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Nuprl’s Type Theory

• Logic for constructive reasoning

• Open-ended, expressive data type system
– Function, product, disjoint union, Π- & Σ-types, atoms ; programming

– Integers, lists, inductive types ; inductive definition

– Propositions as types, equality type, void, top, universes ; logic

– Subsets, subtyping, quotient types ; mathematics

– (Dependent) intersection, union, records ; modules, program composition

New types can be added as needed

• Uniform internal notation + “free syntax” ; display forms

• Refinement calculus
– Top-down sequent calculus ; interactive proof development

• User-defined extensions possible
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The Nuprl System
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• Interactive proof development system
– Supports constructive proofs and program extraction

– Some automation by tactics and two decision procedures

– Flexible definition mechanism with customizable term display

• Open architecture supports cooperation
– Collection of cooperating processes

– Centered around a common knowledge base

– Connection to external systems possible (MetaPRL, JProver)
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The Need for Proof Automation

• Nuprl successful in many applications
/RJLF/RJLF &RPPXQLFDWLRQ&RPPXQLFDWLRQ

3URJUDPPLQJ3URJUDPPLQJ

6HFXU � VRIWZDU � LQIUDVWUXFWXUH6HFXU � VRIWZDU � LQIUDVWUXFWXUH

– Verification of communication protocols

– Optimization of Ensemble protocol stacks

– Formal design of adaptive systems
...

. . . but automatic support still too weak
– How to solve conceptually simple proof goals automatically?

– How to decide well-understood problem domains effectively?

. . . while there are many successful proof mechanisms
– First-order theorem proving

– Strategies for inductive theorem proving

– Proof planning on the meta-level

– Decision procedures for certain application domains

– Model checking
...
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JProver

• Complete theorem prover for

first-order intuitionistic logic
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• Proof Strategy:

– Augment formula tree by

tableaux types, and polarities

– Identify connections between leaves (same literal, opposite polarity)

– Paths through matrix-representation must have complementary connection

– Validity check reduced to path checking + unification

• Integration Issues:

– Relation between matrix proof and sequent proof

– Connection between JProver and Nuprl system
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Integrating Jprover and Nuprl
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• Connect as external proof engine
– Code module for communicating with Nuprl

+ Logic module for interpeting Nuprl formulas

+ Conversions: sequents 7→ formulas, matrix proof 7→ sequent proof

• Possible improvements:
– Processing type information during unification

– Multiplicities: when to stop creating instances of quantified formulas

– Adapting problem reduction techniques from classical provers
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Can the method for integrating JProver

be adapted to other ATP techniques?

• Implementation as independent proof engine

– Use existing procedure in “foreign” prover

– or reimplementation as MetaPRL code module

• Explore semantical link to type theory

• Build separate module for integration

– Code for communicating with Nuprl’s library

– Conversions between different term/proof structures

or “trusted mode” if proof has no computational content

Some mechanisms may require a different approach
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Inductive Theorem Proving with Rippling/Coloring

• Annotated rewriting for induction step Bundy, Hutter, . . .

• Proof Strategy:

– Use domain-specific rewrite rules (defining equations)

– Annotate induction hypothesis and conclusion

– Rewriting of conclusion and hypothesis must reduce measure

and result in the same term
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• Integration issues

– Relation between rewrite steps and logical inferences

– Rewriting weak when quantifiers are involved (logically incomplete)
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Integration of Rippling/Coloring

? Use Clam system as external proof planner
– Clam guides proof tactics in Oyster, a variant of PeaRL

– Convert rewrite sequence into equality substitutions or implications

? Extended rippling strategy as Nuprl tactic Pientka . . .

– Analyze proof goal on meta-level
using limited logical decomposition with meta-variables for quantifiers

– Use rippling sequence to generate list of inference steps

Some successful experiments but still logically incomplete

?! Integrate into JProver
– Weaken complementarity to allow extending unification by rippling

– Tailor path-checking to check orthogonal connections first

– Add constraint c if proof part fails and check validity for ¬c

– Adapt JProver’s conversion mechanism

Logically complete

Theoretically explored but not yet implemented
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Proof Planning

• Automatically develop and refine proof sketch

• Proof Strategy: Clam, Ωmega . . .

– Provide plan operators (actions) that specify macro steps (tactics)
Action = premise + conclusion + application constraint + proof schema

– Use STRIPS-style planning mechanisms to develop high-level proof plan

– Refine proof plan during execution

• Integration issues
– Relation between proof plan and primitive inferences/tactics

– Combining planning with domain knowledge (definitions/lemmata)

– Expressing domain-specific forms of reasoning as plan control knowledge

– How to get the relevant knowledge from the library to the planner?

– How to integrate constraint solving?

• Proof planning is still very limited
– Specialized proof planners not widely applicable

Could we use more efficient generic planning techniques instead?
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Decision Procedures

• Decide problems in limited application domain
– Equality reasoning

– Congruence closure

– Subsets of arithmetic

– List / Tree / Graph / Array theories
...

• Proof Strategy:
– Translating problem into different problem domain

– Use well-known decision algorithms

• Integration issues:
– Can we connect only to the refiner of PVS, SVC, etc.?

– Can the result be trusted (is it consistent with type theory)?

– What is the constructive content of the proof?

– Which subterms have to be proven wellformed?

– Cooperating decision procedures a’la Nelson/Oppen or Shostak?
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Model Checking

• Explore state transition graph to find countermodels

• Proof Strategy:
– Express system as (finite but huge) state transition graph M

and system specification F in temporal logic

– Explore graph to find all states s such that M, s |= F .

– Return true or countermodel for F

– State explosion solved by problem-reduction (symmetry, BDD’s, ...)

• Very efficient
– Successfully used in checking hardware system specifications

– Applies also to software: separate “finite” components from loops STeP . . .

• Integration as trusted external prover? SMV . . .

– Convert representation of software in ITT into temporal logic
+ computation tree logic (= propositional logic + path-temporal operators)

– Constructive content of a proof? — well-formedness issues?

or conversion into propositional ;SAT problem?
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Other Techniques

• Patching faulty proofs

• General rewriting and narrowing

• Computer Algebra (via proof planning)

• Distributed & cooperating proof engines

• Machine learning

...


