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Abstract—Research on wireless sensor networks has been
ongoing for more than 15 years. As a result, an enormous number
of novel ideas have been proposed in academic and industrial
research since then. These comprise the design of new hardware
components, novel communication and processing regimes, and
the realization of systems that would have been unimaginable
before wireless sensor networks came into existence. The resulting
application areas are broad, ranging from deployments of a few
low-cost sensor nodes to the installation of large numbers of
highly specialized sensing systems. In this paper, we summarize
wireless sensor network application trends and point out future
directions and emerging novel application domains that bear high
research potential.

I. INTRODUCTION

In 1999, the notion of motes has been introduced in [1]. This
visionary idea of combining sensing, computation, and com-
munication capabilities into minuscule systems that can easily
be deployed to sense environmental parameters has since
been taken up by innumerable researchers around the world.
Consequently, many facets of the resulting wireless sensor
networks (WSNs) have been investigated to date, ranging from
designs for hard- and software to novel application scenarios.
In fact, virtually no part of motes and their applications has
been left untouched by researchers in search for optimization
potential, new research directions, and beyond.

Strong ongoing research activities confirm the topicality of
WSN research. However, at the same time the ubiquity of
research in this domain naturally elicits the question whether
new research is still possible and meaningful. In this paper,
we thus present our vision of future research directions in
wireless sensor networks. Although a large spectrum of po-
tential open challenges still exists, we specifically focus on
application scenarios for WSN technology. Novel applications
directly implicate the need for research on many underlying
aspects, e.g., hardware platforms, processing algorithms and
communication protocols as well as sensor data collection and
interpretation.

In this paper, we first survey existing WSN applications
in Sec. II, in order to delineate emerging trends in sensor
networks from the state-of-the-art. Subsequently, we highlight
our visions for sensor network applications in Sec. III and
outline selected required research contributions. Finally, we
summarize the core findings of this paper in Sec. IV.

II. APPLICATIONS OF WIRELESS SENSOR NETWORKS

In an approach to highlight the breadth of WSN application
areas, we categorize the deployments presented in twelve
survey publications (cf. [2–13]) in Table I. We discuss the
characteristics of the nine resulting categories and summarize
representative deployments for each category as follows.

A. Environmental monitoring
Environmental monitoring is one of the oldest application

areas for WSN technology. WSNs provide the opportunity for
the unobtrusive monitoring of areas that are difficult to access
for humans, e.g., natural animal habitats. One of the earliest
WSN deployments has been the deployment within the Great
Duck Island project [14], where the natural habitat of Leach’s
Storm Petrels was monitored. Another prominent environmen-
tal monitoring deployment is the PermaSense project [15], in
which WSN technology is applied to monitor a hard-to-reach
permafrost area in the Swiss Alps.

B. Disaster control
The prevention of disasters and proper reactions to disasters

where prevention is not possible is a second application area
for WSNs. An application example is the usage of motes on
chemical drums [16, 17] to monitor that a maximum quantity
of chemicals allowed to be stored together in a certain area
is not exceeded. Structural health monitoring, e.g., of bridges,
constitutes another example for applying WSNs in the field of
disaster control. It serves the purpose to estimate the current
state of a structure and detect relevant state changes so that
critical states can be identified and countermeasures taken
in time to prevent disasters. One such WSN has, e.g., been
deployed on the Golden Gate Bridge in San Francisco [18].

C. Smart spaces
Ambient intelligence, or smart spaces, can be realized by

continually monitoring the environment and taking actuation
decisions to improve the users’ comfort and safety. Currently,
many applications focus on the user-oriented control of heat-
ing, ventilation, and air conditioning systems [19]. Another
application example for WSN technology in the context of
smart space realizations is the usage of motes for monitoring
electrical energy consumption [20], targeting building energy
efficiency by reducing energy consumption.
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D. Object tracking and monitoring

Thanks to their small size and unobtrusive wireless oper-
ation capabilities, motes can easily be attached to everyday
objects. This allows these objects to be monitored, e.g.,
with regard to their location and environment. A prominent
application area for the resulting tracking capabilities is the use
of WSN technology in logistics. The enablement of tracking
assets, in particular high-valued goods, in transport processes
where defined transportation routes and object integrity need
to be continually ensured is presented in [21, 22].

E. Human-centric WSNs

Similar in their nature to the aforementioned smart spaces,
human-centric WSNs comprise unobtrusive sensors collecting
a huge range of parameters about humans. The collected
data are subsequently being evaluated and combined to serve
humans and their wellbeing and learning. In this context, appli-
cations in the medical and healthcare domains are prominent
examples for the beneficial application of WSN technology.
Example applications range from monitoring and supporting
hospitalized patients to enabling new possibilities for extensive
medical field studies [23].

F. Traffic control

Intelligent parking management systems constitute one
prominent example for the beneficial application of WSN
technology in the domain of traffic control [24, 25]. In this
context, WSN technology can be employed to detect and
identify vehicles with the goal to monitor vehicles in a
parking lot and thus being able to provide information for
example on the number and location of free sparking spaces.
Similar concepts can also be applied to freeways, intersections,
and many other traffic entities within the scope of realizing
smart cities. WSN technology can substantially support traffic
surveillance systems in this context as well (cf. [26]).

G. Security

In particular in military sensing, security applications con-
stitute another one of the oldest application domains for
WSN technology. The detection of snipers on a battlefield
with the help of WSN technology has, e.g., been presented
in [27]. Furthermore, WSN technology can be beneficially
employed in the context of surveillance systems with the goal
to autonomously detect intruders, track their movements, and
classify them [28].

H. Industrial process monitoring and control

WSNs can also be employed to monitor the correct ex-
ecution of process steps in industrial deployments by pro-
viding the operator with means to adapt process parameters
on demand [29]. Machine surveillance and maintenance is
another huge application field in this context. Here, WSNs
can be employed for condition-based maintenance of machines
exploiting the capability of local data processing and providing
monitoring data in real time in order to enhance the utilization
and lifetime of the monitored equipment [30].

I. Diverse other application areas

Manifold other application domains exist that cannot be
unambiguously assigned to one of the application areas. For
example, enhancing the efficiency of aircrafts during their
flights constitutes a general engineering task, which can as
well benefit from the application of WSN technology [31].

III. FUTURE RESEARCH DIRECTIONS

After having highlighted the broad range of existing do-
mains, the identification of novel fields appears challenging.
While most of the previously introduced solutions, however,
solve well-defined problems by applying WSN technology, we
highlight future research directions at a more generic scale. As
follows, we list selected research challenges which we expect
to play a vital and integral role in future WSN deployments.

A. Enabling the Internet of Things

The emerging vision of the Internet of Things (IoT) entails
many research challenges to ensure its success. While today’s
WSN deployments are commonly designed and operated by a
single stakeholder and rely on hardware of one particular type
only, the billions of networked devices envisioned in the IoT
cannot be assumed to follow this tradition. Novel means for
cross-platform address allocation, device addressing, unicast
and multicast routing, energy efficiency, and interoperability
between applications are essential for the successful realization
of the IoT. Besides these more technical challenges, novel
applications and business models are also strongly required
to make the IoT a success and cater to the creation of smart
buildings, smart cities, and beyond.

B. Component re-use and smart data processing

The prevalent majority of existing WSNs have been tailored
to application-specific use cases. While component modular-
ization plays a crucial role in other software engineering-
related disciplines, WSN applications are still often developed
from scratch. The definition of re-usable components and
corresponding interfaces to simplify and streamline application
development is still an open issue. This especially applies to
data processing components, which are generally developed
from the ground up for each new application scenario despite
their potential re-usability in other areas.

C. Validation of results through practical experimentation

Newly proposed algorithms and protocols for WSNs are
often only validated by means of analytical and/or simulation
studies. While this allows for the simple evaluation of the
devised algorithms at scale, real-world effects are implicitly
not considered. The widely observed discrepancies between
simulations and real-world experiments, however, strongly
motivate more practical experimentation in WSN research.
Due to the availability of embedded sensing system hardware
in many varieties and the large number of publicly accessible
testbed sites, practical research is easily possible and essential
to demonstrate the viability of any newly proposed solution.

2



IV. CONCLUSIONS

In this paper, we have briefly summarized the broad range
of current application domains for wireless sensor networks.
We have compiled a short list of representative applications
for each category and thus highlighted the versatility of WSN
technology. From the broad range of existing applications,
however, the question emerges whether further research is still
necessary and worthwhile. We agree that indeed many WSN
implementations have been presented in the last 15 years to
solve existing real-world challenges in unprecedented novel
ways. However, following our overview of the state-of-the-
art, we have also identified several future research directions
and methodologies that we expect to bear significant potential.
Besides continuing to deploy WSNs and gain more practical
experiences, most identified challenges are of a more generic
nature. Once viable solutions to these challenges have been
found, we strongly expect them to be enabling technologies for
the widespread use of WSNs in the future. Especially as WSNs
play an integral role for the emerging Internet of Things, their
raison d’être will be given for many years to come.
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TABLE I
OVERVIEW OF APPLICATION AREAS FOR WSN TECHNOLOGY AS IDENTIFIED IN RESPECTIVE LITERATURE.
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Abstract—This paper presents implementation details of our
prototypical 6LoWPAN border router. The border router is built
around a 32-bit ARM Cortex M3 microcontroller and runs the
network-enabled operating system Contiki in version 2.6. It uses a
wireless network interface based on the IEEE 802.15.4 standard
as well as an IEEE 802.3 Ethernet PHY. The network layer
uses IPv6 and Layer-3 forwarding between these different link-
layer technologies. The paper gives a description of the necessary
adaptations to the Contiki operating system and provides an
outlook on future implementation options.

I. INTRODUCTION

Many researchers and market participants expect that the
next revolution of the Internet comes from the interconnection
of many, so called smart objects. These are inconspicuous
electronic devices, equipped with sensors or actuators, a
microcontroller, and a communication device that will form
the backbone of the Internet of Things [1], [2].

These smart objects have to be integrated into existing
network infrastructures mainly through a wireless link layer.
A good candidate is the Low-Power WPAN IEEE 802.15.4
[3], which has been designed to provide low-bitrate network
connectivity efficiently and at minimal cost. It can be used
with different network stacks such as Zigbee [4] or IPv6 [5].

The Internet of Things will have to use IPv6, which has
a pool of 2128 addresses and offers more than enough room
to grow the Internet into the physical world. In order to run
IPv6 on IEEE 802.15.4 links, with a frame size of 127 octets,
an adaptation layer is necessary that provides link-specific
fragmentation and reassembly, as well as header compression.
This service is provided by 6LoWPAN [6], [7].

6LoWPANs are usually stub-networks that work with re-
source constrained devices (memory, processing power and
energy). It is therefore important to reduce packet overhead,
and bandwidth consumption, as well as processing require-
ments. RFC 6568 introduces the concept of a LoWPAN Border
Router (LBR) [8] that is responsible for network coordination,
address configuration and network interconnection.

II. ROUTING IN 6LOWPANS

IEEE 802.15.4 network devices use low power radios, that
imply a typical signal range in tens of meters, and even less
in noisy and obstructed environments. Therefore the standards
foresee the support for mesh scenarios, where two devices do

not require direct reachability in order to communicate. How-
ever, neither IEEE 802.15.4 nor RFC 4944 define mechanisms
for the operation and management of such mesh networks.

Given the principal design of network nodes in 6LoWPANs,
several challenges exist: devices may be battery powered and
implemented on microcontrollers with just a few kByte of
RAM. RFC 6606 cites the following challenges for mesh
networking in 6LoWPANs [9]:

• low overhead on data packets
• low routing overhead
• minimal memory and computation requirements
• support for sleeping nodes (saving battery)

There exist two principal approaches for packet routing
in 6LoWPANs: route-over and mesh under [10]. The route-
over approach routes packets on the IP level which has the
implication, that intermediate nodes in the network have to
make forwarding decisions. The mesh-under approach treats
the 6LoWPAN mesh as a single IP hop, similar to network
technologies such as Ethernet or WiFi, that provide a single
broadcast domain.

Both approaches have benefits and drawbacks. The most
prominent drawback of the mesh-under approach is the high
overhead associated with the provisioning of a multicast
service that supports the IPv6 neighbor discovery protocol
and the hidden topology of the network, which prevents the
IP- and application layer to optimize performance. Because of
these limitations, almost all current implementations (includ-
ing ours) implement a route-over solution.

The route-over approach also provides some challenges. The
6LoWPAN is a single IPv6 subnet and traditional prefix-based
forwarding does not work. Intermediate routers might experi-
ence temporary link loss due to changing channel conditions,
node mobility or sleeping devices. Packet forwarding in an
6LoWPAN is usually done over a single wireless interface.
Devices have very little memory and any routing protocol will
have to minimize state.

The IETF developed the Routing Protocol for Low-Power
and Lossy Networks (RPL) for networks with severely con-
strained resources [11]. It works under the assumption that a
few administratively chosen devices form the root of a directed
acyclic graph (DAG). Routes exist as up and down routes and
also intermediate nodes in the 6LoWPAN can act as routers
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Interfaces

Fig. 1. Packet forwarding and address rewriting at the RPL border router

to provide multi-hop forwarding beyond the radio coverage of
the DAG root.

Depending on the memory situation of the devices, RPL
can be run in storing or non-storing mode. Intermediate
nodes in non-storing mode do not keep downward routes.
They only have enough memory to keep state about their
connected parents and propagate information about connected
children periodically in the form of a destination advertisement
object (DAO) to the root node. The root node collects all
the individual parent information and calculates reachability
information for the whole 6LoWPAN. When a packet needs
to be send to a node within the 6LoWPAN, the root inserts
appropriate source-routes into the packet so that intermediate
nodes can make adequate forwarding decisions without having
to maintain a full routing table.

In storing mode the intermediate nodes keep downward
routing information in their routing table and propagate only
the destination addresses and prefixes for which a node has
routes. Upward routes are handled as default routes chosen
during the parent selection process.

The Contiki OS [12] is an open source operating system
that supports a wide variety of devices and has a tiny memory
footprint, which allows it to run on 8-bit microcontrollers with
8 kByte RAM and upwards of 30 kByte ROM. The Contiki
OS is completely written in C, so it becomes relatively easy
to port it to alternative hardware platforms and reuse existing
application code. Since version 2.6 the Contiki OS supports
the RPL routing protocol, which is operating in storing mode.

III. RELATED WORK

Currently, there does not exist any freely available and
usable implementation of a 6LoWPAN stack for desktop
operating systems such as Linux or Windows. The Linux
ZigBee project1 aims to provide a complete implementation of
the IEEE 802.15.4 and 6LoWPAN protocol. However, progress

1http://sourceforge.net/projects/linux-zigbee/

has been relatively slow and only recently2 has it become
possible to exchange basic IPv6 messages between the Linux
stack and Contiki.

The existing, prototypical RPL implementation for Linux
SimpleRPL3 has only limited functionality and is not yet able
to communicate successfully with other 6LoWPAN implemen-
tations due to kernel issues. Therefore, all known RPL border
router implementations so far use the Contiki 6LoWPAN stack
in different configurations:

A possible solution for the creation of a 6LoWPAN border
router requires the use of an RZRaven USB stick4 from Atmel,
which runs a complete Contiki installation. The stick can be
installed as a network interface on a computer running a
desktop operating system such as Linux or Windows. The
device then acts as a bridge between the WPAN and the
global IPv6 Internet [13]. Limitations are the low number of
possible RPL routes that this solutions supports (due to the
low memory size of 8kByte on the Atmega AT90USB1287)
and the cumbersome network configuration that requires the
addition of explicit MAC-addresses into the neighbor table for
certain operating systems.

Beerli and Fischer [14] developed a solution, where they
ported Contiki to a platform that has native Ethernet interface
support and a microcontroller with more memory and process-
ing power than the Atmel MCU. However, this design is not
freely available and uses Contiki to bridge packets between the
Ethernet and the IEEE 802.15.4 network, instead of routing
them at Layer 3.

A third implementation approach for a 6LoWPAN border
router is chosen by the 6lbr project [15]. They use the Contiki
OS compiled as a native process on Linux to handle the
border router task. This approach gives the most freedom
from resource constraints, however it also requires a much

2https://archive.fosdem.org/2014/schedule/event/deviot04/
3https://github.com/tcheneau/simpleRPL
4http://www.atmel.com/Images/doc8120.pdf
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more powerful hardware platform to run. The code could
also be run on a microcontroller, but would require a porting
effort, especially since their work very much focuses on the
provisioning of multiple border routers to provide redundant
points of attachment for the 6LoWPAN.

We choose to follow the path taken by Beerli and Fisher
and develop our own hardware platform. However, we also
want to make the necessary modifications to Contiki to sup-
port packet forwarding and routing between interfaces with
different hardware address sizes. We also plan to open-source
our implementation, so that it can be used by other projects
that need a stand-alone RPL border router.

Figure 1 shows the network layout and the packet rewriting
process that will be explained in the following section. Devices
to the left of the border router are normal IPv6 network nodes
that connect via Ethernet with the border router. Devices to
the right of the border router run a RPL-enabled 6LoWPAN
stack. We have successfully tested our prototype with several
sensor nodes running Contiki in a multi-hop configuration.

IV. DESIGN OF THE CONTIKI BORDER ROUTER

Our solution of a prototypical 6LoWPAN border router uses
a 32-bit ARM Cortex M3 CPU from ST-Microelectronics with
64 kByte RAM, 256 kByte FLASH memory and integrated
Ethernet MAC (ST32F107RCT6)5. The border router has a
10/100 Mbit IEEE 802.3 Ethernet and an IEEE 802.15.4
interface, operating in the 2.4 GHz band. Figure 2 shows a
picture of the final device.

IEEE 802.15.4 and Ethernet use different L2 address sizes.
IEEE 802.15.4 uses EUI-64 addresses, whereas Ethernet uses
EUI-48 addresses. There exists a defined mapping from the
EUI-48 to the EUI-64 format. The EUI-48 address is split
after the first 24 bit and FF:FEhex is inserted. The Contiki
OS uses this mechanism to provide Ethernet-compatible L2
addresses for 6LoWPAN nodes. The border router implemen-
tation therefore needs to strip of, or insert the FF:FEhex as
frames are exchanged between networks.

Figure 1 shows the packet rewriting between the IEEE 802.3
Ethernet and an IEEE 802.15.4 WPAN, using 6LoWPAN as
an adaption layer to enable global communication via IPv6.
Contiki stores link-layer addresses in the EUI-64 format in
the neighbor table. We implemented an address rewriting
procedure that converts between the EUI-64 and the EUI-48
format for incoming and outgoing Ethernet frames.

V. IMPLEMENTATION DETAILS

Our implementation is based on Contiki OS in version 2.6.
The current packet forwarding code in the Contiki OS uses
a single neighbor table to store important information about
reachable targets such as the IP address, L2 address and others.

Typical router implementations require information about
the outgoing interface for a network route. However, Contiki
in version 2.6 supports only single interface routing, so there is
no place to store the interface information. In order to facilitate

5http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1031

Fig. 2. A picture of the final hardware implementation

forwarding between different IPv6 networks, we extended
the data structure of the neighbor table with a new entry
com_medium that will be used to store the interface type.
The 8-bit variable com_medium has currently three defined
values: 2 - for Ethernet, 1 - for 802.15.4 and 0 - for situations
where the interface type has not yet been determined. We only
store the interface type and no interface identifier, because
we assume that Contiki routers will have few interfaces with
distinct types, so that it is not necessary to explicitly number
them. Figure 3 shows this extended neighbor table.

We modified the output() function of the Contiki IP
stack, so that before the IP packet is handed over to the
device driver, our own output function takes over, retrieves the
com_medium entry from the neighbor table and makes any
address modifications as necessary (cf. Figure 1). Similar code
has been added to the Ethernet input function, that extends a
received L2 address to make it compatible with the Contiki
data structures and updates the neighbor table.

When Contiki is configured as a router, the normal IPv6
network autoconfiguration is disabled, because it is assumed,
that the node will be configured via RPL. This makes sense
for the wireless interface, but less so for the Ethernet side.
We wanted the 6LoWPAN router to behave just like a normal
network node in the Ethernet-Segment, using Stateless Address
Autoconfiguration (SLAAC) for the prefix and default router-
configuration on the Ethernet interface. Doing so required
a few changes in several source files that are related to
the processing of ICMPv6 Router Solicitation and Router
Advertisement messages.

Fig. 3. Neighbor table in the Contiki OS
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VI. SUMMARY AND OUTLOOK

We developed a practical solution that extends the current
routing functionality found in the Contiki operating system
and implemented it in a working prototype that can be directly
attached to an Ethernet segment. Our border router might be
used to easily build meshed WPANs that can incorporate a
large number of smart objects within a geographic area and
make them globally reachable. We are currently investigating
the long term stability and actual resource requirements of our
solution. We expect this solution to scale much better than
current solutions, based on the Atmel Raven USB stick (cf.
Section III), mainly because the ARM Cortex M3 provides
8-times more RAM than the Atmel MCU. We also expect our
solution to be much more energy efficient than a Linux or
Windows-based installation.

Further on, we want to automate 6LoWPAN deployment
by implementing the DHCP Prefix Delegation mechanism on
the router [16]. The current 6LoWPAN prefix is statically
configured on the border router and a static route for the
6LoWPAN needs to be installed on the upstream router. DHCP
PD would make the network deployment much more robust
and automatic. A stand-alone RPL border router with these
features can be used to easily set-up networks of smart objects
that can provide secure and robust automatisation solutions, as
described in [17].

The IETF Home Network6 working group is currently de-
veloping a set of standards that aid the configuration of routed
networks in residential homes. We monitor these standards and
investigate if they could be implemented on the 6LoWPAN
border router.

Finally, we also investigate security issues. It might be
very easy for an attacker to overpower the network, because
6LoWPANs have very limited resources. We currently evaluate
security requirements and investigate how message filtering
and rate-limiting on the gateway router can protect the smart
objects and the surrounding network from resource exhaustion
attacks.
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The implementation of an application for a wireless sensor

node is driven by various factors. This may be the application-

specific requirements first, but also the chosen platform, the

constrained resources of the used micro controller, the pre-

ferred or given network protocol as well as security demands.

In contrast to the broad variety of requirements a software

developer wants to use a single operating system (OS) for all

the different applications. Due to the fact that a full-featured

OS cannot be implemented on a sensor node a configurable

solution is demanded. In this paper we present langOS, which

is a compile-time configurable OS. A developer can easily

configure the required feature-set and will have a minimal

run-time overhead. Due to a human-readable, non-language

specific configuration file it is very easy to use. Furthermore,

langOS is implemented in a standard programming language

without any extensions. Therefore, we are convinced that by

using langOS the implementation of tailor-made sensor node

application becomes very easy.

I. INTRODUCTION

The acronym langOS stands for low power application-

specific configurable operating system. In this paper we will

shortly introduce the basic idea and the key features of langOS.

Although many OSs for wireless sensor networks (WSNs)

are already implemented, we will argue that our approach is

different from these one. To achieve an application-specific

configuration with a minimal memory footprint and run-time

overhead, langOS uses a predecessor tool to create a tailor-

made set of OS features. During compilation only the selected

features are integrated and the interfaces are configured stati-

cally.

It is a fact that for a wireless sensor node (mote) in order

to become more efficient, reliable and secure in real world ap-

plication scenarios the software architecture should be highly

configurable. Furthermore, due to the limited resources of a

mote only a specific set of functionality can be implemented

at one time. In recent years various OSs were designed with

dynamic configuration schemes and some of them support a

partial online update as well. But a dynamic configuration set

and an update scheme cause an additional overhead. By using

a static run-time configuration this overhead can be mostly

avoided. Moreover, in cyber-physical systems (CPSs) where

security and reliability are key such a static configuration may

be a better option to achieve a demanded security level.

In the following section we give a brief overview of

mote OSs and their configuration schemes. In Section III

we describe the basic ideas of langOS and list some of the

implemented features. We conclude this paper with an outlook

on further work and a short summary.

II. MOTE OPERATING SYSTEMS

The basic idea of the langOS configuration process was

inspired by the configuration schemes of Linux and eCos

[1]. Both provide a menu-driven user interface, which al-

lows a user to choose the feature-set of their systems. A

predecessor tool generates include files for the build process

and header files, which are used within the source files by

the C preprocessor. A similar approach is provided by the

Atmel Software Framework (ASF) [2]. The ASF provides

software drivers and libraries to build applications for Atmel

devices. These tools simplify the configuration process and

solve dependencies automatically. But all these solutions do

not fit to the requirements of OSs of low power wireless sensor

nodes with their restricted resource. Linux as well as eCos are

designed for powerful devices and the ASF does not include

OS capabilities.

Within the area of WSNs TinyOS is still the state-of-the-art

mote OS. It provides an event-driven operating environment

and uses a component model for design [3]. The components

of TinyOS are written in the nesC language. The language is

an extension to C and was designed to embody the structuring

concepts and execution model of TinyOS [4]. The behavior of

a component is specified by a set of interfaces. A TinyOS

application is built out of components written in nesC, which

are wired by interfaces to form the program. During the build

process optimized C code is generated and the components

are statically linked. This increases the runtime performance

and minimizes the memory footprint of an application. A fully

aspect driven approach is implemented by the CiAO operating

system [5]. The OS follows the aspect-orient programming

(AOP) and provides a highly configurable system that takes the

different aspects into account. CiAO is written in AspectC++

a source-to-source weaver that transforms AspectC++ sources

into ISO C++ code [6].
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Within the last years several OSs for wireless sensor nodes

were developed. Most of them provide a dynamic update

scheme, e.g. SOS [7], Contiki [8] and RETOS [9]. SOS

consists of dynamically loaded modules and a common ker-

nel. Like TinyOS, SOS is an event-driven OS and uses a

component module design. The kernel implements messaging,

dynamic memory allocation and module loading and unload-

ing. Basic memory protection techniques, watchdog timers and

garbage collection are implemented as well. Contiki provides

dynamic loading and unloading of programs and services. It

supports an optional preemptive multi-threading. Furthermore,

Contiki multi-threading is implemented as a library, which

is linked to the system on demand. RETOS is also a multi-

threaded OS. It separates the kernel from user applications

and supports loadable kernel modules for a dynamic recon-

figuration. Other OSs for embedded systems are focused on

multi-threading (MANTIS [10]), real-timer scheduler (Reflex

[11] and FreeRTOS [12]) or security (t-kernel [13]).

But all these systems are configured within the source

code files. We are convinced that an highly and dynamic

configurability is contradictorily. Rather, it must be considered

during the design of the OS. Furthermore, we have the

experience that a developer will faster familiar with an OS

that is written in a standard programming language. The entry

level for understanding the source code is much lower and the

common acceptance is significantly higher.

III. LANGOS

langOS was designed to simplify the tailor-made imple-

mentation of mote’s applications. We already used the OS

for implementing a biochemical sensor capsule [14], a secure

wakeup receiver [15] and a multi-hop routing protocol for

energy efficient WSNs [16]. Although all these applications

are tightly coupled with WSNs their specific demands are

so different that a one-fits-all solution will be over-sized and

inefficient. During the design of langOS a highly configura-

bility by using a standard programming language was key.

Furthermore, a minimal memory footprint and extended low

power capabilities were focused.

A. Source code organization

The langOS sources are arranged in subdirectories where

each subdirectory contains modules of a specific type. As

shown in Figure 1 the dev directory contains for example

all the device drivers. Other directories include protocol,

service, storage or infrastructure modules. Among the modules

dependencie exists, which must be taken into account by a

developer.

The current version of langOS supports the MSP430 pro-

cessor family only. Nevertheless, a port to other processor

families will be easy. The OS is completely written in C,

which simplifies a port to alternative platforms. The hardware

dependent and the hardware independent program code are

separated in different subdirectories. The modules of the hard-

ware abstraction layer (HAL) are located in the subdirectory

hal. Only these modules are specific for the microprocessor

hal

dev

proto

svc

infra strg

langOS

a
p
p
li
c
a
ti
o
n

sha1

buffer

list
...

fetmhr

sfp

inp
...

cb

fat

...

cc1101

cc2420

led
...

alarm

time

pwrmgt
...

timer

spi

gpio
...

Fig. 1. The software structure of langOS is split in application and langOS
sources. The langOS sources are structured in subdirectories, which contain
modules of a specific type or functionality.

family. All the other modules use the HAL to access processor

peripherals. The device drivers are located in the dev sub-

directory. These modules are specific for external Integrated

Circuits (ICs) and use the HAL modules for communication.

For example the CC1101 sub 1 gigahertz transceivers uses

general purpose input/output (GPIO) and serial peripheral

interface (SPI), which are completely implemented in HAL

modules. The device driver implementation is specific for the

CC1101 IC but can use the SPI and GPIO of any other HAL

implementation.

B. System configuration

Platform specific mappings are implemented by C macros.

As shown in Figure 2 each module uses an abstract description

of the electrical pinning. The description is mapped to the

physical wiring by platform specific header files. We have

implemented platform headers for the IHPnode [17], the

IHPstack [18] and the TmoteSky [19]. Especially the IHPstack

with its modular design benefits from this framework. Each

module of the IHPstack is characterized by a single header

file. A combination of these files describes the IHPstack mote.

Hence, a developer can customize its application by choosing

software modules as well as platform modules.

The configuration process is supported by a predecessor

tool, which is written in Python. The configuration of a

langOS application is described in a single text file. The

file contains the module and platform selection as well as

module specific parameters. The predecessor tool generates

an application-specific header file, which contains glue code

for the system initialization and includes in the platform

specific headers. All langOS modules refer only to this file

for getting the application’s configuration. Furthermore, the

same configuration file is used by the software build chain.

C. Application build

The build process of a langOS application is summarized

in Figure 3. As mentioned above each application must have

a configuration file. The file is processed by the predecessor

tool and its output is used within the source files and the build

system.

As shown in Figure 3 we distinguish between langOS

sources and application sources. The application source files
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µC

P2.1

P2.2

P3.5

CC1101

GD2

GD0

CS

#define CFG_BOARD_CCXX_GD0_PORT \

      PORT2

#define CFG_BOARD_CCXX_GD0_PIN \

      BIT2

#define CFG_BOARD_CCXX_GD2_PORT \

      PORT2

#define CFG_BOARD_CCXX_GD2_PIN \

       BIT1

#define CFG_BOARD_CCXX_CSPORT

      PORT3

#define CFG_BOARD_CCXX_CSPIN \

       BIT5

 // initialize chip select 

 cs.port = 

     CFG_BOARD_CCXX_CSPORT;

 cs.pin =

     CFG_BOARD_CCXX_CSPIN;

  

 // initialize gd0 pin 

 dev->gd0port = 

     CFG_BOARD_CCXX_GD0_PORT;

 dev->gd0pin = 

     CFG_BOARD_CCXX_GD0_PIN;

 dev->gd1port =

     CFG_BOARD_CCXX_GD2_PORT;

 dev->gd1pin =

     CFG_BOARD_CCXX_GD2_PIN;

C macro-

processor

 // initialize chip select 

 cs.port = PORT3;

 cs.pin = BIT5;

  

 // initialize gd0 pin 

 dev->gd0port = PORT2;

 dev->gd0pin = BIT2;

 dev->gd1port = PORT2;

 dev->gd1pin = BIT1;

platform header

module source

wired resources

schematic

Fig. 2. Platform resources are described by a specific platform header. The
C preprocessor combines the source with the header file and generates the
wired resource file corresponding to the mote’s schematic.

/* file automatically genate*/

#ifndef __AUTOCONF_H

#define __AUTOCONF_H

#define CONFIG_DEVICE "MSP41

#define CONFIG_ARCH "msp"

#define CONFIG_MCU_SPEED 40

#define CONFIG_PLATFORM "ihp

#define CONFIG_PLATFORM_MC

#define CONFIG_PLATFORM_BA

#define CONFIG_PLATFORM_SW

#define CONFIG_BOARD_ACLK 3

#define CONFIG_BOARD_REV 1

#define CONFIG_DEV 1

#define CONFIG_DEV_BUTTON 1

#define CONFIG_DEV_LED 1

CONFIG_DEVICE := MSP

CONFIG_ARCH := mspx

CONFIG_MCU_SPEED := 4096

CONFIG_PLATFORM := exp430

CONFIG_BOARD_ACLK := 32768

# --- Application ---

CONFIG_APP := y

CONFIG_APP_WAKEUP := y

# --- Devices ---

CONFIG_DEV := y

CONFIG_DEV_BUTTON := y

predecessor

tool

build

system

100111100001101110

110101101111100001

111100001111110001

010110111110000111

111100001111110000

101011011111000011

111001011111100001

firmware

image

app 

configuration

autoconf.h

CONFIG_DEVICE := MSP

CONFIG_ARCH := mspx

CONFIG_MCU_SPEED := 4096

CONFIG_PLATFORM := exp430

CONFIG_BOARD_ACLK := 32768

# --- Application ---

CONFIG_APP := y

CONFIG_APP_WAKEUP := y

# --- Devices ---

CONFIG_DEV := y

CONFIG_DEV_BUTTON := y

conf.mk

PUBLIC

int enc_is_signature_vali

{

    char md5[16];

    char signature[16];

    int is_valid;

    aes_decrypt(sign,k

    is_valid = (strncmp(m

}

app

sources

PUBLIC

int cc1101_transmit(cha

{

    dev_t *cc1101;

    

    cc1101 = get_dev_by

    if (NULL == cc1101)

         return -ENODEV;

}

PUBLIC

int enc_is_signature_vali

{

    char md5[16];

    char signature[16];

    int is_valid;

    aes_decrypt(sign,k

    is_valid = (strncmp(m

}

langos

sources

PUBLIC

int cc1101_transmit(cha

{

    dev_t *cc1101;

    

    cc1101 = get_dev_by

    if (NULL == cc1101)

         return -ENODEV;

}

Fig. 3. The predecessor tool of the langOS build chain generates platform
specific includes, which are included in the application and the langOS
sources. The build system compiles the application and langOS separately
and combines both to the target firmware image in a final single step.

are not part of langOS. Both are compiled and linked sepa-

rately and are combined to a firmware image in a final step.

We split these two parts to make a distribute development

process with different source code control systems possible.

Each application has its own configuration and its source

code can be organized in an out-side subdirectory structure.

Therefore, using langOS in different projects becomes easy to

organize.

D. Boot-strap

Due to the configurable module selection of langOS an

automated module initialization became necessary. Hence,

the langOS predecessor tool generates an initialization array,

which is traversed during the system’s boot-strap. The module

initialization calls the module’s initialization function at least

once. Due to the unpredictable order of their invocation, a

manual module initialization may be required. In the current

version of langOS a module developer has to take care about

its initialization function that it initializes all required modules.

A future version of the predecessor tool will include this step.

However, a module developer has the option to decide if

its module is included in the automatic initialization. If the

module includes a function with the pre-defined signature

i n t <module name> i n i t ( vo id )

an automatic invocation is setup by the predecessor tool. The

initialization functions are called by the boot-strap code before

any task is started. langOS features the concept of cooperative

tasks. A cooperative task is implemented by a coroutine with

a single entry point. The tasks are started by a simple round-

robin scheduler just after finishing the boot-strap code.

E. Power management

Besides the configurability the design of langOS was fo-

cused on low power capabilities. The langOS core automati-

cally enters the lowest possible low power mode (LPM) if no

activity is detected. An activity is an active task or an active

peripheral module. The MSP430 microprocessor supports five

different LPMs. From the highest mode - LPM1 - to the

lowest mode - LPM5 - more and more components of the

microprocessor are disabled. Therefore, modules must know

or must be able to control the entered power mode.

To control the power mode any activity can register itself

at the power management module of langOS. With this reg-

istration a module can specify the lowest possible LPM and

can define a suspend and a resume function. When entering a

low power mode the power management module looks for the

lowest possible LPM of all registered modules. Furthermore,

all registered suspend functions are called before going to the

LPM. If a suspend function returns an error code the suspend

process is aborted. By that way each module can control the

entered LPM and the suspend process itself. When leaving the

LPM the registered resume functions are invoked.

F. Protocol stack framework

Due to the primary application scenario of wireless sensor

nodes their OS must cover a broad variety of tailor-made

protocol stacks. While this demand stands in contrast to the

limited resources of the devices a configurable protocol stack

framework is required. The protocol stacks of langOS are

based on a flexible and configurable framework. As shown in

Figure 4, the framework defines three types of protocol layers:

endpoint, stack and device. The device layer defines the lower

end of the protocol stack and implements the binding to the

physical device. On top of the device layer a multiple number

of stack layers can be stacked. A stack layer processes the

data but does not define an endpoint of these. The stack is

closed by a dedicated endpoint layer. This layer defines the

final connection to the application.

The layers are connected by their _receive() and

_xmit() and their corresponding _done() functions. Each

layer must implement these functions. The data are passed

by reference as an untyped container. Therefore, a type save

binding is required. The binding is part of the configuration

process and will be supported by the predecessor tool. Even
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_done()
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xmit()
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receive

_done()
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_done()receive()
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device driver

Fig. 4. The three layer types of the protocol stack framework. To guarantee
interoperability each layer must implement the receive(), xmit() and
_done() functions. The stack layer can be implemented multiple times for
multi-step data processing.

though flexibility is lost the data processing as well as the

packet size benefit by the presented framework. Due the fixed

layer binding a protocol type field within the transmitted data

is needless.

IV. FUTURE WORK AND CONCLUSION

The current implementation of langOS is a hybrid between

a compile-time and a run-time configurable OS. Unfortunately,

both are not well implemented yet. In a next step we will focus

our work on making langOS to a pure compile-time config-

urable OS. Therefore, we will replace run-time configuration

switches and registration functions by compile-time options

if possible. Furthermore, we will improve the capabilities of

the predecessor tool. The current version does not include a

dependency check and the generation of the module bindings

are limited. Finally, we plan to publish the code to the open

source community.

Our experiences by using OSs in WSNs have shown that

a dynamic and complex configuration scheme decreases the

acceptance of an operating system. Moreover, a dynamic

update scheme is almost unnecessary and requires at lot of

code that is used at run-time only once. In this paper we

presented langOS, a compile-time configurable OS with a

human-readable and easy to understand single configuration

file. The OS is written in a standard programming language

without any extensions. Both reduces the entry level for a

new programmers. Furthermore, highly configurability was

considered during the design of the OS. The OS provides set

of well-defined interfaces and an automatically build chain.

We are convinced that langOS simplifies the tailor-made

implementation of an embedded application in a significant

manner.
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Abstract—Wireless sensor networks (WSNs) are prone to
errors mainly because of unreliable communication. Errors
cause data loss and can lead to complete node shutdowns. The
increasing load closer to the sink in a data gathering scenario
exaggerates this situation.

Self-stabilizing algorithms can be used to deal with this
problem. They deal with frequent occurring transient faults to
enable long-term applications. The self-stabilizing tiers algorithm
proposed in this paper provides a suitable structure for aggre-
gation and reduction schemes to reduce data load.

Index Terms—WSN, self-stabilizing, aggregation, reduction,
transient faults.

I. INTRODUCTION

A wireless sensor network (WSN) consists of several up
to thousands of small and cheap sensor nodes. Each node
has a micro chip with low computation power and small
memory (flash and RAM). For communication, it is equipped
with a radio transceiver. To sense its environment, a node has
different sensors, e.g., for measuring temperature, pressure, or
motion. Each node is not designed for high performance, but
rather for saving energy to enable long-living deployments. A
sensor node is usually powered by batteries, sometimes energy
harvesting modules are also used, which can theoretically
sustain functionality arbitrarily long.

Despite the low computational power, a large amount of
sensor nodes can solve complex tasks, e.g., monitoring, in-
trusion detection, or controlling actuators. In most cases a
sensor node senses its immediate surroundings and transmits
the measurement results to a distinct sink for processing. To
cover large areas and to conserve the limited energy resources,
adequate protocols are necessary.

In spite of its cheap deployment costs and its powerful ad-
hoc capabilities, a WSN is prone to faults because of the
unreliable wireless communication. Packet loss or corruption
is common and unpredictable. Packet collisions, radio wave
reflections, and irregular antenna characteristics cause transient
faults which are hard to detect and disturb the system up to
complete node failures. Experiments have shown that even in
case of no mobility, the communication topology is changing
frequently [1].

To guarantee durable systems, fault states have to be de-
tected and repaired. Self-stabilizing algorithms (Section III)

are a promising way to deal with this kind of faults while
keeping the overhead reasonable.

Apart from the physical conditions, the communication
pattern has to be considered, too when designing applications
for WSN. In case of the converge-cast scenario, flow control
is necessary to avoid congestion near the sink. A good
way to reduce the network load is to apply aggregation or
reduction functions. In general, aggregation reduces the load
by concatenating several messages to one larger message, a
reduction applies a function like minimum or maximum to
avoid the transmission of unnecessary data.

To perform an aggregation or reduction, a distinct structure
including all network nodes has to be established. The task
of this structure is to determine which node is responsible
for processing the data at the current step and whichroute the
aggregated data has to take through the network.

In this paper we present a self-stabilizing approach to
generate an aggregation structure. The presented tree and
tier algorithms autonomously repair the structure after the
occurrence of a fault. The advantage of self-stabilization is
the inherent tolerance against all transient and a large set of
permanent faults.

This paper is structured as follows: First, we offer a state of
the art analysis. Section III gives a general overview of self-
stabilizing algorithms in WSN. Our proposed SS-TIER algo-
rithm for an aggregation structure is presented in Section IV.
Finally, a competitive evaluation is shown in Section V.

II. STATE OF ART

For data aggregation in WSN, a number of approaches using
different structures can be found in literature. PEDAP [2] and
TAG [3] are examples for aggregation services based on a tree
structure. Both algorithms start by constructing a tree with
the sink as root, then this base structure is used for several
aggregation rounds. While PEDAP renounces the use of a
repair mechanism, TAG monitors and optimizes the tree during
the aggregation. However, a fault detection for the aggregation
structure is not included.

A second approach is to organize the network into clusters.
A defined cluster head performs an aggregation step on the
data of its subordinate nodes. Afterwards, the head sends the
data to the sink for further processing. An example for a
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cluster based aggregation is LEACH [4]. It establishes clusters
with respect to energy by periodically changing cluster heads
to prolong the lifetime of the network. For constructing the
aggregation structure, a decentralized approach is used. Each
node needs a direct link to the sink, which decreases the
possible size of the deployment.

PEGASIS [5] is a chain based aggregation service. The
idea is to save energy by decreasing the signal strength of
the radio module. Each node communicates only with its
nearest neighbor. To construct this structure, a global view
is necessary. PEGASIS does not provide repair mechanisms
for local faults.

To increase fault tolerance, Synopsis Diffusion [6] uses
multiple paths to a sink. Instead of a tree, a tier structure is
generated. Each message is sent to all reachable nodes which
are closer to the sink. In case of a single link break, the
data will mostly not be lost, because there are often multiple
recipients.

Aggregation schemes can be set up with different types of
base structures. All these examples have in common that they
first establish the structure and than use it for several steps. In
case of a changing communication topology, faults will only
be repaired during a complete reconstruction.

III. SELF-STABILIZATION

The concept of self-stabilizing algorithms was first intro-
duced by Dijkstra in his paper “Self-Stabilizing Systems in
Spite of Distributed Control” [7]. He describe a network of
several processors having a set of registers. Each processor has
a local view, this means it can read its own and the registers of
all direct neighbors. The values of the registers of a processor
are called the local state of the processor. All local processor
states together define the state of the system.

A self-stabilizing algorithm consists of a set of rules in the
form guard→ assignement. The guard is a predicate which
is based on the local view. If the guard of a rule is resolved to
true, the rule is called enabled and the assignment part may be
executed. The assignment part of the rule modifies the local
state of the node.

By monitoring the neighborhood, i.e, the local view, and
controlling its own state, a node is influencing the system,
which will converge from any arbitrary state into a global
stable state. An algorithm is called self-stabilizing if the time
needed to converge into a stable system state is finite. Applying
a rule while in a stable state never leads to an unstable state.

This model has several advantages which makes it inter-
esting for WSN. First, in most cases a small set of rules is
enough to describe an algorithm. It is not necessary to define
any fault state. The second advantage is the decentralized
approach. Each processor or sensor node only observes its
local neighborhood. Nevertheless, the execution of the rules
at each node establishes a stable global state. The last and
major benefit is the inherent fault tolerance. If a fault occurs,
the stable state gets corrupted, and after a finite time the
algorithm converges (again) into a stable state. Also, each ad-

hoc deployment of nodes can be handled as a fault state and
will be autonomously stabilized.

IV. AGGREGATION- AND REDUCTION-STRUCTURE

In this section we describe two self-stabilizing algorithms
for a data gathering scenario. The goal is to achieve a stable
routing topology where all nodes send their measured data
to one distinct node, e.g., a gateway. The first is a minimum
spanning tree algorithm introduced by Dolev [8]. The second
is our self-stabilizing tiers algorithm.

1 algorithm dolevtree;
2

3 map NodeID platform.nodeId nodeId;
4

5 public NodeID parent;
6 public Integer level;
7

8 declare Integer minLevel
9 := min{v.level | Neighbors v};

10 declare NodeID sinkId := 0;
11

12 Rule 1:
13 (nodeId = sinkId)
14 and !((parent = 0 )
15 and (level = 0))
16 -> parent := 0;
17 level := 0;
18

19 Rule 2:
20 !(nodeId = sinkId)
21 and !(level = minLevel + 1)
22 and !(exists{v | Neighbors v:
23 (v.level = minLevel)
24 and (v.nodeId = parent)})
25 -> parent := choose{v.nodeID |
26 Neighbors v :
27 (v.level = minLevel)};
28 level := minLevel + 1;

Listing 1. A1 Minimum spanning tree algorithm of Dolev

Both algorithms consist of two rules, shown in Listing 1
and 2 respectivly. The first rule of each algorithm is executed
by the sink, more precisely: the node which requests the
aggregated data. In both algorithms the second rule is run
by all other nodes. In case of the tree algorithm, each node
selects a parent node with a minimum distance to the sink
and updates its own distance. Algorithm A2 computes only
the hop distance to the sink.

A stable state is achieved if each node has correct knowl-
edge of the distance to the sink and, in case of Algorithm A1,
a correct parent node. Both algorithms have in common that
no rule is enabled once a stable system state is established.

1 algorithm ssTiers;
2

3 map NodeID platform.nodeId nodeId;
4 public Integer tier;
5

6 declare Boolean hasRootTier := tier = 0;
7 declare Integer minTier :=
8 min{v.tier | Neighbors v};
9 declare NodeID sinkId := 0;

10
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11 Rule 1:
12 (nodeId = sinkId) and !hasRootTier
13 -> tier := 0;
14 Rule 2:
15 (nodeId != sinkId)
16 and (tier != minTier + 1)
17 -> tier := minTier + 1;

Listing 2. A2 Self-stabilizing tiers algorithm

A tree provides a direct order for an aggregation or reduc-
tion. A node is responsible for processesing the data of all its
child nodes (nodes which select it as parent). The resulting
data is sent to its parent. Each value from a node takes only
one route, if one communication step is corrupted the value is
lost. For reduction, each associative and commutative function
can be applied.

In case of the tiers structure, a value takes multiple paths to a
sink node. A node processes the received data of nodes from its
own tier+1. The result is sent to all reachable nodes at tier−
1. This increases the tolerance against single communication
errors. However, not all aggregation and reduction functions
are resistent to duplicates, which can falsify the results. In case
of not resistent functions, an adaquate duplicate suppression
has to be provided by the aggregation scheme.

V. EVALUATION

The goal of self-stabilization is to increase the tolerance
against transient faults. To evaluate the performance, we
integrated Algorithms A1 and A2 in a middleware based on
self-stabilizing algorithms for WSN [9]. For comparison, we
implemented two ordinary tree and tier algorithms with a
periodic reconstruction of the logical topology.

For the aggregation, it is necessary to have a stable and
fault free aggregation structure. To show the advantages of our
approach we simulated all four algorithms and observed the
tree and tier structures, respectively. At runtime, we injected
transient faults like link breaks. Each algorithm dealt with the
same set of fault scenarios.

A. Initial Convergence
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Fig. 1. Initial convergence time; pentagon and star are overlapping

First, we show the time needed to establish a stable structure
after a reset of the network. Figure 1 shows that the self-
stabilizing algorithms need approximately half the time needed
by the ordinary algorithms (the ordinary approach produces
the same results). The reason for this is the neighborhood
discovery protocol on the sensor nodes.

After a reset no neighbors are known and the neighborhood
discovery protocol starts to explore the network. Nodes which
fulfill a quality criterion are added to the neighbor tables.
In case of the standard algorithms, the construction beacon
is generated after the reset and sent to all neighbors. This
means that it is lost, because no neighbor is currently known.
The construction is restarted after a timeout. In case of the
self-stabilization, the first messages (node states) are also
lost. After receiving the first packets from neighbors, the
self-stabilizing algorithms are able to establish a tree or tier
structure.

B. Runtime Behavior
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Fig. 2. Structure state over time. Algorithm A2 with varying number of nodes
(75, 200, 600, 1000).
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Fig. 3. Structure state over time. Ordinary tiers algorithm with varying number
of nodes (75, 200, 600, 1000).

In the next step we focus on the behavior during the runtime
by injecting transient link breaks. In simulations, our approach
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(Figure 2) achieved a higher amount of nodes with an correct
structure than the ordinary approach (Figure 3). The figures
indicate that the ordinary algorithm is not able to construct a
tier structure with more than 90 % of the nodes. The reason
for this is that the construction message is lost if a node is
temporarily not reachable due to link breaks. In case of the
self-stabilizing algorithms, a node which reconnects to the
network automatically rejoins the tiers structure. The ordinary
algorithm has to wait for the reconstruction beacon.

C. Experiments with WSN hardware
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Fig. 4. Structure state over time. Algorithm A1 with varying number of nodes
(10, 26, 50).
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Fig. 5. Structure state over time. Ordinary tier algorithm with varying number
of nodes (10, 26, 50).

After the simulations, we ran several real world experiments
to confirm the results, as depicted in Figures 4 (A2) and 5
(ordinary tier). As can be seen, the amount of nodes which
join the structure is also higher for our approach. Attention
should be paid to the fact that we did not inject errors into the
network during the experiments. All errors are caused by the
use of real radio hardware and the environmental conditions
at our testing site (university gym).

VI. CONCLUSION

In this paper we presented a self-stabilizing tiers algorithm
for WSN. Simulations and experiments substantiate that more
network nodes are part of the resulting structure in case of
our approach than compared to an ordinary approach. This
supports our opinion that a self-stabilizing algorithm is suitable
for increasing the fault tolerance of WSN and increases the
quality of aggregation and reduction schemes based on these
routing structures.

The next step is to implement an aggregation scheme
upon these structures. We will investigate if self-stabilizing
algorithms are suitable for this purpose as well.
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Abstract—The temporal attribution of environmental events
and measurements as well as the well-timed execution of
corresponding reactions is of utmost importance for reactive
sensor/actuator systems. We present a novel technique for the
automatic creation of timestamps and reaction scheduling. Inte-
grated either into an operating system kernel or implemented
in hardware, we achieve the maximum precision for a system’s
given temporal resolution. Despite of the discretization of time
in digital systems, we provide symmetric error intervals around
0 for both the timestamps and the reaction times. For example,
this allows us to continuously determine the clock drift between
pairs of communicating systems by mutually triggering periodic
interrupts, but without exchanging any explicit information.

I. INTRODUCTION

Wireless sensor/actuator networks (WSAN) are commonly
deployed for observing and interacting with their environment.
In this respect, temporal and spatial information are the two
most fundamental measures for the “tagging” of states and
events (i.e., state transitions) [1] [2]. This typically requires
the precise knowledge of time and space to be associated with
a node’s self-captured and externally obtained values in order
to properly correlate the contained information, and to trigger
adequate reactions. Achieving a well synchronized coordina-
tion of these distributed systems is yet another challenge.

This paper outlines some problems regarding time in digital
systems before it presents an advanced approach for taking
precise timestamps, measuring and specifying temporal delays,
and for scheduling and ensuring reaction times with a sym-
metric temporal error around 0. A real-world test bed shows
how communicating systems can determine their relative clock
drifts without any additional information exchange.

II. TIME IN DIGITAL SYSTEMS

In contrast to e.g. device specific position and state values,
time is a common property in distributed systems. It advances
continuously and with a globally constant rate of change.
Establishing a network-wide and consistent notion of time
provides a natural base for their joint operation. Since digital
systems are commonly driven by a clock generator C with
frequency fC and period λC = 1

fC
, time and time intervals

can easily and individually be measured – at least in theory:
By counting the number of elapsed clock cycles since a well
defined point in time, e.g. the system start, each captured event
e, e.g. indicated by an interrupt, can be tagged with its current
counter value ce. Then, the event’s absolute local system time

is t̃e := ce ·λC, and the time difference between two events
e1,e2 is

∆̃e1,e2 := t̃e2 − t̃e1 = (ce2 − ce1) ·λC. (1)

Obviously, both the time t̃e and the delay ∆̃e1,e2 already
involve a concept-inherent imprecision caused by the dis-
cretization of the counter values ce ∈ N. We also assumed
that λC is known and perfectly constant. Neither is true under
real-world conditions! Apart, reactive systems often require
the scheduling of a reaction r for a captured event e. Its
intended execution time t ′r ∈R is commonly related to an event
timestamp t ′e ∈R by a corresponding delay ∆′e,r ∈R:

t ′r = t ′e +∆′e,r (2)

However, even if the system triggers the response upon
reaching the corresponding counter value cr ∈ N and the
corresponding system time t̃r, the finally observable reaction
delay still depends on the resolution λC of the system timer:

cr = ce +

⌊∆′e,r
λC

⌋
t̃r = t̃e +

⌊∆′e,r
λC

⌋
·λC (3)

Even though the rounding is quite obvious and potentially
introduces far-reaching imprecision in real systems, it is com-
monly ignored. Moreover, for compositional task systems with
dynamic execution flows, additional unpredictable errors are
hidden in t̃r. Even most embedded operating systems silently
accept this problem, and developers have to compensate the
imprecision with little control at task level [3].

A. The Discretization of Time

The simple capturing of a discrete timestamp t for an
event is immediately affected by some inevitable rounding,
and suffers from a measurement error Et ∈ I1 with |I1| = λC.
For the naı̈ve and adverse reading of the timer counter,
rounding down results in I1 := [0,λC), and induces a symmetry
around the average measurement error Et,av =

1
2 λC. Depending

on the use of such timestamps, the emerging errors might
accumulate during the system runtime. Similarly, the explicit
specification of delays ∆′t is also subject to rounding errors
E∆. However, we can round half up manually when selecting
a delay, and thus the corresponding error is E∆ ∈ I3 :=
[− 1

2 λC,+
1
2 λC). Though not avoidable entirely, I3 is at least

symmetric around 0. Based on these two fundamental error
intervals I1 and I3, other intervals can be derived, and also
exhibit an imprecision: For the measurement of delays ∆E ,
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Table I
ERROR INTERVALS FOR DIFFERENT DISCRETIZATION TECHNIQUES (SYSTEM TIME RESOLUTION: λC )

Naı̈ve discretization Our discretization approach

problem / error type derived from error interval symmetry error interval symmetry

P1: capturing of fundamental I1 = [0,λC) E 1
2 λC E I3 = [− 1

2 λC,+
1
2 λC) 0

timestamps
P2: measurement of I1− I1 I2 = (−λC,+λC) 0 I2 = (−λC,+λC) 0

delays
P3: specification of fundamental I3 = [− 1

2 λC,+
1
2 λC) 0 I3 = [− 1

2 λC,+
1
2 λC) 0

delays
P4: scheduling of I1 + I3 I4 = [− 1

2 λC,+
3
2 λC) E 1

2 λC E I4 = [−λC,+λC) 0
reaction times

we see the implicit compensation of the asymmetry in I1:
E∆ ∈ I2 := I1− I1 = (−λC,+λC). In contrast, the scheduling
of reaction times t on external events inherits the asymmetry
in I1: Et ∈ I4 := I1+ I3 = [− 1

2 λC,+
3
2 λC). System reactions will

thus suffer from an average systematic lateness of 1
2 λC.

Table I summarizes the error intervals which must be
expected for the naı̈ve capturing of timestamps by simply
reading the timer register after the corresponding event occur-
rence – e.g. within an interrupt service routine (ISRs). These
ISRs commonly preempt regular application code and are
thus perfectly suitable for capturing the timestamps. However,
even the first instruction therein is not executed before some
additional interrupt latency ∆IRQ: If the timer value cTS for
the timestamp itself is copied after another implementation-
specific delay ∆ISR within the ISR, the discrete timestamp t̃e
for the captured event e computes as

t̃e = cTS ·λC− (∆IRQ +∆ISR) = t̃TS−∆TS. (4)

Hence, the reliable time tracking via (4) requires the correc-
tion value ∆TS to be constant and free from rounding errors
with respect to the discrete system time period. While this
paper shows how this can be achieved and exploited, we refer
to [4] for a discussion of further problems.

III. AN ADVANCED TIME DISCRETIZATION APPROACH

Our approach relies on a digital hardware timer component
providing a local system timeline with a fixed temporal resolu-
tion. The timeline is managed by an OS kernel and accessible
by any application software. The kernel automatically captures
a timestamp t̃e for each interrupt e, and compensates the error’s
asymmetry about 1

2 λC which would result from using the
naı̈ve approach as explained in Section II. Therefore, it pro-
vides standardized and architecture-specific interrupt service
routines for introducing a constant and carefully dimensioned
delay ∆TS = ∆IRQ +∆ISR before actually capturing the timer’s
counter value after the IRQ occurrence. According to (4) we
then have to reduce the captured counter value by an adequate
correction value ∆corr: Selected properly, this correction finally
results in the symmetry about 0 for I1 := [− 1

2 λ, 1
2 λ). While

the timestamp measurement error Ete will still be equally
distributed over I1, this interval is shifted, and the average
timestamp error is reduced from initially 1

2 λ to 0. At the
same time, the propagation (and amplification) of systematic

errors for consecutive time-dependent reactions will become
symmetric about 0, i.e. I4 = I1 + I3 = [−λC,+λC). Table I
compares the error intervals of our compensation approach
with the naı̈ve technique.

Our concept is based on two synchronized clocks with
interdependent frequency: We denote the CPU clock frequency
as f and its period as λ. The system timer frequency is derived
from the CPU clock by an even integer divider α ≥ 2: It is
denoted as fC := f

α and its period is λC := α ·λ.
If an interrupt e occurs at time t ′e, the corresponding timer

counter ce will not be copied before some system inherent
delay ∆TS has passed. For our approach, we request this delay
to take exactly ∆c CPU cycles as follows:

∆c := n ·α+
α
2

with n ∈N0 (5)

Thus, the delayed timestamp acquisition takes place at time

t ′TS = t ′e +∆TS = t ′e +∆c ·
1
f
= t ′e +

(
n ·α+

α
2

)
· 1

f
. (6)

To compensate for this delay, and to force the timestamp
error interval I1 to become symmetric around the true event
occurrence time while exhibiting an average error close to 0,
we select the correction value as an integer multiple of λC:

∆corr := (n ·α) · 1
f
= n ·λC (7)

Thus, we simply have to subtract n from the copied timer
value ce to compute the timestamp t̃e for the interrupt e:

t̃e =
⌊

t ′TS
λC

⌋
·λC−∆corr = ce ·λC−n ·λC = (ce−n) ·λC (8)

The result’s resolution implicitly equals the resolution of
the system time.

A. An Implementation Example

As an example, we integrated our approach into the
SmartOS operating system [5] for MSP430 MCUs [6]. While
the main clock drives the CPU at f = 8 MHz, the divider α= 8
derives the frequency fC = 1 MHz for the system time with
a resolution of 1 µs. According to (5), an adequate delay ∆c
between each interrupt occurrence and the acquisition of its
timestamp can be adjusted through n:

∆c := n ·α+
α
2
= n ·8+4 with n ∈N0 (9)
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Since the CPU inherently delays the acceptance of an interrupt
by ∆IRQ = 6 CPU cycles, we already have to select n≥ 1. In
fact, we did select n= 1 and thus have to wait for an additional
number of ∆ISR := ∆c−∆IRQ = 6 CPU cycles within the ISR
(1 ·8+ 4 = 6+ 6). According to the specification of the mov
instruction, which is used for saving the timer value TS, it takes
4 CPU cycles until the value is read from the timer’s special
function register. The remaining two cycles are filled up by two
nop instructions. For obtaining the absolute event timestamp
t̃e, n is simply subtracted from the event’s absolute counter
value ce according to (7). With (8) the result can directly be
interpreted as absolute system time, and is given in the timeline
resolution of 1 µs:

t̃e = (ce−n) ·λC = (TS−n) ·λC (10)

IV. EVALUATION AND APPLICATION EXAMPLE

The test bed for demonstrating the benefit of our timestamp-
ing approach consists of pairs of nodes A,B playing some
sort of Ping Pong game: By a wireless remote connection,
node A triggers an IRQ signal e0 which is received and
timestamped (t̃0) by the other node B. After some fixed delay
∆delay the signal will be returned by node B. In turn, A
catches, timestamps, and returns the signal after the same delay
∆delay. Having received the last trigger en with local timestamp
t̃n in an ideal system, the observed delay ∆̃total,n between
each node’s captured first and last signal timestamp should
obviously equal the mathematically expected delay ∆′total,n:

∆̃total,n := t̃n− t̃0
!
= 2n ·∆delay =: ∆′total,n (11)

However, this equality is not given in real systems: Both
devices suffer from their individual clock drift, and will not
defer their responses by exactly the same delay ∆delay. The
right column of Table II shows significantly different drifts
dA,B(t) for three node pairs as measured by an external
observer.

Apart, waking up sufficiently early to emit the signal in
time is not that easy since some load-dependent and variable
system overhead must always be taken into account.

A. Signal Emission

For the precisely timed signal emission, we propose a
dynamic self-calibration scheme based on self-observation:
The trigger signal will not only be captured by the other
node, where it is tagged with the timestamp t̃c, but also by
the emitting node itself. The local timestamp is called t̃r. If
the intended local response time for the current iteration has
been computed as t∗r before, the lateness can be computed
afterwards and used as compensation value ∆comp to adjust
the delay for the next iteration at its emission time t∗r :

∆comp := t̃r− t∗r (12)
t∗r := t̃c +∆delay−∆comp (13)

In fact, the response time precision error (Et∗r ∈ I4) depends
not only on the two timestamps and their particular precision
error (Et̃r ,Et̃c ∈ I1), but also on the error in the measured delay

(E∆comp ∈ I2) and the hard coded delay for the reply (E∆delay ∈
I3) itself. Since we intentionally selected ∆delay := m ·λC with
m ∈ N, at least this value is free from rounding errors and
I3 := [0;0) for this special application.

B. Pairwise Drift Calculation

For our tests we set up various node pairs A and B, and
observed each nodes’ x ∈ {A,B} local timing error ex which
was autonomously calculated by each node after n iterations:

ex
(11)
:= ∆̃total,n−∆′total,n = (t̃n− t̃0)−2n ·∆delay (14)

Obviously, both timing errors eA,eB have different sign, unless
the clocks are perfectly synchronous (i.e., eA = eB = 0).
Additionally, we define the symmetry error esymm as seen by
an external observer as the average value over eA,eB. Since the
average timestamp error Et,av ∈ I1 accumulates over the two
acquired trigger timestamps within each iteration, we expect

esymm :=
eA + eB

2
= 2n ·Et,av. (15)

If we indeed achieve the timestamp error interval I1 to be
symmetric about 0, i.e. by selecting ∆c properly according to
(5), we can expect two observations for any pair of nodes A,B:

1) If both values eA and eB are made available to an external
observer, their measured clock drift dA,B, as given in the
rightmost column of Table II, can be verified through

d′A,B := eA− eB
!
= dA,B with dA,B =−dB,A. (16)

2) According to (15), esymm
!
= 2n ·0µs = 0µs, and thus both

values eA and eB will show the same absolute values. In
direct consequence, each node can autonomously estimate
its own drift towards the other node:

d̃A,B = 2 ·eA (for node A) (17)
d̃B,A = 2 ·eB (for node B) (18)

In particular, the exchange of any additional data, like
e.g. timestamps, between the nodes is not necessary.

In contrast, if we intentionally violate (5) by using e.g. ∆c :=
n ·α instead, the average timestamp error interval would be
symmetric around Et =

1
2 λC. Consequently, esymm = 2n · 1

2 λC,
and neither the autonomous drift computation according to
(17) nor the external drift verification according to (16) would
work any more.

C. Real-World Test Bed Analysis

Tables II and III show the test bed results for the three
already mentioned node pairs and for two values of ∆c after
n = 50 iterations with ∆delay = 1 s (∆′total,n = 100 s).

When using ∆c = 1 ·8+ 8
2 = 12, we indeed observed the

expected symmetry error esymm≈ 0 µs for all pairs. At least we
received |esymm|< λC = 1 µs, which is the timeline resolution,
and thus the best timestamp precision a node can reach. Most
important, as shown in Table II, the autonomously measured
drifts between two nodes are almost perfect. Indeed, the
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Table II
DRIFT CALCULATION FOR ∆c = 12

locally obtained information1,2 observer3

d̃A,B node 10 node 11 node 72 d′A,B

d̃72,11 1900.0 1902.0 1900.0 1900
d̃72,10 2818.0 2818.0 2816.0 2818
d̃11,10 918.0 916.0 916.0 918
1 regular font: autonom. measured according to (17)
2 bold/italic: derived according to (19)
3 true drift as measured externally (oscilloscope)

Table III
DRIFT CALCULATION FOR ∆c = 16

locally obtained information1,2 observer3

d̃A,B node 10 node 11 node 72 d′A,B

d̃72,11 1884.0 1836.0 2032.0 1900
d̃72,10 2724.0 2870.0 2922.0 2818
d̃11,10 840.0 1034.0 890.0 918
1 regular font: autonom. measured according to (17)
2 bold/italic: derived according to (19)
3 true drift as measured externally (oscilloscope)

maximum visible deviation is in range ±2 µs. Another feature
becomes apparent from this table: Since WLOG node A knows
its drifts d̃A,B and d̃A,C towards the two other nodes B and C
respectively, it can also derive the drift d̃B,C as

d̃B,C := d̃A,C− d̃A,B. (19)

For any other values of ∆c violating (5), the nodes can
not gain reliable information about their relative drift au-
tonomously. Using e.g. ∆c = 2 ·8 = 16, Table III summarizes
the autonomously measured and computed drifts, and reveals
quite large and asymmetric deviations towards the true drifts.

Besides the precision of the autonomous drift estimation,
another interesting metric is the resulting trigger frequency.
The theoretical value

ftrig :=
(
2 ·∆delay

)−1 (20)

will not be visible in reality since neither node uses a perfect
clock. However, we would at least like to achieve

ftrig, av. =
(
∆′delay,A +∆′delay,B

)−1
, (21)

which is definitely the best compromise two nodes A,B can
find if their true drift compared to the perfect global clock
is unknown. Again, this can only be achieved if esymm = 0.
Thus, the larger |esymm| the larger is the deviation from the
intended frequency ftrig, av.. These effects become once more
visible in Tables II and III: For ∆c = 12 the values in each
row of Table II are almost equal (i.e. consistent), while they
exhibit significant variations for ∆c = 16 in Table III.

V. CONCLUSION AND OUTLOOK

In this paper we have proposed an approach for obtaining
precise timestamps t̃e for external events e, and for ensuring
the precisely timed execution of reactions r at scheduled times
t̃r. The error intervals for both t̃e and t̃r are symmetric about
0. While the first is achieved through the unified and carefully
prepared processing of interrupts, the latter becomes possible
through a simple self-calibration scheme at application layer.
Both techniques proved to be a great benefit for an inherent
problem within distributed (embedded) systems: As long as
time is not properly manageable locally by the individual
nodes, network-wide synchronization and event or state tag-
ging will hardly achieve the potentially feasible precision.

Using our approach, a corresponding test bed showed the
possibility to determine the drift between two nodes without

the explicit exchange of any quantitative information like
e.g. timestamps or previously measured delays. Instead, it is
sufficient to periodically pass events between the nodes. Since
suitable periodic behavior can also be found in several (wire-
less) communication protocols like [7], [8], [9], the proposed
techniques can also be applied to support time synchronization
and self-organization among the involved systems.

In fact, we already observed good time synchronization
results when integrating our approach into the extendedDesync
protocol from [10]. Apart, we have implemented our times-
tamping concept in hardware: Using a modified openMSP430
softcore [11], the specifically prepared interrupt controller is
already able to pre-process and store timer values even for
simultaneously occurring events.
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Zusammenfassung— Sinkende Strukturgrößen bei der Fertigung 

von CMOS-Schaltungen führen zu unzuverlässigerer Hardware. 

Neben einer erhöhten Anfälligkeit für transiente Fehler nimmt 

auch die Wahrscheinlichkeit für permanente Fehler zu, die dann 

zu einem Ausfall des Prozessors in einem Sensorknoten führen. 

Deshalb werden Techniken für selbstreparierende Prozessoren 

intensiv erforscht, um aus unzuverlässigen Hardwarekomponen-

ten zuverlässige Prozessoren zu bauen. In diesem Beitrag werden 

einige dieser Techniken kurz vorgestellt und anschließend disku-

tiert, inwiefern diese geeignet sind die Zuverlässigkeit von draht-

losen Sensornetzen zu erhöhen. Entstehende Synergien werden 

dabei herausgestellt, sowie die Übertragbarkeit verschiedener 

Fehlertoleranztechniken, die in Prozessoren und Multiprozessor-

systeme Anwendung finden, auf drahtlose Sensornetze diskutiert.  

I. EINLEITUNG 

Batteriebetriebene Sensorknoten in drahtlosen Netzen wer-
den auf Grund der beschränkten Energiereserven häufig mit 
sehr stromsparenden Microcontrollern, die nur einen be-
schränkten Leistungsumfang besitzen, bestückt. Bei einer zu-
nehmenden Verbreitung von Sensornetzen werden aber auch 
die Anforderungen an die Funktionalität und damit an die Ver-
arbeitungsleistung der Prozessoren in den Sensorknoten selbst 
wachsen. Durch geschicktes Energiemanagement auf System-
ebene in Kombination mit Energy-Harvesting und verlustärme-
ren Fertigungstechnologien im Nanometer-Bereich wird es 
dann auch möglich sein, leistungsfähigere Prozessoren zu ver-
wenden. Leistungsfähige und stromsparende Prozessoren in 
heutigen eingebetteten Systemen nutzen hauptsächlich die 
Parallelverarbeitung, um Taktfrequenzen und Versorgungs-
spannung trotz der hohen Verarbeitungsleistung niedrig zu 
halten. Die Parallelverarbeitung in solchen superskalaren Pro-
zessoren nutzt redundant vorhandene Ressourcen im Prozessor, 
die andererseits auch wieder für die Umsetzung von Fehlertole-
ranztechniken verwendet werden können. 

Insbesondere die immer kleineren Strukturgrößen bei der 
Fertigung von CMOS-Schaltungen führen zu einer erhöhten 
Anfälligkeit der gefertigten Baugruppen für temporäre und 
permanente Fehler [6] im Betrieb. Hinzu kommen statistische 
Variationen bei der Fertigung, beispielsweise bei der Dotierung 
im Kanalbereich der Transistoren oder bei den geometrischen 
Genauigkeiten der gefertigten Strukturen. Diese führen zu stark 
variierenden Schalteigenschaften der Transistoren, die aber 
durch erhöhte Toleranzen versteckt werden. Gleichzeitig kön-
nen sich die Schalteigenschaften auch durch Alterungseffekte 
der Schaltung verändern, wodurch Prozessoren nach mehreren 
Jahren Benutzung ausfallen können. Um solche Prozessoren in 

langlebigen Systemen einzusetzen, kann es deshalb erforderlich 
sein sie fehlertolerant auszulegen. Hierzu bietet sich die in 
superskalaren Prozessoren inhärent vorhandene Redundanz an, 
die dann für Fehlertoleranzmaßnahmen verwendet werden 
kann. Dadurch können Wartungskosten für Sensornetze redu-
ziert oder die Zuverlässigkeit für einen vorgegebenen Zeitraum 
erhöht werden. Dieser Beitrag stellt zunächst Fehlertoleranz-
maßnahmen für Prozessoren vor. Anschließend wird gezeigt, 
dass die Verwendung selbstreparierender Prozessoren in Sen-
sornetzen prinzipiell sinnvoll sein kann. Abschließend wird die 
Übertragbarkeit der Selbstreparaturorganisation von einem 
Multiprozessorsystem auf ein drahtloses Sensornetz betrachtet. 

II. SELBSTREPARIERENDE PROZESSOREN 

Passive Hardwareredundanz (z.B. Double/Triple Modular 
Redundancy) wird typischerweise verwendet, um transiente 
Fehler zu erkennen/maskieren. Sie kann aber auch verwendet 
werden, um permanente Fehler zu maskieren. Allerdings erfor-
dern solche Techniken den zwei-/dreifachen Hardwaremehr-
aufwand und bedingen auch einen entsprechend höheren Ener-
gieverbrauch des Prozessors, was bei batteriebetriebenen Sen-
sorknoten kritisch sein kann. Soll mehr als ein permanenter 
Fehler mit solchen Techniken korrigiert werden können, dann 
steigt der Mehraufwand sogar noch stärker. Dieser Mehrauf-
wand zur Behandlung permanenter Fehler in einem Prozessor 
kann deutlich reduziert werden, wenn aktive Hardwareredun-
danz verwendet wird, um die Zuverlässigkeit eines langlebigen 
Systems zu erhöhen. Permanente Fehler in einer Komponente 
des Prozessors werden dann durch eine Rekonfiguration, die 
die defekte Komponente außer Betrieb nimmt, umgangen.  Zu 
diesem Zweck werden die durch permanente Fehler betroffe-
nen Funktionalitäten einer Komponente nicht mehr genutzt. 
Die defekte Komponente kann durch Reservekomponenten 
ersetzt oder die Funktion von anderen bereits in Benutzung 
befindlichen Komponenten mit übernommen werden. Die 
Rekonfiguration kann dabei hardwarebasiert oder softwareba-
siert erfolgen. Bei einer hardwarebasierten Rekonfiguration 
werden zusätzliche Schaltnetzwerke in den Prozessor integriert, 
um die auf einer defekten Komponente auszuführenden Opera-
tionen auf eine funktionierende Komponente umzuleiten [3, 4]. 
Softwarebasierte Verfahren sind gut für eingebettete Systeme 
mit einfachen statisch geplanten Prozessorarchitekturen geeig-
net und vermeiden die Nutzung einer defekten Komponente 
durch die Rekonfiguration der Software. Das bedeutet, dass der 
Binärcode der auf dem Prozessor ausgeführten Anwendungen 
so modifiziert wird, dass die defekte Komponente im Prozessor 
nicht mehr durch das Programm verwendet wird. In [2, 7, 10, 
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11] wurden entsprechende Techniken vorgestellt. Die Nutzung 
einer defekten Komponente kann beispielsweise durch folgen-
de Maßnahmen vermieden werden: 

 Durch eine globale Registerumbenennung kann die 
Verwendung defekter Register vermieden werden. Es 
müssen dann aber Reserveregister vorgehalten werden.  

 16/32-Bit Additionen können auf 8/16-Bit Additionen 
zurückgeführt werden, wenn Fehler im Addierer nur zu 
Fehlern in den oberen oder unteren 8/16-Bits des Er-
gebnisses führen.  

 Die Verwendung eines Bypasses kann vermieden wer-
den, wenn die datenabhängigen Operationen im Pro-
gramm weit genug auseinander liegen. 

 In statisch geplanten superskalaren Prozessoren (z.B. 
VLIW-Prozessoren) kann die Bindung von Operatio-
nen an bestimmte Ausführungseinheiten abgeändert 
werden, wenn diese mehrfach vorhanden sind, und 
damit die Verwendung defekter Ausführungseinheiten 
vermieden werden. 

Die Anwendung dieser Techniken auf VLIW-Prozessoren 
hat gezeigt, dass bis zu 98% der Gatter im Prozessor gegen 
permanente Fehler geschützt werden können. Die Anpassung 
der Nutzeranwendung kann dabei durch ein Reparaturpro-
gramm vorgenommen werden, dass sogar auf dem fehlerhaften 
Prozessor selbst ausgeführt wird [10]. Dieses Reparaturpro-
gramm kann dabei sehr klein gehalten werden (< 300 Assemb-
lerinstruktion) und die Anpassung einer Anwendung mit 
64.000 Instruktion in weniger als einer Sekunde durchführen. 
Abbildung 1 zeigt, dass durch solche softwarebasierten Tech-
niken damit deutliche Zuverlässigkeitssteigerungen für einen 

Prozessor erreicht werden können. Dabei ist  die angenom-

mene konstante Fehlerrate für die Transistoren des Prozessors. 
Bei einem nicht-fehlertolerant ausgelegten Prozessor sinkt die 
Zuverlässigkeit RNFT bereits nach sehr kurzer Zeit unter 0.9, 
während bei einem fehlertoleranten Prozessor die Zuverlässig-
keit RFT zu demselben Zeitpunkt noch weit über 0.99 liegt. Die 
Herleitung der Zuverlässigkeitsfunktionen kann in [13] gefun-
den werden. 

 

Abbildung 1: Plot der Zuverlässigkeit für einen fehlertolerenten VLIW-
Prozessor und einen nicht-fehlertoleranten VLIW-Prozessor 

Durch diese Möglichkeiten ist eine Erhöhung der Zuverläs-
sigkeit um einen RIF (Reliability Improvement Factor [5]) von 
14 bis 18 in dem dargestellten Zeitintervall möglich. Dabei ist 
der RIF definiert als  
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wobei RNFT die Zuverlässigkeit des Originalsystems und 
RFT die Zuverlässigkeit des fehlertoleranten Systems ist. 

III. NUTZEN IN SENSORNETZEN 

Betrachtet werden jetzt permanente Fehler in einem Sen-
sornetz, die durch den permanenten Ausfall eines oder mehre-
rer Sensorknoten entstehen. Wird in einem homogenen Sensor-
netz jeder Sensorknoten a durch einen entsprechend zuverläs-
sigeren Sensorknoten b mit der um den RIF x erhöhten Zuver-
lässigkeit ersetzt, dann kann insgesamt die Zuverlässigkeit des 
Sensornetzes um den RIF x erhöht werden, weil es unwahr-
scheinlicher wird, dass die Knoten ausfallen. Typischerweise 
wird in Sensornetzen aber ohnehin Redundanz in Form zusätz-
licher Sensorknoten angewendet. Es stellt sich damit die Frage, 
ob die Zuverlässigkeit eines Sensornetzes besser durch zusätz-
liche aber nicht zuverlässigere Sensorknoten oder nur durch 
zuverlässigere Sensorknoten erhöht werden soll. In [12] wur-
den entsprechende Untersuchungen für einzelne Routerknoten 
in einem Sensornetz durchgeführt. Dabei zeigte sich, dass die 
Zuverlässigkeit wesentlich stärker durch zusätzliche Knoten 
erhöht werden konnte als durch zuverlässigere Routerknoten. 
Allerdings wurden dabei Sensornetze betrachtet, in denen diese 
Routerknoten einen single point of failure (SPOF) darstellten. 
Ein entsprechendes Netzwerk ist in Abbildung 2 durch die fett 
gedruckten Knoten und Kanten gezeigt. Der Knoten s stellt die 
Senke in diesem Sensornetz dar.  

 

Abbildung 2: Clusterkonfiguration mit SPOF bei Betrachtung der fett 
gedruckten Knoten und ohne SPOF bei Hinzunahme der Knoten 8 und 9. 

Wird in diesem Netz Redundanz durch die zusätzlichen 
Knoten 8 und 9 eingefügt, so kann die Zuverlässigkeit deutlich 
erhöht werden. Die entsprechenden Zuverlässigkeitsfunktionen 
sind in Abbildung 3 dargestellt (RNFT und RFT_Net).  

 

Abbildung 3: Zuverlässigkeitsfunktionen zu Abbildung 2. 

In dem dargestellten Zeitraum wird eine Erhöhung der Zu-

verlässigkeit um den RIF 80 (bei t = 2) bis 4000 (bei t  0) 
erreicht. Das Ersetzen der fett gedruckten Knoten durch zuver-
lässigere Knoten (mit RIF 2) erhöht die Zuverlässigkeit des 
Netzwerkes dagegen nur um den RIF 2 (Kurve RFT_Proc). 
Somit ist in diesem Fall das Einfügen zusätzlicher Knoten zu 
bevorzugen. Diese Schlussfolgerung wurde auch bereits in [12] 
gezogen. 

Werden die gleichen Betrachtungen dagegen für ein Sen-
sornetz durchgeführt, das keinen SPOF bei der Kommunikation 
mit der Senke enthält (vgl. fett gedruckte Knoten und Kanten in 
Abbildung 4), dann erhöht das Einfügen zusätzlicher Knoten 
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(in diesem Fall Knoten 8 und 9) kaum noch die Zuverlässig-
keit.  

 

Abbildung 4 

Zu sehen ist das in  Abbildung 5, in der sich die Zuverläs-
sigkeitskurven RNFT und RFT_Net überlagern. Die gleiche 
Feststellung wurde bereits in [1] getroffen. 

 

Abbildung 5 

Dagegen erhöht in diesem Fall das Ersetzen der Knoten 
durch zuverlässigere Knoten die Gesamtzuverlässigkeit (vgl. 
Kurve RFT_Proc in Abbildung 5). Welche Form der Redun-
danz die Zuverlässigkeit stärker erhöht, hängt also stark von 
der bereits vorhandenen Redundanz im Sensornetz ab. Ist be-
reits ausreichend Redundanz im Sensornetz für die Kommuni-
kation vorhanden, so kann die Gesamtzuverlässigkeit besser 
über die Erhöhung der Zuverlässigkeit der einzelnen Knoten 
gesteigert werden. 

IV. ANWENDUNG IN ENERGIEEFFIZIENTEN SENSORKNOTEN 

Dieser Abschnitt beschreibt eine mögliche Anwendung der 
Selbstreparatur für energieeffiziente Sensorknoten. Es gibt 
permanente Alterungsfehler (NBTI, HCI), die sich als Verzö-
gerungsfehler bemerkbar machen. Das bedeutet, dass es im 
Laufe der Zeit zu erhöhten Signallaufzeiten auf einigen Logik-
pfaden in einem Prozessor kommt. Besonders stark machen 
sich solche Effekte in Kombination mit Energiesparmaßnah-
men wie der dynamischen Anpassung der Versorgungsspan-
nung (DVS) bemerkbar. Wird in dem Prozessor DVS verwen-
det, wie es beispielsweise in [8] beschrieben ist, dann treten 
diese Verzögerungsfehler zuerst bei sehr niedrigen Versor-
gungsspannungen auf und führen dann zu einem funktionalen 
Fehlverhalten. In der Konsequenz ist der Sensorknoten defekt 
oder kann seine Funktion nur unter einem erhöhten Energiebe-
darf aufrechterhalten, was jedoch die Batterie stark belastet. 
Aus diesem Grund, können die Komponenten, in denen ein 
entsprechend langsamer Pfad im Lauf der Zeit entsteht, mit den 
Selbstreparaturmaßnahmen, die in Abschnitt II beschreiben 
wurden, außer Betrieb genommen werden. Das hat im Allge-
meinen jedoch zur Folge, dass auch die Verarbeitungsleistung 
sinkt, weil durch die softwarebasierte Selbstreparatur der Ab-
laufplan des Programms verlängert wird. Das führt in der Kon-
sequenz zu einer erhöhten Laufzeit im Vergleich zur ursprüng-
lichen Programmversion und damit auch zu einem erhöhten 
Energieverbrauch, weil der Prozessor für eine längere Zeit 
aktiv ist. Allerdings wurde in [11] gezeigt, dass im Falle einer 

defekten Komponente sich die Laufzeit nur um ca. 7% bis 30% 
erhöht.  

V. ORGANISATION DER SELBSTREPARATUR 

Die beschriebenen Selbstreparaturtechniken zur Behand-
lung permanenter Fehler erfordern in jedem Sensorknoten eine 
Organisation der Selbstreparatur. Dazu gehört auch die Aus-
führung eines vorhergehenden diagnostischen Selbsttest, um 
defekte Komponenten in den Sensorknoten zu lokalisieren. 
Durch diesen Selbsttest können in einem multi-hop Netzwerk 
auch Knoten erkannt werden, die die weitergeleiteten Datenpa-
kete auf Grund interner Fehler korrumpieren.  

Eine mögliche Form der Organisation der softwarebasierten 
Selbstreparatur in Systemen mit mehreren vernetzten Prozesso-
ren wurde bereits in [9] beschrieben. Das in dieser Arbeit be-
trachtete System ist ein Multiprozessorsystem mit verteiltem 
Speicher. Die Organisation dieses Multiprozessorsystems ist 
dabei sehr ähnlich der Organisation eines Sensornetzwerkes 
und ist schematisch in Abbildung 6 dargestellt. Für die Kom-
munikation stehen jedoch drahtgebundene Verbindungen zur 
Verfügung. Jeder Knoten verfügt über einen lokalen Speicher, 
einen lokalen Selbsttest und eine lokale Selbstreparaturfunkti-
on. Außerdem stellt das Netzwerk für jeden Knoten die Mög-
lichkeit bereit, auf den Speicher der anderen Knoten zuzugrei-
fen. 
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Abbildung 6: Architektur Multiprozessorsystem aus [9]. 

Dadurch wird es möglich, nicht nur eine Selbstreparatur lo-
kal in jedem Knoten auszuführen, sondern auch eine Fremdre-
paratur der anderen Knoten zu ermöglichen. Der Selbsttest und 
die Selbstreparatur in einem solchen System ist nun wie folgt 
organisiert: Bei der Inbetriebnahme oder in regelmäßigen Ab-
ständen wird ein diagnostischer Selbsttest lokal in jedem Kno-
ten gestartet. Findet der diagnostische Selbsttest Fehler, so 
kann die lokale Selbstreparatur versuchen, eine Rekonfigurati-
on des Prozessors vorzunehmen. Ist dies nicht möglich, bei-
spielsweise, weil der Selbstreparaturalgorithmus nicht fehler-
frei auf dem fehlerhaften Prozessor F ausgeführt werden kann, 
so kann eine Fremdreparatur veranlasst werden. Dazu ist der 
Fehlerzustand an einen funktionierenden Prozessor K zu über-
tragen, der die Anwendung im Speicher von Prozessor F an die 
aktuelle Fehlersituation anpasst und anschließend die aktuali-
sierte Anwendung in den Programmspeicher des fehlerhaften 
Prozessors F zurückschreibt. In einem drahtgebundenen Mul-
tiprozessornetzwerk ist dies relativ einfach möglich, weil ein 
Zugriff auf die lokalen Speicher durch das Verbindungsnetz-
werk möglich ist.  
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In einem drahtlosen Sensornetz kann die Fremdreparatur 
durch andere Sensorknoten oder durch ein über die Senke er-
reichbares System durchgeführt werden. Dafür muss aber zu-
mindest eine zuverlässige Minimalkommunikation mit dem 
defekten Sensorknoten ermöglicht werden. Das bedeutet, dass 
die Teile des Protokollstacks, die von dem Prozessor in dem 
Sensorknoten implementiert werden, auch dann funktionieren 
müssen, wenn der Prozessor oder sein Speicher fehlerhafte 
Komponenten enthält. Diese kann beispielsweise durch mehre-
re unterschiedliche Implementierungsvarianten des Proto-
kollstacks ermöglicht werden, die verschiedene Ressourcen im 
Prozessor und Speicher nutzen. Abhängig von dem aktuellen 
Fehler, wird eine Version ausgewählt, die die fehlerhafte Kom-
ponente nicht verwendet. Um die Wahrscheinlichkeit zu ver-
ringern, dass keine dieser Programmversionen ausführbar ist, 
kann jede dieser Versionen so gestaltet sein, dass nur ein mi-
nimaler Befehlsumfang des Prozessors verwendet wird. Hier 
soll in Zukunft untersucht werden, wie eine derartige Service-
Schicht in einem Sensorknoten implementiert werden kann, so 
dass möglichst viele Fehler in dem Prozessor toleriert werden 
können und trotzdem noch eine Kommunikation möglich ist. 
Abbildung 7 zeigt eine mögliche Systemarchitektur für Sen-
sorknoten die eine entsprechende Organisation der Selbstrepa-
ratur unterstützt. 
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Abbildung 7: Vorgeschlagene Systemarchitektur 

In dieser Architektur gibt es unmittelbar über der Hard-
wareebene eine Service-Ebene in Software, die einen lokalen 
Selbsttest und eine lokale Selbstreparatur des Knotens ermög-
licht. Außerdem ist in dieser Service-Ebene die Implementie-
rung einer Minimalkommunikation vorgesehen, die auch einen 
Zugriff auf den Speicher des Sensorknotens zulässt. Dadurch 
kann bei Erkennung eines Fehlers, der Fehlerzustand an andere 
Knoten oder die Senke übermittelt werden. Dort kann eine 
Anpassung der Nutzeranwendungen und des OS durchgeführt 
werden. Beispielsweise können Fehler im Speicher des Sensor-
knoten durch eine Relokation des Programms und/oder der 
Daten umgangen werden. Da in einem homogenen Sensor-
netzwerk die Software in allen Sensorknoten identisch ist, 
können dadurch sogar Fehler in einem Sensorknoten behandelt 
werden, die die dortige Nutzeranwendung bereits korrumpiert 
haben. Die angepasste Softwarekomponenten werden dann 
wieder auf den fehlerhaften Sensorknoten zurückkopiert. Für 
heterogene Sensornetze ist auch eine spezielle Form von Ser-
viceknoten denkbar (beispielsweise implementiert in den Rou-
terknoten), die speziell für die Rekonfiguration der umliegen-
den Sensorknoten vorgesehen sind. Diese Serviceknoten kön-
nen dann auch verwendet werden, um den begrenzten lokalen 
Speicher in einem Sensorknoten zu entlasten, indem jeder 
Sensorknoten nur über einen sehr kleinen rudimentären Selbst-
test verfügt. Stellt dieser Selbsttest einen Fehler fest, dann kann 
der Serviceknoten einen diagnostischen Selbsttest auf den 
Sensorknoten übertragen, der den genauen Fehler lokalisiert 
und diesen Fehlerzustand an den Serviceknoten übermittelt. 
Der Serviceknoten, der eine Kopie der Software des Sen-

sorknotens enthält, kann dann ein an die aktuelle Fehlersituati-
on angepasstes Programm erstellen und dieses dann über die 
Serviceschnittstelle an den Sensorknoten übertragen.  

VI. ZUSAMMENFASSUNG 

Dieser Beitrag hat Möglichkeiten der softwarebasierter 
Selbstreparatur in Prozessoren beschrieben und gezeigt, dass 
unter bestimmten Umständen solche Maßnahmen in Sensor-
knoten eingesetzt werden können, um die Zuverlässigkeit des 
gesamten Sensornetzes zu erhöhen, was allerdings die Ver-
wendung statisch geplanter Prozessoren mit redundanten Kom-
ponenten erfordert. Die Organisation dieser Techniken in ei-
nem Multiprozessornetzwerk wurde kurz beschrieben und die 
Übertragbarkeit auf Sensornetze diskutiert. Dafür ist jedoch die 
Umsetzung einer zuverlässigen Kommunikationsschicht in den 
Sensorknoten erforderlich. Diese ist, zusammen mit einer Ana-
lyse des zusätzlichen Energiebedarfs für die Rekonfiguration, 
Gegenstand weiterer Untersuchungen.  

VII. REFERENCES 

 [1] G. Egeland and P. Engelstad: The Availability and Reliability of Wireless 

Multi-hop Networks with Stochastic Link Failures. Journal on selected 
areas in communications, 27(7), pp. 1132-1146.  2009. 

 [2] L. Guerra, M. Potkonjak and J. M. Rabaey: High Level Synthesis Tech-

niques for Efficient Built-In-Self-Repair. IEEE Workshop on DFT in 
VLSI systems, pp. 41-48, 1993. 

 [3] T. Koal, D. Scheit and H. T. Vierhaus: A Concept for Logic Self Repair. 

Proc. of the 12th Euromicro Conference on Digital System Design / Ar-
chitectures, Methods and Tools (DSD'09), pp. 621-624, 2009. 

 [4] T. Koal and H. T. Vierhaus: A software-based self-test and hardware 

reconfiguration solution for VLIW processors. Proc. of the 13th Interna-
tional Symposium on Design and Diagnostics of Electronic Circuits and 

Systems (DDECS'10), pp. 40-43, 2010. 

 [5] P. K. Lala: Self-Checking and Fault Tolerant Digital Design. Morgan 

Kaufmann, 2000. 

 [6] Y. Li, Y. M. Kim, E. Mintarno et. al.: Overcoming Early-Life Failure 

and Aging for Robust Systems. IEEE Design & Test of Computers, 
26(6), pp. 28-39, 2009. 

 [7] A. Meixner and D. J. Sorin: Detouring: Translating Software to Circum-
vent Hard Faults in Simple Cores. Proc.of the International Conference 

on Dependable Systems and Networks (DSN), pp. 80-89, 2008. 

 [8] R. Min, T. Furrer and A. Chandrakasan: Dynamic Voltage Scaling 
Techniques for Distributed Microsensor Networks. Proceedings of the 

IEEE Computer Society Workshop on VLSI, pp. 43-46, 2000. 

 [9] S. Müller, M. Schölzel and H. T. Vierhaus: Towards a Graceful De-
gradable Multicore-System by Hierarchical Handling of Hard Errors. 

Proc. of the 21st Euromicro International Conference on Parallel, Dis-

tributed and Network-Based Processing (PDP'13), 2013. 
 [10] M. Schölzel: Software-Based Self-Repair of Statically Scheduled Su-

perscalar Data Paths. Proc. of the 13th IEEE International Symposium 

on Design & Diagnostics of Electronic Circuits & Systems (DDECS'10), 
pp. 66-71, 2010. 

 [11] M. Schölzel: Fine-Grained Software-Based Self-Repair of VLIW Proces-

sors. 26th IEEE International Symposium on Defect and Fault Tolerance 
in VLSI and Nanotechnology Systems, pp. 41-49, 2011. 

 [12] I. Silva, L. A. Guedes, P. Portugal and F. Vasques: Reliability and 

Availability Evaluation of Wireless Sensor Networks for Industrial Ap-
plications. Sensors, 12(1), pp. 806-838.  2012. 

[13]  M. Schölzel: Self-Testing and Self-Repairing Processors: Techniques for 

Statically Scheduled Superscalar Processors. Habilitation Thesis (BTU 
Cottbus-Senftenberg), 2014. 

 

 

24



From Energy Accounting to Energy Management
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Abstract—Embedded systems, e.g. nodes within sensor net-
works, often have tight bound goals for lifetime while running
from a not renewable energy source. Mostly batteries are used,
which are vulnerable to temperature and non-linear effects.
Additionally, variations within the hardware or induced by the
software make the prediction of the available and consumed
energy a complicated task. To reach certain lifetime goals under
these influences, online energy management is necessary. For a
fine-grained management on the level of individual sub-tasks, it
is necessary to know where in the system the energy is consumed.

In this work, we extend our online energy accounting approach
[1] to enable online energy management. We present ways
to control application and device behavior, and, thus, energy
using energy budgets. First experiments yield promising results,
reaching their lifetime goals while maintaining a high application
quality.

I. INTRODUCTION

Sensor nodes should run for years with a limited energy
supply. To prevent early node failures due to depleted batteries,
it is necessary to use energy management. While traditional
energy management schemes focus on saving energy and thus
extending the lifetime of sensor nodes, there are scenarios in
which nodes should not reach the highest possible lifetime,
but reach a certain predefined lifetime goal, e.g. a service
interval. When the network is deployed in harsh and hard to
reach environments, it is essential that no nodes fail early. Ad-
ditionally, the available energy should be used completely to
have a high application quality. To fulfill these requirements, a
management scheme needs to control the energy consumption.
Controlling the energy consumption to reach the lifetime goal
is more important than a constant application quality [2].

Online energy accounting is an instrument for the power
management on the nodes to monitor the consumption and
enforce its constraints and policies. Fig. 1 shows an approach
where the consumed energy as well as information from the
battery is used to control the application behavior within
user-defined boundaries, to reach the predefined lifetime goal.
Taking the battery state of charge into account makes it
possible to react to the batteries non-linear behavior, e.g.,
rate capacity, recovery effects and their strong dependence on
the temperature [3], as well as to react on inaccuracies of
the consumption model. When the boundaries set by the user
can no longer be satisfied, the system must at be capable of
detecting and informing the networks maintainer as early as
possible to increase the reaction window.

The energy that is consumed by a sensor node depends
on the active devices and the energy source. The activation

Battery
Manager

Energy
Manager Application

BatteryVoltage Sensor

Feedback

Configuration

Energy Consumption

Energy
Accounting

Energy Model

Policies
Devices

Energy Consumption

Fig. 1. Power management concept taking the current consumption and the
battery state of charge into account

of devices is most often under control of the node software,
along with the time they are active. Statements about the
consumption of a device can be taken from the manufacturers
datasheet, but variations of the analog and digital components,
as well as manufacturing faults, can occur. While this may not
render the nodes useless, it could change their energy footprint.

The energy source can be connected directly or use a
voltage regulator. While connecting the source directly exposes
components to the degrading voltage level and thus to voltage
dependencies in the power consumption [4], voltage regulators
deliver a constant voltage but suffer from a load and input
voltage dependent efficiency. Both must be considered and
make it necessary to implement a dynamic accounting which
is capable of changing the underlying consumption values
depending on the voltage level or converter efficiency.

With reliable information about the remaining energy and
the consumption of the system, the energy manager can use
various handles to influence the energy consumption. The
application duty cycle could be changed or the mac/routing
timings adapted. To enable the management to limit the con-
sumption and isolate tasks and devices, we introduce energy
budgets. These budgets provide a certain amount of energy
and enable the energy management to plan how to spend the
energy.

The rest of this paper is structured as follows: The problem
statement can be found in section II. In section III, our energy
management approach is presented. The battery observation
is described in section IV. Section V presents the energy
accounting, while section VI focusses on the energy budgets.
Possible management policies based on budgets are outlined in
section VII. In section VIII related work is presented. Finally,
a conclusion is given in section IX.
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II. PROBLEM STATEMENT

To reach a defined lifetime goal G with an limited energy
reserve E, the consumption must be limited and rationed.
To do so, information about the available energy Eavail is
necessary, which depends on the initial energy E and the
consumed energy Econsumed. Econsumed can be obtained
using either hard or software solutions and can depend on the
voltage level or the converter efficiency. While in the the ideal
case Eavail = E − Econsumed, batteries depend on various
nonlinear factors which influence their capacity. These factors
must be taken into account, by including the state of charge
of the battery into the estimation of Eavail.

With an estimation of Eavail and the remaining runtime, it
is possible to adjust the applications consumption to reach G.
This can involve numerous devices and application parts with
different preferences which all must be balanced. To guarantee
a certain share of Eavail to each of them, it is necessary to
isolate them energy wise from each other. A drawback of the
isolation is that energy shares may not be spent completely, or
demands may remain unsatisfied. The reason for this is that
the actual energy requirements are dynamic and can not fully
be calculated in advance.

Not all applications share the same detailed interest in
energy awareness. There are several levels of energy awareness
and energy wise cooperation of an application, which all must
be addressable for the energy management.

• Energy ignorant applications do not consider energy in
any way. To enforce lifetime goals, these applications
may be interrupted if their energy budget is exhausted
or energy is wasted, e.g. due to a low duty cycle.

• Basic energy aware applications control their activity
based on information of remaining energy and time, e.g.
by adapting the duty cycle.

• Task energy aware applications know the consumption
of their different tasks and devices and may shift energy
between them to optimize the application quality. Addi-
tionally, this enables the accounting of requests within a
sensor network [5].

III. GENERAL APPROACH

Figure 2 shows our implementation of the dynamic energy
management presented in figure 1. Central to the approach
is the application, since it must be able to adapt to changing
energy availabilities. This can be archived e.g. by changing
duty cycles, sensor resolutions or mac/routing parameters. But
to be able to adapt, the application must be aware of the
available energy. The management is responsible for providing
this information. It consists of three parts:

1) The observation of the available energy, including the
battery state of charge and the consumed energy.

2) The online energy accounting, which provides informa-
tion about the consumed energy, down to the level of
individual device states.

3) The energy management, which uses so called energy
budgets to provide the application with a distinct amount
of energy.

Running
Application

Energy
Manager

Online Energy
Accounting

Online Battery
SOC

Energy
Budgets

Observation of
availableEnergy

Detailed Observation
of Consumption

Adaption to
available
Energy

Distribute Energy &
Limit Consumption

Fig. 2. Dynamic approach to adapt the energy consumption to varying energy
supply and hard-/software variations using energy budgets.

IV. BATTERY OBSERVATION

As hardware based approaches increase unit costs and
consume additional energy, our approach is software based
and uses only the analog digital converter to read the battery
voltage [6]. To monitor the battery discharge, it combines
simple linearization with assumptions of the general discharge
behavior. If the voltage curve is outside the assumed bound-
aries, the system gives a feedback to the energy management,
to allow an adjustment of the assumed remaining energy.

V. ENERGY ACCOUNTING

To be able to manage the available energy, it is essential
to know the flow of energy, down to individual device states.
Our approach is similar to [5], [7], [8], [9], by tracking the
active time of device states, but also takes variances in the
consumption induced by voltage changes and converters into
account. To do so, we adopted Quanto’s energy sinks and
power states [10] view. For our approach, a sink is a potentially
independent unit that consumes energy, a power state defines
how much energy is consumed by a sink.

The consumption of a sink can be modified dynamically
by changing its power state. This makes it possible to use
more than one power state for a single sink and thus reduce
the memory footprint, if no detailed information about the
distribution of the consumed energy is required.

Dynamic effects that influence the energy consumption
are another reason to modify the power states of a sink
dynamically. The changing supply voltage when the system
is connected directly to a battery exposes components to its
voltage curve. Our system monitors the voltage and informs all
involved device drivers when the voltage changes substantially,
so that they can adapt their power states. Additionally, the
accounted amount must be altered when a voltage regulator
is present. All accounted energy must be modified by a
dynamically recomputed efficiency factor, to compensate the
regulators voltage and load dependency.

Since we implemented our approach for the event-driven
operating system REFLEX [11], which is implemented in C++,
the integration of the accounting mechanisms into the existing
device drivers is eased. Each driver that should be integrated
is derived from a base class and gains all the functions
and variables necessary for the accounting. If applicable, it
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is additionally registered by the mechanisms for voltage or
converter efficiency.

We integrated the accounting into the drivers for the Texas
Instruments eZ430-Chronos [12]. As we used a 32kHz timer,
the timestamp resolution is 1/32ms, to avoid additional energy
consumption. To cover the entire lifetime of a sensor node, the
timestamps and energy storages are based on 64-bit values.
The power states are based on a statistical model built through
measurement of 90 nodes [13].

VI. TOWARDS MANAGEMENT USING ENERGY BUDGETS

With detailed information about the energy consumption
of the system, it is possible to enforce limitations to meet
desired discharge rates. Since applications should react to
reach lifetime goals, they must be provided with information
about the available energy. With different application parts and
goals competing for the energy, a mechanism is necessary to
separate them and provide a local view of the remaining energy
for a single part. However, energy alone has no value without
a time window. This information can be provided using energy
budgets, which are based on the concept of resource containers
[14], but are only used to limit the resource energy.

An energy budget is an abstract reservoir for energy. It
represents the right to a certain amount of energy. The system
energy (or parts of it) is/are divided between the budgets. An
abstract budget B is defined by its currently stored amount b
and the validity interval [tstart, tend] of b. The demand of a
budget is defined by the minimal energy min needed and the
maximal energy max consumable by its associated consumers
during [tstart, tend]. They give the system a hint on reasonable
values for filling B at tstart:

B = (b, [tstart, tend],min,max)

Since most activities within a sensor node are not short
lived, the validity interval is more or less a constant refresh
interval, at whose begin the budget will be refueled. This
division of G into T intervals, each with the same length of
[tstart, tend], also devides to system consumption and reduces
the prediction horizon for the application. A combined interval
where the battery observation computes the remaining energy
and all budgets are refueled simplifies the process and reduces
the overhead. The essential requirement is that the minimal
demand for all budgets is satisfied in every interval. If this
demand can not be satisfied, the networks maintainer must be
informed, since the functionality can no longer be guaranteed.
The remaining energy can be distributed among the budgets
in various ways (see section VII).

Obtaining reasonable values for min and max is a hard
task, since they depend not only on the consumption of asso-
ciated devices but also on the interval duration [tstart, tend].
Apart from careful calculation, these values could be obtained
by simulation or experiments. Another option is to include
a learning phase, but this is only feasible for budgets with
associated activities with a nearly constant demand.

Each energy sink must be bound to an energy budget. While
an energy sink captures the consumed energy, the budgets are

charged for the energy. This connection is also reflected in the
implementation, where the consumed energy is stored in the
energy sink and removed from the bound energy budget.

To enforce the limitations induced by budgets, the device
drivers should only work if their budgets are not empty. An
extension is to track the typical request/activation cost for each
device and check if enough energy is in the buffer before
granting a request.

VII. POSSIBLE BUDGET POLICIES

The basic concept of energy budgets and their behavior can
be extended and policies implemented in numerous ways.

Energy share distribution can be based on a fair share
of all budgets, based on priorities or dependent from max.
Economic approaches like [15] are also possible.

Insufficient system energy can be handled by a simple
error signal to the application and the networks user/maintainer
or lead to an emergency mode where the remaining energy is
distributed among prioritized budgets.

While always bound to an energy sink, budgets can be
attached to various logical entities. For example, a budget
can be permanently attached to one or more energy sinks,
to enable device based management. Another possibility is to
attach them to requests, to share devices and enable per-use
charging. This could be extended to the cpu and would lead to
task/process based management. Additionally, budgets could
be attached to the system events and passed along the data-
/controlflow.

Empty budgets in general could be treated through iso-
lation, which means the associated entities could no longer
work, or by cooperation, which means that the empty budgets
try to obtain energy from the management or directly from
other budgets. This energy can also come as a debt, which
must be repaid from the budgets future share.

Unused energy can be saved for future use, slowly drained
by the system, granted to budgets in need or lead to an
adaption of the share itself.

Which policy or combination should be used depends
mainly on the requirements of the application. Early evaluation
shows that with different policies, the behavior of the system
varies strongly in different situations.

VIII. RELATED WORK

There are numerous approaches for tracking consumed
energy, both in hard- and software.

Hardware approaches cover coloumb counters and smart
battery systems [16], Sensor Node Management Devices [17]
and especially designed measurement devices [16], [18], all
with different benefits and drawbacks. But all hardware ap-
proaches introduce an overhead in device costs and energy
consumption.

Software approaches rely on the observation of certain
events to account for the consumption. To be able to observe
these events, the code has to be modified with hooks to call
the accounting functions. The events can either be based on
functional application blocks [19], [20] or based on device
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driver actions [5], [7], [8], [9]. The latter are based on taking
timestamps when devices change their state to obtain the
duration of each state, to calculate the consumed energy.

Based on the concept of resource containers (RC) [14],
energy capsules [21] and energy containers [22] provide
information about the energy usage of (sub-)tasks. Another
form of RCs are the reserves of cinder [23], where the flow
between reserves is controlled by so called taps. Ecosystem
[24] with its currency model [25] uses RCs to limit the energy
applications and tasks can spend on computation and I/O.

In EPOS [26], tasks are divided into a mandatory and an
optional part, which could be omitted to reach the lifetime
goal. Energy levels [27] follow a similar concept, controlling
the consumption by switching between different application
(sub-) levels with different utilities and energy footprints.

In [28] an approach which adapts duty cycles based on the
temperature dependent consumption is presented. The goal
of energy wise isolation of applications is implemented in
[29]. In [30] energy budgets are introduced as node wide
representation to limit the consumption to meet the energy
storage in harvesting systems.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented an energy management concept
based on energy budgets. The toolset provided by these bud-
gets is promising in enabling a wide range of applications to
reach their lifetime goals in the presence of dynamic changes
in the environment.

In the future we want to further implement and evaluate the
possibilities enabled through different policies for isolation and
cooperation of budgets. Additionally, the whole approach will
be evaluated in the field with real applications.
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Kurzfassung — In Elektrofahrzeugen werden Batterien mit
vielen Zellen verwendet. Dort werden Batteriemanagementsyste-
me eingesetzt, die Messwerte von allen Zellen benötigen. Bisher
werden dafür verdrahtete Lösungen mit Messcontrollern für
Batteriemodule eingesetzt, die u.a. mit Busstrukturen kommu-
nizieren. Als Alternative bieten sich drahtlose Sensorsysteme an,
wie sie von der Arbeitsgruppe an der HAW Hamburg bereits
vorgestellt wurden [1], [2], [3].

In diesem Artikel sollen nun weitere Funktionsmodule vorge-
stellt werden, die nicht mit Standardlösungen umsetzbar waren.
Eine Teilfunktion ermöglicht die hochgenau synchronisierte Mes-
sung des Batteriestroms mit den gleichzeitigen Messungen der
Spannungen an allen Zellen. Eine andere Teilfunktion soll die
Energieaufnahme der Sensoren minimieren. Dafür ist ein Schlaf-
modus implementiert. Es wird eine Wake-Up-Lösung mit einem
zweiten passiven Empfangszweig - jedoch keinem zusätzlichen
Frequenzband - eingesetzt. Außerdem werden weitere Zusatzmo-
dule vorgestellt, die das Sensorsystem um zusätzliche Funktionen
erweitern können. Sie wurden in Hard- und Software reali-
siert und experimentell erprobt. Zu diesen Funktionen gehören
passives Zellbalancing, elektrochemische Impedanzspektroskopie
(EIS) auf der Basis der synchronisierten Messungen sowie die
faseroptische Erfassung nicht-elektrischer Messgrößen der Zelle.

I. EINFÜHRUNG

Batterien nehmen für die Energiespeicherung eine bedeu-
tende Schlüsselrolle ein. Von Batterien verlangt man hohe
Energie- und Leistungsdichte, geringe Kosten, hohe Betriebs-
sicherheit, wirtschaftliche Lebensdauer sowie ausreichende
Belastbarkeit durch schnelle Ladung und Entladung. Sicher-
heit, Lebensdauer und kontrollierte Belastungen werden maß-
geblich durch elektronisches Batteriemanagement bestimmt.

Elektrofahrzeugbatterien, die typisch etwa 30 kWh spei-
chern, werden aus vielen Zellen aufgebaut1. Für größere Batte-
rien in Lithiumtechnologie wird bereits fast ausschließlich die
Einzelzellen-Überwachung genutzt, da das Auseinanderdriften
der Zustände der Zellen über die Betriebszyklen kritisch ist.
Die Einzelzellen-Überwachung ist hier bisher verdrahtet rea-
lisiert, so dass jede Zelle direkt oder mit einem Bussystem an
das Batteriemanagementsystem angeschlossen wird. Bei den
vielzelligen Batterien entstehen dabei Probleme, wie ein hoher
Verkabelungsaufwand, Potentialtrennung, Zuverlässigkeit der
Verbindungen u.a.

Die Arbeitsgruppe an der HAW Hamburg arbeitet in meh-
reren Forschungsprojekten seit 2009 an einem Lösungsansatz
dafür - den drahtlos kommunizierenden Zellensensoren. Das

1Bei Elektrofahrzeugen werden typisch über 100 Zellen in Reihe geschaltet,
um eine günstige Betriebsspannung des Antriebs zu erreichen. Beispielsweise
werden beim Opel Ampera 288 Zellen, beim BMW Active E 192 Zellen und
BMW i3 96 Zellen und beim VW e-up 204 und e-Golf 264 Zellen sowie
beim Ford Transit Connect Electric 193 Zellen verwendet.

Bild 1. Mitte: Drahtloser Zellensensor, dessen Funktionen nachfolgend
vorgestellt werden. Der Sensor ist vorgesehen für die dargestellte Platzierung
innerhalb der gezeigten großen Lithium-Batteriezellen (64 mm Durchmesser x
198 mm Länge, Nennkapazität 45 Ah, Hersteller ECC). Links: geschlossene
Zelle in Aluminiumhülse, Rechts: Rundwickel der Elektrodenfolien, Hülse
entfernt. Vorn: Hülsendeckel und 2 Euro-Münze zum Größenvergleich

Verbundprojekt IntLiIon [4] arbeitet seit Mitte 2013 an der Da-
tenkommunikation von Zellensensoren über die stromführende
Verkabelung der Batterien (Powerline Communication). Auch
hier findet man den Einsatz der Einzelzellensensorik, wie er
an der HAW Hamburg bereits umgesetzt wurde, wieder.

Über das Konzept der drahtlosen Zellensensorik und Sen-
soraufbauten wurde bereits berichtet [1], [2], [3]. Nun sol-
len Aspekte einer modularen Funktionsweise und von Zu-
satzfunktionen diskutiert werden, die spezifische Lösungen
in der Hardware, in der Steuersoftware und in den
Übertragungsverfahren erfordern.

II. GRUNDFUNKTIONEN

Die Grundfunktionen des Sensors unterscheiden sich
zunächst in drei Klassen, die eine unidirektionale, teilweise
bidirektionale oder vollständig bidirektionale Funktionsweise
aufweisen. An dieser Stelle wird nur die letztere Klasse 3
betrachtet, die anderen sind bereits dargestellt [3]. Die Grund-
funktionen des Sensorsystems basieren auf Kommandos, die
vom Steuergerät ausgehen (Downlink). Sie adressieren einen
Sensor einzeln oder werden im Broad- und Multicast gesendet.

Die Sensoren antworten auf die meisten Komman-
dos mit Messages, die in einem vorgesehenen Zeitschlitz
zurückgesendet werden (Uplink). Im Ausnahmefall kann der
Sensor priorisierte Messages ohne Aufforderung senden und
wiederholen, wobei Kollisionen nicht ausgeschlossen sind. Die

29



Bild 2. Sensoren für den Einsatz in Lithium-Rundzellen mit überwiegend
magnetisch wirkender Schleifenantenne auf dem PCB. Der Aufbau ist für
die Nahbereichsübertragung in ungünstiger Umgebung geeignet (Metallhülse,
Metallbaugruppen im Nahfeld, Bauelemente im Antennenbereich) [8], [9].

Messwerterfassung erfolgt mit Hilfe von Queues und Zeit-
stempeln. Bei der Auslegung der Kommunikationstrukturen ist
berücksichtigt worden, dass perspektivisch Quarz-Oszillatoren
im Sensor sowohl für den Transmitter [10] als auch für
den Takt des Sensorcontrollers entfallen sollen. ’Quarzfreie’
Lösungen sind bereits für die einfacheren Sensorklassen de-
monstriert worden [1], [3]. Für die Kommunikationsstrukturen
und die Messaufgabe ist der Wegfall einer genauen Zeitbasis
- also die Toleranz einer Taktabweichung zwischen allen Sen-
soren über den Prozentbereich hinaus - eine Herausforderung,
welche letztlich zu eigenen Lösungen geführt hat.

Elektronisches
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umschalter
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Detektor 125 kHz
Wake-Up

DC/DC
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Bild 3. Betriebsmodi der Zellensensoren u. des zentralen Steuergerätes:
(Downlink Steuergerät zu Sensoren, Uplink Sensor zum Steuergerät)
1) Broadcast oder adressierte Commands im Downlink mit Protokoll
2) Individuelle Messages im Uplink mit Protokoll
3) Broadcast von Synchronisier-Pulsen im Downlink ohne Protokoll
4) Broadcast oder adressierbares Wake-Up-Signal im Downlink ohne/mit
Minimalprotokoll

III. ERWEITERTE FUNKTIONEN

A. Betriebsmodus funksynchronisierte Messung

Eine besondere Betriebsart bilden die synchronisierten Mes-
sungen der Sensoren. Dabei wird die Spannungsmessung auf
allen einzelnen Zellensensoren durch ein sehr kurzes Einschal-
ten (Triggerpuls) des 433-MHz-Trägersignals vom Steuergerät
ausgelöst. Der Triggerpuls erfolgt synchron zur Abtastung
der Strommessung des Steuergerätes. Er wird ohne Daten-
protokoll unmittelbar demoduliert und löst die Abtastung des
ADC aus. Die Kanallaufzeit ist konstant (in der realisierten
Lösung 18,4 µs [9]) und kann durch Vorverlegen des Trig-
gerpulses kompensiert werden. Fehlsynchronisationen durch
Störungen und Rauschen minimiert eine zeitliche Torfunktion
im Empfänger.

Das synchronisierte Messverfahren ist in Bild 4 schematisch
dargestellt. Der funksynchronisierte Betrieb wird durch ein
Kommando an die Sensoren eingeleitet, das eine nachfolgende
Anzahl (Burst-Länge) von Triggerpulsen und deren Abstand
(Burst-Rate) festlegt. Beim Eintreffen eines Triggerpulses wird
die Abtastung ausgelöst und der Abtastwert in einem Array
des Controllerspeichers zwischengelagert. Dieser begrenzt die
Länge der Aufzeichnung. Es werden mit dem zur Zeit ver-
wendeten Controller maximal 900 Samples erreicht, s. Bild
5. Dies soll auf über 2500 Samples optimiert werden, wobei
verlustlos komprimierende Speicherung verwendet wird [11].

Nach Abschluss der Erfassung des Sample-Blocks wird
durch eine Kommando-Message-Sequenz der zwischenge-
speicherte Block von jedem Sensor abgefragt. Mithilfe
von Zeitstempeln kann der Zeitbezug im Batteriesteuer-
gerät nachträglich wiederhergestellt werden. Ein resultierender
größerer Zeitversatz zwischen Messdatenerfassung im Sensor
und Zustandsaussage des Steuergerätes ist seitens der An-
wendung akzeptabel (bis einige Sekunden), wenn die Strom-
und Spannungswerte vom Batteriemodell oder für besondere
Analysen (s. Abschn. B) ausgewertet werden sollen. Wichtig
ist nur die präzise zeitliche Übereinstimmung aller Abtastwerte
im gesamten Sensorsystem, d.h. der zentralen Strommessung
und der Spannungsmessung für jede einzelne Zelle. Der Zeit-
punkt der zueinander gehörenden Messungen sollte nur wenige
µs voneinander abweichen.

B. Elektrochemische Impedanzspektroskopie nutzt die syn-
chronisierte Strom- und Spannungsmessung

Neben der Beobachtung hochdynamischer Hochstromereig-
nisse wird die strenge Synchronität auch für die elektroche-
mische Impedanzspektroskopie (EIS) benötigt.

Die EIS wird für Zustandsuntersuchungen von Batterien be-
nutzt, bisher werden dafür hochwertige Laborgeräte eingesetzt.
Für die EIS sind zeitlich genau synchronisierte Messungen
von Strom und Spannung mit Wechselanteilen im Bereich
von unter 1 Hz bis etwa 10 kHz erforderlich. Da beim EIS-
Verfahren die Phasendifferenz zwischen Strom und Spannung
bis etwa 10o genau ausgewertet werden soll, wird die maxi-
mal angestrebte Synchronität ±∆t der Abtastwerte wie folgt
abgeschätzt: ∆t < 10[o]

10 kHz·360[o] = 2, 8µs. Die Öffnungsdauer
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der Torfunktion bildet ein zeitliches Eingangsfenster für die
Synchronpulse im Empfänger, das der 10o-Anforderung an
die EIS entspricht. Die Fensterdauer muss ca. ± 3 % (6%)
der EIS-Anregungsperiode betragen, weil die Erzeugung über
Controller-Timer mit dem chip-integrierten Oszillator möglich
sein soll. Für die Synchrontriggerfrequenz von 10 kHz sind
das: 1

10 kHz · ±3[%]
100[%] = ±3µs≈ ±2, 8µs = ∆t . Die Lösung

bis 4 kHz Triggerfrequenz ist bereits realisiert [9]. Angestrebt
wird, den vollen Funktionsumfang der EIS mit einem etwas
leistungsfähigeren MSP-Controller zu demonstrieren. Gezeigt
werden soll, dass die EIS auch mit kostengünstigen drahtlosen
Sensoren und damit im Fahrzeugbetrieb möglich ist.

C. Modul für Wake-Up-Signal im UHF-Band

Auf dem Sensor wurden aufwändige Mess-, Steuer- und
Kommunikationsfunktionen realisiert. Letztere erfordern we-
gen ihrer bidirektionalen Funktion einen Transceiverchip (Te-
xas Instruments CC1101). Im gewöhnlichen Sende- und Emp-
fangsbetrieb muss der Empfangsteil eingeschaltet bleiben, so
dass aufgrund des dort aktiven Oszillators (LO für Superhet)
bis in den Milliamperebereich Strom aufgenommen wird.
Der Transceiverchip kann im Schlafzustand nicht empfangen.
Bereits vorgestellt wurde ein Sensor, der mit einer zweiten
passiven Empfangsschaltung im LF-Bereich eine Wake-Up-
Funktion realisiert [3], [5]. Nachteilig war der Aufwand des
Zwei-Frequenz-Betriebs mit PCB-Spulenantennen und der ho-
he Leistungsbedarf der Wake-Up-Sendeschaltung.

Um dieses zu vermeiden, wurde nun ein zweiter Emp-
fangsweg vorgesehen, der ebenfalls im 433 MHz-Bereich
liegt, aber dennoch die Vorzüge einer (weitgehend) passiven
Empfangsschaltung aufweisen sollte. Ziel war es, auf ein
zusätzliches Frequenzband und damit auf eine weitere An-
tenne verzichten zu können. Dafür wurde ein neuer Vorschlag
aus der Literatur aufgegriffen [6], [7]. Dabei wird ein 125-
kHz-Signal auf einen 433-MHz-Träger aufmoduliert. Diese
Aussendung wird von jeder Sensorantenne empfangen und
mit einem Antennenumschalter (Analog Devices ADG918) zu
einem passiven Diodenempfänger zugeleitet. Dieser wird mit
einer Zero-Bias-Diode für geringste HF-Eingangsspannungen
betrieben. Der passive Empfänger demoduliert das 125-kHz-
Signal, das in einem Identifikations-IC (AMS AS3930) mit
sehr geringem Energiebedarf ausgewertet wird [8], [9].

Im Broadcastbetrieb des Steuergerätes werden typischerwei-
se alle Sensoren aufgeweckt. Durch sofort anschließende Kom-
mandos können über den nun aktivierten Transmitter nicht
benötigte Sensoren adressiert und wieder in den Schlafzustand
abgeschaltet werden. Das Steuergerät kann aus übergeordneten
Informationen (z.B. beim Parken) den Ruhezustand erkennen
und eine Schlafphase für alle Sensoren kommandieren.

D. Modul für die Ladungsbalancierung

Der Ladungszustand von ’schwachen’ und ’starken’ Zellen
driftet nach einigen Zyklen stark auseinander. Daher hat der
Zellensensor eine modulare Zusatzfunktion. Vom Sensorcon-
troller kann ein Nebenstrompfad für eine Zeitspanne einge-
schaltet werden, um die Ladung ausgewählter Zellen vermin-
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Bild 4. Oben: Das Batteriesteuergerät sendet ein Startkommando, gefolgt
von einer Wartezeit. In dieser Zeit ändert der Mikrocontroller im Zellensensor
den Betriebsmodus des Transceivers und wartet anschließend auf den Anfang
der Messsequenz.
Mitte: Das Batteriesteuergerät sendet in festen Abständen Synchronisati-
onspulse (Triggerpulse), die bei den Sensoren die Messung der Spannung
an der jeweiligen Zelle auslösen. Parallel zu den Triggerpulsen misst das
Batteriesteuergerät selbstständig den Strom, der durch die Batterie fließt.
Unten: Am Ende der Messsequenz werden die Messdaten der einzelnen
Sensoren nacheinander an das Batteriesteuergerät gesendet. Eine Messsequenz
ist mit dem Sensorcontroller für etwa 900 Messwerte zwischenspeicherbar.
In diesem Beispiel wurde exemplarisch der Strom durch eine LiFePO4-
Starterbatterie [9] und der entsprechende Spannungsverlauf einer Zelle beim
Starten eines PKW-Motors gewählt.

Bild 5. Aufnahme des Spannungsverlaufs bei einem PKW-Motorstart,
gemessen an einer Lithium-Batteriezelle als Teil einer experimentellen Star-
terbatterie. Blau: Über 10000 Messwerte, aufgezeichnet mit einem Speicher-
oszilloskop. Rot: Ca. 50 Messwerte erfasst vom Zellsensor ohne Downlink
(Klasse 1). Hellblau: 750 getriggerte Messwerte erfasst von dem vorgestellen
Sensor (Klasse 3) [9], wird zukünftig auf über 2500 Messpunkte erweitert
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Bild 6. Sechs drahtlose Zellensensoren und Aufsatz-Module mit optischen
Fasersonden auf einer PKW-Starterbatterie. Erfassung der Zellspannung,
Temperatur und Säuredichte für jede einzelne Zelle, der Batteriestrom wird
zentral erfasst [13]. Die Sensoren und Sonden werden zukünftig in den Zel-
leninnenraum platziert und erfassen während des Batteriebetriebs fortlaufend
elektrische und nicht-elektrische Messgrößen.

dern bzw. einen kleinen Teil des Ladestroms um diese Zellen
herumzuleiten. Dafür sind bis zu 400 mA durch ein Balancier-
Kommando über zwei MOSFET-Schalter einzuschalten.

Als Ergebnis soll die Ladung der Zellen in gewissem Um-
fang angeglichen (balanciert) werden. Damit werden alle Zel-
len sicher weitab von grenzlagigen Arbeitspunkten betrieben,
was die Schädigung bereits geschwächter Zellen verlangsamt.
Die Steuerung der Balancierung erfolgt zentral, damit eine
zwischen Zellen vergleichende Entscheidung fallen kann.

E. Module für nicht-elektrische Messgrößen

Die Erfassung der Klemmspannung ist zwar mit gerin-
gem messtechnischen Aufwand durchführbar, die gewonnenen
Werte sind jedoch von der aktuellen Betriebsbelastung der
Batterie beeinflusst. Die Bestimmung des Ladezustandes über
die Ruhespannung (OCV/Open Circuit Voltage) ist erst nach
längeren Ruhephasen im thermodynamischen Gleichgewicht
möglich und muss die Alterung (SoH) mit einbeziehen.

Wie in Arbeiten von A. Cao-Paz [12] gezeigt und in eigenen
Aufbauten bestätigt wurde [13], kann der Elektrolytzustand
mit Hilfe des Brechungsindex gut faseroptisch erfasst werden.
Damit ist der Ladezustand von Blei-Säure-Batterien bestimm-
bar. Eine fortlaufende optische Messung kann daher eine
Ergänzung der Eingangsparameter für Batteriemodelle bilden.
Von besonderem Vorteil ist, dass keine Integration von Mess-
werten (wie z.B. bei der aufsummierten Strommessung für den
Ladungsumsatz) erfolgt, sondern eine absolute Beziehung zum
Ladezustand der Zelle besteht. In eigenen Experimenten ergab
sich eine hervorragende Signalaussteuerung (ca. 30 %) und
ein gutes Signal-Rausch-Verhältnis. Allerdings kann nicht auf
eine individuelle Kalibrierung verzichtet werden, da die Ver-
luste im optischen System sehr große Toleranzen aufweisen.
An Referenzierungen mit unterschiedlichen Lichtwellenlängen
wird gegenwärtig gearbeitet. Die Arbeitsgruppe will auch bei
Lithiumbatterien nicht-elektrische Größen erfassen [14], [15].

IV. ZUSAMMENFASSUNG UND PROJEKTPARTNER

Es wurde ein Batteriemanagementsystem gezeigt, das auf
drahtlosen, in die Zellen zu integrierenden, Sensoren basiert.
Für die Anwendung mit Lithium-Zellen sind eine Reihe von

Messpunkte mit optischem
Kontakt der Faser 
zum Elektrolyten

Bild 7. Detailansicht einer selbstgefertigten optischen Fasersonde. Das Ende
der Sonde wird in den Batterieelektrolyten eingetaucht und erlaubt die Bestim-
mung der ladungszustandsabhängigen Elektrolytdichte über Transmissionsver-
luste in der Faser. Die Faser ist dazu an zwei Stellen mit entferntem Mantel
mit einem sehr starken Biegeradius gekrümmt, so dass eine Wechselwirkung
mit dem Elektrolyten dichteabhängige Verluste bewirkt.

Zusatzfunktionen (funksynchronisierte Messung, EIS, Wake-
Up im UHF-Bereich, Ladungsbalancierung und Module für
nicht-elektrische Messgrößen) sinnvoll, die modular realisiert
wurden. Hierzu war es erforderlich, proprietäre Lösungen für
die Kommunikation und für Hard- und Software zu schaffen.

Das Vorhaben BATSEN wird vom BMBF gefördert (FKZ
17001X10). Es wird durch die Volkswagen AG, Bertrandt AG,
Still GmbH, OMT GmbH, Fey Electronic GmbH u. Coilcraft
Ltd. unterstützt. Weitere Arbeiten werden vom EU-Projekt “E-
Mobility NSR“ gefördert. An den nicht-elektrischen Mess-
größen arbeitet ein Doktorand der gemeinsamen Graduierten-
schule der Universität und der HAW Hamburg.
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Abstract—How to establish a communication infrastructure
when there is no infrastructure at all? After an occurred disaster
there is a high demand for functional and working communica-
tion. In this paper we propose flying and self-deploying Wireless
Sensor Networks (WSNs) to establish disruption tolerant multi-
hop communication for disaster recovery and search-and-rescue
missions. We also show the implementation of our first WSN-
based quadrotor prototype.

Index Terms—Quadrotor; Wireless Sensor Networks; Desaster
Recovery; Disruption Tolerant Networking

I. MOTIVATION AND INTRODUCTION

“Roads? Where we’re going, we don’t need roads.”1

Rescue teams rely on images from distant cameras, remote
operators try to navigate robots through harsh and inhospitable
environment, pollution data recorded by scattered WSNs is
analyzed in order to assess the possibility to send humans in
contaminated areas:

There are several scenarios for WSNs deployed in unknown
territory or after an occurred disaster. Most of these scenarios
require the presence of at least some communication infras-
tructure that is able to transmit data to a remote location, e.g.
via the internet. A satellite uplink cannot always be assumed as
on the one hand the satellite infrastructure may be damaged
as well; on the other hand the communication via satellites
requires a free line of sight (to the satellite), which again is not
given under heavy smoke or in indoor scenarios like caverns,
mines or nuclear power plants.

A. Disruption Tolerant Networks for Disaster Recovery

The network link to a remote control center does not
always have to be a continuous end-to-end connection. The
concept of a Disruption Tolerant Network (DTN) (or synonym
Delay Tolerant Network) has its origins in interplanetary
communication, where usually a continuous connection cannot
be assumed [1]. Traditional communication protocols fail in
harsh deep-space environments as they are inappropriate due
to several reasons – and they will fail in some disaster
recovery scenarios as well: Long distances result in high
latency, which again makes connection oriented protocols like
TCP unmanageable, and the absence of a continuous end-to-
end connection requires a different approach than common
communication protocols. The DTN architecture [2] is based

1Dr. Emmett Brown in Back to future (1985)

A M B

Fig. 1. Node M is moving between nodes A and B. Node M stores, carries
and forwards data between nodes A and B.

on a “store, carry and forward” concept and is able to
compensate these shortcomings.

In Figure 1 the general functionality of a DTN is shown.
There is no need for the nodes to have a continuous con-
nection. The data is organized in so-called Bundles; Bundles
can be stored, (physically) carried and forwarded if another
node is in communication range. Also WSN projects such as
ZebraNet [3] follow a DTN-like approach. However, all these
approaches are located in the application layer, using standard
protocols and are designed for one special purpose, each.

II. RELATED WORK

The deployment of nodes in a network can be done in
several ways – surely depending on size of the deployment,
the area, and the environment. In contaminated disaster areas,
obviously, a manual deployment is out of question.

Since the beginning of WSNs research large scale deploy-
ments via airplanes have been promoted; but – to the best of
authors knowledge – have never been performed in research.

In [4] and [5] unmanned helicopters have been used to
deploy the nodes of a wireless network. Whereas the drones
have either been controlled remotely or have operated au-
tonomously.

In previous works we have shown the basic concept of a
vehicle that drops intermediate nodes as soon as the RSSI
becomes bad [6]. By this, the vehicle itself maintains the
deployment of the wireless sensor network which is used to
control the vehicle and to transport data from the vehicle
to a distant operator. This concept has been successfully
tested at the Eyjafjallajökull volcano [7] in Iceland. In this
work the vehicle was controlled by a distant human operator.
Nevertheless, even autonomous driving vehicles like [8] need
a communication infrastructure to transmit the recorded data.
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A I1 BI2 I3

Fig. 2. Several intermediate nodes In are needed to finally cover the area
of node B.

III. APPLICATIONS

The basic idea is very simple. A quadrotor – equipped with
WSN hardware to establish radio links – is controlled via WSN
radio links by an operator who navigates the drone through
unknown territory. Like in [7] a camera can transmit images of
the current environment. At the moment where the RSSI sinks
beyond a certain threshold, the quadrotor holds the position or
– if possible – lands to save energy. Afterwards, a second drone
is started – following the first until the two drones meet at the
same spot. The first – probably landed – drone now acts as a
relay and holds the position. Through this relay, the actuation
radius of the second drone is enhanced and it can continue to
explore the surroundings.

A. Continuous Network

To explore wider areas, each time the RSSI drops below a
certain threshold a new drone is started and the current node
holds its position. This surely increases the number of hops
in the multi-hop network which is formed by this strategy.
Thus, also latency will increase and controls will act more
delayed with an increasing number of hops. But, after the
flying nodes have covered the desired area, the WSN can be
used to transmit data relevant for the disaster recovery mission
and “normal” network communication can be transmitted via
this flying – or once flying now landed – WSN. In Figure 2 this
scenario is shown: Node A is the sink and the intermediate
In nodes start one after another and fly to their designated
positions in the multihop network. Finally, node B covers the
desired area of interest.

B. Disrupted Network

Depending on the area to be covered, the first approach may
be a waste of material, since a lot of drones will be placed
in the area. In case the “interesting” spot is at the far end of
a chain (node B in Figure 2), most of the flying or landed
nodes will only work as relays. This is the point where the
DTN protocol really helps to save material and money: In [9]
elevators have been used to physically carry data. Here, the
quadrotors can be used to shuttle between two – or more –
spots and store, carry and forward data, as shown in Figure 1.
Thus, the same area which was covered by five nodes in
Figure 2) can be covered by only three nodes in Figure 1.

IV. IMPLEMENTATION

The implementation of the quadroter is based on the INGA
wireless sensor node [10]. In Figure 3 all components and

Remote
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Fig. 3. Hardware diagram of the WSN-based quadrotor.

Fig. 4. The flying WSN-based quadrotor.

their interconnections are given.
All in all, three INGA nodes have been used – one as remote

control, one for flight control and one for communication
purposes. While the remote control node is located in a
standard (toy) remote control, the other two form the actual
quadrotor.

The flight controller is based on the MultiWii project2.
To easily adapt INGA to this Arduino based project, our
arduINGA3 port which makes INGA work as an Ardunio is
utilized. The flight controller utilizes INGAs gyroscope and
accelerometer for trajectory calculation. It also controls – via
an extension with one Electronic Speed Control (ESC) per
motor – the four motors and the landing lights.

The receiver runs Contiki [11] and therefore is able to
communicate via many existing protocols. Additionally we
used this node to monitor the voltage of the flying system.

The remote control node is also running Contiki and inter-
faces the controller sticks, a display and several LEDs. At first,
the RIME communication protocol was used to transfer flight
commands and sensor data. To enable a disruption tolerant
communication, the µDTN protocol [12] has been used.

V. CONCLUSION

Figure 4 shows the flying prototype of the WSN-based
quadrotor. Unfortunately – until now – we were only able

2http://www.multiwii.com
3http://git.ibr.cs.tu-bs.de/?p=project-cm-2012-inga-arduingo.git
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to build the one quadrotor and thus we were not able to really
test our concepts of a disruption tolerant disaster recovery with
WSN-based quadrotors.

In contrast to [5] and [4] in our case, the flying vehicles are
not used to drop nodes – the quadrotors are meant to be the
(relaying) nodes itself: In a Continuous Network as (more or
less) dumb relays; in a Disrupted Network as data mules that
store, carry and forward data within the network.

A. Future Work

WSN-capable quadrotors are pretty seldom right now, but,
the vehicles presented in [7] rely upon the same technology.
Thus, they are compatible and a combined ground- and air-
borne DTN can be formed. Additionally, some rockets could
support this scenario [13].

We also plan to equip the quadrotor with GPS, so that it can
search wider areas autonomously with less user interaction.
In addition to that, there is the possibility to make use of a
computer vision system like the one presented in [14] to make
a map of the area. Having received this map via DTN, a ground
vehicle could be enabled to navigate in the harsh environment
encountered and carry heavier payloads to a target. If this
system was able to detect interesting spots (like humans
needing help) and send a picture to the operator via DTN
this could reduce the network load per drone dramatically.
Hence not only the operators would be able to control more
drones, but also the network would be capable of handling
more quadrotors or other Urban Search and Rescue (USAR)-
vehicles.
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Abstract—This article summarises the results of our study,
in which the suitability of Sub GHz transceivers in compar-
ison to Wi-Fi transceivers for received signal strength (RSS)-
based indoor localisation has been investigated. Within, the
transceivers’ localisation accuracies and battery runtimes have
been evaluated for transceiver-specific localisation systems. As the
title suggests, it was shown that Sub GHz transceivers are a well
suited alternative to common Wi-Fi transceivers, since supporting
extended battery runtimes and higher localisation accuracy.

I. INTRODUCTION

While Wi-Fi transceivers are typically used to localise
mobile devices in buildings, future devices can be expected
to include as well so-called Sub GHz transceivers that utilise
radio frequency ranges of 868 MHz (in the European Union
and China) and 913 MHz (in the United States). A corre-
sponding IEEE 802.11 ah standard [1] is currently prepared
and we have proposed the first mobile device that contains
Sub GHz transceivers aside of classical Wi-Fi transceivers, the
Efficient Mobile Unit (EMU) [2]. Since Sub GHz transceivers
are mainly deployed in static wireless sensor networks, their
suitability for desired indoor localisation was not yet compared
with commonly used transceiver types such as IEEE 802.11
Wi-Fi transceivers. Therefore, we have investigated the suit-
ability of Sub GHz and of Wi-Fi transceivers for frequent
indoor localisation, where (high) localisation accuracy and
(low) energy consumption are considered as relevant criteria.
Localisation accuracy is related to the ability to achieve low
errors among following partial metrics:

• Localisation error rates (or localisation fail rate) measure
the percentage of localisation runs, which fail to estimate
device positions. Localisations might fail mainly due
to limited RSS samples, which are considered by the
position estimation algorithm - e.g. as a result of network
interference or to short sampling periods. In these cases it
is rather practical to not assume a position, but to exclude
this potential position estimation which might cause large
error distances.

• Floor error rates represent the percentage of localisation
runs that estimate incorrect floor levels.

• Error distances (in m) represent the (mean) distance
between the estimated and the original positions and are
sometimes also referred to as localisation errors.

These partial metrics correlate with each other in following
manner: Floor levels are only identified for successful local-

isations and error distances are only determined, if the floor
level was previously identified correctly.

With the proposed evaluation environment been already
published [3], [4], the publication at hand summarises the
evaluation results and the identified most accurate transceiver-
specific parameter settings. Thus, it presents the results of two
upcoming publications [5], [6] in a condensed form.

The following evaluation focuses on model-based localisa-
tion systems that utilise RSS of beacon frames that are regu-
larly transmitted by surrounding Wi-Fi access points. Within
such systems, device positions are frequently estimated by a
localisation algorithm, based on collected RSS measurements
that are recently received from surrounding beacon nodes
(either Wi-Fi access points or Sub GHz motes). The PRx of
these received RSS measures is correlated to the P ∗

Rx of a
modelled radio map.

As shown in Figure 1, such model-based localisation algo-
rithms consist of the following processing steps:

1) Collection of beacon messages consists of de-/activation
of wireless transceivers, regular collection of beacon
messages and unification of their encoded information.

2) The building detection aims to identify the current
building based on received beacon messages.

3) Radio propagation map generation: Radio propagation
maps are generated for specific buildings and represent
the expected (modelled) RSS for all beacon nodes at
any considered position. Instead of generating the radio
propagation map from fingerprints, the given system
models the expected RSS. Thereby, for each position
and beacon node, the expected RSS is calculated as the
sum of transmission power PTx and path loss PL. This
path loss is typically calculated by so-called path loss
functions based on radio frequencies and transmission-
specific distances. The generation of the radio propaga-
tion map is only performed once at system start and if
buildings are switched. Thus it is less relevant for device
runtimes than the following processing steps, which are
performed regularly.

4) During floor detection, the current floor is identified
based on the floor-level of beacons, from which beacon-
messages are received.

5) During pre-filtering and combination of RSS values
outlying RSS measures, whichs’ reception time, RSS
surpass a specified threshold value or which were trans-
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Fig. 1: Basic Processing Steps of the Localisation Algorithm

mitted by beacons on other floors are excluded from
further consideration. The remaining RSS values per AP
are combined in a single RSS value via a signal model.

6) Position estimation mainly incorporates distance-metrics
and position algorithms such as k-nearest neighbours. It
results in a single estimated device-position.

Within these processing steps, various parameters (such as
distance metrics, algorithms and parameter-settings) influence
localisation accuracies and therefore represent relevant factors.
For a meaningful comparison of the transceivers localisation
accuracies, the potential algorithmic influence of these factors
has to be minimised by optimising each factor.

II. RELATED WORK

Existing RSS-based indoor localisation systems typically
use either model-based or empirical localisation algorithms
that estimate device-position based on large-scale signal
strength variations instead of applying distance measures or
triangulation Empirical algorithms are more common since
achieving lower error distances than model-based ones as
shown by the RADAR indoor localisation system [1], but
require more maintenance efforts such as regular empirical
measurements in each supported building.

The comparability of localisation accuracies among these
systems is challenging since it is related to environmental-
conditions such as humidity or person densities. Furthermore,
the localisation accuracy is significantly affected by node
densities by which beacons are placed. Thus, localisation
accuracies are not only related to the localisation algorithm,
but rather are affected by unintended conditions. In conse-
quence, system-specific error distances such as the average
4.5 m of OWLPS [7] or the average 3.72 m of the Ekahau
system [8], which have been evaluated in different setups, are
rather incomparable: OWLPS has been evaluated with a node
density of 0.007nodes

m2 while the Ekahau systems node density
was almost 20 times denser and and it was evaluated in a
significantly smaller environment.

Most evaluations determine only the error-distance and do
not investigate other relevant metrics such as the localisation
error and floor error rates. These limitations are only partially
overcome in other normed benchmarks such as the EvAAL
competition [9], as discussed in greater detail in [3], [4].

III. EVALUATION SETUP

The optimisation of these factors and the evaluation of local-
isation accuracies was conducted within the simLoc simulator
[3], [4], which excludes unintended variations (such as radio-
noise) that might otherwise influence localisation accuracies
among evaluation runs. The simLoc simulator determines the
position accuracies via pre-recorded RSS traces.

These RSS traces were recorded with the EMU simulta-
neously for Wi-Fi and Sub GHz transceivers. The recordings
took place in two buildings (the faculty building and a nursing
home in Stahnsdorf), which were equipped with beacon nodes
that regularly transmitted beacon messages. The Sub GHz and
Wi-Fi beacon nodes have been placed at identical positions
and with node densities of 0.008nodes

m2 with the following
exception: The limited availability of power-outlets in the
nursing home and the associated potential risk for the elderlies
caused a placement of less Wi-Fi access-points with a node
density of 0.004nodes

m2 in the nursing home. In the faculty
building, additional Wi-Fi access points have been placed aside
of existing Wi-Fi access-points. Further details of the node
placements are given in [3], [4]. Each of these RSS data sets
specifies RSS, beacon node IDs and the geographical position,
as required by the simLoc simulator for error calculations.
Separate subsets of these RSS records have been used for
optimisation and evaluation of localisation algorithms.

When optimising path loss functions or localisation algo-
rithms, the simLoc simulator identifies most accurate settings
by evaluating the errors for pre-configured parameter-ranges
and factors. For path loss functions, the difference (in dBm)
among the calculated and the measured RSS is applied as
suitable metric. In contrast, the optimisation of the localisation
algorithm requires a rather sophisticated final metric that
covers the previously discussed three partial metrics. While
greater details regarding this metric, the evaluation setup and
the simLoc simulator have been described in [3], [4], it is
sufficient for this article to remark that the final metric consists
of the sum of the normalised zScores of the three partial
metrics. Among these partial-metrics, the error distance is
double weighted, due to its criticality for user perception.

The optimised transceiver-specific localisation algorithms
(further-on described as optLoc Sub GHz and optLoc Wi-Fi)
have been used to measure transceiver-specific localisation
accuracies and device runtimes.
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TABLE I: Evaluated and chosen Factors and corresponding Levels and Intervals of the Localisation systems.

Factor Evaluation Best-guess Sub GHz Wi-Fi Radar
Range [Interval] Relevance Maximal error Optimum Relevance Maximal error Optimum

variation (m) variation (m)

TX/RX interval 1 - 40 s [1 s] 1 s 12.22 1.12 1 14.37 2.93 4 1
Message validity 1 - 40 s [1 s] 10 s 4.90 0.61 10 2.35 0.42 14 1

Granularity 0.5 - 5 m [0.5 m] 1 m 4.60 0.89 4.5 5.54 2.59 3.5 1
K-Neighbours 1 - 50 [1] 10 4.07 0.79 11 5.05 2.44 30 1
Minimal RSS -95 - -80 dBm, none [1 dBm] none 2.97 0.08 -91 3.27 1.36 -84 none

Consider other floors true, false true 1.98 0.39 true 1.32 0.62 true false
Signal model Last, Best, Average, Weighted Average, Average 1.18 0.15 Best 5.15 2,32 Best Last

Median, Kernel Smoother
Max messages 1-10, all [1] all 0.90 0.10 all 0.79 0.41 3 all

Distance metric Euclidean, Manhattan, Mahalanobis Manhattan 0.80 0.15 Euclidean 0.65 0.31 Euclidean Euclidean
Position estimation Nearest neighbours (NN), NN 0.00 0.00 NN 0.02 0.01 Weighted NN NN

algorithm Weighted nearest neighbours (WNN)

Path loss function FreeSpace, Gahleitner, Keenan Motley,
Linear Attenuation, Log-Distance Zhao, ITU with WAF
Log-Distance, ITU (with/without) WAF

Note: In addition the most accurate factor settings for the transceiver-specific optLoc algorithms for the faculty building with the combined ITU indoor WAF
path loss function are shown next to best-guess and radar algorithms. Settings for the Radar algorithm are chosen according to the classic algorithms and

originally unconsidered parameters are chosen so that these missing processing steps do not affect its localisation accuracy.

IV. OPTIMISATION OF THE OPTLOC ALGORITHMS

In order to identify optimal optLoc localisation algorithms,
the parameter settings and algorithms of eleven factors have
been optimised. For each factor, potential candidates were
investigated (e.g. eight path loss functions, six signal models
and three distance metrics), as shown in Table I. Considered
factors and applicable algorithms were chosen based on a
review of existing RSS based localisation systems (e.g. the
Mahalanobis distance metric was shown by Corte Valiente et
al. [10] to be more accurate than the typical used Euclidean
and Manhattan distance metrics). The levels and intervals have
been set based on previous experiments, which assured that the
most accurate settings were not aligned at level-borders while
for intervals resulting computational complexity and accuracy
have been considered.

These factors have been sequentially optimised, ordered
by the factors’ relevance (on the localisation accuracy). Each
factor’s relevance has been identified by an initial min/max
analysis per factor within the simLoc simulator, with other
factors remaining at default settings (shown in Table I).

Resulting relevances for each considered transceiver-type
are summarised in Table I, where greater values represent
increased optimisation potential. In addition, the table lists
each factors’ maximal influence on error distances and the
identified most accurate settings for both transceiver types,
which are used further-on.

The results indicate that with the optimisation of the more
relevant factors, it is not relevant which position estimation
algorithm is used among the considered ones. However, the
position estimation algorithm remains a mandatory processing
step and its relevance may alter significantly if additional
algorithms would be considered.

Further-on, all factors have been optimised according to
their relevance in decreasing order, with the following two
exceptions: Path loss functions and floor error detection algo-
rithms have been optimised in advance, due to their indepen-
dence on localisation accuracies.

The ITU indoor path loss function with wall attenuation was
identified as optimal path loss function for both transceivers,
as further discussed in Section V-A.

Among the evaluated floor-detection algorithms, the floor
level of the access-point with the strongest RSS (Maximal
RSS) lead in general to low floor error rates.

V. RESULTS

A. Path loss functions

Path loss functions have been optimised, in order to reduce
the overall localisation-error.

Among the considered optimised path-loss functions, the
average accuracy of the modelled signal distribution in com-
parison to the recorded RSS measures varied with up to 0.9
dBm for Sub Ghz and up-to 1.3 dBm for Wi-Fi transceivers.

Among the considered path-loss functions, the ITU indoor
path-loss function with wall attenuation factor (WAF) was in
general the most accurate one.

To verify that the optimisation of path loss functions was
relevant to reduce error distances, the influence of selected,
optimised path loss functions’ on error distances was further-
on evaluated. Within this evaluation, we considered the two
most accurate path-loss functions (namely the ITU indoor [11]
and the ITU indoor with WAF path loss functions) and the most
inaccurate Log-Distance path loss function.

For each of these three selected path loss functions and
both transceiver types, specific optLoc localisation algorithms
have been optimised and evaluated in accordance to Section
IV. The resulting RSS errors (in dBm) and error distances (in
m) of these path loss function-specific optLoc algorithms are
summarised in Table II. Corresponding CDFs are published in
[5], [6].

The resulting error-distances hold following insights: In
general, resulting localisation accuracies are significantly af-
fected by path loss functions with median variations of 1.08
m for Wi-Fi and 0.60 m for Sub GHz. Consequently, the
necessity to optimise path loss functions was confirmed.
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TABLE II: Influence of Path Loss Models on Localisation
Algorithms’ Error Distances

Transceiver Model RSS error Error distances in
faculty building (m)

Wi-Fi ITU with WAF 5.6 dBm 5.45 (4.06, 8.00)
Wi-Fi ITU 6.2 dBm 6.14 (4.34, 8.86)
Wi-Fi Log-distance 6.9 dBm 6.53 (3.88, 9.21)

Sub GHz ITU with WAF 3.3 dBm 4.45 (2.67, 7.20)
Sub GHz ITU 3.4 dBm 4.70 (2.70, 7.52)
Sub GHz Log-distance 4.2 dBm 5.15 (2.79, 8.29)

Note: RSS errors are calculated as average error among the modelled signal
strength and the measured signal strength for each considered measurement
position. Error distances as median (and corresponding interquartile ranges).

In addition, the consideration of a WAF increased localisa-
tion accuracies, as shown by comparing error-distances of the
ITU indoor path loss function with and without WAF. Under
these circumstances, median error distances were reduced by
0.59 m for Wi-Fi and by 0.25 m for Sub GHz, if considering
the WAF.

Due to the low influence of wall attenuation for Sub GHz
transceiver, WAFs must not be considered in case of Sub
GHz, in contrast to Wi-Fi, where it is mandatory for accurate
localisation.

B. Localisation Accuracy

In order to analyse, if the optimised localisation algo-
rithms are more accurate than existing ones, the accuracies
of the transceiver-specific optLoc algorithms were evaluated
for both transceiver types. Next to the optLoc algorithms, the
localisation accuracy of the classical Radar algorithm [12]
was evaluated, as a reference. The Radar algorithm’s factor-
settings were not transceiver-specific, but instead have been
chosen based on the published settings, whenever possible.
For processing steps that were not considered by the original
Radar algorithm, settings that do not affect the accuracy were
selected.

The discussed results in this section focus on median error-
distances in the faculty building of the Computer Science de-
partment at the University of Potsdam, which are summarised
in Table III.

Even though median error-distances of the Radar algorithm
are acceptable, its high localisation error rates which caused
up-to 60% of localisations runs to fail make its use rather
impractical. In comparison, the low localisation error rate of
up-to 12% of the optLoc algorithms are rather negligible. The
Radar algorithm as well suffered from higher error-distances
(in median and average) compared to any optLoc algorithm.
Consequently, it was shown that the optimisation resulted in an
increased localisation accuracy and that algorithmic influences
on the localisation accuracy were successfully reduced.

The applied Maximal RSS floor detection algorithm was
with a maximal error-rate of 4 % in general sufficiently
accurate, since remaining floor-errors could be overcome by
interpolating floors among subsequent localisation runs.

For Wi-Fi, the optLoc algorithm achieved median error

TABLE III: Accuracies of Localisation Algorithms in the
Faculty Building

Algorithm Transceiver-type Local. Floor Error distance (m)
errors errors Median avg.

optLoc Wi-Fi 0% 1% 5.45 6.27
optLoc Sub GHz 12% 4% 4.45 5.56

Radar Wi-Fi 60% 0% 6.46 7.06
Radar Sub GHz 40% 2% 5.89 7.77

distances of approximately 5.4 m and thereby significantly
excels the accuracies of the Radar.

Overall, median error distances of the optLoc Sub GHz
surpassed the ones of Wi-Fi by more than 0.80 m. This
corresponds to the fact that error distances of Sub GHz
algorithms surpassed the ones of Wi-Fi algorithms, in any
cases .

C. Applicability to similar buildings

Besides the evaluation in the faculty building, additional
optLoc algorithms were optimised for another building - the
nursing home in Stahnsdorf. Both building-specific optLoc
algorithms were evaluated in the nursing home in order to
clarify, if transceiver-specific optLoc algorithms can be de-
ployed to similar buildings without further building-specific
optimisations.

The optLoc Wi-Fi algorithms showed high influences to the
buildings-specific optimisations, with a difference in median
error-distances of 2.3 m. This error indicates a significant
correlation between building-specifics and Wi-Fi localisation
accuracy.

In contrast to Wi-Fi, the Sub GHz optLoc versions remained,
with a difference of 1 m among the median error distances,
rather unaffected by the building changes. Consequently, the
optLoc algorithms for Sub GHz are with maximal median
error-distances up to 4.14 m well suited to be used in the
nursing home, and therefore might be in general more appli-
cable to buildings with similar architectures.

D. Runtime Study of Localisation Systems

In order to analyse transceiver-types’ impact on device-
runtimes, transceiver-specific device runtimes of the optLoc
algorithms were measured on a single EMU and the same
battery. Each transceiver’s identified most accurate scanning
intervals of 14 s for Wi-Fi and 10 s for Sub GHz were used.
For each measurement run, three beacons (Linksys WRT 54G
APs for Wi-Fi and Mica2 motes for Sub GHz) that have been
place in EMU’s surrounding within a distance of 1 m were
considered.

Within this setup, following three configurations have been
evaluated:

• For Sub GHz transceivers, the system continuously lis-
tened for incoming messages of surrounding beacons with
a wake-up interval of 50 ms.

• For Wi-Fi transceivers, passive iw scans are used to
receive Wi-Fi beacons. In addition, Wi-Fi transceivers
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TABLE IV: Runtimes of the Localisation Systems with vary-
ing Transceiver-Types

Transceiver type Runtime Shortage

None 7.51 h 0%
Sub GHz 7.25 h 6%

Wi-Fi 3.39 h 54%

have been deactivated between consecutive iw scans, for
maximum energy efficiency.

• In addition, the localisation system was evaluated with
None transceiver being activated and instead cached RSS
readings were used.

The results, shown in Table IV, summarise the device
runtimes until battery-discharge and the percentual runtime-
shortage compared to none activated transceivers. Compared
to the evaluated localisation system without transceiver-use
(None), Sub GHz transceivers reduced runtimes by only 26
min (6%), while Wi-Fi transceivers lowered device runtimes
significantly by 252 min (54%).

Hence, the results clarify that device runtimes are related
to transceiver-types and that Sub GHz transceivers are better
suited for frequent indoor localisation than Wi-Fi transceivers
due to Sub GHz transceivers’ higher energy-efficiency for this
application type.

VI. SUMMARY

The results prove that Sub GHz transceiver are much more
practical for indoor localisation than their Wi-Fi counterparts
since being significantly more accurate and being less in-
fluenced by building-specific characteristics. Furthermore, the
higher energy-efficiency of Sub GHz transceivers in compar-
ison to their counterparts resulted in significantly extended
device runtimes.
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Abstract—In this paper we present and validate an open
source simulation model for flying ad-hoc networks consisting of
paragliders. Based on extensive field operational tests we derive
necessary models, determine empirical parameters, and validate
our simulation results. We deploy an accurate radio propagation
model combined with trace-driven mobility that can help design
and evaluate both safety and non-safety applications such as
search and rescue operations or cooperative thermal finding.

I. INTRODUCTION

Paragliding, that is, flying with a foot-launched glider aircraft
such as the one depicted in Figure 1, enjoys great popularity
and experienced a static growth in the last years. The main (and
unfortunately the most challenging) task is to find and pilot
into invisible columns of rising air to gain altitude and prolong
one’s flight time. This requires not only skill and experience,
but also luck. Automated communication between pilots to
exchange information about these short-lived air bubbles could
substantially contribute to extending flights of all participating
pilots. Pilots could furthermore benefit from communication
devices in terms of safety: After a non-voluntarily or even
uncontrolled landing (in potentially rough or secluded terrain)
the pilot might be in the need of help. Communication devices
could inform others of the pilot’s whereabouts, even when the
pilot is unconscious. Using the same communication channel,
a cleaning of the air space can be organized to avoid hindering
air rescue operations.

In earlier work we presented such a communication sys-
tem [1], [2]. As proof of concept, we developed a prototype by
enhancing a variometer, a device every pilot uses to display his
or her current rate of climb or descent, with communication
abilities to periodically exchange this information with all pilots
in the vicinity. We used a Si4463 transceiver module that is
compatible with the IEEE 802.15.4g-2012 standard (output
power ≤ 20 dBm @ 868MHz). We conducted extensive field
operational tests with five pilots over a three week duration at
different locations (Italy, Argentina) and collected data for over
200 h of flight time. This data contains the GPS traces of each
pilot and various statistics on sent and received packets, such
as transmission power or Received Signal Strength (RSS).

The main purpose of the field tests, however, was to collect
enough data to be able to create a detailed radio propagation
model to then evaluate new applications and protocols in a
simulator. The advantages of not having to conduct a costly and
time-intensive real life experiment are manifold: Dangerous

Fig. 1. Flying Ad-Hoc Network

situations cannot be repeated or re-enacted in a field test for
obvious safety reasons. Also, changing certain parameters or
algorithms would require an entirely new experiment, whereas
in a simulator it is possible to efficiently explore parameter
spaces.

The main challenge is to reproduce a realistic environment
in the simulator to produce meaningful results. As packet loss
plays an important role in almost all time-sensitive ad-hoc
networks, we particularly focused on the realistic modeling
of the physical channel, that is, the computation of the RSS,
Signal-to-Noise-plus-Interference Ratio (SNIR), and the Bit
Error Rate (BER) (Section II). A special focus was set on
extending the simulator to be able to handle (GPS) mobility
traces to accurately reflect the distinct network topology of
paragliders (Section III).

II. RADIO PROPAGATION

The first critical component that enables predictions of
system performance by means of simulation is to accurately
model radio communication. The end result of this model
should be an informed decision whether any given packet, sent
by one glider, is received by another glider.

Such decisions are commonly made stochastically, based on
the BER of the link between sender and receiver: A BER of
p = 1% will yield a probability of 1% for dropping a single
bit transmission, or, in general, 1 − (1 − p)n for dropping a
n bit transmission. The BER, in turn, depends on the SNIR:
the stronger the actual transmission is, compared to other

41



interfering transmissions and to noise (most prominently, the
always present Nyquist noise), the more likely the transmission
will be received successfully. According to [3] the bit error
probability for Binary Frequency Shift Keying can be computed
as

p =
1

2
erfc

(√
1

2
SNIR

)
. (1)

Computing the SNIR requires the model to be able to compute
the signal strength of each transmission at all present receivers
(to derive the signal level), as well as to keep track of the
signal strength of all other ongoing transmissions (the sum of
which will constitute the interference level). Further, the model
needs to include the level of non-deterministic background
noise.

Computing the signal strength of a transmission at a receiver
requires the model to capture path loss and fading effects. In
[1] we were able to show that path loss of communication
between paragliders has a substantial deterministic component
in addition to free-space path loss as well as how to capture
this component based on the relative position of gliders. Taken
together with a log-normal non-deterministic model of fast
fading to account for remaining components our compound
model is able to reliably reproduce the packet loss rate
experienced in real life experiments, as we will show in
Section IV. Before such an evaluation can be conducted,
however, one more building block needs to be in place, which
we will present in the following.

III. MOBILITY

For accurate predictions of system performance it is crucial
that simulated gliders are closely mimicking real gliders’
behavior when starting, landing, searching for and circling
in thermals, and keeping their distance to other gliders. Ideally,
gliders in the simulation would move according to a realistic
mobility model. To the best of our knowledge no such model
exists yet, thus we are currently relying on trace driven
simulation for modeling gliders’ mobility. Here, we take traces,
that is, GPS position logs of real gliders during their flight, as
the basis of all node movement.

In order to be able to work with GPS position trace data in
the simulator, the first step we had to perform was coordinate
projection: Data obtained in position traces is frequently stored
as (longitude, latitude, altitude) triples, relative to a well-
defined coordinate origin and definition of zero altitude (also
called the Datum). The one that is most commonly used
in general purpose applications is WGS 84, which aims to
locate the coordinate origin near the earth’s center of mass and
that measures altitude relative to an ellipsoid with diameters
of roughly 12 760 km and 12 710 km. Similarly, projecting
these tuples to Cartesian (x, y) coordinates on a map can
be done with a wide variety of approaches, each of which
can preserve only some geometric properties (such as angles,
distances, or areas). A commonly employed projection is
transverse Mercator, which preserves angles but induces a
variable distortion of distances. The amount of distortion is
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Fig. 2. Visualization of 3D position trace after projection.

minimal at the projection’s point of origin, so a good general
purpose projection for a local group of points might simply
select the point of origin close to the group’s center, thus
minimizing distortions. This is the approach taken by UTM,
which divides Earth into zones, each with its own projection
parameters. When choosing a wrong zone relative distances
can be several kilometers off. For the applicable zone, however,
the amount of distortion of distances can be guaranteed to be
below 1‰ (in addition to the inherent property of causing no
distortion of angles).

We employ UTM projection for a WGS 84 ellipsoid to project
our trace data using the PROJ.4 library, then employ the
resulting stream as input to the simulated gliders’ mobility
models. Each host moves according to the corresponding
glider’s positions in the trace file, linearly interpolating posi-
tions between recorded data points.

Figure 2 plots a 685 s trace snippet resulting from recorded
data: At the bottom left, with an altitude of a little less than
2000m, we see a pilot searching for a thermal. He quickly
manages to center the rising air and starts circling. Continuously
adjusting the center of the circles to compensate for drifts due to
wind the pilot keeps circling the thermal to climb. At an altitude
of approximately 2200m the direction as well as the climb
rate change significantly. Here two thermals may have merged
into one. At 2300m, the cloud base (the maximum altitude
permitted by the current weather) is reached and the pilot
continues (slowly descending) his flight to the next thermal.

Figure 3 gives a zoomed in view of 30 s of the same
flight. The GPS position and glider alignment (the heading)
was logged every second. Each host moves according to
the corresponding glider’s positions in the trace file, linearly
interpolating positions between recorded data points.

IV. IMPLEMENTATION

We implemented both the radio propagation model and
the trace-driven mobility in the discrete event simulator
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Fig. 3. Comparison of GPS position and heading trace data with mobility in
the model (the z coordinate is omitted for clarity).

TABLE I
SIMULATION PARAMETERS

Parameter Setting

Framework MiXiM for OMNeT++
Mobility Trace-driven
PHY/MAC Patched CSMA 802.15.4
Transmission Power 0 dBm to 20 dBm
Thermal Noise −105 dBm
Radio Propagation Free-space + [2] + [4]
Bitrate 50 kbit s−1

OMNeT++ [5]. Due to its detailed representation of the physical
layer, we decided to use the MiXiM framework [6] as the
basis for our model. Among other things, MiXiM features
functionality to compute interference of e.g., overlapping
packets, calculate the SNIR under the presence of thermal
white noise, or transmitting on different frequencies at the
same time. A list of all important parameters including our
settings can be found in Table I.

The source code and also our traces from the field tests are
publicly available1 under the GNU General Public License.

Figure 4 shows the results of a comparison between mean
packet loss vs. distance in real life test flights and in simulations
using our model. We configured our transmitter chip to send
packets at different transmit powers, recording when which
packet was sent and received. Similarly, we configured the
simulation model to transmit packets at the same times, at the
configured transmit powers, and recorded packet receptions.
We calibrated the assumed non-deterministic noise level at the
receiver (reflected as the thermal noise parameter) to match
our real world receiver’s performance, setting it to −105 dBm.

Results for the two highest transmit power levels that our
transmitter chip offers, that is, 15 dBm and 20 dBm (not shown),
show coarse agreement, but fluctuate widely. The primary
reason we could identify for this disagreement is that, for
values above 10 dBm, the transmit power of the transmitter
is highly dependent on battery charge and temperature, both

1http://www7.cs.fau.de/skynet/
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of which varied widely during experiments, leaving the actual
transmit power unknown. We consequently removed trace data
for these measurements.

Conversely, results for configured transmit powers of 0 dBm
and 10 dBm are in very good agreement, indicating that our
model can capture real world channel conditions very well.

V. CONCLUSION

In this paper we presented a validated open source model
for the simulation of paraglider ad-hoc networks. Our radio
propagation model, relying on the distance and relative angles
between sender and receiver, produces realistic results and
fits our real life measurements quite well. We showed that
both RSSs and packet loss rates of simulation and field tests
are in agreement – making our model a good basis for the
evaluation higher layer protocols and applications. We extended
the simulator to be able to move network nodes based on
GPS traces such as the ones recorded during our field tests.
Both model implementation for OMNeT++ and traces are
publicly available1. Future work includes the challenging tasks
to implement models for paraglider mobility to simulate the
influence of applications on decisions made by the pilots.
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