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ABSTRACT. A unified framework for formal reasoning about programs and deductive
mechanisms involved in programming is developed. Within it principal approaches to program
synthesis are formally investigated. We will show that a high degree of abstraction opens a way
to combine their strengths, simplifies formal proofs, and leads to clearer insights into the meta-
mathematics of program construction. All definitions and theorems are presented completely for-
mal which allows to straightforwardly implement them with a proof system for the underlying
calculus and derive verified implementations of programming methods from them.

1 Introduction

Since the upcoming of the so-called software crisis efforts have been put into
the production of better software. Methodologists [Gri81, Dij76] have developed
a science of programming to solve the problem that products of the software
production business seldomly meet the original intentions of the clients and are
very difficult to maintain and modify. To a large extent programming has been
identified as a reasoning process on the basis of knowledge of various kinds, an
activity in which people typically do a lot of mistakes. It is therefore strongly
desirable to provide machine support for program construction which in prin-
ciple, not necessarily in practice, means to aim at the automation of the whole
programming process. This requires a full formalization of all its parts in order
to get an understanding of the mechanisms involved.
Many formal approaches for the automated synthesis of programs have been de-
veloped and implemented during the last years (see e.g. [BD77, MW79, MW80,
Bib80, Hog81, BH84, Der85, BC85, Fra85, CH88, NFK89, PM89, SL89, SL90,
Gal90]). The KIDS system [SL90], most mature of the realized ones, is even be-



lieved close to the point where it can be used for routine programming. Current
implementations of program synthesis systems, however, more or less underly
the same problems as conventional software. Despite the fact that they aim at a
formalization and automatization of the programming process in order to pro-
duce better software, they themselves are difficult to maintain and modify as
well. After a while many program synthesizers tend to get quite bulky and im-
proved versions again have to be build from scratch (c.f. experiences reported in
[NFK89]). Often there are even doubts about the faithfulness of the implemen-
tation and it is not clear if or why they are correct.
We believe that a solution to these problems should be approached by developing
program synthesizers following the same methodologies as used for the construc-
tion of conventional programs because there are essentially no differences except
for a higher level of reasoning. Thus there is a need for tools capable of for-
mal reasoning about both programs and deductive methods in programming. A
theoretical foundation for them does not exist so far.
In our opinion this is due to a lack of abstraction when formalizing deductive
mechanisms for program development. Lots of general deductive calculi (see
e.g. [ML82, CH88, Gal90]) are known to be powerful enough that all kinds of
programs can be derived within them. But for treating the problem these must be
considered to be at the same level as assembler languages for writing programs.
Too many details in the formalization cover up the true nature of the deductive
mechanisms and make proofs about their properties unneccessarily complicated.
The current lack of new ideas how to guide and control deductive mechanisms
in programming is a natural consequence of that.
What is needed, therefore, is a unified framework in which programs and de-
ductive methods in programming can be investigated both completely formal
and on a sufficently high level. Complete formality shall allow both to mechani-
cally verify object knowledge (e.g. domain knowledge, individual programs and
specifications) and meta-knowledge of programming (e.g. deduction methods,
synthesis techniques, algorithm knowledge, general properties of programs and
specifications) and to derive verified implementations of deductive methods from
the formal proofs. A high level of abstraction when formalizing programming con-
cepts shall lead to clearer insights about their properties and to simpler proofs
due to the absence of superfluous context. Such a formal theory of program con-
struction shall be developed in this article.
A first step to make our framework useful for program construction is an in-
vestigation of principal approaches to program synthesis and of already known
individual strategies, which we will begin here as well. This will already provide
a collection of verified implementations of synthesis strategies and new insights
into their properties. It also enables us to unify and extend them. On the long
run the framework shall be used to derive a verified implementation of a program
synthesis system for a certain class of problems by methods similar to those used
within program synthesis itself. Doing so the resulting program synthesizer not
only is correct, easy to maintain, and easy to modify, but there is also a clear
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understanding of its behaviour and capabilities. This requires, however, besides
deeper insights into the mathematics of program construction a lot of research
in meta reasoning and self-reflection which has not been done yet.
Directing the formal theory towards the development of verified program synthe-
sizers, i.e. towards representing deductive mechanisms for programming, proving
them correct and creating a verified implementation, distinguishes our approach
from those focusing on “low level” calculi [ML82, BC85, CH88, PM89, Coq89,
Gal90], on metareasoning within a such a calculus [CK86, Kno87, How88b] or
on implementing a deductive mechanism by representing it in some calculus
[Pau87, HRS90, Web90].
To avoid creating a new logic and get distracted from our original goal we will
select one of the already established general deductive calculi to underly our the-
ory. By expressing high-level concepts in terms of low-level constructs complex
special purpose reasoning then can be reduced to a series of simple reasoning
steps in the low-level formalism. They can therefore be implemented with a rea-
soning tool for the underlying calculus which makes the step from a formulation
of the theory to its actual implementation very small. In addition to that the
underlying calculus will already provide a method for deriving verified implemen-
tations of deductive mechanisms from formal proofs which allows to concentrate
our efforts in formal investigations. The underlying calculus must, of course, be
a higher order theory and has to include a model for computation.
We selected Intuitionistic Type Theory as general formalism to underly our for-
mal framework. Reasons for that are discussed in the following section where
we also introduce syntax and features of the NuPRL proof development sys-
tem for Type Theory [BC85, CAB+86]. Section 3 explains the methodology we
will follow. In Section 4 then the frame for reasoning about the object level
of programming will be presented and illustrated by an exemplified formaliza-
tion of strategies of the LOPS system [Bib80, BH84]. We will show that even
a straightforward formalization already gives some new insights about the de-
ductive method. Since, however, in such a direct approach general principles are
covered up by individual notations we go for a higher degree of abstraction in
Section 5. There we will discuss formal definitions of concepts involved in the
programing process and investigate properties of the principal approaches to
program synthesis. It will be shown that the differences between the two main
ideologies (Theorem Proving approaches and transformation based approaches)
exist only superficially. They can be effectively translated into one another, a
simple result which due to a lack of abstraction has not been presented yet. All
theorems given here can be mechanically proven with NuPRL.
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2 Type Theory and Programming

2.1 Why Type Theory?

When designing systems like program synthesizers and automated theorem provers
one has to incorporate a wide variety of deductive techniques and mathematical
knowledge. The system should therefore be founded on some universal logical
language in which any mathematical statement can be expressed. The main lan-
guages that have been found adequate for this purpose are formulations of Type
Theory and Axiomatic Set Theory.
Since in Axiomatic Set Theory all statements are based on forms like x ∈ y
even simple statements like the definition of functions become quite complex.
Although on the surface this difficulty may be avoided by introducing abbre-
viations, in a computer system this would mean extending the basic language.
One might as well select a more flexible language in the first place. Another
difficulty arises when dealing with proofs for the existence of objects. Set theory
offers a variety of axioms on the existence of sets and considerable efforts may be
required to establish the existence of objects with rather simple intuitive descrip-
tions. Finally, the notion of “algorithm” cannot be properly explained within set
theory which makes it appear inappropriate for reasoning about programs.
None of these difficulties arise with a suitable formulation of Type Theory
which is both a formulation of a constructive higher-order logic and a model for
datatypes and computation. Mathematical statements can be translated directly
into the formal language since nearly all objects of mathematics have immediate
counterparts in it. Of course, one has to assign a type to each mathematical
object but this just formally reflects the fact that mathematicians naturally
make distinctions between different types of objects. Thus type symbols even
provide important syntactic clues which are not available in untyped theories.
Furthermore, the whole conceptual apparatus of programming mirrors that of
intuitionistic mathematics (c.f. [ML82] p.155) and can be immediately embed-
ded as well. Therefore Intuitionistic Type Theory not only is expressive enough
for a formalization of all the activities involved in program construction but it
seems to us that the view of the world one gets from using it is the one most
appropriate to underly a formal theory of program development.
Type Theory still is a comparably young formalism and there are various “di-
alects” of it [Chu40, Bru80, ML82, Smi84, And86, CAB+86, CH88, PM89,
Coq89, Gal90] each emphasizing a different aspect (like minimality, maximal
expressivity, or optimal extracted algorithms) and using its own syntax. As for-
mulation to underly our theory we selected the one of NuPRL [BC85, CAB+86],
a descendent of Martin-Löf’s Type Theory [ML82], because an interactive envi-
ronment for developing completely formal theories in NuPRL is already available.
It shall later serve us as a tool for implementing our theory.
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type canonical members logical equivalents
type constructors
A → B λx.b if b ∈ B A⇒B
x : A → B λx.b if b ∈ B[x] ∀x:A.B+

A#B 〈〈a, b〉〉 if a ∈ A, b ∈ B A ∧B
x : A#B 〈〈a, b〉〉 if a ∈ A, b ∈ B[a/x]∗ ∃x:A.B
A|B inl(a), inr(b) if a ∈ A, b ∈ B A ∨B
A list nil, a.l if a ∈ A, l ∈ A list
{x : A|B} a if a ∈ A, B[a/x]
x, y : A//B a if a ∈ A (Equality: a = a′ iff B[a, a′/x, y])
rec(z, x.T ; A) a if a ∈ T [λx.rec(z, x.T ; x), A/z, x]
A ; B (partial functions from A to B )
propositions as types atomic predicates
a = a′ in A axiom if a = a′, (no members otherwise)
i < j axiom if i, j ∈ int, i < j, (no members otherwise)
explicit types
int i if i is an integer constant
atom ”text” if text is a character sequence
void no members FALSE
Universes
U1 atomic types, all types that can be constructed via type constructors.
U2 U1, members of U1, all that can be constructed via type constructors.
U3 U2, members of U2, all that can be constructed via type constructors.
...

... ∗B[a/x]: In B substitute a for x, +∀x:A.B: B holds for all x ∈ A.

Figure 1: NuPRL types and constructors

2.2 NuPRL’s proof calculus for Type Theory

Types and members of types are the basic objects of reasoning in Type The-
ory. NuPRL’s Type Theory consists of a large set of type constructors and a few
atomic types which were explicitly defined for user convenience. Associated with
each atomic type and each type constructor are forms for constructing canonical
members (like λ-abstraction λx.b for functions and pairing 〈〈a, b〉〉 for products),
forms for making use of members of the type (like function application f(a) and
projection for pairs), and a notion of equality on the type. A cumulative hier-
archy of universes Ui, introduced to deal with wellformedness problems, enables
higher order reasoning in a very simple and natural way. Logical constructs are
not explicitely part of the type system because each of them has a type construct
with the same deductive rules as an immediate counterpart. The deductive rules
of logical connective of conjunction A&B, for instance, correspond to those of
the type constructor for products A#B, and intuitionistic disjunction A ∨B
corresponds to the disjoint union (or sum) of two types denoted by A|B. The
propositions-as-types correspondence thus gives a constructive predicate logic
with sorts for free. Syntax and some details of NuPRL’s Type Theory are listed
in Figure 1. For a full presentation we refer the reader to [CAB+86] (chapter 8).
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NuPRL statements are expressed in the form of sequents. These are objects of
the form

x1 : T1, . . . , xn : Tn ` C [ext m]

which should be read as “Under the assumption that xi are variables of type Ti

a member m ∈ C of the type C can be constructed”. In the context of proofs
sequents are also referred to as goals. The terms xi : Ti, declaring a variable xi

of type Ti are called hypotheses or assumptions, C the conclusion, and m the
extract term of the goal. The notion [ext m] reflects the fact that m usually is
not known beforehand but constructed during a proof. It stays hidden up to com-
pletion of the proof. Thus every theorem in Type Theory has a computational
content since sequents implicitely describe an algorithm constructing a member
of the conclusion (a witness for its truth) from the assumptions. Consequently,
algorithms can be specified in form of mathematical propositions implicitely as-
serting their existence. The computational content of such a proposition is a
program guaranteed to meet the specification and can be extracted from its
proof. This so-called proofs-as-programs paradigm [BC85] is of particular im-
portance for embedding our framework into NuPRL.
Unlike most other type theoretical calculi NuPRL’s proof calculus supports a top-
down development of this algorithm. Proof rules allow to refine a goal, obtaining
subgoals such that an algorithm for the main goal can be constructed from partial
solutions for the subgoals. Refinement rules are explicitely given by rule schemes
which in their formal description have been designed to reflect this behaviour.

H ` C [ext m] by rule-name
1. H1 ` C1 [ext m1]

...
n. Hn ` Cn [ext mn]

(where H stands for a list of hypotheses) corresponds to the following inference
rule in the usual bottom-up style:

rule-name: H1 ` m1 ∈ C1, . . . , Hn ` mn ∈ Cn

H ` m ∈ C

Such a rule should be read as “H ` T is provable if the subgoals Hi ` Ci can
be proven”. If proofs of the subgoals yield witnesses mi for Ci being inhabited
then a witness m ∈ C for the main goal is constructed from the mi by the rule.
NuPRL proofs are tree structured objects whose nodes consist of a goal and
a refinement rule. The children of a node are the subgoals which result from
applying the rule to the goal. A refinement rule must either be one of NuPRL’s
primitive inference rules or a tactic, i.e. a meta-language program controlling
the application of other refinement rules. Because of wellformedness reasons the
initial goal of a proof must have an empty hypotheses list.
It is helpful to know that the proof development system implemented for NuPRL
already provides a few features which support mechanical reasoning on nearly
the same level of abstraction as mathematicians usually do. Besides a highly
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visual proof-editor for interactive development of proofs and extraction of their
computational contents a definition mechanism allows to abstract from low-level
type theoretical expressions and enhance readability of mechanical proofs. In
addition to that a high-level programming language ML, originally developed
for Edinburgh’s LCF System [GMW79], serves as the meta-language of NuPRL.
It allows a user to write meta-programs guiding the application of refinement
rules. Such tactics act as derived inference rules whose correctness is guaranteed
by the fact that they have to make use of primitive inference rules to actually
modify a proof. Experiments with NuPRL reported in [CAB+86, How86, Kre86,
Cle87, How88a, Bas89] show that together with the expressive power of Type
Theory these components strongly support a flexible high level “implementation”
of mathematical theories.

3 Methodology and notation

As said before the formal theory of program construction shall provide a unified
framework for reasoning about programming at different levels of abstraction.
For the sake of clarity we will formally separate these levels by distinguishing
between reasoning about the object level and the meta-level of programming1

and also between reasoning about individuals and classes of individuals in general
which should be considered the framework for reasoning about individuals.
On the object level we have to deal with particular domain theories (like theories
about numbers, lists, sets, or graphs), theories on individual programs and spec-
ifications, and the effects of applying a deductive mechanism to a concrete situ-
ation. Reasoning about object classes includes general properties of datatypes,
logical formulae, and programs which then can be instantiated to individuals.
Object classes may be considered meta-objects as well but are singled out due to
their second nature as classes of first-order objects. Formalizing and investigat-
ing known deductive mechanisms and developing new ones are typical examples
for reasoning about meta-objects which makes this part of the formal theory of
program construction the most appealing one. Meta-classes deal with general
properties of concepts like proofs, strategies, formula transformations, and syn-
theses. Using them, global properties and relations between meta-objects can
be established on a very high level of abstraction which goes even beyond the
meta-level of programming. In the development of the formal theory we will
stepwisely raise the level of abstraction until on the level of meta-classes we are
able to separate general properties of deductive mechanisms from those specific
to a particular method.
To distinguish formal definitions and theorems from less formal explanations
we will use the typewriter font for formal constructs. We will, though, still
make use of special characters like `,→ despite the fact that in NuPRL they

1Not to be confused with the meta-level of the underlying theory which we never refer to
unless explicitely stated
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are simulated (by >>, ->) because they are not available on primitive terminals.
&, ∨,⇒ ,⇔ ,¬,∀,∃ will be used for intuitionistic logical connectives which can
be defined in terms of type constructors as indicated in Figure 1.
Deductive mechanisms should be considered as inference rules of some yet unex-
pressed calculus. Formal metatheorems intended to reflect their behaviour will
therefore resemble the outer form of NuPRL proof rules stating that - given a
certain context - by the deductive mechanisms some main goal may be deduced
from a list (conjunction) of subgoals. We use reverse implication “⇐ ” to sim-
ulate the refinement style and avoid using parentheses if a graphical separation
of goals appears sufficient:

` ∀<vars involved in the context>.
Main goal
⇐ Subgoal1...

& Subgoaln

Once proven each metatheorem representing a deductive method has four im-
portant aspects by which it becomes equal to any other NuPRL inference rule
and may be used as such from then on:

Representation: A completely formal representation of the behaviour of the
deductive method is given.

Justification: The deductive mechanism represented by the theorem is proven
to be a logically correct reasoning step.

Implementation: Applying the theorem to a particular situation means to
execute the mechanism. That is, if the problem to be solved matches the main
goal it will be replaced by the subgoals which now have to be dealt with.

Algorithm construction: The completely formal and mechanically verified
proof of the theorem contains an algorithm constructing a program solving
the main goal from partial programs for the subgoals. This aspect, of course,
only makes sense if the deductive method represented is used for program de-
velopment. The algorithm can be accessed as the extract term of the theorem.

In most cases the four aspects of a particular metatheorem are obvious from
the above description. We will only mention those who give new insights. All
theorems are proven completely formal using NuPRL’s primitive inference rules
and tactics. Since presenting the full proof would take too much space on paper
we only sketch them and verbally express the the rules applied.
New concepts will be introduced by formal definitions in the style of NuPRL’s
definition mechanism. <New Object> ≡ <Formal NuPRL Representation> defines
a new type-theoretical object having the syntax of the left-hand side in terms of
already existing constructs given on the right hand side of the definition. Note,
that deduction rules for a newly defined concept follow immediately from those
of the right hand side and can either be proven as a metatheorem or directly
be programmed as a tactic. The definition ∀x:A.prop ≡ x:A→prop, for in-
stance allows to use the familiar syntax of the typed universal quantifier which
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is represented by the constructor for the dependent function type and to use the
deductive rules of the function type for the universal quantifier as well.

4 The frame for the object level

In this section we will develop a frame for reasoning about the object level of
programming and illustrate its usage by an exemplified formal investigation of
some program construction strategies and pieces of a domain theory. We restrict
ourselves to formalizing object knowledge needed in later sections.

4.1 Object classes for object language expressions

The most important classes needed for reasoning about global properties of
objects are the class of first-order logical formulae and the class of first-order
domains or datatypes. Despite of the propositions-as-types correspondence these
notions are quite different in their intuitive interpretation and in the way they are
used in practice. They shall therefore be distinguished in our formal framework.
We will represent the two classes by types called FORMULAE and TYPES. Both
must be subtypes of the universe U1 of first-order objects and it is reasonable to
choose the most simple definition by identifying them with U1 itself. Formulae
with variables from a type T will be members of the type FORMULAE(T).

Definition 4.1 [Datatypes and logical formulae]
TYPES ≡ U1

FORMULAE ≡ U1

FORMULAE(T) ≡ T → FORMULAE

These definitions form the object language of programming whose semantics and
deduction rules now implicitly follow from that of Type Theory. Note that due
to the above intensional definition the syntactic structure of a type or formula
cannot be fully accessed from a theory built within NuPRL. We would have to
make use of the meta-level of Type Theory, i.e. ML-programs, to do so. Of course,
one might give an exhaustive extensional definition using NuPRL’s recursive
types [CM85, Men87] and apply methods developed for partial reflection and
formal metamathematics in NuPRL [CK86, Kno87, How88b] but this would
create a big overhead. It will turn out that for investigating program construction
methods we can do without this syntactic information which would rather burden
us with superfluous details and does not give any additional insights.
Given the above definitions not all first-order formulae are decidable (p ∨¬p or
p⇒ q⇔¬p ∨ q may be false) and not all first-order domains are discrete (equality
on the type may not be decidable). This is due to the constructive aspect of
the underlying theory. Nearly all predicates occurring in practice, however, are
decidable and often use of such knowledge is made while constructing a program.
In order to catch it we will introduce decidable subclasses of FORMULAE and TYPES
and use them whenever it is appropriate for the problem.
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Definition 4.2 [Discrete types and decidable formulae]
DTYPES ≡ {T:U1 |∀x,y:T (x=y ∈T ∨ ¬(x=y ∈T))}
DFORMULAE ≡ {f:U1 | f ∨ ¬f}
DFORMULAE(T) ≡ T → DFORMULAE

Discrete types and decidable formulae are closed under the most important op-
erations, as the following lemma shows.

Lemma 4.3 Closure properties of decidable types and formulae

1.`∀T,S:DTYPES. (T→S ∈DTYPES) & (T#S ∈DTYPES) & (T|S ∈DTYPES)
& (T list ∈DTYPES)

2.`∀p,q:DFORMULAE. (p&q ∈DFORMULAE) & (p ∨q ∈DFORMULAE)
& (¬p ∈DFORMULAE) & (p⇒ q ∈DFORMULAE) & (p⇔ q ∈DFORMULAE)

This can be shown by truth table proofs and, in the case of T list, an induction
over the length of lists.

4.2 Domain theories

In a theory of program construction domain theories represent knowledge about
the application domains which an algorithm design system needs to fulfil its
task. Formal definitions introduce new notions. In formal theorems important
properties are stated and verified. During the past years, a number of domain
theories have been implemented with NuPRL. We refer the reader to [CAB+86,
How86, Kre86, Cle87, How88a] and particularly to [Bas89] for accounts of how
mathematical knowledge should be represented and reasoned about. Here we
will present some elements of a theory about finite sets over ordered types which
we will use in Section 4.3.
The Set-constructor yields for every type T the type TSet of all finite sets over
elements of T . Formally, sets can be simulated by the list-constructor modulo
a set-equality notion. Inductive definitions on sets thus are expressed by the
predefined list-induction construct. The empty set ∅ is represented by the empty
list. Two lists are equal as sets if the have the same elements. S \x means taking
out an element x from a set S. Orderings are represented by relations on a type
satisfying the typical axioms of a total order.

Definition 4.4 [Finite sets over ordered types]
∅ ≡ nil

S∪{y} ≡ y.S

{y} ≡ ∅∪{y}
x∈S:T Set ≡ if S=L∪{y} then (x=y ∈T ∨x∈L:T Set) else false

L=S ∈T Set ≡ ∀x:T. x∈L:T Set ⇔ x∈S:T Set

T Set ≡ L,S:T list // (L=S ∈T Set)

S\x:T Set ≡ if S=L∪{y} then (if x=y ∈T then L\x else L\x∪{y})
else ∅

x ≤ y ≡ ≤(x,y)
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ORDERINGS(T) ≡ {≤:FORMULAE(T#T)| ∀a,b,c:T. ( a≤b ∨ b≤a )

& (a≤b & b≤a ⇒ a=b ∈T) & (a≤b & b≤c ⇒ a≤c)}
x<y:T ≡ x≤y & x 6=y ∈T
S≤x:T Set ≡ ∀x:T. x∈L:T Set ⇒ y≤x
m=max(S):T set ≡ S 6=∅⇒ (m∈S:T Set & S≤m:T Set)

The following lemma is a collection of basic facts about sets and orderings. Its
formal proofs are lengthy inductions although not very complicated.

Lemma 4.5 Basic properties of sets and orderings

1.`∀T:TYPES.∀≤:ORDERINGS(T).∀a,b,c:T.
(¬a<a:T) & (a<b:T ∨ a=b ∈T ∨ b<a:T) & ((a<b:T & b<c:T) ⇒ a<c:T)

2.`∀T:DTYPES.∀≤:ORDERINGS(T). ≤ ∈DFORMULAE(T#T)
3.`∀T:TYPES.∀S:T Set.∀x,y:T. ¬(y∈∅:T Set)

& S={x} ∈DFORMULAE
& S={x}:T Set ⇒ S\x=∅:T Set

& S 6=∅:T Set ⇔ S\x6=∅:T Set ∨ S={x}:T Set

& x∈S:T Set ⇒ (y∈S\x:T Set ⇔ y∈S:T Set & x 6=y ∈T)
& x∈S:T Set ⇒ (S≤y:T Set ⇔ S\x≤y:T Set & x≤y)

4.3 An example: representing strategies of LOPS

By an exemplified investigation of some synthesis strategies we will now illustrate
how deductive methods for program construction can be represented by formal
theorems reflecting their behaviour. As running example we chose key strategies
of the LOPS (LOgic Program Synthesis) system [Bib80, BH84, Fro85, NFK89]
which may be briefly summarized as follows:

Starting with a specification given as a first-order formula of the form
∀i ∃y ( IC(i) ⇒OC(i,y) )

where i and y represent input and output variable, IC some input condition,
and OC the relation between input and output (output condition) the goal is
to achieve an algorithmically ‘better’ formula which can directly be translated
into a program of some particular target language. This goal is approached
by a series of equivalence or correctness preserving transformations guided by
a few strategies supported by deductive tools.
A LOPS synthesis is centered around the strategies GUESS-DOMAIN and
GET-REC. Both may require some additional pre- and postprocessing and,
depending on the problem, some specialized strategies may have to support
them. All LOPS strategies are designed to leave open some choices which
could be made by a programmed heuristic or an assisting user.

Our formalization of LOPS strategies follows the original description of [Bib80].
Besides illustrating of the principles of our formal theory it will give us some new
insights into the true nature of the LOPS approach and “mechanical” proofs for
the correctness of the strategies involved. It is, however, not our intention to im-
prove LOPS strategies or to discuss or further investigate ideas behind heuristics
determining parameters for them. This will be left to future investigations.
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4.3.1 GUESS-DOMAIN

The strategy GUESS-DOMAIN tries to find an appropriate portion of the spec-
ification which can be used to split the input into smaller pieces and compute
the desired output from these pieces. It consists of a transformation GUESS and
a heuristic DOMAIN determining all the necessary parameters for the transfor-
mation which takes a formula of the form

∀i ∃y ( IC(i) ⇒OC(i,y) )
and transforms it into

∀i ∀g ∃y dc(i,g) ⇒ (IC(i) ⇒OC(i,y) ∧ (g=y∨g6=y) ).

This transformation means to guess some hopefully correct output g. In order
to meaningfully restrict the search for g by some domain condition dc(i, g) it is
suggested to choose dc(i, g) from among the subsets of the conjuncts in OC(i, g)
such that it will be possible to compute some g with dc(i, g). g = y represents
a successful guess, g 6= y a failure. Both alternatives, however, contain more
information than the initial formula thus making the remaining task easier. If
the output domain is not a simple datatype, only partial information about the
output can be guessed. In such cases the relation g = y has to be replaced by
some more general “tautology”-predicate t(g, y).
The above description of the GUESS transformation suggests it to be a proof
rule for an ∀∃-quantified theorem. The following formal metatheorem is a direct
representation of this rule. Note that for this we have assigned types to each
variable and quantified over the formulae and types involved.

Theorem 4.6 GUESS transformation

`∀IN,OUT:TYPES.∀IC:FORMULAE(IN).∀OC,dc:FORMULAE(IN#OUT).
∀i:IN.∃y:OUT. IC(i) ⇒ OC(i,y)

⇐ ∀i:IN.∀g:OUT.∃y:OUT.
dc(i,g) ⇒ IC(i) ⇒ OC(i,y) & (g=y ∈OUT ∨ g6=y ∈OUT)

& ∀i:IN.∃g:OUT. IC(i) ⇒ dc(i,g)

Note that the second subgoal is necessary for the correctness of the GUESS
transformation and thus puts an effectivity condition on the selection of dc.
This new insight too is a valuable effect of a strict formalization.
To illustrate how simple a formal proof of such a typical metatheorem can be
we sketch a NuPRL proof of Theorem 4.6. Hypotheses will be numbered. In
subgoals we show new hypotheses and the current goal only.

Proof: By “introduction” rules move all assumptions to the hypotheses list

1.-4. IN:TYPES, OUT:TYPES, IC:FORMULAE(IN), OC:FORMULAE(IN#OUT)

5. dc:FORMULAE(IN#OUT)

6. ∀i:IN.∀g:OUT.∃y:OUT. dc(i,g)⇒ IC(i)⇒ OC(i,y) & (g=y ∈OUT∨ g 6=y ∈OUT)
7. i:IN

8. ∀i:IN.∃g:OUT. IC(i) ⇒ dc(i,g)

` ∃y:OUT. IC(i) ⇒ OC(i,y)
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Instantiate 8. on i

9. ∃g:OUT. IC(i) ⇒ dc(i,g)

` ∃y:OUT. IC(i) ⇒ OC(i,y)

Eliminate the existential quantifier in 9. giving a name to the object

10.-11. g:OUT, IC(i) ⇒ dc(i,g)

` ∃y:OUT. IC(i) ⇒ OC(i,y)

Instantiate 6. on i and g, eliminate the existential quantifier in the result.

12. ∃y:OUT. dc(i,g)⇒ IC(i)⇒ OC(i,y) & (g=y ∈OUT∨ g 6=y ∈OUT)
13.-14. y:OUT, dc(i,g)⇒ IC(i)⇒ OC(i,y) & (g=y ∈OUT∨ g 6=y ∈OUT)

` ∃y:OUT. IC(i) ⇒ OC(i,y)

Choose y from 13. as solution, move the assumption IC(i) to the hypotheses list.

15. IC(i)

` OC(i,y)

Eliminate the implications of 11, 14, and of the result of this (17).

16.-17. dc(i,g), IC(i)⇒ OC(i,y) & (g=y ∈OUT∨ g 6=y ∈OUT)
18. OC(i,y) & (g=y ∈OUT∨ g 6=y ∈OUT)

` OC(i,y)

The goal follows from splitting 18. 2

Before executing the next strategy the result of GUESS-DOMAIN will be trans-
formed into some normal form separating a successful guess from the failure case.
This strategy, which [Bib80] calls GET-DNF, will also be represented as a theo-
rem expressing a proof rule to be applied immediately after GUESS-DOMAIN.

Theorem 4.7 GET-DNF

`∀IN,OUT:TYPES.∀IC:FORMULAE(IN).∀OC,dc:FORMULAE(IN#OUT).
∀i:IN.∀g:OUT.∃y:OUT. dc(i,g)⇒ IC(i)⇒ OC(i,y)&(g=y in OUT∨g6=y in OUT)

⇐ ∀i:IN.∀g:OUT.∃y:OUT. dc(i,g) ⇒
IC(i)⇒ OC(i,y)& g=y in OUT ∨ IC(i)⇒ OC(i,y)& g 6=y in OUT

4.3.2 The strategy GET-REC

Depending on the results of GUESS-DOMAIN, the strategy GET-REC tries to
introduce recursion. For this an abstract recursion scheme providing information
on possible recursions on the objects involved will be instantiated. Using knowl-
edge about the particular domain the current formula then will be rewritten
according to the instantiated scheme. In contrast to the other LOPS strategies
this operation does not contain a well defined transformation. Instead, under
the guidance of domain knowledge and the chosen recursion scheme, a situation
specific one is created heuristically. Therefore GET-REC cannot be formalized
in full generality without first having investigated abstract recursion schemes
and their effects on guiding heuristics. It would lead us beyond the scope of this
article to do so here. We will therefore explain the operation of GET-REC by
some small standard example using one of the most typical abstract recursion
schemes and leave generalizations to the future.
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Example: The maximum of a finite set: (c.f. [Bib80])
An algorithm calculating the maximum m of a finite set S over some arbi-
trary ordered type OUT shall be synthesized. According to Definition 4.4 the
following specification has to be considered as top goal:
top
` ∀OUT:TYPES.∀≤:ORDERINGS(OUT). ∀S:OUT Set.∃m:OUT. S 6=∅⇒ (m∈S & S≤m)
Thus IN is instantiated to OUT Set, IC(S) to S 6=∅, and OC(S,m) to
m∈S & S≤m. For the sake of legibility the obvious ‘:OUT Set’ has been omit-
ted. After guessing with dc(S,g):=g∈S and normalization (theorems 4.6,
4.7) we have the following subgoals (labelled by their path to the top goal):
top 1
` ∀S:OUT Set.∀g:OUT. ∃m:OUT. g∈S ⇒

S6=∅ ⇒ m∈S & S≤m & g=m ∨ S 6=∅ ⇒ m∈S & S≤m & g 6=m
top 2
` ∀S:OUT Set.∃g:OUT. S 6=∅⇒ g∈S
Subgoal 2 follows from the constructive definition of g∈S. We assume that
an algorithm some-element-of calculating g from S already exists. In the
first alternative of subgoal 1 g=max(S) is a solution. Thus we are left with
g∈S ⇒ S 6=∅ ⇒ m∈S & S≤m & g 6=m where GET-REC shall introduce recursion.

Structures like Lists, Sets, Trees, and Graphs on some ground type A have in
common that they come with some ground object base (e.g. the empty list, set,
tree, or graph) and a function “\” which from a structured object and one of A
computes a new structured object with lesser complexity (e.g. takes an element
out of a list or a node out of a tree) . If we give the name A Struct to this kind of
structures then an abstract recursion scheme for all of them can be represented
as a theorem about structural induction on the types involved.

Theorem 4.8 Recursion by taking out one element
`∀A:TYPES.∀P:FORMULAE(A Struct).

∀i:A Struct. P(i)

⇐ P(base) & ∀s:A Struct.∀g:A. ( P(s\g) ⇒ P(s) )

We give a proof for the case of lists. The proof can be generalized to the above
form but this would involve introducing recursive types or complexity measures
and lots of new terminology.
Proof: Move all assumptions to the hypotheses list

1.-2. A:TYPES, P:FORMULAE(A list)
3.-5. P(nil), ∀s:A list.∀g:A. (P(s\g) ⇒ P(s)), i:A list

` P(i)

Unroll i according to its recursive definition: it is either the empty list nil or some

concatenation a.i1 of an element a and a list i1. P(nil) follows from 3.

6.-8. a:A, i1:A list, P(i1)
` P(a.i1)

Instantiate 4. on a.i1 and a.

9. P(a.i1\a) ⇒ P(a.i1)
` P(a.i1)

Substitute a.i1\a with i1 in 9. and apply it to hypothesis 8. 2
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Instantiated to a programming problem on sets Theorem 4.8 proves that pro-
grams over a finite set i can be computed recursively by expressing P(i) in
terms of P(i\g) and giving some basic solution. Making use of this knowledge
the strategy GET-REC tries to rewrite the result of guessing in terms of i\g.

Example: Rewrite g∈S ⇒ S 6=∅ ⇒ m∈S & S≤m & g 6=m in terms of S\g:
This operation involves a heuristic component and search methods from
theorem proving to find appropriate lemmata of the corresponding domain
theory which rewrite the formula or parts of it. The exact behaviour of GET-
REC, e.g. a general rule how to create or look for such lemmata, has not yet
been described in literature on LOPS and is open to further investigations.

Here it finds in Lemma 4.5(3) the equivalences S 6=∅ ⇔ S\g 6=∅∨ S={g},
g∈S ⇒ (S≤m ⇔ S\g≤m & g≤m), and g∈S ⇒ (m∈S & g 6=m ⇔ m∈S\g)
and applies them (resulting in subgoal 1 of subgoal 1):
top 1 1
`∀S:OUT Set.∀g:OUT. ∃m:OUT. g∈S ⇒

g=max(S) ∨ ( (S\g6=∅∨S={g}) ⇒ m∈S\g & S\g≤m & g≤m & g 6=m )

Similarly to GUESS-DOMAIN, the result of GET-REC needs to be postpro-
cessed, which means to distribute the resulting alternatives in the input condi-
tion and then to fold back the original definition of the problem specification.

Example: The result of postprocessing is:
top 1 1 1
`∀S:OUT Set.∀g:OUT. ∃m:OUT. g∈S ⇒

g=max(S)∨ (m=max(S\g) & g≤m & g 6=m ∨ S={g} ⇒ m∈S\g & S\g≤m & g≤m & g 6=m)

4.3.3 Further strategies

In [Bib80] other strategies which we did not make use of have been introduced:
GET-EP tries to make a predicate evaluable by replacing ineffective compo-
nents. If there is more than one output variable, GET-RNV tries to reduce their
number, GET-SOC separates the output conditions, CHVAR chooses an output
variable for guessing. All these should be formalized in the future.

4.3.4 Program construction

Before being transformed into a program, some control information will be
added. This includes dropping superfluous parts, folding definitions which are
known to be computable. Again these steps will be explained using the example.

Example: Because of S={g}⇒ S\g=∅ (Lemma 4.5(3)) m∈S\g is false. Thus the
alternative S={g} will not lead to a solution in the failure case. The contradic-
tion is dropped adding S 6={g} as control information to the other alternative.
After folding the definition of < the final result is:
top 1 1 1 1
` ∀S:OUT Set.∀g:OUT. ∃m:OUT.g∈S ⇒ g=max(S) ∨ S 6={g} & max(S\g)=m & g<m
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[Bib80] proposes to construct a program by an algorithmic reading of the for-
mula. This means making use of the (meta-)knowledge that a solution of the
final formula is also one for the original one and transforming the (exclusive)
disjunction into a case analysis according to the decidable predicates mentioned.

Example: Making use of the above metaknowledge means to recursively define
the program according to an instantiation of the recursion scheme 4.8:
∀OUT:TYPES.∀≤:ORDERINGS(OUT).
∀S:OUT Set.∃m:OUT. m=max(S)

⇐ ∃m:OUT. m=max(∅)
& ∀S:OUT Set.∀g:OUT. ∃m:OUT.m=max(S\g) ⇒ ∃m:OUT.m=max(S)

dropping the base case which has been explicitely excluded. S={g} can be
decided once g and S are known, g<m after m is set to max(S\g). The result
must be g or m. Thus we get the following algorithm (in ML-like syntax):
letrec max(S) = let g=some-element-of S in

if S={g} then g
else let m=max(S\g) in if g<m then m else g

To reflect the true behaviour of LOPS, a full formalization must express the
usage of meta-knowledge in program extraction as well. Thus the real frame for
a LOPS synthesis must be the recursion scheme chosen by GET-REC which
represents the algorithmic structure of the resulting program. All the operations
performed by LOPS strategies, including the methods for program extraction
described above, only reduce the induction step by operating on the right hand
side of the implication. From a practical point of view LOPS is simply a shortcut
in this chain of reasoning and it is only natural that later implementations of
LOPS [NFK89] chose to abandon the framework of ∀∃-quantified formulae in
favour of a representation fitting the LOPS approach better.
We will demonstrate this by running the maximum example in the correct frame-
work. The control decisions now are explicitely mentioned.

Example 4.9 Complete synthesis of the maximum algorithm

top
` ∀OUT:TYPES. ∀≤:ORDERINGS(OUT). ∀S:OUT Set.∃m:OUT. m=max(S).
Apply the scheme and move assumptions to the hypotheses list
top 1
1.-2. OUT:TYPES, ≤:ORDERINGS(OUT),
` ∃m:OUT. m=max(∅) any m solves this since the input condition ∅6=∅ is false

top 2
1.-4. OUT:TYPES, ≤:ORDERINGS(OUT), S:OUT Set, g:OUT,
5. ∃m:OUT. m=max(S\g)
` ∃m:OUT. m=max(S)

apply GUESS and GETREC as described
top 2 1

` ∃m:OUT. g∈S ⇒ g=max(S) ∨ S 6={g} & max(S\g)=m & g<m
Consider cases S={g} ∨ S6={g}
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top 2 1 1
6. S={g}
` ∃m:OUT. g∈S ⇒ g=max(S) ∨ S6={g} & max(S\g)=m & g<m

choose g because the other alternative leads to a contradiction
top 2 1 2

6. S 6={g}
` ∃m:OUT. g∈S ⇒ g=max(S) ∨ S 6={g} & max(S\g)=m & g<m

eliminate 5., consider cases ¬g<m ∨ g<m

top 2 1 2 1
7.-9. m:OUT, m=max(S\g), ¬g<m

` ∃m:OUT. g∈S ⇒ g=max(S) ∨ S 6={g} & max(S\g)=m & g<m
choose g because the other alternative leads to a contradiction

top 2 1 2 2
7.-9. m:OUT, m=max(S\g), g<m
` ∃m:OUT. g∈S ⇒ g=max(S) ∨ S 6={g} & max(S\g)=m & g<m

choose m, all conditions of the second alternative are satisfied
top 2 2

` ∃g:OUT. S 6=∅ ⇒ g∈S solved with some-element-of

The algorithm NuPRL extracts from this is exactly the one described above.

5 Towards higher abstraction

Despite the fact that a direct formalization of a particular deductive method
already gives some insights general principles can hardly be discovered that way.
They are still hidden behind superfluous details and it is desirable to study them
from a higher degree of abstraction. We begin this with a complete formalization
of notions which are known to be important in the field of programming. Formal
representations are obvious once we have discussed the nature of the notion
to be formalized. We will then investigate the main properties of the principal
approaches to program synthesis within the more abstract framework before we
return to study how the above example behaves in it.

5.1 Program Construction Concepts

The task of developing a program to solve a certain problem can be divided into
three major steps: from an informal description one first has to figure out what
exactly the problem is, then from the formal specification develop an algorithm
how to solve it, and finally write it down encoded in some programming language.
Due to its very nature the first step is hardly formalizable but for the step
from formal specification to written computer code strong automatic support is
possible. Program synthesis has devoted itself to the latter in order to enable
programmers and clients to concentrate their efforts in analyzing the problem
and fixing a formal description for it. To solve its task it may use knowledge about
the application domains, about algorithms in general, and previously defined
programs. Since building a program synthesizer essentially is a programming
problem as any other we first have to focus our attention on giving a formal
description of the synthesis problem.
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A program synthesizer must be able to transform formal specifications into pro-
grams fulfilling them. All approaches to systematic program development agree
that a programming problem has to be described by specifying its input-domain
IN , the output-domain OUT , and a relation IOR between input and the desired
output. Many of them use an additional precondition IC on the input to exclude
singular cases like division by zero (see e.g. [MW80, Bib80, SL89]). Obviously,
the domains IN and OUT should be first-order types and IC, IOR must be
first-order formulae over the appropriate types. Thus the higher-order type of
program specifications should have quadruples 〈〈IN, OUT, IC, IOR〉〉 as its el-
ements where the types of IC, IOR depend on the values of IN, OUT . This is
best expressed by a dependent product:

Definition 5.1 [The Datatype of program specifications]
SPECIFICATIONS ≡ IN:TYPES××OUT:TYPES××FORMULAE(IN)××FORMULAE(IN#OUT)

Without desiring to enter philosophical discussions about the nature of programs
we assume that their main purpose is to take some input and calculate some out-
put from it. Thus a program essentially is a function from input- to output space,
a view supported by [ML82, SL89] and constructive mathematicians. Including
the domains as necessary information the type of all programs is represented by

Definition 5.2 [The Datatype of programs]
PROGRAMS ≡ IN:TYPES××OUT:TYPES××(IN→OUT)

Destructors accessing individual components of a program p=〈〈IN, OUT, body〉〉 or
a specification sp=〈〈IN, OUT, IC, IOR〉〉 will be denoted by names like IN(p).
A program p fulfils a specification sp if for a given input value x satisfying
the input condition the program body computes an output value such that the
input-output relation holds. Of course, input- and output domain must agree.

Definition 5.3 [The relation “A program fulfils a specification”]
FULFILS(sp,p) ≡ IN(sp)=IN(p) ∈TYPES & OUT(sp)=OUT(p) ∈TYPES

& ∀x:IN(sp). IC(sp)(x)⇒ IOR(spec)(x,body(p)(x))

A specification is solvable if a program can be found which fulfils it. Since in
Type Theory the statement “a program can be found” is identical to “a program
exists” we come to the following definition:

Definition 5.4 [The relation “A specification has a solution”]
SOLVABLE(sp) ≡ ∃p:PROGRAMS. FULFILS(sp,p)

This is the key predicate for the following investigations since constructing a
program for a given specification sp is the same as proving SOLVABLE(sp).
On the long run our theory shall provide a means to derive a verified imple-
mentation of a program synthesis system for a certain class of problems. Al-
though we cannot yet say how to do this we can already give a formal speci-
fication of the problem. Obviously this cannot be a member of the first-order
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type SPECIFICATIONS but the same structure may be used to provide a way for
self-reflection. Knowing that in general program synthesis is an unsolvable prob-
lem we have to include as input-condition a parameter pc describing the class
of problems on which the program synthesizer shall operate. Giving a formal
description of a sufficiently large class will be an interesting research topic.
SYNTHSPEC(pc) ≡ <SPECIFICATIONS, PROGRAMS, pc, FULFILS>

is a specification of a program synthesizer for the class pc and building a syn-
thesizer means to construct a program fulfilling it (by showing its solvability):
SYNTHESIZABLE(pc)≡ ∃synth:SPECIFICATIONS->PROGRAMS.

∀sp:SPECIFICATIONS. pc(sp)⇒ FULFILS(sp,synth(sp))

One may object that these definitions do not include partial functions or mul-
tivalued ones which typically express the behaviour of logic programs or those
used in [SL89]. Such an objection could be answered by referring to the possi-
bility of choosing the powerset P (OUT ) of the output space as the real output
domain. Since this, however, would result in a change of the corresponding spec-
ification as well, making it quite unnatural, we prefer giving separate definitions
for of multivalued programs. We will use the prefix M- to indicate modifications
of singlevalued constructs into their multivalued counterparts.

Definition 5.5 [Multivalued programming concepts]
M-PROGRAMS ≡ IN:TYPES××OUT:TYPES××(IN→P(OUT) )

M-FULFILS(sp,p) ≡ IN(sp)=IN(p) ∈TYPES & OUT(sp)=OUT(p) ∈TYPES
& ∀x:IN(sp). IC(sp)(x)

⇒ body(p)(x)={y:OUT(sp)|IOR(sp)(x,y)}
M-SOLVABLE(sp) ≡ ∃p:M-PROGRAMS. M-FULFILS(sp,p)

These definitions deserve further discussion. From a theoretical point of view
they make the treatment of multivalued programs quite simple. If such pro-
grams shall actually run we must clarify how the output body(p)(x) shall be
represented. Since we want to access individual output values we suggest to rep-
resent a set o ∈ P (OUT ) by functions enumerating its elements. This is possible
as long as OUT is a denumerable domain which is true in nearly all applications.
Thus the equation body(p)(x)={y:OUT(sp)|IOR(sp)(x,y)} defines the synthe-
sis problem to finding an extensional definition of a set from a given intensional
one. We will later see how this influences the approaches to solve it.

5.2 Principal approaches to program synthesis

Essentially there are two different ideologies to approach program synthesis:
• The so-called theorem proving or AE approaches [MW80, BC85, Fra85, CH88,

Gal90] arose from the idea that constructing a program and proving it logically
correct should be done at the same time. Thus instead of first developing
program code top-down and then verifying it bottom up by investigating
properties of individual statements, loops, subprograms etc. a constructive
proof for the AE theorem

∀x : IN.∃y : OUT. IC(x)⇒ IOR(x, y)
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will be build and a (functional) program guaranteed to fulfil the specification
〈〈IN,OUT, IC, IOR〉〉 will be extracted from it.

The advantage of this direction is its solid theoretical foundation. A lot of
research has been done in developing appropriate logical calculi (see e.g.
[ML82, BC85, CH88, PM89, Coq89, Gal90]) and algorithms extracting (effi-
cient) programs from proofs within these [Hay86, CH88, PM89].2 However,
AE approaches suffer from the fact that, if general theorem proving strate-
gies like resolution are used, the method a program is constructed appears to
be quite unnatural. Furthermore, there is only little practical experience in
constructing AE proofs for a larger class of programming problems.

• In transformation based approaches (see e.g. [BD77, MW79, Bib80, Hog81,
BH84, Der85, SL89, SL90]) a specification is treated as if it were already
some kind of logic program, though an inefficient one. Instead of constructing
a correct program the main aspect is to improve efficiency which shall be
achieved by adapting methods from the field of program transformations.

Starting with a specification 〈〈IN,OUT, IC, IOR〉〉 a new predicate P (x, y)
representing a program P with input x and output y is defined by

∀x : IN.∀y : OUT.IC(x)⇒P (x, y)⇔ IOR(x, y)

and the body for the program P is generated by transforming IOR(x, y) in
the above framework until it is computationally convenient.

Practical aspects and efficiency considerations have been the driving force of
these approaches. Therefore the practical results of already existing systems
like KIDS [SL90] are much better than those of AE based ones. In more recent
approaches also strong theoretical foundations have been incorporated (see
e.g. [SL90] where domain knowledge and program construction methods have
been investigated). Since, however, the degree of formalization is way below
that of the AE approaches it is not clear how the implementations reflect the
theoretical foundations.

So far it has not been attempted to combine the strengths of the two directions
since they appeared too different. These differences, as we will show, exist only on
the surface. If both approaches are embedded into a unified formal framework
then they may be translated into each other and the differences disappear. If
in addition to that they are stripped of their syntactic peculiarities by looking
at them from a higher degree of abstraction one may also get much clearer
insights into their essential properties and use that for building a verified program
synthesizer unifying the approaches.
This we will begin in the rest of the article. By embedding the two directions
into the framework formalized above we will be able to investigate their principal
features - the representation of the problem and the correctness of the deductive
method. These investigations, particularly Theorems 5.6 and 5.10, will open the
way for combining the approaches so far.

2In NuPRL’s Type Theory such an algorithm is inherent to the rules and NuPRL may
therefore be counted as calculus for an AE approach as well.
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5.2.1 Justifying AE approaches

Theorem 5.6 The AE representation for program synthesis

`∀s:SPECIFICATIONS.
( ∀x:IN(s).∃y:OUT(s). IC(s)(x) ⇒ IOR(s)(x,y)

⇔ SOLVABLE(s) )

& ( ∀x:IN(s).∃o:P(OUT(s)). IC(s)(x) ⇒ o={y:OUT(s)|IOR(s)(x,y)}
⇔ M-SOLVABLE(s) )

Theorem 5.6 gives a justification of the AE representation: provided a construc-
tive interpretation of logical formulae, proving an AE theorem for a given specifi-
cation is equivalent to solving the specification itself, i.e. constructing a program
fulfilling it. Thus applying the theorems means executing a transformation to
switch between representations and the extracted algorithms transform the re-
sults developed within the AE framework into a program solving the specification
and a proof for that or vice versa. Since there is no doubt about the correct-
ness of the deductive method (giving a completely formal proof in a well known
calculus) these theorems give us a formal justification of the AE approach to
program synthesis as such.
The proof of Theorem 5.6 is nothing but instantiating a general type theoretical
theorem which we present in a first-order version to avoid introducing new no-
tation. It makes explicit the constructive aspect of Type Theory: every theorem
has a constructive meaning which can be extracted from its proof.

Theorem 5.7 The constructive aspect of type theory

`∀IN,OUT:TYPES.∀p:FORMULAE(IN#OUT).
∀x:IN.∃y:OUT. p(x,y) ⇔ ∃f:IN→OUT.∀x:IN.p(x,f(x))

Proof: Move all assumptions to the hypotheses list, add an identifier to the last one

1.-3. IN:TYPES, OUT:TYPES, p:FORMULAE(IN#OUT)

4. id: ∀x:IN.∃y:OUT. p(x,y)

` ∃f:IN→OUT.∀x:IN.p(x,f(x))
Since propositions are types id is a member of the type x:IN→(y:OUT#p(x,y)),

i.e. a function returning y and a proof for p(x,y) for each x.

Introduce λx.(y where id(x)=<y,proof>) for f and β-reduce f(x)

5. λx.(y where id(x)=<y,proof>) ∈IN→OUT

` ∀x:IN.p(x, (y where id(x)=<y,proof>) )

Moving x to the hypotheses list and instantiating 4 with x proves the goal 2

5.2.2 Justifying Transformation based approaches

The representation of the synthesis problem used by transformation based
approaches can be justified if the new predicative program P (x, y) is expressed
by a multivalued program p with body(p)(x) := {y : OUT (p)|P (x, y)}. To show
that such a program can be constructed means to prove the following:

∃p:M-PROGRAMS.∀x:IN(p). IC(x)⇒ body(p)(x)={y:OUT(p)|IOR(x,y)}
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This form which is nearly the same as the one of [SL89] is absolutely identical to
our M-SOLVABLE(<IN,OUT,IC,IOR>) predicate, the synthesis problem for mul-
tivalued functions, and allows controlling the effects of transforming IOR(x, y)
by theorems of some abstract algorithm theory.
Thus, the outer representation of the synthesis problem (AE theorem versus a
new predicate) is not really a distinctive feature of the two ideologies. Due to
Theorem 5.6 they can be translated into each other. Since, as Theorem 5.10
will show, even the deductive methods of each direction can be embedded into
the framework of the other, there are no essential differences between them
except for a willful restriction to a certain kind of synthesis strategies (standard
proof methods versus transformations). This is a result which due to a lack of
abstraction has not been proven yet.
Starting with such a representation of the problem it appears only natural to
adopt the ideology of transformation based approaches. Given an enumerable
output domain one may in fact consider p := λx.{y : OUT (p)|IOR(x, y)} to
already describe a solution of the specification, though a very inefficient one.
The remaining problem thus would be finding a computationally more convenient
term to express p, a task for which program transformations are known to be
helpful. To ensure the correctness of this deductive method transformation based
approaches often use the notion of a “correctness” or “equivalence preserving”
transformation. The following theorem will clarify the meaning of these notions.
Theorem 5.8 The deduction method of applying transformations

`∀IN,OUT:TYPES.∀IC:FORMULAE(IN).∀IOR,ior:FORMULAE(IN#OUT)
( M-SOLVABLE(<IN,OUT,IC,IOR>)

⇐ M-SOLVABLE(<IN,OUT,IC,ior>)

& ∀x:IN.∀y:OUT. IC(x) ⇒ (ior(x,y) ⇔ IOR(x,y)) )

& ( SOLVABLE(<IN,OUT,IC,IOR>)

⇐ SOLVABLE(<IN,OUT,IC,ior>)

& ∀x:IN.∀y:OUT. IC(x) ⇒ (ior(x,y) ⇒ IOR(x,y)) )

Proof: We prove the singlevalued case
1.-4. IN:TYPES, OUT:TYPES, IC:FORMULAE(IN), IOR: FORMULAE(IN#OUT)

5. ior:FORMULAE(IN#OUT)

6. ∀x:IN.∀y:OUT. IC(x) ⇒ (ior(x,y) ⇒ IOR(x,y))

7.-8. p:PROGRAMS, FULFILS(<IN,OUT,IC,ior>,p)

` ∃p:PROGRAMS. FULFILS(<IN,OUT,IC,IOR>,p)

Instantiate the definition of FULFILS and split the conjunction

9.-10. IN=IN(p) ∈TYPES, OUT=OUT(p) ∈TYPES
11. ∀x:IN. IC(x)⇒ ior(x,body(p)(x))

` ∃p:PROGRAMS. IN=IN(p) ∈TYPES
& OUT=OUT(p) ∈TYPES & ∀x:IN. IC(x)⇒ IOR(x,body(p)(x))

Choose p from 7. as solution. The first two conjuncts follow from 9. and 10. Move

x and IC(x) to the hypotheses list.

12.-13. x:IN, IC(x)

` IOR(x,body(p)(x))

The goal follows by instantiating 6. and 11. on x, body(p)(x), and IC(x). 2
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That is, if a transformation transforms the input-output relation IOR into some
equivalent relation ior while leaving IN , OUT and IC unchanged then its ap-
plication is justified. For the singlevalued problem the requirements are even
weaker. Obviously there are principles behind these theorems which should be
abstracted on some higher level. This will be done in the next section.
As we have seen, both directions approaching program synthesis can be properly
expressed by theorems using our SOLVABLE predicate and formally be justified.
From now on we will approach a synthesis problem in the frame of some formal
theorem using the concepts defined in Section 5.1. Although methods for con-
structing programs will then be formally represented by proof rules we are not
restricted to a single type of rules (like resolution). Any other approach can be
translated into a rule scheme and its advantages and disadvantages can thus be
investigated within our framework.

5.3 Meta-classes for deductive methods

In our opinion most insights into the mathematics of program construction can
be gained by studying deductive methods at the level of meta-classes. For that
one must in the end represent a complete deductive calculus for reasoning about
objects in programming. This involves formal definitions of notions like sequents,
logical deductions, proof rules, proofs, theorems, program derivations, synthe-
ses etc. and formal theorems about their properties. We will demonstrate the
principles of such a theory by presenting a small piece.
We will focus our attention on abstracting the transformation based approaches
to program synthesis. According to Theorem 5.8 transformations shall modify
only the input-output relation of a specification and leave all other components
unchanged. Preserving equivalence or correctness of the input-output relation is
viewed in the context of the input condition. We will capture this in definitions
of the corresponding types.

Definition 5.9 [Datatype for Transformations]
TRANSFORMATIONS ≡ {t:SPECIFICATIONS→SPECIFICATIONS |

∀s:SPECIFICATIONS. IC(T(s))=IC(s) ∈FORMULAE(IN)
& IN(T(s))=IN(s) ∈TYPES & OUT(T(s))=OUT(s) ∈TYPES}

C-TRANSFORMATIONS≡ {t:TRANSFORMATIONS|∀s:SPECIFICATIONS.∀x:IN(s).
∀y:OUT(s). IC(s)(x) ⇒ (IOR(T(s))(x,y)⇒ IOR(s)(x,y))}

E-TRANSFORMATIONS≡ {t:TRANSFORMATIONS|∀s:SPECIFICATIONS.∀x:IN(s).
∀y:OUT(s). IC(s)(x) ⇒ (IOR(T(s))(x,y)⇔ ,OR(s)(x,y))}

The following reformulation of Theorem 5.8 reveals the true principles behind
it. Correctness preserving transformations can be applied as a one-directional
deduction method to find singlevalued programs while equivalence preserving
transformations can be applied back and forth for single- and multi-valued pro-
grams. As usual this is proven by reasoning about the effects of a transformation
relative to solvability of a specification.
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Theorem 5.10 Applying transformations

`∀T:C-TRANSFORMATIONS.∀sp:SPECIFICATIONS.
SOLVABLE(sp) ⇐ SOLVABLE( T(sp) )

`∀T:E-TRANSFORMATIONS.∀sp:SPECIFICATIONS.
SOLVABLE(sp) ⇔ SOLVABLE( T(sp) )

& M-SOLVABLE(sp) ⇔ M-SOLVABLE( T(sp) )

The proof follows from that of Theorem 5.8. A closer look at it shows that
correctness-preserving transformations do not change the resulting program: ev-
ery solution for the transformed problem is already a solution for the original one.
This perfectly reflects the ideology of transformation based approaches which is
transforming a specification until it can be used as a program.
An important effect of these theorems is that they translate transformations into
(verified) deduction rules for program synthesis since applying them means exe-
cuting the transformation in form of some deduction rule. If we can prove that a
logical definition represents a correctness- or equivalence preserving transforma-
tion then Theorem 5.10 gives us valid and executable program deduction step.
Together with Theorem 5.6 we may effectively convert every (C-/E-) transfor-
mation into a valid proof rule for the AE approach and thus combine the two
directions.
As a final example we will return to the GUESS strategy of LOPS which we now
reformulate in full generality replacing equality g=y by a more general “tau-
tology” predicate t(g,y). This formulation will also reflect the true nature of
GUESS. It is a transformation controlled by a set of parameters: the type of the
new variable g, its domain condition and the “tautology” predicate. Note that
for this the position of predicates and quantifiers had to be changed resulting in
a form equivalent to the one given in [Bib80].
Guess(A,dc,t)(sp)≡ <IN,OUT,IC, ∀g:A.dc(i,g)⇒ IOR(i,y)&(t(g,y)∨¬t(g,y))>

- where sp=<IN,OUT,IC,IOR>

The following theorem which may be considerd a reformulation of Theorem 4.6
gives clearer insights into the deductive behaviour the GUESS transformation.

Theorem 5.11 Properties of the GUESS-transformation

`∀sp:SPECIFICATIONS.∀A:TYPES.∀dc:FORMULAE(IN(sp)#A).∀t:FORMULAE(A#OUT(sp))
( Guess(A,dc,t) ∈C-TRANSFORMATIONS

⇐ SOLVABLE(<IN(sp),A,IC(sp),dc>)

& ( Guess(A,dc,t) ∈E-TRANSFORMATIONS
⇐ SOLVABLE(<IN(sp),A,IC(sp),dc>) & t ∈DFORMULAE(A#OUT(sp))

Thus GUESS is a correctness preserving transformation (only) if dc is a com-
putable predicate and it is equivalence preserving only if t is decidable which is
true in most practical cases. The previous version (Theorem 4.6) may now be
considered an instantiation of the above theorem in the AE framework which
can be constructed by applying Theorems 5.10 and 5.6.
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6 Conclusion

We have presented a unified framework for formal reasoning about deductive
mechanisms and their application domains as well and demonstrated how to
make use of such a framework. We have shown that it provides a means to
combine the strengths of the existing approaches to program synthesis. Due to a
complete formalization the concepts presented here can be directly implemented
with a proof system for the underlying theory. Such an implementation will help
to uncover issues we may have overlooked when first developing the theory on
paper and also yields verified implementations of strategies which have been
formally investigated.
Obviously this article can only be the starting point for a mechanized investiga-
tion of the programming process on a high level of abstraction. Many parts need
to be worked out in further detail. In particular, all components involved in the
programming process must be formalized to prove general correlations between
them. Embedding already existing approaches to program synthesis (like LOPS
[Bib80, BH84] or KIDS [SL89, SL90]) into our framework is another path to be
followed. Behind the KIDS system, for instance, there is already a theory which
proves its program construction methods correct on some mathematical level.
However, it lacks uniformity and formality and cannot say anything about the
actual implementation. Such gaps could be filled by formal investigations.
The principles discussed here are not restricted to the area of program construc-
tion. They can, as research on representing various logics in higher-order logic
[Pau87] indicates, be generalized to reasoning about other deductive mechanisms
as well.
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