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NUPRL’S TYPE THEORY I

e Logic for constructive reasoning

e Open-ended, expressive data type system

— Function, product, disjoint union, II- & X-types, atoms ~> programming
— Integers, lists, inductive types ~» inductive definition
— Propositions as types, equality type, void, top, universes ~ logic
— Subsets, subtyping, quotient types ~» mathematics
— (Dependent) intersection, union, records ~»> modules, program composition

New types can be added as needed

e Uniform internal notation 4 “free syntax” ~ dispiay forms

e Refinement calculus
- TOp—dOWIl sequent calculus ~~ interactive proof development

e User-defined extensions possible
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THE NUPRL SYSTEM I
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e Interactive proof development system
— Supports constructive proofs and program extraction
— Some automation by tactics and two decision procedures
— Flexible definition mechanism with customizable term display

e Open architecture supports cooperation
— Collection of cooperating processes
— Centered around a common knowledge base
— Connection to external systems possible (MetaPRL, JProver)
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THE NEED FOR PROOF AUTOMATION I

Programming

e Nuprl successful in many applications
— Verification of communication protocols

Logic Communication

— Optimization of Ensemble protocol stacks
— Formal design of adaptive systems

Secure software infrastructure

... but automatic support still too weak
— How to solve conceptually simple proof goals automatically?
— How to decide well-understood problem domains effectively?

. while there are many successful proof mechanisms
— First-order theorem proving
— Strategies for inductive theorem proving
— Proof planning on the meta-level

— Decision procedures for certain application domains
— Model checking
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JProver I
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e Proof Strategy: ~_
0
— Augment formula tree by —~ ag
tableaux types, and polarities . _TAvoB=-Bvo4

— Identify connections between leaves (same literal, opposite polarity)
— Paths through matrix-representation must have complementary connection

— Validity check reduced to path checking 4 unification

e Integration Issues:

ax. ax.

AFA" BFB "
— Relation between matrix proof and sequent proof  ~4.AF =B BF
— Connection between JProver and Nuprl system —AvoBESB A

—Av—BF -Bv—A

F~Av-B= -Bv-A
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INTEGRATING Jprover AND Nuprl I

Subgoal
Sequent

NuPRL
Sequent Proof

J

List of
Sequent

Formulas

E Nuprl

List of
Sequent Rules

L ogic module
for Nuprl

e Connect as external proof engine
— Code module for communicating with Nuprl

+ Logic module for interpeting Nuprl formulas
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+ Conversions: sequents — formulas, matrix proof — sequent proof

e Possible improvements:
— Processing type information during unification

— Multiplicities: when to stop creating instances of quantified formulas

— Adapting problem reduction techniques from classical provers
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CAN THE METHOD FOR INTEGRATING JProver

BE ADAPTED TO OTHER ATP TECHNIQUES?

e Implementation as independent proof engine
— Use existing procedure in “foreign” prover

— or reimplementation as MetaPRL code module

e Explore semantical link to type theory

e Build separate module for integration
— Code for communicating with Nuprl’s library

— Conversions between different term /proof structures
or “trusted mode” if proof has no computational content

Some mechanisms may require a different approach
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INDUCTIVE THEOREM PROVING WITH RIPPLING/COLORING |

e Annotated rewriting for induction step  sundy, Hutter, .

e Proof Strategy:
— Use domain-specific rewrite rules (defining equations)
— Annotate induction hypothesis and conclusion

— Rewriting of conclusion and hypothesis must reduce measure

and result in the same term

R R R R R R
C —Cy— ... —Cjr— ... —C,,— H

/Vk/

rippling reverse rippling

e Integration issues
— Relation between rewrite steps and logical inferences

— Rewriting weak when quantifiers are involved (logically incomplete)
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INTEGRATION OF RIPPLING/COLORING |

7?7 Use Clam system as external proof planner
— Clam guides proof tactics in Oyster, a variant of PaRL
— Convert rewrite sequence into equality substitutions or implications

7 Extended rippling strategy as Nuprl tactic Pientka ...

— Analyze proof goal on meta-level
using limited logical decomposition with meta-variables for quantifiers

— Use rippling sequence to generate list of inference steps

Some successful experiments but still logically incomplete

7! Integrate into JProver
— Weaken complementarity to allow extending unification by rippling
— Tailor path-checking to check orthogonal connections first
— Add constraint c if proof part fails and check validity for —¢
— Adapt JProver’s conversion mechanism

Logically complete
Theoretically explored but not yet implemented
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PROOF PLANNING I

e Automatically develop and refine proof sketch

o PI‘OOf Strategy: Clam, Qmega ...

— Provide plan operators (actions) that specify macro steps (tactics)
Action = premise + conclusion + application constraint + proof schema

— Use STRIPS-style planning mechanisms to develop high-level proof plan
— Refine proof plan during execution

e Integration issues
— Relation between proof plan and primitive inferences/tactics
— Combining planning with domain knowledge (definitions/lemmata)
— Expressing domain-specific forms of reasoning as plan control knowledge
— How to get the relevant knowledge from the library to the planner?
— How to integrate constraint solving?

e Proof planning is still very limited
— Specialized proof planners not widely applicable

Could we use more efficient generic planning techniques instead?
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DECISION PROCEDURES I

e Decide problems in limited application domain
— Equality reasoning
— Congruence closure
— Subsets of arithmetic

— List / Tree / Graph / Array theories

e Proof Strategy:
— Translating problem into different problem domain
— Use well-known decision algorithms

e Integration issues:
— Can we connect only to the refiner of PVS, SVC, etc.?
— Can the result be trusted (is it consistent with type theory)?
— What is the constructive content of the proof?
— Which subterms have to be proven wellformed?
— Cooperating decision procedures a’la Nelson/Oppen or Shostak?
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MODEL CHECKING I

e Explore state transition graph to find countermodels

e Proof Strategy:

— Express system as (finite but huge) state transition graph M
and system specification F' in temporal logic

— Explore graph to find all states s such that M, s = F.
— Return true or countermodel for F
— State explosion solved by problem-reduction (symmetry, BDD’s; ...)

e Very efficient
— Successtully used in checking hardware system specifications
— Applies also to software: separate “finite” components from loops STeP ...

e Integration as trusted external prover? SMV ...

— Convert representation of software in I'T'T into temporal logic
+ computation tree logic (= propositional logic + path-temporal operators)

— Constructive content of a proot? — well-formedness issues?

or conversion into propositional ~»SAT problem?
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OTHER TECHNIQUES I

e Patching faulty proofs

e General rewriting and narrowing

e Computer Algebra (via proof planning)
e Distributed & cooperating proof engines

e Machine learning
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