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Abstract. Acyclicity constraints are prevalent in knowledge representation and,
in particular, applications where acyclic data structures such as DAGs and trees
play a role. Recently, such constraints have been considered in the satisfiability
modulo theories (SMT) framework, and in this paper we carry out an analogous
extension to the answer set programming (ASP) paradigm. The resulting formal-
ism, ASP modulo acyclicity, offers a rich set of primitives to express constraints
related with recursive structures. The implementation, obtained as an extension
to the state-of-the-art answer set solver CLASP, provides a unique combination of
traditional unfounded set checking with acyclicity propagation.

1 Introduction

Acyclic data structures such as DAGs and trees occur frequently in applications. For in-
stance, Bayesian [1] and Markov [2] network learning as well as Circuit layout [3] are
based on respective conditions. When logical formalisms are used for the specification
of such structures, dedicated acyclicity constraints are called for. Recently, such con-
straints have been introduced in the satisfiability modulo theories (SMT) framework [4]
for extending Boolean satisfiability in terms of graph-theoretic properties [5, 6]. The
idea of satisfiability modulo acyclicity [7] is to view Boolean variables as condition-
alized edges of a graph and to require that the graph remains acyclic under variable
assignments. Moreover, the respective theory propagators for acyclicity have been im-
plemented in contemporary CDCL-based SAT solvers, MINISAT and GLUCOSE, which
offer a promising machinery for solving applications involving acyclicity constraints.

In this paper, we consider acyclicity constraints in the context of answer set pro-
gramming (ASP) [8], featuring a rule-based language for knowledge representation.
While SAT solvers with explicit acyclicity constraints offer an alternative mechanism
to implement ASP via appropriate translations [7], the goal of this paper is different:
the idea is to incorporate acyclicity constraints into ASP, thus accounting for extended
rule types as well as reasoning tasks like enumeration and optimization. The resulting
formalism, ASP modulo acyclicity, offers a rich set of primitives to express constraints
related with recursive structures. The implementation, obtained as an extension to the
state-of-the-art answer set solver CLASP [9], provides a unique combination of tradi-
tional unfounded set [10] checking and acyclicity propagation [5].
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2 Background

We consider logic programs built from rules of the following forms:

a← b1, . . . , bn, not c1, . . . , not cm. (1)
{a} ← b1, . . . , bn, not c1, . . . , not cm. (2)
a← k ≤ [b1 = w1, . . . , bn = wn, not c1 = wn+1, . . . , not cm = wn+m]. (3)

Symbols a, b1, . . . , bn, c1, . . . , cm stand for (propositional) atoms, k,w1, . . . , wn+m for
non-negative integers, and not for (default) negation. Atoms like bi and negated atoms
like not ci are called positive and negative literals, respectively. For a normal (1),
choice (2), or weight (3) rule r, we denote its head atom by head(r) = a and its
body by B(r). By B(r)

+
= {b1, . . . , bn} and B(r)

−
= {c1, . . . , cm}, we refer to the

positive and negative body atoms of r. When r is a weight rule, the respective sequence
of weighted literals is denoted by WL(r), and its restrictions to positive or negative
literals by WL(r)

+ and WL(r)
−. A normal rule r such that head(r) ∈ B(r)

− is called
an integrity constraint, and we below skip head(r) and not head(r) for brevity, where
head(r) is an arbitrary atom occurring in r only. A weight constraint program P , or
simply a program, is a finite set of rules; P is a choice program if it consists of normal
and choice rules only, and a positive program if it involves neither negation nor choice
rules.

Given a program P , let head(P ) = {head(r) | r ∈ P} and At(P ) = head(P ) ∪⋃
r∈P (B(r)

+ ∪ B(r)
−
) denote the sets of head atoms or all atoms, respectively, oc-

curring in P . The defining rules of an atom a ∈ At(P ) are DefP (a) = {r ∈ P |
head(r) = a}. An interpretation I ⊆ At(P ) satisfies B(r) for a normal or choice
rule r iff B(r)+ ⊆ I and B(r)

− ∩ I = ∅. The weighted literals of a weight rule r eval-
uate to vI(WL(r)) =

∑
1≤i≤n,bi∈I wi +

∑
1≤i≤m,ci /∈I wn+i; when r is a weight rule,

I satisfies B(r) iff k ≤ vI(WL(r)). For any rule r, we write I |= B(r) iff I satisfies
B(r), and I |= r iff I |= B(r) implies head(r) ∈ I . The supporting rules of P with
respect to I are SRP (I) = {r ∈ P | head(r) ∈ I, I |= B(r)}. Moreover, I is a model
of P , denoted by I |= P , iff I |= r for every r ∈ P such that r is a normal or weight
rule. A model I of P is a supported model of P when head(SRP (I)) = I . Note that
any positive program P possesses a unique least model, denoted by LM(P ).

For a normal or choice rule r, B(r)I = B(r)
+ denotes the reduct of B(r) with

respect to an interpretation I , and B(r)
I
= (max{0, k − vI(WL(r)

−
)} ≤ WL(r)

+
)

is the reduct of B(r) for a weight rule r. The reduct of a program P with respect to an
interpretation I is P I = {head(r)← B(r)

I | r ∈ SRP (I)}. Then, I is a stable model
of P iff I |= P and LM(P I) = I . While any stable model of P is a supported model
of P as well, the converse does not hold in general. However, the following concept
provides a tighter notion of support achieving such a correspondence.

Definition 1. A model I of a program P is well-supported by a set R ⊆ SRP (I) of
rules iff head(R) = I and there is some ordering r1, . . . , rn of R such that, for each
1 ≤ i ≤ n, head({r1, . . . , ri−1}) |= B(ri)

I .

In fact, a (supported) model I of a program P is stable iff I is well-supported by
some subset of SRP (I), and several such subsets may exist. The notion of well-support



counteracts circularity in the positive dependency graph DG+(P ) = 〈At(P ),�〉 of P ,
whose edge relation a � b holds for all a, b ∈ At(P ) such that head(r) = a and
b ∈ B(r)+ for some rule r ∈ P . If a� b, we also write 〈a, b〉 ∈ DG+(P ).

3 Acyclicity Constraints

In [5], the SAT problem has been extended by explicit acyclicity constraints. The ba-
sic idea is to label edges of a directed graph with dedicated Boolean variables. While
satisfying the clauses of a SAT instance referring to these labeling variables, also the di-
rected graph consisting of edges whose labeling variables are true must be kept acyclic.
Thus, the graph behind the labeling variables imposes an additional constraint on satis-
fying assignments. In what follows, we propose a similar extension of logic programs
subject to stable model semantics.

Definition 2. The acyclicity extension of a logic program P is a pair 〈V, e〉, where

1. V is a set of nodes and
2. e : At(P )→ V × V is a partial injection that maps atoms of P to edges.

In the sequel, a program P is called an acyclicity program if it has an acyclicity ex-
tension 〈V, e〉. To define the semantics of acyclicity programs, we identify the graph of
the acyclicity check as follows. Given an interpretation I ⊆ At(P ), we write e(I) for
the set of edges e(a) induced by atoms a ∈ I for which e(a) is defined. For a given
acyclicity extension 〈V, e〉, the graph e(At(P )) is the maximal one that can be obtained
under any interpretation and is likely to contain cycles. If not, then the extension can be
neglected altogether as no cycles can arise. To be precise about the acyclicity condition
being imposed, we recall that a graph 〈V,E〉 with the set E ⊆ V 2 of edges has a cycle
iff there is a non-trivial directed path from any node v ∈ V back to itself via the edges
in E. An acyclic graph 〈V,E〉 has no cycles of this kind.

Definition 3. Let P be an acyclicity program with an acyclicity extension 〈V, e〉. An
interpretation M ⊆ At(P ) is a stable (or supported) model of P subject to 〈V, e〉 iff M
is a stable (or supported) model of P such that the graph 〈V, e(M)〉 is acyclic.

Example 1. Consider a directed graph 〈V,E〉 and the task to find a Hamiltonian cycle
through the graph, i.e., a cycle that visits each node of the graph exactly once. Let
us encode the graph by introducing the fact node(v) for each v ∈ V and the fact
edge(v, u) for each 〈v, u〉 ∈ E. Then, it is sufficient (i) to pick beforehand an arbitrary
initial node, say v0, for the cycle, (ii) to select for each node exactly one outgoing and
one incoming edge to be on the cycle, and (iii) to check that the cycle is not completed
before the path spanning along the selected edges returns to v0. Assuming that a predi-
cate hc is used to represent selected edges, the following (first-order) rules express (ii):

1{hc(v, u) : edge(v, u)}1← node(v).

1{hc(v, u) : edge(v, u)}1← node(u).

To enforce (iii), we introduce an acyclicity extension 〈V, e〉, where e maps an atom
hc(v, u) to an edge 〈v, u〉 whenever v and u are different from v0. �



Our next objective is to relate acyclicity programs with ordinary logic programs
in terms of translations. It is well-known that logic programs subject to stable model
semantics can express reachability in graphs, which implies that also acyclicity is ex-
pressible. To this end, we present a translation based on elimination orderings [11].

Definition 4. Let P be an acyclicity program with an acyclicity extension 〈V, e〉. The
translation TrEL(P, V, e) extends P as follows.

1. For each atom a ∈ At(P ) such that e(a) = 〈v, u〉, the rules:

el(v, u)← not a. (4)
el(v, u)← el(u). (5)

2. For each node v ∈ V such that 〈v, u1〉, . . . , 〈v, uk〉 are the edges in e(At(P ))
starting from v:

el(v)← el(v, u1), . . . , el(v, uk). (6)
← not el(v). (7)

The intuitive reading of the new atom el(v, u) is that the edge 〈v, u〉 ∈ e(At(P ))
has been eliminated, meaning that it cannot belong to any cycle. Analogously, the atom
el(v) denotes the elimination of a node v ∈ V . By the rule (4), an edge 〈v, u〉 is elimi-
nated when the atom a such that e(a) = 〈v, u〉 is false, while the rule (5) is applicable
once the end node u is eliminated. Then, the node v gets eliminated by the rule (6) if all
edges starting from it are eliminated. Finally, the constraint (7) ensures that all nodes are
eliminated. That is, the success of the acyclicity test presumes that el(v, u) or el(v),
respectively, is derivable for each edge 〈v, u〉 ∈ e(At(P )) and each node v ∈ V .

Theorem 1. Let P be an acyclicity program with an acyclicity extension 〈V, e〉 and
TrEL(P, V, e) its translation into an ordinary logic program.

1. If M is a stable model of P subject to 〈V, e〉, then M ′ = M ∪ {el(v, u) |
〈v, u〉 ∈ e(At(P ))} ∪ {el(v) | v ∈ V } is a stable model of TrEL(P, V, e).

2. If M ′ is a stable model of TrEL(P, V, e), then M = M ′ ∩At(P ) is a stable model
of P subject to 〈V, e〉.

Transformations in the other direction are of interest as well, i.e., the goal is to
capture stable models by exploiting the acyclicity constraint. While the existing trans-
lation from ASP into SAT modulo acyclicity [7] provides a starting point for such a
transformation, the target syntax is given by rules rather than clauses.

Definition 5. Let P be a weight constraint program. The acyclicity translation of P
consists of TrACYC(P ) =

⋃
a∈At(P ) TrACYC(P, a) with an acyclicity extension

〈At(P ), e〉 such that e(dep(a, b)) = 〈a, b〉 for each edge 〈a, b〉 ∈ DG+(P ), where
TrACYC(P, a) extends DefP (a) for each atom a ∈ At(P ) as follows.

1. For each edge 〈a, b〉 ∈ DG+(P ), the choice rule:

{dep(a, b)} ← b. (8)



2. For each defining rule (1) or (2) of a, the rule:

ws(r)← dep(a, b1), . . . , dep(a, bn), not c1, . . . , not cm. (9)

3. For each defining rule (3) of a, the rule:

ws(r)← k ≤ [dep(a, b1) = w1, . . . , dep(a, bn) = wn,

not c1 = wn+1, . . . , not cm = wn+m]. (10)

4. For DefP (a) = {r1, . . . , rk}, the constraint:

← a, not ws(r1), . . . , not ws(rk). (11)

The rules (9) and (10) specify when r provides well-support for a, i.e., the head
atom a non-circularly depends on B(r)+ = {b1, . . . , bn}. The constraint (11) expresses
that a ∈ At(P ) must have a well-supporting rule r ∈ DefP (a) whenever a is true. To
this end, respective dependencies have to be established in terms of the choice rules (8).

Theorem 2. Let P be a weight constraint program and TrACYC(P ) its translation into
an acyclicity program with an acyclicity extension 〈At(P ), e〉.

1. If M is a stable model of P , then there is an ordering r1, . . . , rn of some R ⊆
SRP (M) such that M ′ = M ∪ {ws(r) | r ∈ R} ∪ {dep(head(ri), b) | 1 ≤ i ≤ n,
b ∈ Bi}, where Bi ⊆ B(ri)

+ ∩ head({r1, . . . , ri−1}) for each 1 ≤ i ≤ n, is a
supported model of TrACYC(P ) subject to 〈At(P ), e〉.

2. If M ′ is a supported model of TrACYC(P ) subject to 〈At(P ), e〉, then M = M ′ ∩
At(P ) is a stable model of P and M is well-supported by R = {r | ws(r) ∈M ′}.

It is well-known that supported and stable models coincide for tight logic programs
[12, 13]. The following theorem shows that translations produced by TrACYC possess
an analogous property subject to the acyclicity extension 〈At(P ), e〉. This opens up an
interesting avenue for investigating the efficiency of stable model computation—either
using unfounded set checking or the acyclicity constraint, or both.

Theorem 3. Let P be a weight constraint program and TrACYC(P ) its translation into
an acyclicity program with an acyclicity extension 〈At(P ), e〉. Then, M is a supported
model of TrACYC(P ) subject to 〈At(P ), e〉 iff M is a stable model of TrACYC(P )
subject to 〈At(P ), e〉.

As witnessed by Theorems 2 and 3, the translation TrACYC provides means to cap-
ture stability in terms of the acyclicity constraint. However, the computational efficiency
of the translation can be improved when additional constraints governing dep(v, u)
atoms are introduced. The purpose of these constraints is to falsify dependencies in set-
tings where they are not truly needed. We first concentrate on choice programs and will
then extend the consideration to weight rules below. The following definition adopts the
cases from [7] but reformulates them in terms of rules rather than clauses.

Definition 6. Let P be a choice program. The strong acyclicity translation of P , de-
noted by TrACYC+(P ), extends TrACYC(P ) as follows.



1. For each 〈a, b〉 ∈ DG+(P ), the constraint:

← dep(a, b), not a. (12)

2. For each 〈a, b〉 ∈ DG+(P ) and r ∈ DefP (a) such that b /∈ B(r)+, the constraint:

← dep(a, b), ws(r). (13)

Intuitively, dependencies from a are not needed if a is false (12). Quite similarly,
a particular dependency may be safely preempted (13) if the well-support for a is pro-
vided by a rule r not involving this dependency.

The strong acyclicity translation for weight rules includes additional subprograms.

Definition 7. Let P be a weight constraint program and r ∈ P a weight rule of the
form (3), where head(r) = a, |{b1, . . . , bn}| = n, and w1, . . . , wn are ordered such
that wi−1 ≤ wi for each 1 < i ≤ n. The strong acyclicity translation TrACYC+(P )
of P is fortified as follows.

1. For 1 < i ≤ n, the rules:

nxt(r, i)← dep(a, bi−1). (14)
nxt(r, i)← nxt(r, i− 1). (15)
chk(r, i)← nxt(r, i), dep(a, bi). (16)

2. The weight rule:

red(r)← k ≤ [chk(r, 2) = w2, . . . , chk(r, n) = wn,

not c1 = wn+1, . . . , not cm = wn+m]. (17)

3. For each 〈a, b〉 ∈ DG+(P ) such that b ∈ B(r)+, the constraint:

← dep(a, b), red(r). (18)

The idea is to cancel dependencies 〈a, b〉 ∈ DG+(P ) by the constraint (18) when
the well-support obtained though r can be deemed redundant by the rule (17). To this
end, the rules of the forms (14) and (15) identify an atom among b1, . . . , bn of smallest
weight having an active dependency from a, i.e., dep(a, bi) is true, provided such an i
exists. By the rules of the form (16), any further dependencies are extracted, and (17)
checks whether the remaining literals are sufficient to reach the bound k. If so, all
dependencies from a are viewed as redundant. This check covers also cases where, e.g.,
negative literals suffice to satisfy the body and positive dependencies play no role.

4 Discussion

In this paper, we propose a novel SMT-style extension of ASP by explicit acyclicity con-
straints in analogy to [5]. These kinds of constraints have not been directly addressed in
previous SMT-style extensions of ASP [14–16]. The new extension, herein coined ASP



modulo acyclicity, offers a unique set of primitives for applications involving DAGs
or tree structures. One interesting application is the embedding of ASP itself, given
that unfounded set checking can be captured (Theorem 2). The utilized notion of well-
supporting rules resembles source pointers [17], used in native answer set solvers to
record rules justifying true atoms. In fact, a major contribution of this work is the imple-
mentation of new translations and principles in tools. For instance, CLASP [9] features
enumeration and optimization, which are not supported by ACYCMINISAT and ACY-
CGLUCOSE [5]. Thereby, a replication of supported (and stable) models under transla-
tions can be avoided by using the projection capabilities of CLASP [18]. Last but not
least, acyclicity programs enrich the variety of modeling primitives available to users.
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