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I. INTRODUCTION

Sensors are an integral part of IoT systems. They collect
data about the surrounding environment. These data can be
used for monitoring the environment, but also to infer human
or actuator-based actions. Any inference is therefore not only
dependent on the availability of data, but also on the data
quality. A faulty sensor, i.e. one reporting incorrect data could
have detrimental effects on an IoT system [1]. For example,
in precision agriculture, IoT systems are deployed within a
crop field or greenhouse. They include sensors to monitor
environmental data like soil moisture or temperature and water
pumps for irrigation. The behavior of the water pumps can
be automated based on the sensor readings e.g. triggering
irrigation if the soil is dry. However, faulty high soil moisture
values may lead to wilting crops. Hence, to ensure a well-
operating IoT system, faulty sensors have to be detected
and replaced. The talk will give an overview over sensor
fault diagnosis and presents our experiences in our Precision
Agriculture testbed [2].

Classification of Faults

Different categorizations of sensor faults exist (see for
example [1], [3]). Li et al. divide sensor faults into incipient
and abrupt failures [1]. Abrupt failures result in complete
failure of the sensor such that no data is collected or sent.
The reason may be a broken sensor or sensor board, a broken
network connection or a discharged battery. These types of
faults can be easily detected by a monitoring system.

In contrast, incipient failures are caused by an abnormal
sensor status in which incorrect data is sent. Incipient failures
can be further distinguished and include similar fault classes
like proposed by Zou et al. as so-called soft failures such as
drift, bias, stuck fault, accuracy decline, and spike fault [3].

Classification of Sensor Faults Detection

A simple approach for identifying faulty sensors is redun-
dancy: using multiple sensors of the same type. Then, a faulty
sensor can be identified by its measurements differing from the
majority. However, this approach increases costs, maintenance
and system complexity. In a different approach, detection of
a faulty sensor is based on historic data of the sensor or

knowledge about the sensor’s behavior [1], [3].
Research for detecting faulty sensors is ongoing and there
exists no agreed classification yet. Here, we follow Li et
al. [1] and distinguish model-, knowledge- and data-based
approaches. A model-based approach consists of a mathemat-
ical model, which describes the system behavior. The values
obtained by the sensor are compared to those predicted by
the model. However, developing a model that can accurately
describe the behavior of sensors is complicated in practice,
especially if different types of sensors are used. This approach
is suited for extreme challenging projects for example within
spacecraft control systems [4].
Knowledge-based approaches are characterized by an expert
system. The expert system consists of a knowledge and a
rule base and a reasoning mechanism. The expert’s knowledge
about the system forms the knowledge base. Based on the
reasoning mechanism, knowledge-based systems are divided
into rule-based or fuzzy inference systems. Rule-based systems
require specific binary (true/false) rules that can be hard to
obtain for complex systems. In a fuzzy inference system, the
weak knowledge about the modeled system is formulated using
fuzzy logic. A rule-based system has been applied in a setting
with greenhouse environmental sensors [5], and also fuzzy
inference systems have been used in a variety of settings [6]–
[8].
The data-based approach is the most current of the three.
From large amounts of labeled data, a classifier is obtained
by training. Possible approaches include neural networks of
varying complexity, and also support vector machines [9], [10].
However, large data requirements and necessary (re)-training
in data-based methods is time- and resource consuming.

II. PRECISION AGRICULTURE TESTBED

To evaluate and demonstrate the benefits of the semantic-
based approach of the MYNO project [11], a precision agri-
culture testbed was set up at the University of Potsdam [2].
The testbed contains a Raspberry Pi 3B as an edge component,
and several microcontroller boards which monitor and water
a group of plants. Communication is done over WiFi. The
Raspberry Pi runs the MYNO components: an MQTT-broker
and the NETCONF-MQTT bridge as well as a NETCONF-
client, which provides a user-interface. The user-interface
displays current sensor values and allows user input to control
actuators and set up automations. The microcontroller boards



are based on the low-priced ESP32 NodeMCU Module.
Multiple sensors are used per board since each board monitors
a number of plants. Additionally, multiple sensors of the same
type are used in proximity to compare their readings to confirm
our fault detection diagnosis. The following sensors are used
per board:

• 3 different soil moisture sensors (discussed below)
• a temperature, humidity and air pressure sensor combined

in a GY-BME280 module
• a GY-302 BH1750 light sensor
• a touch-free capacitance sensor to detect the water level

within the water reservoir (one board only)
The following actuators are deployed:

• a 9V mini water pump (one board only)
• a RGB LED module as a simple actuator to test board

responsiveness

Observed Sensor Faults

Running our testbed since summer 2021, we did not observe
most of the aforementioned sensor fault classes known from
literature. In our case, we noticed most faults in soil moisture
sensors. Abrupt faults were limited to a single light sensor
and full sensor boards. All other faults were incipient failures
of soil moisture sensors. We observed soil moisture sensors
reporting incorrect, almost constant values. Motivated by this,
we attached a database to collect all sensor values from March
to May 2023. During this period we noticed the following
faults in our system:

• Sensor board fault, two times: hard fault, unresponsive
sensor board

• Soil moisture sensor fault, 10+ times:
– intermittent largely differences between measure-

ments (spike fault in [3])
– permanently constant measurement values (stuck

fault in [3], possibly with prior drift)
From the incipient faults mentioned in literature we did not
observe accuracy decline or bias. The soil moisture sensors
faults are caused by sensor deterioration over time. In the most
severe cases, electronic parts were eventually exposed to the
environment, i.e. water, leading to corrosion. It is assumed
that this is due to the materials used and the manufacturing
process.
We employed three different sensors that use two different
ways of measuring soil moisture. A resistive soil moisture
sensor by AZ-Delivery (≈ 3C) and capacitive soil moisture
sensors by AZ-Delivery (≈ 2C) and BeFlE (≈ 13C).
In resistive soil moisture sensors, the electrodes are exposed
to the environment by design and their sensitivity to elec-
trolytic corrosion has been identified [12], [13]. Corrosion
and erroneous measurement values occurred within one week
of deployment. A corroded sensor reported constant values
of 0% soil moisture. Capacitive soil moisture sensors try to
circumvent this problem by employing a different technique.
They determine the dielectric constant of the soil, which
changes depending on the water content [14]. Capacitive

soil moisture sensors do not expose electronic parts to the
environment directly. However, we noticed corrosion in many
of the capacitive sensors by AZ-Delivery as well, albeit after
weeks or months. The protective layer of the sensor was
bloated and partly broken off. We assume that this is due
to water-intake as the protective layers are only pressed and
glued together, leaving an open edge. Corroded sensors of this
type report a constant 0% or high values of soil moisture. The
BeFlE sensor included a “durable protective layer” [15] similar
to epoxy resin in appearance. However, this protective layer
developed small blisters over time. If blisters are present, the
sensor reports low-varying high values of soil moisture.

Fuzzy-Logic based Detection of Faulty Soil Moisture Sensors

While abrupt failures are easily detected by MYNO’s mon-
itoring component, incipient failures remained a challenge.
Since it is hard to find a mathematical model and on the
other hand a data-based approach seems not to be sustainable
(regarding different sensor types), we developed a Fuzzy-
Logic based Sensor Fault Detection. The Fuzzy-Logic ap-
proach is in a sense a mixture of the model- and data-based
approach. It does require some fuzzy knowledge about the
system at hand. Therefore, we inspected collected previous
data and formulated a set of fuzzy rules based on the following
observations:

• If the pump has been triggered, the moisture must rise
significantly.

• Over three days, the soil moisture must decrease by a
value of m ∈ N , where x ≤ m ≤ y percent, where
x and y are positive thresholds. This holds unless the
pump is activated. The thresholds x and y depend on the
manufacturer’s specifications for sensor variability and
the specific environment itself.

• If the pump has not been triggered, the moisture must
not increase much more than the sensor variability.

The inputs are the water pump states and the difference
between the current and old soil moisture values, whereas the
output is the diagnosis that indicates fault and non-fault states.
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