
Proof Automation in Constructive Type Theory

Christoph Kreitz

Proof Automation in Constructive Type Theory 1 PRL Seminar, September 2001

Nuprl’s Type Theory

• Logic for constructive reasoning

• Open-ended, expressive data type system
– Function, product, disjoint union, Π- & Σ-types, atoms ; programming

– Integers, lists, inductive types ; inductive definition

– Propositions as types, equality type, void, top, universes ; logic

– Subsets, subtyping, quotient types ; mathematics

– (Dependent) intersection, union, records ; modules, program composition

New types can be added as needed

• Uniform internal notation + “free syntax” ; display forms

• Refinement calculus
– Top-down sequent calculus ; interactive proof development

• User-defined extensions possible

Proof Automation in Constructive Type Theory 2 PRL Seminar, September 2001

The Nuprl System

GUI

Evaluator

Translator

GUI GUI

Evaluator

Evaluator

Evaluator

Translator

Inference
Engine

Inference
Engine

Inference
Engine

Inference
Engine

Inference
Engine

Java OCaml

Maude

MetaPRL

SoS (Lisp)

Nuprl-5 Web

Library Nuprl

HOL/SPIN

MetaPRL

PVS

MEGAΩ

PRL

(PVS)(HOL)

....

....

....THEORY

defs, thms, tactics
rules, structure, code

rules, structure, code

rules, structure, code
defs, thms, tactics defs, thms, tactics

rules, structure, code

rules, structure, code
defs, thms, tactics

rules, structure, code
defs, thms, tactics

defs, thms, tactics

THEORY

THEORY

THEORY THEORY

THEORY

• Interactive proof development system
– Supports constructive proofs and program extraction

– Some automation by tactics and two decision procedures

– Flexible definition mechanism with customizable term display

• Open architecture supports cooperation
– Collection of cooperating processes

– Centered around a common knowledge base

– Connection to external systems possible (MetaPRL, JProver)

Proof Automation in Constructive Type Theory 3 PRL Seminar, September 2001

The Need for Proof Automation

• Nuprl successful in many applications
/RJLF/RJLF &RPPXQLFDWLRQ&RPPXQLFDWLRQ

3URJUDPPLQJ3URJUDPPLQJ

6HFXU � VRIWZDU � LQIUDVWUXFWXUH6HFXU � VRIWZDU � LQIUDVWUXFWXUH

– Verification of communication protocols

– Optimization of Ensemble protocol stacks

– Formal design of adaptive systems
...

. . . but automatic support still too weak
– How to solve conceptually simple proof goals automatically?

– How to decide well-understood problem domains effectively?

. . . while there are many successful proof mechanisms
– First-order theorem proving

– Strategies for inductive theorem proving

– Proof planning on the meta-level

– Decision procedures for certain application domains

– Model checking
...

Proof Automation in Constructive Type Theory 4 PRL Seminar, September 2001

JProver

• Complete theorem prover for

first-order intuitionistic logic

¬A ∨¬B ⇒ ¬B ∨¬A

⇒0
α

a0

∨
1

β

a1

¬1
α

a2

A0

a3

¬1
α

a4

B0

a5

∨
0

α

a6

¬0
α

a7

B1

a8

¬0
α

a9

A1

a10

• Proof Strategy:

– Augment formula tree by

tableaux types, and polarities

– Identify connections between leaves (same literal, opposite polarity)

– Paths through matrix-representation must have complementary connection

– Validity check reduced to path checking + unification

• Integration Issues:

– Relation between matrix proof and sequent proof

– Connection between JProver and Nuprl system

A ` A
ax .

¬A, A ` ¬l

¬A ` ¬B,¬A
¬r

B ` B
ax .

¬B, B ` ¬l

¬B ` ¬B,¬A
¬r

¬A ∨¬B ` ¬B,¬A
∨ l

¬A ∨¬B ` ¬B ∨¬A
∨r

` ¬A ∨¬B ⇒¬B ∨¬A
⇒ r

Proof Automation in Constructive Type Theory 5 PRL Seminar, September 2001

Integrating Jprover and Nuprl

JP
rover

Nuprl
for Nuprl

M
athB

us

Logic module

Sequent

Sequent Proof
NuPRL

Sequent Rules
List of

Preprocess

Postprocess

Sequent
Formulas

Sequent Proof
First-Order

List of

Matrix Proof

Prover

Converter

Formula Trees

List of Subgoal

• Connect as external proof engine
– Code module for communicating with Nuprl

+ Logic module for interpeting Nuprl formulas

+ Conversions: sequents 7→ formulas, matrix proof 7→ sequent proof

• Possible improvements:
– Processing type information during unification

– Multiplicities: when to stop creating instances of quantified formulas

– Adapting problem reduction techniques from classical provers

Proof Automation in Constructive Type Theory 6 PRL Seminar, September 2001

Can the method for integrating JProver

be adapted to other ATP techniques?

• Implementation as independent proof engine

– Use existing procedure in “foreign” prover

– or reimplementation as MetaPRL code module

• Explore semantical link to type theory

• Build separate module for integration

– Code for communicating with Nuprl’s library

– Conversions between different term/proof structures

or “trusted mode” if proof has no computational content

Some mechanisms may require a different approach

Proof Automation in Constructive Type Theory 7 PRL Seminar, September 2001

Inductive Theorem Proving with Rippling/Coloring

• Annotated rewriting for induction step Bundy, Hutter, . . .

• Proof Strategy:

– Use domain-specific rewrite rules (defining equations)

– Annotate induction hypothesis and conclusion

– Rewriting of conclusion and hypothesis must reduce measure

and result in the same term

rippling reverse rippling

* Y

C
R

7−→ C0
R

7−→ . . .
R

7−→ Ci

R
7−→ . . .

R
7−→ Cn

R
7−→ H

• Integration issues

– Relation between rewrite steps and logical inferences

– Rewriting weak when quantifiers are involved (logically incomplete)

Proof Automation in Constructive Type Theory 8 PRL Seminar, September 2001

Integration of Rippling/Coloring

? Use Clam system as external proof planner
– Clam guides proof tactics in Oyster, a variant of PeaRL

– Convert rewrite sequence into equality substitutions or implications

? Extended rippling strategy as Nuprl tactic Pientka . . .

– Analyze proof goal on meta-level
using limited logical decomposition with meta-variables for quantifiers

– Use rippling sequence to generate list of inference steps

Some successful experiments but still logically incomplete

?! Integrate into JProver
– Weaken complementarity to allow extending unification by rippling

– Tailor path-checking to check orthogonal connections first

– Add constraint c if proof part fails and check validity for ¬c

– Adapt JProver’s conversion mechanism

Logically complete

Theoretically explored but not yet implemented

Proof Automation in Constructive Type Theory 9 PRL Seminar, September 2001

Proof Planning

• Automatically develop and refine proof sketch

• Proof Strategy: Clam, Ωmega . . .

– Provide plan operators (actions) that specify macro steps (tactics)
Action = premise + conclusion + application constraint + proof schema

– Use STRIPS-style planning mechanisms to develop high-level proof plan

– Refine proof plan during execution

• Integration issues
– Relation between proof plan and primitive inferences/tactics

– Combining planning with domain knowledge (definitions/lemmata)

– Expressing domain-specific forms of reasoning as plan control knowledge

– How to get the relevant knowledge from the library to the planner?

– How to integrate constraint solving?

• Proof planning is still very limited
– Specialized proof planners not widely applicable

Could we use more efficient generic planning techniques instead?

Proof Automation in Constructive Type Theory 10 PRL Seminar, September 2001

Decision Procedures

• Decide problems in limited application domain
– Equality reasoning

– Congruence closure

– Subsets of arithmetic

– List / Tree / Graph / Array theories
...

• Proof Strategy:
– Translating problem into different problem domain

– Use well-known decision algorithms

• Integration issues:
– Can we connect only to the refiner of PVS, SVC, etc.?

– Can the result be trusted (is it consistent with type theory)?

– What is the constructive content of the proof?

– Which subterms have to be proven wellformed?

– Cooperating decision procedures a’la Nelson/Oppen or Shostak?

Proof Automation in Constructive Type Theory 11 PRL Seminar, September 2001

Model Checking

• Explore state transition graph to find countermodels

• Proof Strategy:
– Express system as (finite but huge) state transition graph M

and system specification F in temporal logic

– Explore graph to find all states s such that M, s |= F .

– Return true or countermodel for F

– State explosion solved by problem-reduction (symmetry, BDD’s, ...)

• Very efficient
– Successfully used in checking hardware system specifications

– Applies also to software: separate “finite” components from loops STeP . . .

• Integration as trusted external prover? SMV . . .

– Convert representation of software in ITT into temporal logic
+ computation tree logic (= propositional logic + path-temporal operators)

– Constructive content of a proof? — well-formedness issues?

or conversion into propositional ;SAT problem?

Proof Automation in Constructive Type Theory 12 PRL Seminar, September 2001

Other Techniques

• Patching faulty proofs

• General rewriting and narrowing

• Computer Algebra (via proof planning)

• Distributed & cooperating proof engines

• Machine learning

...

