The Nuprl Open Logical Environment

Stuart Allen, Robert Constable, Richard Eaton, Christoph Kreitz, Lori Lorigo

Department of Computer Science, Cornell University
Ithaca, NY 14853

THE NUPRL PROJECT I

e Computational Formal Logics
— Type Theory — logic + programming + data types
— Meta-reasoning, reflection — extensibility, stability

— Relating different logics

e Proof / Program Development Systems

— The Nuprl open Logical Programming Fnvironment — + interoperability

— The MetaPRL inference engine — speed, modularity

— Proof search techniques — proof automation

— Natural language generation from formal math — comprehensibility

— Automated complexity analysis — efficient results
e Applications:

— Formal mathematical textbook
— Hardware verification

— System verification and optimization

THE Nuprl OPEN LOGICAL ENVIRONMENT 1 STP

THE NUPRL TvYPE THEORY
AN INSTANCE OF MARTIN-LOF TYPE THEORY

e Constructive Higher-Order Logic

— Reasoning about types, members of types, propositions, functions . ..

e Functional Programming Language
— Polymorphic, partial recursive functions
— Similar to core ML

e Expressive Data Type System
— Function, Product, Disjoint Union, II- & X-types, Void, Top
— Integers, Atoms, Lists, Inductive Types
— Subsets, Subtyping, Quotient Types
— (dependent) Intersection, Union, Records
— Equality Type, Propositions as types, Universes

e Open-ended
— New types can be added

THE Nuprl OPEN LOGICAL ENVIRONMENT 2 STP

TERMS OF NUPRL’S TYPE THEORY I

Function Space S—=T, x:5-T Ax.t, ft
Product Space SXT, x:SXT (s,b), let @, yy=ein u

Disjoint Union S+T inl(s), inr(%),
case ¢ of inl(x) —u | inr(y) —v
Numbers y/A 0,1,-1,2,-2,..., s+t, s-t, s*t, s/t,
if a=b then s else t, + induction
Atoms Atom “token”, if a=b then s else t
Lists Slist [1, t::list, + induction
Subset {z:S5|Plx|} — some members of S —
[ntersection Nz:S.T x| — members that occur in all T[z] —
Union Uz:S. Tz — members that occur in some T[z] (consitency?) —
Quotient T,y :S// Elx,y] — members of S, new equality —
Inductive Types rectype x = S|x| — members of S, recursively unrolling —
Empty Type void — no members —
Equality s=tel Ax
Universes U, — types of level j —

J

THE Nuprl OPEN LOGICAL ENVIRONMENT 3 STP

DISTINGUISHING FEATURES OF NUPRL’S TYPE THEORY I

e Uniform Internal Notation
— No syntactical distinction between types, members, propositions . ..
— Independent term display allows “free syntax” ~» display forms

— User-defined extensions possible ~~ abstractions

e Separation between Expressions and Types
— No restriction on expressions that can be defined ~» Y combinator

— Expressions in proofs must be (top-level) typeable ~» “total” functions

e Refinement Calculus
— Top-down Sequent Calculus ~~ interactive proof development
— Proof expressions linked to inference rules ~» program extraction
— Computation rules

— User-defined inference rules ~~ tactics

THE Nuprl OPEN LOGICAL ENVIRONMENT 4 STP

THE NUPRL SYSTEM I

e Beginnings in 1984
— Nuprl 1 (Symbolics): proof & program refinement in Type Theory
— Book: Implementing Mathematics . . . (1986)

— Nuprl 2: Unix Version

e Nuprl 3: Mathematical Problem Solving
— Machine proof for unsolved problems (Girard’s paradox) (Howe 1987)

(Higman’s Lemma) (Murthy 1990)

® Nuprl 4: System Verification and Optimization
— Verification of a logic synthesis tool (Aagaard & Leeser 1993)
— Verification of the SCI cache coherency protocol (Howe 1996)

— Optimization of the Ensemble group communication system
(Kreitz, Hayden & Hickey 1999)

— Verification of Ensemble protocol layers (Bickford 1999)

THE Nuprl OPEN LOGICAL ENVIRONMENT 5 STP

Nuprl 4 SYSTEM FEATURES I

e Interactive Proof Editor ~~ readable proofs
e Flexible definition mechanism ~~ user-defined terms
e Customizable Term Display ~ flexible notation
e Structure Editor for Terms ~~ no ambiguities
e Tactics ~~ user-defined inferences

e Decision Procedures
e Proof objects, Program Extraction ~» program synthesis

e Program Evaluation

e Library mechanism ~~ user-theories
— Large mathematical libraries
— Large tactics collection

e HTMUL output generator ~ web accessibility

THE Nuprl OPEN LOGICAL ENVIRONMENT 6 STP

THE NEXT GENERATION: AN OPEN LoGICAL ENVIRONMENT I

Closed formal systems are not ready for future demands

e Platform for Cooperating Reasoning Systems
— Proof assistants
— Decision procedures
— Fully automatic theorem provers
— Proof planners
— Rewrite engines

— Model checkers
— Computer Algebra systems

e Nuprl 5 Design Objectives
— Interoperability
— Optimization of system productivity
— Accountability
— Information preservation
— Large scale object management

THE Nuprl OPEN LOGICAL ENVIRONMENT 7 STP

Evaluator

Maude

Evaluator

MetaPRL

Evaluator

SoS (Lisp)

Evaluator

THE Nuprl 5 ARCHITECTURE

GUI GUI

GUI

Library Infere_nce Nuprl
Engine
THEORY f
defs, thms, tactics Inference
rules, structure, code En g | ne MetaPRL
THEORY PRL THEORY Inference
defs, thms, tactics defs, thms, tactics En g | nhe HOL/SPIN
rules, structure, code rules, structure, code
Inference
THEORY I PVS
(HOL) THEORY (PVS) THEORY En g Ine
defs, thms, tactics defs, thms, tactics defs, thms, tactics
rules, structure, code rules, structure, code rules, structure, code
Inference O MEGA
Engine
Translator Translator
Java * OCaml *
THE Nuprl OPEN LOGICAL ENVIRONMENT 8 STP

KEY FEATURES | I

e Collection of Cooperating Processes
— Centered around a common knowledge base
— Refiners, interfaces, evaluators, etc. connect as independent processes
— Processes can connect and disconnect at any time
— Several users can work in parallel on the same formal theory

— A user can start several refiners in parallel

e Ability to Connect to External Systems
— MetaPRL (modularized PRL, multiple logics) (Hickey & Nogin, 1999)
— Jprover (a matrix-based intuitionistic theorem prover) (Schmitt & Lorigo, 2000)
— HOL (classical higher order logic) (Howe, 1998, Stehr & Naumov, 1999)

— Mathematica (Benzinger, 2000)

THE Nuprl OPEN LOGICAL ENVIRONMENT 9 STP

KEY FEATURES 11 I

e Library Organized as Persistent Data Base
— Transaction model (preserves data even in case of crashes)
— Version control mechanism
— Dependency tracking

e Reflective System Structure
— System designed within the system’s library
— Customizable structure

e Cooperating Inference Engines
— Asynchronous refinement
— Distributed theorem proving

e Multiple User Interfaces
— Structure editor for proofs, terms, and library navigation
— Collaborative proving while using favorite editor
— Web front end will allow external users to browse the library

+ Preservation of Nuprl 4 Capabilities and Libraries

THE Nuprl OPEN LOGICAL ENVIRONMENT 10 STP

APPLICATIONS OF NUPRL I

e Mathematics
— Number theory, real analysis, calculus
— Group theory, algebra
— Automata theory, computing theory

— Formal mathematical textbook (Constable, Allen 1999)

e Hardware Verification
- A 10giC SyﬂthGSiS tool (Aagaard & Leeser 1993)

— SCI cache coherency protocol (Howe 1996)

e Program Verification, Synthesis, and Optimization
— Synthesis of elementary algorithms: square-root, sorting, .
— Programming semantics & complexity analysis (Benzinger, 2000)

— Optimization and Verification of the Ensemble group communication system
(Kreitz, Bickford, Hayden, Hickey, Liu, van Renessee 1998-)

THE Nuprl OPEN LOGICAL ENVIRONMENT 11 STP

APPLICATION: BUILDING RELIABLE, HIGH-PERFORMANCE SYSTEMS I

Programming Environment Deductive System SPECIFICATION
OocCaml NuPRL / TYPE THEORY
SIMULATED
VERIFY PROOF
ENSEMBLE IMPORT N cNSEMBLE —
OPTIMIZE 1 TRANSFORM
FAST & SECURE RECONFIGURED PROOFE
——— EXPORT gt EEEEEEEEEEEEEEO0E > 8
ENSEMBLE ENSEMBLE o
n RECONFIGURATION

e Apply Formal Tools to Real Code
— Type-theoretical semantics for OCAML subset
— Automatic import and export of OCAML-code into NUPRL

e Reliability
— /O Automata model of Ensemble protocol specification
— Verification of total order protocol helped detect and fix subtle bug

e High-Performance
— Auotmatic optimization of Ensemble for common execution paths
— Performance improved by factor 3
— Guarantee for same functionality

THE Nuprl OPEN LOGICAL ENVIRONMENT 12 STP

CONCLUSION I

e Open Proof Environments are the way of the future
— No individual system is strong enough
— Many systems now connect external inference engines

® Nuprl 5 goes one step further
— Cooperating systems
— Support for joint formal theories

Inference
*—o . Nuprl
Evaluator Engine P
THEORY
Maude defs, thms, tactics Inference MetaPRL
. rules, structure, code En g ine eta
e 'uture Plans: Evaluator e
MetaPRL THEORY PRL Inference
defs, thms, tactics Engine HOL/SPIN
E |u ator rules, stuure, code
= T Inference | o
SoS (Lisp) L THEORY (Pvs) THEORY Engine
defs, thms, tactics defs, thms, tactics
Evaluator rules, structure, code Inference QMEGA
Engine

Translator

Java

Translator

OCaml

THE Nuprl OPEN LOGICAL ENVIRONMENT 13 STP

