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Abstract. The online answer set solver oClingo offers a powerful new technique
for uniting the speed of Answer Set Programming (ASP) with dynamic events.
The price of this power is paid by increased constraints on the construction of a
‘safe’ program—one that satisfies an arcane modularity condition. We provide an
alternative in the form of so-called Agent Logic Programs—a concise declarative
language for describing agent control strategies. Specifically, we take an ASP-
compatible subset of Agent Logic Programs, extend it with exogenous actions,
argue this translation is faithful to the original definition, and prove that it guar-
antees oClingo’s modularity condition. The result is a safe, clean input language
for oClingo and a new implementation for Agent Logic Programs.

1 Introduction

The online answer set solver oClingo offers a powerful new technique for uniting the
speed of answer set solving with dynamic events (Gebser et al., 2011). Unfortunately
the design of this system required a restrictive modularity condition to guarantee that
online answer sets could be efficiently computed. This modularity condition bears no
resemblance to a program written in oClingo’s input language, making it a challeng-
ing task for programmers to check that this crucial property actually holds. Individual
successful runs offer no guarantees regarding this property either, and programs that
ignore it risk incorrect results or an error message that provides limited assistance in
identifying and correcting the violation. In response to this problem we propose the use
of an alternate input language to oClingo that is safe (ie. guarantees modularity) but not
at the expense of seriously impeding expressiveness. The online dimension of oClingo
suggests an agent control language as a suitable substitute.

Action theories like the classical Situation Calculus (McCarthy and Hayes, 1969)
provide the foundations for the design of artificial, intelligent agents capable of reason-
ing about their own actions. Several mature calculi now exist, including the Event Cal-
culus (Mueller, 2006) and the modern Situation Calculus (Reiter, 2001), each capable
of endowing agents with knowledge of complex dynamic environments. Despite these
virtues, surprisingly few attempts have been made to integrate elaborate action theo-
ries into actual programming languages for intelligent agents. Most languages, such as
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(Dastani et al., 2003; Morley and Myers, 2004; Bordini et al., 2007), prefer very limited
reasoning with STRIPS-style updates (Fikes and Nilsson, 1971). Programmers of these
languages must include belief updates as part of their behavioral strategies rather than
keeping the program independent of the action theory.

Two notable exceptions to this trend are GOLOG (Levesque et al., 1997) and FLUX
(Thielscher, 2005), procedural languages built on top of the Situation Calculus and Flu-
ent Calculus, respectively. This construction, however, binds each language to its chosen
action theory, and no program can be swapped with an alternate theory as the domain
grows or requirements change. The procedural paradigms adopted by such programs
can also cause friction against the declarative action theories, rendering declarative lan-
guages a valuable alternative (Lloyd, 1987).

Agent Logic Programs were proposed in response to these limitations (Drescher
et al., 2009), offering a concise, declarative language for describing agent control strate-
gies, independent of an action theory. In fact, such programs are action theory agnostic—
any theory satisfying a few, general requirements is compatible with an Agent Logic
Program. Moreover, this is achieved with just two additional operators over plain logic
programming: “do” for executing actions, and “?” for checking conditions in the under-
lying theory. Like most predecessors though, Agent Logic Programs do not yet have an
implementation based on the efficient Answer Set Programming technique. Indeed the
only existing implementation, ALPprolog, uses prime implicants to solve the entailment
problem (Drescher and Thielscher, 2011).

We resolve oClingo’s deficiency with an automatic translation from Agent Logic
Programs to oClingo, argue that this translation is faithful to the original definition and
prove that it guarantees the modularity condition. Thus Agent Logic Programs serve as
an intuitive interface to oClingo, effectively bypassing the demands placed on oClingo’s
users. In return, oClingo provides a new, online implementation.

Our results are threefold: First, we define the concept of online agent logic pro-
grams. Second, we present a translation of these OALPs to oClingo programs. Finally,
we show that the result is guaranteed to satisfy the modularity condition of oClingo.

This paper is structured as follows: in the following section we provide details of
oClingo, including its modularity condition. We then introduce the existing concept of
Agent Logic Programs, our online extension, and provide a translation to oClingo. In
Section 5 we prove that modularity is guaranteed. We conclude with a short discussion.

2 Background

First we recapitulate standard logic programming and answer set programming termi-
nology. Rules are of the form

hr ← a1, . . . , am, not am+1, . . . , not an.

where each ai is an atom of the form p(t1, . . . , tk) and each ti is a term (constant,
variable, or function). The head hr of rule r is either an atom, a cardinality constraint
of the form l{h1, . . . , hk}u in which l, u are integers and h1, . . . , hk are atoms, or
the special symbol ⊥. If hr is a cardinality constraint, we call r a choice rule, and an
integrity constraint if hr = ⊥. We denote the atoms occurring in hr by head(r), ie.



head(r) = {hr} if hr is an atom, head(r) = {h1, . . . , hk} if hr = l{h1, . . . , hk}u,
and head(r) = ∅ if hr = ⊥. The atoms occurring positively and negatively in the body
are denoted by body(r)+ = {a1, . . . , am} and body(r)− = {am+1, . . . , an}.

A logic program R is a set of rules; atom(R) denotes the set of atoms occurring
in R; and head(R) = ∪r∈Rhead(r) is the collection of all head atoms. The ground
program grd(R) is the set of all ground rules constructable from rules r ∈ R by substi-
tuting every variable in r with some element of the Herbrand Universe ofR. For further
details we recommend several comprehensive works (Baral, 2003; Simons et al., 2002;
Gebser et al., 2008).

Before we introduce the modularity condition that is essential to oClingo, we need
to define the projection of a rule onto a set of atoms, and how we construct a ‘mod-
ule’ from a program. Note that an ‘incremental’ logic program is constructed from a
base module and two parametrized, ‘incremental modules’ that are instantiated for suc-
cessive time steps t: a cumulative module P [t] (which is accumulated) and a volatile
module Q[t] (which is purged after each step). Definitions 1–4 below are all taken from
(Gebser et al., 2011).

Definition 1. The projection P X of a program P onto a set X of (ground) atoms is:{
hr ← body(r)+ ∪ L r ∈ P, body(r)+ ⊆ X,

L = {not c | c ∈ body(r)− ∩X}
}

Informally, the projection accepts rules whose literals are constructed from the pro-
jected set X . All positive literals must be represented in X (or the rule is rejected). In
contrast, the negative literals that do not belong to X are simply pruned from the rule.

Example Consider the following (ground) logic program{
p1 ← a, b. p2 ← a, not b, not c. p3 ← b, c.

}
and set {a, b} of atoms. The projection preserves the first rule (all atoms are in the set),
removes a negation from the second rule (c is missing), and eradicates the last rule (a
positive literal is missing from the set):

{p1 ← a, b. p2 ← a, not b.}

Definition 2. Generate a module P(I) from a (possibly non-ground) program P and a
set of ground atomic inputs I:(

grd(P ) Y , I, head(grd(P ) X)
)

where X = I ∪ head(grd(P )) and Y = I ∪ head(grd(P ) X). The elements of this
tuple are the program, inputs, and outputs, denoted P (P), I(P), O(P).

Example Consider the following logic program: p1(Z)← a(Z), b(Z).
p2(Z)← a(Z), not b(Z), not c(Z).

p3(Z)← b(Z), c(Z).





With inputs I = {a(1), a(2), b(2), c(2)}, the auxiliary sets X,Y are:3

X = I ∪ {p1(1), p1(2), p2(1), p2(2), p3(1), p3(2)}
Y = I ∪ {p1(2), p2(1), p2(2), p3(2)}

So the inputs to the module are I , and the outputs are those elements in Y \I (displayed
above). The ground program itself is:

P =


p1(2)← a(2), b(2).
p2(1)← a(1).

p2(2)← a(2), not b(2), not c(2).
p3(2)← b(2), c(2).


Definition 3. The join P tQ of two modules P and Q is:(

P (P) ∪ P (Q), (I(P) \O(Q)) ∪ (I(Q) \O(P)) , O(P) ∪O(Q)
)

providedO(P)∩O(Q) = ∅ and there is no strongly connected component in the positive
dependency graph of P (P) ∪ P (Q)4 that shares atoms with both O(P) and O(Q).

Example Consider the following two modules:{p(a)← i(a). p(b)← i(b).} ,
{i(a), i(b)} ,
{p(a), p(b)}

 {q(c)← i(c).} ,
{i(c)} ,
{q(c)}


The outputs {p(a), p(b)} and {q(c)} are disjoint, as are the separate sub-dependency
graphs, so the join is well-defined:p(a)← i(a).

p(b)← i(b).
q(c)← i(c).

 ,

 i(a),
i(b),
i(c)

 ,

p(a),
p(b),
q(c)




Example The following join is undefined:{p← q.} ,
{q} ,
{p}

 t
{q ← p.} ,

{p} ,
{q}


In this case the combined program has a strongly connected component {p, q}, which
contains outputs from each module.

Finally, an online progression defines the input to each module (cumulative Ei and
volatile Fi) at each step (ei and fi). We can now reproduce the definition of modularity
as presented in (Gebser et al., 2011):

Definition 4. An online progression (Ei[ei], Fi[fi])i≥1 is modular with respect to an
incremental logic program (B,P [t], Q[t]) if:

3 Recall that grounding yields all variable substitutions.
4 defined as (atom(P (P)∪P (Q)), {(a, b) | r ∈ P (P)∪P (Q), a ∈ head(r), b ∈ body(r)+})



P0 = B(IB) = B(∅) ≈ (B, ∅, head(B))

Pn = Pn−1 t P[t/n]
(
O(Pn−1) ∪ IP [t/n]

)
E0 = (∅, ∅, ∅)
En = En−1 t En[en]

(
O(Pen) ∪O(En−1) ∪ IEn[en]

)
Rj,k = Pk t Ej tQ[t/k]

(
O(Pk) ∪ IQ[t/k]

)
t Fj [fj ]

(
O(Pfj ) ∪O(Ej) ∪ IFj [fj ]

)
are well-defined for all j, k ≥ 1 such that e1, . . . , ej , fj ≤ k.

Essentially this definition describes how different modules must not produce con-
flicting outputs. An incremental logic program that satisfies this condition can be ef-
ficiently computed stepwise by oClingo. The programs considered below have inputs
IB = IQ[t/k] = ∅, and IP [t/n] is the set of external actions possible at time t = n.

3 Online Agent Logic Programs

The purpose of Agent Logic Programs is to provide high-level control programs for
agents using a combination of declarative programming with reasoning about actions
(Drescher et al., 2009). The syntax of these programs is kept very simple: standard
(definite) logic programs are augmented with just two special predicates, one—written
do(α)—to denote the execution of an action by the agent, and one—written ?(φ)—to
verify properties against (the agent’s model of) the state of its environment. This model,
and how it is affected by actions, is defined in a separate action theory. Notably, this
clear abstraction improves the elaboration tolerance of agent control (McCarthy, 2007)
since independent components are uncoupled and only minor changes are required to
adapt to similar domains.

Control of these programs begins with the main predicate and continues until it is
satisfied, in the style of Prolog-like meta-interpreters, eg. GOLOG. Loops are achieved
with recursion.

Example Consider a simple mail delivery robot within an office environment like the
one shown in Fig. 1. Users asynchronously inform the robot of packages to pickup
(via exogenous actions). If the robot has tasks, then it must move to pick the requested
packages from their requested locations and deliver them. As a further extension, the
robot has a limited capacity, so it must schedule pickups and deliveries subject to this
hard constraint.

A clean axiomatization of this problem is provided in Fig. 2. The main procedure
checks with an underlying action theory whether a request has been made. If so, it calls
the handle procedure that moves arbitrarily, picks up the package, moves again, and
delivers it. We rely on the preconditions of the pickup and drop actions to guide the
system’s choice of movement and delivery order, but beyond this the robot has complete
freedom.

This means that we can ignore tedious details for managing capacity, path planning,
and load balancing—the system will take care of these based on simple declarative
descriptions. If we wish to modify the default behavior, we can always introduce a new
constraint, or completely override the behavior with new rules.



3 31 2 1

office 1 office 2 office 3

Fig. 1. The mail delivery problem

1 main :- ?(req(F,T)), handle(F,T), main.
2 main :- ?(noreq).
3

4 move.
5 move :- do(go_up), move.
6 move :- do(go_down), move.
7

8 handle(F,T) :- move, do(pickup(F,T)),
9 move, do(drop(F,T)).

Fig. 2. An Agent Logic Program for the mail
delivery problem

Definition 5 (from (Drescher et al., 2009)). A logic program (signature Π , without
cardinality constraints) is an Agent Logic Program (wrt action theory Σ) if:

– Terms are in Σ ∪Π .
– If p is an n-ary relation symbol in Π and t1, . . . , tn are terms, then p(t1, . . . , tn) is

a program atom.
– do(α) is a program atom if α is an action in Σ.
– ?(φ) is a program atom if φ is a state property in Σ, ie. a formula (represented as

a term) based on fluents in Σ.
– do and ? may not occur in the head of a rule.
– Clauses, programs, and queries are defined as usual for definite logic programs.

The semantics of such a program are defined in terms of its ‘temporal extension’
(explained in Section 4 below), along with a suitable action theory. The temporal exten-
sion is essential in order to take care of the implicit reference to, and changes of, states
by ? (test) and do (action execution) respectively, and make this information explicit in
the encoding. The overall declarative semantics are then the classical logical semantics
of this expanded program along with the action theory.

To extend Agent Logic Programs with exogenous actions, the programs must toler-
ate ‘noise’ between their own actions. We adopt from (Shapiro and Pagnucco, 2004) the
notion of exoseq, a relation that detects an uninterrupted sequence of exogenous actions
between two time points. This then complements the original action update mechanism
from (Drescher et al., 2009). We also require an ‘external’ definition—a set χ of rules
that act as domain predicates on the set of possible external actions.

Definition 6 (Online Agent Logic Program). An online agent logic program (OALP)
consists of two sets of rules—an agent logic program P and external definitions χ—and
a special time parameter t. Refer to the terms in P whose predicate symbol has no path
(in the dependency graph) to “do” or “?” as rigid. All other rules in P are the program.
Restrictions:

– Rigid rules R ⊆ P may not refer to any predicates outside of R.
– P may not mention distinguished predicates5 time/1, exoseq/2, exog/1, exec/3,

poss/2, occ/2, holds/2, and must be negation free.
5 time and exog are domain predicates. In Σ, holds(f,t) means (relational) fluent f is true at

time t; occ(a,t) indicates (primitive or exogenous) action a occurred at time t, provided it was
poss(a,t). Σ is responsible for generating and constraining occ; exec is used internally.



– For every rule in χ, the last argument of the head must be t. All other variables must
be bound by domain predicates in the body of the rule, which may only mention
atoms in R (this ensures that χ is groundable).

– head(P ) and head(χ) must be disjoint.

In the absence of exogenous actions this definition decays to original Agent Logic
Programs, subject to the fact that OALP’s target, oClingo, is an ASP system. This
means that Definition 6 acts as as both a definition of OALPs and as a filter of ‘ASP-
compatible’ (original) Agent Logic Programs. Every OALP is an Agent Logic Program,
but not vice versa; our new OALPs have extra restrictions6 to facilitate a direct transla-
tion to ASP, but beyond that the definitions are equivalent. Hence OALPs are a subset
of Agent Logic Programs, but will be our base for an exogenous extension.

Definition 7 (OALP Action Theory). An OALP-compatible action theory Σ is any
logic program that satisfies the following conditions:

– A state property φ is an expression built from the standard logical connectives and
fluent terms F (x) ∈ Σ. By holds(φ, t) we denote the formula obtained from prop-
erty φ by replacing every occurrence of a fluent f by holds(f, t). State properties
are used by agent logic programs in ?(φ) atoms. They may not mention poss/2.

– Action history is embedded in ground occ(A, t) atoms (zero-or-more per time point).
– Σ may not mention predicates do, ?, time/1, exoseq/2, exog/1, or exec/3.
– The first argument to poss/2, occ/2 must be an action; to holds/2 a fluent. The

second argument is a time point.
– Terms in Σ may refer to any time points ≤ t (ie. past and present) but not > t

(future). The last argument to atoms in the head of rules must be t.

Such action theories may include their own auxiliary rigids. We also leave open
the use of action generators (choice rules), constraints, and domain predicates in or-
der to effectively embed the theory into an answer set program. This permits arbitrary
concurrency models. An example action theory is provided in Fig. 3.

Definition 8 (OALP progression). An OALP progression is a progression of sets of
atoms constructed from the heads of the external χ rules, where the ith set corresponds
to the ith time point (and has t substituted accordingly). It is a special case of an online
progression as defined in (Gebser et al., 2011). Namely ei = i and Fi = ∅, for all i.

Example With input directive

#external request(F,T,t) : office(F) : office(T)

and rigids office(1), office(2), office(3), we have

O(En) = {request(1, 1, n), request(1, 2, n), . . . , request(3, 3, n)}

Thus two (arbitrary) valid OALP progressions are:

6 The restrictions are standard for the field, such as requiring domain predicates (for grounding).



1 #base.
2 office(1). office(2). office(3).
3 capacity(0). capacity(1). capacity(2).
4 exog(request(F,T)) :-
5 office(F), office(T).
6 holds(at(1),0).
7 holds(capacity(2),0).
8

9 #cumulative t.
10 #external request(F,T,t) :
11 office(F) : office(T).
12

13 { occ(go_up,t), occ(go_down,t),
14 occ(pickup(F,T),t) :
15 office(F) : office(T),
16 occ(drop(F,T),t) :
17 office(F) : office(T) } 1.
18 { occ(request(F,T),t) :
19 office(F) : office(T) } 1.
20

21 poss(drop(F,T),t) :- holds(at(T),t-1),
22 holds(carrying(F,T),t-1).
23 poss(go_down,t) :- holds(at(F),t-1),
24 office(F-1).
25 poss(go_up,t) :- holds(at(F),t-1),
26 office(F+1).
27 poss(pickup(F,T),t) :- holds(at(F),t-1),
28 holds(req(F,T),t-1),
29 holds(capacity(C),t-1), C>0.
30

31 does(t) :- occ(drop(F,T),t).
32 does(t) :- occ(go_down,t).
33 does(t) :- occ(go_up,t).
34 does(t) :- occ(pickup(F,T),t).
35

36 :- does(t), occ(request(F,T),t).
37 :- occ(A,t), not poss(A,t), not exog(A).
38 :- not request(F,T,t), occ(request(F,T),t).
39 :- request(F,T,t), not occ(request(F,T),t).

40 holds(at(F),t) :- holds(at(F),t-1),
41 not occ(go_up,t),
42 not occ(go_down,t).
43 holds(at(F+1),t) :- holds(at(F),t-1),
44 occ(go_up,t), office(F+1).
45 holds(at(F-1),t) :- holds(at(F),t-1),
46 occ(go_down,t), office(F-1).
47

48 holds(carrying(F,T),t) :-
49 holds(carrying(F,T),t-1),
50 not occ(drop(F,T),t).
51 holds(carrying(F,T),t) :-
52 occ(pickup(F,T),t).
53

54 changes(t) :- occ(pickup(F,T),t).
55 changes(t) :- occ(drop(F,T),t).
56 holds(capacity(C-1),t) :-
57 holds(capacity(C),t-1), capacity(C-1),
58 occ(pickup(F,T),t).
59 holds(capacity(C+1),t) :-
60 holds(capacity(C),t-1), capacity(C+1),
61 occ(drop(F,T),t).
62 holds(capacity(C),t) :-
63 holds(capacity(C),t-1),
64 not changes(t).
65

66 holds(noreq,t) :- not hasreq(t).
67 holds(req(F,T),t) :-
68 holds(req(F,T),t-1),
69 not occ(pickup(F,T),t).
70 holds(req(F,T),t) :-
71 occ(request(F,T),t).
72

73 hasreq(t) :- holds(req(F,T),t).

Fig. 3. A simple OALP-compatible action theory to complement the program in Fig. 2

〈 {request(1, 2, 1)}, {request(3, 2, 2)}, ∅, ∅, {request(1, 2, 5)}, . . . 〉 and
〈 {request(1, 3, 1)}, ∅, {request(2, 3, 3)}, . . . 〉

The representation of such a progression in an oClingo-compatible format is provided
in Fig. 4.

Agent Logic Programs operate much like the formulation of the planning problem
in the Situation Calculus: find all times T where the program is satisfied, ie. ∃T :
main(0, T ). Formerly, execution was not contingent on external input in any way, and
so was completely offline. Now the enumeration of time points depends absolutely on
the input actions, and so they can be said to be truly online.

4 Translation to oClingo

With our extension of ALPs to online agent logic programs defined, we can now explore
the temporal extension that gives these programs a declarative semantics, along the lines
of (Drescher et al., 2009).



1 #step 1. request(1,3,1). #endstep.
2 #step 2. #endstep.
3 #step 3. request(2,3,3). #endstep.
4 #stop.

Fig. 4. An example OALP progression in oClingo format

Definition 9 (Time-expanded program). Given an OALP program P , and an unref-
erenced constant t, call R the set of rigids in P . The time-expanded program T (P, t)
contains the set of rigids rules and time-expanded, non-rigid rules. That is: T (P, t) =
R ∪ {T (r) | r ∈ P \R}, where non-rigid rule r is time-expanded to T (r) as follows:

– Let the time point index i = 1.
– For each atom b in the left-to-right ordering of the body of r, replace with:
• holds(φ, Ti) if b =?(φ).
• exec(act, Ti, Ti+1) if b = do(act). Update i := i+ 1.
• b (leave unchanged) if b ∈ R.
• otherwise b = r′(y1, . . . , ym) ∈ P is a ‘call’ to another OALP rule; augment

with two time points r′(y1, . . . , ym, Ti, Ti+1). Update i := i+ 1.
– Prepend the term exoseq(T0, T1) to the start of the body.
– Note that the rule must now contain references to time points T0 to Ti inclusive

(otherwise it would be rigid). These variables must be distinct from all variables in
the original rule r.

– Augment the head atom hr(x0, . . . , xn) with two time points: hr(x1, . . . , xn, T0, Ti).
– Replace all references to Ti (the last time point variable) with t (including in the

head).

Finally, augment the program with two special rules:

exoseq(T, t)← exoseq(T, t− 1), occ(A, t), exog(A). and

exec(A, T, t)← exoseq(T, t− 1), occ(A, t), not exog(A).

Informally Ti represents the latest time point as one steps through the rule, so check-
ing a condition with ? is done ‘now’ relative to the left-to-right execution of the pro-
gram. Performing an action must take its current time point Ti and yield a new, later
time point T ′—namely the one resulting from performing that action at time Ti. Note
that this may be greater than Ti + 1 if a sequence of exogenous actions occurs, so it
requires a completely new time point, represented by an independent variable. We say
that do ‘maps’ from one time point to a later one. Similarly, a ‘function call’ (a body
atom referring to the head of another program rule) may rely on actions, so it too must
map now to a later time point. Domain predicates of the form time(Ti) are added in
Definition 10 to help ground the rules.

Example The complete, translated, mail delivery program from Fig. 2 is given in Fig. 5.
The original program maps to lines 1-35. The (volatile) integrity constraint on line 38
forces oClingo to find answer sets where the OALP program main is satisfied.



1 #base.
2 exoseq(0,0).
3 time(0).
4

5 #cumulative t.
6 main(T1,t) :- exoseq(T1,T2),
7 holds(req(F,T),T2),
8 handle(F,T,T2,T3),
9 main(T3,t), time(T1),

10 time(T2), time(T3).
11 main(T1,t) :- exoseq(T1,t),
12 holds(noreq,t), time(T1).
13

14 move(T1,t) :- exoseq(T1,T2),
15 exec(go_down,T2,T3), move(T3,t),
16 time(T1), time(T2), time(T3).
17 move(T1,t) :- exoseq(T1,T2),
18 exec(go_up,T2,T3), move(T3,t),
19 time(T1), time(T2), time(T3).
20 move(T1,t) :- exoseq(T1,t), time(T1).

21 handle(F,T,T1,t) :- exoseq(T1,T2),
22 move(T2,T3),
23 exec(pickup(F,T),T3,T4),
24 move(T4,T5), exec(drop(F,T),T5,t),
25 time(T1), time(T2), time(T3),
26 time(T4), time(T5).
27

28 exec(A,T,t) :- occ(A,t), not exog(A),
29 exoseq(T,t-1), time(T).
30

31 exoseq(T,t) :- occ(A,t), exog(A),
32 exoseq(T,t-1), time(T).
33

34 exoseq(t,t).
35 time(t).
36

37 #volatile t.
38 :- not main(0,t).

Fig. 5. The result of the translation of the mail delivery program to oClingo’s native input. This
listing excludes the ASP-compatible action theory provided in Fig. 3. Concatenating the two
listings produces a runnable ASP description.

Note that in the absence of exogenous actions, exoseq(T1, T2) is true iff T1 = T2,
in which case an expanded OALP decays to the original definition7 of an expanded
Agent Logic Program (Drescher et al., 2009):

Proposition 1. For a logic program constructed from an Agent Logic Program via Def-
inition 9, all answer sets that satisfy ¬exog(A) for all A, will also satisfy

exoseq(T1, T2)↔ T1 = T2.

Definition 10 (OALP to ASP construction). Given a time-expanded Online Agent
Logic Program T (P, t), external action statements χ, and a compatible action theory
Σ, A(P, χ,Σ, t) constructs an incremental logic program (LB , LP , LQ) as follows:

– The base sectionLB contains all rigidsR from T (P, t), an exog/1 relation derived
from χ and R, and two facts time(0)← and exoseq(0, 0)←.

– The volatile section LQ contains a single integrity constraint← main(0, t), which
means that head(Q) = ∅.

– Add domain predicates time(T0), . . . , time(Ti−1) to the body of each non-rigid
rule in the time-expanded program T (P, t) \ R—one for each time point variable
used in the rule8—and call these rules T ′.

– The cumulative section LP contains Σ, the expanded rules T ′, and two special
facts time(t)← and exoseq(t, t)←.

We can now reflect back on the difference between original Agent Logic Programs
and our new formulation. Definition 6 merely filters the space of all possible (original)

7 To be precise, the original definition allows first-order action theories while we target ASP, so
restrictions influence the interface exec/3 vs exec/4.

8 We do not need the last time(Ti) domain predicate since Ti was substituted with t, which is
already ground, and time(t) is true by construction.



Agent Logic Programs to ones that are ‘ASP-compatible’. By applying Definition 9
we get a time-expanded program that is equivalent to the original definition (subject to
Proposition 1) and is also safe to convert to an oClingo program as in Definition 10.

5 Modularity Condition

We now present the main theoretical result of this paper.

Theorem 1. For arbitrary OALP (P, χ, t) and action theory Σ, all OALP progressions
of χ are modular with respect to the construction A(P, χ,Σ, t).

That is, applying our construction to an arbitrary Online Agent Logic Program will
lead to an incremental logic program that is safe to run on oClingo—the OALP pro-
gression is modular with respect to the construction. The key observation here is that
modularity, which is defined in terms of the join of specific modules, is only undefined
under circumstances involving the outputs of the two joined modules (the full condition
is given in Definition 3). A brief proof sketch involves the subsequent points; we cannot
provide a complete proof due to space limitations. The crux of our proof is to guarantee
that these outputs (and then strongly connected components involving them) are always
disjoint. We rely on the fact that our exoseq implementation is monotonic.

Lemma 1. exoseq is monotonic: every ground instance of exoseq maps one time point
to an equal or later one.

We next establish that the incremental definition ofP (that is, the cumulative section
of our constructed program) is safe in the sense that progressive joins are well-defined.
First we observe that the outputs of successive cumulative sections are disjoint, and then
that the strongly connected components satisfy the join criteria.

Lemma 2. The outputs of two successive modulesPn−1 andP[t/n](O(Pn−1)∪IP [t/n])
are disjoint.

Lemma 3. The union of successive modulesPn−1 andP[t/n](O(Pn−1)∪IP [t/n]) has
no strongly connected component that violates Definition 3.

The second recursive definition for a modular incremental logic program is on E
(online input). We now establish that the join of two successive modules is well-defined.

Lemma 4. The join of any two successive modules En−1 and En[en](O(Pen) ∪
O(En−1) ∪ IEn[en]) is always well-defined.

Finally, the proof of Theorem 1 is trivial once we establish that the joins of any P
and E modules are always well-defined.

Lemma 5. The join of any two modules P and E is always well-defined.



6 Conclusion

In this paper we have taken two disparate languages—one with a clean formalism and
another with an efficient implementation—and provided an automatic translation that
preserves the strengths of each. In doing so we have made Agent Logic Programming a
viable alternative to previous languages for describing agent control strategies and be-
haviors. Not only do Agent Logic Programs now have an efficient implementation, they
are also easier to write and learn, since they require only two intuitive operators over
plain logic programming. They have also been suitably expressive in our own experi-
ments, even allowing nondeterministic operators in the style of GOLOG, though this is
the subject of continuing research. This highlights an important result: our translation
augments without introducing any new constraints.

More significantly, this clean language guarantees oClingo’s modularity condition,
so no complicated proofs or semantic checks are required and users can be assured that
a syntactically correct program will run. Contrast this with oClingo’s native input which
currently requires intimate knowledge and appreciation of oClingo’s construction and
operation. By offering a safe alternative interface, this makes oClingo or its successor
Clingo-4 (Gebser et al., 2014), respectively, a more attractive engine for online applica-
tions, and we hope this will encourage further research on online answer set systems.

We have also extended Agent Logic Programming to handle online (exogenous) ac-
tions, so it may now be applied to genuine cognitive robotics applications; we consider
this validation of its expressive powers important future work. This aligns well with the
stated goals of oClingo: to effectively reason about real-time dynamic systems running
online in changing environments.

The last obvious limitation of Agent Logic Programming—the lack of negation—
also needs attention. Previous work in this regard has yielded a complicated, though
functional, formulation involving negation-as-failure (Brewka et al., 2012). So far we
do not consider negation to be an essential aspect of these programs, though this too is
being investigated.
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