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Deutsche Zusammenfassung

Cluster bestehen aus einzelnen Rechnern, die über ein Netzwerk miteinander ver-
bunden sind. Die Einsatzgebiete von Clustern reichen von Servern für vielgenutz-
te Webseiten und Internet-Dienste bis hin zu den schnellsten Parallelrechnern der
Welt. Insbesondere Cluster als Parallelrechner sind seit den 90er Jahren des letzten
Jahrhunderts nicht mehr aus der Welt der parallelen Anwendungen wegzudenken.
80 % der Rechner in der Top 500 sind inzwischen der Cluster-Architektur zuge-
ordnet.

Der verteilte Speicher von Clustern erfordert jedoch hochperformante Netz-
werkverbindungen und Übertragungsprotokolle, um einen effizienten Datenaus-
tausch ermöglichen. Heutige Technologien wie InfiniBand unterstützen dabei den
direkten Zugriff auf den Speicher anderer Prozesse. Um diese remote direct me-
mory access(RDMA) genannte Technik direkt in Anwendungen nutzen zu kön-
nen, wurden Programmierschnittstellen zurone-sided-communication entwickelt.

Die wohl bekannteste Programmierschnittstelle für parallele Anwendungen
ist dasMessage Passing Interface(MPI). Seit Version 2.0 werden auch Primitiven
für einseitige Kommunikation unterstützt. Bestehende Implementationen dieser
Primitiven werden ständig verbessert, dennoch schneiden diese neuen Wege zum
Datenaustausch noch immer schlecht ab im Vergleich zur klassischen zweiseitigen
Kommunikation mit Sende- und Empfangsaufrufen. Es finden sich auch in der
Literatur nur einige wenige Hinweise auf Vorteile beim Einsatz von einseitiger
Kommunikation. Diese stammen jedoch aus dem angrenzenden Forschungsgebiet
der Programmiersprachen für Globale Addressräume, welchenicht dem Message-
Passing-Paradigma folgen.

In dieser Dissertation werden die Ursachen analysiert und gezeigt, dass dies
nicht an mangelnder Reife der Implementationen oder gar an Fehlern bei der Im-
plementierung liegt sondern an der Spezifikation der MPI-Schnittstelle. Die er-
forderliche Synchronisation der Datenübertragung spieltdabei eine wesentliche
Rolle.

Anhand eines Kommunikationsmodells –Virtual Representation Modelge-
nannt – werden Designkriterien für eine effiziente Programmierschnittstelle für
parallele Anwendungen hergeleitet. Es wird gezeigt, dass die Spezifikation von
MPI-2 one-sided-communication diese Kriterien nicht erfüllt. Mit NEON wird
auf Basis der Designkriterien eine Schnittstelle entworfen und für TCP/IP-Sockets
und InfiniBand Verbs implementiert und bewertet. Die Ergebnisse zeigen, dass
NEON eine effiziente und portable Schnittstelle darstellt.Des Weiteren zeigt sich,
dass die Fähigkeit von InfiniBand direkt auf entfernten Speicher zuzugreifen nicht
a priori von Vorteil bei der Implementierung von einseitiger Kommunikation ist.

Ein weiteres großes Anwendungsgebiet von Clustern ist so genanntesServer
Load Balancing. Diese Technik erlaubt es die Anfragelast von Clients auf viele
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Server zu verteilen und einen Dienst dadurch skalierbar, flexibel und ausfallsicher
zu machen. Während bei parallelen Anwendungen vorrangig homogene Maschi-
nen in einem Cluster arbeiten werden beim Server Load Balancing häufig hete-
rogene Cluster eingesetzt. Dies hat meist historische Gründe, wenn zum Beispiel
ein einzelner Server für einen Internet-Dienst nicht mehr ausreicht und um einen
oder weitere Rechner ergänzt wird. Dann ist eine Lastverteilung notwendig, die
Anfragen von Clients auf die vorhandenen Server verteilt. Bei der Verteilung soll-
ten unterschiedliche Kapazitäten und freie Ressourcen berücksichtigt werden, um
eine optimale Auslastung der Rechner zu gewährleisten und den Dienst für mög-
lichst viele Clients gleichzeitig bereit zu stellen.

In der vorliegenden Arbeit wird die Überwachung der Server –das Ressourcen
Monitoring – mit Hilfe von einseitiger Kommunikation als eine effiziente Tech-
nik vorgestellt. Dabei kommen sogenannteCreditszum Einsatz, die eine einfache
Metrik für die zukünftige Verfügbarkeit des jeweiligen Servers darstellen. Es stellt
sich heraus, dass die Lastverteilung auf der Basis von Credits nahezu ohne Syn-
chronisation auskommt und damit für einseitige Kommunikation gut geeignet ist.
Auf dieser Basis wird ein selbst-adaptierendes credit-basiertes Lastverteilungsver-
fahren vorgestellt, dass sich sowohl an heterogene Clusterals auch an heterogene
Anfragen anpasst. Das Verfahren wählt in konstanter Zeit einen verfügbaren Ser-
ver aus. Es kommt ohne aufwändige Sortierung der verfügbaren Server aus und
ist somit hochskalierbar.

Die Arbeit zeigt, dass die Synchronisation den entscheidenden Einflussfaktor
auf die Effizienz der Kommunikation zwischen Anwendungen darstellt. Die Kom-
munikationsleistung von einseitiger Kommunikation wirktsich auf Anwendungen
nur dann positiv aus, wenn ein reduzierter Synchronisationsbedarf besteht.
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Abstract

Clusters consist of single computers connected by a network. The field of applica-
tion of clusters include servers of highly utilised web pages and Internet services
as well as the fastest parallel computers of the Top500 list.Clusters have con-
quered the Top500 list since the 90s of the last century. 80 % of the machines of
this list are categorised as clusters.

However, the distributed memory of clusters requires high performance net-
works and protocols to provide efficient inter-process communication. Current
technology like InfiniBand offer direct access to remote memory. This technique
is called remote direct memory access(RDMA). Programming interfaces have
been designed to exploit the merits of these network technologies at the appli-
cation level.

The Message Passing Interface (MPI) is one of the most popular programming
interfaces for parallel applications. Version 2.0 of the standard provides one-sided
communication. Existing implementations of the standardised one-sided commu-
nication primitives are constantly improved. However, at the application level,
classical two-sided communication still outperforms one-sided communication.
There are only a few indicators from related research fields (global address space
languages) that show beneficial use of one-sided communication in special areas.
These languages do not follow the message passing paradigm.

This thesis is an investigation to analyse and show the causes of the inferior
performance of one-sided communication. The specificationof the programming
interface is discovered to be a cause. Synchronisation plays a major role in the
transmission of data. The inferior performance is not the result of immature or
inefficient implementations.

Essential design criteria for an efficient one-sided communication interface are
derived from a communication model calledVirtual Representation Model. These
criteria are not completely met by the MPI-2 one-sided communication API. A
new interface, called NEON, is proposed, implemented, and evaluated on top of
TCP/IP-Sockets and InfiniBand Verbs. The results show that NEON is an effi-
cient and portable approach to one-sided communication forparallel applications.
Furthermore, the results show that the availability of remote memory access by
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hardware is nota priori an advantage for an implementation.
Another important application of clusters isserver load balancing. This tech-

nique increases the flexibility, skalability, and fault tolerance of services. While
clusters for parallel applications mostly consist of homogeneous machines, client-
server applications often run on heterogeneous clusters. This is because these
clusters evolve over time. When the server’s capacity no longer meets the service
demands, new machines are added to the cluster. A server loadbalancer compo-
nent distributes the requests of the clients to an appropriate server in the cluster.
The dispatcher should take into account the different capacities of the servers to
achieve optimal balanced load of the servers.

This work promotes the monitoring of the server’s resourcesas an efficient
technique in the context of server load balancing. So calledCreditsare used to
create a simple metric to represent the future availabilityof the servers. One-sided
communication turns out to be suitable for credit reports since the credit-based
scheduling works mostly without any synchronisation. A self-adapting credit-
based server load balancing is proposed on the basis of one-sided communication.
It is able to adopt to heterogeneous clusters and heterogeneous requests. The so-
lution choses a server within constant time. It does not require sorting of available
servers. This makes the solution highly scalable.

This thesis shows that synchronisation has a major impact onthe efficiency
of communication of applications. The performance of one-sided communication
is beneficial for applications only if the required amount ofsynchronisation is
limited.
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1.1. THE DESIGN OF ONE-SIDED COMMUNICATION APIS

The benefits of one-sided communication interfaces for Cluster Computingis
the title of this work. This title contains 4 terms requiringexplanation before the
motivation of this work is given. Starting from the last termcluster computingand
continuing withinterfaceandone sided communication(OSC) to the termbenefit.

The termcluster computingincludes all computations and processing that is
performed with so-calledclusters. A cluster in the context of this work is a
conglomerate of computers interconnected with a network that are ‘. . . able to
work together collectively as a single, integrated computing resource’ [HX97]
(page 30).

The terminterfaceitself is assumed to be known, but the reason why inter-
faces are so important to this work requires further explanation. Programming
interfaces or APIs are things a programmer has to know and to learn before trans-
lating an algorithm into source code. He or she has not only toknow the syntax
of an API but also its semantics. The more complex an API is, the more effort it
takes (especially inexperienced) programmers to efficiently use the API for their
purposes. On the other hand, a simple API requires more effort inside the system
to efficiently fulfil complex tasks and reduces the flexibility of an API. Further-
more, the API determines the available semantics and, thus,can have an important
impact on overall performance of an application. Therefore, it is worth to include
the API into the research on communication.

A communication is calledone-sidedif only one of the communication part-
ners determines the parameters of data transfer. This can bethe message size, the
destination host, the destination address in remote memory, the number of com-
munication operations, or even the kind of operation (e. g. put or get data). Current
trends in hardware design and message passing libraries promoteone-sided com-
municationas a way to improve the performance of applications in comparison to
two-sided communication via send/receive [GT05, HSJP05a,GT07].

An API is calledbeneficialfor cluster computing if its use improves the perfor-
mance of an application that can be executed on clusters. Especially, this includes
the large class of parallel applications as well as server load balancing for client-
server applications. A user will recognise improved performance if the runtime of
a given task is reduced, if a more complex or larger problem can be solved within
the same amount of time or a new problem can be solved in a reasonable amount
time. As a side aspect, an easier usage of an API can be interpreted as a benefit
for the user.

1.1 The Design of One-Sided Communication APIs

Many problems cannot be solved within acceptable time if only a single process
is used to solve the problem. Therefore, users try to reduce the runtime by exe-
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cuting their applications in parallel on multiple processors. If a parallel algorithm
requires shared data between at least two processes, inter-process communication
(IPC) is required. IPC becomes a limiting factor of the performance in case of high
latencies and limited bandwidth of the interconnects. So-calledmassively parallel
processor(MPP) machines often provide fast interconnects or even shared mem-
ory. But these facilities are very expensive. Clusters are acost effective alternative
to massively parallel processors (MPP).

Various publications present poor performance figures [TRH00, LWP04, HSJP05b,
Raj05] of one-sided communication using MPI (Message Passing Interface) com-
pared to send/receive-based communication. This thesis investigates the causes
and possible solution this poor performance.

Apart from the API, another question motivates this work: Even if one-sided
communication is faster than two-sided communication, arethere any applications
that can make efficient use of OSC? What conditions must be metin order for an
application to benefit from OSC?

1.2 Terms and Definitions

This section explains and defines some important terms that are frequently used
throughout the document.

API call An API call is defined as an instruction inside a program that executes
a routine of a library before it returns to the calling process.

asynchronous The termasynchronousis the counterpart of synchronous. It de-
scribes the processing of an operation in the background. Asynchronous
processing does not prevent other operations from being processed.

blocking A blockingAPI call does not return before the requested operation is
complete.

buffer A buffer is any kind of a limited chunk of memory either on a device or
inside the main memory (RAM). The termmemory regionwill be used as a
synonym.

completion completiondetermines that a non-blocking operation is finished. This
is related tonotification.

host The termshost, computer, node, andmachinerepresent a single element of
a cluster – an independently working computer attached to a network.

interface An interfacecan be a programming interface (API) or a network inter-
face card (NIC). Usually, the context should explain the intended meaning.
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non-blocking A non-blockingAPI call immediately returns to the caller after it
has initiated the requested operation. A non-blocking callrequirescomple-
tion.

notification A notification is sent out to signal thecompletionof an operation.
Also after anotificationis received, an operation can complete.

remote direct memory access (RDMA)RDMAis a technique using DMA-based
transfer methods to put data into the physical memory of a remote host. This
hardware can provide an API to perform RMA operations. Thus,this hard-
ware can be calledRMA-capable.

remote memory access (RMA)is the process of accessing data in the memory
or address space of another process. Despite the termremote, the target
process can run either on a remote or a local CPU. Although it is unusual to
categorise thedirect accessto the data of another thread asremote memory
access, this direct access can be used to implement an API forRMA.

synchronisation point If an application requests operations to synchronise be-
tween two or more processes, this is considered as asynchronisation point.

synchronous The termsynchronousis sometimes taken as a synonym forblock-
ing. The termblocking is more likely to be used in conjunction with API
calls (see above). An operation is processed synchronouslyif the opera-
tion is complete after the processing. No other operations can be executed
during the processing.

1.3 Outline and Contribution of This Thesis

Chapter 2 and 3 introduce the application of clusters, important network technol-
ogy, and related work in the area of communication APIs and design aspects of
efficient communication.

The Virtual Representation Model, presented in Chapter 4, abstracts the lay-
ers of the ISO/OSI-Reference Model [JTC94] to application and communication
system. This model is inspired by the combination ofproducer/consumersyn-
chronisation between applications and splitting inter-process communication into
pipeline steps. The model allows to understand the steps of communication and
synchronisation of one-sided and two-sided communication. Important criteria
of efficient API design and implementation can be derived from the model. This
includes criteria for efficient one-sided communication. The location of interme-
diate buffers and the network traversal of buffer announcement messages can be
derived too.
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MPI is the most prominent example of APIs for the large class of parallel
applications. This thesis shows the causes of the poor performance of MPI-2
one-sided compared to send/receive-based communication.It is not caused by
immature or inefficient implementations of the API. It is caused by the design of
the MPI-2 one-sided communication API.

On the basis of the model, an efficient one-sided communication interface for
parallel applications, called NEON, is designed and implemented. In Chapter 5,
two prototype implementations of the NEON-API are evaluated. Both the In-
finiBand and the TCP/IP-Socket-based implementation over Ethernet are able to
outperform well designed MPI-2 implementations running a Cellular Automaton.

The main contribution is that separation of notification andcompletion for
non-blocking one-sided communication is beneficial to parallel applications. The
NEON-API exploits this aspect. The evaluation confirms thatthe separation im-
proves the performance of parallel applications. This separation is unique in to-
day’s one-sided communication APIs for parallel applications.

Efficient APIs require a parameter to communication calls todistinguish be-
tween final and non-final operations. This allows for sendingthe notification as
early as possible. Otherwise, it is impossible to implementthe API on top of
networks that can only be used efficiently if synchronisation is embedded in the
data messages. Since a final operation is not always known in some algorithms, a
separate notification call should be available.

An investigation in a Cellular Automaton with a bidirectional synchronisation
between neighbouring processes shows that these applications will suffer from an
implicit barrier if the notification and the completion are combined in a single API
call. In case of the Cellular Automaton, it reduces the process skew tolerance and
prevents the notification message to be overlapped with computation.

The limiting factor of the performance of one-sided communication is the syn-
chronisation. This is indicated by the Virtual Representation Model and confirmed
by the evaluation of the NEON-API. Applications that require fewer synchroni-
sation benefit from one-sided communication. The other important application
of clusters is server load balancing. Chapter 6 identifies advantages of one-sided
communication for resource monitoring which is often used in conjunction with
server load balancing.

The investigation of Chapter 6 identifies the number of free socket endpoints
as a simple and efficient metric to determine the free resources of a server. A
load balancing on top of this metric schedules the request according to the current
availability of a server in contrast to the current load of a server.

A new credit-based self-adapting server load balancing is proposed and eval-
uated. A simulation study shows that the best scheduling is achieved if two credit
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values are reported. First the servers tell the dispatcher the number of requests1

they want to handle. The second credit value represents the upper limit of the
server. Credits can efficiently be reported using one-sidedcommunication. Using
this reporting scheme together with a fast (O(1)) round-robin scheduling results in
scalable and efficient low overhead scheduling that self-adapts to heterogeneous
servers and heterogeneous requests. Since this approach avoids most of the syn-
chronisation messages and allows for efficient use of one-sided communication.

Chapter 7 summarises and concludes this thesis and points out interesting fu-
ture work.

1each request consumes one credit
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Cluster Computing and Network
Technology
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2.1. CLUSTER USAGE

This chapter gives an overview of common applications and network inter-
connects of clusters. The communication system and its interfaces can be seen
as the link between application and network. Therefore, theapplications and the
network technologies are the most important constraints tothe design of a com-
munication system.

2.1 Cluster Usage

Clusters of workstations are playing an increasingly important role in scientific
and industrial applications. Clusters constitute about 81% of the Top500 list of
supercomputers in November 2007 (82 % in November 2008). This contrasts to
the situation in November 2003, where clusters only accounted for 42 % of the
systems. The number of clusters in the list doubled within 4 years.

The clusters in this list are primarily used for parallel applications. Clusters
are also used for applications like parallel file systems to provide faster storage
for data, and for server load balancing to build flexible, fault tolerant, and scalable
services to serve a large number of clients.

This section gives an overview of the most widespread usage of clusters and
presents some examples.

2.1.1 Parallel Applications

In general, parallel applications are used to shorten the time required to solve a
given problem or to calculate more complex tasks within an acceptable time. The
work is distributed over several processors – the domain is decomposed. There
are several APIs and target platforms available to implement parallel algorithms.

2.1.1.1 Bulk-Synchronous Applications

In bulk-synchronousapplications, the domain is decomposed and the work is dis-
tributed amongst the processes of the process group.

The large class ofbulk-synchronousapplications is very important to this
work. A significant number of scientific applications fall into this class. Ac-
cording to [WA99],bulk-synchronousmeans that the instances of the parallel ap-
plications work individually on their part of the domain fora limited amount of
time. Before continuing, the instances are required to synchronise with some or
all other instances. Synchronisation is required if the processes of the parallel
application need some of the results calculated by other processes.
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Examples:

• the Modular Ocean Model (MOM) from Geophysical Fluid Dynamics Lab-
oratory (GFDL) in Princeton and its extensions by the Potsdam Institute for
Climate Impact Research (PIK) [Pot04].

• the AMIGA Halo Finder (AHF) that is developed at the Astrophysikalisches
Institut Potsdam (AIP) [Ast08].

• Gadget simulates mass interaction in astrophysics. It solves a so-calledN-
body problemin parallel [SYW01, Spr05].

2.1.1.2 Master-Worker Applications

A master-workerapproach can be considered if the domain cannot be efficiently
decomposed or the decomposition or the size of the domain is not a priori known.
One dedicated process of the group becomes the master. The master splits a job
into sub-jobs that are processed by the workers. If a worker is ready, it sends back
the results to the master and requests further work.

Examples are:

• The parallel version of the LIDAR tool that retrieves micro-physical pa-
rameters from LIDAR measurements and simulations [BMM+05, EAR08].
This software was developed in the context of the EARLINET-ASOS project1.

• The answer set solving programsplatypusandclaspdeveloped at the de-
partment of computer science at the University of Potsdam [GJM+05, GJM+06,
Ell08, GKNS07b, GKNS07a].

2.1.2 File Systems

If a single file server is no longer sufficient to fulfil the demands, parallel file sys-
tems are a possible solution. These systems provide a consistent view on the files
that are physically distributed among a number of disks and machines. If the disk-
I/O of parallel applications (checkpointing, logging, results) exceeds the capabil-
ities of a single disk or server, the application will have towait longer and longer.
If the wait time becomes too long, even a parallel processingof an algorithm is
not efficient and investigations or investments into application parallelisation and
hardware are wasted.

1This work was supported by the European Commission under grant RICA-025991 via project
EARLINET-ASOS which is gratefully acknowledged.
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Popular examples are:

• The Parallel Virtual File System (PVFS) is a free development from Ar-
gonne National Lab and Clemson University [PVF03].

• Lustre is a parallel file system developed and maintained by Cluster File
Systems, Inc [Clu03]. This company was acquired by Sun Microsystems in
October 2007.

2.1.3 Client-Server Applications and Server Load Balancing

In general, the large class of client-server applications is used to deploy services to
customers in the worldwide Internet. Primarily, using clusters in this environment
is required only if the capabilities of a single server become insufficient. In this
case, so-calledserver load balancingtechniques are applied to distribute the load
of requests to multiple servers. This makes a service more scalable.

Additionally, server load balancing enhances the fault tolerance of a service. If
a server fails, other servers are available to the clients. Furthermore, it makes the
service flexible since single machines and services can be upgraded, maintained,
or extended without interrupting the accessibility of the service. The number of
machines can be adopted on demand.

2.2 Network Technology for Clusters

The network is the central component of a communication system required to
allow for communication of applications. The type of network usually used for
clusters are local area networks and system area networks. In this section, an
overview over existing network hardware is given.

More detailed explanation for Ethernet and InfiniBand are presented in this
section because this knowledge is important for later use inthis document. Coarse
performance figures are presented here to show the general behaviour of the spe-
cific network. More detailed measurements are presented later.

2.2.1 Ethernet

Ethernetis a commonly used technology for local area networks (and partially
metropolitan area networks). It is specified as a standard (IEEE 802.3) [Ins85].
The first standard specified a network with 10 Mbit/s. Subsequent standards of
the 802.3 series describe FastEthernet (100 Mbit/s), GigabitEthernet (1 Gbit/s),
and 10GigabitEthernet (10 Gbit/s).
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Figure 2.1: General Ethernet data transmission scheme using DMA.

Even though Ethernet is quite old compared to modern interconnect technol-
ogy it is still an important technology in the field of high performance computing.
282 machines (56.80 %) of the sites in the Top500 list (11/2008) are equipped
with GigabitEthernet. There is also ongoing research on Ethernet to improve the
network capabilities. [EL06] presents Ethernet-based CLOS topology.

Today’s Ethernet network interface controllers (NIC) are able to move data
between local memory and NIC memory using DMA engines on the NIC. This al-
lows for data transfers without the host CPU being involved.Some controllers, for
example the Broadcom BCM5704 chip, are able to calculate TCPand IP check-
sums to offload some protocol processing and further reduce CPU overhead of
communication.

Ethernet is not able to directly access remote memory, and most of the protocol
processing is still required to transfer data. Additionally, the best latency achiev-
able with standard the TCP/IP protocol over Ethernet is veryhigh – compared to
local memory-to-memory data exchange. Also the throughputof GigabitEthernet
is significantly lower than local memory-to-memory communication (see below).

Performance Details: Since Ethernet is important to this work, some details of
performance and internals have to be described. The steps that have to be done to
submit data from an application to a remote application are (shown in Figure 2.1):

1. Switching to kernel context due to a send operation call and process the
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protocol stack including the Ethernet driver (1).
2. The driver creates a descriptor that describes the packetand its location in

memory.
3. The TxDMA engine of the NIC takes a copy of the packet to its own mem-

ory (2,3).
4. The packet is transmitted via the link (4, 5).
5. The remote RxDMA copies the packet to host memory and creates a corre-

sponding descriptor (6,7).
6. As soon as the descriptor is created and the data is copied to memory, an

interrupt will signal the protocol stack that a new packet has arrived. The
receiving can continue.

7. The remote host has to switch to kernel context because of areceive call
and processes the protocol stack including the Ethernet driver (8).

Looking at this process, it can be seen that some steps are performed by the host
CPU and some are not. The steps in general and the distinctionbetween host
processor and other processing units in the system are important for this work,
since they influence the pipelining of data and overlapping of communication and
computation.

The time spent in particular steps is also important. If thisis CPU time, it is
not available to the application. Therefore it will be important to know the relation
between communication time spent on the CPU and off the CPU.

The link layers of GigabitEthernet can transmit 1 Gbit/s. Taking into account
the overhead information (header, trailer, inter-frame gap), a link has a throughput
of about 121.9 MB/s. Single bytes have to be processed by the stack within about
8 ns. This is 16 clock tics per byte on a 2 GHz CPU. This is not much and shows
the importance of efficient protocol processing.

Comparing the transmission over the network to an internal memory copy, the
link speed of GigabitEthernet is still slow. Using an Intel Pentium 4 CPU with
2.8 GHz (see machines IB5 and IB6 in Appendix A.3), transferring a single byte
over Ethernet using TCP/IP takes about 440 times the time of asingle byte copy
from one memory location to another. For larger messages this ratio is about 30.
For InfiniBand, the best ratio achieved is about 3.1 to 4.0 for messages larger than
1 MB (all values measured by a back-to-back interconnect).

2.2.2 Myrinet

Myrinet[Ass98, BCF+95] is a local area network technology. It provides low
latencies and high bandwidth by using cut-through routing (also called worm-
hole routing). The host interface cards of Myrinet are equipped with a processor.
Therefore the Myrinet software can offload some processing to the NIC.
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Figure 2.2: Ratio of transmission times (network vs. memory).

Myrinet-2000 hardware achieves a latency of 2.6 µs at user level (MPI) and
a maximum throughput of about 240 MB/s. These self-measured data are an
outcome of a tutorial at the International Super Computing (ISC) conference 2005
in Heidelberg (Germany).

2.2.3 InfiniBand

InfiniBand[Inf02a] is a modern industry standard developed by the InfiniBand
Trade Association (recently renamed to Open Fabrics Alliance) and specifies a
system area network. The first design also included host internal communication,
i.e. the system bus. Today InfiniBand is used as an external network interconnec-
tion technology that provides transport layer services (see ISO/OSI model [JTC94,
DZ83, Day95]).

InfiniBand distinguishes between processor nodes and I/O nodes. A processor
node should be an independent node or host/computer. An I/O node is e.g. a
storage subsystem. The network controllers of processor nodes are calledHost
Channel Adapter(HCA). A special type of HCA areTarget Channel Adapters
(TCA) that can be seen as network controllers of I/O nodes like storage systems
(see Figure 2.3). The main difference is that HCA provide a standard consumer
interface (Verbs), while the interface of TCAs is not specified.
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Figure 2.3: InfiniBand network overview [Inf02a].

The address of a node is composed from a global and a local identifier. These
identifiers are configured and assigned by a so-called subnetmanager (SM). This
is a piece of software running once per subnet. To communicate to a remote node,
the SM has to be asked for a route or path to the requested host.Afterwards, the
host can be contacted.

HCAs are able to execute so-calledwork requeststhat are initiated by the
applications or the software stack. These work requests arecollected in queues
(work queue - WQ). Each communication endpoint has two queues (a send queue
and a receive queue) to hold work queue entries. A communication endpoint of In-
finiBand is calledQueue Pair(QP). If awork queue entry(WQE) is complete, it is
moved to acompletion queue(CQ). These queues and requests have to be created,
posted, and fetched by the software stack to control InfiniBand’s communication.

To connect or contact a remote QP, the general service interface (GSI) has
to be contacted first. This is to request the communication manager (CM) for a
particular service identifier (SID). Each application has to register available QPs
together with a SID. This is similar to the portmapper concept of RPC [Sun88].
The CM returns a free QP to the requesting HCA.

The most prominent software stack for InfiniBand is the Open Fabrics En-
terprise Distribution (OFED). It is developed by several companies and vendors
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Figure 2.4: InfiniBand Programming Interfaces and Protocols [RnSH05].

(Mellanox, Cisco, Voltaire, IBM, etc.). InfiniBand driversare included in the stan-
dard Linux kernel since version 2.6.11 and are constantly improved and extended.

There are several interfaces to different protocols build on top of the Infini-
Band hardware interface (see Figure 2.4). The most fundamental standard inter-
face is the so-calledVerbs. It provides unified access to the drivers and hardware
of different vendors. Nearly all of the interfaces are available for user-level access
as well as kernel-level access.

IP over InfiniBand (IPoIB) enables IP-based protocols to communicate via
InfiniBand. It has some performance drawbacks due to its additional software
overhead. For example, created IP packets have to traverse the InfiniBand stack.
However, the achievable throughput (about 300 MB/s) using the OFED 1.1 im-
plementation is still above the throughput of GigabitEthernet. The latency of
IPoIB (about 20µs) is comparable to the latency of GigabitEthernet on Einstein
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hardware (see Appendix A.2) measured withEins[Sch06]. Current efforts in the
OFED community try to improve the performance of IPoIB.

In contrast to IPoIB, the sockets direct protocol (SDP) [Inf02b] is part of the
InfiniBand standard. It provides a socket interface and is intended to become a
selectable address family for socket-based applications.The throughput (up to
900 MB/s) and latency (about 12µs) in OFED 1.1 are much better with SDP than
with IPoIB [Zin07].

Measuring the time to establish a reliable connection via SDP and IPoIB,
shows a performance issue of the GSI and QP approach. According to measure-
ments in [Zin07] and [Ryl07], connecting a remote host via IPoIB is much faster
(24µs) than via SDP (353µs). The reason is found in the OFED code. SDP uses
the CM to connect two new QPs by a reliable connection (RC). Each QP is re-
quired to step through the statesinit2, rtr3, rts4, andrtu5. Every step is
an operation on the NIC after traversing a long path of code inOFED. Each of
these operations costs about 100µs. IPoIB uses QPs of the unreliable datagram
type. This is a 1:1 mapping of the Internet protocol datagramservice. The state
transition is done only once during the initialisation of IPoIB. All IP datagrams
(and thus transport layer connections) are multiplexed by this single QP.

2initialised
3ready to receive
4ready to send
5ready to use
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Performance Details The behaviour of InfiniBand is described for the same
reason that Ethernet was described in more detail. To transmit data, the following
steps have to be executed after creation and initialisationof a QP (see Figure 2.5):

1. The software has to create a work request (WR). This can be areceive (host
B), a send (host A), or remote direct memory access (RDMA) routines like
put or get (host A) (numbered 1x in the figure). In case of RDMA,host B
does not have to create a work request.

2. A context switch to kernel mode6 has to be made and the software stack is
traversed. The work request is submitted to the HCA (2).

3. The work request is processed by the HCA. It is able to directly access the
local memory and transmits the data over the wire (3, 4).

4. The work request is complete and is moved to the completionqueue (4a).

5. The remote HCA will process a previously and matching receive work re-
quest (if any) and is able to put the data to the given memory address.

6. The work request (if any) is complete and is moved to the completion queue
(4b).

7. Hosts have to switch context to fetch the completion queueentry and possi-
bly process the arrived data (5, 6). This is not necessary andpossible at the
receiver in case of RDMA.

Creation, initialisation, fetching, and cleanup of work requests has to be done by
the host CPU. The management of queues and work requests and transport of
data is done by the HCA. In InfiniBand it is simpler to transmitand receive data
without copying from application buffer to intermediate buffers, since the HCA
can directly access the RAM (indicated by thedata flowin Figure 2.5). However,
the memory has to be registered with the HCA in advance in order to be accessible.
This operation is costly as we will see later.

Several versions of HCAs have their own memory. This is useful to prefetch
and buffer data before or after transmission from and to the local RAM. It can also
hold internal data like the queues and work requests for faster access of the HCA.

A single speed InfiniBand link achieves a throughput of 2.5 Gbit/s. Today’s
HCAs have 4 or 8 links and therefore can provide 10 Gbit/s and 20 Gbit/s. Simi-
lar to the PCI-bus, the protocol on the links uses 2 redundancy bits for each byte.
Therefore the theoretical transfer rate drops to 1 GB/s on a 4x link.

6Since all APIs of InfiniBand exist in both the kernel and the user mode, the context switch can
happen before or after the creation of the work request.
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2.2.4 Quadrics

Quadrics (or better QsNet II) [PcFH+02] is a high speed interconnect that is spe-
cialised to build clusters for high performance computing.Four clusters in the
Top500 [TOP08] list of November 2008 are equipped with Quadrics networks.

Latencies below 2.0 µs can be achieved using QsNet. This is the lowest
latency among the presented network technologies. The achievable bandwidth
(900 MB/s) is slightly lower than the bandwidth of InfiniBand with 4 links.

2.3 Summary

Clusters of computers/workstations are a popular and cost-effective alternative to
massively parallel processors (MPP). Many kinds of applications are deployed on
clusters today. Parallel applications and scalable and fault tolerant client-server
applications are the most important applications and, therefore, are considered for
this work.

Local area and system area networks are used to build clusters. Several differ-
ent interconnect technologies exist with different approaches to support commu-
nication between hosts – from commodity off-the-shelf interconnects like (Giga-
bit-)Ethernet to specialised network hardware with support for remote direct mem-
ory access like InfiniBand. Some of the important technologies were presented
here.
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3.1. EFFICIENCY

This chapter gives an overview of previous and related research on commu-
nication, communication systems and especially on messagepassing. Some of
the presented interfaces can exploit RMA and/or RDMA. Further programming
interfaces are described and partially analysed for the large class of parallel appli-
cations.

3.1 Efficiency

In this thesis, the termefficiencywill be used often. The term efficiency is used in
different contexts in computer science. Some of these are:

• in conjunction with complexity of algorithms. This will apply to algorithms
used inside a communication system.

• a metric for the scalability of a parallel program

More general and out of scope of computer science, the adjective efficient
is paraphrased byworking well, quickly, and without waste. In the context of
this work, efficiency is related to the influence of the communication system on a
running application. A communication system is efficient ifit works well, quickly,
and with no or small overhead according to the latter definition.

The complexity of algorithms will influence the amount of overhead. In this
way, the definition from computer science overlaps with the more general defini-
tion.

The impact of the communication system on applications has multiple aspects.
The most obvious aspect is the time spent for communication.Another aspect is
issued by CPU and memory usage of the communication system. For example
each memory region allocated for internal use by the communication system is
unavailable to the application.

Another important issue is the interface to the communication system. It de-
termines the semantics and limits the flexibility of usage. Thus, a single interface
is not suitable for arbitrary applications. This is also stated in [Zit95]. The com-
munication system is taken as a service that is suitable onlyfor some applications
or a special class of applications.

A less important fact in the context of this thesis is the efficiency of an API
in terms of productivity. As an example, Cantonnet et. al [CYZEG04] analyse
the productivity ofUnified Parallel C(see Section 3.6.6) and compare it to the
Message Passing Interface MPI-2 (see Section 3.4). The authors explain apro-
gram complexityand alanguage complexity. The program complexity is further
divided into syntactic complexity, length, and conceptual/semantic complexity of
a program. An example of conceptual complexity is additional communication
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and synchronisation. The authors summarise this to ‘manualeffort introduced by
a given language’ [CYZEG04].

Summarising the above aspects,efficiencywill mainly focus on the impact
of an API on the performance of applications. This includes the impact of the
API on the possiblities of an implementation of the communication system and its
efficiency.

3.2 Interfaces for Communication

Before digging into the details of communication itself, some application inter-
faces are described. This is to better understand some of theexamples given in
Section 3.7. The interfaces are separated in two coarse classes. They are classified
weakly by their common usage in the field of parallel applications. For example,
the socket interface can be used to implement parallel applications, but since ap-
plication programmers want to solve their problems with good algorithms, they
prefer to use a more specialised and more portable interfacefor parallel appli-
cations like MPI. This allows the user (programmer) to focuson implementing
the algorithm and the message exchange instead of dealing with host addresses,
ports, or connections. This section describes some generalinterfaces used for
rather low-level data exchange. The efficiency of some of thepresented APIs is
rated in terms of efficient execution and ease of use.

3.2.1 Sockets

The Sockets interface is one of the most popular interfaces to communicate be-
tween (remote) processes. It was developed at the University of California in
Berkeley.

According to [MBKQ00], the interface design goals where transparency, effi-
ciency, and compatibility. The communication should be transparent in the sense
of local and remote processes. Remote and local are not distinguished by the in-
terface. The interface has to be fast and with low overhead, otherwise it would not
be used. The compatibility goal had to be fulfilled for the large number ofnaive
processesin UNIX. A naive processis a process that performs its I/O via files or
standard in- and output.

The result of the design is an interface that uses so-calledsocketsas an abstrac-
tion of communication endpoints. For compatibility tonaive processesa socket is
a kind of file descriptor. Data can be sent and received from a socket. It does not
matter if the partner process is a local or a remote process.

The socket interface is the most common interface used for point-to-point
communication.
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3.2.1.1 Blocking and Non-Blocking Communication

The common communication calls of sockets are blocking. Thecalling applica-
tion is blocked until the requested operation is complete. Ablockingsend call
will block the caller until the data is transmitted. A blockingrecv call is a simple
way to wait for incoming data.

What can be done if multiple sockets are used to communicate?If more than
one socket has to be observed, a common practise is the use ofselect, poll,
epoll (Linux), or kqueue (FreeBSD, OpenBSD).select provides signal-
based multiplexing of sockets.poll permanently consumes CPU cycles because
of busy waiting. Two event-based approaches are mentioned here, sinceepoll
andkqueue are known to be faster and more convenient alternatives toselect.

Using these APIs, a non-blocking behaviour can only be achieved by using a
dedicated thread or process. This thread can wait in a blocking way for commu-
nication operations to complete.

3.2.1.2 Asynchronous I/O

Asynchronous I/O is a way to allow non-blocking I/O calls from an application.
Linux provides an asynchronous API for I/O [BC05]. The original version used
kernel-level threads to ensure asynchronous behaviour. This has been shown to
be inefficient. In today’s implementation, kernel-level queues are used for Linux
Asynchronous I/O (also known asLinux AIO).

The authors of [BJL+06] investigate asynchronous I/O in conjunction with
processor partitioning. Processor partitioning uses a dedicated processor to make
progress on asynchronous operations. The impact of asynchronous I/O is only
quantified in combination with processor partitioning in the paper. They imple-
ment an asynchronous interface calledDirect User Sockets Interface(DUSI). This
paper provides an extensive related work section mentioning many asynchronous
I/O interfaces.

Asynchronous I/O allows the overlapping of computation andcommunication
as long as there is a processor to make progress on pending asynchronous op-
erations in the background. Furthermore, the initialisation of operations and the
check for completion imply some overhead that has to be takeninto account when
relying on asynchronous I/O.

3.2.1.3 Efficiency of Sockets

Except for the address handling of remote nodes, the simple usage of sockets
increases the efficiency for the programmer (less API overhead). Only a few API
calls are necessary. Compared to directly programming a network protocol, the
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code will be more portable. Sockets are more widely used because of this. Most
client-server applications andRemote Procedure Calls(RPC) are build on top of
sockets.

Modern libraries like MPICH NEMESIS or Open MPI (see Section3.4.1) can
be configured to run on top of sockets. However, the efficiencyof kernel-based
sockets is limited. Each communication requires a mode switch between user
space and kernel. This takes additional time. The efficiencyis further reduced by
the processing of pendinginterrupt service routines(ISR) before switching back
to user space. Several approaches exist to enhance the performance of sockets
[BSWP02]. GAMMAsockets [SSP03] show enhanced socket performance by im-
plementing a socket interface on top of thelightweight protocol GAMMA[Cia99]
(Genoa Active Message MAchine).

3.2.2 VIA

TheVirtual Interface Architecture(VIA) [CCC97] is an industry standard devel-
oped in 1997 by the Compaq Computer Corporation, the Intel Corporation, and
the Microsoft Corporation. It is mentioned here, because the ideas of VIA were
adopted into recent interfaces like InfiniBand Verbs (see below).

Communication endpoints are a well-known network abstraction in commu-
nication systems and their interfaces. The operating system multiplexes the end-
points to the network hardware. Using the operating system as a multiplexer im-
plies many mode switches between user and kernel. Thus, VIA specifies com-
munication endpoints as a completeVirtual Interface(VI). This allows for more
bypassing the operating system.

Although the reduction of mode switches motivated the VIA interface in 1997,
mode switches still have been an issue in 2002 according to [Ehl03].

Virtual Interfaces (VI) are presented to the application inuser space (Fig-
ure 3.1). They consist of a send queue and a receive queue (work queues). Each
queue has assigned aDoorbellto signal events on the queue. The application posts
work requests to the work queues to receive or send data. Descriptors specify the
kind of request, the address of the application’s buffer, and everything else that
is required to process the request. A completed request is put into a completion
queue that is also associated to the VI. All requests complete asynchronously.

VIA supports two data transfer models, send/receive and RDMA. The send/re-
ceive model requires the sender and the receiver to post descriptors to the corre-
sponding work queues. Each send request requires a matchingreceive request on
the destination VI. If no matching receives are posted before data arrives, an error
will occur. The requests are ordered in a FIFO. No request canbypass the other
inside of a work queue.
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Figure 3.1: VI Architectural Model [CCC97]

The RDMA model specifies an RDMA Write and an RDMA Read operation.
Both the source and the destination buffer are determined bythe initiator of the
operation. The remote memory has to be registered in advanceand announced to
the initiator. No posted requests on any remote queue are consumed on the remote
node. The remote node will not get informed about completionof an RDMA
operation. Therefore, extra synchronisation has to be performed if required.

The efficiency of VIA is improved by a kernel bypass. This means the user
space application prepares a complete communication command and submits it
directly to the driver. No further processing is required ina kernel-level protocol
stack. This allows for a more light-weight communication compared to protocols
implemented inside the kernel. However, the use of application-level memory is
critical. Memory of the user space has to be registered to thenetwork hardware.
Depending on the hardware, this operation can be expensive.The additional over-
head amortises only if registered buffers are reused or verylarge buffers are trans-
mitted [SBB+07]. With frequently changing memory regions, the direct access to
application buffers becomes inefficient.

It is a good approach to reduce mode-switches to improve the performance
by creating user space virtual interfaces. The applicationcan handle incoming
and outgoing data on its own. Also the concept of work queues is successfully
reused in the follow-up interface InfiniBand Verbs. Problems can occur from the
notification and event mechanism. Since notifying and handling events can be
expensive operations. This can be seen in the next section.
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3.2.3 Verbs

InfiniBandVerbs[Inf02a] describe the functionality of an InfiniBand host channel
adaptor. The implementation of Verbs specifies the API that is presented to the
programmer. The general concepts are derived from VIA. Similar to VIs of VIA,
the Verbs API providesQueue Pairs (QP) consisting of a send queue and a receive
queue. A well known and used implementation of Verbs is contained in the Open
Fabrics Enterprise Distribution (OFED) [Ope]. For the remainder of this work, the
word Verbsdefines the implementation of InfiniBand Verbs in the OFED stack.

The OFED implementation needs further improvement to achieve a good effi-
ciency. For example, it is possible to achieve the low latencies promoted with In-
finiBand only if established connections are used together with registered memory
and RDMA write operations. Several protocols and implementations were anal-
ysed by the cluster computing group of the professorship foroperating systems
and distributed systems at the University of Potsdam. Results in [Ryl07, Zin07,
Dav08] show that using InfiniBand and in particular the VerbsAPI achieves high
performance only if these special conditions are met. As long as an application is
able to work under these conditions, it can efficiently use InfiniBand Verbs.

Using other provided techniques like event-based signalling of incoming data
via completion queues or polling instead, the latency increases dramatically. David
Böhme [Dav08] measured a difference of 10µs between polling and event-based
receiving. Compared to the latency of an RDMA write, pollingintroduces another
10µs to the latency. The latency of RDMA writes is about 4−5 µs.

3.2.4 DAPL

TheDirect Access Programming Library(DAPL) is an interface designed in 2007
by Direct Access Transport(DAT) Collaborative1, an industry group formed to
develop an independent interface for RDMA. Some of the about40 members in-
clude AMD, Intel, IBM, Sun, Oracle, and Mellanox.

DAPL is available as a user space (uDAPL [DAT07b]) and a kernel space in-
terface (kDAPL [DAT07a]). Version 2.0 was published in January 2007. DAPL
specifies ‘a singe set of . . . APIs forRDMA-capable Transports’ [DAT07b] to ex-
ploit RDMA capabilities of interfaces like InfiniBand Verbsor VIA.

The basic model of DAPL is simple (Figure 3.2). ADirect Access Transport
(DAT) consumer contacts a (local) DAT provider. The provider processes the
requested communication. Providers enable message oriented or RDMA read
and write operations on top of reliable connections. Additional functions provide
connection management, memory management, and synchronisation, respectively
event handling.

1The first specification of uDAPL was ratified in 2002.
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Figure 3.2: Direct Access Transport Framework [DAT07b]

The consumer-provider architecture fits into the model of transport services
described by Zitterbart [Zit95]. The provider offers a transportation service to the
consumer.

DAPL is not further analysed in this work since it is meant to be an abstrac-
tion layer for other RDMA-capable interfaces. Although this allows portable ap-
plications, an additional layer is likely to add overhead. For example the project
RDMA Enabled Apache[DW08] also avoided this API because of slight perfor-
mance drawbacks. Furthermore, it is out of focus because it is not intended for
parallel applications directly.

3.2.5 Myrinet MX

Myrinet MX [Myr05] is a low-level message-passing library for Myrinet networks.
The goal is to exploit the special features of Myrinet hardware. In particular, these
features are a programmable NIC processor or a matching component (e. g. for
MPI described later). The designers’ goal is to ‘provide exceptional performance
for modern middleware interfaces such as MPI or VI’ [Myr05].The API itself is
comparable to VIA. The programmer has to create communication endpoints and
has to connect these endpoints to communicate between two processes. Routines
for management of requests and synchronisation between processes round up the
API.

3.2.6 Summary

The interfaces described above show a part of the variety of existing APIs. Starting
from the simple Socket-API with its generic concept of abstract communication
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endpoints that are mapped to underlying protocols, more complex and specialised
APIs like VIA, MX, or InfiniBand Verbs offer a more efficient communication.
However, they require more programming overhead. For example, registering
memory is not of much interest if the Socket-API is used. Due to the variety
of RDMA-APIs, some approaches like DAPL try to create an abstract and more
portable interface to unify the use of RDMA. The presented interfaces are not
designed to a specific class of application.

3.3 Parallel Programming

Large (scientific) applications often evolve over years. Many developers con-
tribute to the code and improve the algorithms. While the software continuously
changes in small steps, the hardware changes in rare and moredrastic steps –
whenever a cluster or new parallel computer is purchased. Thus, it is advantageous
for an API if it can be continuously used and is independent ofthe hardware. The
better portability ensures that an API will be used in ab application. Otherwise,
large efforts have to be made to adopt the software to each newhardware.

Another goal of parallel programming APIs is to ease the inter-process com-
munication of parallel applications. If a programming interface for parallel ap-
plications is not easy to use, application programmers spend a disproportionate
amount of time using the API rather than the problem that theyare trying to solve.

According to the survey by Kessler and Keller [KK07], parallel execution and
programming relies on two major inter-process communication models: message
passing and shared memory or shared address space.

3.3.1 Shared Memory

Shared memory can occur in two ways. The reason for this is thedifference
between processes and threads. Threads share the address space. This means no
special steps have to be taken to access the memory of anotherthread. In general,
processes do not share the address space. Therefore, a special memory area has to
be allocated to allow direct access to addresses of another process.

Since inter-process communication via shared memory is becoming more and
more important for cluster computing due to the developmentof multi- and many-
core CPUs, shared memory is discussed in more detail below.

3.3.1.1 Shared Address Space

If shared address space is available, then one part of the application can directly
access and modify the data of another part of the application. As long as the
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accessed memory is disjoint, synchronisation is not required.

If the memory is not disjoint, access has to be synchronised to keep consistent
data. The usual synchronisation that is used are semaphoresor monitors. Mu-
tual exclusionis required as the basic synchronisation pattern. The semantics of
producer/consumerandreaders and writerscan be applied if necessary.

3.3.1.2 Shared Memory

If two processes in separate address spaces have to exchangedata and shared
memory is available, they can allocate their data in this memory area. In this case,
the access and modification of data is similar to the shared address space method.

If the data does not reside in shared memory areas (e. g. if theshared memory
is provided by a library), the data has to be copied or mapped into and out of the
area to exchange data. In this case, the shared memory area isused similar to a
buffer of the transport system.

3.3.2 Message Passing

There are two available kinds ofmessage passingbetween two processes: two-
sided communication (point-to-point communication) and one-sided communica-
tion (remote memory access). Furthermore, communication can occur between
two or more processes. The details of 1-to-n or n-to-m communication are out of
the scope of this work. Unless stated otherwise, all communication is 1-to-1.

3.3.2.1 Two-Sided

Point-to-pointcommunication ortwo-sidedcommunication is a well-known way
to exchange data between processes. One of the processes, the source, has to
call a routine to submit data. The other process, the destination, has to initiate a
receiving function. The source determines the size and the content of the message
including the identifier of the destination process. The destination determines the
memory address of the destination buffer and the number of bytes to receive to
that location. Usually, the number of bytes sent and received have to match if the
communication is based on messages. For message passing, the number ofsend
andreceive calls also have to match.

The key property of two-sided communication is that both involved processes
have to participate in the actual data transfer.
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3.3.2.2 One-Sided

One-sided communication orremote memory access(RMA) enablesdirect access
to the address space of another process through a network. Only one process has
to call a communication routine (e. g.put or get) to determine the parameters
of a data transfer. This source process (source of the operation, not necessarily
the source of data) specifies the source and destination buffer as well as the size
of the message and the identifier of the remote process.

The key feature ofone-sidedcommunication is that only one process has to
actively participate in the actual data transfer. This doesnot include synchroni-
sation as stated in the next section. Also the number of RMA operations is not
predefined.

Using the RMAget operation, the definitions of data source and destination
are interchanged compared toput or send calls. Since this makes the descrip-
tion more complex, theget operation is mostly omitted in this document. Addi-
tionally,get operations have shown to be slower due to their request/reply-based
behaviour [BU03]. Therefore, the latency of aget operation is expected to be at
least twice the latency of the network. Theget operation can be implemented as
a (remotely triggered)put operation at the destination process (the data source
in this case). This solution performs better for some transmission methods (e. g.
see [VBR+04] where reading from PCI-bus is significantly slower than writing).
However, the semantics of this isnot the same since the data source is actively
involved in the communication.

3.3.2.3 Hybrid

Today’s hardware often consists of multi- or many-core computation nodes in-
terconnected by high speed networks. These trends in hardware have imposed
so-calledhybrid parallel programming models where message passing is used for
inter-node communication and shared memory paradigms are applied to intra-
node communication (e. g. a mix of MPI and OpenMP).

The hybrid approach has benefits and drawbacks. For example,the creation
of threads introduces some overhead. Using a single processper SMP node to
communicate via MPI reduces the memory usage of the communication system
and the overall number of MPI processes.

3.4 Message Passing Interface

The Message Passing Interface(MPI) [MPI95] is developed as a successor and
competition to theParallel Virtual Machine(PVM) in 1994. It is designed to ease
the development of parallel applications primarily following the SIMD-Model.
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The processes of a parallel application are grouped together in a so-calledprocess
group. Each process is assigned a uniquerank in the group (an integer value start-
ing from 0). This simplifies the addressing of the processes and is independent of
the transport protocol. Network addresses, ports, or QueuePairs are not required.
The rank is sufficient.

PVM is still used, but it has no interface for one-sided communication. There-
fore, it is not considered within this work.

1 # i n c l u d e " mpi . h "
2

3 i n t main ( i n t argc , ch a r∗∗ argv )
4 {
5 MPI_ In i t (& argc , &argv ) ;
6

7 MPI_Comm_size (MPI_COMM_WORLD, &numProcs ) ;
8 MPI_Comm_rank(MPI_COMM_WORLD, &myId ) ;
9

10 MPI_Bar r ie r (MPI_COMM_WORLD) ;
11 i f ( ( myId%2) == 0) {
12

13 / ∗ p r o c e s s e s w i t h e v e n r a n k ∗ /

14 MPI_Send ( b u f f e r , l en g t h , . . . , MPI_COMM_WORLD) ;
15 MPI_Recv ( b u f f e r , l en g t h , . . . , MPI_COMM_WORLD, . . . ) ;
16

17 } e l s e {
18

19 / ∗ p r o c e s s e s w i t h o d d r a n k ∗ /

20 MPI_Recv ( b u f f e r , l en g t h , . . . , MPI_COMM_WORLD, . . . ) ;
21 MPI_Send ( b u f f e r , l en g t h , . . . , MPI_COMM_WORLD) ;
22 }
23 MPI_Bar r ie r (MPI_COMM_WORLD) ;
24

25 MPI_F ina l i ze ( ) ;
26 }

Listing 3.1: Simple MPI Ping-Pong Example.

An example MPI program is shown in Listing 3.1. First,MPI_Init is called
to initialise the process group and prepare communication.Communication is
performed by calling primitives for point-to-point communication (MPI_Send,
MPI_Recv) or collective operations (MPI_Barrier). MPI offers primitives
for blocking, non-blocking, synchronous, or buffered point-to-point communica-
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Process A: Process B:
MPI_Win_fence() MPI_Win_fence()

... ...
MPI_Put() / MPI_Get() / MPI_Accumulate()

... ...
MPI_Win_fence() MPI_Win_fence()

Figure 3.3: Fence synchronisation mechanism of MPI-2 [MPI97].

Process A: Process B:
MPI_Win_post()

MPI_Win_start()
...

MPI_Put() / MPI_Get() / MPI_Accumulate() ...
...

MPI_Win_complete()
MPI_Win_wait()

Figure 3.4: Post-Start-Complete-Wait synchronisation ofMPI-2 [MPI97].

tion. MPI_Finalize closes the process group and performs does the cleanup
of communication.

MPI-2 [MPI97] is an extension to the MPI standard published in 1997. It in-
cludes specifications fordynamic process management, new routines forparallel
I/O, and functions to exploitone-sidedcommunication. In the following, the in-
terface toone-sidedcommunication is discussed.

One-sided communication was introduced to the MPI-API to allow an appli-
cation to make use ofremote memory access(RMA). The design of the one-sided
communication API is derived from programming models of shared-memory ar-
chitectures. The semantics are different (e. g. the progress rules). Thus, these
approaches can hardly be compared to MPI-2. Approaches likeSHMEM from
Cray [Shm01, Sil08] rely on a fast synchronisation mechanism. A read or write
operation to data structures of another process can be synchronised (e. g. as a kind
of a barrier) to assure that the operation is complete for allparticipating processes.
The absence of fast synchronisation mechanisms in cluster environments2 is one
reason for a different semantics of MPI-2’s one-sided communication.

The MPI-2 standard specifies one-sided communication as non-blocking com-

2cluster in the sense of Beowulf clusters or network of workstations without special networks
for synchronisation
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munication with explicit synchronisation. The synchronisation has to be per-
formed via special and additional messages. This implies communication over-
head. Synchronising multiple communication operations with a single synchroni-
sation message is an advantage [SSO+95]. MPI-2 one-sided communication pro-
vides two variants of synchronisation (see Figure 3.3 and 3.4): two kinds ofactive
target synchronisationwhere the target process is involved in the synchronisation.
A passive target synchronisationis also available where the target process is com-
pletely uninvolved in synchronisation. The passive targethas just to announce a
buffer and withdraw the announcement to open and close the epoch.

Beside the implementations described below, several approaches exist to make
MPI-2 – and especially MPI-one-sided communication – awareof specific fea-
tures of hardware. In [TRH00], Träff, Ritzdorf, and Hempel present an imple-
mentation for NEC SX machines. Another example is MVAPICH [MVA07] for
InfiniBand described below.

3.4.1 MPICH2

MPICH2 is one of the most common and freely available implementations of the
MPI standard developed at Argonne National Labs. The central design component
is anAbstract Device Interface(ADI). The application uses the upper layer which
provides the MPI-2 standard-compliant interface. The upper layer translates the
API calls into calls to the ADI. For example, this includes special algorithms to
map collective operations to point-to-point communication. The ADI finally maps
the upper layer calls onto the specific hardware features.

The ADI abstracts the network and protocols. To support a newnetwork or
protocol, the ADI has to be implemented. An overview of the general architecture
is shown in Figure 3.5. All boxes enclosed by the ADI box represent implemen-
tations of the ADI. Thechannel deviceprovides a simplified interface to ease the
implementation of the ADI. Therefore, many network modulesare implementa-
tions of the channel device.

MPICH2 [MPI07] is a redesigned and full featured MPI-2 implementation de-
rived from MPICH. Like its predecessor MPICH, it is still build around theAb-
stract Device Interface(ADI) [GL94, GLDS96]. The ADI has been extended to
exploit RDMA features of underlying hardware to support MPI-2 one-sided com-
munication.

Since version 1.0.4, a new architecture named Nemesis [BMG06a, BMG06b]
is introduced. The goal of Nemesis is to benefit from shared-memory-based inter-
process communication exposed by multi- and many-core processors.

Our own measurements could not confirm the advantage of Nemesis over the
previous design using a point-to-point ping-pong benchmark (see Appendix B.1.1)
on Uranus-hardware (see Appendix A.1). This advantage is promoted in [BMG06b].
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Channel Interface

...

Network
(Sockets, InfiniBand Verbs, Myrinet GM)

ADI

tcp ...

nemesis

tcp

ch_p4

...
mvapich

MPI Upper Layer

Application

Figure 3.5: Architecture of MPICH and MPICH2

An implementation of MPICH2-nemesis over IPv6 and IPv6-enabled Open MPI
is presented in [KKF+08]. An IPv6-enabled version of MPICH is described in
[SS05]. Both implementations could be done straightforward due to the modu-
lar design of MPICH. However, several issues with the address handling by the
runtime environment of MPICH had to be solved.

3.4.2 MVAPICH

MVAPICH[MVA07] is derived fromMPICH2 and is one of the free implemen-
tations ofMPI-2 that directly usesRDMA-features ofInfiniBand. It is an imple-
mentation of theADI [LWP04]. MVAPICH uses RDMA-based communication
of InfiniBand for all kinds of remote process interaction. The reason is that the
performance will suffer if any different mechanism provided byVerbsis used (see
Section 3.2.3).

Due to its good performance MVAPICH will be used as a reference for mea-
surements with the self designed one-sided communication interface presented in
this thesis in Chapter 5. MVAPICH was compared toOpen MPIand a vendor
MPI of HP in a student thesis [EA07] at the University of Potsdam. Parts of the
results were published in [SS07a].

3.4.3 Open MPI

Open MPI[GFB+04, OMP07] is another free implementation of theMPI-2 stan-
dard. It is the successor of several MPI-related projects. According to their own
presentation, the initial Open MPI was the result of a merge of FT-MPI [FD00],
LA-MPI [ADD +04], LAM [BDV94, SL03], and PACX [GRBK98]. The basic de-
sign of Open MPI is different from MPICH. Everything is buildaround three
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Figure 3.6: Abstraction Layers of Open MPI.

abstraction layers. Figure 3.6 shows the abstraction layers Open Portable Access
Layer (OPAL), Open Run-Time Environment(ORTE), andOpen MPIfunctional-
ity (OMPI). Open MPI offers the possibility to use multiple networks or protocols
in parallel. This can be used either to communicate in heterogeneous environ-
ments or to increase the available bandwidth between the computing nodes.

As mentioned in Section 3.4.1, Kauhaus et. al. implemented an IPv6-enabled
Open MPI. This work is presented in [KKPF07, KKF+08].

3.4.4 MPICH-G2

If a single cluster is insufficient for a large scale application, multiple clusters are
combined to work on a problem. This is the area of multi-cluster environments and
grid computing. To run an application across multiple clusters, MPICH-G2 was
developed [KTF02] in the context of the Globus Toolkit 2. Themain extension
made to MPICH is the addressing. It was extended by topology information. Each
process is assigned a so-calledcolour. Prior to communication, the colour of the
destination process is compared to the local process to choose the best protocol to
communicate. For example destinations inside the local cluster can communicate
by using a special vendor-MPI. The most common case will be a TCP/IP-based
communication method to contact processes on remote clusters.

3.4.5 Efficiency of MPI

The API of MPI can be described as efficient from the point of view of a program-
mer. MPI is easy to use (compared to socket based message passing), portable,
and specialised to the requirements of parallel application. According to the defi-
nition of efficiencyin 3.1, a few efforts of programming have to be made to write
parallel programs. On the one hand, the programmer has the full control over the
inter-process communication. On the other hand, the programmer is responsible
for all communication. The efforts strongly depend on the algorithm and there is
some criticism to MPI-2 [Geo06].
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A specific evaluation will be done in the corresponding context. For example
MPI-one-sided communication exploits the benefits of explicit synchronisation
that are theoretically analysed in [SSO+95]. The authors propose decoupling of
synchronisation and data transfer to improve the performance of message passing
systems. The achievable efficiency of implementations of the one-sided commu-
nication interface of MPI-2 is addressed in Chapter 4. Performance measurements
of MPICH2 are presented in Chapter 5.

The highest-level approach to optimise the behaviour of an implementation is
to modify the application itself. This approach violates the goal of MPI to allow
portable applications. The modifications can counteract when running on a differ-
ent implementation. Saif and Parashar [SP04] describe suchan approach to avoid
the blocking behaviour of non-blocking large message transfers in MPICH 1.2.5
and IBM MPI. These optimisations are based on implementation issues that ex-
pose the non-compliance to the standard. Both implementations obviously block
MPI_Isend-calls of large messages until the correspondingMPI_Wait-call of
the receiver occurs. This behaviour was not reproducible with version MPICH 1.2.7.

A more portable approach is to exploit the features of the underlying hardware
to optimise the performance of an application (i. e. improvethe efficiency of MPI).
This requires the API to be efficiently implementable.

Research has been and is done on the optimisation of MPI. On the one hand,
it concerns general approaches like the management of connections [YGP06] or
the use of eager- and rendezvous protocols to transmit smalland large messages
efficiently. On the other hands, special features of the underlying network are
exploited [CC99, Cia, AAC+04]

3.5 OpenMP

OpenMP [Ope05] supports the data parallel model [WA99] to allow the parallelis-
ing of algorithms. The programmer is responsible for just some pre-compiler
statements to tell the compiler how to parallelise a part of the code. In this way,
the parallelising is finally performed by the compiler. The programmer specifies
how the compiler should handle the data.

OpenMP provides a way to implement parallel algorithms. Additionally, it
offers a low-effort method for existing sequential code to exploit multi-processor
machines. Pre-compiler statements are ignored by non-OpenMP compilers. Thus,
in most cases, the code will compile and run even if the compiler is not aware of
OpenMP.

Due to the increased availability of multi-core processors, OpenMP becomes
more and more attractive to programmers. For examplehybrid programs are an
interesting approach for clusters of multi-core machines.Hybrid programs make
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use of OpenMP for local IPC and employ MPI to communicate between cluster
nodes.

OpenMP is efficient in shared memory architectures due to itsprogramming
model that is based on threads with a global address space. OpenMP will suffer
from the overhead required for synchronisation in distributed memory environ-
ments.

3.6 Further APIs

There are many APIs available to create parallel programs. In this section some
of these APIs will be described to some extend.

3.6.1 ARMCI

The Aggregate Remote Memory Copy Interface (ARMCI) is designed to sup-
port global address space for distributed memory using one-sided communication.
ARMCI was presented by Nieplocha and Carpenter in 1999 [NC99]. The authors
describe ARMCI as an interface to exploit high performance remote memory ac-
cess.

According to [NTKP06], the design of ARMCI has several aspects in the fo-
cus:

• First, thecommunication progressrules have to be simple. All operations
should complete independently from the actions of the remote process. A
dependency would reduce the responsiveness and increases latencies. In
addition, dependencies can result in communication deadlocks if the pro-
grammer is not aware of the progress rules.

• The second aspect is the communication and computationoverlap. The in-
dependence of remote actions allows for remote overlap of computation and
communication, while local overlap is provided by returning from commu-
nication calls as soon as possible. Let the underlying network (hardware)
complete the communication.

• The third aspect includes non-contiguous data transfers. There are a num-
ber of ways to perform non-contiguous transfers. Using a memory copy to
gather and scatter the data, or using multiple communication calls to transfer
each element separately. While the first is not suitable for RMA commu-
nication and involves the remote host, the second requires multiple start-up
costs. Non-contiguous data transfers are out of the scope ofof this work.
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• To avoid problems with unregistered memory regions, ARMCI forces the
application to use provided memory allocation functions. This allows the
program to use the fastest access and avoids additional checking of memory
status (registered or unregistered).

The synchronisation of data transfers is explicitly done bywait and other syn-
chronisation calls. ARMCI distinguishes between local andremote completion
by providing different synchronisation calls for this purpose.

A unique feature of ARMCI are so-calledaggregated handles. These can be
used to combine multiple handles of communication calls to asingle handle. This
handle can be used to check the completion state of all aggregated operations for
example. With this way of synchronisation, ARMCI does not use the concept of
epochs like MPI-2.

The article cited above contains many interesting approaches to optimise com-
munication. Depending on the costs of memory registration,a local memory copy
is used to transfer small messages. The data is copied to a pre-registered mem-
ory area. Transferring larger messages in chunks copied to the pre-registered area
can be a benefit if memory registration costs are high. To avoid waiting on the
intermediate memory, multiple pre-registered buffers canbe employed and used
alternating. In this way, the communication is pipelined.

The authors present an interesting alternative to implement a get-operation
if a get is inefficiently supported by the underlying network. They propose to
send a request to trigger a more efficient remote put or write operation. The result
is a faster communication that conflicts with the idea of RMA:the remote host
should not involved in the communication. This is still trueat the application
level. Therefore, it can reduce the overlapping effect thatmay be intended by the
programmer.

In Chapter 5, we will see that this API is very close to NEON – a new one-
sided communication interface presented in this thesis.

3.6.2 LAPI

LAPI is an interface designed by IBM [SNM+98] for use with the RS/6000 SP
that came out in 1995. The API provides communication primitives for one-sided
communication. The synchronisation can be performed by MPI-like calls (e. g.
fence).

LAPI offers an additional way to signal completion of messages. It uses coun-
ters at the origin and at the target process to check and signal for completion of
data transfers. The counters can be specified by a parameter to theput call. This
allows the target process to check if a data transfer is complete without waiting
for a specific synchronisation message required by the MPI-2interface.
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Since counters rely on a kind of active message at the target,they cannot be
considered as fully one-sided. The target is involved in thecommunication to
increase the target counter.

3.6.3 SHMEM

SHMEM [Sil08, Shm01] is a widely known communication interface designed
by Cray for its shared memory machines. It provides one-sided communication
operations and synchronises via barrier-like operations.

3.6.4 GASNet

GASNet enables the illusion of a global address space regardless of hardware sup-
ported shared memory. This allows running of Global AddressSpace Languages
over distributed memory machines like clusters.

3.6.5 Global Address Space Languages

There are several new languages developed and still under development. These
languages have in common that they rely on a global address space to exploit
parallel execution [BD03].

3.6.6 Unified Parallel C

Unified Parallel C (UPC) [UPC05] is an example for so-calledglobal address
space languages (GAS). It is developed at the University of California Berkeley
by the group of Katherine Yelick. The current 1.2 specification is dated 31st May
2005.

UPC is an extension of ANSI C to create parallel programs. Theparallel exe-
cution is intended to work with threads on shared-memory-based architectures. In
this way, it is similar to OpenMP (Section 3.5) except that OpenMP is introduced
as pre-compiler statements. Similar to High Performance Fortran (HPF), UPC can
express affinity between data and thread to exploit data locality.

Analyses of the application and runtime efficiency can be found in [EGC01,
EGC02]. A productivity analysis of UPC is presented in [CYZEG04]. UPC is
compared to MPI by number of lines and characters to parallelise the kernels
of the NAS Parallel Benchmarks [BBB+91, NAS07]. The authors conclude that
UPC requires less ‘manual efforts’ [CYZEG04] to write parallel algorithms than
MPI. Since UPC requires a global address space, a special communication system
is required to provide global address space on clusters withdistributed memory.
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The communication interfaceGASNet[GAS06] provides global address space
in a network independent way.

3.6.6.1 X10

This Java-like parallel language designed by IBM in 2006 tries to enable a pro-
grammer to exploit parallelism [SN08]. As described forUPC, X10 also includes
expressions for data locality and parallel execution on machines with non-uniform
memory access.

3.6.6.2 Chapel

Chapel [Inc08, CCZ07] is developed by Cray. According to theproject homepage,
the development of Chapel is still in progress. Chapel is intended as an approach
to improve the productivity of parallel programming by including the expression
of parallelism into the language itself. Thus, it has similar intentions to UPC or
X10.

3.6.6.3 Fortress

Fortress [ACH+08] is another example of aglobal address space language. This
language is derived from Fortran and developed by Sun Microsystems. The cur-
rent specification is dated March 2008. Fortress is intendedto ease the program-
ming of math. A compiler could also generate LATEX code to create a document.
The language assumes parallel execution by default. Programmers explicitly have
to specify sequential code.

3.7 Design Aspects of Efficient Communication

This section will give an overview over existing research ondesign aspects of
communication systems for efficient data transport. Important aspects likebuffer
management, efficient transport layers, the impact ofoffloadingandoverlapping,
and the issues and benefits of the combination of aspects is the focus of this sec-
tion.

3.7.1 Buffer Management

Efficient use of internal buffers3, bypassing internal buffers, or handling applica-
tion buffers, reduction of the memory footprint of a communication library are

3buffers inside the communication system
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important aspects of buffer management.

3.7.1.1 Zero Copy

Each memory copy introduces additional overhead to the transmission of data.
The impact of additional intermediate copies of data is analysed in [Cia99, VBR+04].
Kurmann, Rauch and Stricker [KRS01] present an approach to use speculative
techniques to eliminate copies from the TCP/IP stack. Chu [Chu96] proposes a
way to implementzero-copyTCP/IP in the OSSolaris.

The overhead of a memory copy is hard to evaluate. One can measure the
time or the CPU cycles required to copy data, but the impact onperformance of
an application can not be derived from this measurement only. The cache will
become polluted by a copy (cache pollution). And this can result in unpredictable
decrease of application performance [JCB96, Bru99, VBR+04].

3.7.1.2 Memory Registration

Modern network hardware (e. g. InfiniBand, Quadrics) supports remote direct
memory access(RDMA) to the application buffers . While this provides hardware-
based zero-copy, it includes some uncomfortable side issues. Since two compo-
nents of the computer concurrently access the main memory, additional synchro-
nisation and access mechanisms have to be implemented.

Some hardware offers NIC-based translation look-aside buffers (TLB) to ac-
cess pages in memory (e. g. Quadrics). This allows the hardware to handle/access
pages that are swapped out. This requires the operating system to be aware of a
second TLB in the system. Special hardware drivers have to beused.

Hardware without a separate TLB has to rely on the application or the com-
munication system software to prevent memory from being swapped out. The
memory has to be registered. The registration can be an expensive operation.
An analysis of this process in the Mellanox InfiniBand software stack is pre-
sented in [MRB+06]. According to the measurements, the registration of a 2 kB
buffer takes about 1.8 ms. This can make a memory copy more efficient than
insisting on zero-copy via direct access. Optimised versions of memory reg-
istration use a registration cache to avoid registering of previouslyregistered
pages [TOHI98, BB03, WW05].

3.7.1.3 Minimal Copy

If the underlying hardware and/or the operating system doesnot allow for zero-
copy protocols, so-calledminimal copyprotocols can be used.
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Additional copies can even improve performance if the overhead is too high
for managing zero-copy. This depends on the hardware features and the applica-
tion. For example, when using asynchronous communication in MPI it can make
sense to send small messages immediately even if the remote application did not
provide the corresponding destination buffer. The messagewill be stored in an
intermediate buffer on the remote side – the so-calledeager buffer. If the receiver
becomes ready, only a fast local copy is required to completethe transfer.

3.7.1.4 Early Sender Problem

In this thesis, the termearly sender problemdescribes the general effect of early
called operations to transmit data without the receiver to be ready. This issue is
known from message passing. It is also calledlate receiver problem. A distinc-
tion between both names is necessary if load imbalances and delays have to be
discovered in the application (see SCALASCA [Jül08]). The point of view of the
communication system is the same in both cases since both names describe the
fact that the receiver is not prepared. Therefore, only theearly sender problemis
discussed.

The early sender problem is a major issue of buffer management to be solved
by a communication system. If a sender is ready to send the data before the re-
ceiver has prepared the destination buffer, the communication system has to han-
dle this situation properly and efficiently.

• The communication system can block the sender until the receiver is ready.

• If asynchronous communication is requested by the application, the com-
munication system can defer the transmission until the receiver signals the
availability of the buffer. In this case, the application will not be blocked
until thesynchronisation point(e. g. a call ofMPI_Wait).

• The communication system can copy the data to a local buffer.This buffer
is transmitted if the receiver is ready.

• The communication system can send the data eagerly to the receiver. The
receiver has to manage the early arrival of data. These messages are called
unexpected messages.

3.7.1.5 Expected and Unexpected Messages

The distinction betweenexpectedandunexpected messages has been made to de-
scribe the early sender problem more generic. A message is called expected, if
the receiver is prepared and the destination buffers are known to the communica-
tion system. Expected messages can immediately be delivered to the destination
buffer. This is the best case for the communication system. Additional blocking
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of an application or buffering data is not required. It should be optimised as a
so-calledfast pathfor performance reasons.

MPI implementations handle unexpected messages [MPI07, OMP07] by pre-
allocated buffers for short messages in order to buffer early arriving data at the
receiver. A threshold determines the difference between short and long messages.
This threshold is used to switch betweeneager modeor rendezvous modeto effi-
ciently handle short and long messages.

Whether a message is considered to be large, strongly depends on the under-
lying hardware and protocols. Assuming anMTU of 32 Bytes (the MTU on IBM
BlueGene/P), a message size of 1000 Bytes can already be considered as a large
message. While 1000 Bytes will usually be considered as small if the MTU is
1500 Bytes like in Ethernet networks.

3.7.1.6 Eager Mode

In eager mode, the sender relies on a sufficient number and size of intermediate
buffers (eager buffers) at the receiver. An early sender will not be blocked due
to an unprepared receiver and data is immediately (eagerly)transmitted. This
allows the sender to speed up transfers of short messages without waiting for
the receiver to be ready. It also allows the receiver to omit potentially required
memory registration. However, it forces an additional memory copy at the receiver
and allocates memory that is no longer available to applications.

The number of buffers is limited. The limit becomes a crucialparameter in ap-
plications that run on a large number of processes. If a largenumber of processes
send eager messages to the same process, the number of eager buffers should be
large enough to be prepared for at least one message from eachcommunication
partner. Otherwise, even the first message of some processesis rejected and has
to be resent later. This introduces further overhead to communication. Scaling
the number of eager buffers proportional to the number of processes will reduce
the amount of memory available to the application. It reduces the efficiency of
memory usage.

Another solution to this problem is not to limit the number ofbuffers but al-
locate memory on demand (e. g. the MPICH implementation). Ifthis is combined
with memory pooling(also described as segregated free lists [WJNB95]) the aver-
age overhead of allocating memory on demand can be reduced. Due to memory
limitation, this solution is not always applicable efficiently.

MPICH uses unexpected message lists to manage eager messages. The lists
are extended dynamically without a fixed limit. The threshold is configurable.
The default depends on the network module used. It is set to 128 kB for non-
local communication over Nemesis. For theshmmodule it is limited to about
10000 Bytes.
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request

reply

data
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Figure 3.7: Basic rendezvous transmission scheme.

In summary, tuning is required to determine the threshold. When determining
the threshold, theMaximum Transfer Unit(MTU), the available memory per node,
and the number of processes should be taken into account. TheMTU determines
the number of packets to send. The available memory limits the size and the
amount of intermediate buffers. The number of processes introduces an upper
limit to the number of messages that can concurrently arriveat a single process.

3.7.1.7 Rendezvous Mode

The rendezvous modeis used to transfer large sized messages Therefore, it is
also called large message transfer (LMT). Usually, this is transparently performed
by the communication system. An efficient API should not expose this to the
programmer.

Figure 3.7 shows the steps of the basicrendezvous protocol. The sending com-
ponentA submits only the meta-data to the receiving componentB and waits for
B to signal the availability of a sufficient destination buffer. This special proto-
col to transfer large messages is used to avoid memory copiesof large amounts
of data. Furthermore, large messages are a candidate for pipelining of transfers
(see next section). Therefore, the transmission of large messages can be optimised
to exploit special features of the underlying network or hide memory registration
costs [BU03].

3.7.2 Overlap

Along the transmission path of data, several independent processors may partic-
ipate in the communication. The result is a communicationpipeline. Figure 3.8
shows an example consisting of a sending and a receiving application and network
interface card (NIC). The first step of this 4-step pipeline is an interaction between
the application and the NIC. The processor running the application has to contact
the NIC to either transmit the data or initiate a data transfer controlled by the NIC.
A similar procedure will happen at each subsequent step of the pipeline.
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Pipelining is a way to process some work in parallel using multiple processors.
Pipelines are suitable if the same or similar work has to be done several times and
can be split into subsequent steps. This is the case with communication. The
sender has to initiate the transfer. The protocol stack has to process the data and
prepends some headers. The network interface cards have to transmit the data.
The receiver has to process the data in a similar but reverse order of the steps.

Pipelines are only efficient in parallel applications if each step costs the same
amount of time. Otherwise, some of the processors have to wait and are not effi-
ciently used. The same problem exists for communication. There are faster and
slower steps in the pipeline. Additionally, the fact of being slow or fast depends on
various parameters (e. g. the message size, the number of messages, the number
of communication partners).

The message has to be split into several small messages (fragments) to use
one effect of a communication pipeline for large messages. The fragments are
subsequently processed and submitted through the pipeline. In Figure 3.9, the
reduction of transmission time can be seen schematically for a 4-step pipeline
with equally fast steps.

The authors of [WKM+98] analyse the impact of fragments on the overall
transmission time. Additionally, they optimise the fragment size in case of dif-
ferent speeds at different steps of the pipeline. The basic ideas of the pipeline
model can be adopted to communication since multiple independent processors
are available in many networks.

A complete implementation of the optimal solution is hardlypossible. The
prerequisite of the optimal solution is complete knowledgeof performance char-
acteristics of each pipeline step. According to [WKM+98], the characteristics are
determined by two parameters: theper byte overheadand theinitial overhead
(depicted as small black bars in the figures) to transmit a zero byte fragment. The
latter parameter is generally calledlatency. Both overheads are expressed in units
of time. Since these parameters depend on the message size, the characteristics
have to be measured for each message size.

Multiple processors in the communication path enable another effect of pipelin-
ing. This is known as overlapping of communication and computation (short
overlap). Brightwell et. al. [BRU05] discuss the impact of overlap on the ap-
plication performance. They conclude that overlap can improve the performance

app − NIC
Tx−NIC
Rx−NIC

NIC − app

Figure 3.8: Communication pipeline example.
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Figure 3.9: Effect of sending fragments through a pipeline.

if the application is able to make use of non-blocking communication. Further im-
provements are possible if overlap is combined with offload and/or independent
progress (see the corresponding sections below).

As long as the implemented algorithm is suitable, the application can continue
with the computation immediately after initiating the communication. This re-
duces the visible communication time (latency hiding). Knowing the large gap
between processor speeds and communication latencies of modern hardware, this
approach will continue to play an important role for efficient communication (es-
pecially for non-blocking communication which is intendedby MPI-2 one-sided
communication). This is also stated in [NTKP06], where thistrend is also prog-
nosticated for the future.

Initialising the communication includes all work to allow the succeeding pro-
cessor in the pipeline to continue with communication. Usually, this work in-
cludes provision of information about the involved application buffers and/or pos-
sible data copies to special memory areas or NIC memory.

Doerfler and Brightwell [DB06] present a method to measure application avail-
ability in an overlap test. The measurements show that InfiniBand is bad for large
messages in this context, while Myrinet and Quadrics perform well. This pic-
ture is reversed for small messages (80% vs. 90% availability). Unfortunately,
each network is tested with a vendor-specific MPI-implementation. This can be
a major source of different behaviour and is not further explained in the paper!
Therefore, the results can not be used to compare the networks. In conjunction
with non-blocking communication, the availability test isinteresting for the stud-
ies in this work.

Some options to implement OSC in Open MPI are analysed in [BSL07]. The
authors recommend to make use of RMA-capable hardware to improve the perfor-
mance. In this case, the API can be directly implemented as a simple translation to
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the API of the hardware. Especially, this is recommended in terms of overlapping
communication and computation. When implementing the explicit synchronisa-
tion, the authors describe a problem in conjunction with Open MPI’s capability
to use multiple networks simultaneously. In this case, an explicit synchronisation
message could pass the data messages. Thus, synchronisation messages have to
be deferred and will be unblocked after the last data messageis sent. Since a last
message cannot be specified by the MPI-2 API, the synchronisation message is
deferred to the synchronisation call (MPI_Win_complete).

Applying the pipeline model offers a way to improve the performance of ap-
plications by enabling overlap. However, the effect of overlap strongly depends
on exact knowledge of the introduced overhead and which component/proces-
sor has to process this overhead. The authors of [KKZL03] have experienced a
performance degradation in conjunction with overlap. The receiving process is
interrupted by the operating system in an adverse way. The performance was im-
proved by using blocking instead of non-blocking receives.They analysed several
performance issues in a molecular dynamics application (NAMD) [PBW+05] on
up to 3000 CPUs. Unfortunately, the improvement of using blocking receives is
not explicitly shown. They improved the original version byseveral modifica-
tion inside the Quadrics’ communication library. Even though the effect is not
quantified, one can derive that overlap is nota priori a benefit.

3.7.3 Offload

Modern network interfaces allow the processing of parts of the protocol stack
on the NIC. This kind of processing is calledoffloading. There is a common
assumption that protocol offload should improve the performance of applications
because the network hardware is designed to process networktraffic. Already in
1996, Hennessey and Patterson [HP96] pointed out that NIC processors do not
a priori speed up communication. ‘Fallacy: Adding a processor to thenetwork
interface card improves performance’ [HP96](page 623). Often, NIC processors
are much slower than the host CPU. Thus, protocol processingon the NIC can be
slower and performance is lost.

In [BRU05, BU04], the benefit of offload is analysed using the NAS Bench-
mark Suite [BBB+91, NAS07]. The hardware (Quadrics, ASCI Red) is able to
independently complete pendingsend operations. This allows for good overlap
of computation and communication. The application can continue to work and
more CPU cycles are left to the application. An additional MPI-tag matching of
the NIC further reduces CPU occupancy of the communication.

Transport and network layer protocols (TCP/IP) are also offloaded even in
commodity off-the-shelf hardware. Several authors exploit this feature [SC03,
Mog03, FHL+05]. The Broadcom BCM570x series and other modern Ethernet
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NICs support checksum calculation. Offloading checksum calculation has a small
risk to transmit incorrect packets if the data is corrupted by failures on the system
bus (PCI, PCI-Express). These errors cannot be detected by the NIC.

3.7.4 Progress

The existence of pipelines [WKM+98] allows to overlap calculation and commu-
nication by using non-blocking communication calls. If thetransmission of data
has to be stopped because the target is not prepared (e. g. no reply to a rendezvous
request, no buffer announcement available for an RMA operation), there has to be
some component to continue the transmission later but efficiently. The influence
of this progress is analysed by Brightwell, Riesen, and Underwood in [BRU05].
They conducted several experiments to measure the impact ofdependent andin-
dependent progresson the application performance. Progress is independent if
the communication can continue independently of the remoteapplication’s calls
to the communication library. The authors found two crucialfactors during their
experiments:

1. Using independent progress makes beneficial use of the communication
pipeline. Although, without any offload or overlap, it implies a higher risk
of cache pollution and context switches. This is due to frequent checks and
processing required to make progress on both sides.

2. Applications that can not make use of non-blocking communication can
suffer from the overhead introduced to implement independent progress.

These statements are confirmed by measurements with the NAS Parallel Bench-
marks [BBB+91, NAS07] on different hardware and different implementations of
MPI. The results of the paper indicate improved efficiency ifoverlap, offload, and
independent progress are combined. Some experiments in [BRU05] confirm that
the combination can improve the performance even more than expected from the
sum of the particular techniques.

Independent progress in MPI can be visualised with tools like jumpshot. In
Figure 3.10, the eager andrendezvous modes of MPICH are compared. The code
is shown in Listing 3.2.

1 f o r ( i = 0 ; i < t r i e s ; i ++) {
2 MPI_Bar r ie r (MPI_COMM_WORLD) ;
3

4 i f ( ( myId%2) == 0) {
5

6 t imea=MPI_Wtime ( ) ;
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Figure 3.10: Comparing eager (upper) and rendezvous (lower) mode of MPI 1.2.7.

7 req = MPI_Isend ( b u f f e r , l en g t h , . . . ) ;
8 t imeb=MPI_Wtime ( ) ;
9 } e l s e {

10 s l e e p ( 2 ) ; / ∗ d e l a y t h e r e c e i v e ∗ /

11 req = MPI_Irecv ( b u f f e r , l en g t h , . . . ) ;
12 }
13 MPI_Wait ( req , . . . ) ;
14 }

Listing 3.2: MPI example to show progress.

Process 0 (upper) sends data to process 1 usingMPI_Isend. Node 1 waits
for 2 seconds before callingMPI_Irecv. This is to force anunexpected mes-
sageor anearly sender problem. Both nodes wait for additional 5 seconds before
calling wait. There is a barrier (MPI_Barrier) before and after the experiment.
Thesend operation can not finish in rendezvous mode since the receiver is not
ready. Data is instantly transferred to intermediate buffers at the receiver in ea-
ger mode. The eager mode version spent most of the communication time in the
barrier (yellow) while the wait (red) takes a long time in therendezvous version.
A reason for different times to wait is the instant completion of eager operations.
The rendezvous variant can only send the rendezvous request. The data trans-
fer does not start before the receiver callsMPI_Wait. Why the transfer cannot
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start when the receiver is callingMPI_Irecv? BecauseMPI_Irecv could be
blocked. The rendezvous reply could be sent, but since data has to be actively re-
ceived (experiment is done for Sockets/Ethernet without a communication thread)
MPI_Irecv has to wait for the data itself too. Otherwise, the communication
channel can become congested. The communication cannot continue before the
receiving application callsMPI_Wait.

3.7.5 Transport of Data

Most of the above issues describe general concepts to improve the efficiency of
communication. These concepts are implemented on top of a transport proto-
col. The transport protocol itself has to be efficient too. This section presents
some mechanisms to improve communication efficiency by reducing overheads
or transmission times of the transport protocol.

3.7.5.1 Reliability

The programmer of a parallel application is not interested in checking the cor-
rect transmission of data. This task has to be done by the communication sys-
tem. The communication system has to reliably transfer messages. Reliability
requires additional effort and this overhead reduces the efficiency. A reliable and
light-weighted mechanism for Ethernet networks is presented in [Cia99, CES02].
The approach performs better than common implementations on top of TCP/IP.
Since TCP is a protocol for WAN, more overhead is introduced to assure correct
transmission. This overhead can be omitted for LAN environments due to their
more reliable transfer of data. Compared with this, Verstoep, Bal, et al [VBR+04]
analysed the impact of reliability provided by Myrinet hardware. If configured,
Myrinet NICs retransmit corrupted or lost packets. This hasnegligible impact on
throughput. If the host CPU has to do the retransmission, sending small messages
requires more time. This effect is less important than expected for large mes-
sages. The two different examples show that the impact strongly depends on the
underlying protocol and the hardware.

3.7.5.2 Packet Size and MTU

Thepacket sizeis limited by the protocols inside the protocol stack. A maximum
sized IP-packet can be 64 KiB. Larger messages have to be sentin chunks. This
fragmentation is done by the communication system transparently.

In combination with theMaximum Transfer Unit(MTU) of network hardware,
the packet size is important. In [CES02], Ciaccio, Ehlert, and Schnor analyse the
difference in throughput of GigabitEthernet betweenJumbo-framesand standard
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MTU (1500 Bytes). The MTU has a significant impact on the throughput of mid-
sized messages on certain hardware. One of the reasons is an inefficient use of the
communication pipeline.

Generally, a smaller MTU reduces the relative amount of payload due to the
header required in each packet (sizeheader). This reduces the maximal throughput
of the network linkBlink to Bmax (see Equation 3.1).

Bmax=
MTU−sizeheader

MTU
∗Blink (3.1)

Verstoep and Bal et. al. [VBR+04] have analysed the impact of the MTU in
Myrinet networks. The result was a slight improvement of thethroughput for large
messages. The larger the MTU, the smaller is the improvement. More important:
the number of buffersNbu f f er on the NIC depends on the MTU (see Equation 3.2).

Nbu f f er =
MemNIC(bytes)
MTU(bytes)

(3.2)

A large MTU reduces the number of buffers. If an application sends a lot of small
messages, the NIC can run out of buffers. This has a more significant impact on
performance than the size of the MTU itself. The authors could not find an impact
on latency. This is an expected result.

3.7.5.3 DMA-based Copy

Hardware provides several ways to transfer data from application buffers to the
local network hardware. Verstoep and Bal et. al. [VBR+04] analysed the impact
of using programmed I/O (PIO) ordirect memory access(DMA) mechanisms to
communicate viaMyrinet networks.

PIO-based transfers require the host CPU to copy data via thesystem bus (PCI)
between main memory and NIC memory. This is a fast way to perform transmis-
sion but steals CPU cycles from the application. It requiresneither initialisation
nor acknowledgement of the transfer.

DMA-based copying is performed by special hardware components in the sys-
tem or on the NIC. It requires an initialisation and a synchronisation phase. How-
ever, the host CPU can continue to process the application. The synchronisation
is needed to signal a transfer is complete (usually done by aninterrupt).

One of the conclusions in [VBR+04] is to use PIO for short messages due to
the reduced overhead of initialisation and synchronisation. However, in the test
environment of the authors,PIO made no sense at the receiver. The reason is
the slow read operation from PCI devices. Depending on the platform and the
message size, PIO can improve the performance.
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Using DMA offers more availability of the CPU to the application if the mes-
sage size is large. In the testbed in [VBR+04], using DMA forces the receiver
to copy data. This is because incoming data is stored in a special memory area.
An alternative implementation (also tested in the study) isable to directly access
the destination buffer. This implies the above mentioned drawbacks of (remote)
direct memory access: registration or extra TLB. Further, the Myrinet hardware
is able to access a single page only. Therefore, theMTU setting has an impact on
this feature. If the MTU is above the page size, the receiver’s overhead of a packet
will be doubled.

Similar to the decision of using eager- or rendezvous mode, the recommenda-
tion is as follows:As long as the per message overhead is high, compared to the
overall transmission time, use the faster PIO method even ifit requires some more
CPU cycles! Otherwise, use DMA transfer!What is fast and what is high over-
head strongly depends on the hardware capabilities. This isa tuning parameter
that has to be determined for a particular environment to achieve the best appli-
cation performance. The decision is also influenced by the application’s way of
using the communication system.

3.7.5.4 Interrupts and Polling

Interrupts allow asynchronous processing of components ofa system controlled
by a central processor (CPU). A task is given to a device (often also initiated by
an interrupt). If the task is complete, the device raises an interrupt. The CPU is
interrupted and the interrupt will be handled by an interrupt handler. Often, net-
work communication is also working with interrupts, e. g. tosignal incoming data.
Especially, interrupts are problematic in high speed networks [MR97]. Due to the
high packet rate, a lot of interrupts have to be handled in very short time. This
can occupy the CPU completely and running applications cannot continue (in-
terrupt livelock). To avoid livelocks, interrupts can be disabled [Cia99, CES02].
Polling is used instead. This reduces the latency since no interrupt handler has to
be called. Additionally, the code locality is improved, cache pollution is reduced,
and the application is the beneficiary. However, if non-blocking communication
is used by the application, the latency can increase. Packets are fetched from the
NIC not before the application polls for data. Thus, the latency is influenced by
the software. Further, polling consumes CPU cycles. Thus, polling is not recom-
mended if non-blocking communication is requested to overlap computation and
communication.

The so-called NAPI (New API) [SOK01] proposes a hybrid approach. The
first incoming packet triggers an interrupt. This interruptis handled while further
interrupts are deactivated temporarily. After handling the interrupt, the system
will poll the interface for further packets. If a maximum number of packets is
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fetched or a given number of polling cycles are done, interrupts are enabled again.
This leads to a high responsiveness if applications communicate sparsely. Large
amounts of data or frequent communication allow fast processing without han-
dling thousands of interrupts.

3.8 Interdependencies

The previous sections presented several aspects of efficient communication. This
section explains why many of these aspects have to be considered in combination.
In short, this is because they depend on each other. Some interdependencies are
summarised here from the above sections.

Zero-Copy and Memory Registration Zero-copy transmission is a nice feature
of RDMA hardware like InfiniBand. As described in Section 3.7.1.2, this requires
the memory to be pinned or registered. Since this is often an expensive operation,
it can be more efficient to write data to intermediate, preregistered buffers and
copy the data to the application buffer afterwards. If registration of memory is
considered as overhead in the corresponding pipeline steps, this helps to decide if
intermediate copies are acceptable or not.

Zero-Copy and Overlap Forcing zero-copy will not always result in good per-
formance if overlap of communication and computation is employed. Making
use of the pipeline characteristics can improve the application performance more
than avoiding copies, especially at the destination process. Avoiding copies can
prevent a pipeline step from processing further data if there’s no (intermediate)
buffer space available. If the usage of overlap is essentialto the performance,
forcing zero-copy is not recommended.

Overlap and Progress Computation and communication can easily be over-
lapped as long as there is an independent processor to process the local steps of
the pipeline. If this asynchronous communication cannot behandled by the un-
derlying hardware, progress on pending asynchronous operations can be made by
threads or by deferring the transmission.

A thread is able to make independent progress on pending operations. It is
able to efficiently use the communication pipeline. Using a thread offers the best
potential to overlap communication and computation. However, it steals CPU
cycles and pollutes the cache of the application. Therefore, threads are avoided to
avoid these drawbacks.
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Deferring transmission will result in inefficient usage of the pipeline and re-
duce the possibility to overlap communication and computation. For example,
MPICH and MVAPICH defer the transmission if a non-blockingsend cannot be
completed. Only if the process isin the library (i. e. after an API call), they try to
progress on pending operations. The reason is to avoid a thread that interrupts the
application.

The challenge is to decide which of thework-aroundshas the better impact
on the performance of the application. In multi-core environments, one of the
cores can be dedicated to a progress thread. In this case, cycle stealing and cache
pollution problems will disappear.

Overlap and Offload Overlap of computation and communication is easier to
realise if there is an independent processor to process pending communication as
noted above. Some steps of the pipeline can be offloaded to that processor if a
processor is available to offload at least parts of the protocol processing. This
eases the implementation of overlap and increases the availability of the CPU to
the application.

Offload and Progress It was already mentioned above that a dedicated proces-
sor to offload protocol functionality is helpful to make independent progress on
pending communication operations.

Keeping in mind that the network processors to offload protocol functionality
provide usually less performance than the host CPUs. Therefore, offloading the
functionality of making independent progress is nota priori beneficial (see the
fallacy in Section 3.7.3 on Page 60).

3.9 Conclusion

This chapter presented programming interfaces for communication in general and
for parallel programming (see Section 3.2 and 3.3). Programming interfaces al-
low the programmer to express inter-process communicationor even parallelism
of code or data. There will be a higher potential of application’s benefit from
a programming interface if this interface is efficiently implementable on top of
available network technology.

Section 3.7 explained various aspects of efficient transport of data. The imple-
mentation of an API can exploit these aspects. The implementor has to be careful.
Several interdependencies exist between single aspects (see Section 3.8).

The overall recommendation of this section is tobe careful when applying
a specific recommendation to a communication system.Many things depend on
the behaviour and requirements of the application and not everything works on
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every hardware because of the different capabilities of theused technology. The
specific aspects and demands of one-sided communication will be analysed in the
next chapter.
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Chapter 4

A Model for Communication
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4.1. IPC: PRODUCER/CONSUMER

This chapter introduces a communication model calledVirtual Representation
Model that is derived from theproducer/consumerlike inter-process communi-
cation known from operating systems. This chapter shows that there are several
similarities betweenone-sidedand two-sidedcommunication. The applicability
of the model is analysed for different interconnection architectures (network, net-
work with RDMA, shared memory, distributed memory). This model is then used
to develop an efficient one-sided communication interface.

4.1 IPC: Producer/Consumer

Theproducer/consumer-based inter-process communication is known from syn-
chronisation in operating systems [Tan01]. This synchronisation scheme has to be
applied if a process (producer) produces data and transmitsthis data to another
process (consumer) where each transmission has to be processed (consumed).

P S C

Figure 4.1: Producer/Consumer Example.

This interaction is very common in distributed applications. Otherwise, there
would be no need to communicate. Because of its importance for this thesis, the
required steps of synchronisation are explained here. Figure 4.1 shows the pro-
ducer P, the shared buffer S, and the consumer C. The arrows show the interactions
between the processes and the buffer.

1. Before the producer can deliver data to the buffer, it has to be sure that the
buffer is available. This information is provided by the consumer.

2. The consumer will announce the availability of the buffer.

3. If the consumer wants to consume data from the buffer, it has to know if
the producer has completed writing data to the buffer. This information can
only be provided by the producer.

4. The producer will notify the consumer that the data in the buffer is available
for processing.

5. Since both processes access a shared buffer, the access has to be synchro-
nised. This is performed by mutual exclusion.
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4.2 The Virtual Representation Model

Figure 4.2 shows the central property of theVirtual Representation Model(also
referred ascommunication modelafterwards): it models the task of the commu-
nication system to virtually represent the remote process to the process that calls
communication functions (any transmission, receive, or synchronisation).

This abstracts the 7 layers of theISO/OSI Model[DZ83, JTC94]. The appli-
cation layer (7) is mapped to each process. Thecommunication systemcan be
seen as an agglomeration of the remaining layers. The communication between
process A and B is virtually a direct communication in both the ISO/OSI-Model
and theVirtual Representation Model. This abstraction is chosen to focus on the
benefits for the application.

First, theVirtual Representation Modelis explained from the application point
of view. Afterwards, different mappings to interconnection architectures are de-
scribed as the view of the communication system.

BA

CS

A AB B

external

internalvirtual representations

Figure 4.2: Communication model of virtually provided remote process.

t

External A

Internal

External B

A−CS(A)

CS(A)−CS(B)

CS(B)−B

Figure 4.3: Pipeline steps of the communication model.

Figure 4.2 indicates two further important aspects of communication. Thepro-
ducer/consumer-based synchronisation between process A and B (see Section4.1)
and the steps of a communication pipeline. Figure 4.3 shows the three pipeline
steps that are indicated by external and internal interactions of Figure 4.2. The
first step is an interaction between process A and the communication system (A
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– CS(A)). The next step represents internal interaction between parts of the com-
munication system at process A and B (CS(A) – CS(B)). The laststep is the inter-
action between the communication system and process B (CS(B) – B).

4.2.1 Application

Since the model abstracts communication to be an interaction between one pro-
cess and the virtual representation of its communication partner, the communi-
cation system becomes a black box that provides access to therepresentation of
the remote process. The virtual representation is mainly the representation of the
memory regions that are involved in communication. These buffers are accessed
to exchange data.

What doesaccessmean in the context of the model and the view of the appli-
cation? Each active interaction between the application and a (virtual) represen-
tation of a remote process is considered as access. An accesscan be classified as
direct accessand indirect access. Access is considered as indirect, if intermedi-
ate steps are required to exchange data between two processes. Additionally, the
transmission from process A to B can require process B to actively read data or
not. This excludes synchronisation that is explained separately (see below).

Therefore, theaccesscan be classified into 4 classes:

• indirect accessto the address space of B without process B involved: If the
address space of A and B is different,real communication will be necessary.
Otherwise, one would use direct access to exchange data. Communication
is defined asreal if there is any kind of network transfer required to move
data from process A to B. An example is one-sided communication. Either
the communication system or the processes are required to transfer the data
into and out of the communication system (read or write). This involves
only one of the processes.

• indirect accesswith both processes involved: Both processes are required
to interact with the communication system, i. e. virtually with the other pro-
cess, to complete the data exchange. This reflects the classical message
passing mechanism via send/receive or a central shared memory area in the
model. This kind of interaction abstracts from the fact thatthe memory of
the other process is accessed.

• direct accessto the address space of B without process B involved: This
requires a shared address space between A and B (e.g. threadsor shared
memory at application level). In this case, the representation is no longer
virtual.

• The last case,direct accesswith both processes involved, does not exist.
Process B has no influence on the data transfer if the data is directly written
or read by process A. Therefore, process B cannot be involved.
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The synchronisationof the data transfer from process A to process B (see
Figure 4.2) is abstracted to the following steps:

1. Data from process A can only be delivered to the virtual representation of
process B if there is an available buffer to store the data. This buffer can
be either the destination buffer of process B or an intermediate buffer inside
the communication system.

2. Process B has to provide information about the buffer. This will be called
buffer announcement. This has to happen in advance to the transmission of
data to the destination buffer of process B.

3. If process B is interested in all transmitted data, it has to know when data is
present in the (virtual) representation of process A. One-sided and two-sided
communication slightly differ in this step. In case of two-sided communi-
cation, data is actively read from the virtual representation of process A. In
case of one-sided communication, the data is silently delivered to the pro-
cess by the communication system. Process B has to read the status of the
delivery from the (virtual) representation of process A. This is step will be
calledcompletion. This is only the completion of the receiving process!

4. Only process A can decide when one or multiple data transfers are complete.
Thus, process A has to notify the virtual representation of process B that the
data transmission is complete. This will be callednotification.

5. In the model, two processes access the same black box independently. There-
fore, each access has to be synchronised by mutual exclusion. If the process’
access to the virtual representations is done via API calls,the access can be
synchronised inside the black box.

It can be seen that these steps are the same steps as describedfor theproducer/-
consumersynchronisation described in Section 4.1.

One additional step is required since the representation ofthe remote process
is virtual. Process A needs to know about thereal delivery to process B. This
can be called the transmission sidecompletion. Concerning the semantics, the
important aspect of completion is that process A cansafelyreuse its transmission
buffer aftercompletion. Safely means that the data is already delivered to the
destination or the communication system is able to reliablydeliver the data from
its intermediate buffers.

4.2.1.1 Two-Sided Communication

The classic two-sided communication via a network is represented by the model
if both processes use indirect access to the communication system.

The sender will initiate asend operation by calling an API. Depending on
the used API, it will specify either the virtual representation of the receiver or the
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address of the receiver itself. It will tell the communication system the location
of the source buffer. Depending on the implementation of thecommunication
system, the data can be copied into the communication systemby the sender or
by the communication system. This is the first step of the pipeline – the external
interaction between process A and the communication system(see Figure 4.3).

Somehow the communication system has to transfer the data toa virtual rep-
resentation of process A that is accessible by process B (details can be found in
Section 4.2.2). This is the second step of the communicationpipeline – the inter-
nal interaction.

Process B is required to read the data from the virtual representation of pro-
cess A. It calls areceive function to tell the communication system the process
from which it wants to read the data. It announces the destination address for
the data. The transfer of data can be done by the communication system or by
process B. This is the last step of the pipeline – the externalinteraction between
process B and the communication system.

The synchronisation steps of this transfer are included in the API calls. Here,
a distinction has to be made between blocking and non-blocking two-sided com-
munication.

1. If the communication system has internal buffers, the sender can immedi-
ately start transferring the data. Step one of the pipeline may happen without
waiting for an announcement of a receive buffer. If no internal buffers are
available, the sender is blocked (in case of blocking communication) or a
pendingsend is waiting for a buffer announcement processing inside the
communication system.

2. If the receiver callsreceive, this includes the announcement of the buffer.
The communication system knows about the destination now. While non-
blocking receive calls just include thebuffer announcement, blocking
calls additionally include the waiting forcompletion(see below).

3. Using a blockingreceive call, the receiver implicitly waits forcomple-
tion of the transfer. Since eachreceive call has to match a corresponding
send call, the completion is implicitly signalled if the messageis delivered.
Non-blockingreceive calls require an extra API call to assure comple-
tion (e. g.MPI_Wait).

4. The sender implicitly notifies the receiver about the completion of the trans-
fer. Eachsend call requires a matchingreceive call (in case of message
passing interfaces), therefore the complete transmissionof the data of a sin-
glesend call implies thenotificationof the receiver.

5. Mutual exclusion can be handled by the communication system because all
interaction is done via API calls. These calls can trigger mutual exclusion
inside the communication system if necessary.
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The completionof a blockingsend call is included in the call. Non-blocking
sends need an extra API call to assure completion (e. g.MPI_Wait).

Both processes are required to interact with the virtual representation of the
communication partner to perform the transmission of data.Hence, this is called
two-sided communication. Since process B will pick up the data, it is sufficient
for process A to specify the destination process. However, omitting the specifica-
tion of a destination buffer is dangerous. It requires the messages to be send and
received in correct order and number. MPI avoids buffer mismatch by using tags
as an abstract name of a buffer address. This allows unordered transmission of
messages with different tags. Tags are given by the programmer as compile-time
knowledge making internal negotiation of abstract names unnecessary. Neverthe-
less, eachsend requires a matchingreceive. This can be a major disadvantage
of send/receive data exchange between processes.

4.2.1.2 One-Sided Communication

How does one-sided communication fit into the model? First, aremote write
operation (put) is explained. Aget is briefly described afterwards. Accord-
ing to most of the existing one-sided communication APIs (e.g. MPI-2 [MPI97]
or ARMCI [NTKP06]), one-sided communication calls are considered as non-
blocking operations.

There is only one difference between a non-blocking one-sidedput and non-
blocking two-sided communication: one-sided communication omits the active
reading of data from the virtual representation. The data isdelivered by the
communication system. Therefore, one-sided communication allows an arbitrary
number of operations on the remote data buffer.

The same steps of synchronisation still need to happen (see above). Thus, the
operations cannot start or complete before thebuffer announced. Process A has
to notify process B to complete the operations at process B. Except from the com-
munication calls at process A (which can include the waitingfor buffer announce-
ment), all synchronisation steps require an explicit API call (buffer announcement,
completion at process A and B). For example the MPI-2active target synchroni-
sationAPI exposes all steps of synchronisation (except mutual exclusion) to the
application.

A non-blockingget operation at process A tries to read data from the virtual
representation of process B. It has to wait for the buffer announcement of pro-
cess B and triggers the communication system to retrieve data from the memory
of process B. After the data is read by process A it can notify process B about
completion. Theget call can complete locally if all requested data is available.
Since process A specified the number of bytes to read, it can decide about local
completion.
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To transmit data, only one of the processes is required to interact with the
virtual representation of the other process. This makes thecommunication one-
sided. Since the communication system delivers the data to process B, process A
has to specify the destination process and the address of thebuffer. These can also
be abstract names. As noted above, this allows an arbitrary number of operations
on the remote buffer. This can be a benefit if the application can make use of
multiple transfers within a singleproducer/consumersynchronisation [GT07].

4.2.2 Communication System

Looking inside the black box is the subject of this section. TheVirtual Represen-
tation Modelis applied to existing architectures.

All data transfers can be decomposed in two types of interaction: external
interactionandinternal interaction(see Figure 4.2). External interaction happens
between processes and the communication system and can occur as noted above
in Section 4.2.1. Internal interaction is required if the communication system is
separated into parts residing on separate address spaces (e. g. different hosts or
CPUs). In this case, data has to be moved internally from one representation to
another. This can be network transmission or data copies viainternal memory
regions.

The buffer announcementand thenotificationcan only be specified by the
communicating processes. Both of the synchronisation steps have to be exposed
to the application. A further propagation of this information depends on the re-
quirements of the hardware, the implementation, and the API. For example if the
API requires process A to specify the exact virtual memory address of the des-
tination buffer, the buffer announcement has to be propagated to process A. The
synchronisation messages of thebuffer announcementhave to be transferred at
least to the nearestneighbouringrepresentation if process B is not involved in the
data transfer (one-sided communication). Otherwise, the destination is not known
by the (virtual) representation that delivers the data to process B.

Since process B needs to know about thecompletionof the communication,
notificationmessages of process A always have to be propagated to processB.

4.2.2.1 Network without RDMA

If the underlying network is not able to perform direct delivery to the remote
process (e. g. Gigabit Ethernet), the communication systemhas to implement this
function in software. Otherwise, one-sided communicationcannot be performed
over this type of network.

If the model is applied to this kind of network, all virtual representations will
stay virtual. No physical mapping of an address space is possible. Thus, the
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Figure 4.4: Physical mapping of process B into the communication system.

general model will apply (see Figure 4.2).
Internal communication is represented by the transfer of data and synchroni-

sation over the network. External interaction can be implemented as CPU-based
memory copies between the process and the memory of the network interface (if
available).

If the communication system implements intermediate buffers (internal buffers),
the messages for buffer announcement of process B don’t haveto be propagated
to process A.

A typical example for the propagation or non-propagation ofbuffer announce-
ment messages is the implementation of theeager- andrendezvousprotocols. To
allow eager transmission of small messages, the communication system provides
internal buffers at process B. If a message is larger than thesize of the internally
provided buffers, process A has to wait for the propagation of the buffer announce-
ment from process B. Usually, process A requests for the propagation of the buffer
announcement. Therefore, it is calledrendezvousprotocol. According to the Vir-
tual Representation Model, therendezvousrequest message is not required.

4.2.2.2 Network with RDMA

Figure 4.4 shows the mapping of the model to implementationsof a communica-
tion system with RDMA. For process A, the memory of process B can be directly
mapped into the communication system at process B. Note, this mapping only
represents the communication system’s view on the communication initiated by
process A. Buffer announcement calls from process B still require external inter-
action between communication system and process B according to Figure 4.2.

This mapping shows thatbuffer announcements have to traverse the internal
link (this is the network!). Since the communication systemof process A can
directly access the memory of process B (RDMA), it needs to know the exact
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Figure 4.5: Physical mapping in case of shared memory as transport.
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Figure 4.6: Physical mapping in case of shared address space.

memory address of the buffers. Since the speed of the networks is still slower than
the speed of the interaction between process B and the communication system at
process B, the buffer announcements can become a performance issue for RDMA.

4.2.2.3 Shared Memory inside the Communication System

If the communication system uses a shared memory region to transport data be-
tween process A and B (A and B have separate address space), nointernal inter-
action is required (see Figure 4.5). The data and synchronisation messages have
to be copied into and out of the memory of the communication system (external
interaction).
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4.2.2.4 Shared Address Space

Figure 4.6 shows the mapping if process A can directly accessthe memory of
process B. The termprocessshould be replaced bythreadhere to reflect the im-
plementation in practise. All virtual representations canbe realised as physical
representations.

Process A has to know the address or the abstract name of the destination
buffer. Since the address space is shared among all involvedprocesses, the desti-
nation process directly announces the buffer to process A.

The communication system is still there. Under the hood, at least the hardware
has to transfer data over memory buses or has to keep caches coherent. These tasks
introduce similar external and internal interaction as thenetwork transfers.

For example, if A and B are threads and a thread writes data into a shared vari-
able and the result should be processed by the other thread running on the second
CPU of an SMP node, the hardware has to copy the data from the cache of one
CPU to the cache of the other CPU. At this level of detail, there is a communica-
tion system working and the representation of B to A is just virtual too.

The assignment of variables can also be seen as an API call to tell the com-
munication system about the source and destination buffer and the size of the
data. However, this is not recognised as an API call. The synchronisation still
requires special calls. For example programming languageslike C/C++ or Java
lack a kind ofbuffer announcementfor simple assignments. Therefore, the syn-
chronisation is done via mutual exclusion or barriers in these environments. If
producer/consumersemantics are required, barriers are an appropriate solution.
A barrier implicitly includes thenotificationandcompletionas well as abuffer
announcementfor future access.

4.2.3 How to Apply the Model

The previous sections provided examples on how theVirtual Representation Model
is applied to specific environments. This section provides some description how
to apply the model to a general inter-process communicationscenario.

Virtual Representations are the determining components of the model. If an
API is given, the virtual representations are specified by this API. The model
shows that process A accesses the (virtual) representationof process B. This ac-
cess is determined by the API. In this case, the application of the Virtual Repre-
sentation Model helps to implement efficient communication. If no API is given,
the model can be a guide to an efficient API. Identify potential representations
from the details and classification below! After a distinction between external
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and internal communication steps, the model helps to specify and implement an
efficient API.

Details of external and internal communication have to be identified. Answer
the following questions:

• Where has the data to be copied or processed? This will resultin a more
detailed view on the pipeline and the pipeline steps.

• Which steps can be classified as local, transfer, or remote steps from the
viewpoint of process A? A transfer step is moving data from a local buffer
at process A to a remote buffer at process B. Local steps move data from a
local buffer of process A to another local buffer at process A.

• What are the characteristics of these pipeline steps? Latency and per byte
costs are important parameters. Consider the transfer characteristics of both
data messages and synchronisation messages.

• Where are the bottleneck steps of the pipeline? This will help to decide
about buffer management inside the communication system.

Classification of the access depends on the number of pipeline steps and the
type of the last step to deliver the data to the destination buffer.

• indirect access with involved remote processrequires at least two pipeline
steps to have an indirect access. A prominent example with two steps is
two-sided communication between two processes via shared memory. The
first step is local to process A. The second step is local to process B (see
Figure 4.5 at Page 78).

• indirect access without involved remote processrequires at least two pipeline
steps to have an indirect access. The last step has to be a transfer step to the
memory of process B. Otherwise, the remote process B would beinvolved.
An example with 2 steps is one-sided communication using RDMA. How-
ever, one-sided communication over Ethernet uses a 3-step pipeline. The
communication system at process B has to deliver the data.

• direct access without involved remote processallows only one pipeline step
to deliver data to process B. This is only possible if A and B have a shared
address space. For example data exchange between two threads.

If an API has to be designed, the required communication and synchronisation
steps have to be identified and mapped to appropriate calls.
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4.3 Aspects of Efficient Communication

This section explains aspects of efficient communication, particularly from the
point of view of the application. It can also be seen as recommendations or re-
quirements to a communication system to provide efficient inter-process commu-
nication. Every recommendation is described in the contextof the Virtual Repre-
sentation Model. Details of internal communication are hidden in the black box
called communication system. The communication pipeline is considered to have
three steps.

Sending and receiving data is described separately. This isbecause receiving
data is a bit more complex than sending. This is because receiving data depends
on the destination process providing the buffer and the datato arrive at the virtual
representation in the communication system.

4.3.1 Communication Pipeline

If the communication has to traverse a network, the second step of the communi-
cation pipeline will be the bottleneck step in today’s hardware (see Figure 4.3 at
Page 71). The speed of network communication is still below the speed of data
transfers inside a host. According to [WKM+98], this step has to be employed as
early as possible to achieve a short communication time.

This results in two recommendations: send messages (including data and syn-
chronisation) as early as possible and store them as close aspossible to the des-
tination buffer. Sending data early will assure that the bottleneck is employed as
early as possible. However, the sender also has to be sure that there is any buffer
to store the data since sending data without intermediate buffering requires the
destination buffer to be available. If the receiver is not prepared (early sender
problem), the communication system can defer the transmission or provide in-
termediate buffers. If intermediate buffers are used, the communication system
should store the dataas close as possibleto the destination buffer.As close as
possiblemeans if the receiver becomes ready, the delivery of data requires only
the traversal of fast (non-bottleneck) pipeline steps.

Since the buffering of data requires memory, the designer ofa communication
system has to be very careful to not violate thememory constraints. The com-
munication system should leave as much memory as possible tothe application.
Even if the CPU is available to quickly process the pipeline steps, the memory
and the cache should be used carefully. CPU-based access to intermediate buffers
also increases thecache pollution. This is known to hamper the performance of
applications. The application data is replaced by the communicated data and has
to be reloaded to the cache afterwards.
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4.3.2 Sending and Writing

A process can actively transmit data in several ways. It can use two-sided com-
munication to send data to another process. One-sided communication is a second
kind to perform active transmission of data. Both of these ways can be requested
as blocking or non-blocking communication. However, one-sided communication
operations are non-blocking in the mentioned interfaces ofChapter 3.

If a blocking transmission is requested, the application isblocked until the op-
eration is complete. Therefore, blocking operations are time-critical operations.
The processing of the algorithm has to wait for the completion. Therefore, the
CPU is available1 to the communication system to process the requested and pend-
ing communication operation.

The application wants blocking transmissions to be processed by the fastest
mechanism that is available. From the application’s point of view, the processing
is allowed to make arbitrary use of the CPU (see Section 3.7).

Non-blocking communication offers the possibility of overlapping computa-
tion and communication. Therefore, non-blocking communication is not as time-
critical as blocking communication if two prerequisites are fulfilled: first, the
computation requires more time than the communication (this is a non-trivial de-
cision!). Second, the communication partners are not waiting for the data. This is
also known as thelate sender problem[Jül08] and can become a serious issue of
performance and scalability.

If the application calls a blocking synchronisation function to wait for the
completion of non-blocking transmissions, the communication operation becomes
blocking. The application is blocked until the communication completes.

In many APIs, the semantics of blocking and non-blocking communication
prevent the application from accessing the buffer until theoperation is completed.
Thus, for both kinds of transmission, the communication system has access to
the involved application buffer. In case of non-blocking communication, special
care has to be taken on the availability of the buffer. The operating system can
schedule other tasks and page out parts of the buffer (see Memory Registration in
Section 3.7.1.2 on Page 54). This can prevent parts of the communication system
from accessing the buffer (e. g. if the network hardware directly transmits the data
from the application’s buffer).

4.3.3 Receiving

The process of receiving data is different in one-sided and two-sided communica-
tion. Therefore, a distinction is made in this section.

1assuming that only one process or thread is running on a single CPU
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Both types of communication have the common goal to efficiently deliver in-
coming data to the buffer of the application.

4.3.3.1 Two-Sided Communication

If the application calls a blocking or non-blockingreceive routine, the com-
munication system can start to deliver incoming data to the destination buffer.

Blockingreceive calls are time-critical because the application cannot pro-
ceed. Therefore, the fastest mechanism should be applied todeliver the data. The
same considerations apply as for blockingsend andwrite operations. The
CPU is available to process the data, but the memory usage andpotential cache
pollution have an impact on the application performance.

4.3.3.2 One-Sided Communication

The communication system of the destination process of one-sided communica-
tion is also considered as a receiving communication system. However, the ap-
plication is not actively involved in receiving data – the communication system is
involved.

First, the termreceivehas to be explained for a destination process of one-
sided communication. Thebuffer announcementdetermines the the earliest time
that the communication system can start delivering the datato the destination
buffer. The buffer announcement is comparable to the initiation of a non-blocking
receive. However, the one-sided buffer announcement is not restricted to a
single remote operation.

Similar to a non-blockingreceive, the communication becomes blocking if
the application starts waiting fornotificationto complete the one-sided communi-
cation operations on the announced buffer.

4.3.3.3 Two-Sided and One-Sided Communication

In general, there are three possible cases when thebuffer announcementis issued
by the application: all data is locally available, some datais available, or no data
is available.

1. All data is available: Data is completely received to a local buffer of the
communication system. This requires buffering inside the communication
system and a sufficient amount of internal buffers to receivethe transmitted
data.

Often, this local copy at the receiver is avoided for performance reasons
(see Section 3.7.1). However, the pure speed of local copiesis very high
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compared to network transmission. If the application becomes ready to
receive the incoming data, only a fast and local copy is required instead
of a much slower transmission over the network. If it is allowed by the
application semantics, the sending or writing process can complete before
the receiver calledreceive in this case. This reduces the impact of the
early sender problem.

Receiver side buffering is not possible if RDMA is used to implement (one-
sided or two-sided) communication because of the physical mapping of the
memory to the communication system (see Section 4.2.2.2). Therefore, this
case is not possible with RDMA as a transport.

2. Some data is available: If some of the data is received to an intermedi-
ate buffer, the communication system can continue to receive data into this
buffer and make a copy afterwards. However, this is not efficient. After
the communication system knows the address of the application buffer, fu-
ture incoming data should be received directly. This reduces the number of
bytes to copy. The data in intermediate buffers can be copiedafterwards.
This kind ofhybrid receiving is implemented in GAMMAsockets [SSP03]
and NEON (see Chapter 5).

According to the explanation of the first case, this is not possible if RDMA
is used to transfer data.

3. No data is available: In this case, the communication system should di-
rectly use the application buffer to receive the data. This helps to avoid
additional copies. This is the only possible case for RDMA-based trans-
ports (see above) or if the communication system does not provide internal
buffers.

4.3.4 Reading Data

A one-sidedget or read has to send a request for data. Therefore, it will suffer
from theearly sender problemif the remote buffer is not announced. The request
for data has the same requirements as a non-blockingsend. The reply has the
requirements of a non-blockingreceive.

The combination of request and reply results in an extended pipeline: three
steps for the request and three steps for the reply. The bottleneck step of this
pipeline is the second step of both request and reply. Therefore, the request for
data should be send as early as possible, to allow the reply tostart as early as
possible.
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If the get is initiated, no data will be available at the communicationsystem
of the initiating process. Thus,get operations will always find the last case of
the above (see Section 4.3.3.3).

If the completion of aget is requested, the operation becomes a sequence of
a blockingsend and a blockingreceive. If the request is already sent, then
just a blockingreceive will have to be completed.

4.3.5 Synchronisation

There is not much an API can do to improve the synchronisationof blocking
communication since communication and synchronisation are triggered by a sin-
gle API-call. With non-blocking communication, the synchronisation becomes
more variable. An API can include some of the synchronisation steps into com-
munication calls or provide explicit calls. At least completion must be a separate
call. Otherwise, the communication is blocking.

Two-sided non-blocking communication includes thebuffer announcement
and thenotification into the communication calls. Thecompletionis done via
explicit routines. This allows an application to announce abuffer as early as
possible and to defer the completion to the latest time. At the receiver side the
application can make use of communication and computation overlap. This helps
to hide communication time behind computation and improvesthe performance
of applications.

At the sending process, the notification is included in the communication and
the completion is done by a separate call. This allows the sender to initiate the
communication as early as possible and defers the completion to a later time.
This also allows overlapping communication and computation. Furthermore, the
early notification also allows the receiver to complete earlier.

One-sided communication interfaces require the same receiver-side synchro-
nisation as for two-sided non-blocking communication. Thesender is allowed to
perform multiple communications to match a singlebuffer announcement. There-
fore, thenotificationcannot be implicitly performed with a message by default.

The one-sided communication interface of MPI-2 and all other APIs presented
in Chapter 3 prevent the sender-side (in case of aput operation) from an early
notification because thenotificationis included in thecompletioncall. Thus, an
early notification and a late completion is impossible. In case of MPI-2, this is true
with thepost-start-complete-wait and thefence synchronisations.
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4.3.6 Bi-directional Synchronisation

The combination of notification and completion introduces another critical issue
discovered in MPI-2 if two processes bi-directionally communicate like the Cel-
lular Automaton described in Section 5.1 of the next chapter.

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

������

������������������������������������������������������������������������

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
�� ���

���
���
���

���
���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

������

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

����

buffer announcement

data transfer

synchronisation message

A B

CS

A

AB

B

MPI_Put
no bufferno buffer

put put

proc A network proc B
MPI_Win_post1

4

1

2 2

33

4

55

MPI_Win_post
MPI_Win_start

MPI_Put

MPI_Win_complete

MPI_Win_wait

MPI_Win_start

MPI_Win_complete

MPI_Win_wait

transport direction

arrival (zero time step)

ca
lc

ul
at

io
ns

ov
er

la
pp

ab
le

implicit
barrier

msg. A −> B

msg. B −> A

Figure 4.7: Implicit barrier with bi-directional synchronisation.

The problem of the MPI-2 interface is depicted in Figure 4.7.It shows the
bi-directional interaction of two processes based on one-sided communication on
top of RDMA. This means a direct data placement through a physical mapping of
each of the remote processes. Any access to the communication system is indirect
(API calls). Therefore, the processes A and B still access the virtual representation
of each other.

The figure shows one iteration of abulk-synchronousapplication using the
MPI-2 post-start-complete-waitsynchronisation (since the start is often imple-
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mented to do nothing [GT05], it is omitted here). The dashed lines show the data
flow from A to B. The dotted lines represent the flow from process B to A. First,
a buffer is announced (post) and a non-blockingwrite operation to the remote
process is initiated (put). Then some calculation is done. Synchronisation and
completion are performed at the end. The synchronisation (complete) is a combi-
nation of notifying the remote process and completion ofput. This is the critical
issue. Finally, both processes wait for completion of the remote access (comple-
tion of MPI_Win_post).

If both processes use explicit notification together with the corresponding
completion, animplicit barrier is created. This barrier can introduce several ma-
jor performance penalties. The barrier is implicit becauseit is the result of a
notification and a completion. On their own, both operationsdo not indicate any
barrier-like behaviour. If ever, only experienced programmers will be aware of it.

The performance penalties are:

• Increased synchronisation time is the result of two processes waiting for a
signal from each other. If the synchronisation and completion is the last
step of an iteration, the completion has to wait for a full traversal of the
communication pipeline (sync time).

• If the beginning of an iteration is the announcement of the buffers (post)
and the initiation of a data transfer (put), more early sender problems will
occur. As we know from Section 4.2.2.2, the announcement hasto traverse
the network. If the traversal takes more time than any calculation between
the post and theput, the data transfer has to be deferred. The result is an
inefficient usage of the communication pipeline.

• A deferred data transfer reduces the potential to overlap communication and
computation. The non-blocking behaviour ofput is counteracted.

• If the notification and completion ofput is moved to and earlier time in-
side the iteration, the synchronisation can overlap the computation. The
potential to overlap the data transfer itself is reduced. This counteracts the
non-blocking behaviour ofput.

• The barrier itself reduces the overall process skew tolerance of non-blocking
one-sided communication. Any delay in a process results in adelayed syn-
chronisation message and in increased iteration time of both processes.
A process skew would allow the leading process to announce the buffer and
avoid an early sender problem at the slower process. Then, the slower pro-
cess can make full use of communication overlap to potentially catch up the
other process. A process delay at the leading process does not influence the
overall runtime. A detailed analysis of this effect is presented in Section 5.1.

Two solutions are possible for a programmer to reduce the negative impact of the
barrier. First, deferring theput operation to avoid early sender problems. Second,
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synchronise theput operation earlier, to allow the barrier to be overlapped with
computation. Both effects are measured in the context of NEON in the diploma
thesis of David Böhme [Dav08]. Both solutions provide only half of the possible
time to overlap. Additionally, the programmer needs to knowthe half of the
iteration.

4.3.7 Summary

The recommendations from the application’s point of view are:

1. Use the fastest mechanism to transport data if time-critical communication
is pending!

2. Communication becomes time-critical if any process is waiting for the com-
munication to complete!

3. Do not make use of the CPU if no time-critical operations are initiated.
4. Be careful when considering the memory as available to thecommunication

system!
5. Make as much use as possible of the applications buffers!
6. Respect the characteristics of the pipeline!
7. Send data as early as possible!
8. If data has to be buffered, store the data as close as possible to the destina-

tion!

The serious impact on bi-directional interaction of processes shows the issues
of combinedcompletionandnotification in MPI-2. To solve this problem, the
completion ofput and the notification have to be separated. Synchronisation has
to happen as early as possible to enable overlap of the synchronisation message.
Completion has to happen as late as possible to increase process skew tolerance
and the potential to overlap communication and computation.

The most important recommendation is to not force the implementation of the
recommendations. Several recommendations have orthogonal goals. For instance
sending data as early as possible will collide with the recommendation to never
consider the memory as available, because early sending requires buffering if the
receiver is not ready.

4.4 Design Criteria for an Efficient One-Sided In-
terface

This section proposes the basic concepts for the design of anefficient one-sided
communication interface. The principles of the communication model (see Sec-
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tion 4.2) are applied to the API.
An API is considered to be efficient if both the programmer caneasily use it

and the API is efficiently implementable on top of different transports (hardware
and software) with different capabilities.

The basic functionality consists of a communication function to write data
to remote processes and synchronisation operations for buffer announcements,
completion, and notification.

4.4.1 Communication

A non-blockingput operation is sufficient for a basic API. Aput call requires
the source buffer, the number of bytes to transmit, the name of the destination
process, the address in the destination buffer, and the synchronisation flag for
implicit synchronisation.

Because the (passive) destination process just announces the starting address
of the buffer, the active process has two ways to specify an arbitrary memory
address in the destination buffer:

• provide the exact address or

• split the exact address into the start address of the remote buffer and an
offset.

Since the second mechanism is common practise in current APIs and there’s no
difference in the amount of translation operations, the second method is used for
the one-sided communication API presented below.

If abstract names are used to address remote buffers, the Virtual Represen-
tation Model helps to determine the virtual representationthat has to know the
destination address. At least the step that directly accesses the destination buffer
(if any) has to know this address. This is also the location wherebuffer announce-
ments have to be delivered at least (see above). For example if RDMA capable
hardware can directly access the remote destination buffer, the communication
system at the active communication partner has to know the destination address.
This means that buffer announcements have to traverse the network, if RDMA is
used.

4.4.2 Synchronisation

Focusing on non-blocking communication operations, the synchronisation is an
important aspect of the API. Synchronisation can be implicit (embedded in the
communication call) or explicit (a separate API call). The central question is:
which synchronisation steps can be implicit and which can beexplicit?
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The completion of non-blocking communication has to be explicit. Otherwise,
the operation will become blocking.

The buffer announcement of one-sided communication is always an explicit
call, since the destination process does not initiate any communication.

The only decision that remains is whether to use implicit or explicit notifica-
tion.

4.4.2.1 Implicit or Explicit Notification

A portable API has to useimplicit notification. An explicit notificationcannot be
efficiently implemented if the communication system’s performance is improved
by including the synchronisation into data messages. For example an implemen-
tation ofexplicit notificationon top of Ethernet either will have to send an explicit
synchronisation message or to defer the transfer of data to the synchronisation
point. The deferral is inefficient in terms of the pipeline model. An additional
message is inefficient in terms of the communication overhead.

While explicit notification cannot be mapped efficiently to the synchronisation
message embedded into the data message, implicit notification can be mapped to
both embedded and explicit synchronisation messages.

Therefore, implicit notification is preferred in the designof this API, even
if the underlying network or protocol is more efficient with explicit notification.
For example InfiniBand RDMA transfers are much faster than any other available
mechanisms of the current InfiniBand OFED-Stack [Ope]. In this case, implicit
notification can be efficiently implemented by sending data and notification mes-
sages separately.

Synchronisation of multiple operations with a single synchronisation can be a
challange if message ordering is not guaranteed by the underlying protocol. For
example, Open MPI is able to communicate over multiple communication paths.
In this case, all synchronisation has to be done carefully since the synchronisation
message can arrive before one of the previous unsynchronised messages [BSL07].
This will have a bad impact on the application.

If the focus is on the learning efforts of users: ifdirect accessis available,
implicit notification will force the application to access data via an API call in-
stead of just directly accessing the data. Thus, if the goal is to design an API to
encourage users ofdirect accessAPIs to use APIs withindirect access, explicit
notification can reduce the efforts to port applications. This may be a benefit to
users and usability but not to performance.
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4.4.2.2 Synchronisation Functions

The API has to offer a way to implement aproducer/consumer-based interaction
between processes. This requires 5 synchronisation operations. Depending on the
API, a maximum of four of these operations have to be exposed to the program-
mer. Mutual exclusion can be handled inside the communication system since
each interaction is triggered by calling the API. The required steps were already
analysed in Section 4.1 and 4.2.1.

Wait for Buffer Availability: An API should not expose this to the user. If the
communication system is able to queue and defer communication requests
or is able to buffer messages, this synchronisation can be handled transpar-
ently. Omitting this function is different from MPI-2 whereoperations like
MPI_Win_fence or MPI_Win_start expose this functionality to the
user. Some implementations implement theMPI_Win_start routine to
do nothing [GT05].

A put can be deferred internally. A deferral is not new. The MPI-2 stan-
dard allows a deferral of synchronisation and communication messages.
This deferral is not preferred. But since the remote buffer is not known,
it may become necessary (e. g. InfiniBand RDMA can not proceedwithout
the remote address and key).

Buffer Announcement: Only the application itself knows about buffer availabil-
ity. Therefore, an API has to provide a special call to announce a buffer
(buffer announcement). Additionally, since the destination process does not
initiate communication, this call cannot be embedded into communication.

A typical method in parallel applications is to reuse buffers, e. g. an update
in each iteration. If the API should match this pattern, it should provide
two kinds of announcement functions. A complete announcement including
address and size of the buffer. A light-weighted version just to signal there-
availability of the buffer. Whether the underlying communication system
makes a difference or not, is unimportant. However, it simplifies the usage
if buffers are reused frequently.

Wait for Notification: This is thecompletionof an announcement. For conve-
nience there should be a blocking and a non-blocking versionof this func-
tion, because probing for a status is a common requirement. This is a very
common API call (MPI_Wait, MPI_Win_wait).

Notification: As seen in Section 4.3.5, this signal must be separated from the
completion of communication operations. According to the above analysis,
an implicit signalling is proposed since the API should not anticipate the
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best synchronisation method of the communication system. To implement
implicit notification, an API has to expose a flag to the programmer in order
to inform the communication system to notify or not. Thus, all communi-
cation calls have to include a synchronisation parameter.

4.4.3 Completion

One additional operation is required to wait for thecompletionof communica-
tion operations. The completion of the buffer announcementhas already been
explained since it is a required step of theproducer/consumersynchronisation.
The completion of the communication operations has to be available too. It is
proposed to use the same API call as for the completion of buffer announcements.

For a basic API, the completion based on local events is sufficient if the com-
munication system provides reliable transmission of messages.
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Figure 4.8: Bi-directional synchronisation in the proposed API.
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4.4.4 Bi-directional Synchronisation

Figure 4.8 shows the bi-directional interaction between two processes that use the
proposed API with separated notification and completion. The notification is in-
cluded in the communication call (put+notify). The main difference between
this Figure and Figure 4.7 is that the buffer announcement (post) can complete
earlier (post complete possible).

The time between the possible completion ofpost and the call to complete
thepost is the maximum of a process skew in process A without delayingpro-
cess B. This time is significantly increased compared to Figure 4.7.

Compared to Figure 4.7, the time for synchronisation at the end of the iteration
is reduced to local completion (the completion of theput operation is considered
to be local in both figures).

4.5 Conclusion

The presentedVirtual Representation Modelis based on an abstraction of the
ISO/OSI reference model and theproducer/consumersynchronisation. The model
allows the comprehension of the required steps of communication and synchroni-
sation of one-sided and two-sided communication.

By mapping the model to a certain transport protocol or hardware, it can give
hints to an efficient design and implementation of the communication system. For
example mapping the model to networks with RDMA (like InfiniBand) tells the
implementer that buffer announcement messages have to traverse the network.
This is not required for networks without RDMA (like GigabitEthernet).

A drawback of the model is that it can only represent the view of one of the
processes at a time if physical representations are applied.

The differences between one-sided and two-sided communication are only re-
lated to the transfer of data. Theproducer/consumersynchronisation indicates that
applications will not benefit from one-sided communicationif they requirepro-
ducer/consumer-based synchronisation of single communication operations. Both
two-sided and one-sided communication have to perform the five synchronisation
steps either by the application or by the communication system. One-sided com-
munication can reduce the number of overall synchronisations if the application
can make use of multiple communication operations within a single synchronisa-
tion. There are some examples for non-contigous data [MS05]and the NAS FT
benchmark [BBNY06] that could benefit from one-sided communication.

The synchronisation in two-sided and one-sided communication is compared.
The most important difference between one-sided and two-sided communication
in the MPI-2 interface is thatnotificationandcompletionis combined into a sin-
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gle API-call in case of active target synchronisation of one-sided communication.
This is also true for all analysed APIs presented in Chapter 3. However, the ap-
plication’s view on non-blocking communication requires that notification and
completion have to be separated to achieve the performance of non-blocking two-
sided communication. This also applies if multiple operations are synchronised
by a single notification and completion.

The basic design criteria for efficient one-sided communication was derived
from the presented model. Implicit notification is more portable to the capabilities
of underlying networks. On the basis of the proposed functionality, a one-sided
communication interface will be designed and implemented in the next chapter.
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In this chapter, the benefits of one-sided communication forparallel appli-
cations are exploited based on Chapter 4. This API is expected to be efficiently
portable to different transport protocols with different capabilities. The API is
calledNew Efficient One-sided communication interface (NEON). NEON is im-
plemented and evaluated on top of the Socket interface over Ethernet (see Sec-
tion 5.3) and the Verbs API over InfiniBand (see Section 5.4).

Before NEON is presented, the behaviour of abulk-synchronousparallel ap-
plication is analysed in Section 5.1. This application is a Cellular Automaton.

5.1 Application Analysis: Cellular Automaton

The Cellular Automaton is an example for the large class ofbulk-synchronous
parallel applications. It iteratively calculates a so-called stencil. This is similar to
the well known game of life by John Horton Conway.

Since the original version is based on MPI with two-sided communication,
this section analyses the two-sided versions with blockingand non-blocking com-
munication first. This analysis is required to better evaluate the reasons of the
reduced performance of the version with MPI-2 one-sided communication.

Figure 5.1 shows the one-dimensional domain decomposition. Due to the
neighbourhood dependency of the (9-point-)stencil calculations, the cells at the
topmost and undermost borders have to be exchanged between the members of the
process group. Using a one-dimensional decomposition simplifies the communi-

process 1

process 2

process 3

Figure 5.1: One-dimensional domain decomposition of the Cellular Automaton.
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20 lines 1024 lines
Implementation time [s] comm.time (%) time [s] comm. time (%)
Sendrecv 29.97 83 % 379.72 9 %
ISend/Irecv 15.22 67 % 356.74 1.8 %
OSC pscw 29.82 83 % 371.56 6.5 %

Table 5.1: Runtime and of communication time of the CellularAutomaton.

cation pattern by reducing the number of messages to send. Itfurther increases
the efficiency to exchange the cells at the border, since onlyone dimension of an
array can be contiguously represented in today’s memory. Thus, the topmost and
undermost line can be transferred as a contiguous block of data.

5.1.1 Measurements

Three implementations of the Cellular Automaton are measured. The blocking
variant makes use of the point-to-point primitiveMPI_Sendrecv to exchange
cells. The non-blocking Cellular Automaton with two-sidedcommunication ini-
tiates communication withMPI_Isend andMPI_Irecv. The synchronisation
is done viaMPI_Wait. The implementation with one-sided communication uses
thepost-start-complete-wait active target synchronisationof MPI-2.

To evaluate different ratios of communication and computation, two different
sized Cellular Automata are measured. First, a Cellular Automaton is run with
10 % of the cells communicated (20 lines per process). The second experiment
uses a Cellular Automaton with 0.195 % of the cells to communicate (1024 lines
per process).

Each measurement retrieves the overall runtime of the Cellular Automaton.
Table 5.1 shows the average of 3 runs with 30000 iterations on8 nodes of the Ein-
stein cluster (see Appendix A.2). The size of the transferred messages is constant
(4104 Bytes).

The results are the basis of the discussion in the following sections.

5.1.2 Point-to-Point

The blocking version of the Cellular Automaton usesMPI_Sendrecv. Inter-
nally, this is a sequence ofMPI_Irecv - MPI_Send - MPI_Wait in case
of the used MPICH2 version. This means that it uses non-blocking communica-
tion. However, this is just to avoid a deadlock when all processes call the same
sequence ofreceive andsend.

Using a non-blocking receive has a further advantage. Each process signals the
available buffer and starts sending data. This allows the communication system
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Figure 5.2: Jumpshot visualisation of the CA with MPI_Sendrecv.

to optimise communication. Since it is not known which process is ahead1, this
scheme is more efficient than a fixed send/receive pattern.

In general, this sequence of primitives introduces a point of synchronisation
or a barrier between neighbouring processes. Since all processes build a logical
ring, a front of synchronisationis created. This front is visualised by a jumpshot
picture in Figure 5.2.

If the non-blocking Cellular Automaton is used (see Listing5.1), all calcula-
tions can run in parallel to the communication, except for two lines. The first
action is to announce an available buffer by callingMPI_Irecv. The first and
the last line of each process’ domain is calculated. Then,MPI_Isend is called
to submit the topmost and the undermost line. This implicitly notifies the com-
munication system (and finally the receiver) that this is thelast (virtual) indirect
access to the remote buffer. After the calculation is done, the completion of all
non-blocking operations is forced by callingMPI_Wait.

1 f o r ( a l l i t e r a t i o n s ) {
2 MPI_Irecv ( f i r s t r o w , p rev iousPE ) ;
3 MPI_Irecv ( l as t r o w , nextPE ) ;
4

5 / ∗ c a l c u l a t e f i r s t a n d l a s t r o w ∗ /

6 s i m u l a t e ( ) ;
7

1The runtime of an iteration can vary due to interference of the operating system or load im-
balances of the calculations.
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8 MPI_Isend ( f i r s t r o w , p rev iousPE ) ;
9 MPI_Isend ( l as t r o w , nextPE ) ;

10

11 / ∗ c a l c u l a t e r e m a i n i n g c e l l s ∗ /

12 s i m u l a t e ( ) ;
13

14 / ∗ s y n c h r o n i s e ∗ /

15 MPI_Wait ( . . . ) ;
16 }

Listing 5.1: Non-Blocking Cellular Automaton

Measuring the Cellular Automaton with 20 lines per process shows a 16 %
higher amount of communication time ifMPI_Sendrecv is used instead of non-
blocking communication. The blocking Cellular Automaton runs 1.969 times
(96.9 %) slower than the non-blocking version. This effect disappears if the
amount of communication is low (see right column in Table 5.1). The impact
of the communication disapears.

The runtime of a sequential versiontseq is calculated as the sum of the timeti
for each iterationi out ofn:

tseq=
n

∑
i=1

ti

If m processes work in parallel and exchange the required cells at the end
of each iteration, the overall runtime of the blocking Cellular Automatontsync

is the sum of all of the longest iteration times (see Equation5.1). Due to non-
deterministic delays, the slowest process differs from iteration to iteration. At
the call toMPI_Sendrecv, faster processes have to wait for completion of the
bidirectional blocking communication. Figure 5.2 shows the typical flow chart
created with jumpshot when usingMPI_Sendrecv. n represents the number of
iterations.

tsync =
n

∑
i=1

max{ti1, ti2, . . . , tim} (5.1)

Using non-blocking communication, the time to wait is theoretically shortened
or even nullified. Analysed traces of the Cellular Automatonshow that process
skew also leads to wait times. A call toMPI_Wait will take more time if one of
the communication partners is not able to transmit the required data in time. Thus,
the non-blocking version also becomes (partially) synchronous. In the following,
a non-blocking Cellular Automaton will be called to be inpartially synchronous
state if await call cannot return immediately due to missing remote data.
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Figure 5.3: Time spent in the barrier at the end.

Even though the partially synchronous behaviour in the longterm, the overall
runtime is better than the runtime of the blocking version. Why? First, the possi-
bility to overlap computation and communication can reducethe communication
time. Second, overall runtimetasyncis no longer the sum of all slowest iterations,
but (mostly) equals the overall runtime of the overall slowest processl (see Equa-
tion 5.2). All other processes have to wait at the end of the calculations (see barrier
wait times in Figure 5.3).

tasync=
n

∑
i=1

ti l (5.2)

Process skew is possible due to impacts of hardware2, scheduling, interrupts,
or background processes. Thus, each iteration will potentially have a different
slowest process. A study of the impact of system noise on parallel applications in
large scale is presented in [PKP03].

Using non-blocking communication these differences in runtime can be (par-
tially) buffered. The time buffer is as large as the time between initiation of non-
blocking communication and the corresponding enforced completion (approxi-
mately one iteration in case of the Cellular Automaton). After this buffer is con-
sumed, the Cellular Automaton enters a partially synchronous state and the overall
runtime will be prolonged. The wait times can were detected in visualised traces.
They also have been measured by countingMPI_Test loops that were used in-
stead ofMPI_Wait. If any of the waiting processes is slowed down, the partial

2Even identical CPUs may have slightly different timings.
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synchronous state can end.

5.1.2.1 Shift of the Slowest Process

Equation 5.2 assumes that the slowest process never has to wait because all other
processes run ahead. This assumption is not generally valid.

For example:

1. Starting from a non-blocking Cellular Automaton in a partial synchronous
state due to processk.

2. This may result in wait times at its neighboursj = k±1.

3. Due to system noise in processj, j is no longer ahead ofk and becomes the
slowest processl at the end of the calculations.

4. The overall runtime is the runtime ofl and it contains wait times from a
previous partial synchronous state caused byk.

After this example, Equation 5.2 can only be used as a lower boundary to the
runtime of a non-blocking Cellular Automaton.

5.1.2.2 Runtime Difference Between Blocking and Non-Blocking:

Summarising the above explanations, the runtime difference is the result of 3 ef-
fects:

1. Most obviously, the communication time of the non-blocking Cellular Au-
tomaton is reduced due to the possibility to overlap computation and com-
munication. The measured communication time is reduced by 16% com-
pared to the blocking variant.

2. The blocking Cellular Automaton suffers directly from delays in one of the
processes, caused by the synchronisation at the end of each iteration. The
non-blocking implementation tolerates process skew up to acertain amount
of time without introducing any wait time.

3. Because of the synchronised processing, all parts of the blocking applica-
tion initiate the communication at about the same time. Thismay lead to
traffic bursts in the network infrastructure. If the non-blocking processes are
skewed, their communication can occur more scattered over runtime. This
effect can hardly be quantified and will not be quantified here. It is expected
to have a minor contribution to the overall runtime (especially with the low
number of used processes). Some approaches to respect the distribution of
network traffic can be found in [HC07].
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5.1.2.3 Summary

Process skew has an impact on the performance of parallel applications (the Cel-
lular Automaton in this case). Using computation and communication overlap
compensates short delays. The overall impact is hard to predict and cannot be
directly influenced by the programmer. An application developer can only try to
extend time to overlap and thus increase the ability to compensate process skew.
However, this depends on the algorithm.

5.1.3 One-Sided Communication

The behaviour of the MPI-2 one-sided communication is studied by using theput
primitive together with the post-start-complete-wait synchronisation (see pseudo-
code in Listing 5.2).

1 MPI_Win_Create ( upper , lower ) ;
2

3 / ∗ i t e r a t i o n s t a r t ∗ /

4 MPI_Post ( upper , lower ) ;
5 MPI_Star t ( upper , lower ) ;
6

7 / ∗ c a l c u l a t e b o u n d a r y c e l l s ∗ /

8

9 MPI_Put ( upper , t o _ u p p e r ) ;
10 MPI_Put ( lower , t o _ l o w e r ) ;
11

12 / ∗ c a l c u l a t e r e m a i n i n g c e l l s ∗ /

13

14 MPI_Complete ( upper , lower ) ;
15 MPI_Wait ( upper , lower ) ;
16 / ∗ i t e r a t i o n e n d ∗ /

Listing 5.2: Outline of Cellular Automaton with MPI-2 RMA primitives.

The used implementation of the Cellular Automaton uses a technique called
double buffering. During an iteration, one buffer contains the input data. The
output is stored in the second buffer. The buffers are switched at the end of each
iteration. This technique has an influence on the usage of one-sided communi-
cation within the Cellular Automaton. The origin process has to determine the
correct buffer for the next action.

One-sided communication in MPI-2 is non-blocking by intention. The syn-
chronisation is performed by explicit API calls. The Cellular Automaton uses
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bidirectional communication and therefore bidirectionalsynchronisation is re-
quired. Explicit bidirectional synchronisation results in a kind of barrier when
closing the access epoch (see Section 4.3.6). The runtime ofthe OSC Cellular
Automaton is the result of a non-blocking Cellular Automaton with a partial bar-
rier3 at the end of each iteration. Because of this barrier, the overall runtime will
be extended by (nearly) any process skew that occurs.

If the runtime of one processk is extended due to system noise, the neighbours
j = k±1 of processk will be delayed at thesynchronisation point. Now processk
and j are behind the other processes and their neighbours will have to wait. This
will continue until all processes have suffered from the delay of processk.

The overall runtime can be approximated by the same calculations as for the
blocking Cellular Automaton (see Equation 5.1). The runtime tosc of n iterations
is the sum of the longest iteration times among allmprocesses (see Equation 5.3).

tosc =
n

∑
i=1

max{ti1, ti2, . . . , tim} (5.3)

The overall runtimes of the blocking Cellular Automaton andthe one-sided
communication variant differ only by the communication time. This can be seen
in the measurements of the Cellular Automaton in Table 5.1:

• There’s no difference in the runtime between the Cellular Automaton with
blocking two-sided and non-blocking one-sided communication in case of
20 lines. The communication cannot be overlapped because ofthe short
calculation.

• If 1024 lines are used, the communication time of the one-sided Cellular
Automaton is reduced by about 10 s (2.5 %) compared to the blocking two-
sided Cellular Automaton. The overall runtime is reduced byabout 8 s
(2.1 %). This indicates that the reductionn in runtime is only the result
of the reduced communication time.

5.1.4 Summary

Non-blocking communication helps to improve the performance of parallel appli-
cations like the Cellular Automaton. This application was analysed in detail. The
reduction of communication time is caused by allowing computation and commu-
nication overlap. Furthermore, non-blocking communication enables a (partial)
compensation of process skew.

The measurements show that MPI-2 one-sided communication may only help
to reduce the communication time. Non-blocking two-sided communication of

3synchronising each process with its neighbours
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Figure 5.4: Communication between two processes.

MPI also tolerates process skew. This significantly improves the runtime of the
Cellular Automaton. The NEON API will be able to exploit the process skew
tolerance.

5.2 The NEON API

The main lesson learnt from the analyses of the Cellular Automaton is that us-
ing one-sided communication is not the main reason for inferior performance of
non-blocking communication in parallel applications. Theexplicit synchronisa-
tion and the combination of notification and completion intoa single API call
impose a significant reduction of performance. In this section, a new one-sided
communication API (NEON) is proposed.

5.2.1 Introduction

The design of the API is based on the API requirements presented in Section 4.4.
Figure 5.4 shows the interaction scheme between process A and B again. The fol-
lowing definitions will have a main influence on the design andthe explanations:

• Descriptions are based on theput operation. This is due to the fact that a lot
of measurements withget operations show a lower performance due to its
request/reply nature. Furthermore, aget operation can be added later.

• The communication is based on one-to-one communication between the
members of a process group of a parallel application.

• The source process of the data is known. There is no communication with
unknown processes. This is because of the buffer announcement required
for one-sided communication.

• One CPU is assigned to one process – a CPU is not shared.
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The advantage of one-sided communication is that once the destination buffer
is announced, the source can arbitrarily access this bufferas long as theproducer/-
consumersemantics are not violated. This means that there has to be a notification
if the source wants the destination to consume current data.

Since the synchronisation ofput operations has to be implicit but the commu-
nication itself must be processed asynchronously, NEONs communication calls
will be locally tested and completed by using blocking and non-blocking com-
pletion operations. These operations are well known from non-blocking point-to-
point communication of MPI. Furthermore, they are independent of the context4

to simplify the API.
The API is described by explaining buffer announcement and handling, syn-

chronisation, completion, and communication.

5.2.2 Name and Address of Buffers

A buffer is assigned to a process. Therefore, the process hasto be the a part of
an address. In MPI, the members of a process group are identified by their rank,
which is a simple and portable way, and will be adopted to NEON.

The virtual address of a buffer is not known before running the application.
The programmer cannot work with runtime information. Thus,an abstract name
– atag– is chosen to identify a destination buffer. The communication system has
to map abstract names to virtual addresses at runtime. This will be a portable ap-
proach since not all communication protocols and network interconnects support
remote memory access (RDMA).

Compared to MPI-2, this approach simplifies the API. The creation of amem-
ory windowis a collective operation in MPI-2 and returns a handle to thewindow.
The handle is another abstract identifier of the buffer, but the programmer has to
use an additional API call to get it. Using a tag, the programmer can directly
assign an identifier to a buffer to provide compile-time knowledge to the commu-
nication system.

Similar to MPI, all communication operations have to provide the complete
address of the destination buffer. This is the rank and the tag in case of NEON.

Using abstract names to address a remote buffer has a disadvantage for shared-
memory systems, where the destination address would be directly available. How-
ever, it represents the more portable approach and introduces only a singular over-
head at the time the buffer is associated with the tag. In comparison to MPI-2,
an explicit and collective call likeMPI_Win_create is not required. Thus, the
NEON API lacks an explicit routine to create windows.

4in contrast to post-start-complete-wait or fence synchronisation
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Some network hardware (e. g. InfiniBand) requires the sourceand destination
buffers to be registered to be accessible to theHost Channel Adapter(HCA). Usu-
ally, the programmer is not interested in those internal requirements. The first
version of the NEON API did not contain any memory related routines. Unfortu-
nately registering memory on demand often implies overheadthat makes commu-
nication inefficient (see measurements in [Dav08] and see Section 3.7.1.2). Strate-
gies to reduce the overhead of memory registration are presented in [MRB+06].
To allow an efficient implementation on top of InfiniBand, explicit routines to reg-
ister and unregister memory areas are introduced in the current version of NEON.

5.2.2.1 NEON_Register

Syntax:

neon_memhandle NEON_Register (address,
size,
flags)

Description:
This routine registerssize bytes of memory starting fromaddress.

Return Value:
On success, the call returns a memory handle that is requiredto unregister the

region. On error, the error state is returned.

Semantics:
The call allows the communication system to prepare the given memory region

for communication operations. Each registered memory areamay be used by
arbitrary buffers. Therefore, the related API calls have the parametersbuffer,
offset, andmemory

Annotation:
If the underlying hardware or software does not require any preparation, the

implementation can use empty routines. Since this is a transport protocol depen-
dent operation, the upper layer of NEON directly invokes theprotocol specific
implementation of this routine.

5.2.2.2 NEON_Unregister

Syntax:
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neon_memhandle NEON_Unregister (neon_memhandle)

Description:
This routine unregisters the memory area specified byneon_memhandle.

Return Value:
On success, the call returns zero. On error, the error state is returned.

Semantics:
The call allows the communication system to remove any internal information

of the given memory region.

Annotation:
If the underlying hardware or software does not require any preparation, the

implementation can use empty routines. Since this is a protocol dependent opera-
tion, the upper layer of NEON directly invokes the protocol specific implementa-
tion of this routine.

5.2.3 Buffer Announcement

The destination process of one-sided communication has to announce its buffer
for remote access for two reasons. First, the abstract address and size have to be
known by the source. Second, the re-availability of the buffer must be announced
if the buffer is reused. It makes sense to have two separate API calls to fulfil these
tasks (NEON_Post, NEON_Repost).

5.2.3.1 NEON_Post

Syntax:

neon_handle NEON_Post (address,
size,
num_ranks,
list_of_ranks,
tag,
memory,
&status)

Description:
This routine is required to completely announce the bufferaddress of size
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size to num_ranks remote hosts inlist_of_ranks. The tagtag is as-
signed. The full announced buffer has to be covered by the registered memory
regionmemory.

Optional/optimal: Optionally, this call could support immediate completion.
The parameterstatus contains a success code then. For remoteput opera-
tions, this is possible only if the communication system uses buffering techniques
to allow early transmissions (e.g. socket based implementation of NEON in Sec-
tion 5.3). The data has to be copied and the buffer announcement can return in
complete state.

Return Value:
This routine returns a handle to a job that has to be used to check for comple-

tion of operations. It returns zero on error. Thestatus parameter contains the
state of completion or error conditions.

Semantics:
After calling this function, the local process will know about address and con-

tact information of the remote processes inlist_of_ranks. The content of
the buffer has to be taken as invalid until a synchronisationroutine returns suc-
cessful completion of all remote communication operationsthat correspond to
this announcement.

If there are multiple processes accessing a single buffer, the system will not
guarantee a special ordering of memory access from different sources. The pro-
grammer is forced to synchronise processes manually if ordering is required.

Annotation:
An implementation of anANY_SOURCE wildcard known from MPI is pos-

sible but not intended, since it requires synchronisation with every process in the
process group (e. g. communicator in MPI), even if it is not interested in accessing
the buffer.

5.2.3.2 NEON_Repost

Syntax:

int NEON_Repost (neon_handle,
&status)

Description:
This call is the light-weight version ofNEON_Post. It takes a previously cre-
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ated jobneon_handle (using theNEON_Post call) to announce the reavail-
ability of a buffer. The buffer is attached to the job by theNEON_Post call.
NEON_Repost will reuse the buffer information except the state.

Return Value:
This routine returns an error code or zero on success.

Semantics:
NEON_Repost is a non-blocking call to announce a buffer. It works much

the same way asNEON_Post, except the creation of a new job and association
of tag, address, and job can be omitted.

5.2.3.3 NEON_Unpost

Syntax:

int NEON_Unpost (neon_handle)

Description:
This routine removes the association between the tag, the memory, and the

application buffer created byNEON_Post.

Return Value:
The return value is zero after successful operation. In caseof errors, the error

code is returned.

Semantics:
Any internal structures will be removed. The library can assure that buffers

are unposted only if pending jobs on this tag are complete. The programmer has
to assure that there is no further NEON-based access to an unposted buffer.

5.2.4 Completion

Operations to check for completion of operations are essential to synchronise the
communication and the communicating processes. In case of NEON, only two
routines are introduced to complete non-blocking operations, – a blocking and a
non-blocking version of a completion check.

5.2.4.1 NEON_Wait

Syntax:
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int NEON_Wait (neon_handle,
flags)

Description:
The caller is blocked until the given job (neon_handle) is completed. It is

comparable to theMPI_Wait call of the MPI standard.

Optional/optimal: Optional flags can be used to specify the type of synchro-
nisation in the future. For example aSTRONG-flag can force the call to block
until the data is completely delivered to the destination buffer, while aWEAK-flag
allows to continue after local completion of the communication.

Return Value:
The routine returns zero if the operation was successfully completed. Other-

wise an error code is returned.

Semantics:
The local content of buffers is valid after successful return fromneon_Wait.

All communication partners of thelist_of_ranksgiven inNEON_Post have
to send their notification before this call can return.

5.2.4.2 NEON_Test

Syntax:

int NEON_Test (neon_handle,
neon_flag_t flags)

Description:
This routine represents the non-blocking version ofneon_Wait.

Return Value:
See NEON_Wait.

Semantics:
If the return value signals completion, the content of buffers is valid.

5.2.5 Communication

The preferred way to exchange data is theput operation. Aget will suffer
from the fact that remote data has to be requested before datacan be transferred
(request/reply). Therefore, the focus is on theput operation.
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5.2.5.1 NEON_Put

Syntax:

neon_handle NEON_Put(buffer,
size,
dest_rank,
tag,
offset,
flags,
memory,
&status)

Description:
This routine writessize bytes starting frombuffer to the remote buffer

tag of processdest_rank. The first byte of the buffer is written to the remote
buffer starting from positionoffset. After the routine has returned,status
contains the current state of the operation.

Theflags parameter is used to prevent implicit synchronisation. If no flags
are given, NEON assumes that this is the final operation on this destination buffer.
This causes the communication system to signal completion to the remote process.
Setting the flag toNON_FINAL, this call does not notify the destination process.
A single check for completion via test or wait should be sufficient to check the
final and all initiatedNON_FINAL put operations.

Return Value:
The caller obtains a job handle to check for completion afterwards.

Semantics:
This is a non-blocking initiation of communication. The communication is

not forced to start immediately. In case of a non-buffering implementation, the
operation has to wait for a matching buffer announcement. Ifa buffer announce-
ment is available, data transmission can start at any time after theput call. At
the latest, it has to start when the application calls wait. This operation can start
immediately without waiting for the announcement if the communication system
has sufficient internal buffers to hold the message.

The local buffer must not be modified until the local completion is signalled
by successful return of aNEON_Wait or NEON_Test call.
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5.2.5.2 NEON_Get

Syntax:

neon_handle NEON_Get(buffer,
size,
source_rank,
tag,
offset,
flags,
memory,
&status)

Description:
This is the pendant to NEON_Put which is described for completeness. How-

ever, it is not implemented. It will readsize bytes from the buffertag at the
source_rank starting fromoffset. The data is written tobuffer which
has to be inside the registeredmemory.

Return Value:
The operation return a handle to the job. This can be used to check for com-

pletion.

Semantics:
This is a non-blocking call. The content of local buffer is invalid until success-

ful completion.

5.2.6 Summary

The NEON API is intended to show the applicability of the API requirements in
Chapter 4. It is designed to ease the usage of one-sided communication inbulk-
synchronousparallel applications with an (extended)producer/consumersynchro-
nisation.

5.3 NEON over Sockets

This section presents a Linux-based implementation of NEONon top of TCP/IP-
Sockets over Ethernet. First, the general design of the NEONimplementation
is explained. The goals are to provide an efficient communication system while
keeping in mind to extend the implementation for further network technologies.
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Figure 5.5: Architecture of the NEON implementation (derived from [Dav08])

5.3.1 General Design

The implementation of one-sided communication on Ethernetnetworks requires
a mapping of memory semantics to send/receive semantics, since Ethernet has no
support for RDMA. The architecture of the NEON implementation is modular and
exists of 3 layers. Figure 5.5 shows the layers of NEON. The assumption of this
architecture is that the network specific parts (modules) ofNEON have to do the
major work. This allows an implementation to make use of all the features of the
underlying network.

The network independent layer is intended as a thin wrapper to check parame-
ters and do some general initialisation. After setting up the required management
structures (if any), a call to the corresponding network specific module is done.

Network specific modules are responsible for the mapping of the NEON-API
to the API and capabilities of the network. This is describedbelow for TCP/IP-
Sockets over Ethernet.

The management layer is intended to provide data structuresfor all compo-
nents of NEON. A typical procedure will be as follows. The network independent
layer will create a so-calledjob in the management layer for a new operation.
Then, the network module is triggered. The network module picks up a job from
the management and tries to process it. The state of the job isset according to
the progress that could be made. And NEON returns to the network independent
layer. Now, the state of the operation can be checked and the control is given back
to the application.
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5.3.2 Socket Specific Design

The one-sided communication of NEON has to be mapped to the send/receive-
based semantics of the Socket interface. The mapping of the following operations
and events are explained in more detail: the buffer announcement (NEON_Post),
the data transfer (NEON_Put), and the notification.

5.3.2.1 Buffer Announcement

When looking at the communication model in Chapter 4, it becomes clear that the
buffer announcement does not have to traverse the Ethernet network. This is for
two reasons.

• First, Ethernet does not provide RDMA. The destination buffer cannot be
physically mapped into the communication system in a way that allows the
remote communication system to write the data. The communication sys-
tem of the destination has to write the data to the destination buffer or the
application has to pick it up. In this case, matching the tag to a virtual
address has to be done by the communication system at the destination any-
way.

• Second, the overhead of sending small messages5 is high and requires proto-
col processing in the communication system of both processes. Since there
is generally no separate processor available to process theprotocol, the host
CPU is involved and the application is disturbed. Thus, the implementation
of NEON over Ethernet avoids explicit buffer announcement messages and
does destination-based matching of the tag and the virtual address of the
announced buffer.

The buffer announcement for the Ethernet implementation istherefore a lo-
cal operation. The application lets the local communication system know which
buffer is available. This information is kept by the management layer of NEON
to perform a matching operation on incoming data.

5.3.2.2 Data Transfer

Data has to be transferred by using the send and receive operations provided by
the Socket API. The problem with these routines is their blocking behaviour. Fur-
thermore, the TCP transport layer implements a streaming protocol. This allows
the source and the destination to send and receive the message in arbitrary chunks.

5An announcement will be just a few bytes in size
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The source initiates a remote write operation (NEON_put). This is mapped to
asend call that will not block but may transfer only a part of the whole message.
The remaining data has to be transferred later because theput is a non-blocking
call.

The slow internal communication of Ethernet introduces a bottleneck step in
the communication pipeline. This requires the source to transfer the data as soon
as possible. The NEON implementation distinguishes between short and long
messages by using an eager protocol for short messages and a rendezvous protocol
for long messages.

Up to a given threshold (EAGER_RENDEZVOUS_THRESHOLD), the data is
sent immediately. The system relies on the buffering and flowcontrol of the TCP
layer. TCP will stop sending data if the receiver has no more buffers left.

The destination announces the destination buffer. Since the buffer announce-
ment does not traverse the network, theearly sender problemat the source pro-
cess turns into anunexpected messages problem at the destination. If the destina-
tion has no matching buffer posted, the message has to be stored to intermediate
buffers.

If the communication system becomes aware of the real destination buffer,
further incoming data is written there. The data that is already received is copied
afterwards. Thishybrid approach of buffering and direct receive is applied to
comply with the rules of efficient usage of the communicationpipeline.

5.3.2.3 Notification

An advantage of one-sided communication – to perform subsequent operations on
the same remote memory area without synchronisation – is mapped to the Sockets’
send/receive by the introduction of a flag that tells the remote side whether this is
a final message or not. This requires message ordering from single processes or
at least the final message to be transmitted last.

The notification will be embedded in the header of the final message. Other-
wise, a short message has to be transmitted which would introduce unnecessary
overhead.

The notification and the offset given by the source make the difference be-
tween single NEON communication and classic send/receive interaction. The no-
tification is involved to let the source determine the numberof bytes received.
The offset determines the virtual address at the destination inside the announced
buffer.
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5.3.3 Implementation

Asynchronous progress on pending operations is one of the central problems to
solve with the Socket API. This is essential to implement efficient external com-
munication – the interaction between application and communication system.

During the overall design of NEON, the blocking behaviour ofSockets is ig-
nored. The design assumes a kind ofprocessorwhich is able to process a queue
of work in the background. A crucial question is: Who does thework in the
background?

Several mechanisms exist to trigger a processing in the background. However,
on Linux-based Ethernet platforms, there is no real background processing avail-
able. The abilities of the network processors are limited (see Section 2.2.1). Thus,
most of the background processing has to be done by the host CPU. Some of the
available mechanisms are:

• dedicated communication thread

• library-based progress

• asynchronous I/O

• signals

• timers

Asynchronous I/O is already discussed in Section 3.2.1.2 onPage 36. Signals and
timers introduce a high processing overhead. Measurementsin [AGSZ06] showed
that the handling of signals and timers is slower than the context switch to another
thread. Therefore, asynchronous I/O, signals, and timers are no longer considered
for the implementation of NEON. Future implementations of asynchronous I/O in
Linux can make asynchronous I/O an interesting alternativeto the communication
thread.

Dedicated Communication Thread Using a thread for asynchronous progress
is a good way to perform any operation independently of the application. A
thread can immediately respond on network activity and application events/calls.
It makes the implementation to comply with the pipeline model by sending data
as early as possible and thus, allows to overlap parts of the communication with
computation.

The major drawback of threads is that they consume resourcesrequired by the
application, especially the host CPU. They require synchronisation of shared data
structures. This introduces additional overhead. Finally, they require scheduling.
Scheduling is coarse-grained compared to the average latencies achievable in Eth-
ernet networks (a few 10µs vs. 1 ms to 10 ms). This can increase the latency of
the protocol.
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Library-Based Progress Some implementations of MPI (MPICH, Open MPI)
can use this technique to check if pending requests can be further processed6.
Compared to a thread, it does not suffer from scheduling overhead and cycle
stealing. On the other hand, the performance and behaviour depends on the ap-
plication’s way to call the API. Communication can be delayed, the pipeline is
inefficiently used, and overlap is inhibited.

5.3.3.1 Hybrid Approach

The implementation of NEON uses ahybrid approach. A separate thread is used
for pseudo-background communication, the thread is suspended as often as pos-
sible. The thread works as a kind ofprogress enginethat tries to make progress
on pending operations and incoming data or requests. No thread activities will
disturb the application under the following conditions.

• The thread is suspended insideepoll (see below) until a request for a new
connection or data is arriving.

• The thread is denied to enter the progress engine if the application uses
blocking communication or synchronisation. This helps to reduce addi-
tional latencies and overhead introduced by the granularity of scheduling
and context switches.

The thread is not allowed to actively poll for any incoming data since this
would consume an unacceptable amount CPU cycles. Therefore, an appropriate
interface has to be used to suspend and resume the thread if nocommunication
happens. Using Linux, there areselect and the more efficient and modern
epoll available7. epoll is an improved and scalable kind ofselect. It
returns a list of file or socket descriptors with pending data.

Some self-defined private data is attached to each file descriptor. This data is
used to determine the next action to do if the descriptor becomes active. In the
current implementation of NEON, this private data containsthe handler to call
and internal states.

The progress engine and important parts of the Socket modulewere developed
during the Diploma thesis of Hynek Schlawack in [Sch06].

5.3.3.2 Data Structures

Thejob is the main data structure of NEON. A job contains information about the
buffer address, the size, the state of transfers, and the communication partners. It
is separated in two parts: a general part and a network specific part. The network

6Open MPI also can be configured to use a thread.
7By usingepoll the implementation is restricted to Linux.
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specific part can be optionally used by a network module to keep specific data. In
case of the Socket implementation, this is a file descriptor,the connection state,
and the number of transferred bytes.

A system type and a user type of job exists. This is because parts of the pro-
tocol require to create a job on demand by the system (e. g. if incoming data does
not match a buffer announcement). The user type is to mark jobs as created by
user and to prevent the system from destroying these jobs before the user requests
for removal.

There are two central data structures to organise jobs. One is for operations
to submit data. The other contains the buffer announcementscreated by calling
NEON_Post.

Sending or writing data to a remote process has to be ordered at least to assure
correct notification. In case of a single Ethernet link per node, this is no limitation.
Therefore, the data structure for data operations is designed to keep operations to
the same destination in a FIFO queue. Currently it uses a static array of list heads
with the destination rank as the index.

Checking for finished updates of data to complete a buffer announcement will
be based on the tag. Thus, the data structure for buffer announcements is designed
to speed up the search for the tag. The current implementation limits the tag to
a number between 1 and 255. It uses a static array to hold the posted buffer
announcements and their state.

The current implementation of the data structures for transmission is socket
specific and providesO(1) access for required operations. It does not consider
buffer announcement signals that are submitted to the source process. These op-
erations can be triggered by the API or by the network (in caseof incoming data).
This structure can be moved into the socket module in future versions.

It is easy to see from Figure 5.5 that the management structures are shared data
and the access has to be synchronised between the communication thread and the
application. Therefore, if any structure has to be manipulated, mutual exclusion
is required, except from updating the state of a job. Even if the check of the state
interrupts a concurrent update, this is not synchronised. The check would fail but
the data is still consistent. Therefore, the next check willbe successful.

5.3.3.3 Data Transfer

The socket module uses plainsend- andrecv-calls to transfer data. Each trans-
fer is split into a header and a data transmission. All headers are sent in a blocking
manner. Although, this contradicts the non-blocking semantics of the API, it is as-
sumed that sending a few bytes will rarely block. Furthermore, sending a header
is expected to block only for short time. This is considered to be acceptable in the
current implementation.

118



CHAPTER 5. ONE-SIDED COMMUNICATION FOR PARALLEL
APPLICATIONS

Data is sent by using the streaming of TCP. It is tried to send as much data as
possible without blocking the sender. This implies the possibility of splitting data
messages into several TCP transmissions.

There is no priority for headers. If a data message could not be send com-
pletely, this pending transfer will prevent NEON from sending any headers (e. g.
rendezvous request or reply). Only one job to the same destination is processed at
a time. Jobs to different destinations are processed in a round-robin fashion.

The restricted sequence of headers and data messages eases the handling of
incoming messages at the receiver. Receiving a header puts the receiver into the
corresponding state given in the header. If a header specifies a succeeding data
message, the receiver prepares for receiving a data message. It expects the next
header only if the data message is completely received.

For Ethernet the NEON implementation uses two transfer modes: eagerand
rendezvous. The reason is that buffering inside the communication system has to
make a trade-off. A trade-off between sending data as early as possible (to meet
the requirements of the pipeline model) and the amount of internal buffers to store
early received data (unexpected messages).

For the eager protocol, the system has to check if there are other pending
transfers to the same destination. If not, the header is created and the transmission
immediately starts. If there are pending transfers to the same destination, the new
transfer is appended to the list of pending transfers. This is required to maintain
message ordering to the same destination.

In case of messages that are larger than theEAGER_RENDEZVOUS_THRESH-
OLD, just a header with a rendezvous request and the size of data is fed into the
transmission queue. The threshold is configurable and is currently set to 16 KiB.
After the reply, the real data is sent.

If the source receives a rendezvous request, it looks out foran appropriate
buffer announcement. If there is none, it tries to allocate asufficient buffer and
returns a rendezvous reply in order to allow the source to start transmission as
early as possible.

An optimisation that is not analysed and implemented yet is to send a ren-
dezvous reply at the time of the buffer announcement. This can avoid the send-
ing of a request and speed up the communication. However, theproblem is that
the destination cannot determine the size of a data message from the size of the
destination buffer. This would result in useless (announcement) messages and
overhead. Investigating in this optimisation is subject offuture work.

5.3.4 Evaluation

The evaluation of the NEON implementation on top of TCP/IP-sockets over Eth-
ernet is performed by measuring latency and bandwidth usinga ping-pong bench-
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Implementation Latency [µs] Bandwidth [ MiB] Bandwidth [ MiB]
MPICH2 P2P 40.75 15.27 (1KB) 88.01 (1MB)
MPICH2 OSC 50.81 12.20 (1KB) 89.22 (1MB)
NEON 46.71 9.53 (1KB) 87.49 (1MB)

Table 5.2: Latency and Bandwith of NEON and MPICH2.

mark (see Appendix B.1.1) and the Cellular Automaton (see Section 5.1 and Ap-
pendix B.2.1). The results are compared to MPICH2 [MPI07]. This implementa-
tion was chosen because the Cellular Automaton performs better than with Open
MPI [OMP07]. The results were obtained in a student researchproject at the Pots-
dam University [AS06].

Both comparisons to one-sided and two-sided communicationare performed.
All measurements are performed in the same environment. TheEinstein cluster at
the Potsdam University (see Appendix A.2).

5.3.4.1 Micro-benchmark Results

Comparing NEON to MPICH2, the latency and bandwidth are goodover Gigabit
Ethernet. The experiments were run between two nodes of the Einstein-cluster.

It can be seen from Table 5.2 that NEON performs worse than non-blocking
point-to-point communication of MPICH2 (version 1.0.4p1). The main reasons
are the impact of the thread and a less mature and less optimized implementa-
tion of NEON. The ping-pong with one-sided communication suffers from the
additional synchronisation message.

The latency of MPI-OSC is higher than the latency of NEON. However, the
bandwidth of MPI-OSC for a 1 kB message is better.

5.3.4.2 The Cellular Automaton

A comparison between the Cellular Automaton based on MPICH2two-sided com-
munication (p2p), MPICH2 one-sided communication (osc) and NEON is pre-
sented in Table 5.3. The table shows the runtime of 30000 iterations over MPI
and NEON on 4 nodes of the cluster. The number of lines per nodeis varied to
change the ratio of communicated to computed cells. For instance, 4 lines means
50 % of the computed cells and lines have to be transferred to adjacent processes.
The message size is determined by the size of a line due to the one-dimensional
domain decomposition described in Section 5.1.

It can be seen that the NEON cellular automaton performs slightly worse than
the mature implementation of non-blocking two-sided communication. One could
expect an inferior performance of NEON compared MPI-2 one-sided communica-
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Lines/Node & Transferred Message Size (Byte)
Version 136 520 4104 16392

(4 lines) P2P 1.70 2.97 7.84 23.09
OSC 3.30 5.30 10.64 29.45

NEON 2.83 3.77 8.85 23.53
(16 lines) P2P 1.70 2.99 8.70 33.53

OSC 3.18 5.22 13.65 42.16
NEON 2.92 3.79 9.51 35.43

(128 lines) P2P 2.27 5.58 51.07 154.94
OSC 3.87 8.35 55.74 162.75

NEON 2.89 6.62 52.57 157.22
(512 lines) P2P 5.58 20.57 155.59 563.83

OSC 7.93 24.21 161.86 571.37
NEON 6.16 21.38 156.09 557.64

Table 5.3: Runtime comparison (in seconds) of the cellular automaton using
MPICH2 one-sided and two-sided communication and NEON.

tion for the Cellular Automaton with messages above 1 kB (seeTable 5.2). How-
ever, NEON outperforms the version with MPI-2 one-sided communication in all
scenarios.

Similar results were published for FastEthernet on the Uranus-Cluster (see
Appendix A.1) in [SS07a].

The NEON implementation can strictly adhere to the pipelinemodel since the
API permits the sending of data and synchronisation messages as early as possible.
The communication system can avoid extra synchronisation messages because the
API makes use of implicit synchronisation in the (last)put call.

The NEON version of the Cellular Automaton tolerates as muchprocess skew
as the MPI-point-to-point version. It avoids an implicit barrier at the end of each
iteration. This is described in Section 4.3.6.

The effect of the deferred transfers can be seen from the experiment with 4
lines. The difference between one-sided MPI and NEON increases with the mes-
sage size because the messages are rarely overlapped with computation. NEON
can overlap at least parts of the communication.

5.4 NEON over InfiniBand

In [Dav08], NEON is implemented on top of InfiniBand OFED. Themost impor-
tant aspects of the work of David Böhme are presented here. This implementation
will show whether applications can benefit from one-sided communication on top
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of RDMA capable hardware or not. Especially, the aspects of synchronisation and
buffer announcement are of particular interest.

The results of the concepts and the InfiniBand implementation are published
in [SBS08].

5.4.1 Design

The overall design can be implemented in a straight-forwardmanner since the
NEON API can be directly mapped to the InfiniBand Verbs.

The original NEON API had to be extended to let the programmerspecify
which memory regions have to be registered or unregistered.The destination
process’ memory could be registered at the time the post callis initiated. The
separation between post and re-post is very comfortable forthis task. However,
the communication calls likeput andget require the memory regions at calling
process to be registered too. The API extension was introduced since registering
on demand requires sophisticated methods of cached registrations [MRB+06] or
modified system library calls ofmalloc andfree. This was considered to be
too much effort for the first proof of concept implementation.

5.4.2 Implementation

As noted above, NEON is implemented on top of InfiniBand Verbs(see Sec-
tion 3.2.3). InfiniBand specifies methods of implicit synchronisation by using
RDMA with immediate data. This creates an entry in the remotecompletion
queue. This event can be checked by the application at the destination process.
Thus, the first implementation made use of event-based RDMA as a direct map-
ping of the NEON API.

The buffer announcements can arrive from any member of the process group.
Therefore, a straight-forward implementation should use the reliable datagram
transport of InfiniBand for buffer announcements and connection establishment.
Unfortunately, the current OFED stack does not support thistransport type. Thus,
the first implementation uses the unreliable datagram transport. A fault tolerance
protocol was intended.

Using RDMA write requires a reliable connection transport type to transfer
data. An unreliable datagram queue pair was used to establish connections on
demand. However, this method was changed into a full mesh of established con-
nections at startup after the evaluation of the unreliable datagram service (see
evaluation below).

Although InfiniBand HCAs are equipped with a special purposenetwork pro-
cessor, theearly sender problemhas to be solved by the software. Thus, a commu-
nication thread is also considered for this implementation. However, the overhead
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of the thread can be significant since InfiniBand has much lower latencies than
Ethernet.

After an evaluation of the event-based notification via the immediate data
feature of InfiniBand RDMA, the thread was removed from the implementation.
Polling the completion queue is much more efficient. However, a polling thread is
unsuitable to make asynchronous progress on non-blocking communication. This
would consume too much of the host CPU. Without the thread, data transfers have
to be deferred to later API calls in case of an early sender. This will violate the
pipeline model. Unfortunately, there was no mechanism found in InfiniBand to
solve this issue.

5.4.3 Evaluation

The latency of the first implementation was very high. About 40 µs compared to
5 µs of MVAPICH2. The reasons were found in slow event handling of RDMA
with immediate data and the buffer announcement via the unreliable datagram
transport.

It was surprising to see that sending data via the unreliabledatagram service
is about 10µs slower than via the reliable connection transport. Thus, the imple-
mentation was changed to use reliable connections.

The overhead of announcements and notifications raises dramatically if the
completion queue is configured to signal incoming data. Due to this measurable
effect, the last step of the pipeline becomes a bottleneck because of the high setup
costs, especially in case of event-based completion queue operations. The imple-
mentation gains about 10µs if the completion queue is polled for new entries.

After removing these issues by the use of polling the completion queue and
using reliable connection transport for buffer announcements, the latency dropped
to 10µs.

The latency is still twice the latency of MVAPICH2. The majorreason is
that MVAPICH2 uses RDMA for all communication including buffer announce-
ments and notifications. MVAPICH checks for incoming synchronisation mes-
sages at the time the communication call is executed. If there is no announcement
available, the transmission is deferred to the completion.In conjunction with the
pipeline model, this has a drawback: the pipeline is filled late.

Measurements of the bandwidth show that NEON performs slightly worse but
comparable at least for mid-sized and large messages.

Now, the Cellular Automaton was measured with different ratios of commu-
nication and computation. 10, 100, and 1000 lines were calculated per process.
This results in 20 %, 2 %, and 0.2 % of communicated cells out of all calculated
cells.
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API CA10 CA100 CA1000
(ms)

MPI-2 0.0484 0.177 1.46
NEON 0.0309 0.147 1.43

Table 5.4: Time per iteration of Cellular Automaton.
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Figure 5.6: Impact of early notification and implicit barrier in MPI-2.

As shown in Table 5.4, the Cellular Automaton over NEON performs better
even though the communication of NEON at 1024 Bytes is still 45 % slower than
MVAPICH2. Two reasons were found.

1. Early notification of NEON leads to better process skew tolerance. This is
because the remote processes don’t have to wait for the explicit notification
at the end of the iteration. The MVAPICH2 variant has to wait.

2. The bi-directional communication and synchronisation in the Cellular Au-
tomaton imposes animplicit barrier. This problem is described in Sec-
tion 4.3.6 and 5.1.3. This further reduces theprocess skew toleranceand
inhibits overlapping of computation and communication. Furthermore, the
barrier results in a higher risk for theearly sender problemsince thebuffer
announcementand theput are very close at the beginning of each iteration.

These two impacts were measured by two experiments using MVAPICH2 and
the MPI-2 version of the Cellular Automaton with 1000 lines per process.

• To increase the process skew tolerance, the call ofMPI_Win_Complete
is moved away from the end of the iteration towards the beginning by chang-
ing the number of lines calculated before and after the call.In Figure 5.6 the
result is visible.
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Moving the completion towards the middle of the iteration improves the
overall runtime. The benefit of the overall runtime is only 2 %. However,
the ratio of communicated to computed cells is 0.2 %. The average run-
time of a single iteration is shortened by about 25µs while transferring
1024 Bytes twice takes about 10µs.

Moving the completion too close to theput call makes the communication
more and more blocking and the overall runtime increases. IfMPI_Put
andMPI_Win_complete are called successively, a blocking behaviour
is implemented.

• The second experiment moves theput call away from the buffer announce-
ment. This should reduce theearly sender problem. MVAPICH2 defers the
data transfer to the completion call if the buffer announcement has not ar-
rived at the time of theput call. Therefore, avoiding early sender problems
should increase the ability to overlap computation and communication.

TheMPI_Put measurements in Figure 5.6 show that this effect is measur-
able. Similar to the first experiment, moving theput towards the middle of
an iteration improves the overall runtime.

The process skew tolerance and non-blocking communicationperform best
if they are moved to the middle of the iteration. Unfortunately, the put and the
completion cannot be moved to the middle of the iteration since this will result in
blocking communication. Additionally, this implies that the middle of the itera-
tion can be determined. This is easy for the Cellular Automaton but may not be
easy for other parallel applications. Thus, the NEON approach is advantageous
because it notifies the destination as early as possible.

5.5 NEON in Shared Memory Environments

An implementation of NEON on top of shared memory libraries or shared memory
in common is out of focus of this thesis. In this section, someaspects of NEON
are explained to check the possibilities of an efficient implementation of NEON
over shared memory.

There are two kinds of shared memory available:

1. completely shared address space. This means free access to remote pro-
cesses. This is only available to threads. Therefore it is not of much interest
here.

2. shared memory in terms of available addresses in memory that can be ac-
cessed by all processes. This requires the data buffers either to be allocated
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Figure 5.7: Application of the Communication Model to Shared Memory.

in a shared memory region or to reside inside the communication system
which requires copying the data to internal shared memory areas and back.
Using shared memory as a transport is the topic of this section.

5.5.1 Applying the Communication Model

When shared memory is applied to the communication model of Chapter 4, exter-
nal communication is represented by copying data from and tothe shared memory
region. Internal communication does not occur or is transparently performed by
hardware to keep caches and memory of different CPUs coherent. Figure 5.7 vi-
sualises this inter-process communication scheme.

5.5.2 Synchronisation

The popular shared memory API SHMEM [Shm01, Sil08] uses explicit synchro-
nisation to signal the completion of data transfers. While the benefits of overlap
play a minor role in shared memory architectures due to the fast (or non-existent)
internal communication, the kind of synchronisation will have an impact.

As explained in Section 5.1.3, a barrier will prevent the application from toler-
ating process delays. Therefore process skew cannot happen. (Mostly) all delays
in any process will increase the overall runtime. Using non-blocking data trans-
fers in combination with separation of completion and notification will enable an
application to be less sensitive to process skew.

5.5.3 Data Exchange

The current implementation of the NEON API has a very small network indepen-
dent layer. It does not force any data copies or buffer pre-allocation. A lightweight
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shared memory implementation of the NEON transport layer will benefit from the
lightweight upper layer of NEON.

Since there is no direct access to the memory of the destination process, the
buffer announcement has to traverse the external communication step at the desti-
nation process (i. e. the buffer announcement has to be signalled to the communi-
cation system).

Early senders should not be such a big issue in shared memory environments
because the time for communication is very short compared tonetwork-based
communication. Therefore, a deferral of message transfershas a smaller impact
on the overall performance. Furthermore, the data transferin memory will be per-
formed by memory copies. If no special hardware is availableto do this, the CPU
will have to perform at least the external communication. Thus, asynchronous
progress introduces the same issues as for the socket implementation. It requires
CPU cycles.

The impact of the pipeline usage and the overlap of communication and com-
putation will be less important than for network-based implementations. The in-
ternal communication is performed by the hardware, therefore it will not be a
bottleneck of the communication pipeline.

The usage and size of the shared memory regions will be a possible bottle-
neck for an implementation. The communication system cannot acquire arbitrary
amounts of shared memory to keep the transferred data. Therefore, an imple-
mentation has to take care for the memory requirements of thecommunication
system.

5.6 What’s New

This section compares the NEON API and implementations to existing APIs and
implementations for one-sided communication. A comparison to MPI-2 one-sided
communication is already done in the previous sections and Chapter 4. Since
NEON is designed to fit into the message passing paradigm, it will not be com-
pared to global address space languages.

ARMCI is a message passing-based interface that is very similar to NEON.
The main difference to NEON is that ARMCI does the same combination of noti-
fication and completion like the MPI-2 API. Similar to NEON, ARMCI does not
use synchronisation epochs.

In [DBP+08], Danalis et. al. present a companion library for MPI calledGravel
that allows a higher level specification of the communication pattern. This is
done by separating meta-data (buffer announcements, notification, completion,
etc.) from the data transfers. Every step of communication can be expressed by
a corresponding Gravel call. This allows the user to maximise the potential to
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overlap computation with communication and synchronisation.
The NEON API can be mapped to Gravel since Gravel provides allrequired

steps in separate calls. Unlike NEON, it uses explicit notification. Although the
Gravel interface is intended to be used by skilled users. TheNEON API is de-
signed to be easy to use. Both APIs will require a user to understand the concept
of early non-blocking communication and notification and late completion in or-
der to make efficient use of their features.

5.7 Conclusion

NEON is currently the only one-sided communication API thatenables non-
blocking communication with early notification and late completion. This is
achieved by separating notification from completion in the API. Furthermore, the
notification can be embedded into the communication call. This allows efficient
implementations on different networks and increases the portability of NEON.

The Socket-based implementation of NEON shows that one-sided commu-
nication over Gigabit Ethernet can be improved compared to MPI-2. This is
achieved by applying the rules derived from theVirtual Representation Model
and by avoiding the transmission of additional synchronisation messages. The
implementation on top of Sockets proves the applicability of the communication
model in Chapter 4. For example, it shows that the buffer announcement does not
have to traverse the network (internal communication path)in case of buffering
inside the communication system at process B.

Except the usage of reliable datagram transports, the basicconcepts of NEON
could be mapped to the capabilities of InfiniBand. Unfortunately, they could not
be mapped efficiently. The current OFED stack is optimised for RDMA. This can
be seen from the measurements of buffer announcements over unreliable datagram
and notification with events.

The InfiniBand implementation of David Böhme works well. Even though
it has a higher latency than MVAPICH2, it outperforms the MPI-2 implemen-
tation in the Cellular Automaton benchmark. This indicatesthat the concept of
separating completion from notification is beneficial for non-blocking one-sided
communication.

According to the applied communication model and the synchronisation issues
investigated in conjunction with Sockets and InfiniBand, animplementation of
NEON for shared memory architectures is expected to be straightforward.

Explicit synchronisation has to be used with care by the programmer. If the
application communicates in two directions, there is a highrisk of implementing
an implicit barrier synchronisation. This barrier inhibits the compensation of pro-
cess skew even if non-blocking communication is used. The impact of implicit
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barriers and overlap were measured with MVAPICH2 in Section5.4.3.
Asynchronous progress on pending data transfers and remotememory access

is easier with InfiniBand compared to Ethernet. The hardwareis capable to pro-
cess pending work requests. Transferring messages with theSocket API required
a lot of effort to cope with the streaming semantics of TCP.

Either with InfiniBand or with TCP/IP-sockets, solving theearly sender prob-
lemrequires a lot of efforts. This is a task of event handling or polling. Both have
proofed to be inefficient in InfiniBand. The same problems occurred in the Socket
implementation.

The most important conclusion from the implementations is that both of the
implementations suffer similar problems. Building an implementation that ap-
plies the pipeline model without hampering the performanceby using inefficient
mechanisms of communication is currently not possible withboth InfiniBand and
TCP/IP-sockets over Ethernet. InfiniBand supports the required mechanisms but
their implementation offers slow performance and too much overhead. Ethernet
lacks the support for remote memory access and the streamingsemantics of TCP
require additional overhead for message passing.

Parallel applications cannot benefit from one-sided communication if synchro-
nised single communication operations are used. Two-sidedcommunication of-
fers simpler semantics and better performance with the current MPI API and im-
plementations.

The separation of notification and completion is proposed totheMPI Forum
as a contribution to theMPI-3 Remote Memory Access standard.
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Server load balancingis the other important application of clusters focused in
this thesis. This chapter analyses whether server load balancing can benefit from
one-sided communication or not.

After a general introduction to server load balancing, the synchronisation re-
quirements are analysed and compared to theVirtual Representation Model(see
Chapter 4). In Sections 6.3 to 6.6 a new credit-based scheduling is proposed and
evaluated.

6.1 Server Load Balancing

Server load balancing [Bou01] is a technology to distributethe traffic of a site
among a number of servers and to improve the availability andquality of a ser-
vice by building a scalable, reliable, and flexible service environment. A server
load balancing system allows for the inclusion of more servers to adopt to increas-
ing traffic or service demands. Particular servers can be maintained or removed
from the system without interrupting the service and, thus,make the service very
flexible. If some servers crash, the service will still be available.

The main tasks of a server load balancing component are [Bou01]:

• distribute the traffic of the site

• select an appropriate server for individual requests

• maintain an up to date list of available servers

• redundancy of the dispatcher to avoid a single point of failure

• enable connection or session oriented services to work, even if the for-
warded packets are not aware of these

Traffic distribution, server selection, and maintaining a list of available servers
are the focused tasks. The redundancy of the dispatcher is subject of future work.

6.1.1 Server Load Balancing Techniques

Apart from server load balancing, there are other techniques to balance the traf-
fic of a site. Some of these technologies will be presented here briefly. These
techniques are illustrated more in detail in [Bou01].

6.1.1.1 DNS-based Load Balancing

DNS-based load balancing is a common technique that uses thedomain name
system (DNS) to balance the traffic. It is also known as DNS round-robin. Clients
translate a URL into an IP address by DNS requests. The DNS server has a list of
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available servers and returns one of the IP addresses at eachrequest in a round-
robin manner.

This approach is quite simple and works well. But it has some major draw-
backs. One problem is the concept of DNS caching. The clientsstore the answer
from DNS servers in a local cache that is reused if the same URLis requested
again. Thus, the DNS-based load balancing is bypassed if there is a DNS cache
hit at the client. Further, DNS-based load balancing can hardly take server avail-
ability into account. Failed servers have to be removed fromthe DNS database.
While this may be done quickly, it will take a while to be propagated to all the
caches. Therefore, a lot of clients will try to access the failed server.

6.1.1.2 Global Server Load Balancing

This is a variant of load balancing that distributes the loaddepending on the lo-
cation. Clients from the same or similar geographical area are routed to the same
site. If one of the sites is not available the service is provided by the servers of
another region. This would increase the latencies of the service and the load of
the servers, but the service itself will be available.

6.1.1.3 Clustering

Clustering is a technology to distribute the load at application level instead of
manipulating network packets. The servers divide the ‘. . . tasks amongst them-
selves. . . ’ [Bou01].

6.1.2 Architecture of Server Load Balancing

A server load balanceris a special component that intercepts the traffic of a site
and distributes it among several servers. Generally, a server load balancer can
work at any ISO/OSI-layer. The chosen layer depends on the type of service.
If the service requires a connection-aware server load balancer (e. g. a TCP/IP-
based service like www), layer 4 should be preferred. In the following, the term
server load balancer will refer to a site-local hardware or software that performs
the tasks described above. The machine that distributes therequests can also be
calleddispatcheror frontend server.

A popular technique is to assign the dispatcher avirtual IP (VIP) to make the
service available to clients. Additionally, a TCP or UDP port is assigned to specify
the provided service. At least one real server (also calledbackend server) has to
be attached to the VIP, to run the service(s) on. While one real server is required
to enable the service at all, the service becomes more reliable and flexible with
multiple backend servers.
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6.1.2.1 Flat-Based Server Load Balancing

Based on the classification presented in [Bou01], two architectures are distin-
guished by IP address configuration. Inflat-basedserver load balancing systems,
the dispatcher is involved in incoming and outgoing traffic.The server load bal-
ancer and the backend servers are located in the same subnet.A packet is modified
according to the following steps:

1. The dispatcher rewrites the destination address of an incoming packet and
forwards the modified packet there. The address of the backend server is
chosen by the scheduling algorithm.

2. The response of the server will go back to the load balancer, since it is the
default route of the server for responses to the source address.

3. At the dispatcher, the source address of the outgoing packet is rewritten to
the virtual IP of the server load balancer and the packet is send to the client.

Flat-based setups can be used together withbridge-path, route-path, or di-
rect server returnsetups. These are the three classes of the return-path-based
classification of load balancing systems according to [Bou01]. A further clas-
sification used in [Bou01] is the physical connectivity thatcan be one-armed or
two-armed. With flat-based configurations a one-armed setupmakes sense, since
the dispatcher and the backend servers are on the same subnet.

6.1.2.2 NAT-Based Server Load Balancing

NAT-basedserver load balancers are used if the real servers should be in a different
subnet, e. g. for security reasons. In these cases,two-armedsetups make sense and
neither bridge-path nor direct server return are possible.In the following, NAT-
based server load balancing implies route-path and two-armed setups. The steps
required to answer a client request are the same as for flat-based configurations.

6.1.3 Quality of Scheduling

The quality of a load balanced service is determined by the view of the client. The
best distribution will result in the best service quality parameters. In this thesis,
the quality is defined by three measurable parameters.

Dropped Requests The number of rejected ordropped requestshas to be low if
good quality is a goal. If a client request is dropped by the load balancing system,
the service is not available to that client. This means a lostclient and potentially a
lost customer. Therefore, the number of requests dropped isan important indicator
of the quality of a service.
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A request can be rejected for many reasons along the network path from the
client to the server. For the evaluation of a server load balancing system, only
the server-based reasons are considered. These are limits of the dispatcher or
the backend servers e. g. a socket-based application can only open about 64K
connections at the same time. Further connections have to berejected. Other
limits are discussed in Section 6.3 where several metrics for load statistics are
presented.

Answer Time If the service is available, the shortest average answer time of a
request represents the second quality parameter.

If the dispatcher selects theleast-loadedserver, the average answer time of
the service is expected to be the shortest. The answer time consists of two parts:
theround trip time(RTT) of the network and the time to process the request. The
design and implementation of the server load balancing system has an impact on
both.

The processing time is influenced by the capabilities of the processing machine
and the number of requests that are already waiting for processing.

The dispatcher’s scheduling algorithm will also have an impact on the round
trip time. The algorithm chooses the backend server and influences the load of
the dispatcher itself. Considering a large number of backend servers, anO(1)
scheduling algorithm is expected to be more scalable thanO(n) algorithms. Since
the scheduling of requests requires processing, a high loadof the dispatcher is
expected to increase the round trip time.

Burst Length While the first two parameters can be measured by a single client,
the length of a burst is only measurable at the dispatcher. The length of a traffic
burst is an indicator of availability. Here, thelengthis measured as the number of
requests that is contained in the burst. How many requests can be handled without
having to drop a request if a the request arrival rate is equalor above the maximum
capacity of the sum of all backend servers? This is the main question to anwer by
the burst tests.

The longer a burst can be without dropping a request, the better the load is dis-
tributed among the available servers. Since network trafficis known to be bursty
in nature [JD05], this measure is also important to evaluatethe load balancing
system.

6.1.4 Load Balancing Algorithms

Many load balancing algorithms are used in practise. A shortdescription of some
implemented algorithms of theLinux Virtual Server(LVS) project is presented
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below. A complete description of the algorithms can be foundin [Lin07a]

Round-robin This is the adoption of the classical scheduling scheme known
from operating systems. The requests are distributed equally among the
servers regardless of their current load.

Least ConnectionsThis algorithm counts the number of open and inactive1 con-
nections. The next request is scheduled to the server with the least number
of connections. According to the source code (Linux 2.6.19), inactive con-
nections are weighted1256 compared to active connections.

Shortest Expected DelayThis algorithm is very similar to the least connections
algorithm. It count the number of active connections only. The next re-
quest is scheduled to the server where the number of connections plus one
is minimal.

Source Hashing The source address of a packet is put into a hash function. The
outcome is the number of the server the packet is scheduled to.

Destination Hashing The destination address is put into the hash function. The
outcome is the number of the destination server. This is useful if a service
is accessible via several different virtual IP addresses.

Never Queue The basic idea of this algorithm is to distribute packets only to
servers that will not queue the request. Regardless of the speed of the server,
queueing the request is expected to be slower than handling it immediately
by a slow server. If no idle server is available, shortest expected delay is
applied.

6.1.5 Server Weights

Most of the above algorithms are able to use weights to reflectheterogeneous
servers. This is a common technique. Thespeed factorin Equation 6.1 repre-
sents the speed of a machine in relation to the slowest machine. In the litera-
ture, sometimes the speed factorα is defined reverse to this definition. Following
the specification of server weights in the popular server load balancing system
LVS [Zha00, Lin07b], the variant in Equation 6.1 is used. A weight of 2 repre-
sents a server that is twice as fast as a server with weight 1.

α =
slowest avg. service time

avg. service time
(6.1)

1closed connections are considered inactive for a certain amount of time
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Figure 6.1: Architecture of SlibNet.

The capability of a server strongly depends on the service. For example, if a
service requires processing only, the weights should be calculated from the CPU
speed. Any other resource of a machine can be the basis of weights (see Sec-
tion 6.3.2).

Instead of given resources, the calculation of weights can rely on measure-
ments. This will approximate the exact weight by firing a workload to the servers
and use the results to determine the weights. This has two drawbacks. First, it
takes more effort to determine the weights. Second, the result is the weight for the
chosen workload. Even if the workload consists of traces from real traffic of the
site, this workload will be different from future workloadscreated by real clients.
In general, requests are inhomogeneous and this can not be reflected by predefined
weights. Thus, the weights can never be exact.

Weights have shown to be a critical issue, since their exact determination is
impossible. Inexact weights significantly reduce the quality of the distribution
[SLP94].

In [SSZL08], an example is described with two Apache backendservers dif-
fering in CPU speed and memory. One machine has only half the CPU speed
and the half memory of the other. Thus, one would expect the correct server
weights to be 1:4. The result was 3:4 when separately measuring the performance
of the servers usingRUBiS-traces [CCE+03] with httperf [MJ98]. Finally, us-
ing Weighted Round-Robinwith the weights 1:2 performed best with both servers
together.

6.1.6 Conclusion

Server load balancing is used to increase the reliability and scalability of services.
The homogeneity of the cluster is less important than for parallel applications.
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Therefore, heterogeneous clusters are used often. Server weights are a common
technique to adopt to heterogeneous servers. These weightsare hard to determine
and only reflect the heterogeneity of the servers. The problems of heterogeneous
workload can not be solved by server weights.

SlibNet has to use a NAT-based approach, because the InfiniBand interconnect
between dispatcher and real servers implies a different subnet from the public
Internet or classic Ethernet LAN technology. This is shown in Figure 6.1. Hence,
the return path will be route-path-based and the dispatcherwill be two-armed.

The most important factors for the evaluation of the load balancing system
are the answer time, the number of dropped requests, and the length of tolerated
bursts.

6.2 A Case for One-Sided Communication

The term one-sided communication was primarily used in the context of MPI
and parallel applications. This section introduces one-sided communication to
resource monitoring and reporting in conjunction with server load balancing.

6.2.1 Resource Monitoring

The dispatcher can rely on current load statistics of the servers to improve the
quality of the service. Three classes of scheduling algorithms can be identified
using the kind ofresource monitoringas a classification criteria:

1. No resource monitoring at all: This class of algorithms does not use re-
source monitoring and distributes the load according to a fixed pattern. This
pattern can be created from given knowledge about the service (e. g. server
weights). LVS uses this concept for theround-robin(RR) scheme to dis-
tribute requests.

Using no resource monitoring at all is a fast and simple approach to dis-
tribute incoming requests. However, it does not respect imbalances result-
ing from inhomogeneous requests. An advantage of ignoring the current
load is that the scheduling decision easily can be implemented by a simple
algorithm with low complexity. No calculation or search hasto be done on
the arrival of requests.

2. Dispatcher-based monitoring: If the dispatcher itself collects and calcu-
lates statistics of the servers to choose a server for the current request, this
is named asdispatcher-based monitoring. Theleast connections(LC) algo-
rithm of LVS is an example since the dispatcher counts the current number

138



CHAPTER 6. ONE-SIDED COMMUNICATION FOR SERVER LOAD
BALANCING

of connections to a server and uses the server with the least number of con-
nections.

3. Backend-based monitoring: Using backend-based monitoring, the dis-
patcher requires the backend servers to provide statistics. These statistics
can be pushed by the backend servers or pulled by the dispatcher to use the
values for the determination of the server to send the request to. This con-
cept is implemented by thefeedbackd-extension [Ker08, Ker03] available
for LVS. This extension reports statistics from the backendservers upon
request of the dispatcher (pull mechanism).

Additionally, a combination of dispatcher- and backend-based resource monitor-
ing is possible. The dispatcher generates statistics that are updated or adjusted by
statistics from the backend servers.

The backend servers are a good place to gather load statistics since they have
the best knowledge of their current load. The drawback of backend-based sys-
tems is that the statistics have to be transmitted to the dispatcher. This implies
additional traffic in the backend network and additional processing overhead at
the dispatcher. Since the dispatcher is a central component, the processing may
become a bottleneck that will limit the scalability of the service. As noted in
Section 6.1, a higher load can result in increased round triptime.

6.2.2 Characteristics of Resource Monitoring

Resource monitoring applications do not require remote synchronisation. The
process interaction isdifferentfrom theproducer/consumerscheme. Thus, there is
no need fornotificationandcompletion(see Chapter 4). Remote synchronisation
is unnecessary because the monitoring component is only interested in the most
recent value. For example, data can be silently written to the dispatcher’s memory.
The RMA routines of an API need to be used only.

In case of concurrent access to the data, mutual exclusion isthe only required
synchronisation. This is only a local synchronisation at the dispatcher.

Before the data can be written, the remote process has to knowabout the target
buffer. This buffer has to be announced. However, since the buffer does not
change and is always writable, thisbuffer announcementhas to occur only once.

Server load balanced systems are not highly dynamic environments of re-
source monitoring. New backend servers are added manually and their registra-
tion to the dispatcher is not time critical. Furthermore, the frequency of machine
failures cannot be higher than the inclusion of new and restarted machines. Other-
wise, the service would fail completely after a time. This results in a more or less
slowly or rarely changing number of communication partners(backend servers)
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of the dispatcher. This means that buffer announcements arerare and non-time-
critical events.

Another issue of resource monitoring is the resource consumption. Since the
monitoring requires processing, it consumes some of the resources that are moni-
tored. For example, by measuring and transferring the CPU idle time, CPU cycles
are consumed and adulterate the measurement. These effectsalso have to be con-
sidered for an efficient resource monitoring.

Assuming resource monitoring to be a case for InfiniBand RDMA, theVirtual
Representation Modelhas to be applied as an indirect access model without the
remote process involved. If the servers shall access the memory of the dispatcher,
the following steps of synchronisation are required:

• Thebuffer announcementhas to be sent once from the dispatcher to a new
registering server. Since the virtual representation of the dispatcher at the
server delivers the data directly to the memory of the dispatcher, the an-
nouncement has to be sent over the network. Since this is onlya single
event that is not time-critical, the performance does not matter.

• Waiting for an announcementis done at the server. During the registration,
the server has nothing to do. Therefore, this can even be a busy waiting
(provided that only a single service runs on the server).

• Sendingnotificationmessages is only required if the server is re-registered.
This means, if the dispatcher took the server out of the schedule and has to
be notified to take it back into the schedule. Even this notification can be
omitted if the dispatcher frequently checks out-of-schedule servers.

• Waiting or testing for a notificationcan be omitted as long as there are
no servers taken out of the schedule. Otherwise waiting or testing for a
notification is required.

Fast data delivery without the destination’s CPU being involved in the communi-
cation is required together with infrequent and non-time-critical buffer announce-
ments. Thus, the InfiniBand Verbs API fits well.

6.3 Credit-Based Scheduling

This section explains thecredit-based schedulingand finds a metric to calculate
the number of credits. The basic scheduling algorithm is presented afterwards.

6.3.1 Credits

The basic idea behind acredit-based schedulingis to let the servers tell the sched-
uler how many requests they can handle. Thus, credits will bea metric that rep-
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resents the availability of a server application. This simple metric can be used to
run a fast scheduling algorithm on top of it.

Credits are a common technique used for flow control of network protocols
[Cia99, Inf02a]. In a similar sense, one can map the intention of credits to server
load balancing. Credits are used to avoid forwarding requests to a server that
would drop the request due to overload. Primarily, they represent the availability
of a service.

Credits are self-adapting and can remove the need to specifyweights. The key
is that a credit represents a free resource of a server. If a server processes requests
faster, it will have more free resources. Thus, it will report more credits than a
slower machine and tells the dispatcher that it can handle more requests. This
makes the number of credits self-adapting to heterogeneousservers.

Credits also self-adapt to heterogeneous requests. If a server has to process
requests that consume more resources, it has fewer free resources to report. Thus,
it will tell the dispatcher to forward fewer requests by reporting a smaller number
of credits.

In this thesis, one server will run only one single service. Nevertheless, it
is expected that the presented concepts are applicable to multiple services per
machine due to the self-adaptability of the credits.

6.3.2 Monitorable Resources

Modern operating systems provide several monitoring facilities. Some examples
of resources that can be monitored are idle time of the processor, available mem-
ory, or available disk space. But, how can these figures be used to calculate the
number of further requests a particular server can handle? This number is hard to
determine in conjunction with a service that is requested byan unpredictable num-
ber of clients. Depending on the service, each request consumes an unpredictable
amount of resources.

The following resources are analysed concerning the possibilities to use them
as credits or to determine the number of credits:

• CPU

• memory

• run-queue length of the CPU

• number of established connections

CPU and Memory: CPU and memory are often the main resources used by
applications. Sometimes a limiting factor of a service is disk I/O or I/O in gen-
eral. While this increases the service time of single requests, it does not limit the
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number of clients at all. The CPU can process other requests during I/O if asyn-
chronous I/O, multiple processes, or threads are used to handle multiple clients
simultaneously.

The limited availability of memory and CPU will somehow limit the availabil-
ity of a service. Can these metrics be used to determine the number of credits to
be reported to the dispatcher? The answer is: not generally and not well. This is
because the number and type of resources consumed by a request is unpredictable.
For example, the question, how many requests will fit in 50 MB available RAM,
can hardly be answered. Maybe it can be answered for fully analysed and static
services with a fixed type of request. However, this ignores unpredictable resource
consumption by the operating system itself.

A service dependent solution is not appreciated for a general purpose server
load balancing system. Therefore, available CPU and memoryare unfavourable
metrics to determine credits, though they are still relevant.

Run-queue Length of CPU: Simulation studies have shown that the run-queue
length of the CPU is a good metric for load balancing in homogeneous sys-
tems [Kun91]. In heterogeneous environments, the run-queue length has to be
normalised byspeed factors. As mentioned before, these factors strongly depend
on the application [SPL96].

Can the results of this research area be mapped to the calculation of credits?
The run-queue may be a good metric to choose the least loaded server. However, it
does not help to determine the number of free resources, unless one could specify
a maximum length of the run-queue. Specifying an upper limitis the only way to
tell the dispatcher how many requests it can safely forward to this server.

Established Connections: The number of established connections is a critical
metric of connection oriented client-server applications, since the maximum num-
ber of connections is limited. Some commonly used scheduling algorithms in LVS
rely on the number of connections (least connections, shortest expected delay).
The main problem of this limit is that it neither reflects the server’s capabilities
nor prevents the service from overload.

Since the limit is just a theoretical value, using the numberof established
connections has the same drawback as the length of the run-queue. The number
of future available connections cannot be determined from this load indicator.
Additionally, an established connection is a very fuzzy load indicator because of
(generally) unpredictable behaviour of the clients.
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6.3.2.1 Communication Endpoints

A more general view on connections leads to the consideration of communication
endpoints. Client-server-based services require acommunication endpointat both
server and client sides2. The type of endpoint depends on the protocol layer and
the kind of protocol. For example, the endpoints of the InfiniBand-Verbs layer
(ISO/OSI-layer 4) are namedQueue Pair(QP) while communication endpoints
of socket applications are calledSocket(layer 5). From the point of view of a
TCP/IP socket-based application, an endpoint is a socket with a unique descriptor
and an associated IP address and TCP port.

The basic assumption to use communication endpoints as a metric to calculate
credits is thatan application consumes free communication endpoints at the same
speed as it is able to process requests(as long as there are incoming requests).
This is reverse to the idea of the least connections algorithm, where an application
releases connections at the speed of processing of requests.

The number of communication endpoints is usually limited byhardware, soft-
ware, or protocol specific constraints. For example, the number of open TCP/IP
sockets of an application is limited by the number of possible TCP ports3, which
is 65535. This is where credits come into place. A credit represents a free com-
munication endpoint. Thus, the dispatcher cannot distribute more requests than
available credits, which means not more than available communication endpoints.
Therefore, SlibNet is able to drop or reject requests already at the dispatcher. This
avoids the load of the backend servers getting worse under heavy load.

Reporting the number of free communication endpoints has a major drawback:
it is not always possible to determine the number of free endpoints. For example,
it will be an expensive operation, if not impossible, to determine the number of
unused socket descriptors in a server application. An easier way to calculate cred-
its is provided by the InfiniBand-Verbs layer. Each Queue Pair has to be allocated
and registered by a central component, the communication manager (CM). There-
fore, the CM is good candidate to count allocated but unused Queue Pairs that
can be reported as credits. A credit-based load balancing ontop of InfiniBand
and Queue Pairs is developed in two masters theses [Fri06, Ryl07] and is also
presented in [SS07b].

The socket-based approach is investigated in a masters thesis [Zin07]. This
work presents a credit-based approach for TCP socket-basedapplications. The
approach is designed, implemented, and evaluated. Creditsare calculated from
the free entries of thesocket backlog queue. This queue contains the pending

2Since the client is not part of the load balancing system, thefocus will be on the server side
communication endpoint here.

3if no other operating system boundaries like the maximum number of open file descriptors
further limit the amount open sockets
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Figure 6.2: Rings of registered and available servers.

connection requests that are not accepted by the application. The increase and de-
crease of this queue indicates the current ability of the service to process requests.
The length cannot exceed a limit that is specified by the application itself. Further
requests will be dropped. This makes the socket backlog queue a good basis for
credits. This is also published in [SSZL08].

6.3.3 Scheduling

One of the main design goals of SlibNet was to achieve a scalable system. In
theory, this is achieved by the consequent use ofO(1) approaches for the schedul-
ing and credit handling components. The scheduling can be described in short as
round-robin among servers with available credits. This is illustrated in Figure 6.2
by theactive ring. The outer ring (all ring) contains all servers that are registered.
The scheduler decrements the credits of a chosen server by one. If there are no
more credits available for a server, it is taken out of the schedule until it reports
new credits.

SlibNet uses a combination of dispatcher-based and backend-based resource
monitoring together with a push strategy to update credits.The backend servers
calculate the number of credits periodically and report theresulting value. This
makes the system a backend-based monitoring. Since the dispatcher removes con-
sumed credits, it performs a kind of dispatcher-based monitoring.

Since the scheduling is based on two states of a server (available or not) and
is independent of the absolute amount of credits, the reporting of credits will play
the central role for the quality of the distribution. Some credit reporting strategies
are analysed and evaluated by simulation below in Section 6.4.

The availability check can be an issue in conjunction with the use of RMA,
since a new or newly available server has to be detected. An RMA write to the
dispatcher memory will not be noticed by the dispatcher. Therefore, a detection
of a status change from zero credits to non-zero or back has tobe done. This is the
only case for a notification message from the back-end servers to the dispatcher.

However, it can also be solved by the scheduler or by an extra detection/mon-
itoring component in the background. For example, the scheduler can do a fixed
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number of checks on each server selection triggered by an incoming request. This
would keep the scheduling algorithm at the complexity ofO(1), while still allows
for the use of RMA without notification. The dispatcher basedcheck for new non-
zero credits can cause delays in the detection of new serversor requires a kind of
polling. The outcome will be a trade-off between overhead and delay in server
detection. On the other hand, if the credit update is done by two-sided communi-
cation, every update would require data processing at the dispatcher. This reduces
the scalability of the service.

6.4 Credit Reporting Algorithms

The current scheduling ignores the absolute amount of remaining credits at the
dispatcher. Scheduling just over the availability of credits strongly depends on the
algorithm used to report credits. This component of SlibNetis the focus of this
section. The section presents some algorithms to report credits used to schedule
requests. A simulative approach is used to compare various aspects of reporting
credits.

6.4.1 Algorithms

Five algorithms to report credits are presented in this section. The algorithms are
compared by their expected behaviour. A detailed analyses of their behaviour and
the quality of distribution is deferred to Section 6.5.4.

6.4.1.1 Plain Full Credits Reporting

The simplest method reports every available resource. To determine the cred-
its, a so-calledlookup is done after a given number of processed requests. This
algorithm uses a fixedlookup interval(li ). The number of credits is calculated
according to Equation 6.2. The queue of a server is limited byqmax. The current
length of the queue isqcurrent.

credits= qmax−qcurrent (6.2)

This number is reported to the dispatcher. Thus, for Plain Full Credits Reporting
the report interval is equal to the lookup interval. The only tuning parameter of
the algorithm is the lookup interval.

6.4.1.2 Low Watermark Reporting

This algorithm also calculates available credits within a fixed lookup interval
(same as the Plain Full Credits Reporting). At each lookup, the server decides
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to report or not. A report is triggered if the number ofexpected creditsat the
dispatcher is below a threshold (low watermark). In case of a triggered report,
all available resources are reported according to Equation6.2. This algorithm is
explained in detail in the masters thesis of Sven Friedrich [Fri06].

The servers calculate the number ofexpected creditsby decreasing the number
of reported credits themselves if a request is taken from thequeue. In this way,
the servers anticipate the number of credits at the dispatcher. Since there is a skew
between decreasing the credits at the dispatcher and at the server, the value is
calledexpected credits.

Additionally, a minimum number of credits is specified to avoid trashing. This
can happen if the number of credits is short above or equal to the low watermark,
which results in more frequently triggered reports. Compared to the Plain Full
Credits Reporting, this algorithm reduces the number of reports, while providing
fine-grained reporting interval under heavy load.

The behaviour of reporting will not be as good as one could think, since the
number of reports increases during heavy load phases. The additional overhead
of reports will further exacerbate the load. This is why the minimum number of
credits is introduced. On the other hand, more frequent reporting increases the
server’s availability and reduces the overall number of drops.

6.4.1.3 Soft Credits Reporting

This algorithm extends the simple report by reporting two credit values within a
fixed interval. It reports so-calledsoft creditsto tell the dispatcher how much work
it wants. This can be seen as a recommendation to the dispatcher. The so-called
hard creditsrepresent the upper limit the server could handle if no otherserver has
soft credits reported to the dispatcher. The number of hard credits is calculated
according to the Plain Full Credits Reporting (see Equation6.2).

The number of soft credits is based on the relation (r) between the lookup
interval (li ) and new requests (n) since the last lookup (see Equation 6.3).r is
similar to the load factorρ known from operational analysis [Jai91] and reflects
the server’s current request processing capability.

n = qcurrent− (qold− li)

r =

{

li
n if n 6= 0

1.0 otherwise
(6.3)

cs = ch∗min(1.0, r) (6.4)

ccorr = cs∗
ch

qmax
(6.5)
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Equation 6.4 works well ifr ≥ 1.0. If r is smaller, the value ofr does not
influence the number of reported credits. This means that a server, which is tem-
porarily under low load (r < 1.0) but still has a long queue, will report full credits
and there will be no difference between soft and hard credits. To smooth out
this process, the number of reported credits can be additionally reduced by a ra-
tio calculated from the maximum length and the current length of the queue (see
Equation 6.5).

In contrast to the Plain Full Credits Reporting and Low Watermark Reporting,
the dispatcher has to be extended in order to check the soft credits first and fall
back to hard credits if no soft credits are available. This ismore complex, but still
has the complexity ofO(1)4.

The Soft Credits Reporting is expected to improve the distribution of the load.
The reduced number of reported credits will result in earlier out-of-soft-credits-
situations for single servers. These servers are considered again after they report
new soft credits or if no more servers have soft credits reported. The additional
reported hard credits are necessary to provide all available resources to the dis-
patcher under heavy load.

6.4.1.4 Dynamic Lookup Soft Credits Reporting

This algorithm extends the Soft Credits Reporting by a dynamic lookup interval.
The interval is defined to be proportional to the length of thequeue. This reduces
the number of lookups and reports under heavy load and improves the responsive-
ness under low load. A heavily loaded server with a long queuewill have some
more time to process the requests. A short lookup interval can be tolerated if the
server has fewer requests to process. Equation 6.6 shows thecalculation of the
dynamic lookup interval. The correlation factorc f is a tuning parameter.limin is
used to avoid reporting after each requests under low load.

lookup= MAX(limin,qcurrent∗c f) c f ∈ (0.0;1.0] (6.6)

It is expected that the dynamic report interval will improvethe quality of the
distribution because loaded servers are taken from the schedule for a longer time.
But the long report interval is also used for hard credits. Therefore, this algorithm
is expected to drop more requests under heavy load.

6.4.1.5 Dynamic Pressure Relieve Algorithm

TheDynamic Pressure Relieve Algorithmis the result of the above analyses of the
lookup and report interval and the use of soft and hard credits. This algorithm uses

4The round-robin ring that contains all available servers with soft credits will be empty and the
next server will be chosen from the round-robin ring of hard credit available servers.
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a fixed interval to report hard credits and a dynamic intervalto report soft credits.
In case of a soft credit report, hard credits are also reported and the counter for the
interval of hard credits is reset. In this way, the algorithmworks like a pressure
relieve valve that additionally can be triggered dynamically by hand. Hence, the
namedynamic pressure relievealgorithm.

This algorithm is expected to perform best among all presented algorithms.
Due to the dynamic reporting interval for soft credits, a good distribution should
be achieved. The fixed interval to report hard credits will reduce the number
of dropped requests under heavy load. The only drawback of this algorithm is
the increased number of reports because more or less two separate reports are
performed.

6.5 Evaluation of Algorithms

Each algorithm is implemented, evaluated, and compared to other algorithms.
Since all credit algorithms and the weighted round-robin scheme areO(1), the
complexity is the same. The evaluation focuses on the quality of the distribution
as described in Section 6.1.3.

6.5.1 Factors

Before the algorithms are analysed with a simulation, the experimental setup is
prepared by determining the primary factors that affect theperformance and qual-
ity. The following factors are found:

• request arrival rate or distribution
• request processing rate or distribution
• the algorithm
• lookup interval (absolute, relative for dyn-lookup)
• report interval (if different from lookup)
• server weights (for comparison with weighted round-robin)
• server speeds
• number of servers
• low watermark
• maximum length of the queue

The evaluation of the credit report algorithms is done by comparing the report
algorithms to the Plain Full Credits Reporting and to weighted round-robin. A
comparison to more sophisticated algorithms likeleast connectionsor shortest
expected delayis not yet done because these algorithms use a less scalableO(n)
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scheduling algorithm. Although, this comparison should besubject of future
work. Round-robin and weighted round-robin use anO(1) algorithm. Thus, the
credit algorithms are compared to round-robin.

6.5.2 Primary Factors

The goal is to compare the quality of the distribution using different algorithms in
homogeneous and heterogeneous environments. Therefore, the only factors to be
varied are the server speed and the algorithm.

server speedThe server speeds determine the type of environment. Homoge-
neous environments are represented by the same speed for each machine.
To simulate heterogeneous environments, the server speedsare unequal.
The comparison to weighted round-robin requires experiments with exact
and non-exact weights to see the benefits of the credit-basedload balancing
if weights are not exactly determined. This is done by using fixed weights of
1 : 1 for homogeneous and 1 : 2 for heterogeneous environments. The server
speeds are set to 1 : 1 and 1 : 2. The simulation of inexact weights is done
by using 1 : 1.05 and 1 : 1.1 for homogeneous and 1 : 2.1 and 1 : 2.2 for
heterogeneous environments. This simulates deviations of5 % and 10 %.
Note that the faster server will get the additional amount ofrequests in the
heterogeneous environment with inexact weights.

The number of setups sums up to 5 for weighted round robin and 2for each
credit algorithm since differing weights can not be specified for the credit
algorithms.

algorithm All algorithms are evaluated. Including the weighted round-robin al-
gorithm, this results in 6 experiments per environment.

As a result of the specified primary factors and their values,16 experiments have
to be conducted.

6.5.3 Secondary Factors

All algorithms will be evaluated using a 100 % loaded system.The arrival interval
of requests is fixed at 10000 units of time to have the same granularity of time
for all experiments. Thus, the request processing time is adjusted respectively.
The processing time of 2 homogeneous servers will be internally calculated as
20000 units of time to get 100 % load. If heterogeneous servers have speed factors
of 1 : 2, their average processing times are 15000 and 30000. Arrival intervals
and processing time of requests are generated according to anegative exponential
distribution. The number of servers is fixed and set to 2.
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Maximum Length of the Queue The maximum length of the queue determines
the maximum number of credits. It makes no sense to report more credits than
available slots in the queue. To make calculations more convenient the maximum
is set to 100. This is fixed for all servers in all experiments of the simulation.

Lookup Interval The overhead of a lookup includes the costs to determine the
number of credits to report. Some examples of such overheadsare the required
calculations, system calls, or management overhead. Thus,the lookup interval
is one of the important impacts on the efficiency of the creditreport algorithm.
A heavily loaded server should use a coarse lookup interval to leave as many
resources as possible to the service. But a coarse-grained lookup is unfavourable
during phases of low load. The system will slowly react to rapid changes of load.
Thus, a short lookup interval is favourable under low load. Afixed lookup interval
can only be a compromise between overhead and reactivity. Therefore, a dynamic
lookup interval is implemented in some algorithms.

The absolute value of a fixed interval is set to 10. This is chosen to lookup
for credits to report after 10 % of the maximum number of credits. The dynamic
interval is set according to Equation 6.7.

li = max(10,qcurrent∗0.5)∗qmax (6.7)

In case of the Dynamic Pressure Relieve Algorithm, the 0.5 in Equation 6.7
is set to 1.0. This results in earlyout-of-soft-creditssituations and thus a better
distribution of requests. In contrast to the Dynamic LookupSoft Credits Report-
ing, it should not increase the overall drops because of the fixed interval for hard
credits.

Report Interval The number of reports differs from the number of lookups if
the Low Watermark Reporting decides not to report any credits. Basically, the
overhead of a report is the cost of the network transfer and protocol processing.
Each server has to transmit the number of credits on each report. Here, the same
considerations as for the lookup interval apply.

While the server has to process its own credit reports, the dispatcher has to
process the credit reports of all servers. Hence, the numberof reports will have an
impact on the scalability of the system. This impact is the case for RDMA, since
the reports via RDMA will not require any processing at the dispatcher.

Minimum Number of Credits This factor is only relevant for the Low Water-
mark Reporting (see Section 6.4.1). The number of reports can be reduced if a
minimum of credits to report is specified. If there are not enough free resources,
no credits can be reported until the lookup detects a sufficient amount of available
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parameter values
algorithm 5 credit algorithms, round-robin
server weights 1:1, 1:1.05, 1:1.1, 1:2, 1:2.1, 1:2.2
server speeds homogeneous (1:1), heterogeneous (1:2)
arrival rate 10000
avg. processing rate10000
lookup interval 10 or dynamic
number of servers 1, 2
low watermark 10
minimum credits 20 (Low Watermark Reporting only)
max queue length 100

Table 6.1: Parameter overview of simulations.

resources. A smaller threshold can result in faster toggling between zero and non-
zero credit situation for this particular server. The duration of zero and non-zero
credit situations will be extended by a high threshold. Using a value of 20 is a
result of a separate study with the Low Watermark Reporting in Section 6.5.5.

All parameters used in the simulation are summarised in Table 6.1.

6.5.4 Simulation

Simulation studies are applied to the algorithms to decide the best algorithm to
implement. Additionally, the simulation results were helpful to better understand
the behaviour of the particular algorithms.

A small simulation program is designed to simulate the behaviour of the four
different algorithms. The following features are implemented:

• All above described reporting algorithms are included.

• Two distribution functions (negative exponential and uniform) are included
to create traces of incoming requests and service times of each request.

• The number of servers is configurable.

• The software can generate traces of the length of the queues and credit re-
ports for detailed analysis. It also can print summaries forstatistical analy-
sis.

• Homogeneous and inhomogeneous setups are possible. This isdone by
specifying their weights.

There are several counters and statistics available:

• The overall number of requests failed due to complete zero-credit situations.
It will be the primary counter to compare the algorithms (dropped requests).
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• The overall average length of the queues. This counter is an indicator for
the average answer time of requests. Also the average answertimes are
calculated.

• The number of individual zero-credit situations of each server. Each indi-
vidual drop represents a deviation from a plain round-robinscheduling.

• The number of individually handled requests of each server as an indicator
how the requests were distributed.

• The individual average length of the queues including standard deviation.
The length of individual queues should correlate with the capabilities of the
servers to achieve similar answer times for each request.

At the initialisation of the simulation, a random trace of requests is generated.
Each request will have a specified normalised service time5. The random trace
depends on a seed that is taken from the command line. This is important to
compare different algorithms based on the same trace of requests.

The simulation is implemented as an event-based simulationwith two types of
events: incoming requests (request event) andservice events. Each event contains
a timestamp to trigger the corresponding action. Furthermore, it contains a process
or server ID to collect individual statistics. Request events trigger the dispatcher to
schedule the request. Service events trigger the server to pick up the next request
from the queue. As long as there are requests in the queue of a server, service
events are generated after the current request is processed.

The scheduling of requests to a queue is done at a request event. The number
of credits is reduced and the length of the queue is increasedfor the selected
server. Each request event sets the timer for the next request according to the
interval given in the trace.

The service timesti of a serveri is calculated according to Equation 6.9 on the
basis of the time of slowest serverts. If ts is calculated according to Equation 6.8,
the system will run under 100 % load (λ is the average arrival rate of requests).
Since the slowest service time is a command line parameter ofthe simulator,ts
has to be calculated externally.

ts =
1
λ
∗

n

∑
k=1

αk (6.8)

ti =
ts
αi

(6.9)

5The service time of the server with the speed factor 1 is used.
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6.5.4.1 Statistics

It is important to explain the details of how statistics are collected to make the
simulation more understandable. First there is a specifiedhot phaseto collect
data. The first (x) and the last (y) requests are ignored to have a warm-up and
a cool-down phase. The calculation ofx andy is shown in Equation 6.10. The
values are retrieved from observation of detailed traces ofqueues.

x =
requests

4
; y =

requests
8

(6.10)

• Dropped requests are counted during thehot phase. A drop happens if a
request can not be scheduled due to a complete out-of-creditsituation at the
dispatcher.

• The calculation of the average length of the queue is done at every time tick.
This makes the average queue independent from the duration of requests and
their processing time.

• The average answer time of a request is calculated when the request is
scheduled to one of the servers. Since the load balancing system has no
influence on the clients network interconnect and the path through the net-
work, only the time to wait in the queue and processing the requests are
considered in the simulations. This value influences the global and the indi-
vidual statistics.

• Another counter is the number of requests handled by individual servers.
This offers a way to evaluate the distribution of requests according to given
server weights.

6.5.4.2 Simulated Testbed

The simulated testbed is specified by the secondary factors (see Section 6.5.3).
Statistics are calculated from 50 different but fixed randomtraces, generated from
50 stored random seeds. The distribution of arrival intervals and service times is
set to negative exponential.

For load dependent analyses, the mean request interval is varied from 9000 to
11000 to simulate high (9000) and low (11000) loaded situations.

The idea of the burst length test is as follows: Starting froman idle system, a
particular load of incoming requests is put into the system.In this case, the same
50 traces as for the other tests are used. Until the first drop,the number of requests
handled is counted and taken to compare the algorithms. The higher the number
of requests the better is the ability of the algorithm to handle bursts.
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Figure 6.3: Impact of the minimum credits on Low Watermark Reporting.

6.5.5 Minimum Number of Credits

The Low Watermark Reporting requires an additional parameter. This parameter
will be determined by experiments instead of guessing. The minimum number of
credits is required to trigger a report after a lookup. The value is calledcmin. The
determination is done by simulating two homogeneous servers (1 : 1), heteroge-
neous servers (1 : 2), and varying the minimum value. Starting from 10 (equals
the low watermark setting and the static lookup interval) upto 40. A higher value
is expected to further reduce the overall quality.

The results of the tests with the Low Watermark Reporting areshown in Fig-
ure 6.3. The evaluation is done by normalising the dropped requests (drops), the
answer time (answertime), and the burst length (burst) to the case where the min-
imum number of credits equals the low watermark (10). By combining these
three normalised measurements, each of the parameters has an equal impact on
the quality measure (see Equation 6.11). The detailed measurements can be found
in Table C.1 in Appendix C.1.

f (drops,answertime,burst) =
drops∗answertime

burst
(6.11)

It can be seen that the results are better (lower values) if the minimum number is a
multiple of the low watermark. The reason is that the low watermark is also used
as the lookup interval.

f (drops,answertime,burst) is best whencmin = 20. It has the best results
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Plain LWM SH DL-SH DPR WRR
dropped 285.9 318.9 285.9 385.3 289.84263.16
answer time 234440 226653 234440 187729 234055250920
reports 2971 989.5 2971 1940.5 3315.70
drop-time 1.0151 1.0946 1.0151 1.0954 1.02751.0

Table 6.2: Simulation results for a single server setup under 100 % load.

combined for the homogeneous and the heterogeneous experiment. Therefore, 20
is chosen for further experiments. The chosen value is not completely independent
from the other factors like the server speed, but since this algorithm is expected to
be suboptimal, it is not fully optimised.

6.5.6 Single Server

Using a single server, the credit algorithms are compared toround-robin (i. e. just
forwarding the requests to the server). There will be a different behaviour between
the credit algorithms due to different lookup and reportingintervals. Also, a de-
viation from forwarding will occur. Depending on the reportinterval, the server
may not have reported available credits in time, while the plain forwarding will
always consume every free slot in the queue. Therefore, the credit algorithms are
expected to perform a little worse than the forwarding.

To evaluate this, a simulation study is done according to theabove evaluation
testbed but with a single server (Section 6.5.4.2). Table 6.2 shows the results of
the simulations. Round-robin performs best in terms of the number of dropped
requests. LWM produces the lowest number of reports among the credit-based
algorithms.

The evaluation of the answer time is a little tricky since thenumber of re-
quests in the queue depends on the number of dropped requests. Therefore,
the answer time is correlated to the number of dropped requests (droptimealgo

in Equation 6.12). This is done by normalising both measurements to the result
of weighted round-robin (answertimewrr , dropswrr). The normalised values are
multiplied afterwards. The lower the product, the better the algorithm performs.

droptimealgo =
answertimealgo

answertimewrr
∗

dropsalgo

dropswrr
(6.12)

The results for a single server are shown in the last row of Table 6.2. This
correlation identifies round-robin6 as the best algorithm in terms of drops and
answer time on a single server even though it does not have thebest answer time.

6which is just forwarding
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6.5.7 Two Servers

Using two servers, the load has to be distributed among the available servers.
Thus, the advantage of round-robin (or forwarding) will disappear.

The Figures 6.4 to 6.7 show the results of the simulations of homogeneous
and heterogeneous servers. They compare the credit algorithms and weighted
round-robin with exact and non-exact weights. The exact numbers are moved to
Appendix C.1.

The algorithms are compared by the parameters that determine the quality of
the load balancing specified in Section 6.1.3. These parameters are the answer
time, the number of dropped requests, the length of bursts without a dropped
request, and the number of reports.

The abbreviations of the algorithms are as follows:
Plain Plain Full Credits Reporting

LWM Low Watermark Reporting
SH Soft Credits Reporting

DL-SH Dynamic Lookup Soft Credits Reporting
DPR Dynamic Pressure Relieve Algorithm

WRR Weighted Round-Robin with weights set to the server’s speedfactors (which
means exact weights concerning the processing capability of the servers)

WRR 5 Weighted Round-Robin with the weights of the second server differing 5 %
from the speed factor of server 2

WRR 10 Weighted Round-Robin with the weights of the second server differing
10 % from the speed factor of server 2

6.5.7.1 Dropped Requests

Figure 6.4 compares the algorithms by the number of dropped requests during the
hot phaseof the simulation.

From the results of homogeneous environments, it is obviousthat the credit-
based algorithms perform better or equal to round-robin. The improvement is
possible because of the self-adaptivity of the credit-based scheduling. The credit-
base algorithms respect inhomogeneous requests.

Because of the approach to maximise the number of credits at the dispatcher,
the Plain Full Credits Reporting and Low Watermark Reporting perform worse in
the heterogeneous environment. The dispatcher runs out of credits for a particular
server very late. The result is an imbalance because of the underlying round-
robin scheduling among servers with available credits. This issue is addressed by
the other credit-based algorithms. Significant improvements are achieved by Soft
Credits Reporting and Dynamic Pressure Relieve Algorithm.

For a single server, a dynamic or longer lookup interval was aproblem. This
has a negative impact on the number of drops when using two servers, too. In both
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Figure 6.4: Average number of dropped requests out of 18750

the homogeneous and the heterogeneous setups, the Dynamic Lookup Soft Cred-
its Reporting performs worse than Soft Credits Reporting because of the longer
interval. Due to Equation 6.6 at Page 147, the average interval is longer than the
fixed interval of the Soft Credits Reporting.

If the weights for round-robin differ by 5 % or 10 % from the server speeds,
the number of drops significantly raises. Even in heterogeneous environments, the
credit-based algorithms outperform weighted round-robinwith inexact weights.

6.5.7.2 Answer Time

The second important result is shown in Figure 6.5. It shows the average answer
time in homogeneous and heterogeneous environments.

Comparing the answer time by their absolute value is not possible because the
number of handled requests is different for each algorithm.Therefore, the same
evaluation steps as for the single server is done.

While the Plain Full Credits Reporting and Low Watermark Reporting had
a low number of dropped requests, the Dynamic Lookup Soft Credits Reporting
drops as many requests as the round-robin (see Figure 6.4). But the answer time of
round-robin is 22 % longer (see Figure 6.5). This indicates that a dynamic interval
improves the distribution of requests.

The main issue to achieve a good distribution is to differ from round-robin as
early as possible, but, only if there’s an imbalance of load.This can be achieved
only if the dispatcher is out of credits of servers under higher load. Thus, every
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mechanism to avoid out-of-credit situations has a negativeimpact on the distribu-
tion. But, a global out-of-credit situation has to be avoided since it increases the
number of drops.

According to the drop-time-correlation in Figure 6.6, the Soft Credits Report-
ing and the Dynamic Lookup Soft Credits Reporting perform very similar. The
former has a low number of dropped requests. The latter has a better answer time.
The performance of the Dynamic Pressure Relieve Algorithm algorithm is best
among the simulated algorithms.

The answer time of weighted round-robin with inexact weights is improved
because the servers have to handle fewer requests. The Dynamic Pressure Relieve
Algorithm performs similar to the weighted round-robin algorithm with exact
weights in the heterogeneous setup. This is a good result, because only the avail-
ability of reported credits at the dispatcher adapts a simple round-robin scheduling
to heterogeneous server speeds.

6.5.7.3 Burst Length

Figure 6.7 shows that bursts can be handled better with a short and fixed lookup
interval. This is derived from the comparison between Soft Credits Reporting and
Dynamic Lookup Soft Credits Reporting.

If the load is distributed better, the length of tolerated bursts also increases.
This can be seen from the improvements of Soft Credits Reporting over Plain Full
Credits Reporting. The former achieves a better distribution by using soft credits.
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DPR WRR DPR WRR
failed 44.7 1315 0 1241
queue 40.8 47.6 37.5 37.3
answer time 4 825 350 4 894 690 3 851 840 3 790 920
drop-time 0.0335 1.0 0.0 1.0

Table 6.3: Comparison between credit-based and WRR using 19servers.

Further, the Dynamic Pressure Relieve Algorithm significantly outperforms all
other simulated algorithms in homogeneous as well as in heterogeneous environ-
ments. This is because it combines frequent reports with thebest load balancing
among the compared algorithms.

6.5.7.4 More Servers

A a comparison between the Dynamic Pressure Relieve Algorithm and weighted
round-robin is performed for 19 servers to test the credit-based algorithms with
more than two servers. Because of the larger number of servers, the overall num-
ber of incoming requests is increased to 300,000. A homogeneous and a het-
erogeneous setup is tested using exact weights for weightedround-robin. The
heterogeneous environment uses the server speeds 1 : 1.5 : 2 : 2.5 : · · · : 9.5 : 10
(hence the 19 servers). Each server of the homogeneous setuphas an average ser-
vice time of 190000 units of time. The slowest server of the heterogeneous setup
processes requests in 1045000 units of time (average)7.

The results in Table 6.3 show that Dynamic Pressure Relieve Algorithm is
able to outperform weighted round-robin in both environments. With two servers,
weighted round-robin performed similar to the credit-based algorithm. But, with
19 servers the Dynamic Pressure Relieve Algorithm wins.

This makes the credit-based load balancing even more advantageous since de-
termining weights for a large number of servers requires a lot of effort.

6.5.8 Summary of Important Impacts

The previous sections were to compare the credit-based algorithms as a whole.
This section is to find important factors and their influence on the quality of the
distribution of requests. The factors to observe are the lookup interval, the re-
porting interval, and the number of credits to report since these factors can be
extracted from the five algorithms.

7The service times of the other servers are calculated according to their speed factors.
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6.5.8.1 Lookup and Reporting Interval

The only algorithm with differences in lookup and reportingis the Low Watermark
Reporting. Since it has shown to be not the best algorithm andthe report of credits
is omitted only under special conditions, report and lookupintervals are taken as
synonyms.

The influence of different lookup intervals can be derived from a comparison
between algorithms with fixed and with dynamic lookup intervals. The dynamic
lookup interval algorithms use a larger interval under heavy load, which results
in a higher number of zero-credit situations and potentially a higher number of
dropped requests. This can be seen from Figure 6.4. Comparing Soft Credits
Reporting and Dynamic Lookup Soft Credits Reporting, the number of drops is
significantly higher with the latter algorithm.

A longer lookup interval increases the number of zero-credit situations for a
particular server. This improves the distribution of requests because the schedul-
ing differs from the underlying round-robin among available servers.

The report interval has the same impact on the length of possible bursts. Short
intervals increase the number of requests before the first request has to be dropped.

The Dynamic Pressure Relieve Algorithm is the result of combining good
burst tolerance and few drops by a short interval with longer(dynamic) report-
intervals to improve the distribution.

There is another effect of the reporting interval that is notexplained yet. The
server itself consumes a number of requests from the currentqueue until the next
report. The queue will be filled to 100 %. But, since no furtherrequests will be
forwarded, the length of the queue will be reduced by the credit report interval.
The length of the queue will more or less alter between full and full minus credit
report interval. The average will be at about a full queue minus half the credit
report interval. Thus, the average answer time will also be reduced..

At least one important impact is not included in the simulation. It is the im-
plied overhead of reporting the credits. It usually consists of network communica-
tion, reading the length of the queue, and all its impacts on the involved machines.
CPU usage, network traffic, and interrupt handling are some of the overheads not
observed here. Since it is overhead, the number of reports should be as low as
possible. The number of reports is reduced by two mechanisms. First, to not re-
port credits at every lookup and, second, to extend the lookup interval. Both have
their advantages and drawbacks seen in the simulation results. Unfortunately, the
best performing algorithm (Dynamic Pressure Relieve Algorithm) has the highest
number of reports.
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6.5.8.2 Number of Credits

The number of credits that are reported has the most important impact on the
quality of the distribution. It was noted above that zero-credit situations of single
servers are essential to improve the balancing of requests.Thus, reporting only a
part of the available credits is useful. The quality is improved if the reported value
depends on the current growth rate of the queue. This is indicated by the simula-
tion result of Soft Credits Reporting. This algorithm uses atwo-step strategy by
reporting soft and hard credits, because the reduced numberof soft credits would
result in an intolerable higher number of dropped requests.

6.5.9 Limitations of Simulation Results

Each simulation is a model of the real problem and this model does not include
all aspects of reality. The following aspects are not included in the simulation:

6.5.9.1 Unimplemented Aspects

• The time between credit reduction at the dispatcher and the queue entry at
the server is ignored. This delay can result in reports with to much credits.
Some credits are not recognised at the server but are alreadyconsumed at
the dispatcher.

• The costs of a lookup are not included. Therefore, the performance of the
backend servers could be reduced in comparison to round-robin.

• The time to report credits is not respected. If this time is long, zero-credit
situations can happen more often, since it would have the same effect as a
long lookup interval.

• The scheduling time is not included. Thus, the influence of the scheduling
algorithm (credit-based or plain round robin) has no impacton the simula-
tion results. This is a expected to be a minor impact since theunderlying
scheduling algorithm has a complexity ofO(1).

6.5.9.2 Multi-Process Applications and Wait Time

The simulation does not take into account the time that a connection is kept es-
tablished. If a server can handle a limited number of concurrent connections and
established connections are kept open but idle for some time, may be the queue is
processed slower than the server can process the requests itself. This also holds
for the time, an open socket is in the stateTIME WAIT in practise.

This particular behaviour was observed during measurements with the Apache2
web-server application (see Section 6.6). In those cases, the queue is processed at
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the speed that is determined by the behaviour of other clients (disconnect/con-
tinue).

6.5.10 Summary

Five credit-based algorithms were presented and evaluatedby simulations in this
section.

The conducted simulations were helpful to better understand the behaviour of
the particular credit reporting algorithms and their influence on the distribution of
requests. The simulations have shown that it is worth to relyon two separate val-
ues (soft and hard credits) because the most important factors of credit reporting
(number of credits and reporting interval) have contrary effects.

Reporting fewer credits improves the distribution to reduce the answer time,
especially in heterogeneous environments. This is becauseeach time the dis-
patcher has no credits from a particular server, the scheduling starts to differ from
round-robin. The simulation results show that algorithms with earlier zero-credit
situations for particular servers produce a more balanced distribution of load. But,
a few available credits at the dispatcher increase the risk to completely drop re-
quests.

Using a long reporting interval improves the distribution because of the same
reason as the fewer reported credits (by early out-of-credit situations of single
servers). Longer intervals help to reduce the number of reports.

The best simulation results were achieved with a two-level scheduling. Pri-
mary scheduling based on a few and dynamically reported (soft) credits improves
the distribution and helps the system to better adopt to heterogeneous environ-
ments. A secondary (fallback) scheduling based on a frequently reported maxi-
mum number of credits makes the service more robust to tolerate bursts and re-
duces the overall rate of failed requests.

This section determined a good and promising credit-based algorithm that can
be used together with one-sided communication.

6.6 Implementations of SlibNet

Chapter 4 introduced the theoretic concepts of one-sided communication. A credit-
based scheduling scheme was developed in the previous sections. This section an-
swers the question if the concepts of one-sided communication and credit-based
scheduling are implementable.

This work was done within the context of student theses [Fri06, Ryl07, Zin07].
However, since they show that the above theoretic analysis are implementable, it
is presented here. Somehistoricsteps towards the current state are also explained.
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6.6.1 SlibNet: InfiniBand-Based Credit SLB

The first implementation of SlibNet did not focus on one-sided communication. It
showed the applicability of credit-based scheduling. The number of free resources
in InfiniBand networks was determined from the number of unused queue pairs.
Since the communication manager (CM) as a central componenton each server
is able to calculate this value, a credit-based load balancing system was designed
to study the behaviour in comparison to round-robin scheduling. This was the
diploma thesis of Sven Friedrich [Fri06, FSS05].

The implemented approach was restricted to InfiniBand networks. But, the
thesis proofed the concept of the Low Watermark Reporting.

6.6.2 SlibNet: Credit-Based Scheduling

The thesis of Olaf Ryll [Ryl07] took the next step towards a credit-based load bal-
ancing system with one-sided communication. An implementation of automatic
registration of backend servers and the corresponding credit-based round-robin
scheduling was designed and implemented.

This thesis made the first use of RDMA write to report credits.It shows that
reporting credits and scheduling can be done with very few synchronisations.

• First, the data has to be written exclusively since two processes access the
data as explained in Section 6.2.2. Since credits can be represented by a very
small amount of data, the system can rely on atomic access to the memory
when writing single bytes or words.

• If servers report new credits but were taken out of the schedule because of
no credits, there has to be some notification. Otherwise, theserver would
stay outside the active ring (see Section 6.3.3 and Figure 6.2 on Page 144).

In the current concepts and implementations, this notification is omitted.
The dispatcher keeps track of the reported credits. The implementation in
[Ryl07] uses a separate thread to keep track of the rings according to the
number of reported credits. This is improved in the follow upwork of Jörg
Zinke [Zin07] by using alook ahead pointer(see below).

Another outcome of these two works is that establishing a reliable connection over
InfiniBand verbs takes a lot of time (about 300µs measured with OFED 1.1). This
is not acceptable if connections have to be established frequently or on a critical
path of data. Establishing connections over InfiniBand is only required when a
new backend server is registered. Further details are published in [SS07b].
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Figure 6.8: Architecture of SlibNet for Socket-based applications [Zin07].

6.6.3 SlibNet: Socket-Based Credit SLB

Jörg Zinke performed the next step in his masters thesis [Zin07]. He designed and
implemented a credit-based load balancing module for the Linux Virtual Server
(LVS) [Zha00, Lin07b]. LVS is a popular kernel level load balancer that is inte-
grated into the Linux kernel. Performance measurements in [FKSS06] show that
LVS can handle load balancing nearly at the speed of forwarding for small num-
bers of servers. In conjunction with IP over InfiniBand, thissoftware is able to
distribute the load of TCP/IP socket-based services.

Figure 6.8 shows the architecture of the implementation8. Two components
are implemented at the dispatcher (Load Balancer): the kernel-level scheduling
module for LVS and a user-level process to handle incoming InfiniBand con-
nections from new servers. The memory area for credits is mapped from ker-
nel to user space via the device/dev/slibnet. Therefore, the server-side lib
libslibnet directly writes the credit updates to the kernel memory of the dis-
patcher.

The current server implementation requires a small kernel patch in order to
read the length of the socket’s backlog queue via agetsockopt-call. The im-
plementation transparently works for TCP/IP-Socket applications. It modifies the
socket API call oflisten, bind, andaccept. The modification ofbind is
required to prepare the library to report credits and count accepts.

If the server starts listening on the port, it establishes anInfiniBand reliable
connection to the dispatcher and performs the first report ofcredits. After this

8The original picture is taken from [Zin07]. The only modification is the translation of the
German wordAnwendungto the wordApplication.
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registration, the dispatcher can distribute incoming requests from clients to the
server.

The reports are triggered by counting the number of accepts.After a specified
number of accepts (see Section 6.4), the credits are calculated and reported to the
dispatcher’s memory.

The update of the rings of servers at the dispatcher is done bythe scheduler
itself. It uses a kind of look ahead strategy. If a server is picked up, a check is
performed for a fixed number of registered servers. A drawback of this scheme is
that some servers are considered for scheduling a little late. However, it introduces
less overhead compared to a thread and keeps the scheduler’scomplexity ofO(1).

This work shows that the credit-based scheduling works together with credits
reported via one-sided communication (that is, RDMA in caseof the InfiniBand
implementation). The presented approach works for the large class of TCP/IP
socket-based client-server applications.

6.6.4 Problems with InfiniBand

The concepts of InfiniBand RDMA fit well to the concept of reporting credits
without synchronisation. However, during the implementation, there were several
problems that are introduced by the OFED stack implementation.

An important issue is implied by the nature of common client-server appli-
cations. For example, the server process of Apache creates child processes to
process several clients in parallel. Each of these processes can accept new con-
nections from the same socket backlog queue. Since each process calls its own
accept, accepts have to be counted globally. By using a smallchunk of shared
memory, this issue can easily be solved. However, it requires mutual exclusion
for the access of the counter.

Another issue arises from the fact that any of the child processes can be the
one to report the current amount of credits. Each of the processes must be able to
write to the dispatcher’s memory. During the initialisation of the service socket, a
reliable connection is established. The implementation ofInfiniBand is not able to
inherit the open connection to the child processes. Therefore, every child process
has to establish a new connection to the dispatcher. This is aperformance issue for
the current implementation since processes are dynamically created and stopped.

One result of this issue is a limited number of concurrent processes. Each
process requires a connection. Each connection requires a Queue Pair (according
to the OFED Mailing list[Ope] about 1 MB per Queue Pair). And each Queue
Pair consumes resources. Especially, at the dispatcher this implementation will
not scale with a large number of servers.

A second issue arises from the mapping of memory between the user and
kernel at the dispatcher. For the handling of incoming InfiniBand connections
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Figure 6.9: Response time of Round-Robin with and without weights compared
to SLIBNet.

it is easier to map the user-space memory into the kernel. In this case the state
of the mapped memory collides with requirements of the OFED implementation.
Memory, intended for RDMA operations, must not be previously mapped, since
the kernel part of the OFED stack needs to map and lock it for its own purposes.

6.6.5 Evaluation

In the context of a case study by Janette Lehmann, several scheduling algorithms
of LVS were analysed and compared. The results of the comparison between LVS
and the implementation of the Plain Full Credits Reporting have confirmed the
simulation results of the Plain Full Credits Reporting algorithm in Section 6.5.
This is presented in [SSZL08]. Currently, only an implementation of the Plain
Full Credits Reporting algorithm exists. In homogeneous environments, the credit
approach is able to outperform round-robin. In heterogeneous environments,
weighted round-robin performs better. This confirms the simulation results (see
Figure 6.9).

A comparison to more sophisticated algorithms is subject offuture work. It
was deferred because algorithms like least connections or shortest expected de-
lay have a complexity ofO(n). The credit-based scheduling uses a strictO(1)
approach.

The conclusions of the case study are:

• The time to establish a connection does not depend on the loadof the server.
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The kernel handles the SYN and ACK packets by interrupts. This has con-
sequences for the Least Connections (LC) algorithm, since it counts the
established connections at the dispatcher. The dispatcherhas no informa-
tion whether the connection is accepted by the service or not. This indicates
an advantage for the credit-based algorithm, because it counts the number
of pending connections in the backlog queue of the service.

• Round-robin, LC, and Shortest-Expected-Delay (SED) perform very simi-
lar if the service has a very low load, even in heterogeneous environments.
Thus, the underlying unweighted round-robin of the credit-based load bal-
ancing is sufficient.

• The self-adaptivity of LC and SED in heterogeneous setups works since the
faster servers close handled connections faster. But, withinexact weights,
they perform less efficient because they cannot estimate thenumber of con-
nections that a particular server can handle in the future.

• If the service is configured to accept long lasting connections, the impact of
the scheduling algorithm disappears. The main reason is that the scheduling
algorithm is responsible only for the very first packet to establish a new TCP
connection. All further packets have to be forwarded to the same server re-
gardless of the load of the chosen backend server. If the number of concur-
rent connections is limited, the machine can become partially idle without
being able accept further connections. Nevertheless, thisdoes not contra-
dict the assumption, since the maximum number of concurrentconnections
is a limited resource as well as CPU or RAM. If the service is well config-
ured, the consumption of resources (CPU, RAM, number of connections,
etc.) should be balanced. This balance is out of the control and scope of the
load balancing algorithm.

The Experiments with the Apache2 server show that the InfiniBand-based report-
ing of credits suffers from the fact that established connections between Queue
Pairs are not inherited to child processes byfork (see Section 6.6.4). This has
to be taken into account when comparing the credit-based implementation to the
other LVS scheduling algorithms.

Figure 6.9 shows the average response time of the above experiments. It shows
that the Plain Full Credits Reporting is able to slightly outperform Round-Robin
in heterogeneous environments if Round-Robin is used with inexact weights. In
general, the measurements confirm the results of the simulations in Section 6.5.
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6.7 Conclusion

Monitoring is a good case for one-sided communication because it is possible to
work without synchronisation. The issues of parallel applications with MPI and
NEON are unimportant for monitoring since noproducer/consumerinteraction
occurs.

Buffer announcements (similar toMPI_Win_Post or NEON_Post) have to
be done only once when a server is registered. Notification for resource moni-
toring is only required in case of a status change of a server from unavailable to
available. This can be omitted if dispatcher-based lookup strategies are imple-
mented. In this way, the dispatcher has control of the load introduced by reports.
This makes the system more scalable.

The credit-based load balancing has shown to be self-adapting to heteroge-
neous servers and heterogeneous workload. This is achievedby a backend-based
metric that uses the available connection endpoints of a service to tell the dis-
patcher the maximum number of requests that can be forwardedto a particular
machine. This prevents servers from overloading. It also allows the dispatcher to
early drop requests if there are no more resources left. Thisavoids forwarding of
requests that would be dropped by the overloaded server.

A simulation study of five credit-based algorithms was conducted to under-
stand the behaviour of reporting credits. It is essential toreport two separate
values within two different intervals. A soft credits valuetells the dispatcher how
many requests a server recommends to forward. The hard credits report all avail-
able resources to the dispatcher.

The dispatcher works best with a two-level scheduling basedon the two val-
ues. The primary scheduling should rely on soft credits thatare reported within a
dynamic interval. This improves the distribution of load. Asecondary scheduling
based on frequently reported hard credits helps to keep the service available under
heavy load.

The current state of implementations is a scheduling modulefor the Linux
Virtual Server and a small library for TCP/IP-based socket applications. The ap-
proach uses the backlog of a socket to calculate the number ofcredits to report.
The report is done via InfiniBand RDMA.

An evaluation has confirmed the simulations of the Plain FullCredits Report-
ing algorithm. Therefore, it is expected that the good results of the Dynamic
Pressure Relieve Algorithm will further improve the results. The experiments
have shown that the approach has the potential to improve server load balancing
in heterogeneous environments without specifying weights.
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7.1. CONCLUSIONS FROM THE COMMUNICATION MODEL

This work proofs that the benefits of one-sided communication rise and fall
with the nature of synchronisation required by the application. Applications that
require less synchronisation can benefit from one-sided communication. If ap-
plications cannot benefit from one-sided communication, even RDMA-capable
hardware cannot improve the performance compared to send/receive based com-
munication.

7.1 Conclusions from the Communication Model

In Chapter 4, theVirtual Representation Modelwas proposed to abstract inter-
process communication. It includes the application into the overall process of
communication (like the ISO/OSI model). However, it abstracts the layers 1 to 6
of the ISO/OSI model into a communication system to allow a focus on the effi-
ciency of the API and its implementation. Furthermore, thisabstraction combines
the synchronisation according to theproducer/consumersynchronisation with the
concept of data transfer over a pipeline.

The general model can be applied to several transports by changing some of
the virtual representations into physical representations. The application to a spe-
cific environment enables the retrieval of essential hints for the design of a com-
munication interface and its implementation. For example:

• the model indicates whether the buffer announcement has to traverse the
network or not.

• if the characteristics of the external and internal communication steps are
known, the model helps to decide whether internal buffers are helpful or not
and if the message transfer can be deferred or not in case of anearly sender
problem.

• a physical representation does not require API calls. Therefore, it helps to
decide which functionality has to be exposed to the application and which
can be handled transparently.

The basic layout of an efficient one-sided communication APIis another result
of combining theproducer/consumersynchronisation and the pipeline model. The
main property of this API is the separation of notification and completion for non-
blocking communication.

7.2 Results from the NEON API

The result of Chapter 5 is the design and implementation of a NEw ONe-sided
communication API (NEON). The API proves the applicabilityof the communi-
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cation model for parallel applications. NEON is implemented on top of Sockets
and on top of InfiniBand. The results show that the performance of applications
can be improved by the separation of notification and completion.

If a communication pipeline imposes a bottleneck step, the notification has
to happen as early as possible to enable overlap of the synchronisation message.
Completion has to happen as late as possible to increase process skew tolerance
and the potential to overlap communication and computation.

Applications with a bidirectional synchronisation will suffer from an implicit
barrier if the notification and the completion are combined in a single API call.
In case of the Cellular Automaton, this reduces efficiency intwo ways. First, it
reduces the process skew tolerance of the application and therefore the runtime
variance in one of the processes will affect other processes(at least the communi-
cation partners). Second, a slight process skew allows at least one communication
partner to announce its buffer. This implies a lower risk of deferred data transfers.
The data transfer has not to be deferred and communication can be overlapped
with computation.

An API is efficiently implementable on various networks if the notification can
be embedded into the communication API calls. A network, like InfiniBand, that
is most efficient by transferring the notification messages as a separate message
can easily and efficiently split the API call into a data message and a notification
message. However, the opposite way does not work efficiently. If the underlying
transport, like Ethernet, performs better with the notification included in the data
message, the data transfer has to be deferred until the notification API is called.
This would violate the pipeline model.

One-sided communication can synchronise multiple communication opera-
tions within a singleproducer/consumersynchronisation. This is where appli-
cations may benefit from one-sided communication.

Synchronisation becomes a problem with one-sided communication if multi-
ple networks are available. Independently of using implicit or explicit synchro-
nisation, the synchronisation has to be the last message to be delivered to the
destination process.

7.3 Results from Server Load Balancing

One-sided communication is beneficial for resource monitoring since this applica-
tion requires only sparse synchronisation. Resource monitoring does not require
theproducer/consumersynchronisation. Therefore, efficient implementations can
be done especially on top of RDMA-capable hardware.

The proposed credit-based server load balancing scheme relies on resource
monitoring and reporting. It benefits from the usage of one-sided communication.
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Credits can be directly written into the memory of the dispatcher.
The credits are a simple and powerful metric to represent thefuture service

capabilities of a server. However, this only works if the metric taken to determine
the number of credits has an upper limit. The number of connection endpoints
has shown to be such a metric for client-server applications. The result of the
research presented in Chapter 6 is a self-adapting server load balancing technique
that makes efficient use of one-sided communication.

Client-server applications put some limits on the self-adaptability of the credit
mechanism. If the load balancer relies on a connection counter (established or
available connection slots) the quality of the load distribution will depend on how
the application works with connections. If connections areshort-living, the result-
ing schedule will quickly self-adapt to the current load of the server. If connec-
tions are long term connections with much idle time, the availability of a service
depends on the overall number of simultaneous connections the cluster can han-
dle. For connection oriented services, connections are themain factor to monitor,
since connections are the limiting factor of the service.

7.4 Future Work

The analyses in this work have pointed out some future directions that could not
be part of the research of this work.

Separate notification messages or messages with and withoutnotification to
the same buffer require special treatment in networks without message order-
ing. For example on multi-rail networks (e. g. multi-port InfiniBand) or mesh
networks, messages can easily arrive without ordering. In those networks, it has
to be assured that the notification is delivered as the last message.

The Dynamic Pressure Relieve algorithm is worth to investigate. The simula-
tions showed promising results of this algorithm. Another interesting study is the
impact of additional information on the number of reported (soft) credits.
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Benchmark Testbeds

In this section, the main testbeds are described. The hardware and the software
is used in several experiments. Therefore, this is the central place to describe the
environments.

A.1 Uranus

Uranus is a cluster of 8 Double-CPU nodes plus a master. The CPUs are 1 GHz
Pentium III machines equipped with 1 GB of SDR-RAM. The SuperMicro 370DE6
mainboard contains a NetGear GA-621 Gigabit Ethernet network card attached to
a 64 bit/66 MHz PCI-Bus. This network is intended for high speed communi-
cation of parallel applications. The switch is a BATM-Titan-0530. The Gigabit
Ethernet is fiber-based. An administrative network is available via a EtherExpress
PRO/100 Fast Ethernet network interface.

The software environment of this cluster is based on Debian 3.1 sargeusing
Linux-Kernel version 2.6.8. The network driver for the GA-621 is the ns87415
driver (out of the box without further tuning).

The MPI library is the MPICH2 implementation (mpich2-1.0.4p1). It uses the
ssm-module for communication. This module implements socket-based commu-
nication together with optimisations for shared memory.

A.2 Einstein

Einstein consists of 16 compute nodes and 2 masters. Each node is equipped with
Intel XEON 2.6 GHz processors and 1 GB of ECC-DDR RAM.

The nodes are interconnected via Intel 82540 Ethernet network interfaces.
This network link is used for administration as well as communication between
applications.
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The Einstein cluster runs a Debian 3.1sargeGNU/Linux with Kernel 2.6.8.
The network driver is the e1000 driver.

A.3 InfiniBand Cluster

This cluster is heterogeneous. It consists of 3 pairs of machines that have been
added step by step. Table A.1 shows the setup of the 3 pairs. The first pair and the
second pair differ only in the version of the host channel adapter (HCA). The last
pair is equipped with more modern hardware and PCI-Express instead of PCI-X.

IB1 and IB2
CPU Intel XEON 2.66 GHz
RAM 1 GB
HCA 2-Port Mellanox MT23108 MHX-CE128-T
Firmware 3.5.0
PCI PCI-X

IB3 and IB4
CPU Intel XEON 2.66 GHz
RAM 1 GB
HCA 2-Port Mellanox MT23108 MHXL-CF128-T
Firmware 3.5.0
PCI PCI-X

IB5 and IB6
CPU Intel Pentium 4 2.80 GHz
RAM 1 GB
HCA 2-Port Mellanox MT25208 MHEL-CF128-T
Firmware 4.7.6
PCI PCI-Express

Table A.1: Machines of the InfiniBand cluster.

Each machine runs a Debian 3.1sargeLinux system. The Kernel 2.6.18 is
patched with the OFED extensions to provide InfiniBand HCA drivers. The OFED
release is version 1.1.
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Benchmarks

A detailed description of benchmarks is required in order tocompare the results of
an experiment to others. This is done in this section. First,the micro-benchmarks
are explained (ping-pong, Cellular Automaton). Afterwards, some application
benchmarks are presented.

B.1 Micro-Benchmarks

Micro-benchmarks are mainly used to evaluate one or a few parameters of a sys-
tem. In case of networks, the ping-pong test is very common. Aspecial version
of this test is implemented at the institute for computer science calledEins.

It is important to describe how the measurement is done. Otherwise, the results
can be misinterpreted or cannot be compared to other measurements.

B.1.1 MPI Ping-Pong

This MPI-based ping-pong test was derived from thepingpong2example in [SW97].
It starts a parallel application. The processes with an evenrank perform the
measurement and start to send data to a single odd rank (own_rank+ 1) us-
ing MPI_Send. After sending data,MPI_Recv is called to receive the re-
ply. The timestamps are retrieved byMPI_Wtime beforeMPI_Send and after
MPI_Recv (see Listing B.1).

1 f o r ( i = 0 ; i < t r i e s ; i ++) {
2 / ∗ s t a r t t i m e ∗ /

3 l a s t T i m e = MPI_Wtime ( ) ;
4

5 / ∗ P i n g − P o n g ∗ /

6 MPI_Send ( b u f f e r , l en g t h , MPI_DOUBLE , myId +1 , PING ,
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7 MPI_COMM_WORLD) ;
8

9 MPI_Recv ( b u f f e r , l en g t h , MPI_DOUBLE , myId +1 , PONG,
10 MPI_COMM_WORLD, &s t a t u s ) ;
11

12 / ∗ e n d t i m e ∗ /

13 nowTime = MPI_Wtime ( ) ;
14

15 t i m i n g [ i ] = nowTime − l a s t T i m e ;
16 l a s t T i m e = nowTime ;
17 }

Listing B.1: Measurement loop of the MPI ping-pong

B.1.2 Eins

Eins is a recursive acronym and stands forEins is not sockping. It was derived
from a TCP/IP ping-pong micro-benchmark developed in [Sch03]. Eins is de-
signed and written by Hynek Schlawack in [Sch06]. He extended the socket ping-
pong to make it more flexible and usable to measure other network protocols.

The first extension was IPv6 support. A UDP module is included. Eins allows
user level fragmentation and measurement sequences. Jörg Zinke included a new
module to measure the time to establish a TCP/IP connection.

This tool has become the defacto standard pingpong micro-benchmark at the
professorship for Operating Systems and Distributed Systems of Prof. Dr. Bettina
Schnor.

1 / / M a i n m e a s u r e− l o o p

2 f o r ( s i z e _ t t r y = 0 ; t r y < ma . t r i e s ; t r y ++) {
3 a l l t i m e [ t r y ] = (nm−>measure ( )− m e a s u r e d e l t a ) / 2 ;
4 }

Listing B.2: Measurement loop of Eins

The central measurement routine works as follows (see Listing B.2). It runs
the module-specific routine. The requirement for this routine is to return the dura-
tion of a single ping-pong sequence. The overhead of a measurement is subtracted
and the one-way latency is calculated (also calledhalf round-trip-time). The val-
ues are collected in an array that is evaluated afterwards. The median and the
standard deviation are calculated.

The timestamps are based on fetching the TSC (time stamp clock) register
of modern CPUs of IA32 family (i586 and above). Initially, Eins calculates the
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number of ticks per second to calculate a duration from the TSC values. This
makes the current version of Eins stick to CPUs which providethe TSC

The current version of Eins supports the measurement of:

• TCP

• UDP

• BMI (buffered message interface of PVFS2)

• TCP connection establishment

• malloc() memory allocation

• SCTP (Stream Control Transmission Protocol)

• NEON (only original Socket-based API)

B.2 Application Benchmarks

Micro-benchmarks are a common way to discover performance issues or bottle-
necks. However, it is not sufficient to evaluate a software using micro-benchmarks
only [SS07a]. Applications make use of communication patterns that are different
from micro-benchmarks. Furthermore if an application is running, the main task
of the machine should be to process the implemented algorithm instead of pro-
cessing communication. Often this aspect is not recognisedand also not intended
by miro-benchmarks.

B.2.1 The Cellular Automaton

TheCellular Automatonis an example for the large class ofbulk-synchronousap-
plications. The algorithm allows the overlapping of communication and computa-
tion of all calculations except the topmost and undermost line of cells. Listing B.3
shows the pseudocode of the Cellular Automaton.

1 f o r ( a l l i t e r a t i o n s ) {
2 Buf fer_announcement ( n e i g h b o u rs ) ;
3

4 / ∗ c a l c u l a t e f i r s t a n d l a s t r o w ∗ /

5 s i m u l a t e ( f i r s t _ r o w ) ;
6 s i m u l a t e ( l a s t _ r o w ) ;
7

8 / ∗ i n c l u d e N o t i f i c a t i o n ∗ /

9 I n i t i a t e _ T r a n s m i s s i o n ( f i r s t _ r o w , p rev iousPE ) ;
10

11 / ∗ i n c l u d e N o t i f i c a t i o n ∗ /
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12 I n i t i a t e _ T r a n s m i s s i o n ( l as t _ ro w , nextPE ) ;
13

14 / ∗ c a l c u l a t e r e m a i n i n g c e l l s ∗ /

15 s i m u l a t e (2 − l a s t _ ro w−1);
16

17 / ∗ s y n c h r o n i s e ∗ /

18 Comple te_Al l ( ) ;
19 }

Listing B.3: Pseudocode of the Cellular Automaton.

The pseudocode shows a kind of ideal solution. The buffer announcement
is initiated as early as possible. Then the minimum of cells to communicate is
simulated before the transfer of these cells is initiated. Next, all remaining cells
are updated. Finally, all non-blocking communication operations have to be com-
pleted.

B.2.2 httperf

httperf simulates clients accessing a web server by firing html requests at the
server. It can be configured to simulate a number of clients starting at a certain
rate.httperf can also inject the requests by following recorded traces. By includ-
ing idle times into these traces,httperf can simulate the behaviour ofreal surfers
following a click/read sequence.

This feature ofhttperf was used to create the workload for the load balancing
tests.httperf executed traces that were recorded using RUBiS.

B.2.3 RUBiS

RUBiS is the abbreviation of Rice University Bidding System. It is intended to
simulate a bidding, browsing, and selling web site similar to ebayR©. It simulates
a number clients navigating through the service. Accordingto given probabilities
a client accesses different documents and services starting from an entry page.

Only the browsing component of RUBiS is active for the measurements in the
context of this thesis. This only employs the web server (Apache in this case). It
avoids interference with other services like databases or application servers that
are required for the bidding and selling components.
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Measurement Data

C.1 SlibNet: Simulation of Credit Algorithms

min drops answer time burst length product
homogeneous

10 133.06 541538 6249 1
15 149.64 494667 68410.938372
20 149.22 497269 65530.982002
25 167.42 456509 5727 1.15735
30 164.64 449158 5979 1.07261
35 183.6 401697 5379 1.18906
40 189.18 403385 5161 1.28232

heterogeneous
10 278.44 683909 1300 1
15 316.28 630916 1263 1.07858
20 304.26 629395 1339 0.97634
25 334.58 573616 1309 1.00091
30 332.34 566432 1186 1.08358
35 374.96 512891 1115 1.17747
40 364.44 511429 1161 1.09595

Table C.1: LWM minimum number of credits.
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Plain LWM SH DL-SH DPR WRR
dropped 162 164 153 210 145 203
queue 52.0 51.9 49.9 40.6 48.2 49.0
answer time 551539 549688 532874 428104 513361525986
queue ratio 1.009 0.968 1.019 1.012 0.996 1.054
drop-time 0.8368 0.8443 0.7636 0.8420 0.699 1.0

Table C.2: Simulation results for homogeneous setup with two servers under
100 % load.

Plain LWM SH DL-SH DPR WRR
dropped 162 164 153 210 145 645
queue 52.0 51.9 49.9 40.6 48.2 50.7
answer time 551539 549688 532874 428104 513361524385
queue ratio 1.009 0.968 1.019 1.012 0.997 5.290
drop-time 0.2642 0.2665 0.2410 0.266 0.221 1.0

Table C.3: Simulation results for non-exact-homogeneous weights.

Plain LWM SH DL-SH DPR WRR
failed 314 332 245 309 196 219
queue 69.2 68.4 63.1 49.7 56.4 48.2
answer time 714531 706006 652111 518468 593099520337
queue ratio 1.941 2.016 1.451 1.422 1.387 0.900
drop-time 1.963 2.0546 1.3973 1.4031 1.01831.0

Table C.4: Simulation results for heterogeneous setup withtwo servers under
100 % load.

Plain DPR WRR WRR5 WRR10
failed 314 196 219 355 627
queue 69.2 56.4 48.2 42.8 43.2
answer time 714531 593099 520337 451034 453568
queue ratio 1.941 1.387 0.900 0.3086 0.1289
drop-time 1.963 1.0183 1.0 1.4011 2.4897

Table C.5: Simulation results for heterogeneous setup withtwo servers using non-
exact weights (10 %) under 100 % load.
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Specification of Units

Unit Measure Explanation
1 kB 1000 Bytes size of messages or buffers
1 MB 1000 kB size of messages or buffers
1 GB 1000 MB size of messages or buffers
1 KiB 1024 Bytes size of messages or buffers
1 MiB 1024 KiB size of messages or buffers
1 GiB 1024 MiB size of messages or buffers
1 kbit/s 1000 bit/s transfer rate, throughput
1 Mbit/s 1000 kbit/s transfer rate, throughput
1 Gbit/s 1000 Mbit/s transfer rate, throughput
1 kB/s 1000 B/s transfer rate, throughput
1 MB/s 1000 kB/s transfer rate, throughput
1 GB/s 1000 MB/s transfer rate, throughput
1 KiB/s 1024 B/s transfer rate, throughput
1 MiB/s 1024 KiB/s transfer rate, throughput
1 GiB/s 1024 MiB/s transfer rate, throughput

Table D.1: Specification of Units.
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