Theoretische Informatik I

Wintersemester 2006/07

Christoph Kreitz / Kirstin Peters

Theoretische Informatik

kreitz@cs.uni-potsdam.de
 peters.kirstin@web.de

http://www.cs.uni-potsdam.de/ti/lehre/06-Theorie-I

- 1. Lehrziele und Lernformen
- 2. Lehrinhalte
- 3. Das Team
- 4. Organisatorisches
- 5. Gedanken zur Arbeitsethik

Lernen ist wie eine Bergbesteigung

THEORETISCHE INFORMATIK I

EINFÜHBUNG

Lernen ist wie eine Bergbesteigung

- Schule entspricht einem Wanderweg bis zur Alm
 - Breit, gut beschildert, langsamer Anstieg
 - Etwas anstrengend aber ohne nennenswerte Schwierigkeiten
 - Sie sehen den Gipfel in der Ferne, erreichen ihn aber nicht

Lernen ist wie eine Bergbesteigung

• Schule entspricht einem Wanderweg bis zur Alm

- Breit, gut beschildert, langsamer Anstieg
- Etwas anstrengend aber ohne nennenswerte Schwierigkeiten
- Sie sehen den Gipfel in der Ferne, erreichen ihn aber nicht

- Ein Gewirr von Wegen, steil, anstrengend und z.T. risikoreich
- Bergführer können Ihnen mit Rat und Ausrüstung helfen

Lernen ist wie eine Bergbesteigung

• Schule entspricht einem Wanderweg bis zur Alm

- Breit, gut beschildert, langsamer Anstieg
- Etwas anstrengend aber ohne nennenswerte Schwierigkeiten
- Sie sehen den Gipfel in der Ferne, erreichen ihn aber nicht

- Ein Gewirr von Wegen, steil, anstrengend und z.T. risikoreich
- Bergführer können Ihnen mit Rat und Ausrüstung helfen
- Bevor es losgeht, zeigt man Ihnen die wichtigsten Klettertechniken

Lernen ist wie eine Bergbesteigung

• Schule entspricht einem Wanderweg bis zur Alm

- Breit, gut beschildert, langsamer Anstieg
- Etwas anstrengend aber ohne nennenswerte Schwierigkeiten
- Sie sehen den Gipfel in der Ferne, erreichen ihn aber nicht

- Ein Gewirr von Wegen, steil, anstrengend und z.T. risikoreich
- Bergführer können Ihnen mit Rat und Ausrüstung helfen
- Bevor es losgeht, zeigt man Ihnen die wichtigsten Klettertechniken
- Für den eigentlichen Aufstieg wählen Sie Weg und Begleiter selbst aus

Lernen ist wie eine Bergbesteigung

• Schule entspricht einem Wanderweg bis zur Alm

- Breit, gut beschildert, langsamer Anstieg
- Etwas anstrengend aber ohne nennenswerte Schwierigkeiten
- Sie sehen den Gipfel in der Ferne, erreichen ihn aber nicht

- Ein Gewirr von Wegen, steil, anstrengend und z.T. risikoreich
- Bergführer können Ihnen mit Rat und Ausrüstung helfen
- Bevor es losgeht, zeigt man Ihnen die wichtigsten Klettertechniken
- Für den eigentlichen Aufstieg wählen Sie Weg und Begleiter selbst aus
- Das anstrengende Klettern kann Ihnen niemand abnehmen
- Manchmal übersteigt ein Pfad Ihre Kräfte und Sie müssen neu planen

Lernen ist wie eine Bergbesteigung

• Schule entspricht einem Wanderweg bis zur Alm

- Breit, gut beschildert, langsamer Anstieg
- Etwas anstrengend aber ohne nennenswerte Schwierigkeiten
- Sie sehen den Gipfel in der Ferne, erreichen ihn aber nicht

- Ein Gewirr von Wegen, steil, anstrengend und z.T. risikoreich
- Bergführer können Ihnen mit Rat und Ausrüstung helfen
- Bevor es losgeht, zeigt man Ihnen die wichtigsten Klettertechniken
- Für den eigentlichen Aufstieg wählen Sie Weg und Begleiter selbst aus
- Das anstrengende Klettern kann Ihnen niemand abnehmen
- Manchmal übersteigt ein Pfad Ihre Kräfte und Sie müssen neu planen
- Am Ende stehen Sie oben auf dem Gipfel ... ein echtes Erfolgserlebnis

• Ihnen begegnen ständig neue Denkweisen

- Ihnen begegnen ständig neue Denkweisen
- Zu Beginn sehr grundlagenorientiert

- Ihnen begegnen ständig neue Denkweisen
- Zu Beginn sehr grundlagenorientiert
- Erheblich steilerer Anstieg, höheres Niveau

- Ihnen begegnen ständig neue Denkweisen
- Zu Beginn sehr grundlagenorientiert
- Erheblich steilerer Anstieg, höheres Niveau
- Angebote statt Zwang und Anwesenheitspflicht

- Ihnen begegnen ständig neue Denkweisen
- Zu Beginn sehr grundlagenorientiert
- Erheblich steilerer Anstieg, höheres Niveau
- Angebote statt Zwang und Anwesenheitspflicht
- Sie entscheiden allein, was Sie tun

- Ihnen begegnen ständig neue Denkweisen
- Zu Beginn sehr grundlagenorientiert
- Erheblich steilerer Anstieg, höheres Niveau
- Angebote statt Zwang und Anwesenheitspflicht
- Sie entscheiden allein, was Sie tun

Eigenverantwortung und Selbstdisziplin erforderlich

• Selbständigkeit

Theoretische Informatik I

3

Einführung.

- Selbständigkeit
- Verantwortungsbewusstsein

- Selbständigkeit
- Verantwortungsbewusstsein
- Berufsqualifikation

- Selbständigkeit
- Verantwortungsbewusstsein
- Berufsqualifikation
- Teamfähigkeit

- Selbständigkeit
- Verantwortungsbewusstsein
- Berufsqualifikation
- Teamfähigkeit
- Qualifikation zur wissenschaftlichen Arbeit

- Selbständigkeit
- Verantwortungsbewusstsein
- Berufsqualifikation
- Teamfähigkeit
- Qualifikation zur wissenschaftlichen Arbeit
- ... am Ende besser als wir!

- Selbständigkeit
- Verantwortungsbewusstsein
- Berufsqualifikation
- Teamfähigkeit
- Qualifikation zur wissenschaftlichen Arbeit
- ... am Ende besser als wir!

Eigenständiges Lernen unter Anleitung

Lehr- und Lernformen

• Selbststudium ist das wichtigste

- Lernen durch Bearbeitung verschiedener Quellen (Literatur, Web,...)
- Trainieren durch Lösung von leichten und schweren Beispielaufgaben alleine und im Team mit anderen
- Nachweis von Fähigkeiten in Prüfungen und Projekten
- Ziel ist Verständnis eines Themengebiets (nicht nur der Vorlesung)
- Unsere Aufgabe ist, Ihnen dabei zu helfen

Lehr- und Lernformen

• Selbststudium ist das wichtigste

- Lernen durch Bearbeitung verschiedener Quellen (Literatur, Web,...)
- Trainieren durch Lösung von leichten und schweren Beispielaufgaben alleine und im Team mit anderen
- Nachweis von Fähigkeiten in Prüfungen und Projekten
- Ziel ist Verständnis eines Themengebiets (nicht nur der Vorlesung)
- Unsere Aufgabe ist, Ihnen dabei zu helfen

Vorlesung

Was soll ich lernen?

- Vorstellung und Illustration zentraler Konzepte und Zusammenhänge
- Knapp und "unvollständig" nur als Heranführung gedacht
- Die Idee (Verstehen) zählt mehr als das Detail (Aufschreiben)
- Es hilft, schon etwas über das Thema im Voraus zu lesen
- Stellen Sie Fragen, wenn Ihnen etwas unklar ist!!
- Nutzen Sie das optionale Tutorium

zweiwöchentlich Do 11:00-12:30

Lehr- und Lernformen (II)

• Übungen

Vertiefung und Anwendung

- Kurzquiz als Selbsttest verstehe ich die Konzepte?
- Betreutes Üben in Gruppen: Bearbeitung von Aufgaben unter Anleitung
- Klärung von Fragen allgemeinen Interesses
- Bearbeitung von aufwändigeren Hausaufgaben: Feedback & Korrektur
 - · Ziel ist verständliches Aufschreiben einer vollständigen Lösung
 - · Arbeit in Gruppen sehr zu empfehlen
- Selbst aktiv werden ist notwendig für erfolgreiches Lernen
- Kommen Sie vorbereitet Sie lernen mehr dabei

LEHR- UND LERNFORMEN (II)

• Übungen

Vertiefung und Anwendung

- Kurzquiz als Selbsttest verstehe ich die Konzepte?
- Betreutes Üben in Gruppen: Bearbeitung von Aufgaben unter Anleitung
- Klärung von Fragen allgemeinen Interesses
- Bearbeitung von aufwändigeren Hausaufgaben: Feedback & Korrektur
 - · Ziel ist verständliches Aufschreiben einer vollständigen Lösung
 - · Arbeit in Gruppen sehr zu empfehlen
- Selbst aktiv werden ist notwendig für erfolgreiches Lernen
- Kommen Sie vorbereitet Sie lernen mehr dabei

Sprechstunden

Persönliche Beratung

- Fachberatung zur Optimierung des individuellen Lernstils
- Klärung von Schwierigkeiten mit der Thematik
 ... aber nicht Lösung der Hausaufgaben
- Auch sinnvoll für bessere Studenten, die Herausforderungen suchen

• Problemstellungen

- Präzisierung: Wie beschreibt man Probleme?
- Berechenbarkeit: Ist ein Problem überhaupt lösbar?
- Effizienz: Ist ein Problem schwer oder leicht lösbar?

Problemstellungen

- Präzisierung: Wie beschreibt man Probleme?
- Berechenbarkeit: Ist ein Problem überhaupt lösbar?
- Effizienz: Ist ein Problem schwer oder leicht lösbar?

• Algorithmen: abstrakte Lösungsmethoden

- Was ist ein Algorithmus und welche Beschreibungsformen gibt es?
- Welche Merkmale und Eigenschaften haben Algorithmen?
- Wie kann man sicherstellen, daß eine Lösung korrekt ist?

Problemstellungen

- Präzisierung: Wie beschreibt man Probleme?
- Berechenbarkeit: Ist ein Problem überhaupt lösbar?
- Effizienz: Ist ein Problem schwer oder leicht lösbar?

• Algorithmen: abstrakte Lösungsmethoden

- Was ist ein Algorithmus und welche Beschreibungsformen gibt es?
- Welche Merkmale und Eigenschaften haben Algorithmen?
- Wie kann man sicherstellen, daß eine Lösung korrekt ist?

• Programme: konkrete Lösungsvorschriften

- Syntax: Wie kann man Sprachen beschreiben, erkennen und erzeugen?
- Semantik: wie beschreibt man die Bedeutung von Programmen
- Wie flexibel kann man eine Programmiersprache gestalten?

• Problemstellungen

- Präzisierung: Wie beschreibt man Probleme?
- Berechenbarkeit: Ist ein Problem überhaupt lösbar?
- Effizienz: Ist ein Problem schwer oder leicht lösbar?

• Algorithmen: abstrakte Lösungsmethoden

- Was ist ein Algorithmus und welche Beschreibungsformen gibt es?
- Welche Merkmale und Eigenschaften haben Algorithmen?
- Wie kann man sicherstellen, daß eine Lösung korrekt ist?

• Programme: konkrete Lösungsvorschriften

- Syntax: Wie kann man Sprachen beschreiben, erkennen und erzeugen?
- Semantik: wie beschreibt man die Bedeutung von Programmen
- Wie flexibel kann man eine Programmiersprache gestalten?

• Maschinen: Ausführung von "Berechnungen"

- Welche grundsätzlichen Typen und Merkmale von Maschinen gibt es?
- Was können bestimmte Maschinentypen leisten?

THEMEN DER THEORETISCHEN INFORMATIK

• Automatentheorie und Formale Sprachen

- Endliche Automaten und Reguläre Sprachen Lexikalische Analyse
- Kontextfreie Sprachen und Pushdown Automaten Syntaxanalyse
- Turingmaschinen und allgemeine formale Sprachen

Themen der Theoretischen Informatik

• Automatentheorie und Formale Sprachen

TI-1

- Endliche Automaten und Reguläre Sprachen Lexikalische Analyse
- Kontextfreie Sprachen und Pushdown Automaten Syntaxanalyse
- Turingmaschinen und allgemeine formale Sprachen

• Theorie der Berechenbarkeit

TI-2

- Berechenbarkeitsmodelle
- Aufzählbarkeit, Entscheidbarkeit, Unlösbare Probleme

Themen der Theoretischen Informatik

• Automatentheorie und Formale Sprachen

TI-1

- Endliche Automaten und Reguläre Sprachen Lexikalische Analyse
- Kontextfreie Sprachen und Pushdown Automaten Syntaxanalyse
- Turingmaschinen und allgemeine formale Sprachen

• Theorie der Berechenbarkeit

TI-2

- Berechenbarkeitsmodelle
- Aufzählbarkeit, Entscheidbarkeit, Unlösbare Probleme

• Komplexitätstheorie

TI-2

- Komplexitätsmaße und -klassen für Algorithmen und Probleme
- Nicht handhabbare Probleme (NP-Vollständigkeit)
- Effiziente Alternativen zu konventionellen Verfahren

- Reihenfolge und Notation folgt Leittext
 - J. Hopcroft, R. Motwani, J. Ullman: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie, Pearson 2002

• Reihenfolge und Notation folgt Leittext

- J. Hopcroft, R. Motwani, J. Ullman: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie, Pearson 2002
- Vorlesungsfolien sind im Voraus auf dem Webserver erhältlich

• Reihenfolge und Notation folgt Leittext

- J. Hopcroft, R. Motwani, J. Ullman: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie, Pearson 2002
- Vorlesungsfolien sind im Voraus auf dem Webserver erhältlich

• Lesenswerte Zusatzliteratur

- G. Vossen, K.-U. Witt: Grundkurs Theoretische Informatik. Vieweg 2004
- P. Leypold: Schneller Studieren. Pearson 2005
- M. Sipser: Introduction to the Theory of Computation. PWS 1997
- A. Asteroth, C. Baier: Theoretische Informatik, Pearson 2002

• Reihenfolge und Notation folgt Leittext

- J. Hopcroft, R. Motwani, J. Ullman: Einführung in die Automatentheorie, Formale Sprachen und Komplexitätstheorie, Pearson 2002
- Vorlesungsfolien sind im Voraus auf dem Webserver erhältlich

• Lesenswerte Zusatzliteratur

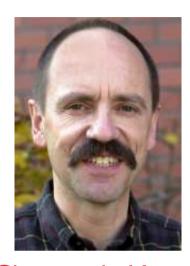
- G. Vossen, K.-U. Witt: Grundkurs Theoretische Informatik. Vieweg 2004
- P. Leypold: Schneller Studieren. Pearson 2005
- M. Sipser: Introduction to the Theory of Computation. PWS 1997
- A. Asteroth, C. Baier: Theoretische Informatik, Pearson 2002
- I. Wegener: Theoretische Informatik, Teubner Verlag 1993
- U. Schöning: Theoretische Informatik kurzgefaßt, Spektrum-Verlag 1994
- K. Erk, L. Priese: Theoretische Informatik, Springer Verlag 2000
- H. Lewis, C. Papadimitriou: Elements of the Theory of Computation, PHI 1998
- Mitschriften aus früheren Semestern benutzen andere Notationen

Das Team



Christoph Kreitz Raum 1.18, Telephon 3060 kreitz@cs.uni-potsdam.de

Das Team



Christoph Kreitz
Raum 1.18, Telephon 3060
kreitz@cs.uni-potsdam.de

Kirstin Peters
Raum 1.22, Telephon 3068
peters.kirstin@web.de

Das Team

Christoph Kreitz
Raum 1.18, Telephon 3060
kreitz@cs.uni-potsdam.de

Kirstin Peters
Raum 1.22, Telephon 3068
peters.kirstin@web.de

Tutoren

Marcel Goehring Jan Schwarz

Ellen König Jens Steinborn

Marius Schneider Holger Trölenberg

- Zielgruppe: ab 3. Semester (!)
 - Bei guten mathematischen Vorkenntnissen auch ab dem 1. Semester
 - Oft ist es sinnvoller erst an Mathematikveranstaltungen teilzunehmen

- Zielgruppe: ab 3. Semester (!)
 - Bei guten mathematischen Vorkenntnissen auch ab dem 1. Semester
 - Oft ist es sinnvoller erst an Mathematikveranstaltungen teilzunehmen
- Vorlesung

(Wird aufgezeichnet und ins Internet gestellt)

- Wöchentlich Fr 11:00-12:30

- Zielgruppe: ab 3. Semester (!)
 - Bei guten mathematischen Vorkenntnissen auch ab dem 1. Semester
 - Oft ist es sinnvoller erst an Mathematikveranstaltungen teilzunehmen
- Vorlesung

(Wird aufgezeichnet und ins Internet gestellt)

- Wöchentlich Fr 11:00-12:30
- Tutorium (Besprechung allgemeiner Fragen)
 - Jede zweite Woche Do 11:00-12:30

- Zielgruppe: ab 3. Semester (!)
 - Bei guten mathematischen Vorkenntnissen auch ab dem 1. Semester
 - Oft ist es sinnvoller erst an Mathematikveranstaltungen teilzunehmen
- Vorlesung

(Wird aufgezeichnet und ins Internet gestellt)

- Wöchentlich Fr 11:00-12:30
- Tutorium (Besprechung allgemeiner Fragen)
 - Jede zweite Woche Do 11:00-12:30
- Übungen
 - 6 Gruppen, wöchentlich (Montags & Dienstags) je 2 Stunden

- Zielgruppe: ab 3. Semester (!)
 - Bei guten mathematischen Vorkenntnissen auch ab dem 1. Semester
 - Oft ist es sinnvoller erst an Mathematikveranstaltungen teilzunehmen
- Vorlesung

(Wird aufgezeichnet und ins Internet gestellt)

- Wöchentlich Fr 11:00-12:30
- Tutorium (Besprechung allgemeiner Fragen)
 - Jede zweite Woche Do 11:00-12:30
- Übungen
 - 6 Gruppen, wöchentlich (Montags & Dienstags) je 2 Stunden
- Sprechstunden
 - C. Kreitz: Mi 9:30-10:30 . . . , und immer wenn die Türe offen ist
 - K. Peters: Do 12:30–13:30 und nach Vereinbarung
 - Tutoren: individuell in Übungsgruppen vereinbaren

• Eine Klausur entscheidet die Note

- Hauptklausur Anfang April (Ende vorlesungsfreie Zeit)
- Probeklausur Ende Dezember (geht nicht in Bewertung ein)

• Eine Klausur entscheidet die Note

- Hauptklausur Anfang April (Ende vorlesungsfreie Zeit)
- Probeklausur Ende Dezember (geht nicht in Bewertung ein)

• Zulassung zur Klausur

- -50% der Punkte in den Hausaufgaben
 - · Gruppen bis 4 Studenten dürfen gemeinsame Lösungen abgeben
 - · Gruppen dürfen sich nur nach Rücksprache mit Frau Peters ändern
- Quiz und Probeklausur zählen jeweils wie ein Hausaufgabenblatt

• Eine Klausur entscheidet die Note

- Hauptklausur Anfang April (Ende vorlesungsfreie Zeit)
- Probeklausur Ende Dezember (geht nicht in Bewertung ein)

Zulassung zur Klausur

- -50% der Punkte in den Hausaufgaben
 - · Gruppen bis 4 Studenten dürfen gemeinsame Lösungen abgeben
 - · Gruppen dürfen sich nur nach Rücksprache mit Frau Peters ändern
- Quiz und Probeklausur zählen jeweils wie ein Hausaufgabenblatt

• Vorbereitung auf die Klausur

- Kurzquiz in jeder Übungsstunde ernsthaft bearbeiten
- Eigenständige Lösung von Haus- und Übungsaufgaben
- Feedback durch Korrektur der Hausaufgaben und der Probeklausur
- Klärung von Fragen in Übung und Sprechstunden

• Eine Klausur entscheidet die Note

- Hauptklausur Anfang April (Ende vorlesungsfreie Zeit)
- Probeklausur Ende Dezember (geht nicht in Bewertung ein)

• Zulassung zur Klausur

- 50% der Punkte in den Hausaufgaben
 - · Gruppen bis 4 Studenten dürfen gemeinsame Lösungen abgeben
 - · Gruppen dürfen sich nur nach Rücksprache mit Frau Peters ändern
- Quiz und Probeklausur zählen jeweils wie ein Hausaufgabenblatt

• Vorbereitung auf die Klausur

- Kurzquiz in jeder Übungsstunde ernsthaft bearbeiten
- Eigenständige Lösung von Haus- und Übungsaufgaben
- Feedback durch Korrektur der Hausaufgaben und der Probeklausur
- Klärung von Fragen in Ubung und Sprechstunden

Fangen Sie frühzeitig mit der Vorbereitung an

Welche Vorkenntnisse sollten Sie mitbringen?

Eine gute Oberstufenmathematik reicht aus

Welche Vorkenntnisse sollten Sie mitbringen?

Eine gute Oberstufenmathematik reicht aus

• Verständnis mathematischer Konzepte

- Elementare Mengentheorie und die Gesetze von $\{x|P(x)\}, \cup, \cap$
- Bezug zwischen Mengen, Relationen und Funktionen
- Datenstrukturen wie Listen, Wörter, Graphen, Bäume . . .
- Elementare Gesetze der Algebra und Logik
- Elementare Wahrscheinlichkeitsrechnung
- Zusammenhang zwischen formaler und informaler Beschreibung
 Nötiges Vokabular wird bei Bedarf kurz vorgestellt/wiederholt/eingeübt

Welche Vorkenntnisse sollten Sie mitbringen?

Eine gute Oberstufenmathematik reicht aus

• Verständnis mathematischer Konzepte

- Elementare Mengentheorie und die Gesetze von $\{x|P(x)\}, \cup, \cap$
- Bezug zwischen Mengen, Relationen und Funktionen
- Datenstrukturen wie Listen, Wörter, Graphen, Bäume . . .
- Elementare Gesetze der Algebra und Logik
- Elementare Wahrscheinlichkeitsrechnung
- Zusammenhang zwischen formaler und informaler Beschreibung
 Nötiges Vokabular wird bei Bedarf kurz vorgestellt/wiederholt/eingeübt

• Verständnis mathematischer Beweismethoden

Informatiker müssen Korrektheit von Programmen beweisen können

- Deduktive Beweise für Analyse von Befehlssequenzen
- Induktionsbeweise für Analyse von Rekursion / Schleifen
- Widerlegungsbeweise und Gegenbeispiele für Unmöglichkeitsaussagen

Zeige, daß Behauptung B aus Annahmen A folgt

Zeige, daß Behauptung B aus Annahmen A folgt

• Deduktiver Beweis:

- Aneinanderkettung von Argumenten / Aussagen $A_1, A_2, ..., A_n = B$
- Zwischenaussagen A_i müssen schlüssig aus dem Vorhergehenden folgen
- Verwendet werden dürfen nur Annahmen aus A, mathematische Grundgesetze, bereits bewiesene Aussagen und logische Schlußfolgerungen

Zeige, daß Behauptung B aus Annahmen A folgt

• Deduktiver Beweis:

- Aneinanderkettung von Argumenten / Aussagen $A_1, A_2, ..., A_n = B$
- Zwischenaussagen A_i müssen schlüssig aus dem Vorhergehenden folgen
- Verwendet werden dürfen nur Annahmen aus A, mathematische Grundgesetze, bereits bewiesene Aussagen und logische Schlußfolgerungen

Beispiel: "Die Summe zweier ungerader Zahlen ist gerade"

Aussage	Begründung
1. $a = 2x + 1$	Gegeben (Auflösung des Begriffs "ungerade")
2. $b = 2y + 1$	Gegeben (Auflösung des Begriffs "ungerade")
	(1,2) und Gesetze der Arithmetik

Zeige, daß Behauptung B aus Annahmen A folgt

• Deduktiver Beweis:

- Aneinanderkettung von Argumenten / Aussagen $A_1, A_2, ..., A_n = B$
- Zwischenaussagen A_i müssen schlüssig aus dem Vorhergehenden folgen
- Verwendet werden dürfen nur Annahmen aus A, mathematische Grundgesetze, bereits bewiesene Aussagen und logische Schlußfolgerungen

Beispiel: "Die Summe zweier ungerader Zahlen ist gerade"

Aussage	Begründung
1. $a = 2x + 1$	Gegeben (Auflösung des Begriffs "ungerade")
2. $b = 2y + 1$	Gegeben (Auflösung des Begriffs "ungerade")
3. $a+b=2(x+y+1)$	(1,2) und Gesetze der Arithmetik

• Beweis durch Kontraposition

- Beweise, daß nicht A aus der Annahme nicht B folgt
- $-\neg B \Rightarrow \neg A$ ist aussagenlogisch äquivalent zu $A \Rightarrow B$

Zeige, daß Behauptung B aus Annahmen A folgt

• Deduktiver Beweis:

- Aneinanderkettung von Argumenten / Aussagen $A_1, A_2, ..., A_n = B$
- Zwischenaussagen A_i müssen schlüssig aus dem Vorhergehenden folgen
- Verwendet werden dürfen nur Annahmen aus A, mathematische Grundgesetze, bereits bewiesene Aussagen und logische Schlußfolgerungen

Beispiel: "Die Summe zweier ungerader Zahlen ist gerade"

Aussage	Begründung
1. $a = 2x + 1$	Gegeben (Auflösung des Begriffs "ungerade")
2. $b = 2y + 1$	Gegeben (Auflösung des Begriffs "ungerade")
3. $a+b=2(x+y+1)$	(1,2) und Gesetze der Arithmetik

• Beweis durch Kontraposition

- Beweise, daß nicht A aus der Annahme nicht B folgt
- $-\neg B \Rightarrow \neg A$ ist aussagenlogisch äquivalent zu $A \Rightarrow B$

• Indirekte Beweisführung

- Aus A und nicht B folgt ein Widerspruch (äquivalent zu $A \Rightarrow B$)

- ullet Widerlegungsbeweise: Zeige, daß A nicht gilt
 - Widerspruchsbeweis: Zeige, daß aus Annahme A ein Widerspruch folgt
 - Gegenbeispiele beweisen, daß A nicht allgemeingültig ist

- Widerlegungsbeweise: Zeige, daß A nicht gilt
 - Widerspruchsbeweis: Zeige, daß aus Annahme A ein Widerspruch folgt
 - Gegenbeispiele beweisen, daß A nicht allgemeingültig ist
- ullet Induktionsbeweise: Zeige, daß A für alle x gilt

Standardinduktion (auf natürlichen Zahlen):

Gilt A für i und folgt A für n+1, wenn A für n gilt, so gilt A für alle $n \ge i$

- ullet Widerlegungsbeweise: Zeige, daß A nicht gilt
 - Widerspruchsbeweis: Zeige, daß aus Annahme A ein Widerspruch folgt
 - Gegenbeispiele beweisen, daß A nicht allgemeingültig ist
- ullet Induktionsbeweise: Zeige, daß A für alle x gilt

Standardinduktion (auf natürlichen Zahlen):

Gilt A für i und folgt A für n+1, wenn A für n gilt, so gilt A für alle $n \ge i$ Vollständige Induktion:

Folgt A für n, wenn A für alle j < n mit $j \ge i$ gilt, dann gilt A für alle $n \ge i$

- ullet Widerlegungsbeweise: Zeige, daß A nicht gilt
 - Widerspruchsbeweis: Zeige, daß aus Annahme A ein Widerspruch folgt
 - Gegenbeispiele beweisen, daß A nicht allgemeingültig ist
- ullet Induktionsbeweise: Zeige, daß A für alle x gilt

Standardinduktion (auf natürlichen Zahlen):

Gilt A für i und folgt A für n+1, wenn A für n gilt, so gilt A für alle $n \ge i$ Vollständige Induktion:

Folgt A für n, wenn A für alle j < n mit $j \ge i$ gilt, dann gilt A für alle $n \ge i$

Strukturelle Induktion (auf Datentypen wie Listen, Bäumen, Wörtern):

Gilt A für das Basiselement und folgt A für ein zusammengesetztes Element, wenn A für seine Unterelemente gilt, dann gilt A für alle Elemente

- Widerlegungsbeweise: Zeige, daß A nicht gilt
 - Widerspruchsbeweis: Zeige, daß aus Annahme A ein Widerspruch folgt
 - Gegenbeispiele beweisen, daß A nicht allgemeingültig ist
- ullet Induktionsbeweise: Zeige, daß A für alle x gilt

Standardinduktion (auf natürlichen Zahlen):

Gilt A für i und folgt A für n+1, wenn A für n gilt, so gilt A für alle $n \ge i$ Vollständige Induktion:

Folgt A für n, wenn A für alle j < n mit $j \ge i$ gilt, dann gilt A für alle $n \ge i$

Strukturelle Induktion (auf Datentypen wie Listen, Bäumen, Wörtern):

Gilt A für das Basiselement und folgt A für ein zusammengesetztes Element, wenn A für seine Unterelemente gilt, dann gilt A für alle Elemente

Gegenseitige oder simultane Induktion

Zeige mehrere zusammengehörige Aussagen gleichzeitig in einer Induktion

- ullet Widerlegungsbeweise: Zeige, daß A nicht gilt
 - Widerspruchsbeweis: Zeige, daß aus Annahme A ein Widerspruch folgt
 - Gegenbeispiele beweisen, daß A nicht allgemeingültig ist
- ullet Induktionsbeweise: Zeige, daß A für alle x gilt

Standardinduktion (auf natürlichen Zahlen):

Gilt A für i und folgt A für n+1, wenn A für n gilt, so gilt A für alle $n \ge i$ Vollständige Induktion:

Folgt A für n, wenn A für alle j < n mit $j \ge i$ gilt, dann gilt A für alle $n \ge i$

Strukturelle Induktion (auf Datentypen wie Listen, Bäumen, Wörtern):

Gilt A für das Basiselement und folgt A für ein zusammengesetztes Element, wenn A für seine Unterelemente gilt, dann gilt A für alle Elemente

Gegenseitige oder simultane Induktion

Zeige mehrere zusammengehörige Aussagen gleichzeitig in einer Induktion

Mehr dazu im Anhang

"Ein Beweis ist ein Argument, das den Leser überzeugt"

THEORETISCHE INFORMATIK I

15

EINFÜHRUNG

"Ein Beweis ist ein Argument, das den Leser überzeugt"

• Genau genug, um Details rekonstruieren zu können

- Genau genug, um Details rekonstruieren zu können
- Knapp genug, um übersichtlich und merkbar zu sein

- Genau genug, um Details rekonstruieren zu können
- Knapp genug, um übersichtlich und merkbar zu sein
- Text muß lesbar und klar verständlich sein und präzise Sprache verwenden Formeln und Textfragmente ohne erkennbaren Sinn aneinanderzureihen ist unakzeptabel

- Genau genug, um Details rekonstruieren zu können
- Knapp genug, um übersichtlich und merkbar zu sein
- Text muß lesbar und klar verständlich sein und präzise Sprache verwenden Formeln und Textfragmente ohne erkennbaren Sinn aneinanderzureihen ist unakzeptabel
- Zwischenschritte müssen mit "üblichen" Vorkenntnissen erklärbar sein

- Genau genug, um Details rekonstruieren zu können
- Knapp genug, um übersichtlich und merkbar zu sein
- Text muß lesbar und klar verständlich sein und präzise Sprache verwenden Formeln und Textfragmente ohne erkennbaren Sinn aneinanderzureihen ist unakzeptabel
- Zwischenschritte müssen mit "üblichen" Vorkenntnissen erklärbar sein
- Also nicht notwendig formal oder mit allen Details

- Genau genug, um Details rekonstruieren zu können
- Knapp genug, um übersichtlich und merkbar zu sein
- Text muß lesbar und klar verständlich sein und präzise Sprache verwenden Formeln und Textfragmente ohne erkennbaren Sinn aneinanderzureihen ist unakzeptabel
- Zwischenschritte müssen mit "üblichen" Vorkenntnissen erklärbar sein
- Also nicht notwendig formal oder mit allen Details
- Gedankensprünge sind erlaubt, wenn Sie die Materie gut genug verstehen, dass Sie nichts mehr falsch machen können

- Genau genug, um Details rekonstruieren zu können
- Knapp genug, um übersichtlich und merkbar zu sein
- Text muß lesbar und klar verständlich sein und präzise Sprache verwenden Formeln und Textfragmente ohne erkennbaren Sinn aneinanderzureihen ist unakzeptabel
- Zwischenschritte müssen mit "üblichen" Vorkenntnissen erklärbar sein
- Also nicht notwendig formal oder mit allen Details
- Gedankensprünge sind erlaubt, wenn Sie die Materie gut genug verstehen, dass Sie nichts mehr falsch machen können
 - ... es reicht nicht, dass Sie es einmal richtig gemacht haben

- Genau genug, um Details rekonstruieren zu können
- Knapp genug, um übersichtlich und merkbar zu sein
- Text muß lesbar und klar verständlich sein und präzise Sprache verwenden Formeln und Textfragmente ohne erkennbaren Sinn aneinanderzureihen ist unakzeptabel
- Zwischenschritte müssen mit "üblichen" Vorkenntnissen erklärbar sein
- Also nicht notwendig formal oder mit allen Details
- Gedankensprünge sind erlaubt, wenn Sie die Materie gut genug verstehen, dass Sie nichts mehr falsch machen können
 - ... es reicht nicht, dass Sie es einmal richtig gemacht haben
- Tip: ausführliche Lösungen entwickeln, bis Sie genug Erfahrung haben. Bei Präsentation für Andere zentrale Gedanken aus Lösung extrahieren

- Genau genug, um Details rekonstruieren zu können
- Knapp genug, um übersichtlich und merkbar zu sein
- Text muß lesbar und klar verständlich sein und präzise Sprache verwenden Formeln und Textfragmente ohne erkennbaren Sinn aneinanderzureihen ist unakzeptabel
- Zwischenschritte müssen mit "üblichen" Vorkenntnissen erklärbar sein
- Also nicht notwendig formal oder mit allen Details
- Gedankensprünge sind erlaubt, wenn Sie die Materie gut genug verstehen, dass Sie nichts mehr falsch machen können
 - ... es reicht nicht, dass Sie es einmal richtig gemacht haben
- Tip: ausführliche Lösungen entwickeln, bis Sie genug Erfahrung haben. Bei Präsentation für Andere zentrale Gedanken aus Lösung extrahieren
- Test: verstehen Ihre Kommilitonen Ihre Lösung und warum sie funktioniert?

NUTZEN SIE IHRE CHANCEN!

• Theorie ist bedeutender als viele glauben

- Ist Theorie langweilig? überflüssig? unverständlich? . . . eine Plage?
- Alle großen Softwareprojekte benutzten theoretische Modelle
- Ohne theoretische Kenntnisse begehen Sie viele elementare Fehler
- Theorie kann durchaus sehr interessant sein

NUTZEN SIE IHRE CHANCEN!

• Theorie ist bedeutender als viele glauben

- Ist Theorie langweilig? überflüssig? unverständlich? . . . eine Plage?
- Alle großen Softwareprojekte benutzten theoretische Modelle
- Ohne theoretische Kenntnisse begehen Sie viele elementare Fehler
- Theorie kann durchaus sehr interessant sein

• Es geht um mehr als nur bestehen

- Das wichtige ist Verstehen
- Sie können jetzt umsonst lernen, was später teure Lehrgänge benötigt
- Wann kommen Sie je wieder mit den Besten des Gebietes in Kontakt?

NUTZEN SIE IHRE CHANCEN!

• Theorie ist bedeutender als viele glauben

- Ist Theorie langweilig? überflüssig? unverständlich? . . . eine Plage?
- Alle großen Softwareprojekte benutzten theoretische Modelle
- Ohne theoretische Kenntnisse begehen Sie viele elementare Fehler
- Theorie kann durchaus sehr interessant sein

• Es geht um mehr als nur bestehen

- Das wichtige ist Verstehen
- Sie können jetzt umsonst lernen, was später teure Lehrgänge benötigt
- Wann kommen Sie je wieder mit den Besten des Gebietes in Kontakt?

• Die Türe steht offen

- Lernfrust und mangelnder Durchblick sind normal aber heilbar
- Kommen Sie in die Sprechstunden und stellen Sie Fragen

VERTRAUEN IST EIN KOSTBARES GUT

... missbrauchen Sie es nicht

VERTRAUEN IST EIN KOSTBARES GUT

... missbrauchen Sie es nicht

• Abschreiben fremder Lösungen bringt nichts

- Sie lernen nichts dabei weder Inhalt noch Durchhaltevermögen
- Sie erkennen Ihre Lücken nicht und nehmen Hilfe zu spät wahr
- Sie werden nie ein echtes Erfolgserlebnis haben
- Es schadet Ihrer persönlichen Entwicklung

Vertrauen ist ein kostbares Gut

... missbrauchen Sie es nicht

• Abschreiben fremder Lösungen bringt nichts

- Sie lernen nichts dabei weder Inhalt noch Durchhaltevermögen
- Sie erkennen Ihre Lücken nicht und nehmen Hilfe zu spät wahr
- Sie werden nie ein echtes Erfolgserlebnis haben
- Es schadet Ihrer persönlichen Entwicklung

• Wir vertrauen Ihrer Ehrlichkeit

- Benutzen Sie externe Ideen (Bücher/Internet) nur mit Quellenangabe
- Benutzen Sie keine Lösungen von Kommilitonen
- Geben Sie keine Lösungen an Kommilitonen weiter

Klausurlösungen sollten ausschließlich Ihre eigenen sein

Keine "Überwachung", aber wenn es dennoch auffliegt ...

Vertrauen ist ein kostbares Gut

... missbrauchen Sie es nicht

• Abschreiben fremder Lösungen bringt nichts

- Sie lernen nichts dabei weder Inhalt noch Durchhaltevermögen
- Sie erkennen Ihre Lücken nicht und nehmen Hilfe zu spät wahr
- Sie werden nie ein echtes Erfolgserlebnis haben
- Es schadet Ihrer persönlichen Entwicklung

• Wir vertrauen Ihrer Ehrlichkeit

- Benutzen Sie externe Ideen (Bücher/Internet) nur mit Quellenangabe
- Benutzen Sie keine Lösungen von Kommilitonen
- Geben Sie keine Lösungen an Kommilitonen weiter

Klausurlösungen sollten ausschließlich Ihre eigenen sein

Keine "Uberwachung", aber wenn es dennoch auffliegt ...

• Mehr zur Arbeitsethik auf unseren Webseiten

ANHANG

Theoretische Informatik I

Lektion 0

- 1. Problemlösen
- 2. Beweistechniken
- 3. Wichtige Grundbegriffe

Methodik des Problemlösens

• Klärung der Voraussetzungen

- Welche Begriffe sind zum Verständnis des Problems erforderlich?
- Erstellung eines präzisen Modells: abstrahiere von Details
- Formulierung des Problems im Modell: was genau ist zu tun?

Methodik des Problemlösens

• Klärung der Voraussetzungen

- Welche Begriffe sind zum Verständnis des Problems erforderlich?
- Erstellung eines präzisen Modells: abstrahiere von Details
- Formulierung des Problems im Modell: was genau ist zu tun?

• Lösungsweg konkretisieren

- Welche Einzelschritte benötigt man, um das Problem zu lösen?
- Welches Gesamtergebnis ergibt sich aus den Einzelschritten?
- Wie beweist man die Korrektheit des Gesamtergebnisses?

Methodik des Problemlösens

• Klärung der Voraussetzungen

- Welche Begriffe sind zum Verständnis des Problems erforderlich?
- Erstellung eines präzisen Modells: abstrahiere von Details
- Formulierung des Problems im Modell: was genau ist zu tun?

• Lösungsweg konkretisieren

- Welche Einzelschritte benötigt man, um das Problem zu lösen?
- Welches Gesamtergebnis ergibt sich aus den Einzelschritten?
- Wie beweist man die Korrektheit des Gesamtergebnisses?

• Lösung zusammenfassen

- Kurz und prägnant: Argumente auf das Wesentliche beschränken
- Umgangssprache durch mathematisch präzise Formulierungen ersetzen

• Automaten: Abarbeitung von Eingaben

• Automaten: Abarbeitung von Eingaben

– z.B. Wechselschalter: Verarbeitung von "Drück"-Eingaben

- 2 Zustände: aus, ein

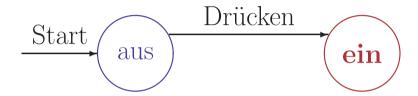
• Automaten: Abarbeitung von Eingaben

– z.B. Wechselschalter: Verarbeitung von "Drück"-Eingaben

-2 Zustände: aus, ein -1 Startzustand: aus

• Automaten: Abarbeitung von Eingaben

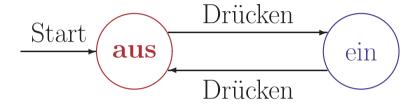
– z.B. Wechselschalter: Verarbeitung von "Drück"-Eingaben



- -2 Zustände: aus, ein -1 Startzustand: aus
- 1 Eingabesymbol: Drücken

• Automaten: Abarbeitung von Eingaben

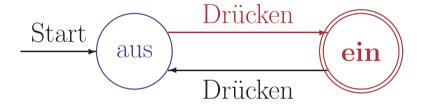
– z.B. Wechselschalter: Verarbeitung von "Drück"-Eingaben



- -2 Zustände: aus, ein -1 Startzustand: aus
- 1 Eingabesymbol: Drücken

• Automaten: Abarbeitung von Eingaben

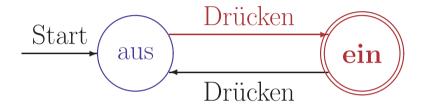
– z.B. Wechselschalter: Verarbeitung von "Drück"-Eingaben



- − 2 Zustände: aus, ein − 1 Startzustand: aus
- 1 Eingabesymbol: Drücken
- 1 Endzustand: ein wird erreicht bei ungerader Anzahl von Drücken

• Automaten: Abarbeitung von Eingaben

– z.B. Wechselschalter: Verarbeitung von "Drück"-Eingaben

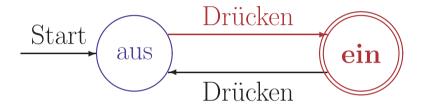


- − 2 Zustände: aus, ein − 1 Startzustand: aus
- 1 Eingabesymbol: Drücken
- 1 Endzustand: ein wird erreicht bei ungerader Anzahl von Drücken

• Grammatiken: Vorschriften für Spracherzeugung

- -z.B.: $S \to \text{Drücken}, \ S \to S \text{Drücken} \text{Drücken}$
- Erzeugt nur ungerade Anzahl von Drücken-Symbolen

- Automaten: Abarbeitung von Eingaben
 - z.B. Wechselschalter: Verarbeitung von "Drück"-Eingaben



- − 2 Zustände: aus, ein − 1 Startzustand: aus
- 1 Eingabesymbol: Drücken
- 1 Endzustand: ein wird erreicht bei ungerader Anzahl von Drücken
- Grammatiken: Vorschriften für Spracherzeugung
 - $-z.B.: S \rightarrow Drücken, S \rightarrow SDrückenDrücken$
 - Erzeugt nur ungerade Anzahl von Drücken-Symbolen
- Reguläre Ausdrücke: algebraische Strukturen
 - z.B.: (DrückenDrücken)*Drücken

• Testen von Programmen ist unzureichend

- Nur hilfreich zur Entdeckung grober Fehler
- Viele kleine, aber gravierende Fehler fallen durch das Testraster
 - · Pentium Bug (1994), Ariane 5 (1996), Mars Polar Lander (1999), . . .

• Testen von Programmen ist unzureichend

- Nur hilfreich zur Entdeckung grober Fehler
- Viele kleine, aber gravierende Fehler fallen durch das Testraster
 - · Pentium Bug (1994), Ariane 5 (1996), Mars Polar Lander (1999), ...

• Kritische Programme muss man "beweisen"

- Erfolgreicher Beweis zeigt genau, wie das Programm arbeitet
- Erfolgloser Beweisversuch deutet auf mögliche Fehler im Programm
- Jeder Informatiker sollte die eigenen Programme beweisen

• Testen von Programmen ist unzureichend

- Nur hilfreich zur Entdeckung grober Fehler
- Viele kleine, aber gravierende Fehler fallen durch das Testraster
 - · Pentium Bug (1994), Ariane 5 (1996), Mars Polar Lander (1999), ...

• Kritische Programme muss man "beweisen"

- Erfolgreicher Beweis zeigt genau, wie das Programm arbeitet
- Erfolgloser Beweisversuch deutet auf mögliche Fehler im Programm
- Jeder Informatiker sollte die eigenen Programme beweisen

• Jeder Informatiker muss Beweise verstehen

- Deduktive Beweise für sequentielle Verarbeitung
- Induktionsbeweise für Rekursion / Schleifen
- Widerlegungsbeweise und Gegenbeispiele für Unmöglichkeitsaussagen

• Testen von Programmen ist unzureichend

- Nur hilfreich zur Entdeckung grober Fehler
- Viele kleine, aber gravierende Fehler fallen durch das Testraster
 - · Pentium Bug (1994), Ariane 5 (1996), Mars Polar Lander (1999), ...

• Kritische Programme muss man "beweisen"

- Erfolgreicher Beweis zeigt genau, wie das Programm arbeitet
- Erfolgloser Beweisversuch deutet auf mögliche Fehler im Programm
- Jeder Informatiker sollte die eigenen Programme beweisen

• Jeder Informatiker muss Beweise verstehen

- Deduktive Beweise für sequentielle Verarbeitung
- Induktionsbeweise für Rekursion / Schleifen
- Widerlegungsbeweise und Gegenbeispiele für Unmöglichkeitsaussagen

Wie führt man stichhaltige Beweise?

Behauptungen: Ausgangspunkt jedes Beweises

• Wenn–Dann Aussagen:

- Eine Konklusion folgt aus einer oder mehreren Hypothesen (Annahmen)
- -z.B. "Wenn $x \ge 4$, dann $2^x \ge x^2$ "
- Auch: H impliziert K, aus H folgt K, K wenn H, $H \Rightarrow K$
- Achtung: wenn K gilt, muss H nicht der Grund sein

Behauptungen: Ausgangspunkt jedes Beweises

• Wenn–Dann Aussagen:

- Eine Konklusion folgt aus einer oder mehreren Hypothesen (Annahmen)
- -z.B. "Wenn $x \ge 4$, dann $2^x \ge x^2$ "
- Auch: H impliziert K, aus H folgt K, K wenn H, $H \Rightarrow K$
- Achtung: wenn K gilt, muss H nicht der Grund sein

Fast alle Behauptungen haben diese Form

- Hypothesen sind zuweilen implizit oder ergeben sich aus dem Kontext
- -z.B. " $sin^2\theta + cos^2\theta = 1$ " hat implizite Hypothese " θ ist ein Winkel"

Behauptungen: Ausgangspunkt jedes Beweises

• Wenn–Dann Aussagen:

- Eine Konklusion folgt aus einer oder mehreren Hypothesen (Annahmen)
- -z.B. "Wenn $x \ge 4$, dann $2^x \ge x^2$ "
- Auch: H impliziert K, aus H folgt K, K wenn H, $H \Rightarrow K$
- Achtung: wenn K gilt, muss H nicht der Grund sein

Fast alle Behauptungen haben diese Form

- Hypothesen sind zuweilen implizit oder ergeben sich aus dem Kontext
- -z.B. " $sin^2\theta + cos^2\theta = 1$ " hat implizite Hypothese " θ ist ein Winkel"

• Genau dann, wenn Aussagen

- Aussagen A und B sind äquivalent $(A \Leftrightarrow B, A \equiv B, A \text{ iff } B \text{ (engl.)})$
- -z.B. " $x^2 = 1$ genau dann, wenn x = 1"
- Gleichwertig mit $A \Rightarrow B$ und $B \Rightarrow A$

Wenn x die Summe der Quadrate von vier positiven ganzen Zahlen ist, dann gilt $2^x \ge x^2$

Wenn x die Summe der Quadrate von vier positiven ganzen Zahlen ist, dann gilt $2^x \ge x^2$

• Informaler Beweis

- Es sei x die Summe der Quadrate von vier positiven ganzen Zahlen

Wenn x die Summe der Quadrate von vier positiven ganzen Zahlen ist, dann gilt $2^x \ge x^2$

- Es sei x die Summe der Quadrate von vier positiven ganzen Zahlen
- Das Quadrat jeder positiven ganzen Zahl ist mindestens 1

Wenn x die Summe der Quadrate von vier positiven ganzen Zahlen ist, dann gilt $2^x \ge x^2$

- Es sei x die Summe der Quadrate von vier positiven ganzen Zahlen
- Das Quadrat jeder positiven ganzen Zahl ist mindestens 1
- Aus der Annahme folgt damit, dass $x \ge 4$ sein muss

Wenn x die Summe der Quadrate von vier positiven ganzen Zahlen ist, dann gilt $2^x > x^2$

- Es sei x die Summe der Quadrate von vier positiven ganzen Zahlen
- Das Quadrat jeder positiven ganzen Zahl ist mindestens 1
- Aus der Annahme folgt damit, dass $x \ge 4$ sein muss
- Wir benutzen den Satz "Wenn $x \ge 4$, $dann 2^x \ge x^2$ " [HMU Satz 1.3, Folie 14]

Wenn x die Summe der Quadrate von vier positiven ganzen Zahlen ist, dann gilt $2^x \ge x^2$

- Es sei x die Summe der Quadrate von vier positiven ganzen Zahlen
- Das Quadrat jeder positiven ganzen Zahl ist mindestens 1
- Aus der Annahme folgt damit, dass $x \ge 4$ sein muss
- Wir benutzen den Satz " $Wenn \ x \ge 4$, $dann \ 2^x \ge x^2$ " [HMU Satz 1.3, Folie 14] und schließen daraus, dass $2^x \ge x^2$ gilt

Wenn x die Summe der Quadrate von vier positiven ganzen Zahlen ist, dann gilt $2^x > x^2$

• Informaler Beweis

- Es sei x die Summe der Quadrate von vier positiven ganzen Zahlen
- Das Quadrat jeder positiven ganzen Zahl ist mindestens 1
- Aus der Annahme folgt damit, dass $x \ge 4$ sein muss
- Wir benutzen den Satz "Wenn $x \ge 4$, dann $2^x \ge x^2$ " HMU Satz 1.3, Folie 14 und schließen daraus, dass $2^x \ge x^2$ gilt

• Beweis in schematischer Darstellung

Aussage	Begründung
1. $x = a^2 + b^2 + c^2 + d^2$	Gegeben
2. $a \ge 1, b \ge 1, c \ge 1, d \ge 1$	Gegeben
3. $a^2 \ge 1, b^2 \ge 1, c^2 \ge 1, d^2 \ge 1$	(2) und Gesetze der Arithmetik
$4. x \ge 4$	(1), (3) und Gesetze der Arithmetik
5. $2^x \ge x^2$	(4) und HMU Satz 1.3, Folie 14

Deduktive Beweisführung

Logische Schritte von Annahmen zur Konklusion

Deduktive Beweisführung

Logische Schritte von Annahmen zur Konklusion

• Beweis $\hat{=}$ Folge von Zwischenaussagen

- Beweis $\hat{=}$ Folge von Zwischenaussagen
 - Beginne mit Menge der Annahmen

- - Beginne mit Menge der Annahmen
 - Jede Zwischenaussage folgt schlüssig aus vorhergehenden Aussagen

- - Beginne mit Menge der Annahmen
 - Jede Zwischenaussage folgt schlüssig aus vorhergehenden Aussagen
 - Konklusion ergibt sich als letzter Beweisschritt

- - Beginne mit Menge der Annahmen
 - Jede Zwischenaussage folgt schlüssig aus vorhergehenden Aussagen
 - Konklusion ergibt sich als letzter Beweisschritt
- Zulässige Argumente in Beweisschritten

- - Beginne mit Menge der Annahmen
 - Jede Zwischenaussage folgt schlüssig aus vorhergehenden Aussagen
 - Konklusion ergibt sich als letzter Beweisschritt
- Zulässige Argumente in Beweisschritten
 - Logischer Schluss: Sind A und $A \Rightarrow B$ bekannt, kann B gefolgert werden

Logische Schritte von Annahmen zur Konklusion

- Beginne mit Menge der Annahmen
- Jede Zwischenaussage folgt schlüssig aus vorhergehenden Aussagen
- Konklusion ergibt sich als letzter Beweisschritt

- Logischer Schluss: Sind A und $A \Rightarrow B$ bekannt, kann B gefolgert werden
- Bekannte mathematische Grundgesetze, z.B. aus der Arithmetik

Logische Schritte von Annahmen zur Konklusion

- Beginne mit Menge der Annahmen
- Jede Zwischenaussage folgt schlüssig aus vorhergehenden Aussagen
- Konklusion ergibt sich als letzter Beweisschritt

- Logischer Schluss: Sind A und $A \Rightarrow B$ bekannt, kann B gefolgert werden
- Bekannte mathematische Grundgesetze, z.B. aus der Arithmetik
- Bereits bewiesene Sätze

Logische Schritte von Annahmen zur Konklusion

- Beginne mit Menge der Annahmen
- Jede Zwischenaussage folgt schlüssig aus vorhergehenden Aussagen
- Konklusion ergibt sich als letzter Beweisschritt

- Logischer Schluss: Sind A und $A \Rightarrow B$ bekannt, kann B gefolgert werden
- Bekannte mathematische Grundgesetze, z.B. aus der Arithmetik
- Bereits bewiesene Sätze
- Auflösung von Definitionen

Logische Schritte von Annahmen zur Konklusion

- Beginne mit Menge der Annahmen
- Jede Zwischenaussage folgt schlüssig aus vorhergehenden Aussagen
- Konklusion ergibt sich als letzter Beweisschritt

- Logischer Schluss: Sind A und $A \Rightarrow B$ bekannt, kann B gefolgert werden
- Bekannte mathematische Grundgesetze, z.B. aus der Arithmetik
- Bereits bewiesene Sätze
- Auflösung von Definitionen
- Extensionalität von Mengen: $M=M' \Leftrightarrow M\subseteq M' \land M'\subseteq M$ $M\subseteq M' \Leftrightarrow (\forall x) \ x\in M \Rightarrow x\in M'$

Logische Schritte von Annahmen zur Konklusion

- Beginne mit Menge der Annahmen
- Jede Zwischenaussage folgt schlüssig aus vorhergehenden Aussagen
- Konklusion ergibt sich als letzter Beweisschritt

• Zulässige Argumente in Beweisschritten

- Logischer Schluss: Sind A und $A \Rightarrow B$ bekannt, kann B gefolgert werden
- Bekannte mathematische Grundgesetze, z.B. aus der Arithmetik
- Bereits bewiesene Sätze
- Auflösung von Definitionen
- Extensionalität von Mengen: $M{=}M' \iff M{\subseteq}M' \land M'{\subseteq}M$

$$M \subseteq M' \Leftrightarrow (\forall x) \ x \in M \Rightarrow x \in M'$$

- Gleichheit von Zahlen: $x=y \Leftrightarrow \text{weder } x < y \text{ noch } x > y$

Beispiel für Auflösung von Definitionen

Wenn S endliche Teilmenge einer Menge U ist und das Komplement von S bezüglich U endlich ist, dann ist U endlich

Beispiel für Auflösung von Definitionen

Wenn S endliche Teilmenge einer Menge U ist und das Komplement von S bezüglich U endlich ist, dann ist U endlich

• Definitionen

```
S endlich \equiv Es gibt eine ganze Zahl n mit ||S|| = n T Komplement von S \equiv T \cup S = U und T \cap S = \emptyset
```

Beispiel für Auflösung von Definitionen

Wenn S endliche Teilmenge einer Menge U ist und das Komplement von S bezüglich U endlich ist, dann ist U endlich

• Definitionen

S endlich \equiv Es gibt eine ganze Zahl n mit ||S|| = nT Komplement von $S \equiv T \cup S = U$ und $T \cap S = \emptyset$

• Beweis

Aussage	Begründung
1. S endlich	Gegeben
2. T Komplement von S	Gegeben
3. T endlich	Gegeben
4. $ S = n$ für ein $n \in \mathbb{N}$	Auflösen der Definition in (1)
5. $ T = m$ für ein $m \in \mathbb{N}$	Auflösen der Definition in (3)
6. $T \cup S = U$	Auflösen der Definition in (2)
7. $T \cap S = \emptyset$	Auflösen der Definition in (2)
8. $ U = m + n \text{ für } n, m \in \mathbb{N}$	(4),(5),(6),(7) und Gesetze der Kardinalität
9. U endlich	Einsetzen der Definition in (8)

Für beliebige Mengen R und S gilt $R \cup S = S \cup R$

Für beliebige Mengen R und S gilt $R \cup S = S \cup R$

• Definitionen

$$x \in R \cup S \equiv x \in R \text{ oder } x \in S$$

Für beliebige Mengen R und S gilt $R \cup S = S \cup R$

• Definitionen

$$x \in R \cup S \equiv x \in R \text{ oder } x \in S$$

• Zu zeigen:

$$-R \cup S = S \cup R$$

also

Für beliebige Mengen R und S gilt $R \cup S = S \cup R$

• Definitionen

 $x \in R \cup S \equiv x \in R \text{ oder } x \in S$

• Zu zeigen:

 $-R \cup S = S \cup R$ also

 $-R \cup S \subseteq S \cup R$ und $S \cup R \subseteq R \cup S$ also

Für beliebige Mengen R und S gilt $R \cup S = S \cup R$

• Definitionen

 $x \in R \cup S \equiv x \in R \text{ oder } x \in S$

• Zu zeigen:

- $-R \cup S = S \cup R$ also
- $-R \cup S \subseteq S \cup R$ und $S \cup R \subseteq R \cup S$ also
- Wenn $x \in R \cup S$, dann $x \in S \cup R$ und wenn $x \in S \cup R$, dann $x \in R \cup S$

Für beliebige Mengen R und S gilt $R \cup S = S \cup R$

• Definitionen

 $x \in R \cup S \equiv x \in R \text{ oder } x \in S$

• Zu zeigen:

 $-R \cup S = S \cup R$ also

 $-R \cup S \subseteq S \cup R$ und $S \cup R \subseteq R \cup S$

also

- Wenn $x \in R \cup S$, $dann \ x \in S \cup R$ und $wenn \ x \in S \cup R$, $dann \ x \in R \cup S$

• Beweis der ersten Implikation

Aussage	Begründung
1. $x \in R \cup S$	Gegeben
2. $x \in R$ oder $x \in S$	Auflösen der Definition in (1)
	Logische Umstellung von (2)
4. $x \in S \cup R$	Einsetzen der Definition in (3)

Für beliebige Mengen R und S gilt $R \cup S = S \cup R$

• Definitionen

 $x \in R \cup S \equiv x \in R \text{ oder } x \in S$

• Zu zeigen:

 $-R \cup S = S \cup R$ also

 $-R \cup S \subseteq S \cup R$ und $S \cup R \subseteq R \cup S$

also

- Wenn $x \in R \cup S$, dann $x \in S \cup R$ und wenn $x \in S \cup R$, dann $x \in R \cup S$

• Beweis der ersten Implikation

Aussage	Begründung
1. $x \in R \cup S$	Gegeben
$2. \ x \in R \text{ oder } x \in S$	Auflösen der Definition in (1)
3. $x \in S$ oder $x \in R$	Logische Umstellung von (2)
4. $x \in S \cup R$	Einsetzen der Definition in (3)

Beweis der zweiten Implikation genauso

Ein Beweis ist ein Argument, das den Leser überzeugt

Theoretische Informatik I §0: _______ 9 ______ Mathematische Methodik

Ein Beweis ist ein Argument, das den Leser überzeugt

• Präzise genug, um Details rekonstruieren zu können

- Präzise genug, um Details rekonstruieren zu können
- Knapp genug, um übersichtlich und merkbar zu sein

- Präzise genug, um Details rekonstruieren zu können
- Knapp genug, um übersichtlich und merkbar zu sein
- Zwischenschritte müssen mit "üblichen" Vorkenntnissen erklärbar sein

- Präzise genug, um Details rekonstruieren zu können
- Knapp genug, um übersichtlich und merkbar zu sein
- Zwischenschritte müssen mit "üblichen" Vorkenntnissen erklärbar sein
- Also nicht notwendig formal oder mit allen Details

- Präzise genug, um Details rekonstruieren zu können
- Knapp genug, um übersichtlich und merkbar zu sein
- Zwischenschritte müssen mit "üblichen" Vorkenntnissen erklärbar sein
- Also nicht notwendig formal oder mit allen Details
- Gedankensprünge sind erlaubt, wenn Sie die Materie gut genug verstehen,
 dass Sie nichts mehr falsch machen können

- Präzise genug, um Details rekonstruieren zu können
- Knapp genug, um übersichtlich und merkbar zu sein
- Zwischenschritte müssen mit "üblichen" Vorkenntnissen erklärbar sein
- Also nicht notwendig formal oder mit allen Details
- Gedankensprünge sind erlaubt, wenn Sie die Materie gut genug verstehen, dass Sie nichts mehr falsch machen können
 - ... es reicht nicht, dass Sie es einmal richtig gemacht haben

- Präzise genug, um Details rekonstruieren zu können
- Knapp genug, um übersichtlich und merkbar zu sein
- Zwischenschritte müssen mit "üblichen" Vorkenntnissen erklärbar sein
- Also nicht notwendig formal oder mit allen Details
- Gedankensprünge sind erlaubt, wenn Sie die Materie gut genug verstehen, dass Sie nichts mehr falsch machen können
 - ... es reicht nicht, dass Sie es einmal richtig gemacht haben
- Tip: ausführliche Lösungen entwickeln, bis Sie genug Erfahrung haben. Bei Präsentation für Andere zentrale Gedanken aus Lösung extrahieren

- Präzise genug, um Details rekonstruieren zu können
- Knapp genug, um übersichtlich und merkbar zu sein
- Zwischenschritte müssen mit "üblichen" Vorkenntnissen erklärbar sein
- Also nicht notwendig formal oder mit allen Details
- Gedankensprünge sind erlaubt, wenn Sie die Materie gut genug verstehen, dass Sie nichts mehr falsch machen können
 - ... es reicht nicht, dass Sie es einmal richtig gemacht haben
- Tip: ausführliche Lösungen entwickeln, bis Sie genug Erfahrung haben. Bei Präsentation für Andere zentrale Gedanken aus Lösung extrahieren
- Test: verstehen Ihre Kommilitonen Ihre Lösung und warum sie funktioniert?

Zeige, dass eine Aussage A nicht gilt

• Beweis durch Widerspruch

Zeige, dass eine Aussage A nicht gilt

- Beweis durch Widerspruch
 - $-\,A$ gilt nicht, wenn aus der Annahme von Aein Widerspruch folgt

Zeige, dass eine Aussage A nicht gilt

• Beweis durch Widerspruch

- -A gilt nicht, wenn aus der Annahme von A ein Widerspruch folgt
- z.B. Wenn S endliche Teilmenge einer unendlichen Menge U ist, dann ist das Komplement von S (bezüglich U) nicht endlich

Zeige, dass eine Aussage A nicht gilt

• Beweis durch Widerspruch

- -A gilt nicht, wenn aus der Annahme von A ein Widerspruch folgt
- z.B. Wenn S endliche Teilmenge einer unendlichen Menge U ist, dann ist das Komplement von S (bezüglich U) nicht endlich

– Beweis	Aussage	Begründung
	1. S endlich	Gegeben
	2. T Komplement von S	Gegeben
	3. U unendlich	Gegeben
	4. T endlich	Annahme
	5. U endlich	(1), (4) mit Satz auf Folie 7
	6. Widerspruch	(3), (5)
	7. T nicht endlich	Annahme (4) muss falsch sein

• Beweis durch Gegenbeispiel

- Beweis durch Gegenbeispiel
 - -A ist nicht allgemeingültig, wenn es ein einziges Gegenbeispiel gibt

• Beweis durch Gegenbeispiel

- -A ist nicht allgemeingültig, wenn es ein einziges Gegenbeispiel gibt
- z.B. Wenn x eine Primzahl ist, dann ist x ungerade ist falsch

• Beweis durch Gegenbeispiel

- -A ist nicht allgemeingültig, wenn es ein einziges Gegenbeispiel gibt
- z.B. Wenn x eine Primzahl ist, dann ist x ungerade ist falsch
- Beweis: 2 ist eine gerade Zahl, die eine Primzahl ist

• Beweis durch Gegenbeispiel

- -A ist nicht allgemeingültig, wenn es ein einziges Gegenbeispiel gibt
- z.B. Wenn x eine Primzahl ist, dann ist x ungerade ist falsch
- Beweis: 2 ist eine gerade Zahl, die eine Primzahl ist

• Beweis durch Kontraposition

- Statt wenn H, dann K zeige wenn nicht K, dann nicht H
- Behauptungen sind aussagenlogisch äquivalent

• Beweis durch Gegenbeispiel

- -A ist nicht allgemeingültig, wenn es ein einziges Gegenbeispiel gibt
- z.B. Wenn x eine Primzahl ist, dann ist x ungerade ist falsch
- Beweis: 2 ist eine gerade Zahl, die eine Primzahl ist

• Beweis durch Kontraposition

- Statt wenn H, dann K zeige wenn nicht K, dann nicht H
- Behauptungen sind aussagenlogisch äquivalent

• Spezielle Anwendung: Indirekte Beweisführung

– Zeige, dass aus H und nicht K ein Widerspruch folgt Aussagenlogisch äquivalent zu wenn H, dann K

• Beweis durch Gegenbeispiel

- -A ist nicht allgemeingültig, wenn es ein einziges Gegenbeispiel gibt
- z.B. Wenn x eine Primzahl ist, dann ist x ungerade ist falsch
- Beweis: 2 ist eine gerade Zahl, die eine Primzahl ist

• Beweis durch Kontraposition

- Statt wenn H, dann K zeige wenn nicht K, dann nicht H
- Behauptungen sind aussagenlogisch äquivalent

- Zeige, dass aus H und nicht K ein Widerspruch folgt Aussagenlogisch äquivalent zu wenn H, dann K
- z.B. Wenn für eine natürliche Zahl x gilt $x^2 > 1$, dann ist $x \ge 2$

• Beweis durch Gegenbeispiel

- -A ist nicht allgemeingültig, wenn es ein einziges Gegenbeispiel gibt
- z.B. Wenn x eine Primzahl ist, dann ist x ungerade ist falsch
- Beweis: 2 ist eine gerade Zahl, die eine Primzahl ist

• Beweis durch Kontraposition

- Statt wenn H, dann K zeige wenn nicht K, dann nicht H
- Behauptungen sind aussagenlogisch äquivalent

- Zeige, dass aus H und nicht K ein Widerspruch folgt Aussagenlogisch äquivalent zu wenn H, dann K
- z.B. Wenn für eine natürliche Zahl x gilt $x^2>1$, dann ist $x\geq 2$
- Beweis: $Sei \ x^2 > 1$. $Wenn \ x \ge 2$ $nicht \ gilt, \ dann \ ist \ x = 1$ $oder \ x = 0$.

• Beweis durch Gegenbeispiel

- -A ist nicht allgemeingültig, wenn es ein einziges Gegenbeispiel gibt
- z.B. Wenn x eine Primzahl ist, dann ist x ungerade ist falsch
- Beweis: 2 ist eine gerade Zahl, die eine Primzahl ist

• Beweis durch Kontraposition

- Statt wenn H, dann K zeige wenn nicht K, dann nicht H
- Behauptungen sind aussagenlogisch äquivalent

- Zeige, dass aus *H und nicht K* ein Widerspruch folgt Aussagenlogisch äquivalent zu wenn H, dann K
- z.B. Wenn für eine natürliche Zahl x gilt $x^2>1$, dann ist $x\geq 2$
- Beweis: $Sei \ x^2 > 1$. $Wenn \ x \ge 2$ $nicht \ gilt, \ dann \ ist \ x = 1$ $oder \ x = 0$. Wegen $1^2=1$ und $0^2=0$ ist $x^2>1$ in beiden Fällen falsch.

• Beweis durch Gegenbeispiel

- -A ist nicht allgemeingültig, wenn es ein einziges Gegenbeispiel gibt
- z.B. Wenn x eine Primzahl ist, dann ist x ungerade ist falsch
- Beweis: 2 ist eine gerade Zahl, die eine Primzahl ist

• Beweis durch Kontraposition

- Statt wenn H, dann K zeige wenn nicht K, dann nicht H
- Behauptungen sind aussagenlogisch äquivalent

- Zeige, dass aus *H und nicht K* ein Widerspruch folgt Aussagenlogisch äquivalent zu wenn H, dann K
- z.B. Wenn für eine natürliche Zahl x gilt $x^2>1$, dann ist $x\geq 2$
- Beweis: Sei $x^2 > 1$. Wenn $x \ge 2$ nicht gilt, dann ist x=1 oder x=0. Wegen $1^2=1$ und $0^2=0$ ist $x^2>1$ in beiden Fällen falsch. Also muss $x \ge 2$ sein

Gegenbeispielkonstruktion für unendliche Objekte

Gegenbeispielkonstruktion für unendliche Objekte

• Terminierung von Programmen ist unentscheidbar

Es gibt kein Programm, das testen kann, ob ein beliebiges Programm bei einer bestimmten Eingabe überhaupt anhält

Gegenbeispielkonstruktion für unendliche Objekte

- Terminierung von Programmen ist unentscheidbar Es gibt kein Programm, das testen kann, ob ein beliebiges Programm bei einer bestimmten Eingabe überhaupt anhält
- Beweis stützt sich auf wenige Grundannahmen

Gegenbeispielkonstruktion für unendliche Objekte

- Terminierung von Programmen ist unentscheidbar Es gibt kein Programm, das testen kann, ob ein beliebiges Programm bei einer bestimmten Eingabe überhaupt anhält
- Beweis stützt sich auf wenige Grundannahmen
 - 1. Programme und ihre Daten sind als Zahlen codierbar

Gegenbeispielkonstruktion für unendliche Objekte

• Terminierung von Programmen ist unentscheidbar

Es gibt kein Programm, das testen kann, ob ein beliebiges Programm bei einer bestimmten Eingabe überhaupt anhält

- Beweis stützt sich auf wenige Grundannahmen
 - 1. Programme und ihre Daten sind als Zahlen codierbar
 - 2. Computer sind universelle Maschinen
 - · Bei Eingabe von Programm und Daten berechnen sie das Ergebnis
 - · Schreibweise: $p_i(j)$ $\hat{=}$ Anwendung des *i*-ten Programms auf die Zahl j

Gegenbeispielkonstruktion für unendliche Objekte

• Terminierung von Programmen ist unentscheidbar

Es gibt kein Programm, das testen kann, ob ein beliebiges Programm bei einer bestimmten Eingabe überhaupt anhält

- Beweis stützt sich auf wenige Grundannahmen
 - 1. Programme und ihre Daten sind als Zahlen codierbar
 - 2. Computer sind universelle Maschinen
 - · Bei Eingabe von Programm und Daten berechnen sie das Ergebnis
 - · Schreibweise: $p_i(j)$ $\hat{=}$ Anwendung des *i*-ten Programms auf die Zahl j
 - 3. Man kann Programme beliebig zu neuen Programmen zusammensetzen ... und die Nummer des neuen Programms berechnen

• Annahme: es gibt ein Programm für den Terminierungstest

- Annahme: es gibt ein Programm für den Terminierungstest
 - Term(i,j)=1 falls $p_i(j)$ hält (sonst 0)

- Annahme: es gibt ein Programm für den Terminierungstest
 - Term(i,j)=1 falls $p_i(j)$ hält (sonst 0)

- Annahme: es gibt ein Programm für den Terminierungstest
 - Term(i,j)=1 falls $p_i(j)$ hält (sonst 0)
- Konstruiere ein neues Programm Unsinn wie folgt:

$$\mathbf{Unsinn}(i) = \begin{cases} 0 & \text{wenn } \mathbf{Term}(i,i) = 0 \\ \bot & \text{sonst} \end{cases}$$

- Annahme: es gibt ein Programm für den Terminierungstest
 - Term(i,j)=1 falls $p_i(j)$ hält (sonst 0)
- Konstruiere ein neues Programm Unsinn wie folgt:

$$\mathbf{Unsinn}(i) = \begin{cases} 0 & \text{wenn } \mathbf{Term}(i,i) = 0 \\ \bot & \text{sonst} \end{cases}$$

- Annahme: es gibt ein Programm für den Terminierungstest
 - Term(i,j)=1 falls $p_i(j)$ hält (sonst 0)
- Konstruiere ein neues Programm Unsinn wie folgt:

$$\mathbf{Unsinn}(i) = \begin{cases} 0 & \text{wenn } \mathbf{Term}(i,i) = 0 \\ \bot & \text{sonst} \end{cases}$$

- Annahme: es gibt ein Programm für den Terminierungstest
 - Term(i,j)=1 falls $p_i(j)$ hält (sonst 0)
- Konstruiere ein neues Programm Unsinn wie folgt:

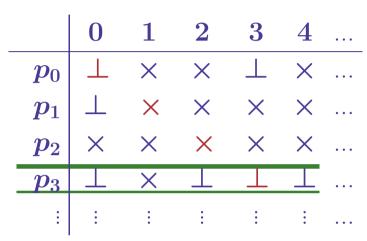
$$\mathbf{Unsinn}(i) = \begin{cases} 0 & \text{wenn } \mathbf{Term}(i,i) = 0 \\ \bot & \text{sonst} \end{cases}$$

- Annahme: es gibt ein Programm für den Terminierungstest
 - Term(i,j)=1 falls $p_i(j)$ hält (sonst 0)
- Konstruiere ein neues Programm Unsinn wie folgt:

$$\mathbf{Unsinn}(i) = \begin{cases} 0 & \text{wenn } \mathbf{Term}(i,i) = 0 \\ \bot & \text{sonst} \end{cases}$$

- Annahme: es gibt ein Programm für den Terminierungstest
 - Term(i,j)=1 falls $p_i(j)$ hält (sonst 0)
- Konstruiere ein neues Programm Unsinn wie folgt:

$$\mathbf{Unsinn}(i) = \begin{cases} 0 & \text{wenn } \mathbf{Term}(i,i) = 0 \\ \bot & \text{sonst} \end{cases}$$



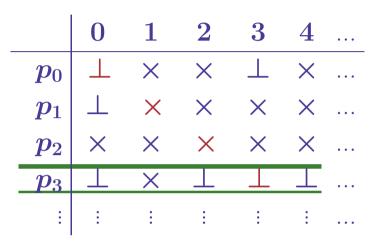
imes $\hat{=}$ Terminierung, \perp $\hat{=}$ hält nicht

• Unsinn ist ein Programm

Also muss Unsinn eine Nummer k haben

- Annahme: es gibt ein Programm für den Terminierungstest
 - Term(i,j)=1 falls $p_i(j)$ hält (sonst 0)
- Konstruiere ein neues Programm Unsinn wie folgt:

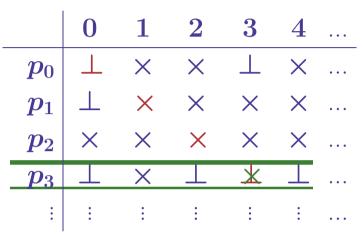
$$\mathbf{Unsinn}(i) = \begin{cases} 0 & \text{wenn } \mathbf{Term}(i,i) = 0 \\ \bot & \text{sonst} \end{cases}$$



- imes $\hat{=}$ Terminierung, \perp $\hat{=}$ hält nicht
- Unsinn ist ein Programm $\times = 1$ Also muss Unsinn eine Nummer k haben
- Was macht p_k =Unsinn auf seiner eigenen Nummer?

- Annahme: es gibt ein Programm für den Terminierungstest
 - Term(i,j)=1 falls $p_i(j)$ hält (sonst 0)
- Konstruiere ein neues Programm Unsinn wie folgt:

$$\mathbf{Unsinn}(i) = \begin{cases} 0 & \text{wenn } \mathbf{Term}(i,i) = 0 \\ \bot & \text{sonst} \end{cases}$$

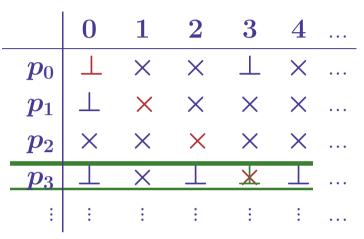


- \times $\hat{=}$ Terminierung, \perp $\hat{=}$ hält nicht
- Also muss Unsinn eine Nummer k haben
- Was macht p_k =Unsinn auf seiner eigenen Nummer?
 - Wenn $p_k(k)$ hält, dann Term(k,k)=1, also hält Unsinn(k) nicht an ???

• Unsinn ist ein Programm

- Annahme: es gibt ein Programm für den Terminierungstest
 - Term(i,j)=1 falls $p_i(j)$ hält (sonst 0)
- Konstruiere ein neues Programm Unsinn wie folgt:

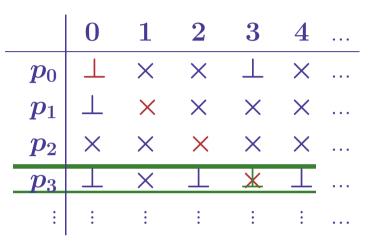
$$\mathbf{Unsinn}(i) = \begin{cases} 0 & \text{wenn } \mathbf{Term}(i,i) = 0 \\ \bot & \text{sonst} \end{cases}$$



- Unsinn ist ein Programm $\times \hat{=}^{-1}$ Also muss Unsinn eine Nummer k haben
- Was macht p_k =Unsinn auf seiner eigenen Nummer?
 - Wenn $p_k(k)$ hält, dann Term(k,k)=1, also hält Unsinn(k) nicht an ???
 - Wenn $p_k(k)$ nicht hält, dann Term(k,k)=0, also hält Unsinn(k) an ???

- Annahme: es gibt ein Programm für den Terminierungstest
 - Term(i,j)=1 falls $p_i(j)$ hält (sonst 0)
- Konstruiere ein neues Programm Unsinn wie folgt:

$$\mathbf{Unsinn}(i) = \begin{cases} 0 & \text{wenn } \mathbf{Term}(i,i) = 0 \\ \bot & \text{sonst} \end{cases}$$



 \times $\hat{=}$ Terminierung, \perp $\hat{=}$ hält nicht

- Also muss Unsinn eine Nummer k haben
- Was macht p_k =Unsinn auf seiner eigenen Nummer?
 - Wenn $p_k(k)$ hält, dann Term(k,k)=1, also hält Unsinn(k) nicht an ???
 - Wenn $p_k(k)$ nicht hält, dann Term(k,k)=0, also hält Unsinn(k) an ???
- Dies ist ein Widerspruch, Also kann es den Test auf Terminierung nicht geben

• Unsinn ist ein Programm

Beweise eine Aussage A für alle natürlichen Zahlen

INDUKTIVE BEWEISE I

Beweise eine Aussage A für alle natürlichen Zahlen

- Standardinduktion
 - Gilt A für i und folgt A für n+1, wenn A für n gilt, dann gilt A für alle $n \ge i$

Beweise eine Aussage A für alle natürlichen Zahlen

Standardinduktion

- Gilt A für i und folgt A für n+1, wenn A für n gilt, dann gilt A für alle $n \ge i$
- -z.B. Wenn $x \ge 4$, dann $2^x \ge x^2$

Beweise eine Aussage A für alle natürlichen Zahlen

Standardinduktion

- Gilt A für i und folgt A für n+1, wenn A für n gilt, dann gilt A für alle $n \ge i$
- -z.B. Wenn $x \ge 4$, dann $2^x \ge x^2$

Induktionsanfang x=4: Es ist $2^x = 16 \ge 16 = x^2$

Beweise eine Aussage A für alle natürlichen Zahlen

Standardinduktion

- Gilt A für i und folgt A für n+1, wenn A für n gilt, dann gilt A für alle $n \ge i$
- -z.B. Wenn $x \ge 4$, dann $2^x \ge x^2$

Induktionsanfang x=4: Es ist $2^x = 16 \ge 16 = x^2$

Induktionsschritt: Es gelte $2^n \ge n^2$ für ein beliebiges $n \ge 4$

Beweise eine Aussage A für alle natürlichen Zahlen

Standardinduktion

- Gilt A für i und folgt A für n+1, wenn A für n gilt, dann gilt A für alle $n \ge i$
- $-z.B. Wenn x \ge 4, dann 2^x \ge x^2$

Induktionsanfang x=4: Es ist $2^x = 16 \ge 16 = x^2$

Induktionsschritt: Es gelte $2^n \ge n^2$ für ein beliebiges $n \ge 4$

Dann ist $2^{n+1} = 2*2^n \ge 2n^2$ aufgrund der Induktionsannahme

und
$$(n+1)^2 = n^2 + 2n + 1 = n(n+2+1/n) \le n(n+n) = 2n^2$$
 wegen $n \ge 4$

Beweise eine Aussage A für alle natürlichen Zahlen

Standardinduktion

- Gilt A für i und folgt A für n+1, wenn A für n gilt, dann gilt A für alle $n \ge i$
- $-z.B. Wenn x>4, dann 2^x>x^2$

Induktionsanfang x=4: Es ist $2^x = 16 > 16 = x^2$

Induktionsschritt: Es gelte $2^n \ge n^2$ für ein beliebiges $n \ge 4$

Dann ist $2^{n+1} = 2*2^n \ge 2n^2$ aufgrund der Induktionsannahme

also gilt
$$2^{n+1} \ge (n+1)^2$$

und $(n+1)^2 = n^2 + 2n + 1 = n(n+2+1/n) \le n(n+n) = 2n^2$ wegen $n \ge 4$

Beweise eine Aussage A für alle natürlichen Zahlen

Standardinduktion

- Gilt A für i und folgt A für n+1, wenn A für n gilt, dann gilt A für alle $n \ge i$
- $-z.B. Wenn x \ge 4, dann 2^x \ge x^2$

Induktionsanfang x=4: Es ist $2^x = 16 \ge 16 = x^2$

Induktionsschritt: Es gelte $2^n \ge n^2$ für ein beliebiges $n \ge 4$

Dann ist $2^{n+1} = 2*2^n \ge 2n^2$ aufgrund der Induktionsannahme und $(n+1)^2 = n^2 + 2n + 1 = n(n+2+1/n) \le n(n+n) = 2n^2$ wegen $n \ge 4$ also gilt $2^{n+1} \ge (n+1)^2$

Vollständige Induktion

- Folgt A für n, wenn A für alle j < n mit $j \ge i$ gilt, dann gilt A für alle $n \ge i$
- Mächtiger, da man nicht den unmittelbaren Vorgänger benutzen muss

STRUKTURELLE INDUKTION

Zeige A für alle Elemente eines rekursiven Datentyps

Gilt A für das Basiselement und folgt A für ein zusammengesetztes Element, wenn A für seine Unterelemente gilt, dann gilt A für alle Elemente

STRUKTURELLE INDUKTION

Zeige A für alle Elemente eines rekursiven Datentyps

Gilt A für das Basiselement und folgt A für ein zusammengesetztes Element, wenn A für seine Unterelemente gilt, dann gilt A für alle Elemente

- z.B. Die Summe einer Liste L von positiven ganzen Zahlen ist mindestens so groß wie ihre Länge

Zeige A für alle Elemente eines rekursiven Datentyps

Gilt A für das Basiselement und folgt A für ein zusammengesetztes Element, wenn A für seine Unterelemente gilt, dann gilt A für alle Elemente

- z.B. Die Summe einer Liste L von positiven ganzen Zahlen ist mindestens so groß wie ihre Länge

Induktionsanfang L ist leer: Die Summe und die Länge von L sind 0

Zeige A für alle Elemente eines rekursiven Datentyps

Gilt A für das Basiselement und folgt A für ein zusammengesetztes Element, wenn A für seine Unterelemente gilt, dann gilt A für alle Elemente

- z.B. Die Summe einer Liste L von positiven ganzen Zahlen ist mindestens so groß wie ihre Länge

Induktionsanfang L ist leer: Die Summe und die Länge von L sind 0

Induktionsschritt: Es gelte $sum(L) \ge |L|$

Zeige A für alle Elemente eines rekursiven Datentyps

Gilt A für das Basiselement und folgt A für ein zusammengesetztes Element, wenn A für seine Unterelemente gilt, dann gilt A für alle Elemente

- z.B. Die Summe einer Liste L von positiven ganzen Zahlen ist mindestens so groß wie ihre Länge

Induktionsanfang L ist leer: Die Summe und die Länge von L sind 0

Induktionsschritt: Es gelte $sum(L) \ge |L|$

Betrachte die Liste $L \circ x$, die durch Anhängen von x and L entsteht

Dann gilt $sum(L \circ x) = sum(L) + x \ge sum(L) + 1 \ge |L| + 1 = |L \circ x|$

Zeige A für alle Elemente eines rekursiven Datentyps

Gilt A für das Basiselement und folgt A für ein zusammengesetztes Element, wenn A für seine Unterelemente gilt, dann gilt A für alle Elemente

- z.B. Die Summe einer Liste L von positiven ganzen Zahlen ist mindestens so groß wie ihre Länge

Induktionsanfang L ist leer: Die Summe und die Länge von L sind 0

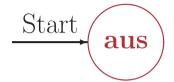
Induktionsschritt: Es gelte $sum(L) \ge |L|$

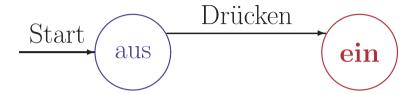
Betrachte die Liste $L \circ x$, die durch Anhängen von x and L entsteht

Dann gilt $sum(L \circ x) = sum(L) + x \ge sum(L) + 1 \ge |L| + 1 = |L \circ x|$

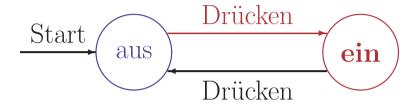
Häufig eingesetzt für Analyse von

- · Baumstrukturen (Suchen, Sortieren, ...)
- · Syntaktische Strukturen (Formeln, Programmiersprachen, ...)

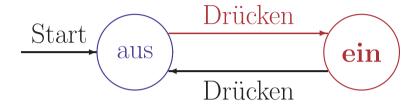






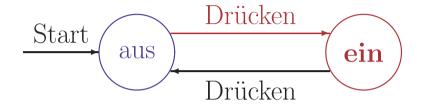


Zeige mehrere zusammengehörige Aussagen simultan



Zeige: Automat ist ein Wechselschalter

Zeige mehrere zusammengehörige Aussagen simultan

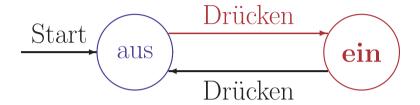


Zeige: Automat ist ein Wechselschalter

 $S_1(n)$: Ist n gerade, so ist der Automat nach n-fachem Drücken ausgeschaltet

 $S_2(n)$: Ist n ungerade, so ist der Automat nach n-fachem Drücken eingeschaltet

Zeige mehrere zusammengehörige Aussagen simultan



Zeige: Automat ist ein Wechselschalter

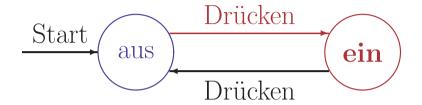
 $S_1(n)$: Ist n gerade, so ist der Automat nach n-fachem Drücken ausgeschaltet

 $S_2(n)$: Ist n ungerade, so ist der Automat nach n-fachem Drücken eingeschaltet

Induktionsanfang n=0: n ist gerade also gilt $S_2(0)$

der Automat ist ausgeschaltet, also gilt $S_1(0)$

Zeige mehrere zusammengehörige Aussagen simultan



Zeige: Automat ist ein Wechselschalter

 $S_1(n)$: Ist n gerade, so ist der Automat nach n-fachem Drücken ausgeschaltet

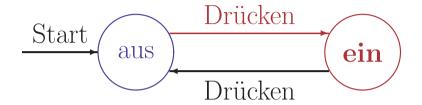
 $S_2(n)$: Ist n ungerade, so ist der Automat nach n-fachem Drücken eingeschaltet

Induktionsanfang n=0: n ist gerade also gilt $S_2(0)$

der Automat ist ausgeschaltet, also gilt $S_1(0)$

Induktionsschritt: Es gelte $S_1(n)$ und $S_2(n)$. Betrachte n+1

Zeige mehrere zusammengehörige Aussagen simultan



Zeige: Automat ist ein Wechselschalter

 $S_1(n)$: Ist n gerade, so ist der Automat nach n-fachem Drücken ausgeschaltet

 $S_2(n)$: Ist n ungerade, so ist der Automat nach n-fachem Drücken eingeschaltet

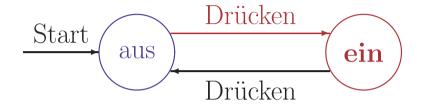
Induktionsanfang n=0: n ist gerade also gilt $S_2(0)$

der Automat ist ausgeschaltet, also gilt $S_1(0)$

Induktionsschritt: Es gelte $S_1(n)$ und $S_2(n)$. Betrachte n+1

– Falls n+1 ungerade, dann gilt $S_1(n+1)$ und n ist gerade. Wegen $S_1(n)$ war der Automat "aus" und wechselt auf "ein". Es gilt $S_2(n+1)$

Zeige mehrere zusammengehörige Aussagen simultan



Zeige: Automat ist ein Wechselschalter

 $S_1(n)$: Ist n gerade, so ist der Automat nach n-fachem Drücken ausgeschaltet

 $S_2(n)$: Ist n ungerade, so ist der Automat nach n-fachem Drücken eingeschaltet

Induktionsanfang n=0: n ist gerade also gilt $S_2(0)$

der Automat ist ausgeschaltet, also gilt $S_1(0)$

Induktionsschritt: Es gelte $S_1(n)$ und $S_2(n)$. Betrachte n+1

- Falls n+1 ungerade, dann gilt $S_1(n+1)$ und n ist gerade. Wegen $S_1(n)$ war der Automat "aus" und wechselt auf "ein". Es gilt $S_2(n+1)$
- Falls n+1 gerade, dann gilt $S_2(n+1)$ und n ist ungerade. Wegen $S_2(n)$ war der Automat "ein" und wechselt auf "aus". Es gilt $S_1(n+1)$

- **Alphabet** Σ : endliche Menge von Symbolen, z.B. $\Sigma = \{0, 1\}, \Sigma = \{0, ..., 9\}, \Sigma = \{A, ..., Z, a, ..., z, ..., ?, !, ...\}$
- Wörter: endliche Folge w von Symbolen eines Alphabets Auch Zeichenreihen oder Strings genannt

- **Alphabet** Σ : endliche Menge von Symbolen, z.B. $\Sigma = \{0, 1\}, \Sigma = \{0, ..., 9\}, \Sigma = \{A, ..., Z, a, ..., z, ..., ?, !, ...\}$
- Wörter: endliche Folge w von Symbolen eines Alphabets Auch Zeichenreihen oder Strings genannt
- $-\epsilon$: Leeres Wort (ohne jedes Symbol)
- $-\boldsymbol{w}\boldsymbol{v}$: Konkatenation (Aneinanderhängung) der Wörter w und v
- $-\mathbf{u}^{i}$: i-fache Konkatenation des Wortes (oder Symbols) u
- -|w|: Länge des Wortes w (Anzahl der Symbole)
- $-\mathbf{v} \sqsubseteq \mathbf{w}$: v Präfix von w, wenn w = v u für ein Wort u

- **Alphabet** Σ : endliche Menge von Symbolen, z.B. $\Sigma = \{0, 1\}, \Sigma = \{0, ..., 9\}, \Sigma = \{A, ..., Z, a, ..., z, ..., ?, !, ...\}$
- **Wörter**: endliche Folge w von Symbolen eines Alphabets Auch Zeichenreihen oder Strings genannt
- $-\epsilon$: Leeres Wort (ohne jedes Symbol)
- $-\boldsymbol{w}\boldsymbol{v}$: Konkatenation (Aneinanderhängung) der Wörter w und v
- $-\mathbf{u}^{i}$: i-fache Konkatenation des Wortes (oder Symbols) u
- -|w|: Länge des Wortes w (Anzahl der Symbole)
- $-\mathbf{v} \sqsubseteq \mathbf{w}$: v Präfix von w, wenn w = v u für ein Wort u
- $-\Sigma^{k}$: Menge der Wörter der Länge k mit Symbolen aus Σ
- $-\Sigma^*$: Menge aller Wörter über Σ
- $-\Sigma^+$: Menge aller nichtleeren Wörter über Σ

- **Alphabet** Σ : endliche Menge von Symbolen, z.B. $\Sigma = \{0, 1\}, \Sigma = \{0, ..., 9\}, \Sigma = \{A, ..., Z, a, ..., z, ..., ?, !, ...\}$
- Wörter: endliche Folge w von Symbolen eines Alphabets Auch Zeichenreihen oder Strings genannt
- $-\epsilon$: Leeres Wort (ohne jedes Symbol)
- $-\boldsymbol{w}\boldsymbol{v}$: Konkatenation (Aneinanderhängung) der Wörter w und v
- $-\mathbf{u}^{i}$: i-fache Konkatenation des Wortes (oder Symbols) u
- -|w|: Länge des Wortes w (Anzahl der Symbole)
- $-\mathbf{v} \sqsubseteq \mathbf{w}$: v Präfix von w, wenn w = v u für ein Wort u
- $-\Sigma^{k}$: Menge der Wörter der Länge k mit Symbolen aus Σ
- $-\Sigma^*$: Menge aller Wörter über Σ
- $-\Sigma^+$: Menge aller nichtleeren Wörter über Σ
- Sprache L: Beliebige Menge von Wörtern über einem Alphabet Σ Ublicherweise in abstrakter Mengennotation gegeben z.B. $\{w \in \{0, 1\}^* \mid |w| \text{ ist gerade}\} \quad \{0^n 1^n \mid n \in \mathbb{N}\}$
- **Problem** P: Menge von Wörtern über einem Alphabet Σ Das "Problem" ist, Zugehörigkeit zur Menge P zu testen

- Funktion $f: S \rightarrow S'$: Abbildung zwischen den Grundmengen S und S' nicht unbedingt auf allen Elementen von S definiert
- **Domain von** f: $domain(f) = \{x \in S \mid f(x) \text{ definiert}\}$ (Definitionsbereich)
- Range von f: $range(f) = \{ y \in S' \mid \exists x \in S. \ f(x) = y \}$ (Wertebereich)
- $-\mathbf{f}$ total: domain(f) = S (andernfalls ist \mathbf{f} partiell)

- Funktion $f: S \rightarrow S'$: Abbildung zwischen den Grundmengen S und S' nicht unbedingt auf allen Elementen von S definiert
- **Domain von** f: $domain(f) = \{x \in S \mid f(x) \text{ definiert}\}$ (Definitionsbereich)
- Range von f: $range(f) = \{ y \in S' \mid \exists x \in S. \ f(x) = y \}$ (Wertebereich)
- $-\mathbf{f}$ total: domain(f) = S (andernfalls ist \mathbf{f} partiell)
- $-\mathbf{f}$ injektiv: $x \neq y \Rightarrow f(x) \neq f(y)$
- f surjektiv: range(f) = S'
- -f bijektiv: f injektiv und surjektiv
- Umkehrfunktion $f^{-1}:S' \rightarrow S$: $f^{-1}(y) = x \Leftrightarrow f(x) = y$ (f injektiv!)
- Urbild $f^{-1}(L)$: Die Menge $\{x \in S \mid f(x) \in L\}$

- Funktion $f: S \rightarrow S'$: Abbildung zwischen den Grundmengen S und S'nicht unbedingt auf allen Elementen von S definiert
- **Domain von f**: $domain(f) = \{x \in S \mid f(x) \text{ definiert}\}$ (Definitionsbereich)
- Range von f: $range(f) = \{ y \in S' \mid \exists x \in S. \ f(x) = y \}$ (Wertebereich)
- f total: domain(f) = S (andernfalls ist f partiell)
- f injektiv: $x \neq y \Rightarrow f(x) \neq f(y)$
- f surjektiv: range(f) = S'
- -f bijektiv: f injektiv und surjektiv
- Umkehrfunktion $f^{-1}:S' \rightarrow S$: $f^{-1}(y) = x \Leftrightarrow f(x) = y$ (f injektiv!)

- $\begin{tabular}{l} \begin{tabular}{l} \begi$

- Funktion $f: S \rightarrow S'$: Abbildung zwischen den Grundmengen S und S'nicht unbedingt auf allen Elementen von S definiert
- **Domain von f**: $domain(f) = \{x \in S \mid f(x) \text{ definiert}\}$ (Definitionsbereich)
- Range von f: $range(f) = \{ y \in S' \mid \exists x \in S. \ f(x) = y \}$ (Wertebereich)
- f total: domain(f) = S (andernfalls ist f partiell)
- f injektiv: $x \neq y \Rightarrow f(x) \neq f(y)$
- f surjektiv: range(f) = S'
- -f bijektiv: f injektiv und surjektiv
- Umkehrfunktion $f^{-1}:S' \rightarrow S$: $f^{-1}(y) = x \Leftrightarrow f(x) = y$ (f injektiv!)

- $\begin{tabular}{l} \begin{tabular}{l} \begi$

Mehr Vokabular wird bei Bedarf vorgestellt