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Abstract. We describe the construction of a semi-automated proof sys-
tem for elementary category theory using the Nuprl proof development
system as logical framework. We have used Nuprl’s display mechanism
to implement the basic vocabulary and Nuprl’s rule compiler to imple-
mented a first-order proof calculus for reasoning about categories, func-
tors and natural transformations. To automate proofs we have formalized
both standard techniques from automated theorem proving and reason-
ing patterns that are specific to category theory and used Nuprl’s tactic
mechanism for the actual implementation. We illustrate our approach by
automating proofs of natural isomorphisms between categories.

1 Introduction

Category theory [EM45] is a common framework for expressing abstract prop-
erties of mathematical structures that occur in many areas of mathematics and
computer science. Abstract notions such as objects, morphisms, composition,
identities, products, functors, transformations, duality, and isomorphisms are
common to areas like set theory, logic, algebra, topology, semantics of program-
ming languages, or formal software specification and development. The beauty
of category theory is that it allows one to be completely precise about such con-
cepts and that many algebraic constructions become exceedingly elegant at this
level of abstraction. Diagrams can be used to illustrate essential insights and
often make it unnecessary to provide further details of a proof, as these may be
obtained entirely by standard patterns of reasoning.

However, since category theory is considerably more abstract than many other
branches of mathematics, it becomes almost impossible to verify the details of
such a proof. Readers frequently have to accept “obvious” assertions on faith, as
complete proofs based on precise definitions often involve an enormous number of
low-level details that must be checked. Furthermore, the high level of abstraction
forces one to work in an atmosphere in which much of the intuition has been
stripped away. As a result, the verification often becomes a matter of pure symbol
manipulation, an area in which humans easily make mistakes.

On the other hand, proofs that rely on standard patterns of reasoning and
symbol manipulation lend themselves well to automation. Providing such an au-
tomation serves several purposes. It enables users to generate completely formal
proofs without having to go through all the details themselves, thus providing
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assurance that the statement is in fact true. It allows users to inspect details of
a proof and get a better grasp of the standard patterns of reasoning in elemen-
tary category theory. It also shows that the proofs that many authors do not
bother to provide actually may contain a tremendous amount of hidden detail
and possibly even preconditions that the author might have taken for granted or
overlooked entirely. Finally, it demonstrates that a proof is indeed trivial from an
intellectual point of view, because it could be found automatically by a machine.

To provide a foundation for automating basic category theory reasoning Kozen
[Koz04] presents a first-order axiomatization of elementary category theory and
illustrates its use by giving a formal proof that the functor categories Fun[C×D,E]
and Fun[C,Fun[D,E]] are naturally isomorphic. Although the proof of this the-
orem omits many low-level details such as equality reasoning and simple first-
order arguments, it is extremely long and required many hours of careful work
to complete. To make sure that every detail of a proof can be validated it is
necessary to implement the proof calculus and to develop proof strategies that
support the automated construction of proofs by capturing the general patterns
of reasoning used in hand-constructed proofs.

As platform for the implementation of Kozen’s calculus we have selected
the Nuprl system [CA+86]. Nuprl is a proof and programming environment
for the interactive development of formalized mathematical knowledge as well
as for the synthesis, verification, and optimization of software. Nuprl’s current
architecture [AC+00, Kre02, AB+05] is the product of many evolutions aimed at
providing a theorem proving environment as rich and robust as its type theory.
The resulting implementation composes a set of communicated processes, cen-
tered around a common knowledge base, called the library. The library contains
definition objects, theorems, inference rules, and meta-level code (e.g. tactics),
and serves as a transaction broker for the other processes. Those processes in-
clude user interfaces (editors), inference engines (refiners) and mechanisms for
extracting programs from proofs, rewrite engines (evaluators), and translators.
Translators between the formal knowledge stored in the library and, for instance,
programming languages like Java or Ocaml [Kre04, KHH98] allow the formal rea-
soning tools to supplement real-world software from various domains and thus
provide a logical programming environment for the respective languages.

While Nuprl was originally developed as theorem prover for Computational
Type Theory [Con08], the current architecture has no predefined logic but uses
formal library objects to define the syntax and inference rules of a logic. Thus the
Nuprl system has become a logical framework that can accommodate arbitrary
logics whose inference rules can be expressed in a sequent style. Although almost
all of the actual development is still based on the Nuprl type theory, users may
now embed entirely new theories as independent proof calculi into the system’s
library and use the framework to automate reasoning in these theories.

To make use of this potential of the Nuprl system, which had not been ex-
plored before, we proceeded as follows. To embed the vocabulary of elementary
category theory we added abstract terms for each concept of the theory to the
system’s library as well as display forms for presenting these terms in a familiar
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syntax. For all inference rules of Kozen’s calculus we added rule objects to the
library and used Nuprl’s rule compiler to convert these into reasoning tactics
that execute these rules in the proof environment. To automate reasoning we
encoded standard theorem proving techniques as Nuprl proof tactics, developed
additional tactics to capture the reasoning patterns that are specific to category
theory, and added these tactics as code objects to the library.

In [KKR06] we have demonstrated that this approach can in fact automate
Kozen’s proof of the isomorphism between Fun[C×D,E] and Fun[C,Fun[D,E]].
With the additional techniques and calculi described in this paper, we are now
able to construct fully automated proofs for a variety of isomorphisms between
categories as well as proofs of the naturality of all all these isomorphisms.

The structure of this paper follows the development outlined above. In Sec-
tion 2 we briefly review Kozen’s first-order axiomatization of elementary category
theory. We then describe the implementation of this calculus within the Nuprl
logical framework in Section 3. Strategies that encode standard techniques from
automated theorem proving will be presented in Section 4. Strategies that au-
tomate reasoning specific to category theory and their application to proofs of
natural isomorphisms will be discussed in Section 5. We conclude by discussing
related approaches, insights that we have observed in the course of this work,
and new research issues that result from these observations.

2 An Axiomatization of Elementary Category Theory

We assume the reader to be familiar with the basic definitions and notation
of category theory [BW90, McL71]. We begin our review of Kozen’s calculus
[Koz04] with a few notational conventions.

– Symbols in sans serif, such as C, always denote categories. The category Cat
is the category of (small) categories and functors.

– If C is a category, the symbol C denotes both the category C and the set of
objects of C.

– A : C indicates that A is an object of the category C. Composition is denoted
by the symbol ◦ and the identity on object A : C is denoted 1A.

– h : C(A,B) indicates that h is an arrow of the category C with domain A
and codomain B.

– Fun[C,D] denotes the functor category whose objects are the functors from
C to D and whose arrows are the natural transformations on such func-
tors. Thus F : Fun[C,D] indicates that F is a functor from C to D and
ϕ : Fun[C,D](F,G) indicates that ϕ is a natural transformation with do-
main F and codomain G, where F,G : Fun[C,D].

– F 1 and F 2 denote the object and arrow components, respectively, of a functor
F . Thus if F : Fun[C,D], A,B : C, and h : C(A,B), then F 1A,F 1B : D and
F 2h : D(F 1A,F 1B).

– Function application binds tighter than the operators 1 and 2. Thus the
expression F 1A2 should be parsed (F 1A)2.
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– Cop denotes the opposite category of C.
– C×D denotes the product of the categories C and D. Its objects are pairs

(A,X) : C×D, where A : C and X : D, and its arrows consist of pairs
(f, h) : (C× D)((A,X), (B, Y )), where f : C(A,B) and h : D(X,Y ). Compo-
sition and identities are defined component-wise; that is,

(g, k)◦(f, h) def
= (g◦f, k◦h) (1)

1(A,X)
def
= (1A, 1X). (2)

Inference rules are based on sequents Γ � α, where Γ is a type environment
(a set of type judgments on atomic symbols) and α is either a type judgment
or an equation. The rules cover the basic properties of categories, functors and
natural transformations. They are divided into symmetric sets of rules for anal-
ysis (elimination) and synthesis (introduction). There are also rules for equa-
tional reasoning. To support first-order reasoning about higher-order concepts
like functors, the rules deal with their first-order components.

Categories. There is a collection of rules covering the basic properties of cat-
egories, which are essentially the rules of typed monoids. These rules include
typing rules for composition and identities as well as equational rules for asso-
ciativity and two-sided identity.

Γ � A,B,C : C, Γ � f : C(A,B), Γ � g : C(B,C)

Γ � g◦f : C(A,C)
(3)

Γ � A : C

Γ � 1A : C(A,A)
(4)

Γ � A,B,C,D : C, Γ � f : C(A,B), Γ � g : C(B,C), Γ � h : C(C,D)

Γ � (h◦g)◦f = h◦(g◦f) , (5)

Γ � A,B : C, Γ � f : C(A,B)

Γ � f◦1A = f

Γ � A,B : C, Γ � f : C(A,B)

Γ � 1B◦f = f
(6)

Functors. A functor F from C to D is determined by its object and arrow
components F 1 and F 2. The components must be of the correct type and must
preserve composition and identities. These properties are captured in the follow-
ing rules.

Analysis
Γ � F : Fun[C,D], Γ � A : C

Γ � F 1A : D
(7)

Γ � F : Fun[C,D], Γ � A,B : C, Γ � f : C(A,B)

Γ � F 2f : D(F 1A,F 1B)
(8)
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Γ � F : Fun[C,D], Γ � A,B,C : C, Γ � f : C(A,B), Γ � g : C(B,C)

Γ � F 2(g◦f) = F 2g◦F 2f
(9)

Γ � F : Fun[C,D], Γ � A : C

Γ � F 21A = 1F1A

(10)

Synthesis
Γ, A : C � F 1A : D

Γ, A,B : C, g : C(A,B) � F 2g : D(F 1A,F 1B)
Γ, A,B,C : C, f : C(A,B), g : C(B,C) � F 2(g◦f) = F 2g◦F 2f

Γ, A : C � F 21A = 1F1A

Γ � F : Fun[C,D]
(11)

Natural Transformations. A natural transformation ϕ : Fun[C,D](F,G) is a
function that for each object A : C gives an arrow ϕA : D(F 1A,G1A), called the
component of ϕ at A, such that for all arrows g : C(A,B), the following diagram
commutes:

F 1A
F 2g� F 1B

G1A

ϕA

�
G2g� G1B

ϕB

�

(12)

Composition and identities are defined by

(ϕ◦ψ)A def
= ϕA◦ψA (13)

1FA
def
= 1F1A. (14)

The property (12), along with the typing of ϕ, are captured in the following rules.

Analysis
Γ � ϕ : Fun[C,D](F,G)

Γ � F,G : Fun[C,D]
(15)

Γ � ϕ : Fun[C,D](F,G), Γ � A : C

Γ � ϕA : D(F 1A,G1A)
(16)

Γ � ϕ : Fun[C,D](F,G), Γ � A,B : C, Γ � g : C(A,B)

Γ � ϕB◦F 2g = G2g◦ϕA (17)

Synthesis Γ � F,G : Fun[C,D]
Γ, A : C � ϕA : D(F 1A,G1A)

Γ, A,B : C, g : C(A,B) � ϕB◦F 2g = G2g◦ϕA
Γ � ϕ : Fun[C,D](F,G)

(18)
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Equational Reasoning. Besides the usual domain-independent axioms of typed
equational logic (reflexivity, symmetry, transitivity, and congruence), certain
domain-dependent equations on objects and arrows are assumed as axioms, in-
cluding the associativity of composition (5) and two-sided identity rules (6) for
arrows, the equations (1) and (2) for products, and the equations (13) and (14)
for natural transformations. There are also extensionality rules for objects of
functional type:

Γ � F,G : Fun[C,D], Γ,A : C � F 1A = G1A

Γ � F 1 = G1
(19)

Γ � F,G : Fun[C,D], Γ, A,B : C, g : C(A,B) � F 2g = G2g

Γ � F 2 = G2
(20)

Γ � F,G : Fun[C,D], Γ � F 1 = G1, Γ � F 2 = G2

Γ � F = G
(21)

Γ � F,G : Fun[C,D], Γ � ϕ,ψ : Fun[C,D](F,G), Γ, A : C � ϕA = ψA

Γ � ϕ = ψ
(22)

Equations on types and substitution of equals for equals in type expressions are
also permitted. Any such equation α = β takes the form of a rule

Γ � A : α

Γ � A : β
. (23)

For the application example, the following type equations are postulated

Cat(C,D) = Fun[C,D] (24)

Cop = C (25)

Cop(A,B) = C(B,A). (26)

Other Rules. There are also various rules for products, weakening, and other
structural rules for manipulation of sequents. These are all quite standard and
do not bear explicit mention.

3 Implementing the Proof Calculus in Nuprl

Kozen’s axiomatization is sufficient for the development of completely formal
proofs for all theorems in elementary category theory. Kozen [Koz04] illus-
trates this fact by providing a rigorous formal proof that the functor categories
Fun[C×D,E] and Fun[C,Fun[D,E]] are naturally isomorphic. Although the
proof is fairly straightforward and omits many details for the sake of readabil-
ity it takes 13 pages on paper. As proofs of that size are difficult to construct
and carry the potential for errors it is necessary to implement the proof system
and to automate reasoning steps that mathematicians would consider obvious.
In this section we will show how the Nuprl logical framework can be used to
rapidly construct an implementation of Kozen’s calculus.
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3.1 Embedding the Vocabulary

We made use of Nuprl’s definition mechanism to implement the vocabulary of
elementary category theory. Abstraction objects can be used to add new abstract
terms to the formal library whose meaning may either be defined through ex-
pressions of the formal language defined so far, or be left unspecified if only the
signature shall be fixed. The abstract term for the set of objects of a category
C, for instance, is implemented by adding an abstraction object named Obj to
the library, which in the library listing appears as follows.

A Obj Obj{}(.C) == !primitive

This object introduces a new abstract term Obj with one subterm, denoted by
the variable C, and defines it to be primitive.1

Display forms can then be used to make the visual appearance of abstract
terms conform to the notation used on paper without changing their internal
structure. According to the conventions in section 2, for instance, the set of
objects of a category C is denoted by C. To introduce this notation, we add a
display object named Obj df to the library.

D Obj df <C> ≡ Obj{}(.<C>)
This object makes sure that the abstract term Obj{}(.C) will be displayed as C.
The angle brackets around C indicate that C is a parameter of the display form.

Display forms are important for interaction between the system and human
users as well as for a readable presentation of the implemented theory on paper.
The reasoning system itself deals only with abstract terms and can therefore
easily distinguish between a category and the set of its objects although both
have the same representation on the screen.

We have created abstraction and display objects for each concept of elemen-
tary category theory. Although it is possible to represent these concepts in terms
of Nuprl’s Type Theory and validate the implemented inference rules on this
basis we have chosen to use Nuprl only as logical framework for building an
independent system for reasoning about category theory and have declared all
fundamental abstract terms to be primitive.

Figure 1 lists the display objects that implement the vocabulary of elemen-
tary category theory. For the sake of readability we use math-font instead of
angle brackets to denote parameters. Note that a composition g◦f of two arrows
depends on the category C to which f and g belong but C is never mentioned
explicitly in compositions. Accordingly, C has to occur in the abstract term but
should not be shown when a composition is being displayed. For this reason,
the parameter C does not occur on the left hand side of the display form for
compositions and identities and the display of the category will be suppressed
as soon as the complete term has been entered into the system.

1 The formal declaration of Obj also contains an empty list of parameters between
curly braces and an empty list of variable bindings for the subterm in front of the
dot before C. Parameters and variable bindings are features of the Nuprl logical
framework that are necessary for representing more expressive theories but are not
needed for implementing elementary category theory.



Nuprl as Logical Framework for Automating Proofs in Category Theory 131

Obj C ≡ Obj{}(.C)
Mor C(A,B) ≡ Mor{}(.C;.A;.B)

Comp (g◦f) ≡ Comp{}(.C;.g;.f)
Id 1A ≡ Id{}(.C;.A)
fun1 F 1A ≡ fun1{}(.F;.A)
fun2 F 2g ≡ fun2{}(.F;.g)
CatFun Fun[C,D] ≡ CatFun{}(.C;.D)

CatProd C×D ≡ CatProd{}(.C;.D)

CatOp C-op ≡ CatOp{}(.C)
CatCat Cat ≡ CatCat{}()

Fig. 1. Display objects implementing the syntax of elementary category theory

Currently, Nuprl’s display is restricted to a single 8-bit font. This limits the
use of symbols, subscripts and superscripts to fixed characters. Identities, usually
written as 1A or 1(A,X), have to be presented as 1A and 1<A,X>.2 Apart from
these restrictions, all the basic category-theoretic vocabulary will be displayed
in the same way as described in Section 2.

Besides the vocabulary of elementary category theory Kozen [Koz04] uses
a notion of isomorphism of categories and naturality of isomorphisms. These
concepts can be defined in terms of the existing notions (see Section 5.2 for an
explanation) and are implemented by the following formal definitions.

F and G are inverse
== ∀A,B:C. ∀f:C(A,B). G1F 1A = A ∈ C ∧ G2F 2f = f ∈ C(A,B)

∧ ∀X,Y:D. ∀h:D(X,Y). F 1G1X = X ∈ D ∧ F 2G2h = h ∈ D(X,Y)

C =̂D
== ∃θ:Fun[C,D]. ∃η:Fun[D,C]. θ and η are inverse

C =̂D via θ and η

== θ ∈Fun[C,D] ∧ η ∈Fun[D,C] ∧ θ and η are inverse

C and D are naturally isomorphic

== ∃CAT. ∃U,V:Fun[CAT,Cat]
∃θ:Fun[CAT,Cat](U,V). ∃η:Fun[CAT,Cat](V,U).

∀c:CAT. C =̂D via θ c and η c

3.2 Implementation of Inference Rules

Like the proof calculus presented in the previous section, Nuprl’s inference mech-
anism is based on sequents. Nuprl’s reasoning style, however, is goal-oriented,
which means that inference rules operate top-down, refining a goal sequent into
a set of subgoal sequents. Inference rules therefore have to be rephrased in a
top-down fashion before they can be added to the system.

For the actual implementation of the proof calculus we made use of Nuprl’s
rule mechanism. Rule objects can be used to add schematic inference rules to the
formal library. These consist of formal terms that describe a goal sequent and

2 In Nuprl pairs use angle brackets <A,X> instead of parentheses.
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the corresponding subgoal sequents and may contain pattern variables that can
be matched against the components of the actual goal sequent in a proof. Since
the representation of the rules in the system is identical to the paper version it
is easy to check the faithfulness of the implementation. Rule (16), for instance,
is represented by a rule object NatTransApply with the following contents.

The rule states that in order to prove a goal sequent Γ � ϕA : D(F 1A,G1A) one
has to prove Γ � ϕ : Fun[C,D](F,G) and Γ � A : C for some category C, which
is exactly the same as rule (16). Due to the top-down style of the rule, C must
be provided as parameter, since it occurs in the subgoal sequents but not in the
main goal.

To create the actual inference rule from its representation as term one ap-
plies the rule compiler of the Nuprl logical framework to the rule object. This
generates a proof tactic that matches the first line of a rule object against the
actual goal sequent of a proof and creates the subgoal sequents by instantiating
the lines below the name of the rule accordingly. The proof tactic for the above
rule, for instance, is generated by the following simple ML declaration

let NatTransApply C = Refine ‘NatTransApply‘ [term arg C].

To apply this tactic, one has to provide a term C as argument, which is then
inserted into the two subgoals created by the rule. Tactics may also expect tokens
as arguments, which will then be used as names for variables that occur in the
subgoals but not in the main goal. The tactic for the synthesis rule (11), for
instance, requires five such names (for A,B,C, f , and g) to be provided.

Since Nuprl supports typed equalities and types often provide useful informa-
tion for guiding proofs, we added types to all the inference rules that deal with
equalities. For example, rule (17) is represented as follows:

We have generated rule objects for all the rules described in Section 2, as well as
rules for dealing with products. Logical rules and rules dealing with extensional
equality and substitution are already provided by Nuprl.
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4 Automating First-Order and Equational Reasoning

The implementation of the proof calculus described in Section 3 enables us to
create formal proofs for many theorems of basic category theory. But even the
most simple of these theorems already lead to proofs with hundreds or even
thousands of inference steps, as illustrated in [Koz04]. Since most of these state-
ments are considered mathematically trivial, it should be possible to completely
automate their proofs.

We have developed a small collection of strategies for automated proof search
in basic category theory. Some of these strategies are based on generic techniques
from automated theorem proving. Others are intended to capture the general
patterns of category theory specific reasoning that we have observed in hand-
constructed proofs. We will discuss the former in this section and elaborate on
the latter in Section 5.

Most of the inference rules of our proof calculus are simple refinement rules
that describe how to decompose a proof obligation into simpler components.
Given a specific proof goal, there are only few rules that can be applied at all.
Thus to a large extent, proof search consists of determining applicable rules and
their parameters from the context, applying the rule, and then continuing the
search on all the subgoals. Occasionally we will have to prove equalities, which
may involve the application of extensionality rules as well as standard equality
reasoning.

4.1 Automating Search

To support proof automation, all basic inference rules first had to be converted
into simple tactics that automatically determine the parameters of these rules.

Generating names for new variables in the subgoals, as in the case of the
extensionality rules (19)–(22), is straightforward. In principle it is sufficient to
use a procedure that generate arbitrary new names but for the sake of readability
we had the procedure generate memnonic names that fit the textual description
of the rules.

To determine the terms that have to provided as parameters for certain infer-
ence rules one can take advantage of the fact that these parameters are explicitly
mentioned in the subgoals of the rule, which puts certain type constraints on pos-
sible values. In the rule NatTransApply, for instance, C is the category to which
the object A belongs and also the domain of the functors F and G. Therefore all
term parameters of inference rules can be determined through an extended type
inference algorithm.

To identify applicable rules it is sufficient to analyze the terms and types in
the conclusion of the goal sequent. A conclusion of the form ϕA ∈D(X,Y ), for
instance, suggests the application of the rule NatTransApply or, less likely, of
the rule NatTransFormation (rule (18)) if D turns out to be a functor category.
In most cases only one rule can be meaningfully applied to a proof goal with
a type judgment and this rule can be identified with the help of extended type
inference.
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An important issue is loop control. Since the synthesis rules for functors and
natural transformations are the inverse of the corresponding analysis rules, an
analysis rule could create a subgoal that has already been decomposed by a
synthesis rule before and thus create a looping argument. To prevent such loops
we made each proof branch keep track of proof goals to which a synthesis rule
had been applied. Analysis rules that would generate one of these goals as a
subgoal will thus be blocked from being applied.

4.2 Equality Reasoning

Equality reasoning is a key component in formal category-theoretic proofs. Ten of
the inference rules deal with equalities and can be used to replace a term by one
that is semantically equal. Since equality rules can be used both ways, they are
a very powerful tool in the hands of a skilled user, but a potential cause for loops
in an automated search for a proof. A simple proof search method as described
above is therefore insufficient for automating proofs involving equalities.

We have decided to base our proof search mechanism on rewriting. For the
purpose of finding a proof for a given equality we assign a direction to each of the
equalities and attempt to rewrite terms into some normal form. Furthermore,
the search procedure has to keep track of the types involved in these equalities,
which are sometimes crucial for finding a proper match and, as in the case of
rule (17), for determining the right-hand side of an equality from the left-hand
side. The inference rules described in Section 2, including those dealing with
associativity and identity, lead to the following typed rewrites.

Rewrite Type Rule

<g, k>◦<f, h> �→ <g◦f, k◦h> C×D(<A1, X1>,<A3, X3>) (01)
1<A,X> �→ <1A, 1X> C×D(<A,X>,<A,X>) (02)
1B◦f �→ f C(A,B) (06a)
f◦1A �→ f C(A,B) (06b)
h◦(g◦f) �→ (h◦g)◦f C(A,B2) (05)
F 2(g◦f) �→ F 2g◦F 2f D(F 1A,F 1B1) (09)
F 21A �→ 1F1A D(F 1A,F 1A) (10)
(ψ◦ϕ)A �→ ψA◦ϕA D(F 1A,H1A) (13)
1FA �→ 1F1A D(F 1A,F 1A) (14)
ϕB◦F 2g �→ G2g◦ϕA D(F 1A,G1B) (17)

Each rewrite is executed by applying a substitution, which is validated by
applying the corresponding equality rule mentioned in the table above. The
equations (24)–(26) deal solely with types and are treated separately.

The above rewrite system is incomplete, as it cannot prove the equality of
terms like F 2(1A, 1X) and 1F 1(A,X) that can be shown equal with the inference
rules. To convert the equational theory contained in our calculus into an equiv-
alent set of rewrite rules guaranteeing normalization and confluence, we have
applied the superposition-based Knuth-Bendix completion procedure [EB70]. As
a result, the following typed rewrites were added to the system.
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Rewrite Type Rules

F 2<1A, 1X> �→ 1F1<A,X> E(F 1<A,X>,F 1<A,X>) (02),(10)

F 2<g, k>◦F 2<f, h> �→ F 2<g◦f, k◦h> E(F 1<A,X>,F 1<C,X>) (01),(09)

(ϕY A)◦(F 2gA) �→ (G2gA)◦(ϕXA) E(F 1X1A,G1Y 1A) (17),(13)

(ϕY ◦ψY )◦F 2g �→ (G2g◦ϕX)◦ψX E(F 1X,G1Y ) (13),(17)

H2(ϕY )◦H2(F 2g) �→ H2(G2g)◦H2(ϕX) E(H1F 1X,H1G1Y ) (05),(17)

(h◦ϕY )◦F 2g �→ (h◦G2g)◦ϕX D(F 1X,Z) (09),(17)

((h◦G2g)◦ϕX)◦ψX �→ ((h◦ϕY )◦ψY )◦F 2g E(F 1X,Z) (05),(13),(17)

(h◦H2(ϕY ))◦H2(F 2g) �→ (h◦H2(G2g))◦H2(ϕX) E(H1F 1X,Z) (09),(09),(17)

Once a set of rewrites for a given equality has been found it is converted
into a series of refinement steps by applying the equality rules associated with
each rewrite in the appropriate direction. As a result, the generated proof tree
contains a trace of the chain of equalities used, which can then be inspected by
a human user interested in understanding the details of a proof.

4.3 Performance Issues

One of the disadvantages of refinement style reasoning is that proof trees may
contain identical proof goals in different branches. This is especially true after
the application of synthesis and extensionality rules, which must be used quite
often in complex proofs.

H � F ∈ Fun[C,D]

BY FunFormation A B B1 f g

H, A:C � F1A ∈ D
H, A:C, B:C, f:C(A,B) � F2f ∈ D(F1A,F1B)

H, A:C, B:C, B1:C, f:C(A,B), g:C(B,B1) � F2(g◦f) = F2g◦F2f ∈ D(F1A,F1B1)

H, A:C � F21A = 1F1A ∈ D(F1A,F1A)

The rule FunFormation (rule (11)), for instance, generates a subgoal of the
form F 1A, which will eventually reappear in the proof of the second, since F 1A
occurs within the type of that goal. Furthermore, the first two subgoals will also
reappear in the proofs of the third and fourth subgoals. In a bottom-up proof,
one would prove these goals only once and reuse them whenever they are needed
to complete the proof of another goal while a standard refinement proof would
require us to prove the same goal over and over again.

Obviously we could optimize the corresponding rules for top-down reasoning
and simply drop the redundant subgoals. But this would mean deviating from
the original proof calculus. If one intends to retain faithfulness these rules must
remain unchanged. Instead, we have wrapped the corresponding tactic with a
controlled application of the cut rule: we simply assert a generalization of the
first two subgoals of rule (11) before applying the rule. As a result they appear
in the hypothesis list of the all subgoals and have to be proved only once.

Although this method is a fairly simple trick, it leads to an astonishing re-
duction in the size of automatically generated proofs. A complete proof of the
isomorphism between Fun[C×D,E] and Fun[C,Fun[D,E]] (see Section 5) with-
out cuts consists of almost 30,000 inference steps. After introducing the wrapper
the size of the proof was reduced to only 3,000 steps.
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4.4 First-Order Reasoning about Higher Order Objects

Although elementary category theory deals with higher-order objects such as
functors and natural transformations, Kozen’s axiomatization [Koz04] has been
formulated entirely as first-order calculus. This means that the properties of
functors and natural transformations have to be described in terms of their
first-order components (rules (7) – (11), (15) – (18)).

Keeping the reasoning level first order becomes more difficult when reasoning
about isomorphisms between categories. Two categories C and D are isomorphic,
denoted by C =̂ D, if there are two functors θ : Fun[C,D] and η : Fun[D,C]
that are inverses of each other. A computerized proof of this fact would require
us to provide θ and η, which involves higher-order reasoning.

To avoid this issue, the proof in [Koz04] specifies the object and arrow compo-
nents θ1A and θ2f for A an object of C and f an arrow of C through first-order
equations. If these components are again functors or natural transformations,
one has to specify subcomponents until the first-order level has been reached.
In the proof of the isomorphism between Fun[C×D,E] and Fun[C,Fun[D,E]],
the following four equations are needed to specify θ:

θ1F1A1 X ≡ F1<A, X>

θ1F1A2 k ≡ F2<1A, k>

θ1F2 f X ≡ F2<f, 1X>

θ2 ϕ X X1 ≡ ϕ <X, X1>

Mathematically, these four equations are sufficient for the proof, since any
functor satisfying these equations can be used to complete the proof. In a com-
puterized formal proof, however, we also have to prove the existence of a func-
tor satisfying these equations. Constructing the functor from the equations is
straightforward if it is uniquely specified by them. It is only necessary to as-
semble the respective object and arrow (sub-)components into a single closed
functor object. Since assembling the functor from components has nothing to do
with the main proof, this step is performed automatically in the background as
soon as the components have been completely specified.

5 Automating Reasoning Specific to Category Theory

The mechanisms described in the previous section are sufficient to verify proper-
ties of given functors and natural transformations. A proof of the isomorphism
between Fun[C×D,E] and Fun[C,Fun[D,E]] can be completely automated once
the specifications of the inverse functors θ and η have been provided. One only
has to unfold the definition of functors being inverse to each other and then all
the remaining steps are straightforward for the automated proof search proce-
dure AutoCAT2 and take only a few seconds to complete.
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* ∀C,D,E:Categories. Fun[C×D,E] =̂ Fun[C,Fun[D,E]]

BY ....

1.-3. C,D,E: Cat
4. θ1F1A1 X ≡ F1<A, X> ∧ θ1F1A2 k ≡ F2<1A, k>

∧ θ1F2 f X ≡ F2<f, 1X> ∧ θ2 ϕ X X1 ≡ ϕ <X, X1>

5. η1F1<A, X> ≡ F1A1X ∧ η1F2<f, g> ≡ ((F2f cod(g))◦F1dom(f)2g)
∧ η2ϕ <A, X1> ≡ ϕ A X1

� θ and η are inverse

BY AutoCAT2

But finding the specifications of the functors cannot be accomplished with stan-
dard reasoning techniques, since matching and unification are of little help here.
On the other hand, for a trained mathematician this is a trivial task as there
are only a few “obvious” choices. If a functor exists at all the types of its first-
order components usually contain all the information that is needed to make an
educated guess. In practice, this simple heuristic hardly ever fails, particularly
if the proof is considered trivial from an intellectual point of view.

Since the proof steps that are considered intellectually trivial should be au-
tomated, we have developed heuristics that attempt to determine the most
obvious specifications for functors or natural transformations of a given type.
We will illustrate both by example of the isomorphism between the categories
Fun[C×D,E] and Fun[C,Fun[D,E]] and the naturality of this isomorphism and
then discuss a few details of their formalization as implemented proof strategy.

5.1 Finding Witnesses for Isomorphisms between Categories

To prove the existence of a functor F between two categories C and D our
heuristic first generates typing subgoals for all first-order components of the
functor. For this purpose it applies the refinement rules of our proof calculus
to the goal Γ � F ∈ Fun[C,D], where Γ is the current context of the proof
and F is a new variable, and proceeds with refining typing judgments until they
cannot be decomposed anymore. Equalities will be ignored as they do not provide
information that is immediately useful.

To prove the existence of a functor θ between the categories Fun[C×D,E]
and Fun[C,Fun[D,E]], for instance, the application of refinement rules yields
the (incomplete) proof shown in figure 2. The four open subgoals in this proof,
labelled 1.1.1, 1.1.2, 1.2.1, and 2.1.1, describe the typing conditions for all the
first-order components of θ.

Next, the heuristic tries to determine a term that satisfies the given type
judgment in the corresponding type environment. Because this term is intended
to be a “trivial” solution, it should use be built solely from parameters explic-
itly mentioned in the first-order component of the functor and constructs that
mathematicians would consider obvious choices like functor application, iden-
tities, domains, ranges, pairs etc. Obviously, the heuristic has to rely on type
inference to construct a term that fits these requirements.

To solve subgoal 1.1.1., for instance, the heuristic has to construct an object
of the category E from the components F : Fun[C×D,E], A : C, and X : D.
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top � θ ∈ Fun[ Fun[C×D,E], Fun[C,Fun[D,E]] ] (11)

1. F:Fun[C×D,E] � θ1F ∈ Fun[C,Fun[D,E]] (11)
1.1. F:Fun[C×D,E], A:C � θ1F1A ∈ Fun[D,E] (11)

1.1.1. F:Fun[C×D,E], A:C, X:D

� θ1F1A1X ∈ E

1.1.2. F:Fun[C×D,E], A:C, X,Y:D, k:D(X,Y)
� θ1F1A2k ∈ E(θ1F1A1X, θ1F1A1Y)

1.2. F:Fun[C×D,E], A,B:C, f:C(A,B)

� θ1F2f ∈ Fun[D,E](θ1F1A,θ1F1B) (18)

1.2.1. F:Fun[C×D,E], A,B:C, f:C(A,B), X:D
� θ1F2f X ∈ E(θ1F1A1X, θ1F1B1X)

2. F,G:Fun[C×D,E], ϕ:Fun[C×D,E](F,G)

� θ2 ϕ ∈ Fun[C,Fun[D,E]](θ1F, θ1G) (18)

2.1. F,G:Fun[C×D,E], ϕ:Fun[C×D,E](F,G), X:C
� θ2 ϕ X ∈ Fun[D,E](θ1F1X, θ1G1X) (18)

2.1.1. F,G:Fun[C×D,E], ϕ:Fun[C×D,E](F,G), X:C, X1:D

� θ2 ϕ X X1 ∈ E(θ1F1X1X1, θ1G1X1X1)

Fig. 2. Decomposition of the typing θ∈ Fun[ Fun[C×D,E], Fun[C,Fun[D,E]] ]. The
numbers on the right indicate the inference rules that were used.

Among the declared parameters, there is no object of the category E, so the
heuristic looks for parameters whose types contain the goal type. It finds the
functor F with range E, which reduces the task of constructing an object of E to
constructing an object z : C×D and applying F 1 to it. Since objects in C×D are
pairs (A,X) where A : C andX : D, the task is now finding an object in C and one
in D. There are obvious choices for these two objects in the type environment,
which means that all the components of the term have been identified. As a
result, the heuristic returns the specification θ1F 1A1X = F 1(A,X).

Determining the arguments of a functor or natural transformation is not al-
ways as straightforward. In the above case, the parameters in the type envi-
ronment could be taken directly as components of the term because their types
fit the requirements on these components. In other cases, the type environment
may provide only an object where an arrow is needed or vice versa. In these sit-
uations the most obvious choice is turning an object into an identity arrow and
an arrow into its domain or codomain, depending on the typing requirements.

To solve subgoal 1.1.2. we have to build an arrow in E(θ1F 1A1X, θ1F 1A1Y )
from the components F : Fun[C×D,E], A : C, X,Y : D, and k : D(X,Y ). Since
subgoal 1.1.1. has already been solved, the equality θ1F 1A1X = F 1(A,X) can
be used to simplify the goal type to E(F 1(A,X), F 1(A, Y )). To build an arrow of
that type from the given parameters, the heuristic has to apply F 2 to an arrow
h ∈C×D((A,X), (A, Y )), i.e. to a pair of arrows (f, g) where f : C(A,A) and
g : D(X,Y ). For the latter, we can pick k but there is no immediate match for
f : C(A,A). Since θ1F 1A2 k, the component of θ that shall be specified in this
step, explicitly mentions A, the only choice for an arrow in C(A,A) is the identity
1A. As a result, the heuristic returns the specification θ1F 1A2 k = F 2(1A, k).
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Subgoal 1.2.1. can be solved in the same manner, which leads to the speci-
fication θ1F 2 f X = F 2(f, 1X). The solution of subgoal 2.1.1. proceeds as the
one for subgoal 1.1.1. and yields θ2ϕXX1 = ϕ(X,X1).

In some cases, parameters and identities alone are not sufficient to satisfy
a typing conditions, but a simple composition of natural transformation and
functor in the style of the equality rule (17) would do so. In this case, the heuristic
has to use the functor and its arguments twice in different ways. Although this
solution is less obvious it is still considered a standard pattern of reasoning.

We have developed a calculus for witness construction that formalizes the
heuristic described above. Rules decompose a goal sequent similar to our proof
rules in section 3.2 and come with a mechanism that composes sets of specifica-
tion equations for subgoal sequents into specification equations for the main goal.

There are a few rules that construct specification equations from scratch.
If an element z of type Δ has been declared then it can be used as witness
to satisfy the type judgment x ∈Δ, i.e. we construct the specification equation
x = z. Furthermore, if the declaration contains a type Δ[V1, ..Vn] with free type
variables Vi and the type judgment contains an instantiated version Δ[T1, ..Tn],
then the equations V1 = T1, .., Vn = Tn will be constructed as well. In our
calculus we write this rule as follows

Γ , z:Δ[V1, ..Vn] � x ∈Δ[T1, ..Tn] specs {x = z, V1 = T1, .., Vn = Tn},

where the notation specs EQ indicates that the set of specification equations
EQ will be constructed if the rule can be applied successfully.

There is also a rule that constructs identities to satisfy a type judgment
f ∈C(A,A) if the type environment contains a declaration of an object A of
C and a rule that constructs domains or codomains to satisfy a type judgment
x ∈C if the type environment contains a declaration of an arrow f ∈C(A,B).

Other rules decompose category constructors like functors or products that
occur in the type environment or in the type judgment. For instance, in order to
use a functor F :Fun[C,D] when constructing a term x ∈Δ one has to construct
an object z of C and show how to use an object y of D in the construction of x.
If both goals succeed and yield specification equations EQ1 and EQ2 then the
specification equation for the main goal is the union of EQ1 and EQ2 where y
is being replaced by F 1z.

Γ , F :Fun[C,D] � x ∈Δ specs EQ1 ∪ EQ2[F
1z/y]

Γ � z ∈C specs EQ1

Γ , y : D � x ∈Δ specs EQ2

For each constructor there are two rules for decomposing objects and arrows
in a type judgment and two rules for decomposing objects and arrows in the
type environment. There are also equality reduction rules that simplify a type
judgment or a part of the environment by applying a known equality. Figure 3
shows the fragment of our calculus that is necessary for dealing with sequents
containing functors and products.
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1. Basic rules:

– Γ , z:Δ[V1, ..Vn] � x ∈Δ[T1, ..Tn] specs {x = z, V1 = T1, .., Vn := Tn}
– Γ , A:C � f ∈C(A,A) specs {f = 1A}
– Γ , f :C(A,B) � x ∈C specs {x = dom(f)}
Γ , f :C(A,B) � x ∈C specs {x := cod(f)}

– Γ , f :C(A,B) � h ∈C(A,X) specs {h = g◦f}∪EQ
Γ , f :C(A,B) � g ∈C(B,X) specs EQ

Γ , g:C(B,X) � h ∈C(A,X) specs {h = g◦f}∪EQ
Γ , g:C(B,X) � f ∈C(A,B) specs EQ

– Γ , exp = t � x ∈Δ specs EQ
Γ , exp = t � x ∈Δ[t/exp] specs EQ

Γ , exp = t, y:Γ ’ � x ∈Δ specs EQ
Γ , exp = t, y:Γ ’[t/exp] � x ∈Δ specs EQ

2. Functors:

– Γ � F ∈Fun[C,D] specs EQ1 ∪ EQ2

Γ , c : C � F 1c:D specs EQ1

Γ , EQ1, f : C(A,B) � F 2f ∈D(F 1A,F 1B) specs EQ2

– Γ � ϕ ∈Fun[C,D](F,G) specs EQ
Γ , A : C � ϕA ∈D(F 1A,G1A) specs EQ

– Γ , F :Fun[C,D] � x ∈Δ specs EQ1 ∪ EQ2[F
1z/y]

Γ � z ∈C specs EQ1

Γ , y : D � x ∈Δ specs EQ2

Γ , F :Fun[C,D] � x ∈Δ specs EQ1∪EQ2[F
2f/h]

Γ � f ∈C(T1, T2) specs EQ1

Γ , A,B : C, h : D(F 1A,F 1B) � x ∈Δ specs EQ2∪{A = T1, B = T2}
– Γ , ϕ:Fun[C,D](F, G) � x ∈Δ specs EQ1∪EQ2[ϕA/h]

Γ � A ∈C specs EQ1

Γ , h:D(F 1A,G1A) � x ∈Δ specs EQ2

3. Products:

– Γ � z ∈C×D specs EQ1∪EQ2∪{z = 〈c, d〉}
Γ � c ∈C specs EQ1

Γ � d∈D specs EQ2

– Γ � f ∈C×D(〈A,X〉,〈B, Y 〉) specs EQ1∪EQ2∪{f = 〈g, h〉}
Γ � g ∈C(A,B) specs EQ1

Γ � h ∈D(X,Y ) specs EQ2

– Γ , z:C×D � x ∈Δ specs EQ∪{z = 〈c, d〉}
Γ , c:C, d:D � x ∈Δ specs EQ

– Γ , f :C×D(〈A,X〉,〈B, Y 〉) � x ∈Δ specs EQ∪{f = 〈g, h〉
Γ , g:C(A,B), h:D(X, Y ) � x ∈Δ specs EQ

Fig. 3. Calculus for witness construction
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To find a set of first-order specification equations that satisfies a given type
judgment, our witness construction strategy iteratively applies rules of the cal-
culus of witness construction until specification equations can be constructed
and then composes the specification equations at the leave nodes of the decom-
position tree into specification equations for the main goal. If more than one rule
can be applied, it applies them in a predefined order of “simplicity”. If a rule
generates more than one subgoal sequent, then the solution for the first subgoal
may be used while solving the second.

We have integrated this strategy into a proof tactic ProveIso for proving
isomorphisms between categories whose proofs are considered trivial by mathe-
maticians. ProveIso first unfolds the definition of isomorphisms and decomposes
the proof goal. Afterwards the witness construction strategy will guess values for
the functors θ and η between the two categories and finally the automated proof
search procedure AutoCAT2 will be called to validate that θ and η are indeed
functors of the appropriate types and that they are inverse to each other.

We have applied this tactic to a small collection of isomorphism problems
involving functor categories, product categories, and opposite categories. In each
case, the isomorphism could be proven by ProveIso without a need for further
interaction with the user. The screenshot above shows the formal proof that the
functor categories Fun[C×D,E] and Fun[C,Fun[D,E]] are isomorphic. On the
top-level of this proof a user will only see that the proof was successful (indicated
by a star in front of the tactic call BY ProveIso). Most users will be satisfied with
that amount of information. For users interested in details of the proof the Nuprl
system can display the proof tree in several layers of abstraction. The first layer,
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shown in the snapshot as well, reveals the key idea that was necessary to solve
the problem, but hides the tedious details involved in validating the solution.

Users interested in even more details may subsequently unfold the complete
proof tree. However, one should be aware that this tree is huge. It takes 1046
and, respectively, 875 basic inferences to prove that θ and η are indeed functors
of the appropriate types and another 1141 inferences to prove that they are
inverse to each other. The overall structure of this proof is similar to the hand-
constructed one described in [Koz04], which required many hours of careful work
to complete. In contrast to that the creation of the proof with ProveIso was
fully automated and took only a few seconds to complete.

5.2 Proving Categories to Be Naturally Isomorphic

Proving the naturality of an isomorphism between two categories C1 and C2

is more demanding than just proving them to be isomorphic since the inverse
functors θ and η between C1 and C2 now have to be natural transformation of
type Fun[CAT,Cat](U, V ) and Fun[CAT,Cat](V, U) , where CAT is a yet to be
determined product of the large categories Cat and Catop that fit the component
categories of C and D and their polarities3 and U and V are (unknown) elements
of Fun[CAT,Cat].

Constructing CAT is straightforward. For each component category of C1 we
determine the polarity of its occurrence in C1, and choose the category Cat if it
occurs positively in C1 (and C2, respectively) and Catop if it occurs negatively.
If the respective polarities are different in C1 and C2, then there is no simple
natural isomorphism between the two categories and construction fails.4 For the
isomorphism between Fun[C×D,E] and Fun[C,Fun[D,E]], for instance, CAT
has to be Catop × Catop × Cat, since C and D occur with negative polarities in
Fun[C×D,E] and Fun[C,Fun[D,E]] while E occurs positively.

Finding the functors U and V seems more difficult but is still considered ob-
vious because all the relevant information for specifying them is expected to be
contained in the terms that describe the construction of C1 and C2 from their
components. Applying the object component of U and V to a tuple of compo-
nent categories, for instance, has to result in C1 and C2, respectively. Therefore
specifications for U1 and V 1 and also a typing of U2 and V 2 can be easily con-
structed and a procedure similar to our witness construction strategy should be
able to find a complete specification of all the first-order components of U and
V . For the natural isomorphism between Fun[C×D,E] and Fun[C,Fun[D,E]]
this approach gives us the two specifications

U1(C,D,E)=Fun[C×D,E] and V 1(C,D,E)=Fun[C,Fun[D,E]]

as well as the typings

3 A negative polarity indicates that a component category occurs on the left side of
a functor. Otherwise the polarity is positive.

4 We believe that in such situations the two categories are not isomorphic at all.
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U2(f, g, h) ∈Fun[Fun[C×D,E],Fun[C′×D′,E′]] and

V 2(f, g, h) ∈Fun[Fun[C,Fun[D,E]],Fun[C,Fun[D,E]]].

To solve the latter requirement for U , we have to construct a functor between the
categories Fun[C×D,E] and Fun[C′×D′,E′] from functors f, g, and g between
C and C′, D and D′, and E and E′. This construction depends only on the
construction of the category Fun[C×D,E] from its components but not on the
fact that Fun[C×D,E] and Fun[C,Fun[D,E]] have to be isomorphic. Since U
shall be the domain of a natural transformation on large categories, one should
expect that there is a “natural” method to construct its arrow component in a
way that fits the construction of its object component.

Therefore, our approach to finding specifications that satisfy the requirements
on the functors U and V is based on the hypothesis that there should be a
natural method to extend a function that constructs a category from component
categories into a functor on the category of categories whose object component
is the given function. To formalize such a method we have developed a calculus
of constructor functors. In this calculus we consider constructs like product,
coproduct, functor, opposite, empty, or unit categories as object component of
a functor on large categories and describe an arrow component that is naturally
associated with it. For example, the product constructor is described as functor
F
Prod

: Fun[Cat×Cat,Cat], where F
Prod

1(C,D) = C×D and F
Prod

2(f, g) = (f, g). The
functor constructor is a functor F

Fun
: Fun[Cat×Cat,Cat], where F

Fun

1(C,D) =
Fun[C,D] and F

Fun

2(f, g)1(F ) = g◦F◦f F
Fun

2(f, g)2(ϕ) = g2◦ϕ◦f1.
Using the specifications of elementary constructor functors a constructor for a

given category is constructed by decomposing the category into basic constructor
functions and composing the associated functors accordingly.

We have integrated this strategy into a proof tactic ProveNatIso for proving
isomorphisms between categories to be natural. Like ProveIso, ProveNatIso
first unfolds and decomposes the definition of natural isomorphisms. Then the
domain and codomain U and V of the natural transformations will be con-
structed using the calculus of constructor functors and afterwards the natural
transformations θ and η using the calculus of witness construction. Finally the
tactic AutoCAT2 will validate the required properties on θ and η.

We have applied this tactic to the same collection of isomorphism problems
as before and were able to prove all isomorphisms to be natural. The screen-
shot below shows the formal proof that the functor categories Fun[C×D,E] and
Fun[C,Fun[D,E]] are naturally isomorphic as well as the first layer of the proof
tree that has been constructed by ProveNatIso.

Again, the overall structure of this proof is similar to the hand-constructed
one described in [Koz04], which indicates that the strategy does indeed automate
the most obvious line of reasoning. Furthermore, the fact that the proofs of all
“trivial” isomorphisms could be proven without a need for further interaction
with the user shows that these proofs are in fact trivial in the sense that only
natural constructions, standard forms of reasoning, and meticulous attention to
detail are required to solve the problem.
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6 Conclusion and Future Work

We have presented an implementation of Kozen’s axiomatization of elementary
category theory [Koz04] using the Nuprl logical framework [AC+00, AB+05] and
a collection of proof tactics that automate standard patterns of reasoning in logic
and category theory. We have demonstrated the effectiveness of this approach by
automatically deriving proofs of natural isomorphisms between categories, one
example of which is presented in detail above. The system works very well on
the examples we have tried.

There is a number of alternative approaches to a formalization and automation
of category theory. The Mizar approach [Miz, Try92, Ba01a, Ba01b, Ba01c] aims
at a formal reconstruction of mathematical knowledge in a computer-oriented
environment.Mizar’s library seems to contain the most comprehensive collection
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of theorems but it does not provide a mechanism for automating domain-specific
reasoning tasks.

The system of Cáccamo and Winskel [CW01] presents a second order calculus
for a fragment of category theory, which permits a more elegant representation
of higher-order constructs like functors or natural transformations. Since higher-
order reasoning is more difficult to automate, however, facts like Yoneda’s lemma
need to be stated as a rules instead of being derived as theorems.

Burstall and Rydeheard [RB88] have implemented a substantial fragment of
Computational Category Theory in Standard ML. The focus of their work, how-
ever, was not on the development of proofs but on creating a basis for the use
of category theory in program design.

Other approaches aim at formalizations of category theory in interactive proof
systems. Glimming [Gli01] describes a development of basic category theory
and a couple of concrete categories (Unit, Set, Gal, Cat, Poset and Cpo) in
Isabelle/HOL. O’Keefe [O’K04] presents a formalization of category theory in
Isabelle that focuses on the readability of proofs, aiming at a representation close
to one in a mathematical textbook. In both approaches there are no attempts
to improve automation beyond Isabelle’s generic prover.

Dyckhoff [Dyc08] presents an formalization of category theory in Martin-Löf
type theory that has some similarity to Kozen’s first-order axiomatization but
uses higher-order constructs in some of the rules. Dyckhoff hints at techniques
to automate reasoning in his calculus but there is no actual implementation.

In the Coq library there are two contributions concerning category theory. The
development of Säıbi and Huet [HS95, Sai95] contains definitions and construc-
tions up to cartesian closed categories, which are then applied to the category
of sets. The formalization is directly based on the Coq’s type theory. In contrast
to that Simpson’s formalization [Sim04] is set up in a ZFC-like environment and
includes some tactics to improve the automation. Both approaches, however, are
not described in any official publication.

A key difference between these works and our approach is that we have given
a full implementation of an independent calculus for reasoning about category.
In addition, we have provided a family of tactics that allow many proofs to
be automated. None of the other implementations we have encountered make
any attempt to isolate an independent formal axiomatization of the elementary
theory. Instead, they embed category theory into some other logic, and reasoning
relies mostly on the underlying logic.

There are a number of technical insights that we have observed in the course
of this work, which show the advantage of using the Nuprl system as framework
for implementing category theory.

– The use of abstractions and display forms is crucial for comprehensibility. It
is often very difficult to keep track of typing judgments currently in force.
Judicious choice of the display form can make a great difference in readability.

– The combination of rule objects and rule compiler are essential for a faithful
implementation of proof calculi. Rule objects contain visual representations
of proof rules that look almost identical to the version on paper and can



146 C. Kreitz

easily be checked for correctness while the actual implementation of the rule
is being generated by the rule compiler.

– Formal proofs, even of elementary facts, have thousands of basic inferences,
which are often quite tedious and do not lend much insight. This indicates to
us that elementary category theory is a very good candidate for automation.

– The ability to inspect proof objects at increasing levels of abstraction makes
it possible to generate proofs that humans can understand and check to the
very last detail even if the formal proof is extremely large.

– Nuprl’s tactic mechanism makes it possible to quickly implement and test
new reasoning strategies and to embed new reasoning patterns when they
are discovered in the course of a not yet fully automated proof.

– Reasoning in elementary category theory can be automated very well once
there is an understanding of the typical kinds of reasoning that mathemati-
cians consider obvious. As most reasoning steps are based on straightforward
decomposition and directed rewriting for equations, proof strategies spend
most of their time building the proof. Apart from guessing witnesses, which
involves investigating a small set of alternative choices, there is virtually no
backtracking involved and the bulk of the development is completely deter-
ministic, being driven by typing considerations.

– Proofs that are considered trivial from an intellectual point of view are in
fact trivial in the sense that a computer program can find them without
having to rely on sophisticated heuristics.

For the future, we plan to gain more experience by attempting to automate more
of the basic theory. We need more experience with the different types of argu-
ments that arise in category theory so that we will be better able to automate
proofs that require witnesses for existential quantifiers. We believe that our cal-
culus for witness construction will be useful beyond proofs of isomorphisms, as
the most obvious solution for a problem in category theory is often the “simplest”
element of the given type, which is exactly what the strategy generates. In the
same way our calculus of constructor functors should be useful beyond proofs of
natural isomorphisms, as it provides functors and natural transformations that
come naturally with a given category.

To improve both the efficiency of a proof search and the readability of the
constructed proofs we also plan to introduce higher levels of reasoning that
compose theorems about general category-theoretical arguments instead of only
applying basic inference rules. This form of compositional reasoning has proven
successful in the formal optimization of communication systems [LK+99], where
we could reduce a huge amount of basic inference steps to a proof that could be
constructed in a few seconds.

Finally, we would like to mention an intriguing theoretical open problem.
The proofs of natural isomorphisms between two categories C1 and C2 that we
have described break down into two parts. The first part argues that C1 and
C2 are isomorphic, and the second part argues that the isomorphism is natural.
As Mac Lane describes it [McL71, p. 2], naturality, applied to a parameterized
construction, says that the construction is carried out “in the same way” for all
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instantiations of the parameters. Of course, there is a formal definition of the
concept of naturality in category theory itself, and it involves re-parameterizing
the result in terms of functors in place of objects, natural transformations in
place of arrows. But any constructions in the formal proof π of the first part of
the theorem, just the isomorphism of the two parameterized functor categories,
would work “in the same way” for all instantiations of the parameters, by virtue
of the fact that the formal proof π is similarly parameterized. In fact, our proof
strategy based on the calculus of constructor functors has attempted exactly
that and succeeded in proving an isomorphism to be natural in each case where
we could prove two categories to be isomorphic.

This leads us to ask: Under what conditions can one extract a proof of natu-
rality automatically from π? That is, under what conditions can a proof in our
formal system be automatically retooled to additionally establish the natural-
ity of the constructions involved? Extracting naturality in this way would be
somewhat analogous to the extraction of programs from proofs according to the
Curry–Howard isomorphism. We believe that extracting naturality is possible at
least for categories that can be described in terms of constructor functors, as this
leads immediately to the domains and codomains of the natural transformations
θ and η between the two categories while θ and η are constructed in the same
way as in the proof the isomorphism between C1 and C2. But a formal proof of
this conjecture still needs to be given.

Acknowledgements. We thank Dexter Kozen for introducing us to the topic
of implementing and automating elementary category theory and for explaining
the informal reasoning patterns behind the proof in [Koz04].
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