A �→ ψA◦ϕA D(F 1X, H1X) (11)
1F X �→ 1F1X D(F 1X, F 1X) (12)
ϕY ◦F 2g �→ G2g◦ϕX D(F 1X, G1Y) (15)

Each rewrite is executed by applying a substitution, which is validated by ap-
plying the corresponding equality rule mentioned in the table above.

The above rewrite system is incomplete, as it cannot prove the equality of
some terms that can be shown equal with the inference rules. We have used the
superposition-based Knuth-Bendix completion procedure [17] to generate the
following additional typed rewrites.

Rewrite Type Rules
F 2<1A, 1X> �→ 1F1<A,X> E(F 1<A,X>,F 1<A,X>) (02),(08)

F 2<g, k>◦F 2<f, h> �→ F 2<g◦f, k◦h> E(F 1<A,X>,F 1<C,X>) (01),(07)

(ϕY A)◦(F 2gA) �→ (G2gA)◦(ϕXA) E(F 1X1A, G1Y 1A) (15),(11)

(ϕY ◦ψY)◦F 2g �→ (G2g◦ϕX)◦ψX E(F 1X, G1Y) (11),(15)

H2(ϕY)◦H2(F 2g) �→ H2(G2g)◦H2(ϕX) E(H1F 1X, H1G1Y) (2c),(15)

(h◦ϕY)◦F 2g �→ (h◦G2g)◦ϕX D(F 1X, Z) (07),(15)

((h◦G2g)◦ϕX)◦ψX �→ ((h◦ϕY)◦ψY)◦F 2g E(F 1X, Z) (2c),(11),(15)

(h◦H2(ϕY))◦H2(F 2g) �→ (h◦H2(G2g))◦H2(ϕX) E(H1F 1X, Z) (07),(07),(15)

402 D. Kozen, C. Kreitz, and E. Richter

First-Order Reasoning. One important aspect of our approach is demonstrating
that reasoning in basic category theory is essentially first-order although some
of its concepts are not. This means that functors and natural transformations
can only be treated as abstract objects whose properties can only be described
in terms of their first-order components.

For example, proving two categories C and D isomorphic (formally denoted
by C =̂ D) requires showing the existence of two functors θ : Fun[C, D] and
η : Fun[D, C] that are inverses of each other. In the formal proof, we cannot
simply introduce θ as closed object, because this would be a pair of λ-terms
mapping C-objects onto D-objects and C-arrows onto D-arrows. Instead we have
to specify its object and arrow components θ1A and θ2f for A an object of
C and f an arrow of C through first-order equations. If these components are
again functors or natural transformations, we have to specify subcomponents un-
til we have reached a first-order level. In our proof of the isomorphism between
Fun[C × D, E] and Fun[C, Fun[D, E]], we need four equations to specify θ:

θ1G1X1X1 ≡ G1<X, X1> θ1G2f X ≡ G2<f, 1X>
θ1G1X2h ≡ G2<1X, h> θ2 ϕ X X1 ≡ ϕ <X, X1>

Mathematically speaking, these four equations are sufficient for the proof, since
any functor satisfying these equations can be used to complete the proof. How-
ever, the embedding of basic category theory into Nuprl’s formal logic requires
the existence of a functor satisfying these equations to be verified (this require-
ment could, of course, be turned off by providing a special rule). Constructing
the functor from the equations is straightforward if it is uniquely specified by
them. Since this part of the proof is higher-order and has nothing to do with
basic category theory, it is generated automatically in the background.

Guessing Witnesses for Existential Quantifiers. The mechanisms described so
far are sufficient to verify properties of given functors and natural transforma-
tions. But many proofs in basic category theory require proving the existence of
functors or transformations with certain properties. For a trained mathematician
this is a trivial task if there are only few “obvious” choices. Since the purpose
of proof automation is automating what is considered obvious, we have devel-
oped a heuristic that attempts to determine specifications for functors or natural
transformations that are most likely to make a proof succeed.

The most obvious approach is to start developing a proof where the functor
or natural transformation has been replaced by a free variable and proceed until
the decomposition cannot continue anymore. At this point we have generated
typing subgoals for all first-order components of the functor. For the functor θ in
our isomorphism proof we get (up to α-equality) four different typing conditions

θ1G1X1X1 ∈ E θ1G2f X ∈ E(θ1G1A1X, θ1G1B1X)
θ1G1X2h ∈ E(θ1G1X1X1, θ1G1X1Y) θ2 ϕ X X1 ∈ E(θ1F1X1X1, θ1G1X1X X1)

The heuristic then tries to determine the simplest term that is built from the
component’s parameters (whose types are known) and satisfies the given typing
requirements. For this purpose it tries to identify parameters that are declared

Automating Proofs in Category Theory 403

to be functors or natural transformations and to find a match between some
part of their range type and the typing requirement for the component. Once
the match has been found, the remaining parameters will be used to determine
the arguments needed by the functor or natural transformation.

To solve the first of the above typing conditions, the heuristic finds the decla-
rations G : Fun[C × D, E], X : C, and X1 : D. The simplest term that has type
E and is built from these parameters is the term G1<X,X1>.

Determining the arguments of a functor or natural transformation is not al-
ways straightforward. In some cases like the above, the remaining parameters
are of the right type and can be used as arguments. In other cases we have an
object where an arrow is needed or vice versa. The most obvious choice is turn-
ing an object into an identity arrow and an arrow into its domain or codomain,
depending on the typing requirements.

To solve the second of the above conditions, the heuristic has to use the
declarations G : Fun[C × D, E], X : C, h : D(X1, Y), and X1, Y : D. To create
a term of type E(θ1G1X1X1, θ

1G1X1Y), one has to use G2 and arrows from
C(X, X) and D(X1, Y). For the latter, we can pick h, while the only arrow in
C(X, X) that can be built from the object X is the identity 1X .

In some cases, none of the above choices satisfy the typing conditions, but a
composition of natural transformation and functor as in rule (15) would do so.
In this case, the heuristic will use the functor and its arguments twice in different
ways. This choice is less obvious, but still considered standard.

5 An Application

To demonstrate the feasibility of our approach, we have generated a completely
formal proof that the functor categories Fun[C × D, E] and Fun[C, Fun[D, E]]

404 D. Kozen, C. Kreitz, and E. Richter

are naturally isomorphic. The structure of the proof is similar to the hand-
constructed proof described in [18], which required several hours to complete
and more than 10 pages to write down. Using our strategies, the creation of the
proof was fully automated and took only a few seconds.

The screenshot above shows that the proof consists of only six proof steps.
First we unfold the definition of isomorphisms and decompose the proof goal. We
then ask the tactic to guess values for the functors θ and η. Finally, we unfold
the definition of inverse functors and use the automated proof search procedure
to validate that θ and η are indeed functors of the appropriate types and that
they are inverse to each other.

This top-level version of the proof reveals the key idea that was necessary
to solve the problem, but hides the tedious details involved in validating the
solution. Users interested in proof details can inspect the complete proof tree
that Nuprl will display on demand. However, one should be aware that the
complete proof is huge. It takes 1046 and 875 basic inferences to prove that θ
and η are indeed functors of the appropriate types and another 1141 inferences
to prove that they are inverse to each other.

It should be noted that all six steps are straightforward when it comes to
dealing with isomorphism problems. One could combine them into a single tactic
IsoCAT, which would then give us the following proof.

* ∀C,D,E:Categories. Fun[C×D,E] =̂ Fun[C,Fun[D,E]]
BY IsoCAT

However, little insight is gained from such a proof, except that it has in fact
been completed automatically.

Proving the naturality of the isomorphism is more demanding, since we have to
show θ and η to be elements of Fun[Catop × Catop × Cat, Cat](U, V) for suitable
functors U, V , that are inverse for every choice of categories C, D, and E. Guessing
specifications for U , V , θ, and η automatically is now less trivial. Currently, our
automated strategy (extended for dealing with categories of categories) can only
validate U , V , θ, and η after they have been specified by hand.

6 Conclusion

We have presented a Gentzen-style deductive system for elementary category
theory involving a mixture of typing and equational judgments. We have imple-
mented this logic in Nuprl along with relevant proof tactics that go a long way
toward full automation of elementary proofs. We have demonstrated the effec-
tiveness of this approach by automatically deriving proofs of several nontrivial
results in the theory, one example of which is presented in detail above. The
system works very well on the examples we have tried.

We have found that careful planning in the order of application of tactics
makes the proof search mostly deterministic. However, the proofs that are gen-
erated tend to be quite large because of the overwhelming amount of detail. Many
of the necessary steps, especially those that involve basic typing judgments, are
quite tedious and do not lend much insight from a human perspective. For this

Automating Proofs in Category Theory 405

reason, they are typically omitted in the literature. Such arguments are never-
theless essential for automation, because they drive the application of tactics.

There are a number of technical insights that we have observed in the course
of this work.

– Most of the ideas that we have applied in this work are in fact fairly standard
and not too sophisticated. This shows that our calculus is well designed and
integrates well with existing theorem proving technology.

– Formal proofs, even of quite elementary facts, have thousands of inferences.
As mentioned, many of these steps are quite tedious and do not lend much
insight. This indicates that the theory is a good candidate for automation.

– Almost all proof steps can be automated. Forward steps such as decom-
position using the analysis rules and directed rewriting for equations tend
to be quite successful. Since the proof system is normalizing and confluent
(we did not show this), the time is mostly spent building the proof. Apart
from guessing witnesses, there is virtually no backtracking involved and the
bulk of the development is completely deterministic, being driven by typing
considerations.

– Lookahead improves the performance of our strategy. Since inference rules
may generate redundant subgoals, lemma generation can allow proof reuse.

– Display forms are crucial for comprehensibility. It is often very difficult to
keep track of typing judgments currently in force. Judicious choice of the
display form can make a great difference in human readability.

For the future, we plan to gain more experience by attempting to automate
more of the basic theory. We need more experience with the different types
of arguments that arise in category theory so that we will be better able to
design those parts of the mechanism involved with the guessing of witnesses.
Preliminary investigations show that automating the application of the Yoneda
lemma will be key to many of the more advanced proofs.

Since our proof strategies can be viewed as encodings of proof plans for cat-
egory theory, our approach may benefit from using generic proof planning tech-
niques [8] to make these proof plans explicit.

Finally, we would like to mention an intriguing theoretical open problem.
The proof of the result that we have described, namely that Fun[C × D, E] and
Fun[C, Fun[D, E]] are naturally isomorphic, breaks down into two parts. The
first partargues that the functor categories Fun[C × D, E] and Fun[C, Fun[D, E]]
are isomorphic, and the second part argues that the isomorphism is natural. As
Mac Lane describes it [20, p. 2], naturality, applied to a parameterized con-
struction, says that the construction is carried out “in the same way” for all
instantiations of the parameters. Of course, there is a formal definition of the
concept of naturality in category theory itself, and it involves reparameterizing
the result in terms of functors in place of objects, natural transformations in
place of arrows. But any constructions in the formal proof π of the first part of
the theorem, just the isomorphism of the two parameterized functor categories,
would work “in the same way” for all instantiations of the parameters, by virtue

406 D. Kozen, C. Kreitz, and E. Richter

of the fact that the formal proof π is similarly parameterized. This leads us to
ask: Under what conditions can one extract a proof of naturality automatically
from π? That is, under what conditions can a proof in our formal system be au-
tomatically retooled to additionally establish the naturality of the constructions
involved? Extracting naturality in this way would be analogous to the extraction
of programs from proofs according to the Curry–Howard isomorphism.

References

1. S.Allen et. al. Innovations in computational type theory using Nuprl. Journal of
Applied Logic, 2006. (to appear).

2. S.Allen, R.Constable, R.Eaton, C. Kreitz, L. Lorigo The Nuprl open logical envi-
ronment. CADE-17 , LNCS 1831, pages 170–176. Springer, 2000.

3. G. Bancerek. Concrete categories. J. formalized mathematics, 13, 2001.
4. G. Bancerek. Miscellaneous facts about functors. J. form. math., 13, 2001.
5. G. Bancerek. Categorial background for duality theory. J. form.math., 13, 2001.
6. M. Barr, C.Wells. Category Theory for Computing Science. Prentice Hall, 1990.
7. R.Bird. A Calculus of Functions for Program Derivation, Research Topics in

Functional Programming, pages 287–307, Addison-Wesley, 1990.
8. A.Bundy The Use of Explicit Plans to Guide Inductive Proofs. CADE-9 , pages

111–120. Springer, 1988.
9. R.Constable et. al. Implementing Mathematics with the Nuprl proof development

system. Prentice Hall, 1986.
10. M. J.Cáccamo, G.Winskel. A higher-order calculus for categories. Technical Re-

port RS-01-27, BRICS, University of Aarhus, 2001.
11. P. Eklund et. al. A graphical approach to monad compositions. Electronic Notes

in Theoretical Computer Science, 40, 2002.
12. S. Eilenberg, S.MacLane. General theory of natural equivalences. Trans. Amer.

Math. Soc., 58:231–244, 1945.
13. J. Glimming. Logic and automation for algebra of programming. Master thesis,

University of Oxford, 2001.
14. J. Goguen. A categorical manifesto. Mathematical Structures in Computer Science,

1(1):49–67, 1991.
15. J. Harrison. Formalized mathematics. Technical report of Turku Centre for Com-

puter Science, 36, 1996.
16. G. Huet, A. Säıbi. Constructive category theory. Joint CLICS-TYPES Workshop

on Categories and Type Theory , 1995. MIT Press.
17. D.Knuth, P.Bendix. Simple word problems in universal algebra. Computational

Problems in Abstract Algebra, pages 263–297. Pergamon Press, 1970.
18. D.Kozen. Toward the automation of category theory. Technical Report 2004-1964,

Computer Science Department, Cornell University, 2004.
19. C. Kreitz. The Nuprl Proof Development System, V5: Reference Manual and User’s

Guide. Computer Science Department, Cornell University, 2002.
20. S.MacLane. Categories for the Working Mathematician. Springer, 1971.
21. E. Moggi. Notions of computation and monads. Inf. and Comp., 93, 1991.
22. Greg O’Keefe. Towards a readable formalisation of category theory. Electronic

Notes in Theoretical Computer Science 91:212–228. Elsevier, 2004.
23. L. Paulson. Isabelle: A Generic Theorem Prover, LNCS 828. Springer, 1994.

Automating Proofs in Category Theory 407

24. D.Rydeheard, R.Burstall. Computational Category Theory. Prentice Hall, 1988.
25. G. M.Reed, A.W.Roscoe, R. F.Wachter. Topology and Category Theory in Com-

puter Science. Oxford University Press, 1991.
26. A. Säıbi. Constructive category theory, coq.inria.fr/contribs/category.tar.gz, 1995.
27. C. Simpson. Category theory in ZFC, coq.inria.fr/contribs/CatsInZFC.tar.gz, 2004.
28. M. Takeyama. Universal Structure and a Categorical Framework for Type Theory.

PhD thesis, University of Edinburgh, 1995.
29. A.Trybulec. Some isomorphisms between functor categories. J. formalized math-

ematics, 4, 1992.
30. P.Wadler. Monads for functional programming. Advanced Functional Program-

ming, LNCS 925, pp. 24–52, Springer, 1995.

	Introduction
	Related Work

	An Axiomatization of Elementary Category Theory
	Notational Conventions
	Rules

	Implementation of the Formal Theory
	Proof Automation
	An Application
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

