Dissertation

THE BENEFITS OF

ONE-SIDED COMMUNICATION INTERFACES

FOR CLUSTER COMPUTING

vorgelegt von
Dipl.-Inf. Lars Schneidenbach

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften
(Dr.rer. nat.)
in der Wissenschaftsdisziplin "Informatik”

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultat
Universitat Potsdam

XVGI‘SJ']
N

[]
S, <D

o« &
“am

angefertigt am
Institut fur Informatik
Professur fur Betriebssysteme und Verteile Systeme

Betreuung:
Prof. Dr. Bettina Schnor

Potsdam, im Marz 2009

Contents

1 Introduction 15
1.1 The Design of One-Sided CommunicationAPIs 6 1
1.2 Termsand Definitions 17
1.3 Outline and Contribution of This Thesis 18
2 Cluster Computing and Network Technology 21
21 ClusterUsage i i 22
2.1.1 Parallel Applications 22
212 FileSystems 23
2.1.3 Client-Server Applications and Server Load Balagcin. 24
2.2 Network Technology forClusters 24
221 Ethernet. 24
222 Myrinet 26
223 InfiniBand 27
224 Quadrics 32
2.3 SUMMArY e e e 32
3 Cluster Communication (Related Work) 33
3.1 Efficiency 34
3.2 Interfaces for Communication 35
3.21 Sockets 35
3.22 VIA . . e 37
323 Verbs 39
3.24 DAPL e 39
3.25 MyrinetMX 40
3.2.6 Summary 40
3.3 Parallel Programming 41
3.3.1 SharedMemory. 41
3.32 MessagePassing 42
3.4 Message Passing Interface, 43
341 MPICH2 46

CONTENTS

342 MVAPICH a7
343 OpenMPIl. a7
344 MPICH-G2 e 48
3.4.5 Efficiencyof MPI. 48
35 OpenMP e 49
3.6 FurtherAPIs. 50
3.6.1 ARMCI e 50
3.6.2 LAPI . .. 51
3.6.3 SHMEM 52
364 GASNet. 52
3.6.5 Global Address Space Languages 52
3.6.6 UnifiedParallelC. 52
3.7 Design Aspects of Efficient Communication 53
3.7.1 BufferManagement 53
372 Overlap 57
3.73 Offload 60
3.7.4 Progress. 61
3.75 TransportofData 63
3.8 Interdependencies oo 66
3.9 Conclusion 67
A Model for Communication 69
4.1 IPC: Producer/Consumer i 70
4.2 The Virtual Representation Model 71
4.2.1 Application 72
4.2.2 CommunicationSystem 76
4.2.3 HowtoApplytheModel 79
4.3 Aspects of Efficient Communication 81
4.3.1 CommunicationPipeline 81
4.3.2 SendingandWriting oL 82
433 Receiving 82
434 ReadingData 84
4.3.5 Synchronisation 85
4.3.6 Bi-directional Synchronisation 86
4.3.7 SUMMArY e e e e e e 88
4.4 Design Criteria for an Efficient One-Sided Interface 88
441 Communication. 89
4.4.2 Synchronisation 89
443 Completion 92
4.4.4 Bi-directional Synchronisation 93
45 Conclusion 93

CONTENTS

5 One-Sided Communication for Parallel Applications 95
5.1 Application Analysis: Cellular Automaton 96
5.1.1 Measurements 97
5.1.2 Pointto-Point. L oo 97
5.1.3 One-Sided Communication. 102
5.1.4 Summary 103
52 TheNEONAPI 104
5.2.1 Introduction. 104
5.2.2 Name and Addressof Buffers 105
5.2.3 Buffer Announcement 107
5.2.4 Completion 109
5.25 Communication. 110
526 Summary 112
5.3 NEONoverSockets. 112
531 GeneralDesign o 113
5.3.2 Socket SpecificDesign 114
533 Implementation 116
534 Evaluation 119
54 NEONoveriInfiniBand 121
54.1 Design 122
542 Implementation 122
543 Evaluation, 123
5.5 NEON in Shared Memory Environments 125
5.5.1 Applying the Communication Model 126
5.5.2 Synchronisation 126
55,3 DataExchange 126
56 WhatsNew 127
5.7 Conclusion 128
One-Sided Communication for Server Load Balancing 131
6.1 ServerLoadBalancing 132
6.1.1 Server Load Balancing Techniques. 132
6.1.2 Architecture of Server Load Balancing 133
6.1.3 Qualityof Scheduling 134
6.1.4 Load Balancing Algorithms 135
6.1.5 ServerWeights 136
6.1.6 Conclusion 137
6.2 A Case for One-Sided Communication 138
6.2.1 Resource Monitoring 138
6.2.2 Characteristics of Resource Monitoring 391
6.3 Credit-Based Scheduling 140

CONTENTS

6.3.1 Credits 140
6.3.2 Monitorable Resources 141
6.3.3 Scheduling 144
6.4 Credit Reporting Algorithms 145
6.4.1 Algorithms 145
6.5 Evaluation of Algorithms 148
6.5.1 Factors 148
6.5.2 PrimaryFactors 149
6.5.3 Secondary Factors 149
6.5.4 Simulation 151
6.5.5 Minimum Numberof Credits 154
6.5.6 SingleServer 155
6.5.7 TwoServers. 156
6.5.8 Summary of Importantimpacts 160
6.5.9 Limitations of SimulationResults 162
6.5.10 Summary 163
6.6 ImplementationsofSlibNet 163
6.6.1 SlibNet: InfiniBand-Based CreditSLB 164
6.6.2 SlibNet: Credit-Based Scheduling 164
6.6.3 SlibNet: Socket-Based CreditSLB 165
6.6.4 Problems with InfiniBand 166
6.6.5 Evaluation 167
6.7 Conclusion 169
Conclusions 171
7.1 Conclusions from the Communication Model 721
7.2 Results fromthe NEONAPI 172
7.3 Results from Server Load Balancing 317
7.4 Future Work e 174
Benchmark Testbeds 175
Al Uranus. e e e e 175
A2 Einstein 175
A.3 InfiniBandCluster., 176
Benchmarks 177
B.1 Micro-Benchmarks 177
B.1.1 MPIPing-Pong 177
B.1.2 EINS 178
B.2 ApplicationBenchmarks 179
B.2.1 The Cellular Automaton 179

6

CONTENTS

B.2.2 httperf. 180

B.23 RUBIS 180
C Measurement Data 181
C.1 SlibNet: Simulation of Credit Algorithms 181
D Specification of Units 183
Bibliography 187
Index 205

CONTENTS

Acknowledgement

This page is dedicated to all the people who supported tlsigh This is to
express my gratitude to them.

First, | want to thank my supervisor Professor Doctor BettBchnor. She
supported this work with discussions and helpful advisesr dhie years. She
offered great opportunities for my scientific work.

One special person has to be mentioned here: Klemens Kitathout his
commitment to setup and fix problems with hardware or sofywtis work would
not have been done within the next years. | want to thank himhi®humor and
support here. We are lucky to have such a great administrator

A great thank goes to Stefan Liske for fruitful advises anthbong me with
questions. This was very helpful.

| want to thank all the (former) students of the work grouphaf professorship
for operating systems and distributed systems. A lot offinbdiscussions and fun
happened during their masters and diploma thesis.

Thanks to Brendan Boulter for proofreading and checkingexmpertisein
English spelling and grammar.

Personally, | want to gracefully thank my wife Sabine. Tlhedis would not
have been possible without her backing. | don’t have to fongefamily and my
friends for their tolerance when | had no time to contact tlemegularily as |
wanted. Erik Linus and Arne: this work is also for you.

CONTENTS

Deutsche Zusammenfassung

Cluster bestehen aus einzelnen Rechnern, die Uber ein Biétmiteinander ver-
bunden sind. Die Einsatzgebiete von Clustern reichen vore8efur vielgenutz-
te Webseiten und Internet-Dienste bis hin zu den schnelR&gallelrechnern der
Welt. Insbesondere Cluster als Parallelrechner sind eei®Qer Jahren des letzten
Jahrhunderts nicht mehr aus der Welt der parallelen Anwegeluwegzudenken.
80 % der Rechner in der Top 500 sind inzwischen der Clustehitgktur zuge-
ordnet.

Der verteilte Speicher von Clustern erfordert jedoch hecfggmante Netz-
werkverbindungen und Ubertragungsprotokolle, um einéimiefiten Datenaus-
tausch ermoglichen. Heutige Technologien wie InfiniBangbtsilitzen dabei den
direkten Zugriff auf den Speicher anderer Prozesse. Unedésote direct me-
mory accesg¢RDMA) genannte Technik direkt in Anwendungen nutzen zu kon-
nen, wurden Programmierschnittstellen ane-sidedcommunication entwickelt.

Die wohl bekannteste Programmierschnittstelle fir pal@lAnwendungen
ist dasMessage Passing Interfa@@Pl). Seit Version 2.0 werden auch Primitiven
fur einseitige Kommunikation unterstitzt. Bestehendelémgntationen dieser
Primitiven werden standig verbessert, dennoch schneigse deuen Wege zum
Datenaustausch noch immer schlecht ab im Vergleich zusiklesen zweiseitigen
Kommunikation mit Sende- und Empfangsaufrufen. Es findeh auch in der
Literatur nur einige wenige Hinweise auf Vorteile beim Etisvon einseitiger
Kommunikation. Diese stammen jedoch aus dem angrenzermtsoHtingsgebiet
der Programmiersprachen fur Globale Addressraume, welchedem Message-
Passing-Paradigma folgen.

In dieser Dissertation werden die Ursachen analysiert wzetigt, dass dies
nicht an mangelnder Reife der Implementationen oder gaeaftef bei der Im-
plementierung liegt sondern an der Spezifikation der MPirgtstelle. Die er-
forderliche Synchronisation der Datenlbertragung splieitei eine wesentliche
Rolle.

Anhand eines Kommunikationsmodellsviftual Representation Modeje-
nannt — werden Designkriterien fir eine effiziente Prograenschnittstelle fur
parallele Anwendungen hergeleitet. Es wird gezeigt, dassSgezifikation von
MPI-2 one-sided-communication diese Kriterien nicht BrfiMit NEON wird
auf Basis der Designkriterien eine Schnittstelle entwoufied fir TCP/IP-Sockets
und InfiniBand Verbs implementiert und bewertet. Die Ergeda zeigen, dass
NEON eine effiziente und portable Schnittstelle darstBkts Weiteren zeigt sich,
dass die Fahigkeit von InfiniBand direkt auf entfernten Spei zuzugreifen nicht
a priori von Vorteil bei der Implementierung von einseitig@mmunikation ist.

Ein weiteres groRes Anwendungsgebiet von Clustern ist sargegesServer
Load Balancing Diese Technik erlaubt es die Anfragelast von Clients aelfevi

10

CONTENTS

Server zu verteilen und einen Dienst dadurch skalierbaib#éund ausfallsicher
zu machen. Wéhrend bei parallelen Anwendungen vorrangigolgene Maschi-
nen in einem Cluster arbeiten werden beim Server Load Bagri@ufig hete-
rogene Cluster eingesetzt. Dies hat meist historisched&;iimenn zum Beispiel
ein einzelner Server fur einen Internet-Dienst nicht mefsr@icht und um einen
oder weitere Rechner ergénzt wird. Dann ist eine Lastverginotwendig, die
Anfragen von Clients auf die vorhandenen Server vertedi.dgr Verteilung soll-
ten unterschiedliche Kapazitaten und freie Ressourceitksichtigt werden, um
eine optimale Auslastung der Rechner zu gewahrleisten andienst fur mog-
lichst viele Clients gleichzeitig bereit zu stellen.

In der vorliegenden Arbeit wird die Uberwachung der Servéas-Ressourcen
Monitoring — mit Hilfe von einseitiger Kommunikation alsnei effiziente Tech-
nik vorgestellt. Dabei kommen sogenan@ieditszum Einsatz, die eine einfache
Metrik fUr die zuktnftige Verfigbarkeit des jeweiligen 8ers darstellen. Es stellt
sich heraus, dass die Lastverteilung auf der Basis von Sredhezu ohne Syn-
chronisation auskommt und damit fir einseitige Kommundtagut geeignet ist.
Auf dieser Basis wird ein selbst-adaptierendes crediteb@s Lastverteilungsver-
fahren vorgestellt, dass sich sowohl an heterogene Clalst@uch an heterogene
Anfragen anpasst. Das Verfahren wahlt in konstanter Zeéreverfligbaren Ser-
ver aus. Es kommt ohne aufwéndige Sortierung der verfugh®&eever aus und
ist somit hochskalierbar.

Die Arbeit zeigt, dass die Synchronisation den entscheiderfcinflussfaktor
auf die Effizienz der Kommunikation zwischen Anwendungenmstdgit. Die Kom-
munikationsleistung von einseitiger Kommunikation wiskth auf Anwendungen
nur dann positiv aus, wenn ein reduzierter Synchronisabiedarf besteht.

11

CONTENTS

12

Abstract

Clusters consist of single computers connected by a netWwdrk field of applica-
tion of clusters include servers of highly utilised web pmgad Internet services
as well as the fastest parallel computers of the Top500 Géusters have con-
guered the Top500 list since the 90s of the last century. 80 #eomachines of
this list are categorised as clusters.

However, the distributed memory of clusters requires higtiggmance net-
works and protocols to provide efficient inter-process camitation. Current
technology like InfiniBand offer direct access to remote magmThis technique
is calledremote direct memory acce$BRDMA). Programming interfaces have
been designed to exploit the merits of these network tecynes at the appli-
cation level.

The Message Passing Interface (MPI) is one of the most poprdgramming
interfaces for parallel applications. Version 2.0 of thenstard provides one-sided
communication. Existing implementations of the standaadione-sided commu-
nication primitives are constantly improved. However, leg aipplication level,
classical two-sided communication still outperforms aiged communication.
There are only a few indicators from related research figjttg@l address space
languages) that show beneficial use of one-sided commiondatspecial areas.
These languages do not follow the message passing paradigm.

This thesis is an investigation to analyse and show the sanfsine inferior
performance of one-sided communication. The specificatfadhe programming
interface is discovered to be a cause. Synchronisatiors@ayajor role in the
transmission of data. The inferior performance is not tisilteof immature or
inefficient implementations.

Essential design criteria for an efficient one-sided comupation interface are
derived from a communication model callguitual Representation ModeTl hese
criteria are not completely met by the MPI-2 one-sided comigation API. A
new interface, called NEON, is proposed, implemented, aatlated on top of
TCP/IP-Sockets and InfiniBand Verbs. The results show tH&DN is an effi-
cient and portable approach to one-sided communicatiopeiallel applications.
Furthermore, the results show that the availability of resnmoemory access by

13

CONTENTS

hardware is noa priori an advantage for an implementation.

Another important application of clustersgerver load balancingThis tech-
nique increases the flexibility, skalability, and faultex@nce of services. While
clusters for parallel applications mostly consist of hoergpus machines, client-
server applications often run on heterogeneous clustehss i$ because these
clusters evolve over time. When the server’s capacity ngdomeets the service
demands, new machines are added to the cluster. A serveb&baicer compo-
nent distributes the requests of the clients to an apprepserver in the cluster.
The dispatcher should take into account the different aapaof the servers to
achieve optimal balanced load of the servers.

This work promotes the monitoring of the server’s resou@esn efficient
technique in the context of server load balancing. So cdllextlitsare used to
create a simple metric to represent the future availatofithe servers. One-sided
communication turns out to be suitable for credit reponteasithe credit-based
scheduling works mostly without any synchronisation. Af-selapting credit-
based server load balancing is proposed on the basis ofide@-communication.
It is able to adopt to heterogeneous clusters and heterogsmequests. The so-
lution choses a server within constant time. It does notireggorting of available
servers. This makes the solution highly scalable.

This thesis shows that synchronisation has a major impath@rfficiency
of communication of applications. The performance of oidedcommunication
is beneficial for applications only if the required amountsghchronisation is
limited.

14

Chapter 1

Introduction and Terminology

15

1.1. THE DESIGN OF ONE-SIDED COMMUNICATION APIS

The benefits of one-sided communication interfaces fort€@omputings
the title of this work. This title contains 4 terms requiriegplanation before the
motivation of this work is given. Starting from the last tectaster computingnd
continuing withinterfaceandone sided communicatig@®SC) to the ternbenefit

The termcluster computingncludes all computations and processing that is
performed with so-calledlusters A cluster in the context of this work is a
conglomerate of computers interconnected with a netwoak #ine ‘... able to
work together collectively as a single, integrated commqutiesource’ [HX97]
(page 30).

The terminterfaceitself is assumed to be known, but the reason why inter-
faces are so important to this work requires further exglana Programming
interfaces or APIs are things a programmer has to know arehto before trans-
lating an algorithm into source code. He or she has not onkntav the syntax
of an API but also its semantics. The more complex an API ssntlore effort it
takes (especially inexperienced) programmers to effiljierse the API for their
purposes. On the other hand, a simple API requires moret @ffide the system
to efficiently fulfil complex tasks and reduces the flexilyildf an API. Further-
more, the API determines the available semantics and,tand)ave an important
impact on overall performance of an application. Therefaie worth to include
the API into the research on communication.

A communication is calledne-sidedf only one of the communication part-
ners determines the parameters of data transfer. This ctre beessage size, the
destination host, the destination address in remote merti@ynumber of com-
munication operations, or even the kind of operation (eugopget data). Current
trends in hardware design and message passing librariesopgone-sided com-
municationas a way to improve the performance of applications in coraparto
two-sided communication via send/receive [GT05, HSIPGI&7].

An APl is calledbeneficiafor cluster computing if its use improves the perfor-
mance of an application that can be executed on clustergckdly, this includes
the large class of parallel applications as well as senaa lmalancing for client-
server applications. A user will recognise improved pearfance if the runtime of
a given task is reduced, if a more complex or larger problembeasolved within
the same amount of time or a new problem can be solved in anabgoamount
time. As a side aspect, an easier usage of an API can be iatiedpas a benefit
for the user.

1.1 The Design of One-Sided Communication APIs

Many problems cannot be solved within acceptable time iy @nsingle process
is used to solve the problem. Therefore, users try to recheeuntime by exe-

16

CHAPTER 1. INTRODUCTION

cuting their applications in parallel on multiple processdf a parallel algorithm
requires shared data between at least two processespintarss communication
(IPC) isrequired. IPC becomes a limiting factor of the parfance in case of high
latencies and limited bandwidth of the interconnects. <edmassively parallel
processo{MPP) machines often provide fast interconnects or even shassd-m
ory. But these facilities are very expensive. Clusters a@saeffective alternative
to massively parallel processors (MPP).

Various publications present poor performance figures [l HWP04, HSJPO5b,
Raj05] of one-sided communication using MPI (Message Rgdaierface) com-
pared to send/receive-based communication. This thesstigates the causes
and possible solution this poor performance.

Apart from the API, another question motivates this workei&vf one-sided
communication is faster than two-sided communicationtlaee any applications
that can make efficient use of OSC? What conditions must bemaeter for an
application to benefit from OSC?

1.2 Terms and Definitions

This section explains and defines some important terms thdtequently used
throughout the document.

API call An API call is defined as an instruction inside a program that executes
a routine of a library before it returns to the calling praces

asynchronous The termasynchronouss the counterpart of synchronous. It de-
scribes the processing of an operation in the backgroungneksonous
processing does not prevent other operations from beingepsed.

blocking A blockingAPI call does not return before the requested operation is
complete.

buffer A bufferis any kind of a limited chunk of memory either on a device or
inside the main memory (RAM). The termemory regiomwill be used as a
synonym.

completion completiordetermines that a non-blocking operation is finished. This
is related tanotification

host The termshost computer node andmachinerepresent a single element of
a cluster — an independently working computer attached &haark.

interface An interfacecan be a programming interface (API) or a network inter-
face card (NIC). Usually, the context should explain themated meaning.

17

1.3. OUTLINE AND CONTRIBUTION OF THIS THESIS

non-blocking A non-blockingAPI call immediately returns to the caller after it
has initiated the requested operation. A non-blockingregjuirescomple-
tion.

notification A notificationis sent out to signal theompletionof an operation.
Also after anotificationis received, an operation can complete.

remote direct memory access (RDMA)RDMA.Is a technique using DMA-based
transfer methods to put data into the physical memory of atemmost. This
hardware can provide an API to perform RMA operations. Thus,hard-
ware can be calleBMA-capable

remote memory access (RMA)is the process of accessing data in the memory
or address space of another process. Despite thertarmute the target
process can run either on a remote or a local CPU. Althoughumusual to
categorise thdirect accesso the data of another thread @snote memory
accessthis direct access can be used to implement an AFRMA

synchronisation point If an application requests operations to synchronise be-
tween two or more processes, this is consideredsymehronisation point

synchronous The termsynchronouss sometimes taken as a synonym liwck-
ing. The termblockingis more likely to be used in conjunction with API
calls (see above). An operation is processed synchrondutsig opera-
tion is complete after the processing. No other operatiansbhe executed
during the processing.

1.3 Outline and Contribution of This Thesis

Chapter 2 and 3 introduce the application of clusters, itgmbmetwork technol-
ogy, and related work in the area of communication APIs argiigtleaspects of
efficient communication.

The Virtual Representation Modgpresented in Chapter 4, abstracts the lay-
ers of the ISO/OSI-Reference Model [JTC94] to applicatind aommunication
system. This model is inspired by the combinationpasducer/consumesyn-
chronisation between applications and splitting intergeiss communication into
pipeline steps. The model allows to understand the stepsrofrunication and
synchronisation of one-sided and two-sided communicatiomportant criteria
of efficient API design and implementation can be derivediftbe model. This
includes criteria for efficient one-sided communicatioheTocation of interme-
diate buffers and the network traversal of buffer annourea@mmessages can be
derived too.

18

CHAPTER 1. INTRODUCTION

MPI is the most prominent example of APIs for the large clasparallel
applications. This thesis shows the causes of the poor npeafice of MPI-2
one-sided compared to send/receive-based communicatias.not caused by
immature or inefficient implementations of the API. It is sad by the design of
the MPI-2 one-sided communication API.

On the basis of the model, an efficient one-sided commupicatiterface for
parallel applications, called NEON, is designed and im@etad. In Chapter5,
two prototype implementations of the NEON-API are evaldat®oth the In-
finiBand and the TCP/IP-Socket-based implementation otteeret are able to
outperform well designed MPI-2 implementations runningedl@ar Automaton.

The main contribution is that separation of notification adnpletion for
non-blocking one-sided communication is beneficial to farapplications. The
NEON-API exploits this aspect. The evaluation confirms thatseparation im-
proves the performance of parallel applications. This s is unique in to-
day’s one-sided communication APIs for parallel applimas.

Efficient APIs require a parameter to communication calldisdinguish be-
tween final and non-final operations. This allows for sendiregnotification as
early as possible. Otherwise, it is impossible to implentaet APl on top of
networks that can only be used efficiently if synchronisaiembedded in the
data messages. Since a final operation is not always knovamie algorithms, a
separate notification call should be available.

An investigation in a Cellular Automaton with a bidirectadrsynchronisation
between neighbouring processes shows that these apmtfisatill suffer from an
implicit barrier if the notification and the completion ar@nebined in a single API
call. In case of the Cellular Automaton, it reduces the pseckew tolerance and
prevents the notification message to be overlapped with atatipn.

The limiting factor of the performance of one-sided comngation is the syn-
chronisation. Thisisindicated by the Virtual Represeataodel and confirmed
by the evaluation of the NEON-API. Applications that reguiewer synchroni-
sation benefit from one-sided communication. The other maod application
of clusters is server load balancing. Chapter 6 identifiesuaihges of one-sided
communication for resource monitoring which is often usedanjunction with
server load balancing.

The investigation of Chapter 6 identifies the number of freeket endpoints
as a simple and efficient metric to determine the free regsuof a server. A
load balancing on top of this metric schedules the requestrdmg to the current
availability of a server in contrast to the current load oéaver.

A new credit-based self-adapting server load balancingapgsed and eval-
uated. A simulation study shows that the best schedulinghgesed if two credit

19

1.3. OUTLINE AND CONTRIBUTION OF THIS THESIS

values are reported. First the servers tell the dispat¢teenamber of requests
they want to handle. The second credit value representspperdimit of the
server. Credits can efficiently be reported using one-std@dmunication. Using
this reporting scheme together with a fa8{{)) round-robin scheduling results in
scalable and efficient low overhead scheduling that seiptito heterogeneous
servers and heterogeneous requests. Since this appraadh most of the syn-
chronisation messages and allows for efficient use of cledstommunication.

Chapter 7 summarises and concludes this thesis and pointseesting fu-
ture work.

leach request consumes one credit

20

Chapter 2

Cluster Computing and Network
Technology

21

2.1. CLUSTER USAGE

This chapter gives an overview of common applications and/or inter-
connects of clusters. The communication system and itsfawtes can be seen
as the link between application and network. Thereforeag@ications and the
network technologies are the most important constrainteegalesign of a com-
munication system.

2.1 Cluster Usage

Clusters of workstations are playing an increasingly ingoarrole in scientific
and industrial applications. Clusters constitute abou¥3af the Top500 list of
supercomputers in November 2007 (82 % in November 2008)s ddmtrasts to
the situation in November 2003, where clusters only acaxifdr 42 % of the
systems. The number of clusters in the list doubled withiedrs.

The clusters in this list are primarily used for parallel kgations. Clusters
are also used for applications like parallel file systemsravide faster storage
for data, and for server load balancing to build flexible)tftalerant, and scalable
services to serve a large number of clients.

This section gives an overview of the most widespread ushgkisters and
presents some examples.

2.1.1 Parallel Applications

In general, parallel applications are used to shorten the tequired to solve a
given problem or to calculate more complex tasks within areptable time. The
work is distributed over several processors — the domairec®hposed. There
are several APIs and target platforms available to implemparallel algorithms.

2.1.1.1 Bulk-Synchronous Applications

In bulk-synchronouapplications, the domain is decomposed and the work is dis-
tributed amongst the processes of the process group.

The large class obulk-synchronouspplications is very important to this
work. A significant number of scientific applications falltanthis class. Ac-
cording to [WA99],bulk-synchronoumeans that the instances of the parallel ap-
plications work individually on their part of the domain farlimited amount of
time. Before continuing, the instances are required to lsyormgse with some or
all other instances. Synchronisation is required if thecpsses of the parallel
application need some of the results calculated by othexresses.

22

CHAPTER 2. CLUSTER COMPUTING AND NETWORK TECHNOLOGY

Examples:

e the Modular Ocean Model (MOM) from Geophysical Fluid DynasiLab-
oratory (GFDL) in Princeton and its extensions by the Potstiestitute for
Climate Impact Research (PIK) [Pot04].

¢ the AMIGA Halo Finder (AHF) that is developed at the Astroplikalisches
Institut Potsdam (AIP) [Ast08].

e Gadget simulates mass interaction in astrophysics. lesavso-called\-
body problemn parallel [SYWO01, Spr05].

2.1.1.2 Master-Worker Applications

A master-workeapproach can be considered if the domain cannot be effigientl
decomposed or the decomposition or the size of the domaot espriori known.
One dedicated process of the group becomes the master. ®terrsglits a job
into sub-jobs that are processed by the workers. If a woskezady, it sends back
the results to the master and requests further work.

Examples are:

e The parallel version of the LIDAR tool that retrieves migshysical pa-
rameters from LIDAR measurements and simulations [BMM, EARO08].
This software was developed in the context of the EARLINEIOS project.

e The answer set solving programktypusandclaspdeveloped at the de-
partment of computer science at the University of Potsdaiiv[@5, GIM" 06,
EllI08, GKNS07b, GKNSOQ7a].

2.1.2 File Systems

If a single file server is no longer sufficient to fulfil the demaa, parallel file sys-
tems are a possible solution. These systems provide a temtsigew on the files
that are physically distributed among a number of disks aadhmes. If the disk-
I/O of parallel applications (checkpointing, logging, u#s) exceeds the capabil-
ities of a single disk or server, the application will havevait longer and longer.
If the wait time becomes too long, even a parallel processiran algorithm is
not efficient and investigations or investments into agien parallelisation and
hardware are wasted.

1This work was supported by the European Commission undat BI€A-025991 via project
EARLINET-ASOS which is gratefully acknowledged.

23

2.2. NETWORK TECHNOLOGY FOR CLUSTERS

Popular examples are:

e The Parallel Virtual File System (PVFS) is a free developtriesm Ar-
gonne National Lab and Clemson University [PVFO03].

e Lustre is a parallel file system developed and maintained logter File
Systems, Inc [Clu03]. This company was acquired by Sun Migstems in
October 2007.

2.1.3 Client-Server Applications and Server Load Balancig

In general, the large class of client-server applicatisnsed to deploy services to
customers in the worldwide Internet. Primarily, using tdws in this environment
is required only if the capabilities of a single server beednsufficient. In this
case, so-callederver load balancingechniques are applied to distribute the load
of requests to multiple servers. This makes a service malalse.

Additionally, server load balancing enhances the faudirmice of a service. If
a server fails, other servers are available to the clienighErmore, it makes the
service flexible since single machines and services can (yaded, maintained,
or extended without interrupting the accessibility of tleevice. The number of
machines can be adopted on demand.

2.2 Network Technology for Clusters

The network is the central component of a communicationesystequired to
allow for communication of applications. The type of netwaisually used for
clusters are local area networks and system area networkfhisl section, an
overview over existing network hardware is given.

More detailed explanation for Ethernet and InfiniBand arespnted in this
section because this knowledge is important for later ug@srdocument. Coarse
performance figures are presented here to show the genéaliber of the spe-
cific network. More detailed measurements are presented lat

2.2.1 Ethernet

Ethernetis a commonly used technology for local area networks (amtigtigt
metropolitan area networks). It is specified as a stand&BKI802.3) [Ins85].
The first standard specified a network with 10 Mbit Subsequent standards of
the 802.3 series describe FastEthernet (100 MhitGigabitEthernet (1 Gbis),
and 10GigabitEthernet (10 Gp4).

24

CHAPTER 2. CLUSTER COMPUTING AND NETWORK TECHNOLOGY

host A host B

app buf app buf
T s user
7777777777777777777 o] p) SoozEesEToooopoooooooooo--s
ChU - kernel
zero—copy kernel buf kernel buf zero—-copy
protocols protocols
,,,,,,,,,, T e B S At

— data—flow
----- control

Figure 2.1: General Ethernet data transmission schemg D&tA.

Even though Ethernet is quite old compared to modern interect technol-
ogy itis still an important technology in the field of high femance computing.
282 machines (580 %) of the sites in the Top500 list (11/2008) are equipped
with GigabitEthernet. There is also ongoing research orfitt to improve the
network capabilities. [ELO6] presents Ethernet-based Sitdpology.

Today’s Ethernet network interface controllers (NIC) abdeato move data
between local memory and NIC memory using DMA engines on i Nhis al-
lows for data transfers without the host CPU being invol\i&aime controllers, for
example the Broadcom BCM5704 chip, are able to calculate ai@PIP check-
sums to offload some protocol processing and further redirig¢ @erhead of
communication.

Ethernetis not able to directly access remote memory, arsd ofithe protocol
processing is still required to transfer data. Additiopathe best latency achiev-
able with standard the TCP/IP protocol over Ethernet is g — compared to
local memory-to-memory data exchange. Also the througbpGigabitEthernet
is significantly lower than local memory-to-memory comnaation (see below).

Performance Details: Since Ethernet is important to this work, some details of
performance and internals have to be described. The stapisate to be done to
submit data from an application to a remote applicationsinewn in Figure 2.1):

1. Switching to kernel context due to a send operation call process the

25

2.2. NETWORK TECHNOLOGY FOR CLUSTERS

protocol stack including the Ethernet driver (1).

2. The driver creates a descriptor that describes the packkits location in
memory.

3. The TxDMA engine of the NIC takes a copy of the packet to s onem-
ory (2,3).

4. The packet is transmitted via the link (4, 5).

5. The remote RxDMA copies the packet to host memory andeseatorre-
sponding descriptor (6,7).

6. As soon as the descriptor is created and the data is capieeémory, an
interrupt will signal the protocol stack that a new packet haived. The
receiving can continue.

7. The remote host has to switch to kernel context becauseefeave call
and processes the protocol stack including the Ethernatrd&).

Looking at this process, it can be seen that some steps dogrped by the host
CPU and some are not. The steps in general and the distinogioveen host
processor and other processing units in the system are tamhdor this work,
since they influence the pipelining of data and overlappimgponmunication and
computation.

The time spent in particular steps is also important. If thi€PU time, it is
not available to the application. Therefore it will be imfaont to know the relation
between communication time spent on the CPU and off the CPU.

The link layers of GigabitEthernet can transmit 1 @bitTaking into account
the overhead information (header, trailer, inter-framg)ga link has a throughput
of about 1219 MB/s. Single bytes have to be processed by the stack within about
8 ns. This is 16 clock tics per byte on a 2 GHz CPU. This is nothmared shows
the importance of efficient protocol processing.

Comparing the transmission over the network to an interrathory copy, the
link speed of GigabitEthernet is still slow. Using an Interilum 4 CPU with
2.8 GHz (see machines IB5 and IB6 in Appendix A.3), transfegrarsingle byte
over Ethernet using TCP/IP takes about 440 times the timesofgle byte copy
from one memory location to another. For larger messagesdlip is about 30.
For InfiniBand, the best ratio achieved is about ® 4.0 for messages larger than
1 MB (all values measured by a back-to-back interconnect).

2.2.2 Myrinet

Myrinet[Ass98, BCF 95] is a local area network technology. It provides low
latencies and high bandwidth by using cut-through routisgq called worm-
hole routing). The host interface cards of Myrinet are egagwith a processor.
Therefore the Myrinet software can offload some processittiget NIC.

26

CHAPTER 2. CLUSTER COMPUTING AND NETWORK TECHNOLOGY

Ratio of transmission times of network vs. memory

' net(TCP)/mem ———
140 b " hetBAYmem - - -

120 |

100 [

‘
i

K
i
3}

80
o
H
H

ratio

i
Hy
L
H
60 |+
\
Y
\

40

g e e
S SR A

N T

0 20000 40000 60000 80000 100000 120000
data size [byte]

Figure 2.2: Ratio of transmission times (network vs. memory

Myrinet-2000 hardware achieves a latency @ @2s at user level (MPI) and
a maximum throughput of about 240 M8 These self-measured data are an
outcome of a tutorial at the International Super ComputiBg] conference 2005
in Heidelberg (Germany).

2.2.3 InfiniBand

InfiniBand[Inf02a] is a modern industry standard developed by the iB&nd
Trade Association (recently renamed to Open Fabrics AdlBqrand specifies a
system area networK he first design also included host internal communication
I.e. the system bus. Today InfiniBand is used as an exterhabnieinterconnec-
tion technology that provides transport layer services [S©/OSI model [JTC94,
DZ83, Day95]).

InfiniBand distinguishes between processor nodes and Id@1A processor
node should be an independent node or host/computer. Andde s e.g. a
storage subsystem. The network controllers of processdesare calledHost
Channel AdapteHCA). A special type of HCA ar&arget Channel Adapters
(TCA) that can be seen as network controllers of /0 nodesdiorage systems
(see Figure 2.3). The main difference is that HCA provideamdard consumer
interface (Verbs), while the interface of TCAs is not specifi

27

2.2. NETWORK TECHNOLOGY FOR CLUSTERS

Processor Node
CPU CPU | coc | CPU
| I | l | Processor Node
Processor Node HCA | Mem [HCA | [CPU [[CPU [aso [cpu | .
[CPU J[CPU | oco [cpu | \ Fabric

"
<~ P .

SCSI T Switch | _E:}ﬁ

% Storage ‘ﬁﬁ
— 3 Subsyst N
g GERNRNES ks
\ N _

/
; = 1 @ 7] N switeh > | 70
g%& ~ Chassis _ Chassis

B N P
Consoles » x| [P s <l | [= e [[[<] =]
S| EEREH Ex B AR
HIB IR HIBEEIIEE
z|| =|| =|| 2 2(| 2| 2| = =
L deo

SCsI
Craphi HCA = InfiniBand Channel Adapter in processor node
Ethernet L Chammel T TCA = InfiniBand Channel Adapter in L0 node
hub & FC

10 Module

Vi

devices

Figure 2.3: InfiniBand network overview [Inf02a].

The address of a node is composed from a global and a locdifidernThese
identifiers are configured and assigned by a so-called suaehger (SM). This
is a piece of software running once per subnet. To commuioa remote node,
the SM has to be asked for a route or path to the requestedAftstwards, the
host can be contacted.

HCAs are able to execute so-calleark requestdhat are initiated by the
applications or the software stack. These work requestsallected in queues
(work queue - WQ). Each communication endpoint has two guéaueend queue
and a receive queue) to hold work queue entries. A commuaicandpoint of In-
finiBand is calledQueue Pai(QP). If awork queue entrfWQE) is complete, it is
moved to aompletion queufCQ). These queues and requests have to be created,
posted, and fetched by the software stack to control InfinédBacommunication.

To connect or contact a remote QP, the general service acI(GSI) has
to be contacted first. This is to request the communicationager (CM) for a
particular service identifier (SID). Each application hasdgister available QPs
together with a SID. This is similar to the portmapper conad@RPC [Sun88].
The CM returns a free QP to the requesting HCA.

The most prominent software stack for InfiniBand is the Opahri€s En-
terprise Distribution (OFED). It is developed by severainganies and vendors

28

CHAPTER 2. CLUSTER COMPUTING AND NETWORK TECHNOLOGY

‘ OpenSM ‘ OpenMPI ‘ uDAPL ‘

User-level Infiniband Services

CM ‘ SA Client ‘

MAD Services ‘

Verbs ‘

‘ User-level HCA Driver

user-space

kernel

User-level Access Modules

‘MAD Services‘ cM ‘ SA Client ‘

ISER ‘ NFS-R | Lustre

‘ IPolB ‘ SRP ‘ SDP kDAPL Portals

L.

Core Infiniband Modules

SMA ‘ PMA ‘ CM ‘ SA Client ‘

MAD Services

‘ SMI ‘ GSl ‘ QP Redirection ‘

Verbs ‘

‘ HCA Driver ‘

i
‘ HCA ‘

Figure 2.4: InfiniBand Programming Interfaces and Pro®hSHO5].

(Mellanox, Cisco, Voltaire, IBM, etc.). InfiniBand drivease included in the stan-
dard Linux kernel since version 2.6.11 and are constangyaved and extended.

There are several interfaces to different protocols buidap of the Infini-
Band hardware interface (see Figure 2.4). The most fundahstandard inter-
face is the so-callederbs It provides unified access to the drivers and hardware
of different vendors. Nearly all of the interfaces are aalé for user-level access
as well as kernel-level access.

IP over InfiniBand (IPoIB) enables IP-based protocols to mamicate via
InfiniBand. It has some performance drawbacks due to itstiaddl software
overhead. For example, created IP packets have to traverdafiniBand stack.
However, the achievable throughput (about 300 AdBusing the OFED 1.1 im-
plementation is still above the throughput of GigabitEtier The latency of
IPoIB (about 2Qus) is comparable to the latency of GigabitEthernet on Einste

29

2.2. NETWORK TECHNOLOGY FOR CLUSTERS

host A host B

user

””” CPU)\ ep| kemel

3
E aQP 4a.
4a.

WR-flow

= data—flow

4b. - = control

Figure 2.5: Data transmission scheme of InfiniBand (non-R)M

hardware (see Appendix A.2) measured vilins[Sch06]. Current efforts in the
OFED community try to improve the performance of IPolB.

In contrast to IPolIB, the sockets direct protocol (SDP)(QRtf] is part of the
InfiniBand standard. It provides a socket interface andtisnided to become a
selectable address family for socket-based applicatidiiie throughput (up to
900 MB/s) and latency (about 142s) in OFED 1.1 are much better with SDP than
with IPolIB [Zin07].

Measuring the time to establish a reliable connection vid &Dd IPolB,
shows a performance issue of the GSI and QP approach. Aoga@imeasure-
ments in [Zin07] and [Ryl07], connecting a remote host vialB?is much faster
(24 us) than via SDP (358s). The reason is found in the OFED code. SDP uses
the CM to connect two new QPs by a reliable connection (RCIhERQP is re-
quired to step through the statesi t 2, rtr3, rt s andrt u® Every step is
an operation on the NIC after traversing a long path of cod®rED. Each of
these operations costs about 130 IPolIB uses QPs of the unreliable datagram
type. This is a 1.1 mapping of the Internet protocol datagsamvice. The state
transition is done only once during the initialisation obIB. All IP datagrams
(and thus transport layer connections) are multiplexedltsysingle QP.

2initialised
Sready to receive
4ready to send
Sready to use

30

CHAPTER 2. CLUSTER COMPUTING AND NETWORK TECHNOLOGY

Performance Details The behaviour of InfiniBand is described for the same
reason that Ethernet was described in more detail. To triadsita, the following
steps have to be executed after creation and initialisafiaQP (see Figure 2.5):

1. The software has to create a work request (WR). This candeease (host
B), a send (host A), or remote direct memory access (RDMAfjimes like
put or get (host A) (humbered 1x in the figure). In case of RDM#ést B
does not have to create a work request.

2. A context switch to kernel mofiénas to be made and the software stack is
traversed. The work request is submitted to the HCA (2).

3. The work request is processed by the HCA. It is able to tly@ccess the
local memory and transmits the data over the wire (3, 4).

4. The work request is complete and is moved to the completi@ue (4a).

5. The remote HCA will process a previously and matchingiveceork re-
guest (if any) and is able to put the data to the given memaulyesd.

6. The work request (if any) is complete and is moved to theptetion queue
(4b).

7. Hosts have to switch context to fetch the completion qusiiey and possi-
bly process the arrived data (5, 6). This is not necessarypassible at the
receiver in case of RDMA.

Creation, initialisation, fetching, and cleanup of workjuests has to be done by
the host CPU. The management of queues and work requestsaasgpart of
data is done by the HCA. In InfiniBand it is simpler to transamt receive data
without copying from application buffer to intermediateffiess, since the HCA
can directly access the RAM (indicated by ttegta flowin Figure 2.5). However,
the memory has to be registered with the HCA in advance irréodze accessible.
This operation is costly as we will see later.

Several versions of HCAs have their own memory. This is Ugefprefetch
and buffer data before or after transmission from and todbal IRAM. It can also
hold internal data like the queues and work requests foefasicess of the HCA.

A single speed InfiniBand link achieves a throughput & @Gbit/s. Today’s
HCAs have 4 or 8 links and therefore can provide 10 @&b#nd 20 Gbits. Simi-
lar to the PCI-bus, the protocol on the links uses 2 redungdhits for each byte.
Therefore the theoretical transfer rate drops to /&8n a 4x link.

6Since all APIs of InfiniBand exist in both the kernel and therusode, the context switch can
happen before or after the creation of the work request.

31

2.3. SUMMARY

2.2.4 Quadrics

Quadrics (or better QsNet Il) [PcFH2] is a high speed interconnect that is spe-
cialised to build clusters for high performance computimkgur clusters in the
Top500 [TOPO08] list of November 2008 are equipped with Qicadretworks.

Latencies below D us can be achieved using QsNet. This is the lowest
latency among the presented network technologies. The\adble bandwidth
(900 MBY/s) is slightly lower than the bandwidth of InfiniBand with 4kis.

2.3 Summary

Clusters of computers/workstations are a popular andeftesttive alternative to

massively parallel processors (MPP). Many kinds of appbca are deployed on
clusters today. Parallel applications and scalable anid t@lerant client-server

applications are the most important applications andgefoeg, are considered for
this work.

Local area and system area networks are used to build duSeveral differ-
ent interconnect technologies exist with different apphas to support commu-
nication between hosts — from commodity off-the-shelfiotanects like (Giga-
bit-)Ethernet to specialised network hardware with supjooremote direct mem-
ory access like InfiniBand. Some of the important techn@sgvere presented
here.

32

Chapter 3

Cluster Communication (Related
Work)

33

3.1. EFFICIENCY

This chapter gives an overview of previous and related reeean commu-
nication, communication systems and especially on mesgagging. Some of
the presented interfaces can exploit RMA and/or RDMA. Rerbrogramming
interfaces are described and partially analysed for tlgelelass of parallel appli-
cations.

3.1 Efficiency

In this thesis, the terrafficiencywill be used often. The term efficiency is used in
different contexts in computer science. Some of these are:

e in conjunction with complexity of algorithms. This will apypto algorithms
used inside a communication system.

e a metric for the scalability of a parallel program

More general and out of scope of computer science, the adjesfficient
is paraphrased bworking well, quickly, and without wasteln the context of
this work, efficiency is related to the influence of the commation system on a
running application. A communication system is efficientworks well, quickly,
and with no or small overhead according to the latter dediniti

The complexity of algorithms will influence the amount of dwead. In this
way, the definition from computer science overlaps with tlegergeneral defini-
tion.

The impact of the communication system on applications hdspte aspects.
The most obvious aspect is the time spent for communicafdother aspect is
issued by CPU and memory usage of the communication systemexample
each memory region allocated for internal use by the comaatioin system is
unavailable to the application.

Another important issue is the interface to the commurocesystem. It de-
termines the semantics and limits the flexibility of usageuq, a single interface
is not suitable for arbitrary applications. This is alsaetian [Zit95]. The com-
munication system is taken as a service that is suitablefonsome applications
or a special class of applications.

A less important fact in the context of this thesis is the &dficy of an API
in terms of productivity. As an example, Cantonnet et. al ZEY504] analyse
the productivity ofUnified Parallel C(see Section 3.6.6) and compare it to the
Message Passing Interface MPI-2 (see Section 3.4). Themugxplain goro-
gram complexityand alanguage complexityThe program complexity is further
divided into syntactic complexity, length, and concepfsehantic complexity of
a program. An example of conceptual complexity is additimmmnmunication

34

CHAPTER 3. CLUSTER COMMUNICATION (RELATED WORK)

and synchronisation. The authors summarise this to ‘magftat introduced by
a given language’ [CYZEGO04].

Summarising the above aspeatsficiencywill mainly focus on the impact
of an API on the performance of applications. This includesimpact of the
API on the possiblities of an implementation of the commatan system and its
efficiency.

3.2 Interfaces for Communication

Before digging into the details of communication itselfpsoapplication inter-
faces are described. This is to better understand some @ixdraples given in
Section 3.7. The interfaces are separated in two coarsgeslaghey are classified
weakly by their common usage in the field of parallel appilas. For example,
the socket interface can be used to implement parallel egipns, but since ap-
plication programmers want to solve their problems withdjatgorithms, they
prefer to use a more specialised and more portable inteftagearallel appli-
cations like MPI. This allows the user (programmer) to foonsimplementing
the algorithm and the message exchange instead of dealthghast addresses,
ports, or connections. This section describes some gemtesfaces used for
rather low-level data exchange. The efficiency of some ofptlesented APIs is
rated in terms of efficient execution and ease of use.

3.2.1 Sockets

The Sockes interface is one of the most popular interfaces to comnatgibe-
tween (remote) processes. It was developed at the UniyesSiCalifornia in
Berkeley.

According to [MBKQOQ], the interface design goals wheragjgarency, effi-
ciency, and compatibility. The communication should basgarent in the sense
of local and remote processes. Remote and local are natglisshed by the in-
terface. The interface has to be fast and with low overhaaeéywise it would not
be used. The compatibility goal had to be fulfilled for thegganumber ohaive
processe UNIX. A naive processs a process that performs its I/0 via files or
standard in- and output.

The result of the design is an interface that uses so-cadlekketas an abstrac-
tion of communication endpoints. For compatibilityriaive processes socket is
a kind of file descriptor. Data can be sent and received frootkes. It does not
matter if the partner process is a local or a remote process.

The socket interface is the most common interface used fort-p@-point
communication.

35

3.2. INTERFACES FOR COMMUNICATION

3.2.1.1 Blocking and Non-Blocking Communication

The common communication calls of sockets are blocking. ddikéng applica-
tion is blocked until the requested operation is completélagkkingsend call
will block the caller until the data is transmitted. A blongir ecv call is a simple
way to wait for incoming data.

What can be done if multiple sockets are used to communidata@re than
one socket has to be observed, a common practise is the g& ett , pol |,
epol | (Linux), or kqueue (FreeBSD, OpenBSD}el ect provides signal-
based multiplexing of socketpol | permanently consumes CPU cycles because
of busy waiting. Two event-based approaches are mentioaes] kincespol |
andkqueue are known to be faster and more convenient alternativesk@ct .

Using these APIs, a non-blocking behaviour can only be a&ekidy using a
dedicated thread or process. This thread can wait in a bigakay for commu-
nication operations to complete.

3.2.1.2 Asynchronous I/O

Asynchronous 1/O is a way to allow non-blocking I/O callsrfr@an application.
Linux provides an asynchronous API for I/O [BCO5]. The omigi version used
kernel-level threads to ensure asynchronous behavious Hes been shown to
be inefficient. In today’s implementation, kernel-levekges are used for Linux
Asynchronous I/O (also known &snux AlO).

The authors of [BJIE06] investigate asynchronous 1/O in conjunction with
processor partitioning. Processor partitioning uses &deztl processor to make
progress on asynchronous operations. The impact of asymaiis I/O is only
guantified in combination with processor partitioning i fhaper. They imple-
ment an asynchronous interface call#cect User Sockets Interfa¢g®USI). This
paper provides an extensive related work section mengomiany asynchronous
I/O interfaces.

Asynchronous I/O allows the overlapping of computation emehmunication
as long as there is a processor to make progress on pendinghasgous op-
erations in the background. Furthermore, the initialsabf operations and the
check for completion imply some overhead that has to be teieraccount when
relying on asynchronous I/O.

3.2.1.3 Efficiency of Sockets

Except for the address handling of remote nodes, the singdgeuof sockets
increases the efficiency for the programmer (less API oxtheOnly a few API
calls are necessary. Compared to directly programmingwaanktprotocol, the

36

CHAPTER 3. CLUSTER COMMUNICATION (RELATED WORK)

code will be more portable. Sockets are more widely usedusecaf this. Most
client-server applications ariRemote Procedure Cal(®&PC) are build on top of
sockets.

Modern libraries like MPICH NEMESIS or Open MPI (see SecBohl) can
be configured to run on top of sockets. However, the efficiesfdyernel-based
sockets is limited. Each communication requires a modechvwbetween user
space and kernel. This takes additional time. The efficienbyrther reduced by
the processing of pendingterrupt service routine§lSR) before switching back
to user space. Several approaches exist to enhance thenpenfoe of sockets
[BSWP02]. GAMMAsockets [SSP03] show enhanced socket padoace by im-
plementing a socket interface on top of tlghtweight protocol GAMMACia99]
(Genoa Active Message MAchine).

3.2.2 VIA

The Virtual Interface Architectur€VIA) [CCC97] is an industry standard devel-
oped in 1997 by the Compaq Computer Corporation, the Intgb&ation, and
the Microsoft Corporation. It is mentioned here, becausedieas of VIA were
adopted into recent interfaces like InfiniBand Verbs (sdevie

Communication endpoints are a well-known network abststadh commu-
nication systems and their interfaces. The operating systeltiplexes the end-
points to the network hardware. Using the operating systemmaultiplexer im-
plies many mode switches between user and kernel. Thus, pé&ifses com-
munication endpoints as a compl&fietual Interface(VI). This allows for more
bypassing the operating system.

Although the reduction of mode switches motivated the Vi#eiface in 1997,
mode switches still have been an issue in 2002 accordingti® Bk

Virtual Interfaces (VI) are presented to the applicatioruser space (Fig-
ure 3.1). They consist of a send queue and a receive quark (ueus). Each
gueue has assigne@aorbellto signal events on the queue. The application posts
work requests to the work queues to receive or send dataripess specify the
kind of request, the address of the application’s buffed everything else that
is required to process the request. A completed request isifaua completion
queue that is also associated to the VI. All requests complggnchronously.

VIA supports two data transfer models, send/receive and RDNhe send/re-
ceive model requires the sender and the receiver to postijess to the corre-
sponding work queues. Each send request requires a matelige request on
the destination VI. If no matching receives are posted leefiata arrives, an error
will occur. The requests are ordered in a FIFO. No requesbgpass the other
inside of a work queue.

37

3.2. INTERFACES FOR COMMUNICATION

Application

VI 0S Communication Interface
Consumer Sockets, MP!,Cluster, Other

VI User Agent

Open/Connect/ Send/Receive/)
Register Memory RDMARead/RDMAWrite

Kernel Mode

VI Kernel Agent

VI Provider

VI Network Adapter

Figure 3.1: VI Architectural Model [CCC97]

The RDMA model specifies an RDMA Write and an RDMA Read operati
Both the source and the destination buffer are determinethdynitiator of the
operation. The remote memory has to be registered in adwarttannounced to
the initiator. No posted requests on any remote queue asiooed on the remote
node. The remote node will not get informed about completban RDMA
operation. Therefore, extra synchronisation has to bepadd if required.

The efficiency of VIA is improved by a kernel bypass. This ne#me user
space application prepares a complete communication coch@uad submits it
directly to the driver. No further processing is requirediikernel-level protocol
stack. This allows for a more light-weight communicatiomngared to protocols
implemented inside the kernel. However, the use of apjpdicdevel memory is
critical. Memory of the user space has to be registered to¢twork hardware.
Depending on the hardware, this operation can be expendieeadditional over-
head amortises only if registered buffers are reused orlaeyg buffers are trans-
mitted [SBB"07]. With frequently changing memory regions, the directess to
application buffers becomes inefficient.

It is a good approach to reduce mode-switches to improve ¢n@ipnance
by creating user space virtual interfaces. The applicateom handle incoming
and outgoing data on its own. Also the concept of work quesiesiccessfully
reused in the follow-up interface InfiniBand Verbs. Probderan occur from the
notification and event mechanism. Since notifying and hagdtvents can be
expensive operations. This can be seen in the next section.

38

CHAPTER 3. CLUSTER COMMUNICATION (RELATED WORK)

3.2.3 \Verbs

InfiniBand Verbg[Inf02a] describe the functionality of an InfiniBand hosacimel
adaptor. The implementation of Verbs specifies the API thairésented to the
programmer. The general concepts are derived from VIA. I&imw VIs of VIA,
the Verbs API provideQueue Pais (QP) consisting of a send queue and a receive
gueue. A well known and used implementation of Verbs is doethin the Open
Fabrics Enterprise Distribution (OFED) [Ope]. For the remdar of this work, the
word Verbsdefines the implementation of InfiniBand Verbs in the OFERIsta

The OFED implementation needs further improvement to aetaegood effi-
ciency. For example, it is possible to achieve the low lagspromoted with In-
finiBand only if established connections are used togetltbrnagistered memory
and RDMA write operations. Several protocols and impleragons were anal-
ysed by the cluster computing group of the professorshipparating systems
and distributed systems at the University of Potsdam. Regu[Ryl07, Zin07,
Dav08] show that using InfiniBand and in particular the Veflfd achieves high
performance only if these special conditions are met. Ag Eman application is
able to work under these conditions, it can efficiently ugmiBand Verbs.

Using other provided techniques like event-based sigrgadif incoming data
via completion queues or polling instead, the latency dramatically. David
Bohme [Dav08] measured a difference of i®between polling and event-based
receiving. Compared to the latency of an RDMA write, pollintfoduces another
10 us to the latency. The latency of RDMA writes is about 8 us.

3.2.4 DAPL

TheDirect Access Programming LibrafpAPL) is an interface designed in 2007
by Direct Access TranspofDAT) Collaborativé, an industry group formed to
develop an independent interface for RDMA. Some of the aBbuhembers in-
clude AMD, Intel, IBM, Sun, Oracle, and Mellanox.

DAPL is available as a user space (UDAPL [DAT07b]) and a Kespace in-
terface (KDAPL [DATO7a]). Version 2.0 was published in Jarpu2007. DAPL
specifies ‘a singe set of ... APIs f&DMA-capable Transports’ [DATO7b] to ex-
ploit RDMA capabilities of interfaces like InfiniBand Verlos VIA.

The basic model of DAPL is simple (Figure 3.2). Arect Access Transport
(DAT) consumer contacts a (local) DAT provider. The providercpsses the
requested communication. Providers enable message edientRDMA read
and write operations on top of reliable connections. Addil functions provide
connection management, memory management, and synciionisespectively
event handling.

1The first specification of uUDAPL was ratified in 2002.

39

3.2. INTERFACES FOR COMMUNICATION

Application
DAT Consumer DAT Consumer
DAT Provider Direct Access DAT Provider
Transport Services
DAT Provider Fabric DAT Provider
Provider specific

wire protocol
(e.g. FC-VI, VIITCP,
IB, iWARP)

Figure 3.2: Direct Access Transport Framework [DATO7b]

The consumer-provider architecture fits into the model afgport services
described by Zitterbart [Zit95]. The provider offers a sportation service to the
consumer.

DAPL is not further analysed in this work since it is meant &an abstrac-
tion layer for other RDMA-capable interfaces. Althoughsthilows portable ap-
plications, an additional layer is likely to add overheadr Example the project
RDMA Enabled Apachi®WO08] also avoided this API because of slight perfor-
mance drawbacks. Furthermore, it is out of focus becausenivi intended for
parallel applications directly.

3.2.5 Myrinet MX

Myrinet MX [Myr05] is a low-level message-passing libragr Myrinet networks.
The goal is to exploit the special features of Myrinet handw#n particular, these
features are a programmable NIC processor or a matching aoenp (e. g. for
MPI described later). The designers’ goal is to ‘provideeptmnal performance
for modern middleware interfaces such as MPI or VI' [MyrO%he API itself is
comparable to VIA. The programmer has to create communic&imndpoints and
has to connect these endpoints to communicate between bgegses. Routines
for management of requests and synchronisation betweeegses round up the
API.

3.2.6 Summary

The interfaces described above show a part of the varietyistileg APIs. Starting
from the simple Socket-API with its generic concept of afasticommunication

40

CHAPTER 3. CLUSTER COMMUNICATION (RELATED WORK)

endpoints that are mapped to underlying protocols, moreptenand specialised
APIs like VIA, MX, or InfiniBand Verbs offer a more efficient aamunication.

However, they require more programming overhead. For el@megistering

memory is not of much interest if the Socket-API is used. Dué¢he variety

of RDMA-APIs, some approaches like DAPL try to create an r@gstand more
portable interface to unify the use of RDMA. The presentadriaces are not
designed to a specific class of application.

3.3 Parallel Programming

Large (scientific) applications often evolve over years. nifladevelopers con-
tribute to the code and improve the algorithms. While thévemfe continuously
changes in small steps, the hardware changes in rare anddras®c steps —
whenever a cluster or new parallel computer is purchaseuds, Ttis advantageous
for an APl if it can be continuously used and is independetihehardware. The
better portability ensures that an API will be used in ab @agibn. Otherwise,
large efforts have to be made to adopt the software to eachhasware.

Another goal of parallel programming APIs is to ease theriptecess com-
munication of parallel applications. If a programming nfdee for parallel ap-
plications is not easy to use, application programmersdaedisproportionate
amount of time using the API rather than the problem that #reytrying to solve.

According to the survey by Kessler and Keller [KKO7], paga#xecution and
programming relies on two major inter-process commurocatnodels: message
passing and shared memory or shared address space.

3.3.1 Shared Memory

Shared memory can occur in two ways. The reason for this idifference
between processes and threads. Threads share the ad@ess Bpis means no
special steps have to be taken to access the memory of atiotbad. In general,
processes do not share the address space. Therefore,a spauiory area has to
be allocated to allow direct access to addresses of anathes$s.

Since inter-process communication via shared memory isrbag more and
more important for cluster computing due to the developroéntulti- and many-
core CPUs, shared memory is discussed in more detail below.

3.3.1.1 Shared Address Space

If shared address space is available, then one part of tHeagn can directly
access and modify the data of another part of the applicatds long as the

41

3.3. PARALLEL PROGRAMMING

accessed memory is disjoint, synchronisation is not reguir

If the memory is not disjoint, access has to be synchrons&dep consistent
data. The usual synchronisation that is used are semapbiorasnitors. Mu-
tual exclusionis required as the basic synchronisation pattern. The siraai
producer/consumegindreaders and writergan be applied if necessary.

3.3.1.2 Shared Memory

If two processes in separate address spaces have to exctiaiagand shared
memory is available, they can allocate their data in this mgrarea. In this case,
the access and modification of data is similar to the shardckad space method.

If the data does not reside in shared memory areas (e. g.shéned memory
is provided by a library), the data has to be copied or mappidand out of the
area to exchange data. In this case, the shared memory arsadsimilar to a
buffer of the transport system.

3.3.2 Message Passing

There are two available kinds ofiessage passingetween two processes: two-
sided communication (point-to-point communication) and-sided communica-
tion (remote memory access). Furthermore, communicatonoccur between
two or more processes. The details of 1-to-n or n-to-m comaoation are out of
the scope of this work. Unless stated otherwise, all comoatian is 1-to-1.

3.3.2.1 Two-Sided

Point-to-pointcommunication otwo-sidedcommunication is a well-known way
to exchange data between processes. One of the processegutice, has to
call a routine to submit data. The other process, the dd&timadas to initiate a
receiving function. The source determines the size andahteat of the message
including the identifier of the destination process. Thdidation determines the
memory address of the destination buffer and the number tefskip receive to
that location. Usually, the number of bytes sent and reddnave to match if the
communication is based on messages. For message passingntber o6end
andr ecei ve calls also have to match.

The key property of two-sided communication is that botlolwed processes
have to participate in the actual data transfer.

42

CHAPTER 3. CLUSTER COMMUNICATION (RELATED WORK)

3.3.2.2 One-Sided

One-sided communication cgmote memory acceRMA) enableglirect access
to the address space of another process through a netwolko@amprocess has
to call a communication routine (e.gut or get) to determine the parameters
of a data transfer. This source process (source of the operaiot necessarily
the source of data) specifies the source and destinatioerkasgfwell as the size
of the message and the identifier of the remote process.

The key feature obne-sidedcommunication is that only one process has to
actively participate in the actual data transfer. This doasinclude synchroni-
sation as stated in the next section. Also the number of RMé&atmns is not
predefined.

Using the RMAget operation, the definitions of data source and destination
are interchanged comparedpat or send calls. Since this makes the descrip-
tion more complex, thget operation is mostly omitted in this document. Addi-
tionally, get operations have shown to be slower due to their request/igsed
behaviour [BUO3]. Therefore, the latency ofat operation is expected to be at
least twice the latency of the network. Tet operation can be implemented as
a (remotely triggeredput operation at the destination process (the data source
in this case). This solution performs better for some trassion methods (e. g.
see [VBR"04] where reading from PCl-bus is significantly slower thaiting).
However, the semantics of this mot the same since the data source is actively
involved in the communication.

3.3.2.3 Hybrid

Today’s hardware often consists of multi- or many-core cotapon nodes in-
terconnected by high speed networks. These trends in hezdvesve imposed
so-callechybrid parallel programming models where message passing is ased f
inter-node communication and shared memory paradigms poked to intra-
node communication (e. g. a mix of MPI and OpenMP).

The hybrid approach has benefits and drawbacks. For exathplereation
of threads introduces some overhead. Using a single prge¥sSMP node to
communicate via MPI reduces the memory usage of the commtimmncsystem
and the overall number of MPI processes.

3.4 Message Passing Interface

The Message Passing Interfa¢®PIl) [MPI95] is developed as a successor and
competition to thdParallel Virtual Maching(PVM) in 1994. Itis designed to ease
the development of parallel applications primarily foliogy the SIMD-Model.

43

1

2

3

4

© o) ~ o (4]

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

3.4. MESSAGE PASSING INTERFACE

The processes of a parallel application are grouped togetheso-callegprocess
group. Each process is assigned a unigak in the group (an integer value start-
ing from 0). This simplifies the addressing of the processessindependent of
the transport protocol. Network addresses, ports, or QBRairs are not required.
The rank is sufficient.

PVM is still used, but it has no interface for one-sided comioation. There-
fore, it is not considered within this work.

#include "mpi.h"

int main(int argc, charxx argv)

{
MPI _Init(&argc, &argv);
MPI_Comm_size (MPI. COMM WORLD, &numProcs);
MPI_Comm_rank(MPI_COMM_WORLD, &myld);
MPI_Barrier (MPI_COMM_WORLD) ;
if ((myld%2) == 0) {
/I« processes with even ranksx/
MPI_Send(buffer , length, ..., MPI. COMM WORLD);
MPI_Recv(buffer , length, ..., MPI.COMM WORLD,
} else {
/I« processes with odd rank x/
MPI_Recv(buffer , length, ..., MPI.COMM WORLD,
MPI_Send(buffer , length, ..., MPL.COMM WORLD);
}
MPI_Barrier (MPI_COMM_WORLD) ;
MPI1_Finalize ();
}

Listing 3.1: Simple MPI Ping-Pong Example.

An example MPI program is shown in Listing 3.1. FifsEl _I ni t is called
to initialise the process group and prepare communicat@ommunication is
performed by calling primitives for point-to-point commioation (MPl _Send,
MPI _Recv) or collective operationsMPl _Barri er). MPI offers primitives
for blocking, non-blocking, synchronous, or buffered gempoint communica-

44

CHAPTER 3. CLUSTER COMMUNICATION (RELATED WORK)

Process A Process B:
MPI W n_fence() MPI _Wn_fence()

MPI _Put() / MPI_Get() / MPI_Accumrul ate()

MPI _Wn_fence() MPI _Wn_fence()

Figure 3.3: Fence synchronisation mechanism of MPI-2 [MRI9

Process A Process B:
MPI _W n_post ()
MPI _Wn_start()

MPI _Put() / MPI_Get() / MPI_Accurul ate()

MPI _W n_conpl ete()
MPI W n_wait()

Figure 3.4: Post-Start-Complete-Wait synchronisatiomt-2 [MPI197].

tion. MPl _Fi nal i ze closes the process group and performs does the cleanup
of communication.

MPI-2[MPI197] is an extension to the MPI standard published in 199h-
cludes specifications fatynamic process managemenéw routines foparallel
I/0, and functions to exploibne-sidedccommunication. In the following, the in-
terface toone-sideccommunication is discussed.

One-sided communication was introduced to the MPI-API tovahn appli-
cation to make use aemote memory accefBMA). The design of the one-sided
communication API is derived from programming models ofredamemory ar-
chitectures. The semantics are different (e. g. the pregndes). Thus, these
approaches can hardly be compared to MPI-2. ApproachesSHHEM from
Cray [ShmO1, Sil08] rely on a fast synchronisation mechanié read or write
operation to data structures of another process can bersymséd (e. g. as a kind
of a barrier) to assure that the operation is complete fqraalicipating processes.
The absence of fast synchronisation mechanisms in clustéoements is one
reason for a different semantics of MPI-2’s one-sided comication.

The MPI-2 standard specifies one-sided communication a$blomking com-

2cluster in the sense of Beowulf clusters or network of wartishs without special networks
for synchronisation

45

3.4. MESSAGE PASSING INTERFACE

munication with explicit synchronisation. The synchratisn has to be per-
formed via special and additional messages. This impliesneonication over-
head. Synchronising multiple communication operatiortk wisingle synchroni-
sation message is an advantage [$8&]. MPI-2 one-sided communication pro-
vides two variants of synchronisation (see Figure 3.3 a#y Bvo kinds ofactive
target synchronisatiowhere the target process is involved in the synchronisation
A passive target synchronisatigmalso available where the target process is com-
pletely uninvolved in synchronisation. The passive talget just to announce a
buffer and withdraw the announcement to open and close ihehep

Beside the implementations described below, several appes exist to make
MPI-2 — and especially MPI-one-sided communication — avedrepecific fea-
tures of hardware. In [TRHOOQ], Traff, Ritzdorf, and Hempeégent an imple-
mentation for NEC SX machines. Another example is MVAPICH/AD7] for
InfiniBand described below.

3.41 MPICH2

MPICH2 is one of the most common and freely available implementatad the
MPI standard developed at Argonne National Labs. The detesagn component
is anAbstract Device Interfac@ADI). The application uses the upper layer which
provides the MPI-2 standard-compliant interface. The upgger translates the
API calls into calls to the ADI. For example, this includegsjal algorithms to
map collective operations to point-to-point communicatidhe ADI finally maps
the upper layer calls onto the specific hardware features.

The ADI abstracts the network and protocols. To support a metwork or
protocol, the ADI has to be implemented. An overview of theegal architecture
is shown in Figure 3.5. All boxes enclosed by the ADI box reprg implemen-
tations of the ADI. Theehannel devic@rovides a simplified interface to ease the
implementation of the ADI. Therefore, many network modwdes implementa-
tions of the channel device.

MPICHZ2 [MPI107] is a redesigned and full featured MPI-2 impkentation de-
rived from MPICH. Like its predecessor MPICH, it is still kdiiaround theAb-
stract Device Interfac€ADI) [GL94, GLDS96]. The ADI has been extended to
exploit RDMA features of underlying hardware to support MRdne-sided com-
munication.

Since version 1.0.4, a new architecture named Nemesis [BMEBMGO6Db]
is introduced. The goal of Nemesis is to benefit from sharedaory-based inter-
process communication exposed by multi- and many-coresgsurs.

Our own measurements could not confirm the advantage of Neimes the
previous design using a point-to-point ping-pong bench(see Appendix B.1.1)
on Uranus-hardware (see Appendix A.1). This advantag®ispted in [BMGO6D].

46

CHAPTER 3. CLUSTER COMMUNICATION (RELATED WORK)

Application

MPI Upper Layer

Channel Interface
nemesis ch_p4
mvapich
tep || ... tcp
Network

(Sockets, InfiniBand Verbs, Myrinet GM)

Figure 3.5: Architecture of MPICH and MPICH2

An implementation of MPICH2-nemesis over IPv6 and IPv6ed Open MPI
is presented in [KKF08]. An IPv6-enabled version of MPICH is described in
[SS05]. Both implementations could be done straightfodir@we to the modu-
lar design of MPICH. However, several issues with the addhesdling by the
runtime environment of MPICH had to be solved.

3.4.2 MVAPICH

MVAPICH[MVAOQ7] is derived fromMPICH2 and is one of the free implemen-
tations ofMPI-2 that directly use®RDMA-features ofnfiniBand It is an imple-
mentation of theADI [LWP04]. MVAPICH uses RDMA-based communication
of InfiniBand for all kinds of remote process interaction. eTiteason is that the
performance will suffer if any different mechanism prowd®y Verbsis used (see
Section 3.2.3).

Due to its good performance MVAPICH will be used as a refegefioc mea-
surements with the self designed one-sided communicatiterface presented in
this thesis in Chapter5. MVAPICH was comparedQpen MPland a vendor
MPI of HP in a student thesis [EAQ7] at the University of Paisd Parts of the
results were published in [SS07a].

3.4.3 Open MPI

Open MPI[GFB*04, OMPQ7] is another free implementation of tMe1-2 stan-
dard. It is the successor of several MPI-related projectxofding to their own
presentation, the initial Open MPI was the result of a meifgeTeMPI [FDO0O0],
LA-MPI[ADD *04], LAM [BDV94, SL03], and PACX [GRBK98]. The basic de-
sign of Open MPI is different from MPICH. Everything is buildound three

47

3.4. MESSAGE PASSING INTERFACE

OMPI

ORTE loos|[BTL |

Figure 3.6: Abstraction Layers of Open MPI.

abstraction layers. Figure 3.6 shows the abstraction$aypen Portable Access
Layer (OPAL), Open Run-Time Environmef@RTE), andOpen MPIfunctional-
ity (OMPI). Open MPI offers the possibility to use multipletworks or protocols
in parallel. This can be used either to communicate in hgesreous environ-
ments or to increase the available bandwidth between th@gting nodes.

As mentioned in Section 3.4.1, Kauhaus et. al. implememeldPa6-enabled
Open MPI. This work is presented in [KKPF07, KKB8].

3.4.4 MPICH-G2

If a single cluster is insufficient for a large scale applmat multiple clusters are
combined to work on a problem. This is the area of multi-@ushvironments and
grid computing. To run an application across multiple @dust MPICH-G2 was
developed [KTFO02] in the context of the Globus Toolkit 2. Tiain extension
made to MPICH is the addressing. It was extended by topolafgymation. Each
process is assigned a so-caltadour. Prior to communication, the colour of the
destination process is compared to the local process taseltbe best protocol to
communicate. For example destinations inside the locatefilcan communicate
by using a special vendor-MPI. The most common case will b€R/TP-based
communication method to contact processes on remote duste

3.4.5 Efficiency of MPI

The API of MPI can be described as efficient from the point efwof a program-
mer. MPI is easy to use (compared to socket based messagegpapsrtable,
and specialised to the requirements of parallel applina#@cording to the defi-
nition of efficiencyin 3.1, a few efforts of programming have to be made to write
parallel programs. On the one hand, the programmer has ltrefirol over the
inter-process communication. On the other hand, the pnogyer is responsible
for all communication. The efforts strongly depend on tlgoathm and there is
some criticism to MPI-2 [Geo06].

48

CHAPTER 3. CLUSTER COMMUNICATION (RELATED WORK)

A specific evaluation will be done in the corresponding cetEor example
MPI-one-sided communication exploits the benefits of expEynchronisation
that are theoretically analysed in [SS@5]. The authors propose decoupling of
synchronisation and data transfer to improve the perfoomahmessage passing
systems. The achievable efficiency of implementations @fothe-sided commu-
nication interface of MPI-2 is addressed in Chapter 4. Perémce measurements
of MPICH2 are presented in Chapter 5.

The highest-level approach to optimise the behaviour ofrgsiementation is
to modify the application itself. This approach violates tioal of MPI to allow
portable applications. The modifications can counteraegnwianning on a differ-
ent implementation. Saif and Parashar [SP04] describeauelpproach to avoid
the blocking behaviour of non-blocking large message femasn MPICH 1.2.5
and IBM MPI. These optimisations are based on implementasisues that ex-
pose the non-compliance to the standard. Both implementtbviously block
MPI _I send-calls of large messages until the correspondiRf) Wi t -call of
the receiver occurs. This behaviour was not reproducitde varsion MPICH 1.2.7.

A more portable approach is to exploit the features of theedgishg hardware
to optimise the performance of an application (i. e. impribneefficiency of MPI).
This requires the API to be efficiently implementable.

Research has been and is done on the optimisation of MPI. ©artd hand,
it concerns general approaches like the management of coome[YGP06] or
the use of eager- and rendezvous protocols to transmit smallarge messages
efficiently. On the other hands, special features of the tyidg network are
exploited [CC99, Cia, AAC04]

3.5 OpenMP

OpenMP [Ope05] supports the data parallel model [WA99] lmnathe parallelis-

ing of algorithms. The programmer is responsible for jusheqre-compiler

statements to tell the compiler how to parallelise a parhefdode. In this way,
the parallelising is finally performed by the compiler. Thegrammer specifies
how the compiler should handle the data.

OpenMP provides a way to implement parallel algorithms. iAddally, it
offers a low-effort method for existing sequential codexpleit multi-processor
machines. Pre-compiler statements are ignored by noni@Reompilers. Thus,
in most cases, the code will compile and run even if the caenjsl not aware of
OpenMP.

Due to the increased availability of multi-core process@eenMP becomes
more and more attractive to programmers. For exarhpbgid programs are an
interesting approach for clusters of multi-core machiégorid programs make

49

3.6. FURTHER APIS

use of OpenMP for local IPC and employ MPI to communicate betwcluster
nodes.

OpenMP is efficient in shared memory architectures due tpragramming
model that is based on threads with a global address spaanMFpwill suffer
from the overhead required for synchronisation in distedumemory environ-
ments.

3.6 Further APIs

There are many APIs available to create parallel programshi$ section some
of these APIs will be described to some extend.

3.6.1 ARMCI

The Aggregate Remote Memory Copy InterfadeRMCI) is designed to sup-
port global address space for distributed memory usingsished communication.
ARMCI was presented by Nieplocha and Carpenter in 1999 [NCB® authors
describe ARMCI as an interface to exploit high performaresaate memory ac-
cess.

According to [NTKPO6], the design of ARMCI has several aspéa the fo-
Cus:

e First, thecommunication progressiles have to be simple. All operations
should complete independently from the actions of the rerpobcess. A
dependency would reduce the responsiveness and incredsesi¢s. In
addition, dependencies can result in communication de&sld the pro-
grammer is not aware of the progress rules.

e The second aspect is the communication and computatieriap The in-
dependence of remote actions allows for remote overlapropcation and
communication, while local overlap is provided by retughfrom commu-
nication calls as soon as possible. Let the underlying nét\{ftardware)
complete the communication.

e The third aspect includes non-contiguous data transfdmsrelare a num-
ber of ways to perform non-contiguous transfers. Using a argroopy to
gather and scatter the data, or using multiple communicatds to transfer
each element separately. While the first is not suitable fdARRommu-
nication and involves the remote host, the second requitdiggie start-up
costs. Non-contiguous data transfers are out of the scopietiois work.

50

CHAPTER 3. CLUSTER COMMUNICATION (RELATED WORK)

e To avoid problems with unregistered memory regions, ARM&@tés the
application to use provided memory allocation functionsisTallows the
program to use the fastest access and avoids addition&ingexf memory
status (registered or unregistered).

The synchronisation of data transfers is explicitly donevayt and other syn-
chronisation calls. ARMCI distinguishes between local agwhote completion
by providing different synchronisation calls for this page.

A unique feature of ARMCI are so-calleygregated handlesThese can be
used to combine multiple handles of communication callssmgle handle. This
handle can be used to check the completion state of all agg@gperations for
example. With this way of synchronisation, ARMCI does nat tlse concept of
epochs like MPI-2.

The article cited above contains many interesting appreathoptimise com-
munication. Depending on the costs of memory registratido¢al memory copy
is used to transfer small messages. The data is copied toragistered mem-
ory area. Transferring larger messages in chunks copidubtpre-registered area
can be a benefit if memory registration costs are high. Todawaiiting on the
intermediate memory, multiple pre-registered buffers loaremployed and used
alternating. In this way, the communication is pipelined.

The authors present an interesting alternative to implémget -operation
if a get is inefficiently supported by the underlying network. Thepgose to
send a request to trigger a more efficient remote put or wpegation. The result
is a faster communication that conflicts with the idea of RMiAe remote host
should not involved in the communication. This is still traethe application
level. Therefore, it can reduce the overlapping effect thay be intended by the
programmer.

In Chapter5, we will see that this API is very close to NEON -eavrone-
sided communication interface presented in this thesis.

3.6.2 LAPI

LAPI is an interface designed by IBM[SNMS8] for use with the RS/6000 SP
that came out in 1995. The API provides communication pru@st for one-sided
communication. The synchronisation can be performed by-MEBlcalls (e. g.
fence).

LAPI offers an additional way to signal completion of messsadt uses coun-
ters at the origin and at the target process to check andlidmmneompletion of
data transfers. The counters can be specified by a paramébeput call. This
allows the target process to check if a data transfer is cet@plithout waiting
for a specific synchronisation message required by the MRie2face.

51

3.6. FURTHER APIS

Since counters rely on a kind of active message at the tafgst,cannot be
considered as fully one-sided. The target is involved indbexmunication to
increase the target counter.

3.6.3 SHMEM

SHMEM [Sil08, Shm01] is a widely known communication inté designed
by Cray for its shared memory machines. It provides onegsagnmunication
operations and synchronises via barrier-like operations.

3.6.4 GASNet

GASNet enables the illusion of a global address space riagardf hardware sup-
ported shared memory. This allows running of Global Addf&sace Languages
over distributed memory machines like clusters.

3.6.5 Global Address Space Languages

There are several new languages developed and still ungelogenent. These
languages have in common that they rely on a global addresedp exploit
parallel execution [BD03].

3.6.6 Unified Parallel C

Unified Parallel C(UPC) [UPCO05] is an example for so-calleglobal address
space language(GAS). It is developed at the University of California Beley
by the group of Katherine Yelick. The current 1.2 specifmais dated 31st May
2005.

UPC is an extension of ANSI C to create parallel programs. gdrallel exe-
cution is intended to work with threads on shared-memosetarchitectures. In
this way, it is similar to OpenMP (Section 3.5) except thae@®@dP is introduced
as pre-compiler statements. Similar to High Performance&o(HPF), UPC can
express affinity between data and thread to exploit datditypca

Analyses of the application and runtime efficiency can benébin [EGCOL1,
EGCO02]. A productivity analysis of UPC is presented in [CYZ®]. UPC is
compared to MPI by number of lines and characters to paisslehe kernels
of the NAS Parallel Benchmarks [BB®1, NAS07]. The authors conclude that
UPC requires less ‘manual efforts’ [CYZEGO04] to write p&hblgorithms than
MPI. Since UPC requires a global address space, a speciahgnimation system
is required to provide global address space on clustersdisthibuted memory.

52

CHAPTER 3. CLUSTER COMMUNICATION (RELATED WORK)

The communication interfad@ASNefGASO06] provides global address space
in a network independent way.

3.6.6.1 X10

This Java-like parallel language designed by IBM in 200éstitio enable a pro-
grammer to exploit parallelism [SNO8]. As described#?C, X10 also includes
expressions for data locality and parallel execution onimmees with non-uniform

memory access.

3.6.6.2 Chapel

Chapel [Inc08, CCZ07] is developed by Cray. According toghegect homepage,
the development of Chapel is still in progress. Chapel isndéed as an approach
to improve the productivity of parallel programming by iadling the expression
of parallelism into the language itself. Thus, it has simitaentions to UPC or
X10.

3.6.6.3 Fortress

Fortress [ACH 08] is another example of global address space languagehis
language is derived from Fortran and developed by Sun Mystesns. The cur-
rent specification is dated March 2008. Fortress is intend@gése the program-
ming of math. A compiler could also generat@dX code to create a document.
The language assumes parallel execution by default. Rrogeas explicitly have
to specify sequential code.

3.7 Design Aspects of Efficient Communication

This section will give an overview over existing researchdasign aspects of
communication systesrfor efficient data transport. Important aspects bkéer
managementfficient transport layers, the impactaffloadingandoverlapping
and the issues and benefits of the combination of aspects feths of this sec-
tion.

3.7.1 Buffer Management

Efficient use of internal buffefs bypassing internal buffers, or handling applica-
tion buffers, reduction of the memory footprint of a comnuation library are

Spuffers inside the communication system

53

3.7. DESIGN ASPECTS OF EFFICIENT COMMUNICATION

important aspects of buffer management.

3.7.1.1 Zero Copy

Each memory copy introduces additional overhead to thestnégsion of data.
The impact of additional intermediate copies of data isyswl in [Cia99, VBR 04].
Kurmann, Rauch and Stricker [KRS01] present an approaclse¢ospeculative
techniques to eliminate copies from the TCP/IP stack. Chwf8B] proposes a
way to implemenzero-copyl CP/IP in the OSSolaris

The overhead of a memory copy is hard to evaluate. One canuneets
time or the CPU cycles required to copy data, but the impagiesformance of
an application can not be derived from this measurement ohiye cache will
become polluted by a copgdche pollution. And this can result in unpredictable
decrease of application performance [JCB96, Bru99, VBR.

3.7.1.2 Memory Registration

Modern network hardware (e.g. InfiniBand, Quadrics) sufspmmote direct
memory acce§RDMA) to the application buffers . While this provides hardware-
based zero-copy, it includes some uncomfortable side $ssti®ce two compo-
nents of the computer concurrently access the main memaditi@nal synchro-
nisation and access mechanisms have to be implemented.

Some hardware offers NIC-based translation look-asidietsu{TLB) to ac-
cess pages in memory (e. g. Quadrics). This allows the haedwdandle/access
pages that are swapped out. This requires the operatingnsystbe aware of a
second TLB in the system. Special hardware drivers have tséd.

Hardware without a separate TLB has to rely on the applinatiothe com-
munication system software to prevent memory from beingpped out. The
memory has to be registered. The registration can be an sixpeoperation.
An analysis of this process in the Mellanox InfiniBand softvatack is pre-
sented in [MRB 06]. According to the measurements, the registration of B 2 k
buffer takes about.8 ms. This can make a memory copy more efficient than
insisting on zero-copy via direct access. Optimised vessiof memory reg-
istration use a registration cache to avoid registering of previoustjistered
pages [TOHI98, BB0O3, WWO05].

3.7.1.3 Minimal Copy

If the underlying hardware and/or the operating system do¢sllow for zero-
copy protocols, so-calleahinimal copyprotocols can be used.

54

CHAPTER 3. CLUSTER COMMUNICATION (RELATED WORK)

Additional copies can even improve performance if the ogathis too high
for managing zero-copy. This depends on the hardware &saand the applica-
tion. For example, when using asynchronous communicatidtiRl it can make
sense to send small messages immediately even if the repateadion did not
provide the corresponding destination buffer. The messaljde stored in an
intermediate buffer on the remote side — the so-cadkmger buffer If the receiver
becomes ready, only a fast local copy is required to competéransfer.

3.7.1.4 Early Sender Problem

In this thesis, the terrearly sender problerdescribes the general effect of early
called operations to transmit data without the receiveraedady. This issue is
known from message passing. It is also calkte receiver problemA distinc-
tion between both names is necessary if load imbalances @lagisdhave to be
discovered in the application (see SCALASCA [Jul08]). Tlepof view of the
communication system is the same in both cases since botashdescribe the
fact that the receiver is not prepared. Therefore, onlyetimty sender problerns
discussed.

The early sender problem is a major issue of buffer managetod® solved
by acommunication systenif a sender is ready to send the data before the re-
ceiver has prepared the destination buffer, the commuaitaystem has to han-
dle this situation properly and efficiently.

e The communication system can block the sender until thewercis ready.

e If asynchronous communication is requested by the apmitathe com-
munication system can defer the transmission until theivecsignals the
availability of the buffer. In this case, the applicationlwiot be blocked
until thesynchronisation poinge. g. a call ofMPl _\i t).

e The communication system can copy the data to a local buifas buffer
is transmitted if the receiver is ready.

e The communication system can send the data eagerly to thveecThe
receiver has to manage the early arrival of data. These gessae called
unexpected message

3.7.1.5 Expected and Unexpected Messages

The distinction betweeaxpectecandunexpected messagkas been made to de-
scribe the early sender problem more generic. A messagdlesl expected, if
the receiver is prepared and the destination buffers arekno the communica-
tion system. Expected messages can immediately be delitetbe destination
buffer. This is the best case for the communication systedditfonal blocking

55

3.7. DESIGN ASPECTS OF EFFICIENT COMMUNICATION

of an application or buffering data is not required. It slibbé optimised as a
so-calledfast pathfor performance reasons.

MPI implementations handle unexpected messages [MPIOR @by pre-
allocated buffers for short messages in order to buffelyeariving data at the
receiver. A threshold determines the difference betweert simd long messages.
This threshold is used to switch betwessger moder rendezvous mode effi-
ciently handle short and long messages.

Whether a message is considered to be large, strongly depenithe under-
lying hardware and protocols. Assuming iU of 32 Bytes (the MTU on IBM
BlueGene/P), a message size of 1000 Bytes can already bielewtsas a large
message. While 1000 Bytes will usually be considered aslsfrtae MTU is
1500 Bytes like in Ethernet networks.

3.7.1.6 Eager Mode

In eager modgethe sender relies on a sufficient number and size of inteatesd
buffers gager buffes) at the receiver. An early sender will not be blocked due
to an unprepared receiver and data is immediately (eagedgsmitted. This
allows the sender to speed up transfers of short messagesuivivaiting for
the receiver to be ready. It also allows the receiver to omiéptially required
memory registration. However, it forces an additional mgnoopy at the receiver
and allocates memory that is no longer available to appdicat

The number of buffers is limited. The limit becomes a crupalameter in ap-
plications that run on a large number of processes. If a langeber of processes
send eager messages to the same process, the number of égysrdnould be
large enough to be prepared for at least one message froncteashunication
partner. Otherwise, even the first message of some processgscted and has
to be resent later. This introduces further overhead to comication. Scaling
the number of eager buffers proportional to the number ofgsses will reduce
the amount of memory available to the application. It reduite efficiency of
memory usage.

Another solution to this problem is not to limit the numberbeiffers but al-
locate memory on demand (e. g. the MPICH implementatiorthi¢fis combined
with memory poolingalso described as segregated free lists [WJINB95]) the aver
age overhead of allocating memory on demand can be reduassltddmemory
limitation, this solution is not always applicable efficign

MPICH uses unexpected message lists to manage eager nmes$agdists
are extended dynamically without a fixed limit. The threshial configurable.
The default depends on the network module used. It is set 8&kBZor non-
local communication over Nemesis. For tBlemmodule it is limited to about
10000 Bytes.

56

CHAPTER 3. CLUSTER COMMUNICATION (RELATED WORK)

A request B

AW/
pa— S

Figure 3.7: Basic rendezvous transmission scheme.

In summary, tuning is required to determine the thresholdeldetermining
the threshold, th&aximum Transfer UnigMTU), the available memory per node,
and the number of processes should be taken into accounMThledetermines
the number of packets to send. The available memory lim#ssike and the
amount of intermediate buffers. The number of processesdates an upper
limit to the number of messages that can concurrently aat\gesingle process.

3.7.1.7 Rendezvous Mode

The rendezvous modis used to transfer large sized messages Therefore, it is
also called large message transtavi). Usually, this is transparently performed
by the communication system. An efficient API should not esgthis to the
programmer.

Figure 3.7 shows the steps of the basiedezvous protocolhe sending com-
ponentA submits only the meta-data to the receiving compomBeand waits for
B to signal the availability of a sufficient destination buff@ his special proto-
col to transfer large messages is used to avoid memory copiasge amounts
of data. Furthermore, large messages are a candidate mimpig of transfers
(see next section). Therefore, the transmission of largesages can be optimised
to exploit special features of the underlying network orehidemory registration
costs [BUO3].

3.7.2 Overlap

Along the transmission path of data, several independ@&uegsors may partic-
ipate in the communication. The result is a communicapipeline Figure 3.8
shows an example consisting of a sending and a receivingcapiph and network
interface card (NIC). The first step of this 4-step pipelsan interaction between
the application and the NIC. The processor running the eatiin has to contact
the NIC to either transmit the data or initiate a data transbatrolled by the NIC.
A similar procedure will happen at each subsequent stepegbitieline.

57

3.7. DESIGN ASPECTS OF EFFICIENT COMMUNICATION

Pipelining is a way to process some work in parallel usingtiplgl processors.
Pipelines are suitable if the same or similar work has to bedeveral times and
can be split into subsequent steps. This is the case with coneation. The
sender has to initiate the transfer. The protocol stack dv@sdcess the data and
prepends some headers. The network interface cards hakensmiit the data.
The receiver has to process the data in a similar but revedse of the steps.

Pipelines are only efficient in parallel applications if batep costs the same
amount of time. Otherwise, some of the processors have toandiare not effi-
ciently used. The same problem exists for communicatiorer&lare faster and
slower steps in the pipeline. Additionally, the fact of lesiow or fast depends on
various parameters (e. g. the message size, the number sagass the number
of communication partners).

The message has to be split into several small messageménas) to use
one effect of a communication pipeline for large messagdse flagments are
subsequently processed and submitted through the pipelmé&igure 3.9, the
reduction of transmission time can be seen schematically fé-step pipeline
with equally fast steps.

The authors of [WKM 98] analyse the impact of fragments on the overall
transmission time. Additionally, they optimise the fragrhsize in case of dif-
ferent speeds at different steps of the pipeline. The bdsias of the pipeline
model can be adopted to communication since multiple inceget processors
are available in many networks.

A complete implementation of the optimal solution is harghyssible. The
prerequisite of the optimal solution is complete knowled§performance char-
acteristics of each pipeline step. According to [WKBB], the characteristics are
determined by two parameters: tper byte overheadnd theinitial overhead
(depicted as small black bars in the figures) to transmit @ kagte fragment. The
latter parameter is generally calledency Both overheads are expressed in units
of time. Since these parameters depend on the messagehsizgharacteristics
have to be measured for each message size.

Multiple processors in the communication path enable aafiect of pipelin-
ing. This is known as overlapping of communication and cotaton (short
overlap. Brightwell et.al. [BRUO5] discuss the impact of overlap the ap-
plication performance. They conclude that overlap can awpithe performance

app — NIC I

Tx-NIC
Rx-NIC

NIC — app I—l

Figure 3.8: Communication pipeline example.

58

CHAPTER 3. CLUSTER COMMUNICATION (RELATED WORK)

Figure 3.9: Effect of sending fragments through a pipeline.

if the application is able to make use of non-blocking comioation. Further im-
provements are possible if overlap is combined with offload/ar independent
progress (see the corresponding sections below).

As long as the implemented algorithm is suitable, the appba can continue
with the computation immediately after initiating the connmcation. This re-
duces the visible communication timiatency hiding. Knowing the large gap
between processor speeds and communication latenciesdgirmbardware, this
approach will continue to play an important role for effidieommunication (es-
pecially for non-blocking communication which is intendedMPI-2 one-sided
communication). This is also stated in [NTKPO06], where thésd is also prog-
nosticated for the future.

Initialising the communication includes all work to allotet succeeding pro-
cessor in the pipeline to continue with communication. Ugu#his work in-
cludes provision of information about the involved appiica buffers and/or pos-
sible data copies to special memory areas or NIC memory.

Doerfler and Brightwell [DB0O6] present a method to measupiegtion avail-
ability in an overlap test. The measurements show that Bdind is bad for large
messages in this context, while Myrinet and Quadrics perfaell. This pic-
ture is reversed for small messages (80% vs. 90% availgbillnfortunately,
each network is tested with a vendor-specific MPI-impleragoin. This can be
a major source of different behaviour and is not further aix@d in the paper!
Therefore, the results can not be used to compare the netwbrkconjunction
with non-blocking communication, the availability tesingeresting for the stud-
ies in this work.

Some options to implement OSC in Open MPI are analysed in (BELThe
authors recommend to make use of RMA-capable hardware tmiraphe perfor-
mance. In this case, the API can be directly implemented es@estranslation to

59

3.7. DESIGN ASPECTS OF EFFICIENT COMMUNICATION

the API of the hardware. Especially, this is recommendedrims$ of overlapping
communication and computation. When implementing theiexglynchronisa-
tion, the authors describe a problem in conjunction with IOpEPI’s capability
to use multiple networks simultaneously. In this case, gli@ksynchronisation
message could pass the data messages. Thus, synchronmsatsages have to
be deferred and will be unblocked after the last data messagmnt. Since a last
message cannot be specified by the MPI-2 API, the synchtmnsaessage is
deferred to the synchronisation cadifl _W n_conpl et e).

Applying the pipeline model offers a way to improve the parfance of ap-
plications by enabling overlap. However, the effect of ¢smerstrongly depends
on exact knowledge of the introduced overhead and which ocoet/proces-
sor has to process this overhead. The authors of [KKZLO3¢ lexsperienced a
performance degradation in conjunction with overlap. Téeeiving process is
interrupted by the operating system in an adverse way. Ttierpgance was im-
proved by using blocking instead of non-blocking receividsey analysed several
performance issues in a molecular dynamics applicationBAPBW'05] on
up to 3000 CPUs. Unfortunately, the improvement of usingkilog receives is
not explicitly shown. They improved the original version ggveral modifica-
tion inside the Quadrics’ communication library. Even tgbuhe effect is not
guantified, one can derive that overlap is agdriori a benefit.

3.7.3 Offload

Modern network interfaces allow the processing of partshef protocol stack
on the NIC. This kind of processing is calledfloading There is a common
assumption that protocol offload should improve the peréoroe of applications
because the network hardware is designed to process netnaéirk. Already in
1996, Hennessey and Patterson[HP96] pointed out that Né€epsors do not
a priori speed up communication. ‘Fallacy: Adding a processor tongtevork
interface card improves performance’ [HP96](page 623Ye®QfNIC processors
are much slower than the host CPU. Thus, protocol processittige NIC can be
slower and performance is lost.

In [BRUOS, BUO4], the benefit of offload is analysed using th&S\Bench-
mark Suite [BBB 91, NAS07]. The hardware (Quadrics, ASCI Red) is able to
independently complete pendisg@nd operations. This allows for good overlap
of computation and communication. The application caniooetto work and
more CPU cycles are left to the application. An additionall¥t#® matching of
the NIC further reduces CPU occupancy of the communication.

Transport and network layer protocols (TCP/IP) are alsmadfed even in
commodity off-the-shelf hardware. Several authors exgdlus feature [SCO3,
Mog03, FHL"05]. The Broadcom BCM570x series and other modern Ethernet

60

CHAPTER 3. CLUSTER COMMUNICATION (RELATED WORK)

NICs support checksum calculation. Offloading checksumutation has a small
risk to transmit incorrect packets if the data is corrupteddilures on the system
bus (PCI, PCI-Express). These errors cannot be detectduehyiC.

3.7.4 Progress

The existence of pipelines [WKNB8] allows to overlap calculation and commu-
nication by using non-blocking communication calls. If thensmission of data
has to be stopped because the target is not prepared (e.agplpda a rendezvous
request, no buffer announcement available for an RMA omergtthere has to be
some component to continue the transmission later butesftigi The influence
of this progress is analysed by Brightwell, Riesen, and Wrded in [BRUO5].
They conducted several experiments to measure the impaepaindent anth-
dependent progressn the application performance. Progress is independent if
the communication can continue independently of the rerapgdication’s calls
to the communication library. The authors found two crutaators during their
experiments:

1. Using independent progress makes beneficial use of thencomation
pipeline. Although, without any offload or overlap, it imgdi a higher risk
of cache pollution and context switches. This is due to fesqehecks and
processing required to make progress on both sides.

2. Applications that can not make use of non-blocking comigcation can
suffer from the overhead introduced to implement indepehgeogress.

These statements are confirmed by measurements with the BliraBePBench-
marks [BBB"91, NAS07] on different hardware and different implemeiotag of
MPI. The results of the paper indicate improved efficienayiérlap, offload, and
independent progress are combined. Some experiments ldgBRconfirm that
the combination can improve the performance even more tkeceed from the
sum of the particular techniques.

Independent progress in MPI can be visualised with tooksjliknpshot In
Figure 3.10, the eager amendezvous modeof MPICH are compared. The code
is shown in Listing 3.2.

1 for (i = 0; i < tries; i++) {

2 MPI1_Barrier (MP|_COMM WORLD);
3

4 if ((myld%2) == 0) {

5

6 timea=MPIl_Wtime ();

61

10

11

12

13

14

3.7. DESIGN ASPECTS OF EFFICIENT COMMUNICATION

Zoot Level Global kin Time Wiew Init Time Zoom Focus Time Wiew Final Time Global Max Time Tite Per Pixel |7
3 0.000518 268464241101 323215139212 356005241101 70033318 0.01192R5668 Q {ﬂ'p

TimeLines -

|
27.00 28.00 23.00 3n.no 31.00 32.00 33.on 34.00 35.00

Time {seconds) 4

Zoom Level Global Min Time Miew Init Time Zoam Focus Time Wiew Final Time Global Max Time Time Per Pizel ’7
3 0.000518 29 236EE1RES 36.B0R3342848 38881575043 77159825 0.012317857 Q§ {ﬂ':;

TimeLines -

0 30.00 3Lon 32.00 3300 34.00 35.00 36.00 37.00 38.00
Time {seconds] -

Figure 3.10: Comparing eager (upper) and rendezvous (Jonade of MPI 1.2.7.

req = MPI_Isend(buffer, length, ...);
timeb=MPI_Wtime ();

} else {
sleep (2); /I« delay the receive x/
req = MPI_Irecv(buffer, length, ...);

}

MPI_Wait(req, ...);

Listing 3.2: MPI example to show progress.

Process 0 (upper) sends data to process 1 udihg | send. Node 1 waits
for 2 seconds before callingPl _I recv. This is to force arunexpected mes-
sageor anearly sender problemmBoth nodes wait for additional 5 seconds before
calling wait. There is a barrieMPl _Bar r i er) before and after the experiment.
Thesend operation can not finish in rendezvous mode since the racsivet
ready. Data is instantly transferred to intermediate bafég the receiver in ea-
ger mode. The eager mode version spent most of the commiomi¢abe in the
barrier (yellow) while the wait (red) takes a long time in tieedezvous version.
A reason for different times to wait is the instant completad eager operations.
The rendezvous variant can only send the rendezvous reqiibst data trans-
fer does not start before the receiver cAIR Wi t . Why the transfer cannot

62

CHAPTER 3. CLUSTER COMMUNICATION (RELATED WORK)

start when the receiver is calling?l _| r ecv? Becausd&/Pl | recv could be

blocked. The rendezvous reply could be sent, but since datéohbe actively re-
ceived (experiment is done for Sockets/Ethernet withowatraraunication thread)
MPI | recv has to wait for the data itself too. Otherwise, the commtutioca
channel can become congested. The communication canniwetefore the
receiving application callsPl _Wai t .

3.7.5 Transport of Data

Most of the above issues describe general concepts to imphevefficiency of
communication. These concepts are implemented on top anesport proto-
col. The transport protocol itself has to be efficient too.isT¢ection presents
some mechanisms to improve communication efficiency byaieduoverheads
or transmission times of the transport protocol.

3.7.5.1 Reliability

The programmer of a parallel application is not interestedhecking the cor-
rect transmission of data. This task has to be done by the coneation sys-
tem. The communication system has to reliably transfer agess Reliability
requires additional effort and this overhead reduces thaegicy. A reliable and
light-weighted mechanism for Ethernet networks is presgin [Cia99, CES02].
The approach performs better than common implementatiorts of TCP/IP.
Since TCP is a protocol for WAN, more overhead is introdueeddsure correct
transmission. This overhead can be omitted for LAN envirenta due to their
more reliable transfer of data. Compared with this, Verst@&al, et al [VBR"04]
analysed the impact of reliability provided by Myrinet hastte. If configured,
Myrinet NICs retransmit corrupted or lost packets. This hegligible impact on
throughput. If the host CPU has to do the retransmissiorisgrsmall messages
requires more time. This effect is less important than etqueéor large mes-
sages. The two different examples show that the impactgiyatepends on the
underlying protocol and the hardware.

3.7.5.2 Packet Size and MTU

Thepacket sizes limited by the protocols inside the protocol stack. A nmaxm
sized IP-packet can be 64 KiB. Larger messages have to bénsgminks. This
fragmentation is done by the communication system traesypisr

In combination with théMaximum Transfer Uni§(MTU) of network hardware,
the packet size is important. In [CES02], Ciaccio, Ehlan &chnor analyse the
difference in throughput of GigabitEthernet betweambo-framesind standard

63

3.7. DESIGN ASPECTS OF EFFICIENT COMMUNICATION

MTU (1500 Bytes). The MTU has a significant impact on the tigtgqout of mid-
sized messages on certain hardware. One of the reasonsefiicient use of the
communication pipeline.

Generally, a smaller MTU reduces the relative amount of gayldue to the
header required in each packsiz@eage). This reduces the maximal throughput
of the network linkBjihk to Bmax (See Equation 3.1).

MTU — sizg,
Bmax= MTU eader* Biink (3-1)

Verstoep and Bal et. al. [VBR04] have analysed the impact of the MTU in
Myrinet networks. The result was a slight improvement ofttireughput for large
messages. The larger the MTU, the smaller is the improvenvre important:
the number of bufferBl,, f fer 0N the NIC depends on the MTU (see Equation 3.2).

Memyc(bytes
MTU (bytes

Nbuffer: (3-2)

A large MTU reduces the number of buffers. If an applicatiends a lot of small
messages, the NIC can run out of buffers. This has a morefisaymi impact on
performance than the size of the MTU itself. The authorsaook find an impact
on latency. This is an expected result.

3.7.5.3 DMA-based Copy

Hardware provides several ways to transfer data from agipbic buffers to the
local network hardware. Verstoep and Bal et. al. [VER] analysed the impact
of using programmed I/O (PIO) atirect memory acceg®MA) mechanisms to
communicate viMyrinet networks.

P10-based transfers require the host CPU to copy data viey#tem bus (PCI)
between main memory and NIC memory. This is a fast way to parfeansmis-
sion but steals CPU cycles from the application. It requireisher initialisation
nor acknowledgement of the transfer.

DMA-based copying is performed by special hardware comptsia the sys-
tem or on the NIC. It requires an initialisation and a syncisation phase. How-
ever, the host CPU can continue to process the applicatiba.synchronisation
is needed to signal a transfer is complete (usually done lytarrupt).

One of the conclusions in [VBRD4] is to use PIO for short messages due to
the reduced overhead of initialisation and synchronisatidowever, in the test
environment of the author®lO made no sense at the receiver. The reason is
the slow read operation from PCI devices. Depending on taggom and the
message size, PIO can improve the performance.

64

CHAPTER 3. CLUSTER COMMUNICATION (RELATED WORK)

Using DMA offers more availability of the CPU to the applicat if the mes-
sage size is large. In the testbed in [VBB4], using DMA forces the receiver
to copy data. This is because incoming data is stored in aapaemory area.
An alternative implementation (also tested in the studyghke to directly access
the destination buffer. This implies the above mentionedvtbacks of (remote)
direct memory accessegistration or extra TLB. Further, the Myrinet hardware
is able to access a single page only. ThereforeMh® setting has an impact on
this feature. If the MTU is above the page size, the recevmrérhead of a packet
will be doubled.

Similar to the decision of using eager- or rendezvous mdaerdcommenda-
tion is as follows:As long as the per message overhead is high, compared to the
overall transmission time, use the faster PIO method evierefjuires some more
CPU cycles! Otherwise, use DMA transfaffhat is fast and what is high over-
head strongly depends on the hardware capabilities. Tlagusing parameter
that has to be determined for a particular environment teesetthe best appli-
cation performance. The decision is also influenced by tipdicgtion’s way of
using the communication system.

3.7.5.4 Interrupts and Polling

Interrupts allow asynchronous processing of componengssyfstem controlled
by a central processor (CPU). A task is given to a device ricdteo initiated by

an interrupt). If the task is complete, the device raiseséeriupt. The CPU is
interrupted and the interrupt will be handled by an intetigndler. Often, net-
work communication is also working with interrupts, e. gsignal incoming data.
Especially, interrupts are problematic in high speed ngta/fMR97]. Due to the

high packet rate, a lot of interrupts have to be handled iy gbort time. This

can occupy the CPU completely and running applications aacontinue (in-

terrupt livelock). To avoid livelocks, interrupts can bealled [Cia99, CES02].
Polling is used instead. This reduces the latency sinceteaupt handler has to
be called. Additionally, the code locality is improved, bagollution is reduced,
and the application is the beneficiary. However, if non-kiog communication

is used by the application, the latency can increase. Paeketfetched from the
NIC not before the application polls for data. Thus, therlateis influenced by
the software. Further, polling consumes CPU cycles. Tholéing is not recom-

mended if non-blocking communication is requested to agecomputation and
communication.

The so-called NAPI (New API) [SOKO01] proposes a hybrid ajpgio The
first incoming packet triggers an interrupt. This interrigghandled while further
interrupts are deactivated temporarily. After handling thterrupt, the system
will poll the interface for further packets. If a maximum nbear of packets is

65

3.8. INTERDEPENDENCIES

fetched or a given number of polling cycles are done, infggrare enabled again.
This leads to a high responsiveness if applications comecatmisparsely. Large
amounts of data or frequent communication allow fast preiogswithout han-
dling thousands of interrupts.

3.8 Interdependencies

The previous sections presented several aspects of efft@ermunication. This
section explains why many of these aspects have to be coedisthecombination.
In short, this is because they depend on each other. Somidependencies are
summarised here from the above sections.

Zero-Copy and Memory Registration Zero-copy transmission is a nice feature
of RDMA hardware like InfiniBand. As described in Section.2.2, this requires
the memory to be pinned or registered. Since this is ofterxparesive operation,
it can be more efficient to write data to intermediate, pristeged buffers and
copy the data to the application buffer afterwards. If regiton of memory is
considered as overhead in the corresponding pipeline,dtep$elps to decide if
intermediate copies are acceptable or not.

Zero-Copy and Overlap Forcing zero-copy will not always result in good per-
formance if overlap of communication and computation is kygd. Making
use of the pipeline characteristics can improve the apjicgerformance more
than avoiding copies, especially at the destination psaocé@soiding copies can
prevent a pipeline step from processing further data ifekemo (intermediate)
buffer space available. If the usage of overlap is essetttithe performance,
forcing zero-copy is not recommended.

Overlap and Progress Computation and communication can easily be over-
lapped as long as there is an independent processor to priveekcal steps of
the pipeline. If this asynchronous communication cannobdnedled by the un-
derlying hardware, progress on pending asynchronous tipesacan be made by
threads or by deferring the transmission.

A thread is able to make independent progress on pendingomes. It is
able to efficiently use the communication pipeline. Usingraad offers the best
potential to overlap communication and computation. Haveit steals CPU
cycles and pollutes the cache of the application. Theretbreads are avoided to
avoid these drawbacks.

66

CHAPTER 3. CLUSTER COMMUNICATION (RELATED WORK)

Deferring transmission will result in inefficient usage bétpipeline and re-
duce the possibility to overlap communication and companat For example,
MPICH and MVAPICH defer the transmission if a non-blockegnd cannot be
completed. Only if the processiisthe library (i. e. after an API call), they try to
progress on pending operations. The reason is to avoid adlinat interrupts the
application.

The challenge is to decide which of trk-aroundshas the better impact
on the performance of the application. In multi-core envinents, one of the
cores can be dedicated to a progress thread. In this case stgaling and cache
pollution problems will disappear.

Overlap and Offload Overlap of computation and communication is easier to
realise if there is an independent processor to processrmeadmmunication as
noted above. Some steps of the pipeline can be offloaded t@itheessor if a
processor is available to offload at least parts of the pobtpocessing. This
eases the implementation of overlap and increases theb\ayl of the CPU to
the application.

Offload and Progress It was already mentioned above that a dedicated proces-
sor to offload protocol functionality is helpful to make ip@dent progress on
pending communication operations.

Keeping in mind that the network processors to offload pmaithactionality
provide usually less performance than the host CPUs. Threrebffloading the
functionality of making independent progress is agpriori beneficial (see the
fallacy in Section 3.7.3 on Page 60).

3.9 Conclusion

This chapter presented programming interfaces for comeation in general and
for parallel programming (see Section 3.2 and 3.3). Prograng interfaces al-
low the programmer to express inter-process communicati@ven parallelism
of code or data. There will be a higher potential of applmat benefit from
a programming interface if this interface is efficiently ilmentable on top of
available network technology.

Section 3.7 explained various aspects of efficient trarigfalata. The imple-
mentation of an API can exploit these aspects. The impleonéais to be careful.
Several interdependencies exist between single aspeetSéstion 3.8).

The overall recommendation of this section isb@ careful when applying
a specific recommendation to a communication systéany things depend on
the behaviour and requirements of the application and netyéving works on

67

3.9. CONCLUSION

every hardware because of the different capabilities otide=l technology. The
specific aspects and demands of one-sided communicatibiberahalysed in the
next chapter.

68

Chapter 4

A Model for Communication

69

4.1. IPC: PRODUCER/CONSUMER

This chapter introduces a communication model calfietlal Representation
Model that is derived from th@roducer/consumelike inter-process communi-
cation known from operating systems. This chapter showistiiese are several
similarities betweermne-sidedandtwo-sidedcommunication. The applicability
of the model is analysed for different interconnection dexdtures (network, net-
work with RDMA, shared memory, distributed memory). This model is then use
to develop an efficient one-sided communication interface.

4.1 |IPC: Producer/Consumer

The producer/consumebased inter-process communication is known from syn-
chronisation in operating systems [Tan01]. This synclsation scheme has to be
applied if a process (producer) produces data and transmstslata to another
process (consumer) where each transmission has to be peddgensumed).

Figure 4.1: Producer/Consumer Example.

This interaction is very common in distributed applicaso®therwise, there
would be no need to communicate. Because of its importandhifothesis, the
required steps of synchronisation are explained here.ré&#d shows the pro-
ducer P, the shared buffer S, and the consumer C. The arrowglsa interactions
between the processes and the buffer.

1. Before the producer can deliver data to the buffer, it basetsure that the
buffer is available. This information is provided by the samer.

2. The consumer will announce the availability of the buffer

3. If the consumer wants to consume data from the buffer,dttb&know if
the producer has completed writing data to the buffer. Tifisrmation can
only be provided by the producer.

4. The producer will notify the consumer that the data in tliédp is available
for processing.

5. Since both processes access a shared buffer, the acesessli®gasynchro-
nised. This is performed by mutual exclusion.

70

CHAPTER 4. A MODEL FOR COMMUNICATION

4.2 The Virtual Representation Model

Figure 4.2 shows the central property of ttietual Representation Modéghlso
referred acommunication modelfterwards): it models the task of the commu-
nication system to virtually represent the remote proceskd process that calls
communication functions (any transmission, receive, achyonisation).

This abstracts the 7 layers of tHeO/OSI ModelDZ83, JTC94]. The appli-
cation layer (7) is mapped to each process. Thmmunication systecan be
seen as an agglomeration of the remaining layers. The comation between
process A and B is virtually a direct communication in bota I8O/OSI-Model
and theVirtual Representation Modellhis abstraction is chosen to focus on the
benefits for the application.

First, theVirtual Representation Modés explained from the application point
of view. Afterwards, different mappings to interconnent@rchitectures are de-
scribed as the view of the communication system.

Cs

N

virtual representations — internal

——» external

Figure 4.2: Communication model of virtually provided remprocess.

A-CS(A) | External A
CS(A)-CS(B) Internal
CS(B)-B Extenal B |

t

Figure 4.3: Pipeline steps of the communication model.

Figure 4.2 indicates two further important aspects of comication. Thepro-
ducer/consumebased synchronisation between process A and B (see Séctjon
and the steps of a communication pipeline. Figure 4.3 shbeghree pipeline
steps that are indicated by external and internal intemastof Figure 4.2. The
first step is an interaction between process A and the conuation system (A

71

4.2. THE VIRTUAL REPRESENTATION MODEL

— CS(A)). The next step represents internal interactiowéen parts of the com-
munication system at process A and B (CS(A) — CS(B)). Theskagt is the inter-
action between the communication system and process B (C38R

4.2.1 Application

Since the model abstracts communication to be an interabgtween one pro-
cess and the virtual representation of its communicatiotnpg the communi-
cation system becomes a black box that provides access tephesentation of
the remote process. The virtual representation is maiyepresentation of the
memory regions that are involved in communication. Thedtelsiare accessed
to exchange data.

What doesaccessnean in the context of the model and the view of the appli-
cation? Each active interaction between the applicatiahaafvirtual) represen-
tation of a remote process is considered as access. An ainebe classified as
direct accessaindindirect access Access is considered as indirect, if intermedi-
ate steps are required to exchange data between two precégiaitionally, the
transmission from process A to B can require process B toelgtread data or
not. This excludes synchronisation that is explained sephr(see below).

Therefore, theaccessan be classified into 4 classes:

e indirect accesso the address space of B without process B involved: If the
address space of A and B is differergal communication will be necessary.
Otherwise, one would use direct access to exchange datamGoiration
is defined aseal if there is any kind of network transfer required to move
data from process A to B. An example is one-sided communicattither
the communication system or the processes are requireginsfér the data
into and out of the communication system (read or write). sTihvolves
only one of the processes.

e indirect accessvith both processes involved: Both processes are required
to interact with the communication system, i. e. virtuallgtwthe other pro-
cess, to complete the data exchange. This reflects the cdbssessage
passing mechanism via send/receive or a central shared imanea in the
model. This kind of interaction abstracts from the fact tingt memory of
the other process is accessed.

e direct accesdo the address space of B without process B involved: This
requires a shared address space between A and B (e.g. tlareskared
memory at application level). In this case, the repres@mas no longer
virtual.

e The last casedirect accessvith both processes involved, does not exist.
Process B has no influence on the data transfer if the dateerstigwritten
or read by process A. Therefore, process B cannot be involved

72

CHAPTER 4. A MODEL FOR COMMUNICATION

The synchronisatiorof the data transfer from process A to process B (see
Figure 4.2) is abstracted to the following steps:

1. Data from process A can only be delivered to the virtuatesgntation of
process B if there is an available buffer to store the datas buffer can
be either the destination buffer of process B or an interatediuffer inside
the communication system.

2. Process B has to provide information about the buffers Wil be called
buffer announcement his has to happen in advance to the transmission of
data to the destination buffer of process B.

3. If process B is interested in all transmitted data, it ledstow when data is
presentin the (virtual) representation of process A. Qdeesand two-sided
communication slightly differ in this step. In case of twidesd communi-
cation, data is actively read from the virtual represeatatf process A. In
case of one-sided communication, the data is silently eediy to the pro-
cess by the communication system. Process B has to reachths sf the
delivery from the (virtual) representation of process Aislis step will be
calledcompletion This is only the completion of the receiving process!

4. Only process A can decide when one or multiple data trasafe complete.
Thus, process A has to notify the virtual representatiorroéess B that the
data transmission is complete. This will be caltexdification

5. Inthe model, two processes access the same black boxeindieptly. There-
fore, each access has to be synchronised by mutual exclufibe process’
access to the virtual representations is done via API dhkisaccess can be
synchronised inside the black box.

It can be seen that these steps are the same steps as de&urilbegproducer/-
consumesynchronisation described in Section 4.1.

One additional step is required since the representatitimeafemote process
Is virtual. Process A needs to know about tkal delivery to process B. This
can be called the transmission sidempletion Concerning the semantics, the
important aspect of completion is that process A safelyreuse its transmission
buffer aftercompletion Safely means that the data is already delivered to the
destination or the communication system is able to relidelyver the data from
its intermediate buffers.

4.2.1.1 Two-Sided Communication

The classic two-sided communication via a network is regoresd by the model
if both processes use indirect access to the communicatsiers.

The sender will initiate @end operation by calling an API. Depending on
the used API, it will specify either the virtual represerdatof the receiver or the

73

4.2. THE VIRTUAL REPRESENTATION MODEL

address of the receiver itself. It will tell the communioatisystem the location
of the source buffer. Depending on the implementation ofdmunication
system, the data can be copied into the communication syisyetime sender or
by the communication system. This is the first step of thelpipe- the external
interaction between process A and the communication sy&eenFigure 4.3).

Somehow the communication system has to transfer the dataittual rep-
resentation of process A that is accessible by process Rilgleain be found in
Section 4.2.2). This is the second step of the communicaiipeline — the inter-
nal interaction.

Process B is required to read the data from the virtual reptaton of pro-
cess A. Itcalls a ecei ve function to tell the communication system the process
from which it wants to read the data. It announces the degimaddress for
the data. The transfer of data can be done by the commumcsygtem or by
process B. This is the last step of the pipeline — the extentalaction between
process B and the communication system.

The synchronisation steps of this transfer are includetienAPI calls. Here,
a distinction has to be made between blocking and non-bigaikio-sided com-
munication.

1. If the communication system has internal buffers, theleeman immedi-
ately start transferring the data. Step one of the pipeliag Imappen without
waiting for an announcement of a receive buffer. If no indkibbuffers are
available, the sender is blocked (in case of blocking comaation) or a
pendingsend is waiting for a buffer announcement processing inside the
communication system.

2. Ifthe receiver callsecei ve, this includes the announcement of the buffer.
The communication system knows about the destination nohilé/ion-
blockingr ecei ve calls just include théuffer announcemenblocking
calls additionally include the waiting fmompletion(see below).

3. Using a blocking ecei ve call, the receiver implicitly waits focomple-
tion of the transfer. Since eaclecei ve call has to match a corresponding
send call, the completion is implicitly signalled if the messageelivered.
Non-blockingr ecei ve calls require an extra API call to assure comple-
tion (e.g.MPl _Wai t).

4. The sender implicitly notifies the receiver about the clatipn of the trans-
fer. Eachsend call requires a matchingecei ve call (in case of message
passing interfaces), therefore the complete transmissithe data of a sin-
glesend call implies thenotificationof the receiver.

5. Mutual exclusion can be handled by the communicatioresystecause all
interaction is done via API calls. These calls can triggetualexclusion
inside the communication system if necessary.

74

CHAPTER 4. A MODEL FOR COMMUNICATION

The completionof a blockingsend call is included in the call. Non-blocking
sends need an extra API call to assure completion (&Rj._ Wi t).

Both processes are required to interact with the virtualeggntation of the
communication partner to perform the transmission of ddtnce, this is called
two-sided communication. Since process B will pick up theadd is sufficient
for process A to specify the destination process. Howevwsittimg the specifica-
tion of a destination buffer is dangerous. It requires thesages to be send and
received in correct order and number. MPI avoids buffer naksim by using tags
as an abstract name of a buffer address. This allows unardenesmission of
messages with different tags. Tags are given by the progexrascompile-time
knowledge making internal negotiation of abstract name=oessary. Neverthe-
less, eaclsend requires a matchingecei ve. This can be a major disadvantage
of send/receive data exchange between processes.

4.2.1.2 One-Sided Communication

How does one-sided communication fit into the model? Firgsgraote write
operation put) is explained. Aget is briefly described afterwards. Accord-
ing to most of the existing one-sided communication APIg (&PI-2 [MPI97]
or ARMCI [NTKPO6]), one-sided communication calls are ddesed as non-
blocking operations.

There is only one difference between a non-blocking oneegidit and non-
blocking two-sided communication: one-sided communaabmits the active
reading of data from the virtual representation. The datdeisvered by the
communication system. Therefore, one-sided communicatiows an arbitrary
number of operations on the remote data buffer.

The same steps of synchronisation still need to happen (geehr Thus, the
operations cannot start or complete beforelib&fer announcedProcess A has
to notify process B to complete the operations at procesx8ei from the com-
munication calls at process A (which can include the waitardguffer announce-
ment), all synchronisation steps require an explicit ARI(baffer announcement,
completion at process A and B). For example the MRleflve target synchroni-
sationAPI exposes all steps of synchronisation (except mutudusian) to the
application.

A non-blockingget operation at process A tries to read data from the virtual
representation of process B. It has to wait for the bufferoaimeement of pro-
cess B and triggers the communication system to retrie\efdamn the memory
of process B. After the data is read by process A it can notibcgss B about
completion. Theget call can complete locally if all requested data is available
Since process A specified the number of bytes to read, it ceidelabout local
completion.

75

4.2. THE VIRTUAL REPRESENTATION MODEL

To transmit data, only one of the processes is required &yaot with the
virtual representation of the other process. This makesohemunication one-
sided. Since the communication system delivers the dateotteps B, process A
has to specify the destination process and the address loditfee. These can also
be abstract names. As noted above, this allows an arbittanpar of operations
on the remote buffer. This can be a benefit if the applicatiam make use of
multiple transfers within a singleroducer/consumesynchronisation [GTO7].

4.2.2 Communication System

Looking inside the black box is the subject of this sectiohe Virtual Represen-
tation Modelis applied to existing architectures.

All data transfers can be decomposed in two types of interacexternal
interactionandinternal interaction(see Figure 4.2). External interaction happens
between processes and the communication system and canasceated above
in Section4.2.1. Internal interaction is required if thencounication system is
separated into parts residing on separate address spageslifeerent hosts or
CPUs). In this case, data has to be moved internally from epeesentation to
another. This can be network transmission or data copiegmteanal memory
regions.

The buffer announcemerand thenotification can only be specified by the
communicating processes. Both of the synchronisatiorsdtape to be exposed
to the application. A further propagation of this infornzatidepends on the re-
guirements of the hardware, the implementation, and the Rétlexample if the
API requires process A to specify the exact virtual memongresis of the des-
tination buffer, the buffer announcement has to be progabiat process A. The
synchronisation messages of theaffer announcemeritave to be transferred at
least to the neareseighbouringepresentation if process B is not involved in the
data transfer (one-sided communication). Otherwise, éiséimation is not known
by the (virtual) representation that delivers the data txess B.

Since process B needs to know about ¢tbenpletionof the communication,
notificationmessages of process A always have to be propagated to pRicess

4.2.2.1 Network without RDMA

If the underlying network is not able to perform direct deliy to the remote
process (e. g. Gigabit Ethernet), the communication sybsio implement this
function in software. Otherwise, one-sided communicatannot be performed
over this type of network.

If the model is applied to this kind of network, all virtualpresentations will
stay virtual. No physical mapping of an address space isilpessThus, the

76

CHAPTER 4. A MODEL FOR COMMUNICATION

CS

virtual representation —— internal

—» external

Figure 4.4: Physical mapping of process B into the commuimicagystem.

general model will apply (see Figure 4.2).

Internal communication is represented by the transfer td dad synchroni-
sation over the network. External interaction can be imgletad as CPU-based
memory copies between the process and the memory of the keitvterface (if
available).

If the communication system implements intermediate bsfi@ternal buffers),
the messages for buffer announcement of process B don’'ttbawe propagated
to process A.

A typical example for the propagation or non-propagatiobudfer announce-
ment messages is the implementation oféager andrendezvougrotocols. To
allow eager transmission of small messages, the commioncatstem provides
internal buffers at process B. If a message is larger thasiteeof the internally
provided buffers, process A has to wait for the propagatfdhebuffer announce-
ment from process B. Usually, process A requests for thegmaipon of the buffer
announcement. Therefore, it is call@hdezvougrotocol. According to the Vir-
tual Representation Model, thendezvousequest message is not required.

4.2.2.2 Network with RDMA

Figure 4.4 shows the mapping of the model to implementatd@scommunica-
tion system with RDMA.. For process A, the memory of procesaB loe directly
mapped into the communication system at process B. Note nlpping only
represents the communication system’s view on the comratiaicinitiated by
process A. Buffer announcement calls from process B stjllire external inter-
action between communication system and process B acgaalifigure 4.2.
This mapping shows thdduffer announcemesithave to traverse the internal

link (this is the network!). Since the communication systefrprocess A can
directly access the memory of process B (RDMA), it needs tovkthe exact

77

4.2. THE VIRTUAL REPRESENTATION MODEL

Cs
- %»
A B SHM Al B
-~ -~
| |
“d -
virtual representations
—» external

Figure 4.5: Physical mapping in case of shared memory asgoan

Y

A

Figure 4.6: Physical mapping in case of shared address.space

memory address of the buffers. Since the speed of the netwsoskill slower than
the speed of the interaction between process B and the coroation system at
process B, the buffer announcements can become a perfoerissoe for RDMA.

4.2.2.3 Shared Memory inside the Communication System

If the communication system uses a shared memory regiomansport data be-
tween process A and B (A and B have separate address spadejemal inter-
action is required (see Figure 4.5). The data and synclatoismessages have
to be copied into and out of the memory of the communicatiatesy (external
interaction).

78

CHAPTER 4. A MODEL FOR COMMUNICATION

4.2.2.4 Shared Address Space

Figure 4.6 shows the mapping if process A can directly actessnemory of
process B. The termrocessshould be replaced hreadhere to reflect the im-
plementation in practise. All virtual representations ta&nrealised as physical
representations.

Process A has to know the address or the abstract name of shiaati®n
buffer. Since the address space is shared among all invphaegsses, the desti-
nation process directly announces the buffer to process A.

The communication system is still there. Under the hoodastithe hardware
has to transfer data over memory buses or has to keep cadiezenb These tasks
introduce similar external and internal interaction asrtégvork transfers.

For example, if A and B are threads and a thread writes daiaishared vari-
able and the result should be processed by the other threathguon the second
CPU of an SMP node, the hardware has to copy the data from tie cd one
CPU to the cache of the other CPU. At this level of detail, ¢hera communica-
tion system working and the representation of B to A is juginal too.

The assignment of variables can also be seen as an API call thé¢ com-
munication system about the source and destination buffértlae size of the
data. However, this is not recognised as an API call. Thetlsymisation still
requires special calls. For example programming langublke</C++ or Java
lack a kind ofbuffer announcemerior simple assignments. Therefore, the syn-
chronisation is done via mutual exclusion or barriers irséhenvironments. If
producer/consumesemantics are required, barriers are an appropriate goluti
A barrier implicitly includes thenotificationand completionas well as auffer
announcemerfor future access.

4.2.3 How to Apply the Model

The previous sections provided examples on howiheal Representation Model
is applied to specific environments. This section provideses description how
to apply the model to a general inter-process communicatienario.

Virtual Representations are the determining components of the model. If an
API is given, the virtual representations are specified by A&Pl. The model
shows that process A accesses the (virtual) representatipmocess B. This ac-
cess is determined by the API. In this case, the applicatidheoVirtual Repre-
sentation Model helps to implement efficient communicatibno API is given,
the model can be a guide to an efficient API. Identify potémBaresentations
from the details and classification below! After a distinatibetween external

79

4.2. THE VIRTUAL REPRESENTATION MODEL

and internal communication steps, the model helps to spaaid implement an
efficient API.

Details of external and internal communication have to be identifiddswer
the following questions:

e Where has the data to be copied or processed? This will nesaltnore
detailed view on the pipeline and the pipeline steps.

e Which steps can be classified as local, transfer, or remefes §tom the
viewpoint of process A? A transfer step is moving data froracal buffer
at process A to a remote buffer at process B. Local steps mateefibm a
local buffer of process A to another local buffer at process A

e What are the characteristics of these pipeline steps? tyatmd per byte
costs are important parameters. Consider the transfeactieaistics of both
data messages and synchronisation messages.

e Where are the bottleneck steps of the pipeline? This wilp heldecide
about buffer management inside the communication system.

Classification of the access depends on the number of pipeline steps and the
type of the last step to deliver the data to the destinatidfebu

e indirect access with involved remote procesquires at least two pipeline
steps to have an indirect access. A prominent example wibhsteps is
two-sided communication between two processes via shaesdlony. The
first step is local to process A. The second step is local toga® B (see
Figure 4.5 at Page 78).

e indirect access without involved remote procesguires at least two pipeline
steps to have an indirect access. The last step has to bestetratep to the
memory of process B. Otherwise, the remote process B wouilcMoésed.
An example with 2 steps is one-sided communication using RDNbw-
ever, one-sided communication over Ethernet uses a 3-gtefine. The
communication system at process B has to deliver the data.

e direct access without involved remote procaksws only one pipeline step
to deliver data to process B. This is only possible if A and Beha shared
address space. For example data exchange between twosthread

If an API has to be designed, the required communication gnchsonisation
steps have to be identified and mapped to appropriate calls.

80

CHAPTER 4. A MODEL FOR COMMUNICATION

4.3 Aspects of Efficient Communication

This section explains aspects of efficient communicati@rtiqularly from the
point of view of the application. It can also be seen as recendations or re-
guirements to a communication system to provide efficiei@riprocess commu-
nication. Every recommendation is described in the corakttie Virtual Repre-
sentation Model. Details of internal communication arediid in the black box
called communication system. The communication pipebreonsidered to have
three steps.

Sending and receiving data is described separately. Thisdguse receiving
data is a bit more complex than sending. This is becauseviegalata depends
on the destination process providing the buffer and the tdetierive at the virtual
representation in the communication system.

4.3.1 Communication Pipeline

If the communication has to traverse a network, the secamaftthe communi-
cation pipeline will be the bottleneck step in today’s haadev(see Figure 4.3 at
Page 71). The speed of network communication is still belosvgpeed of data
transfers inside a host. According to [WKM8], this step has to be employed as
early as possible to achieve a short communication time.

This results in two recommendations: send messages (inglddta and syn-
chronisation) as early as possible and store them as clgsesagle to the des-
tination buffer. Sending data early will assure that thelboeck is employed as
early as possible. However, the sender also has to be surhéna is any buffer
to store the data since sending data without intermedidfering requires the
destination buffer to be available. If the receiver is napared ¢arly sender
problemn), the communication system can defer the transmission arigh in-
termediate buffers. If intermediate buffers are used, tmarounication system
should store the datas close as possibl® the destination bufferAs close as
possiblemeans if the receiver becomes ready, the delivery of datairesgjonly
the traversal of fast (non-bottleneck) pipeline steps.

Since the buffering of data requires memory, the designarcoimmunication
system has to be very careful to not violate themory constraintsThe com-
munication system should leave as much memory as possikie @pplication.
Even if the CPU is available to quickly process the pipeliteps, the memory
and the cache should be used carefully. CPU-based accedgsrnoédiate buffers
also increases theache pollution This is known to hamper the performance of
applications. The application data is replaced by the comecated data and has
to be reloaded to the cache afterwards.

81

4.3. ASPECTS OF EFFICIENT COMMUNICATION

4.3.2 Sending and Writing

A process can actively transmit data in several ways. It cantwo-sided com-
munication to send data to another process. One-sided coioation is a second
kind to perform active transmission of data. Both of thesgsa@an be requested
as blocking or non-blocking communication. However, oitd communication
operations are non-blocking in the mentioned interfaceShaipter 3.

If a blocking transmission is requested, the applicatidsiosked until the op-
eration is complete. Therefore, blocking operations areicritical operations.
The processing of the algorithm has to wait for the compteti®herefore, the
CPU is availabléto the communication system to process the requested add pen
ing communication operation.

The application wants blocking transmissions to be praskdy the fastest
mechanism that is available. From the application’s poini@w, the processing
is allowed to make arbitrary use of the CPU (see Section 3.7).

Non-blocking communication offers the possibility of olgaping computa-
tion and communication. Therefore, non-blocking commatian is not as time-
critical as blocking communication if two prerequisite® dulfilled: first, the
computation requires more time than the communicatioss (& non-trivial de-
cision!). Second, the communication partners are not mgior the data. This is
also known as th&ate sender probledil08] and can become a serious issue of
performance and scalability.

If the application calls a blocking synchronisation fupctito wait for the
completion of non-blocking transmissions, the commuincedperation becomes
blocking. The application is blocked until the communioatcompletes.

In many APIs, the semantics of blocking and non-blocking eamication
prevent the application from accessing the buffer untildperation is completed.
Thus, for both kinds of transmission, the communicatiortesyshas access to
the involved application buffer. In case of non-blockingroaunication, special
care has to be taken on the availability of the buffer. Theraijp®y system can
schedule other tasks and page out parts of the buffer (seeoldrRegistration in
Section 3.7.1.2 on Page 54). This can prevent parts of thencomcation system
from accessing the buffer (e. g. if the network hardwareatliygransmits the data
from the application’s buffer).

4.3.3 Receiving

The process of receiving data is different in one-sided amdgided communica-
tion. Therefore, a distinction is made in this section.

lassuming that only one process or thread is running on aes@gU

82

CHAPTER 4. A MODEL FOR COMMUNICATION

Both types of communication have the common goal to effityeseliver in-
coming data to the buffer of the application.

4.3.3.1 Two-Sided Communication

If the application calls a blocking or non-blockimgcei ve routine, the com-
munication system can start to deliver incoming data to tegidation buffer.

Blockingr ecei ve calls are time-critical because the application cannot pro
ceed. Therefore, the fastest mechanism should be applosliter the data. The
same considerations apply as for blockimgnd andwr i t e operations. The
CPU is available to process the data, but the memory usagpaedtial cache
pollution have an impact on the application performance.

4.3.3.2 One-Sided Communication

The communication system of the destination process ofsaied communica-
tion is also considered as a receiving communication systdawever, the ap-
plication is not actively involved in receiving data — thenamunication system is
involved.

First, the termreceivehas to be explained for a destination process of one-
sided communication. Thieuffer announcemermtetermines the the earliest time
that the communication system can start delivering the ttathe destination
buffer. The buffer announcement is comparable to the tiotieof a non-blocking
recei ve. However, the one-sided buffer announcement is not réstrito a
single remote operation.

Similar to a non-blocking ecei ve, the communication becomes blocking if
the application starts waiting forotificationto complete the one-sided communi-
cation operations on the announced buffer.

4.3.3.3 Two-Sided and One-Sided Communication

In general, there are three possible cases whehufier announcemen issued
by the application: all data is locally available, some datavailable, or no data
is available.

1. All data is available: Data is completely received to a local buffer of the
communication system. This requires buffering inside thi@munication
system and a sufficient amount of internal buffers to rectfiedransmitted
data.

Often, this local copy at the receiver is avoided for perfance reasons
(see Section 3.7.1). However, the pure speed of local capiesry high

83

4.3. ASPECTS OF EFFICIENT COMMUNICATION

compared to network transmission. If the application bez®meady to
receive the incoming data, only a fast and local copy is reguinstead
of a much slower transmission over the network. If it is akalby the
application semantics, the sending or writing process camptete before
the receiver called ecei ve in this case. This reduces the impact of the
early sender problem

Receiver side buffering is not possible if RDMA is used to lempent (one-
sided or two-sided) communication because of the physiealpmmg of the
memory to the communication system (see Section 4.2.2t@)efore, this
case is not possible with RDMA as a transport.

2. Some data is available If some of the data is received to an intermedi-
ate buffer, the communication system can continue to reada into this
buffer and make a copy afterwards. However, this is not effici After
the communication system knows the address of the appiichtiffer, fu-
ture incoming data should be received directly. This redulbe number of
bytes to copy. The data in intermediate buffers can be cogiiedwards.
This kind ofhybrid receiving is implemented in GAMMASsockets [SSP03]
and NEON (see Chapter 5).

According to the explanation of the first case, this is nosgus if RDMA
is used to transfer data.

3. No data is available In this case, the communication system should di-
rectly use the application buffer to receive the data. Tl to avoid
additional copies. This is the only possible case for RDVesdd trans-
ports (see above) or if the communication system does netgaanternal
buffers.

4.3.4 Reading Data

A one-sidedyet orr ead has to send a request for data. Therefore, it will suffer
from theearly sender problent the remote buffer is not announced. The request
for data has the same requirements as a non-blod@myl. The reply has the
requirements of a non-blockingecei ve.

The combination of request and reply results in an extendgelipe: three
steps for the request and three steps for the reply. Theehettk step of this
pipeline is the second step of both request and reply. Toexethe request for
data should be send as early as possible, to allow the re@tatbas early as
possible.

84

CHAPTER 4. A MODEL FOR COMMUNICATION

If the get is initiated, no data will be available at the communicasgstem
of the initiating process. Thugiet operations will always find the last case of
the above (see Section4.3.3.3).

If the completion of get is requested, the operation becomes a sequence of
a blockingsend and a blocking ecei ve. If the request is already sent, then
just a blocking ecei ve will have to be completed.

4.3.5 Synchronisation

There is not much an API can do to improve the synchronisatioblocking
communication since communication and synchronisatiertraggered by a sin-
gle API-call. With non-blocking communication, the synchisation becomes
more variable. An API can include some of the synchronisasieps into com-
munication calls or provide explicit calls. At least compe must be a separate
call. Otherwise, the communication is blocking.

Two-sided non-blocking communication includes thebuffer announcement
and thenotificationinto the communication calls. Theompletionis done via
explicit routines. This allows an application to announcbudfer as early as
possible and to defer the completion to the latest time. Atrdteiver side the
application can make use of communication and computatreriap. This helps
to hide communication time behind computation and imprdtesperformance
of applications.

At the sending process, the notification is included in thmmmnication and
the completion is done by a separate call. This allows thdeseto initiate the
communication as early as possible and defers the compléati@ later time.
This also allows overlapping communication and computatfeurthermore, the
early notification also allows the receiver to completeiearl

One-sided communication interfaces require the same receiver-side synchro-
nisation as for two-sided non-blocking communication. $kader is allowed to
perform multiple communications to match a singléfer announcementhere-
fore, thenotificationcannot be implicitly performed with a message by default.
The one-sided communication interface of MPI-2 and all o&fels presented
in Chapter 3 prevent the sender-side (in case ptia operation) from an early
notification because theotificationis included in thecompletioncall. Thus, an
early notification and a late completion is impossible. Isecaf MPI-2, this is true
with thepost - st art - conpl et e- wai t and thef ence synchronisations.

85

4.3. ASPECTS OF EFFICIENT COMMUNICATION

4.3.6 Bi-directional Synchronisation

The combination of notification and completion introducastaer critical issue
discovered in MPI-2 if two processes bi-directionally coomicate like the Cel-
lular Automaton described in Section 5.1 of the next chapter

P S

o)

proc A network proc B
MPI_Win_post 1 - 1 MPI_Win_post
MPI_Win_start ‘ @ 77777 - - 7 ‘ MPI_Win_start
MPI_Put[| 2 2 [|mpi_Put
: ner no er :
— I == ? :
= < buffer announcement
3 put g 3 o™ u
””” = 2 D 1 / data transfer

ynchronisation message

transport direction

= arrival (zero time step)

overlappable
calculations

--- msg.A—>B
- msg.B—>A

—< .- S === »—

MPI_Win_complete u 4 4 u MPI_Win_complete

implicit
barrier

MPI_Win_wait| | 5

5 MPI_Win_wait
v v

Figure 4.7: Implicit barrier with bi-directional synchrisation.

The problem of the MPI-2 interface is depicted in Figure 4lZshows the
bi-directional interaction of two processes based on atedscommunication on
top of RDMA. This means a direct data placement through aipaysapping of
each of the remote processes. Any access to the communisgiitem is indirect
(API calls). Therefore, the processes A and B still accessittual representation
of each other.

The figure shows one iteration oflalk-synchronouspplication using the
MPI-2 post-start-complete-wagynchronisation (since the start is often imple-

86

CHAPTER 4. A MODEL FOR COMMUNICATION

mented to do nothing [GTO5], it is omitted here). The daslmesishow the data
flow from A to B. The dotted lines represent the flow from pracBgo A. First,

a buffer is announced (post) and a non-blockivig t e operation to the remote
process is initiatedput). Then some calculation is done. Synchronisation and
completion are performed at the end. The synchronisatimmtete) is a combi-
nation of notifying the remote process and completiopwt . This is the critical
issue. Finally, both processes wait for completion of threate access (comple-
tion of MPI _W n_post).

If both processes use explicit notification together witk ttorresponding
completion, anmplicit barrier is created. This barrier can introduce several ma-
jor performance penalties. The barrier is implicit becaiise the result of a
notification and a completion. On their own, both operatidosot indicate any
barrier-like behaviour. If ever, only experienced prognaens will be aware of it.

The performance penalties are:

e Increased synchronisation time is the result of two praees&iting for a
signal from each other. If the synchronisation and compteis the last
step of an iteration, the completion has to wait for a fulvénasal of the
communication pipeline (sync time).

e If the beginning of an iteration is the announcement of thigelosi (post)
and the initiation of a data transfey|(t), more early sender problems will
occur. As we know from Section 4.2.2.2, the announcementdiiaverse
the network. If the traversal takes more time than any catmn between
the post and theut , the data transfer has to be deferred. The result is an
inefficient usage of the communication pipeline.

¢ A deferred data transfer reduces the potential to overlap@enication and
computation. The non-blocking behaviourmit is counteracted.

e If the notification and completion gfut is moved to and earlier time in-
side the iteration, the synchronisation can overlap theptdation. The
potential to overlap the data transfer itself is reduceds €bunteracts the
non-blocking behaviour ghut .

e The barrier itself reduces the overall process skew toterafhnon-blocking
one-sided communication. Any delay in a process resultdielayed syn-

chronisation message and in increased iteration time &f poicesses.
A process skew would allow the leading process to annourghtifier and

avoid an early sender problem at the slower process. Thers|awer pro-
cess can make full use of communication overlap to potéytatch up the
other process. A process delay at the leading process doeglnence the
overall runtime. A detailed analysis of this effect is presel in Section 5.1.

Two solutions are possible for a programmer to reduce thativegmpact of the
barrier. First, deferring theut operation to avoid early sender problems. Second,

87

4.4. DESIGN CRITERIA FOR AN EFFICIENT ONE-SIDED INTERFACE

synchronise th@ut operation earlier, to allow the barrier to be overlappedwit
computation. Both effects are measured in the context of NECthe diploma
thesis of David Bohme [Dav08]. Both solutions provide onéiftof the possible
time to overlap. Additionally, the programmer needs to krtbw half of the
iteration.

4.3.7 Summary

The recommendations from the application’s point of vieer ar
1. Use the fastest mechanism to transport data if timezatitommunication
is pending!
2. Communication becomes time-critical if any process igimgfor the com-
munication to complete!
3. Do not make use of the CPU if no time-critical operatioresiaitiated.

Be careful when considering the memory as available todh@nunication
system!

Make as much use as possible of the applications buffers!
Respect the characteristics of the pipeline!
Send data as early as possible!

If data has to be buffered, store the data as close as fw&siihe destina-
tion!

B

© N O

The serious impact on bi-directional interaction of preessshows the issues
of combinedcompletionand notificationin MPI-2. To solve this problem, the
completion ofput and the notification have to be separated. Synchronisaéisn h
to happen as early as possible to enable overlap of the symshtion message.
Completion has to happen as late as possible to increasegsrekew tolerance
and the potential to overlap communication and computation

The most important recommendation is to not force the implaation of the
recommendations. Several recommendations have orthbgoala. For instance
sending data as early as possible will collide with the rev@mdation to never
consider the memory as available, because early sendingesdpuffering if the
receiver is not ready.

4.4 Design Criteria for an Efficient One-Sided In-
terface

This section proposes the basic concepts for the design effiaient one-sided
communication interface. The principles of the commumacamodel (see Sec-

88

CHAPTER 4. A MODEL FOR COMMUNICATION

tion 4.2) are applied to the API.

An API is considered to be efficient if both the programmer easily use it
and the API is efficiently implementable on top of differerartsports (hardware
and software) with different capabilities.

The basic functionality consists of a communication fumetto write data
to remote processes and synchronisation operations féerbanouncements,
completion, and notification.

4.4.1 Communication

A non-blockingput operation is sufficient for a basic API. put call requires
the source buffer, the number of bytes to transmit, the nahtbeodestination
process, the address in the destination buffer, and thehsymisation flag for
implicit synchronisation.

Because the (passive) destination process just annoumessarting address
of the buffer, the active process has two ways to specify artrary memory
address in the destination buffer:

e provide the exact address or

e split the exact address into the start address of the remdterkand an
offset.

Since the second mechanism is common practise in currerst &Rl there’s no
difference in the amount of translation operations, th@sdaenethod is used for
the one-sided communication API presented below.

If abstract names are used to address remote buffers, theaMRepresen-
tation Model helps to determine the virtual representati@t has to know the
destination address. At least the step that directly aesab® destination buffer
(if any) has to know this address. This is also the locatioenhuffer announce-
mens have to be delivered at least (see above). For example if RDapable
hardware can directly access the remote destination buffercommunication
system at the active communication partner has to know tegndion address.
This means that buffer announcements have to traverse tienke if RDMA is
used.

4.4.2 Synchronisation

Focusing on non-blocking communication operations, theckgonisation is an
important aspect of the API. Synchronisation can be imp{mnbedded in the
communication call) or explicit (a separate API call). Thental question is:
which synchronisation steps can be implicit and which caaxpicit?

89

4.4. DESIGN CRITERIA FOR AN EFFICIENT ONE-SIDED INTERFACE

The completion of non-blocking communication has to beiekpOtherwise,
the operation will become blocking.

The buffer announcement of one-sided communication isyesvea explicit
call, since the destination process does not initiate amneonication.

The only decision that remains is whether to use implicitxplieit notifica-
tion.

4.4.2.1 Implicit or Explicit Notification

A portable API has to usenplicit notification An explicit notificationcannot be
efficiently implemented if the communication system’s perfance is improved
by including the synchronisation into data messages. Famele an implemen-
tation ofexplicit notificationon top of Ethernet either will have to send an explicit
synchronisation message or to defer the transfer of dataetsyinchronisation
point. The deferral is inefficient in terms of the pipeline modeln Additional
message is inefficient in terms of the communication ovethea

While explicit notification cannot be mapped efficiently betsynchronisation
message embedded into the data message, implicit notficedin be mapped to
both embedded and explicit synchronisation messages.

Therefore, implicit notification is preferred in the desighthis API, even
if the underlying network or protocol is more efficient witkpdicit notification.
For example InfiniBand RDMA transfers are much faster thanather available
mechanisms of the current InfiniBand OFED-Stack [Ope]. Is gase, implicit
notification can be efficiently implemented by sending dai rmotification mes-
sages separately.

Synchronisation of multiple operations with a single sywocisation can be a
challange if message ordering is not guaranteed by the iynmagprotocol. For
example, Open MPI is able to communicate over multiple compation paths.
In this case, all synchronisation has to be done carefullgesihe synchronisation
message can arrive before one of the previous unsynchcomessages [BSLO7].
This will have a bad impact on the application.

If the focus is on the learning efforts of users:difect accesss available,
implicit notification will force the application to accesatd via an API call in-
stead of just directly accessing the data. Thus, if the gotd design an API to
encourage users dlirect accesAPIs to use APIs withindirect accessexplicit
notification can reduce the efforts to port applicationsisThay be a benefit to
users and usability but not to performance.

90

CHAPTER 4. A MODEL FOR COMMUNICATION

4.4.2.2 Synchronisation Functions

The API has to offer a way to implemenpaoducer/consumebased interaction
between processes. This requires 5 synchronisation apesaDepending on the
API, a maximum of four of these operations have to be expasédet program-
mer. Mutual exclusion can be handled inside the commuiicagystem since
each interaction is triggered by calling the API. The regdisteps were already
analysed in Section4.1 and 4.2.1.

Wait for Buffer Availability: An API should not expose this to the user. If the
communication system is able to queue and defer commuaircegguests
or is able to buffer messages, this synchronisation can héléa transpar-
ently. Omitting this function is different from MPI-2 wheoperations like
MPI _Wn_fence or MPl _W n_start expose this functionality to the
user. Some implementations implement M& W n_st art routine to
do nothing [GTO5].

A put can be deferred internally. A deferral is not new. The MPlghs
dard allows a deferral of synchronisation and communiocatiessages.
This deferral is not preferred. But since the remote bufenaot known,
it may become necessary (e. g. InfiniBand RDMA can not progéttut
the remote address and key).

Buffer Announcement: Only the application itself knows about buffer availabil-
ity. Therefore, an API has to provide a special call to anmweua buffer
(buffer announcementAdditionally, since the destination process does not
initiate communication, this call cannot be embedded iost@munication.

A typical method in parallel applications is to reuse budfes. g. an update
in each iteration. If the APl should match this pattern, ib@ld provide
two kinds of announcement functions. A complete announoémeluding
address and size of the buffer. A light-weighted versiobtusignal thee-
availability of the buffer. Whether the underlying communication system
makes a difference or not, is unimportant. However, it sifigsl the usage

if buffers are reused frequently.

Wait for Notification: This is thecompletionof an announcement. For conve-
nience there should be a blocking and a non-blocking versidhis func-
tion, because probing for a status is a common requiremdmns. i3 a very
common APl call /Pl _Wait,MPI _W n_wai t).

Notification: As seen in Section4.3.5, this signal must be separated fnem t
completion of communication operations. According to thewe analysis,
an implicit signalling is proposed since the API should noti@pate the

91

4.4. DESIGN CRITERIA FOR AN EFFICIENT ONE-SIDED INTERFACE

best synchronisation method of the communication systesrimplement
implicit notification, an API has to expose a flag to the progmzer in order
to inform the communication system to notify or not. Thu$caimmuni-
cation calls have to include a synchronisation parameter.

4.4.3 Completion

One additional operation is required to wait for tb@mpletionof communica-
tion operations. The completion of the buffer announcenmast already been
explained since it is a required step of th@ducer/consumesynchronisation.
The completion of the communication operations has to bédadbla too. It is
proposed to use the same API call as for the completion oébafinouncements.

For a basic API, the completion based on local events is giifidf the com-
munication system provides reliable transmission of ngessa

proc A network proc B
g post B D post
o i I
g g ; § 7777777 ;
S pug+notify D o D put+notify
no m er
put
,,,,,,, — -
) buffer announcement
3 2 ' data transfer
T 5 \]
Q.= -
g ynchronisation message
= 3
[}
%§ | —= transport direction
\ — RDMA arrival
k --- msgA->B
777777 R msg B —> A
post :omplete_m'rsréiblé' i 7pic;sitico—mplete possible
Q
£
o put complete put complete
c
2 post complete post complete

v v

Figure 4.8: Bi-directional synchronisation in the propbsd°|.

92

CHAPTER 4. A MODEL FOR COMMUNICATION

4.4.4 Bi-directional Synchronisation

Figure 4.8 shows the bi-directional interaction between pnocesses that use the
proposed API with separated notification and completiore fatification is in-
cluded in the communication calp@t +notify). The main difference between
this Figure and Figure 4.7 is that the buffer announcenyagm${) can complete
earlier (post complete possible).

The time between the possible completiorpofst and the call to complete
thepost is the maximum of a process skew in process A without delagnog
cess B. This time is significantly increased compared toreigu .

Compared to Figure 4.7, the time for synchronisation at titeod the iteration
is reduced to local completion (the completion of thg operation is considered
to be local in both figures).

4.5 Conclusion

The presented/irtual Representation Modet based on an abstraction of the
ISO/OSI reference model and theducer/consumesynchronisation. The model
allows the comprehension of the required steps of commtiarcand synchroni-
sation of one-sided and two-sided communication.

By mapping the model to a certain transport protocol or haréwit can give
hints to an efficient design and implementation of the comioation system. For
example mapping the model to networks with RDMA (like Infiaiil) tells the
implementer that buffer announcement messages have &rdeathe network.
This is not required for networks without RDMA (like Gigaliithernet).

A drawback of the model is that it can only represent the viéwre of the
processes at a time if physical representations are applied

The differences between one-sided and two-sided commiioncae only re-
lated to the transfer of data. Theoducer/consumesynchronisation indicates that
applications will not benefit from one-sided communicatibtiney requirepro-
ducer/consumebased synchronisation of single communication operatiBoth
two-sided and one-sided communication have to perform¥eesfinchronisation
steps either by the application or by the communicationesgstOne-sided com-
munication can reduce the number of overall synchronisatibthe application
can make use of multiple communication operations withimgls synchronisa-
tion. There are some examples for non-contigous data [M808]the NAS FT
benchmark [BBNYO06] that could benefit from one-sided comitaition.

The synchronisation in two-sided and one-sided communité compared.
The most important difference between one-sided and tadstommunication
in the MPI-2 interface is thatotificationandcompletionis combined into a sin-

93

4.5. CONCLUSION

gle API-call in case of active target synchronisation of-siteed communication.
This is also true for all analysed APIs presented in Chaptét@vever, the ap-
plication’s view on non-blocking communication requiréstt notification and
completion have to be separated to achieve the performdmmneblocking two-
sided communication. This also applies if multiple openasi are synchronised
by a single notification and completion.

The basic design criteria for efficient one-sided commurocawas derived
from the presented model. Implicit notification is more pbte to the capabilities
of underlying networks. On the basis of the proposed funetity, a one-sided
communication interface will be designed and implementeitié next chapter.

94

Chapter 5

One-Sided Communication for
Parallel Applications

95

5.1. APPLICATION ANALYSIS: CELLULAR AUTOMATON

In this chapter, the benefits of one-sided communicatiorpéoallel appli-
cations are exploited based on Chapter4. This API is exgdotée efficiently
portable to different transport protocols with differempabilities. The API is
calledNew Efficient One-sided communication interfacEON). NEON is im-
plemented and evaluated on top of the Socket interface averet (see Sec-
tion 5.3) and the Verbs API over InfiniBand (see Section5.4).

Before NEON is presented, the behaviour dfudk-synchronouparallel ap-
plication is analysed in Section 5.1. This application isedl@ar Automaton.

5.1 Application Analysis: Cellular Automaton

The Cellular Automaton is an example for the large clasbuk-synchronous
parallel applications. It iteratively calculates a sol@abtencil This is similar to
the well known game of life by John Horton Conway.

Since the original version is based on MPI with two-sided gcamication,
this section analyses the two-sided versions with blockimdjnon-blocking com-
munication first. This analysis is required to better eviithe reasons of the
reduced performance of the version with MPI-2 one-sidedramication.

Figure 5.1 shows the one-dimensional domain decompositidne to the
neighbourhood dependency of the (9-point-)stencil catouhs, the cells at the
topmost and undermost borders have to be exchanged betweeerimbers of the
process group. Using a one-dimensional decompositionlgiesthe communi-

process 1

|

process 2

process 3

Figure 5.1: One-dimensional domain decomposition of théu@e Automaton.

96

CHAPTER 5. ONE-SIDED COMMUNICATION FOR PARALLEL
APPLICATIONS

20 lines 1024 lines
Implementation time[s] comm.time (%) time[s] comm. time (%)
Sendrecv 29.97 83 %| 379.72 9 %
ISend/Irecv 15.22 67 %| 356.74 18 %
OSC pscw 29.82 83 %)| 371.56 65 %

Table 5.1: Runtime and of communication time of the Celldlatomaton.

cation pattern by reducing the number of messages to seffidither increases
the efficiency to exchange the cells at the border, since @améydimension of an
array can be contiguously represented in today’s memorys,Tihe topmost and
undermost line can be transferred as a contiguous blocktaf da

5.1.1 Measurements

Three implementations of the Cellular Automaton are messuiThe blocking
variant makes use of the point-to-point primitiv®l _Sendr ecv to exchange
cells. The non-blocking Cellular Automaton with two-sidemmmunication ini-
tiates communication witMPl _I send andVPI _I r ecv. The synchronisation

is done viavPl _\Wai t . The implementation with one-sided communication uses
thepost - st art - conpl et e- wai t active target synchronisatioof MPI-2.

To evaluate different ratios of communication and compaortatwo different
sized Cellular Automata are measured. First, a CellulaoAiton is run with
10 % of the cells communicated (20 lines per process). Thenskexperiment
uses a Cellular Automaton withIB5 % of the cells to communicate (1024 lines
per process).

Each measurement retrieves the overall runtime of the @elAutomaton.
Table 5.1 shows the average of 3 runs with 30000 iteratior&rardes of the Ein-
stein cluster (see Appendix A.2). The size of the transfemessages is constant
(4104 Bytes).

The results are the basis of the discussion in the followaagigns.

5.1.2 Point-to-Point

The blocking version of the Cellular Automaton usddl _Sendr ecv. Inter-
nally, this is a sequence &1 _Irecv - MPI _Send - MPI _Wit incase
of the used MPICH2 version. This means that it uses non-blgokommunica-
tion. However, this is just to avoid a deadlock when all peses call the same
sequence afecei ve andsend.

Using a non-blocking receive has a further advantage. Eaeps signals the
available buffer and starts sending data. This allows tlmenconication system

97

5.1. APPLICATION ANALYSIS: CELLULAR AUTOMATON

[alvi/e] n)e] IQH»\@IQ\@H@IB j@r\loeu@\ 2|b@

Lowest / Max Depth {[Zoom Level ~Glabal bin Time ~View Init Time Zoom Focus Time Wiew Firal Time Glabal M Time P
01 4l 4 2501019 | Lo.5657536875 110051403116 11.086735 (11036736 0.0004357516

CumulativeEx.., ¥

15.0G-2

| | | | I | | | | | | Pl
| | 10.60 10.65 10.70 10.75 10.60 10,65 10.90 1095 11.00 1105 ‘ I

Figure 5.2: Jumpshot visualisation of the CA with MPI_Sedr

to optimise communication. Since it is not known which psxes aheal this
scheme is more efficient than a fixed send/receive pattern.

In general, this sequence of primitives introduces a pdirstyachronisation
or a barrier between neighbouring processes. Since alepses build a logical
ring, afront of synchronisatioms created. This front is visualised by a jumpshot
picture in Figure 5.2.

If the non-blocking Cellular Automaton is used (see Listing), all calcula-
tions can run in parallel to the communication, except foo times. The first
action is to announce an available buffer by callv@ | recv. The first and
the last line of each process’ domain is calculated. ThMg, | send is called
to submit the topmost and the undermost line. This impjigitbtifies the com-
munication system (and finally the receiver) that this isl#® (virtual) indirect
access to the remote buffer. After the calculation is dolme,completion of all
non-blocking operations is forced by calliMpl Wi t .

for (all iterations) {
MPI _Irecv(firstrow , previousPE);
MPI1_Irecv(lastrow , nextPE);

/I« calculate first and last row x/
simulate ();

1The runtime of an iteration can vary due to interference efdperating system or load im-
balances of the calculations.

98

10

11

12

13

14

15

16

CHAPTER 5. ONE-SIDED COMMUNICATION FOR PARALLEL
APPLICATIONS

MPI1 _Isend(firstrow , previousPE);
MPI1 _Isend(lastrow , nextPE);

/I« calculate remaining cells %/
simulate ();

/'« synchronise =x/

MPI_Wait (...);

Listing 5.1: Non-Blocking Cellular Automaton

Measuring the Cellular Automaton with 20 lines per procdssas a 16 %
higher amount of communication timeNPl _Sendr ecv is used instead of non-
blocking communication. The blocking Cellular Automatams 1969 times
(96.9 %) slower than the non-blocking version. This effect dp=os if the
amount of communication is low (see right column in Tablg.5.The impact
of the communication disapears.

The runtime of a sequential versitgaqis calculated as the sum of the tirpe
for each iteration out of n:]

tseq: thi
i=

If m processes work in parallel and exchange the required detlseaend
of each iteration, the overall runtime of the blocking CkdtuAutomatontsync
is the sum of all of the longest iteration times (see Equdiaéh Due to non-
deterministic delays, the slowest process differs fromatten to iteration. At
the call toMPI _Sendr ecv, faster processes have to wait for completion of the
bidirectional blocking communication. Figure 5.2 shows tipical flow chart
created with jumpshot when usiidPl _Sendr ecv. n represents the number of
iterations.

n
tsync = ZmaX{tu,hz,,hm} (51)
i=

Using non-blocking communication, the time to wait is tretmally shortened
or even nullified. Analysed traces of the Cellular Automasbiow that process
skew also leads to wait times. A call M°1 _\Wai t will take more time if one of
the communication partners is not able to transmit the reduwdata in time. Thus,
the non-blocking version also becomes (partially) synesbus. In the following,
a non-blocking Cellular Automaton will be called to bepartially synchronous
state if awai t call cannot return immediately due to missing remote data.

99

5.1. APPLICATION ANALYSIS: CELLULAR AUTOMATON

[alv/ala[es <[?]aals]a]a (@ 2 a6

Zaom Level Global Min Time. “View Init Time Zoom Focus Time iew Fina Time Global Mas: Time. Time Per Fixel
I £ [0.35087% 2.8352076713 03906472124 9.985751 [s.935781 |0.0001405633

Lowest / Max. Depth ¢
0/E

CumulativeEx., ¥

™5.0G-2

98375 9.85 9.8625 9.875 9.8875 9.90 93125 9.925 9.9375 9.95 9.9625 9975
Time tseconds)

Figure 5.3: Time spent in the barrier at the end.

Even though the partially synchronous behaviour in the engp, the overall
runtime is better than the runtime of the blocking versiorhy® First, the possi-
bility to overlap computation and communication can redin@communication
time. Second, overall runtimgsyncis no longer the sum of all slowest iterations,
but (mostly) equals the overall runtime of the overall sletygrocess$ (see Equa-
tion5.2). All other processes have to wait at the end of theutations (see barrier
wait times in Figure 5.3).

n
tasync: t (5-2)
N

Process skew is possible due to impacts of hardfyaeheduling, interrupts,
or background processes. Thus, each iteration will patythave a different
slowest process. A study of the impact of system noise orlpbapplications in
large scale is presented in [PKPO3].

Using non-blocking communication these differences irtimma can be (par-
tially) buffered. The time buffer is as large as the time keswinitiation of non-
blocking communication and the corresponding enforcedptetion (approxi-
mately one iteration in case of the Cellular Automaton).eAthis buffer is con-
sumed, the Cellular Automaton enters a partially synchusrsbate and the overall
runtime will be prolonged. The wait times can were detectedsualised traces.
They also have been measured by counkiRy) Test loops that were used in-
stead ofVPI _Wai t . If any of the waiting processes is slowed down, the partial

2Even identical CPUs may have slightly different timings.

100

CHAPTER 5. ONE-SIDED COMMUNICATION FOR PARALLEL
APPLICATIONS

synchronous state can end.

5.1.2.1 Shift of the Slowest Process

Equation 5.2 assumes that the slowest process never ha# toecause all other
processes run ahead. This assumption is not generally valid
For example:

1. Starting from a non-blocking Cellular Automaton in a pErsynchronous
state due to process

2. This may result in wait times at its neighboyrs k+ 1.

3. Due to system noise in procegyg is no longer ahead d¢fand becomes the
slowest proceskat the end of the calculations.

4. The overall runtime is the runtime bfand it contains wait times from a
previous partial synchronous state caused.by

After this example, Equation 5.2 can only be used as a lowendhary to the
runtime of a non-blocking Cellular Automaton.

5.1.2.2 Runtime Difference Between Blocking and Non-Blodhkg:

Summarising the above explanations, the runtime diffexresthe result of 3 ef-
fects:

1. Most obviously, the communication time of the non-blockCellular Au-
tomaton is reduced due to the possibility to overlap contmrand com-
munication. The measured communication time is reducedd®p tom-
pared to the blocking variant.

2. The blocking Cellular Automaton suffers directly fromailes in one of the
processes, caused by the synchronisation at the end ofteaation. The
non-blocking implementation tolerates process skew upcertin amount
of time without introducing any wait time.

3. Because of the synchronised processing, all parts ofltdukihg applica-
tion initiate the communication at about the same time. Théy lead to
traffic bursts in the network infrastructure. If the nondkong processes are
skewed, their communication can occur more scattered oweinne. This
effect can hardly be quantified and will not be quantified hiris expected
to have a minor contribution to the overall runtime (espliciaith the low
number of used processes). Some approaches to respecsttitaition of
network traffic can be found in [HCO7].

101

© o) ~ o (4] EN w N -

e~ ~ S
a » W N P O

-
(=2}

5.1. APPLICATION ANALYSIS: CELLULAR AUTOMATON

5.1.2.3 Summary

Process skew has an impact on the performance of parallktatpgns (the Cel-
lular Automaton in this case). Using computation and comication overlap
compensates short delays. The overall impact is hard tagbradd cannot be
directly influenced by the programmer. An application deper can only try to
extend time to overlap and thus increase the ability to cors@ie process skew.
However, this depends on the algorithm.

5.1.3 One-Sided Communication

The behaviour of the MPI-2 one-sided communication is sttty using theut
primitive together with the post-start-complete-wait slgronisation (see pseudo-
code in Listing 5.2).

MPI_Win_Create(upper, lower);

/I« iteration start x/
MPI_Post(upper, lower);
MPI1_Start(upper, lower);

/I« calculate boundary cells x/

MPI_Put(upper, to_upper);
MPI_Put(lower, to_lower);

/I« calculate remaining <cells %/
MPI_Complete (upper, lower);
MPI_Wait(upper ,lower);

/| iteration end x/

Listing 5.2: Outline of Cellular Automaton with MPI-2 RMA pnitives.

The used implementation of the Cellular Automaton uses fanigoe called
double buffering During an iteration, one buffer contains the input data.e Th
output is stored in the second buffer. The buffers are swddt the end of each
iteration. This technique has an influence on the usage ofm®el communi-
cation within the Cellular Automaton. The origin process ba determine the
correct buffer for the next action.

One-sided communication in MPI-2 is non-blocking by intent The syn-
chronisation is performed by explicit API calls. The CedlulAutomaton uses

102

CHAPTER 5. ONE-SIDED COMMUNICATION FOR PARALLEL
APPLICATIONS

bidirectional communication and therefore bidirectiosghchronisation is re-
quired. Explicit bidirectional synchronisation resulisa kind of barrier when
closing the access epoch (see Section 4.3.6). The runtintteed®SC Cellular
Automaton is the result of a non-blocking Cellular Autonmatwath a partial bar-
rier® at the end of each iteration. Because of this barrier, theativeintime will
be extended by (nearly) any process skew that occurs.

If the runtime of one procedss extended due to system noise, the neighbours
] = k=1 of procesk will be delayed at theynchronisation pointNow procesg
and j are behind the other processes and their neighbours wil ttawait. This
will continue until all processes have suffered from theagladf proces.

The overall runtime can be approximated by the same calonkaas for the
blocking Cellular Automaton (see Equation5.1). The rumettga; of n iterations
is the sum of the longest iteration times amongrafirocesses (see Equation5.3).

n
tosc = ZmaX{tu,tu,,hm} (53)
i=

The overall runtimes of the blocking Cellular Automaton ahd one-sided
communication variant differ only by the communication&nThis can be seen
in the measurements of the Cellular Automaton in Table 5.1

e There’s no difference in the runtime between the Cellulatofaton with
blocking two-sided and non-blocking one-sided commuinceih case of
20 lines. The communication cannot be overlapped becautigeaghort
calculation.

e If 1024 lines are used, the communication time of the oneesi@ellular
Automaton is reduced by about 10 s§26) compared to the blocking two-
sided Cellular Automaton. The overall runtime is reducedabyput 8 s
(2.1%). This indicates that the reductionn in runtime is onlg tlesult
of the reduced communication time.

5.1.4 Summary

Non-blocking communication helps to improve the perforoeaf parallel appli-
cations like the Cellular Automaton. This application wasalgised in detail. The
reduction of communication time is caused by allowing cotapan and commu-
nication overlap. Furthermore, non-blocking communmatenables a (partial)
compensation of process skew.

The measurements show that MPI-2 one-sided communicatgromly help
to reduce the communication time. Non-blocking two-sidechmunication of

3synchronising each process with its neighbours

103

5.2. THE NEON API

CSs

k;,\;\ /Lf}’

virtual representations ——» internal

—» external

Figure 5.4: Communication between two processes.

MPI also tolerates process skew. This significantly impsavee runtime of the
Cellular Automaton. The NEON API will be able to exploit theopess skew
tolerance.

5.2 The NEON API

The main lesson learnt from the analyses of the Cellular waton is that us-
ing one-sided communication is not the main reason for iofgrerformance of
non-blocking communication in parallel applications. Tehplicit synchronisa-
tion and the combination of notification and completion iatsingle API call

impose a significant reduction of performance. In this secta new one-sided
communication APl (NEON) is proposed.

5.2.1 Introduction

The design of the APl is based on the API requirements predentSection 4.4.
Figure 5.4 shows the interaction scheme between procesd B again. The fol-
lowing definitions will have a main influence on the design #dreexplanations:

e Descriptions are based on thet operation. This is due to the fact that a lot
of measurements withet operations show a lower performance due to its
request/reply nature. Furthermoreg@t operation can be added later.

e The communication is based on one-to-one communicatiowdast the
members of a process group of a parallel application.

e The source process of the data is known. There is no comntiomaaith
unknown processes. This is because of the buffer annoumtesguired
for one-sided communication.

e One CPU is assigned to one process — a CPU is not shared.

104

CHAPTER 5. ONE-SIDED COMMUNICATION FOR PARALLEL
APPLICATIONS

The advantage of one-sided communication is that once gtendé&on buffer
is announced, the source can arbitrarily access this agflemg as thproducer/-
consumesemantics are not violated. This means that there has todi#iaation
if the source wants the destination to consume current data.

Since the synchronisation pfit operations has to be implicit but the commu-
nication itself must be processed asynchronously, NEOMsmmanication calls
will be locally tested and completed by using blocking ana-btocking com-
pletion operations. These operations are well known fromslocking point-to-
point communication of MPI. Furthermore, they are indeenaf the context
to simplify the API.

The API is described by explaining buffer announcement aralling, syn-
chronisation, completion, and communication.

5.2.2 Name and Address of Buffers

A buffer is assigned to a process. Therefore, the procestohaes the a part of
an address. In MPI, the members of a process group are i€y their rank,
which is a simple and portable way, and will be adopted to NEON

The virtual address of a buffer is not known before running dpplication.
The programmer cannot work with runtime information. Thars,abstract name
—atag—is chosen to identify a destination buffer. The commumicesystem has
to map abstract names to virtual addresses at runtime. Tiisena portable ap-
proach since not all communication protocols and netwoidraonnects support
remote memory access (RDMA).

Compared to MPI-2, this approach simplifies the API. Thetareaf amem-
ory windowis a collective operation in MPI-2 and returns a handle tontmelow
The handle is another abstract identifier of the buffer, batgrogrammer has to
use an additional API call to get it. Using a tag, the prograncan directly
assign an identifier to a buffer to provide compile-time kiexge to the commu-
nication system.

Similar to MPI, all communication operations have to previie complete
address of the destination buffer. This is the rank and tipétaase of NEON.

Using abstract names to address a remote buffer has a digagedor shared-
memory systems, where the destination address would betlgiawailable. How-
ever, it represents the more portable approach and intesdudy a singular over-
head at the time the buffer is associated with the tag. In esisg@n to MPI-2,
an explicit and collective call liké/Pl _W n_cr eat e is not required. Thus, the
NEON API lacks an explicit routine to create windows.

4in contrast to post-start-complete-wait or fence syncisation

105

5.2. THE NEON API

Some network hardware (e. g. InfiniBand) requires the scamdedestination
buffers to be registered to be accessible taHbst Channel AdaptgiHCA). Usu-
ally, the programmer is not interested in those internatireqnents. The first
version of the NEON API did not contain any memory relatediras. Unfortu-
nately registering memory on demand often implies overhieaidmakes commu-
nication inefficient (see measurements in [Dav08] and setd®e3.7.1.2). Strate-
gies to reduce the overhead of memory registration are piesén [MRB"06].
To allow an efficient implementation on top of InfiniBand, égproutines to reg-
ister and unregister memory areas are introduced in themuversion of NEON.

5.2.2.1 NEON_Register

Syntax

neon_nenhandl e NEON _Regi ster (address,
si ze,
fl ags)

Description:
This routine registersi ze bytes of memory starting fromddr ess.

Return Value:
On success, the call returns a memory handle that is requaingaregister the
region. On error, the error state is returned.

Semantics

The call allows the communication system to prepare thengivemory region
for communication operations. Each registered memory arap be used by
arbitrary buffers. Therefore, the related API calls have parameterbuf f er,
of f set , andnenory

Annotation:

If the underlying hardware or software does not require apgration, the
implementation can use empty routines. Since this is apahprotocol depen-
dent operation, the upper layer of NEON directly invokes phatocol specific
implementation of this routine.

5.2.2.2 NEON_Unregister

Syntax

106

CHAPTER 5. ONE-SIDED COMMUNICATION FOR PARALLEL
APPLICATIONS

neon_nenmhandl e NEON _Unr egi ster (neon_nemhandl e)

Description:
This routine unregisters the memory area specifieddyn_nenhandl e.

Return Value:
On success, the call returns zero. On error, the error stagturned.

Semantics
The call allows the communication system to remove anymatienformation
of the given memory region.

Annotation:

If the underlying hardware or software does not require aeparation, the
implementation can use empty routines. Since this is a pobttependent opera-
tion, the upper layer of NEON directly invokes the protoqadsific implementa-
tion of this routine.

5.2.3 Buffer Announcement

The destination process of one-sided communication hasriouace its buffer
for remote access for two reasons. First, the abstract ssldral size have to be
known by the source. Second, the re-availability of thedyuffiust be announced
if the buffer is reused. It makes sense to have two separdteaB to fulfil these
tasks (NEON_Post, NEON_Repost).

5.2.3.1 NEON_Post

Syntax

neon_handl e NEON Post (address,
Si ze,
num r anks,
l'ist_of ranks,
tag,
menory,
&st at us)

Description:
This routine is required to completely announce the budfidr ess of size

107

5.2. THE NEON API

si ze to num r anks remote hosts ihi st _of _ranks. The tagt ag is as-
signed. The full announced buffer has to be covered by thistezgd memory
regionmenory.

Optional/optimal: Optionally, this call could support immediate completion.
The parametest at us contains a success code then. For renmte opera-
tions, this is possible only if the communication systensuagfering techniques
to allow early transmissions (e.g. socket based implenientaf NEON in Sec-
tion5.3). The data has to be copied and the buffer announdeca@ return in
complete state.

Return Value:

This routine returns a handle to a job that has to be used tkdbecomple-
tion of operations. It returns zero on error. Téeat us parameter contains the
state of completion or error conditions.

Semantics

After calling this function, the local process will know ali@ddress and con-
tact information of the remote processed inst _of _ranks. The content of
the buffer has to be taken as invalid until a synchronisatgarine returns suc-
cessful completion of all remote communication operatitireg correspond to
this announcement.

If there are multiple processes accessing a single buffersystem will not
guarantee a special ordering of memory access from diffei@mrces. The pro-
grammer is forced to synchronise processes manually itioiglés required.

Annotation:

An implementation of arANY_SOURCE wildcard known from MPI is pos-
sible but not intended, since it requires synchronisatidh avery process in the
process group (e. g. communicator in MPI), even if it is nt¢iasted in accessing
the buffer.

5.2.3.2 NEON_Repost

Syntax

i nt NEON Repost (neon_handl e,
&st at us)

Description:
This call is the light-weight version MEON_Post . It takes a previously cre-

108

CHAPTER 5. ONE-SIDED COMMUNICATION FOR PARALLEL
APPLICATIONS

ated jobneon_handl e (using theNEON_Post call) to announce the reavail-
ability of a buffer. The buffer is attached to the job by tNEON Post call.
NEON_Repost will reuse the buffer information except the state.

Return Value:
This routine returns an error code or zero on success.

Semantics

NEON_Repost is a non-blocking call to announce a buffer. It works much
the same way aSEON_Post , except the creation of a new job and association
of tag, address, and job can be omitted.

5.2.3.3 NEON_Unpost
Syntax

i nt NEON _Unpost (neon_handl e)

Description:
This routine removes the association between the tag, tmeanye and the
application buffer created YEON Post .

Return Value:
The return value is zero after successful operation. In ckeeors, the error
code is returned.

Semantics

Any internal structures will be removed. The library canusesthat buffers
are unposted only if pending jobs on this tag are complete. prbgrammer has
to assure that there is no further NEON-based access to aisteaibuffer.

5.2.4 Completion

Operations to check for completion of operations are esddatsynchronise the
communication and the communicating processes. In cas&QNN only two
routines are introduced to complete non-blocking openatie- a blocking and a
non-blocking version of a completion check.

5.2.4.1 NEON_Wait

Syntax

109

5.2. THE NEON API

int NEON Wait (neon_handl e,
fl ags)

Description:
The caller is blocked until the given job€on_handl e) is completed. Itis
comparable to th&Pl _\Wai t call of the MPI standard.

Optional/optimal: Optional flags can be used to specify the type of synchro-
nisation in the future. For exampleSIRONG-flag can force the call to block
until the data is completely delivered to the destinatioffidsuwhile aWEAK-flag
allows to continue after local completion of the communmat

Return Value:
The routine returns zero if the operation was successfoltgpieted. Other-
wise an error code is returned.

Semantics

The local content of buffers is valid after successful refoomneon_\ai t .
All communication partners of tHe st _of _r anks giveninNEON_Post have
to send their notification before this call can return.

5.2.4.2 NEON_Test

Syntax

i nt NEON Test (neon_handl e,
neon_flag_t flags)

Description:
This routine represents the non-blocking versionebn_\Wai t .

Return Value:
See NEON_Wait.

Semantics
If the return value signals completion, the content of nsfis valid.

5.2.5 Communication

The preferred way to exchange data is the& operation. Aget will suffer
from the fact that remote data has to be requested beforecdathe transferred
(request/reply). Therefore, the focus is on pha operation.

110

CHAPTER 5. ONE-SIDED COMMUNICATION FOR PARALLEL
APPLICATIONS

5.2.5.1 NEON_Put

Syntax

neon_handl e NEON_Put (buffer,
si ze,
dest rank,
tag,
of f set,
fl ags,
menory,
&st at us)

Description:

This routine writessi ze bytes starting fronbuf f er to the remote buffer
t ag of procesgdest _r ank. The first byte of the buffer is written to the remote
buffer starting from positiomf f set . After the routine has returnedf at us
contains the current state of the operation.

Thef | ags parameter is used to prevent implicit synchronisation olflags
are given, NEON assumes that this is the final operation erdgstination buffer.
This causes the communication system to signal completitiretremote process.
Setting the flag toNON_FI NAL, this call does not notify the destination process.
A single check for completion via test or wait should be siéfit to check the
final and all initiatedNON_FI NAL put operations.

Return Value:
The caller obtains a job handle to check for completion aideds.

Semantics

This is a non-blocking initiation of communication. The amwmnication is
not forced to start immediately. In case of a non-bufferimgplementation, the
operation has to wait for a matching buffer announcemersd.hiffer announce-
ment is available, data transmission can start at any titee tfeput call. At
the latest, it has to start when the application calls walitis Dperation can start
immediately without waiting for the announcement if the coumication system
has sufficient internal buffers to hold the message.

The local buffer must not be modified until the local commetis signalled
by successful return of SEEON_WAiI t or NEON Test call.

111

5.3. NEON OVER SOCKETS

5.2.5.2 NEON_Get

Syntax

neon_handl e NEON Get (buffer,
si ze,
sour ce_rank,
tag,
of f set,
fl ags,
menory,
&st at us)

Description:

This is the pendant to NEON_Put which is described for cotepkess. How-
ever, it is not implemented. It will reasli ze bytes from the buffet ag at the
sour ce_r ank starting fromof f set . The data is written tduf f er which
has to be inside the registerednory.

Return Value:
The operation return a handle to the job. This can be useddckdior com-
pletion.

Semantics
This is a non-blocking call. The content of local buffer igahd until success-
ful completion.

5.2.6 Summary

The NEON API is intended to show the applicability of the ABtjuirements in
Chapter 4. It is designed to ease the usage of one-sided coicatian inbulk-

synchronougarallel applications with an (extendgapducer/consumesynchro-
nisation.

5.3 NEON over Sockets

This section presents a Linux-based implementation of NE@bp of TCP/IP-
Sockets over Ethernet. First, the general design of the NE@Nementation
is explained. The goals are to provide an efficient commtimicaystem while
keeping in mind to extend the implementation for furthemmk technologies.

112

CHAPTER 5. ONE-SIDED COMMUNICATION FOR PARALLEL
APPLICATIONS

application

NEON
network independent

management

network specific

network

Figure 5.5: Architecture of the NEON implementation (dedvrom [Dav08])

5.3.1 General Design

The implementation of one-sided communication on Ethemeétorks requires
a mapping of memory semantics to send/receive semanticg Ethernet has no
support for RDMA. The architecture of the NEON implemerdatis modular and
exists of 3 layers. Figure 5.5 shows the layers of NEON. Tkeragtion of this
architecture is that the network specific parts (moduleNEBON have to do the
major work. This allows an implementation to make use oftadl features of the
underlying network.

The network independent layer is intended as a thin wrapperdéck parame-
ters and do some general initialisation. After setting wpréquired management
structures (if any), a call to the corresponding networlcgmemodule is done.

Network specific modules are responsible for the mapping®@NEON-API
to the API and capabilities of the network. This is describetbw for TCP/IP-
Sockets over Ethernet.

The management layer is intended to provide data structares! compo-
nents of NEON. A typical procedure will be as follows. Thewetk independent
layer will create a so-callepbb in the management layer for a new operation.
Then, the network module is triggered. The network modut&spup a job from
the management and tries to process it. The state of the jeét igccording to
the progress that could be made. And NEON returns to the metwdependent
layer. Now, the state of the operation can be checked andtiteotis given back
to the application.

113

5.3. NEON OVER SOCKETS

5.3.2 Socket Specific Design

The one-sided communication of NEON has to be mapped to thé/reeeive-
based semantics of the Socket interface. The mapping obliosving operations
and events are explained in more detail: the buffer annonane(NEON_Post),
the data transfelNEON_Put), and the notification.

5.3.2.1 Buffer Announcement

When looking at the communication model in Chapter 4, it loee® clear that the
buffer announcement does not have to traverse the Ethezheork. This is for
two reasons.

e First, Ethernet does not provide RDMA. The destination &uffannot be
physically mapped into the communication system in a wayahews the
remote communication system to write the data. The comnatioit sys-
tem of the destination has to write the data to the destinddidgfer or the
application has to pick it up. In this case, matching the ta@ wirtual
address has to be done by the communication system at theadiest any-
way.

e Second, the overhead of sending small mesSdg&ggh and requires proto-
col processing in the communication system of both prosesSiace there
is generally no separate processor available to procegsdtmcol, the host
CPU is involved and the application is disturbed. Thus, theléementation
of NEON over Ethernet avoids explicit buffer announcemeassages and
does destination-based matching of the tag and the virtigieas of the
announced buffer.

The buffer announcement for the Ethernet implementatiadhesefore a lo-
cal operation. The application lets the local communicatigstem know which
buffer is available. This information is kept by the manageilayer of NEON
to perform a matching operation on incoming data.

5.3.2.2 Data Transfer

Data has to be transferred by using the send and receivetigpsrarovided by
the Socket API. The problem with these routines is their kitog behaviour. Fur-
thermore, the TCP transport layer implements a streamiogpgol. This allows
the source and the destination to send and receive the negssatitrary chunks.

5An announcement will be just a few bytes in size

114

CHAPTER 5. ONE-SIDED COMMUNICATION FOR PARALLEL
APPLICATIONS

The source initiates a remote write operatiohNiEON_put). This is mapped to
asend call that will not block but may transfer only a part of the idamessage.
The remaining data has to be transferred later becaugeuthés a non-blocking
call.

The slow internal communication of Ethernet introduces tldreck step in
the communication pipeline. This requires the source tosfex the data as soon
as possible. The NEON implementation distinguishes betvet®rt and long
messages by using an eager protocol for short messagesemieavous protocol
for long messages.

Up to a given thresholdHAGER RENDEZVOUS_THRESHOLD), the data is
sent immediately. The system relies on the buffering and domtrol of the TCP
layer. TCP will stop sending data if the receiver has no maoféebs left.

The destination announces the destination buffer. Since the buffer anresunc
ment does not traverse the network, gely sender problemt the source pro-
cess turns into annexpected messagproblem at the destination. If the destina-
tion has no matching buffer posted, the message has to leeldtomtermediate
buffers.

If the communication system becomes aware of the real destimbuffer,
further incoming data is written there. The data that isalyereceived is copied
afterwards. Thishybrid approach of buffering and direct receive is applied to
comply with the rules of efficient usage of the communicapgeline.

5.3.2.3 Notification

An advantage of one-sided communication — to perform sulesgamperations on
the same remote memory area without synchronisation — ipetHp the Sockets’
send/receive by the introduction of a flag that tells the rensale whether this is
a final message or not. This requires message ordering frogegprocesses or
at least the final message to be transmitted last.

The notification will be embedded in the header of the finalsags. Other-
wise, a short message has to be transmitted which wouldduteunnecessary
overhead.

The notification and the offset given by the source make tfferdnce be-
tween single NEON communication and classic send/receteedction. The no-
tification is involved to let the source determine the numbfebytes received.
The offset determines the virtual address at the destmatgide the announced
buffer.

115

5.3. NEON OVER SOCKETS

5.3.3 Implementation

Asynchronous progress on pending operations is one of theatgroblems to
solve with the Socket API. This is essential to implementedfit external com-
munication — the interaction between application and compation system.

During the overall design of NEON, the blocking behaviouSoickets is ig-
nored. The design assumes a kingpadcessomvhich is able to process a queue
of work in the background. A crucial question is: Who does wwk in the
background?

Several mechanisms exist to trigger a processing in thegoaokd. However,
on Linux-based Ethernet platforms, there is no real backgi@rocessing avail-
able. The abilities of the network processors are limiteg Section 2.2.1). Thus,
most of the background processing has to be done by the hakt&#ne of the
available mechanisms are:

dedicated communication thread
library-based progress
asynchronous I/O

signals

e timers

Asynchronous I/O is already discussed in Section 3.2.1Rage 36. Signals and
timers introduce a high processing overhead. Measurenmgf#t6&SZ06] showed
that the handling of signals and timers is slower than thésxaiswitch to another
thread. Therefore, asynchronous I/O, signals, and tinters@longer considered
for the implementation of NEON. Future implementations®frechronous 1/0 in
Linux can make asynchronous I/O an interesting altern&biviee communication
thread.

Dedicated Communication Thread Using a thread for asynchronous progress
is a good way to perform any operation independently of thaiegtion. A
thread can immediately respond on network activity andiegpbn events/calls.

It makes the implementation to comply with the pipeline mMdresending data
as early as possible and thus, allows to overlap parts ofdhernication with
computation.

The major drawback of threads is that they consume resoteqeged by the
application, especially the host CPU. They require synaisadion of shared data
structures. This introduces additional overhead. Findtkyy require scheduling.
Scheduling is coarse-grained compared to the averageiaseachievable in Eth-
ernet networks (a few 10@s vs. 1 ms to 10 ms). This can increase the latency of
the protocol.

116

CHAPTER 5. ONE-SIDED COMMUNICATION FOR PARALLEL
APPLICATIONS

Library-Based Progress Some implementations of MPI (MPICH, Open MPI)
can use this technique to check if pending requests can beefuprocesséd
Compared to a thread, it does not suffer from schedulinghmat and cycle
stealing. On the other hand, the performance and behavepends on the ap-
plication’s way to call the APl. Communication can be delhythe pipeline is
inefficiently used, and overlap is inhibited.

5.3.3.1 Hybrid Approach

The implementation of NEON useshagbrid approach. A separate thread is used
for pseudo-background communication, the thread is sugakeas often as pos-
sible. The thread works as a kind pfogress enging¢hat tries to make progress
on pending operations and incoming data or requests. Nadhaetivities will
disturb the application under the following conditions.

e Thethread is suspended inselgol | (see below) until a request for a new
connection or data is arriving.

e The thread is denied to enter the progress engine if the cgtigih uses
blocking communication or synchronisation. This helpseaduce addi-
tional latencies and overhead introduced by the granulafischeduling
and context switches.

The thread is not allowed to actively poll for any incomingalaince this
would consume an unacceptable amount CPU cycles. Therelor@ppropriate
interface has to be used to suspend and resume the threadahmounication
happens. Using Linux, there as®l ect and the more efficient and modern
epol | availablé. epol | is an improved and scalable kind s&l ect . It
returns a list of file or socket descriptors with pending data

Some self-defined private data is attached to each file ggscriThis data is
used to determine the next action to do if the descriptor imesoactive. In the
current implementation of NEON, this private data contdhes handler to call
and internal states.

The progress engine and important parts of the Socket megirkdeveloped
during the Diploma thesis of Hynek Schlawack in [Sch06].

5.3.3.2 Data Structures

Thejob is the main data structure of NEON. A job contains inform@tbout the
buffer address, the size, the state of transfers, and thencoication partners. It
Is separated in two parts: a general part and a network sppeifi. The network

60pen MPI also can be configured to use a thread.
By usingepol | the implementation is restricted to Linux.

117

5.3. NEON OVER SOCKETS

specific part can be optionally used by a network module tp kpecific data. In
case of the Socket implementation, this is a file descripib@r,connection state,
and the number of transferred bytes.

A system type and a user type of job exists. This is becauss phthe pro-
tocol require to create a job on demand by the system (e.mcaining data does
not match a buffer announcement). The user type is to makgslcreated by
user and to prevent the system from destroying these joloséotife user requests
for removal.

There are two central data structures to organise jobs. ©fw bperations
to submit data. The other contains the buffer announcenoeeéded by calling
NEON_Post .

Sending or writing data to a remote process has to be ordeleasato assure
correct notification. In case of a single Ethernet link peteydhis is no limitation.
Therefore, the data structure for data operations is dedigmkeep operations to
the same destination in a FIFO queue. Currently it usesia staay of list heads
with the destination rank as the index.

Checking for finished updates of data to complete a buffeoancement will
be based on the tag. Thus, the data structure for buffer aweowents is designed
to speed up the search for the tag. The current implementhtigts the tag to
a number between 1 and 255. It uses a static array to hold thiegduffer
announcements and their state.

The current implementation of the data structures for trassion is socket
specific and provide®(1) access for required operations. It does not consider
buffer announcement signals that are submitted to the squraress. These op-
erations can be triggered by the API or by the network (in chggcoming data).
This structure can be moved into the socket module in futarsions.

It is easy to see from Figure 5.5 that the management stescéue shared data
and the access has to be synchronised between the comnamtbatad and the
application. Therefore, if any structure has to be manigdiamutual exclusion
is required, except from updating the state of a job. Evelnafdheck of the state
interrupts a concurrent update, this is not synchroniséeé.check would fail but
the data is still consistent. Therefore, the next checklbvélsuccessful.

5.3.3.3 Data Transfer

The socket module uses plaend- andr ecv-calls to transfer data. Each trans-
fer is split into a header and a data transmission. All hesaaler sent in a blocking
manner. Although, this contradicts the non-blocking seimamwf the API, itis as-
sumed that sending a few bytes will rarely block. Furthemneending a header
is expected to block only for short time. This is consideeldd acceptable in the
current implementation.

118

CHAPTER 5. ONE-SIDED COMMUNICATION FOR PARALLEL
APPLICATIONS

Data is sent by using the streaming of TCP. It is tried to sexwhach data as
possible without blocking the sender. This implies the pmkty of splitting data
messages into several TCP transmissions.

There is no priority for headers. If a data message could asemd com-
pletely, this pending transfer will prevent NEON from serglany headers (e. g.
rendezvous request or reply). Only one job to the same @gistimis processed at
a time. Jobs to different destinations are processed inradronbin fashion.

The restricted sequence of headers and data messagesheabagadling of
iIncoming messages at the receiver. Receiving a headertmtsceiver into the
corresponding state given in the header. If a header speeifsicceeding data
message, the receiver prepares for receiving a data medsaypects the next
header only if the data message is completely received.

For Ethernet the NEON implementation uses two transfer sioeggerand
rendezvousThe reason is that buffering inside the communicationesydtas to
make a trade-off. A trade-off between sending data as earpoasible (to meet
the requirements of the pipeline model) and the amount efmatl buffers to store
early received dataifexpected messa)e

For the eager protocol, the system has to check if there &er gending
transfers to the same destination. If not, the header isexteand the transmission
immediately starts. If there are pending transfers to thees@estination, the new
transfer is appended to the list of pending transfers. ®hgquired to maintain
message ordering to the same destination.

In case of messages that are larger thafeth@ER RENDEZVOUS THRESH-
OLD, just a header with a rendezvous request and the size ofgitgd into the
transmission queue. The threshold is configurable and remtly set to 16 KiB.
After the reply, the real data is sent.

If the source receives a rendezvous request, it looks ouarioappropriate
buffer announcement. If there is none, it tries to allocaseifficient buffer and
returns a rendezvous reply in order to allow the source t s&@nsmission as
early as possible.

An optimisation that is not analysed and implemented yeb isend a ren-
dezvous reply at the time of the buffer announcement. Thisavaid the send-
ing of a request and speed up the communication. Howeveprtigdem is that
the destination cannot determine the size of a data messagelie size of the
destination buffer. This would result in useless (annoora®@) messages and
overhead. Investigating in this optimisation is subjediudfire work.

5.3.4 Evaluation

The evaluation of the NEON implementation on top of TCP/tekets over Eth-
ernet is performed by measuring latency and bandwidth wspigg-pong bench-

119

5.3. NEON OVER SOCKETS

Implementation] Latency [us] Bandwidth [MiB] Bandwidth [MiB]

MPICH2 P2P 40.75 15.27 (1KB) 88.01 (IMB)
MPICH2 OSC 50.81 12.20 (1KB) 89.22 (1MB)
NEON 46.71 9.53 (1KB) 87.49 (1MB)

Table 5.2: Latency and Bandwith of NEON and MPICHZ2.

mark (see AppendixB.1.1) and the Cellular Automaton (sexi@e5.1 and Ap-
pendixB.2.1). The results are compared to MPICH2 [MPIOHisTmplementa-
tion was chosen because the Cellular Automaton performeridean with Open
MPI[OMPOQ7]. The results were obtained in a student reseganaject at the Pots-
dam University [AS06].

Both comparisons to one-sided and two-sided communicatiemperformed.
All measurements are performed in the same environmentEirtstein cluster at
the Potsdam University (see Appendix A.2).

5.3.4.1 Micro-benchmark Results

Comparing NEON to MPICHZ2, the latency and bandwidth are g Gigabit
Ethernet. The experiments were run between two nodes ofitisteih-cluster.

It can be seen from Table 5.2 that NEON performs worse tharbtmeking
point-to-point communication of MPICH2 (version 1.0.4pThe main reasons
are the impact of the thread and a less mature and less optinmzplementa-
tion of NEON. The ping-pong with one-sided communicatioffess from the
additional synchronisation message.

The latency of MPI-OSC is higher than the latency of NEON. Ideer, the
bandwidth of MPI-OSC for a 1 kB message is better.

5.3.4.2 The Cellular Automaton

A comparison between the Cellular Automaton based on MPItRld2sided com-
munication (p2p), MPICH2 one-sided communication (osa) BON is pre-
sented in Table5.3. The table shows the runtime of 3000atiters over MPI
and NEON on 4 nodes of the cluster. The number of lines per odaried to
change the ratio of communicated to computed cells. Foams, 4 lines means
50 % of the computed cells and lines have to be transferredjacant processes.
The message size is determined by the size of a line due tondveimensional
domain decomposition described in Section 5.1.

It can be seen that the NEON cellular automaton performbthjigvorse than
the mature implementation of non-blocking two-sided comioation. One could
expect an inferior performance of NEON compared MPI-2 ddeescommunica-

120

CHAPTER 5. ONE-SIDED COMMUNICATION FOR PARALLEL
APPLICATIONS

Version| 136 520 4104 1639

(4lines) P2P] 1.70 297 7.84 23.09
OSC|3.30 530 10.64 29.45
NEON|2.83 377 885 2353
(16lines) P2P 1.70 2.99 8.70 33.53
OSC|3.18 522 1365 42.16
NEON|292 379 951 3543
(128lines) P2A 2.27 558 51.07 154.94
OSC|3.87 835 5574 162.75
D

3

7

A

Lines/Node &| Transferred Message Size (Byie)

NEON | 2.89 6.62 5257 157.2
(512lines) P2R 5.58 20.57 155.59 563.8
OSC| 793 2421 161.86 571.3

NEON | 6.16 21.38 156.09 557.6

Table 5.3: Runtime comparison (in seconds) of the celluldormaton using
MPICHZ2 one-sided and two-sided communication and NEON.

tion for the Cellular Automaton with messages above 1 kB Tedse 5.2). How-
ever, NEON outperforms the version with MPI-2 one-sided oamication in all
scenarios.

Similar results were published for FastEthernet on the UWsaDluster (see
Appendix A.1) in [SS07a].

The NEON implementation can strictly adhere to the pipetelel since the
API permits the sending of data and synchronisation messegyearly as possible.
The communication system can avoid extra synchronisatessages because the
APl makes use of implicit synchronisation in the (Igstit call.

The NEON version of the Cellular Automaton tolerates as nprolcess skew
as the MPI-point-to-point version. It avoids an implicirbear at the end of each
iteration. This is described in Section 4.3.6.

The effect of the deferred transfers can be seen from theriexget with 4
lines. The difference between one-sided MPI and NEON irsggavith the mes-
sage size because the messages are rarely overlapped miplitedion. NEON
can overlap at least parts of the communication.

5.4 NEON over InfiniBand

In [Dav08], NEON is implemented on top of InfiniBand OFED. Tiest impor-
tant aspects of the work of David BOhme are presented hers.imiplementation
will show whether applications can benefit from one-sidediicmnication on top

121

5.4. NEON OVER INFINIBAND

of RDMA capable hardware or not. Especially, the aspectgmélsronisation and
buffer announcement are of particular interest.

The results of the concepts and the InfiniBand implementatie published
in [SBSO08].

5.4.1 Design

The overall design can be implemented in a straight-forwasshner since the
NEON API can be directly mapped to the InfiniBand Verbs.

The original NEON API had to be extended to let the programspercify
which memory regions have to be registered or unregistefidte destination
process’ memory could be registered at the time the postisatitiated. The
separation between post and re-post is very comfortablthfetask. However,
the communication calls likput andget require the memory regions at calling
process to be registered too. The API extension was intextlsince registering
on demand requires sophisticated methods of cached @giss [MRB"06] or
modified system library calls afael | oc andf r ee. This was considered to be
too much effort for the first proof of concept implementation

5.4.2 Implementation

As noted above, NEON is implemented on top of InfiniBand Vgdee Sec-
tion3.2.3). InfiniBand specifies methods of implicit synmhisation by using
RDMA with immediate data. This creates an entry in the renuatepletion
gueue. This event can be checked by the application at ttisagsn process.
Thus, the first implementation made use of event-based RDM&A direct map-
ping of the NEON API.

The buffer announcements can arrive from any member of theegs group.
Therefore, a straight-forward implementation should use reliable datagram
transport of InfiniBand for buffer announcements and conoe@stablishment.
Unfortunately, the current OFED stack does not supporttarssport type. Thus,
the first implementation uses the unreliable datagram pi@mnsA fault tolerance
protocol was intended.

Using RDMA write requires a reliable connection transpgpet to transfer
data. An unreliable datagram queue pair was used to estalwisnections on
demand. However, this method was changed into a full meshktabkshed con-
nections at startup after the evaluation of the unrelialaiagram service (see
evaluation below).

Although InfiniBand HCAs are equipped with a special purposevork pro-
cessor, thearly sender problerhas to be solved by the software. Thus, acommu-
nication thread is also considered for this implementatitowever, the overhead

122

CHAPTER 5. ONE-SIDED COMMUNICATION FOR PARALLEL
APPLICATIONS

of the thread can be significant since InfiniBand has much datencies than
Ethernet.

After an evaluation of the event-based notification via timenediate data
feature of InfiniBand RDMA, the thread was removed from thelementation.
Polling the completion queue is much more efficient. Howex@olling thread is
unsuitable to make asynchronous progress on non-blockimgnunication. This
would consume too much of the host CPU. Without the threatd, tdansfers have
to be deferred to later API calls in case of an early sendeis Wil violate the
pipeline model. Unfortunately, there was no mechanism domninfiniBand to
solve this issue.

5.4.3 Evaluation

The latency of the first implementation was very high. Abodii4 compared to
5 us of MVAPICH2. The reasons were found in slow event handlihRDMA
with immediate data and the buffer announcement via theliabte datagram
transport.

It was surprising to see that sending data via the unrelidélagram service
is about 1Qus slower than via the reliable connection transport. Thusjmple-
mentation was changed to use reliable connections.

The overhead of announcements and notifications raisesaticaity if the
completion queue is configured to signal incoming data. Du&is measurable
effect, the last step of the pipeline becomes a bottlenec&us= of the high setup
costs, especially in case of event-based completion gueeraions. The imple-
mentation gains about 10s if the completion queue is polled for new entries.

After removing these issues by the use of polling the congpiejueue and
using reliable connection transport for buffer announaeisiehe latency dropped
to 10us.

The latency is still twice the latency of MVAPICH2. The majeason is
that MVAPICH2 uses RDMA for all communication including beif announce-
ments and notifications. MVAPICH checks for incoming symchsation mes-
sages at the time the communication call is executed. I&tisano announcement
available, the transmission is deferred to the completioronjunction with the
pipeline model, this has a drawback: the pipeline is filled.la

Measurements of the bandwidth show that NEON performsthjigiorse but
comparable at least for mid-sized and large messages.

Now, the Cellular Automaton was measured with differenibsabf commu-
nication and computation. 10, 100, and 1000 lines were (ko per process.
This results in 20 %, 2 %, andD% of communicated cells out of all calculated
cells.

123

5.4. NEON OVER INFINIBAND

API CA10 CA100 CA1000
‘ (ms)

MPI-2 | 0.0484 0.177 1.46

NEON ‘ 0.0309 0.147 1.43

Table 5.4: Time per iteration of Cellular Automaton.

2.04 T ; ' T
MPI_Put ——

MPI_Win_Complete —— /]
2.035

oY
A\
\
2.03

2.025

2.02

iteration time [ms]

2.015

2.01

—

2.005
0 100 200 300 400 500 600 700 800 900 1000

calculated lines until put/complete

Figure 5.6: Impact of early notification and implicit barrie MPI-2.

As shown in Table 5.4, the Cellular Automaton over NEON perf® better
even though the communication of NEON at 1024 Bytes is shilgslower than
MVAPICH2. Two reasons were found.

1. Early notification of NEON leads to better process skewrtnice. This is
because the remote processes don’t have to wait for thecegxtification
at the end of the iteration. The MVAPICH2 variant has to wait.

2. The bi-directional communication and synchronisatiothie Cellular Au-
tomaton imposes aimplicit barrier. This problem is described in Sec-
tion4.3.6 and 5.1.3. This further reduces titecess skew toleranand
inhibits overlapping of computation and communicationrtkRermore, the
barrier results in a higher risk for thearly sender problemince thebuffer
announcemerdnd theput are very close at the beginning of each iteration.

These two impacts were measured by two experiments using®MivA2 and
the MPI-2 version of the Cellular Automaton with 1000 lines process.

e To increase the process skew tolerance, the calRdf W n_Conpl et e
is moved away from the end of the iteration towards the begginy chang-
ing the number of lines calculated before and after the tafigure 5.6 the
result is visible.

124

CHAPTER 5. ONE-SIDED COMMUNICATION FOR PARALLEL
APPLICATIONS

Moving the completion towards the middle of the iteratiorpnoves the
overall runtime. The benefit of the overall runtime is only 2 Btowever,

the ratio of communicated to computed cells i @. The average run-
time of a single iteration is shortened by abouti25while transferring
1024 Bytes twice takes about LS.

Moving the completion too close to tipait call makes the communication
more and more blocking and the overall runtime increased/PIf Put
andMPl _W n_conpl et e are called successively, a blocking behaviour
is implemented.

e The second experiment moves fhat call away from the buffer announce-
ment. This should reduce tlearly sender problenMVVAPICH2 defers the
data transfer to the completion call if the buffer announeetias not ar-
rived at the time of theut call. Therefore, avoiding early sender problems
should increase the ability to overlap computation and camoation.

TheMPI _Put measurements in Figure 5.6 show that this effect is measur-
able. Similar to the first experiment, moving thet towards the middle of
an iteration improves the overall runtime.

The process skew tolerance and non-blocking communicagoform best
if they are moved to the middle of the iteration. Unfortumgtéhe put and the
completion cannot be moved to the middle of the iterationesiis will result in
blocking communication. Additionally, this implies thédiet middle of the itera-
tion can be determined. This is easy for the Cellular Aut@mdiut may not be
easy for other parallel applications. Thus, the NEON apghtaa advantageous
because it notifies the destination as early as possible.

5.5 NEON in Shared Memory Environments

An implementation of NEON on top of shared memory librariesteared memory
in common is out of focus of this thesis. In this section, s@sgects of NEON
are explained to check the possibilities of an efficient enpéntation of NEON
over shared memory.

There are two kinds of shared memory available:

1. completely shared address space. This means free aocessadte pro-
cesses. Thisis only available to threads. Therefore iti®himuch interest
here.

2. shared memory in terms of available addresses in mematyc#m be ac-
cessed by all processes. This requires the data buffees éitihe allocated

125

5.5. NEON IN SHARED MEMORY ENVIRONMENTS

CSs

A B SHM A, B

virtual representations

—» external

Figure 5.7: Application of the Communication Model to Stthkéemory.

in a shared memory region or to reside inside the commupitaystem
which requires copying the data to internal shared memagsaand back.
Using shared memory as a transport is the topic of this sectio

5.5.1 Applying the Communication Model

When shared memory is applied to the communication modehap&r 4, exter-
nal communication is represented by copying data from atitetshared memory
region. Internal communication does not occur or is trarequéy performed by
hardware to keep caches and memory of different CPUs cohdfegyure 5.7 vi-
sualises this inter-process communication scheme.

5.5.2 Synchronisation

The popular shared memory API SHMEM [ShmO01, Sil08] usesieixjglynchro-
nisation to signal the completion of data transfers. Whike benefits of overlap
play a minor role in shared memory architectures due to thtg/fa& non-existent)
internal communication, the kind of synchronisation wdMe an impact.

As explained in Section 5.1.3, a barrier will prevent theleagpion from toler-
ating process delays. Therefore process skew cannot hafljestly) all delays
in any process will increase the overall runtime. Using btocking data trans-
fers in combination with separation of completion and ncifion will enable an
application to be less sensitive to process skew.

5.5.3 Data Exchange

The current implementation of the NEON API has a very smallvoek indepen-
dent layer. It does not force any data copies or buffer dageation. A lightweight

126

CHAPTER 5. ONE-SIDED COMMUNICATION FOR PARALLEL
APPLICATIONS

shared memory implementation of the NEON transport lay#ibenefit from the
lightweight upper layer of NEON.

Since there is no direct access to the memory of the destinptocess, the
buffer announcement has to traverse the external comntioncaep at the desti-
nation process (i. e. the buffer announcement has to bel&dria the communi-
cation system).

Early senders should not be such a big issue in shared memargrements
because the time for communication is very short comparetketwork-based
communication. Therefore, a deferral of message trankssa smaller impact
on the overall performance. Furthermore, the data tramsfaemory will be per-
formed by memory copies. If no special hardware is availabbtip this, the CPU
will have to perform at least the external communication.u§hasynchronous
progress introduces the same issues as for the socket implation. It requires
CPU cycles.

The impact of the pipeline usage and the overlap of commtioitand com-
putation will be less important than for network-based iempéntations. The in-
ternal communication is performed by the hardware, theeefiowill not be a
bottleneck of the communication pipeline.

The usage and size of the shared memory regions will be aljjedsattle-
neck for an implementation. The communication system ceacguire arbitrary
amounts of shared memory to keep the transferred data. foheran imple-
mentation has to take care for the memory requirements of@hemunication
system.

5.6 What's New

This section compares the NEON API and implementationsisiieg APIs and
implementations for one-sided communication. A compartedviPI-2 one-sided
communication is already done in the previous sections dmaptér4. Since
NEON is designed to fit into the message passing paradigmill ih@t be com-
pared to global address space languages.

ARMCI is a message passing-based interface that is veryasitoi NEON.
The main difference to NEON is that ARMCI does the same coatimn of noti-
fication and completion like the MPI-2 API. Similar to NEONRMCI does not
use synchronisation epochs.

In [DBP08], Danalis et. al. present a companion library for MPleddravel
that allows a higher level specification of the communicagpattern. This is
done by separating meta-data (buffer announcements,catitoih, completion,
etc.) from the data transfers. Every step of communicateonke expressed by
a corresponding Gravel call. This allows the user to maxentiie potential to

127

5.7. CONCLUSION

overlap computation with communication and synchronisati

The NEON API can be mapped to Gravel since Gravel providesagllired
steps in separate calls. Unlike NEON, it uses explicit re#tfon. Although the
Gravel interface is intended to be used by skilled users. NE®N API is de-
signed to be easy to use. Both APIs will require a user to wtded the concept
of early non-blocking communication and notification ante leompletion in or-
der to make efficient use of their features.

5.7 Conclusion

NEON is currently the only one-sided communication API tkagbles non-
blocking communication with early notification and late quetion. This is
achieved by separating notification from completion in tHd A-urthermore, the
notification can be embedded into the communication calis @&hows efficient
implementations on different networks and increases tiiapitity of NEON.

The Socket-based implementation of NEON shows that oredsiadmmu-
nication over Gigabit Ethernet can be improved compared RI-®1 This is
achieved by applying the rules derived from tietual Representation Model
and by avoiding the transmission of additional synchrdiosamessages. The
implementation on top of Sockets proves the applicabilitthe communication
model in Chapter 4. For example, it shows that the buffer anoement does not
have to traverse the network (internal communication patltase of buffering
inside the communication system at process B.

Except the usage of reliable datagram transports, the basaepts of NEON
could be mapped to the capabilities of InfiniBand. Unfortehathey could not
be mapped efficiently. The current OFED stack is optimisedRIOMA. This can
be seen from the measurements of buffer announcementsroediable datagram
and notification with events.

The InfiniBand implementation of David Béhme works well. Buwhough
it has a higher latency than MVAPICH2, it outperforms the MPimplemen-
tation in the Cellular Automaton benchmark. This indicéatest the concept of
separating completion from notification is beneficial fondwocking one-sided
communication.

According to the applied communication model and the syoisation issues
investigated in conjunction with Sockets and InfiniBand,irmplementation of
NEON for shared memory architectures is expected to begstifarward.

Explicit synchronisation has to be used with care by the anogner. If the
application communicates in two directions, there is a higk of implementing
an implicit barrier synchronisation. This barrier inhghihe compensation of pro-
cess skew even if non-blocking communication is used. Thmaonhof implicit

128

CHAPTER 5. ONE-SIDED COMMUNICATION FOR PARALLEL
APPLICATIONS

barriers and overlap were measured with MVAPICHZ2 in Sed@idii3.

Asynchronous progress on pending data transfers and renestery access
is easier with InfiniBand compared to Ethernet. The hardusacapable to pro-
cess pending work requests. Transferring messages witbaitieet API required
a lot of effort to cope with the streaming semantics of TCP.

Either with InfiniBand or with TCP/IP-sockets, solving tearly sender prob-
lemrequires a lot of efforts. This is a task of event handlingallipg. Both have
proofed to be inefficient in InfiniBand. The same problemsuoed in the Socket
implementation.

The most important conclusion from the implementation& both of the
implementations suffer similar problems. Building an iewplentation that ap-
plies the pipeline model without hampering the performange@sing inefficient
mechanisms of communication is currently not possible Witth InfiniBand and
TCP/IP-sockets over Ethernet. InfiniBand supports theirequnechanisms but
their implementation offers slow performance and too muatrivead. Ethernet
lacks the support for remote memory access and the streamamgntics of TCP
require additional overhead for message passing.

Parallel applications cannot benefit from one-sided comaation if synchro-
nised single communication operations are used. Two-daetmunication of-
fers simpler semantics and better performance with theenttMPIl API and im-
plementations.

The separation of notification and completion is proposeitiédP| Forum
as a contribution to th®PI-3 Remote Memory Access standard.

129

5.7. CONCLUSION

130

Chapter 6

One-Sided Communication for
Server Load Balancing

131

6.1. SERVER LOAD BALANCING

Server load balancing the other important application of clusters focused in
this thesis. This chapter analyses whether server loaadiatacan benefit from
one-sided communication or not.

After a general introduction to server load balancing, techronisation re-
quirements are analysed and compared tovinelal Representation Modétee
Chapter4). In Sections 6.3 to 6.6 a new credit-based scimgdslproposed and
evaluated.

6.1 Server Load Balancing

Server load balancing [BouO1] is a technology to distriktine traffic of a site

among a number of servers and to improve the availabilitygradity of a ser-

vice by building a scalable, reliable, and flexible serviogimnment. A server
load balancing system allows for the inclusion of more sert@adopt to increas-
ing traffic or service demands. Particular servers can bataiaed or removed
from the system without interrupting the service and, tiuske the service very
flexible. If some servers crash, the service will still beialde.

The main tasks of a server load balancing component are [BouO

o distribute the traffic of the site

e select an appropriate server for individual requests

e Mmaintain an up to date list of available servers

¢ redundancy of the dispatcher to avoid a single point of failu

e enable connection or session oriented services to worky gvie for-
warded packets are not aware of these

Traffic distribution, server selection, and maintainingsadf available servers
are the focused tasks. The redundancy of the dispatchebjscswf future work.

6.1.1 Server Load Balancing Techniques

Apart from server load balancing, there are other techisigodalance the traf-
fic of a site. Some of these technologies will be presented heefly. These
techniques are illustrated more in detail in [BouO1].

6.1.1.1 DNS-based Load Balancing

DNS-based load balancing is a common technique that usedotinain name
system (DNS) to balance the traffic. It is also known as DN$®detobin. Clients
translate a URL into an IP address by DNS requests. The DN@rdeas a list of

132

CHAPTER 6. ONE-SIDED COMMUNICATION FOR SERVER LOAD
BALANCING

available servers and returns one of the IP addresses ategobst in a round-
robin manner.

This approach is quite simple and works well. But it has sonagomdraw-
backs. One problem is the concept of DNS caching. The cls¬e the answer
from DNS servers in a local cache that is reused if the same IdRéquested
again. Thus, the DNS-based load balancing is bypassedrd th@ DNS cache
hit at the client. Further, DNS-based load balancing cadliaake server avail-
ability into account. Failed servers have to be removed filoenDNS database.
While this may be done quickly, it will take a while to be prgg#ed to all the
caches. Therefore, a lot of clients will try to access thieéaserver.

6.1.1.2 Global Server Load Balancing

This is a variant of load balancing that distributes the Idagending on the lo-
cation. Clients from the same or similar geographical area@uted to the same
site. If one of the sites is not available the service is gtediby the servers of
another region. This would increase the latencies of theceand the load of
the servers, but the service itself will be available.

6.1.1.3 Clustering

Clustering is a technology to distribute the load at appilicalevel instead of
manipulating network packets. The servers divide the ask$ amongst them-
selves. ..’ [BouO1].

6.1.2 Architecture of Server Load Balancing

A server load balancers a special component that intercepts the traffic of a site
and distributes it among several servers. Generally, s&esdévad balancer can
work at any 1ISO/OSI-layer. The chosen layer depends on the ¢f service.
If the service requires a connection-aware server loadhbatale.g. a TCP/IP-
based service like www), layer 4 should be preferred. In dtlewing, the term
server load balancer will refer to a site-local hardwaredftvgare that performs
the tasks described above. The machine that distribute®thests can also be
calleddispatcheror frontend server

A popular technique is to assign the dispatcheirtual IP (VIP) to make the
service available to clients. Additionally, a TCP or UDPtsmassigned to specify
the provided service. At least one real server (also céddakend servérhas to
be attached to the VIP, to run the service(s) on. While onlesezaer is required
to enable the service at all, the service becomes more Ielgadal flexible with
multiple backend servers.

133

6.1. SERVER LOAD BALANCING

6.1.2.1 Flat-Based Server Load Balancing

Based on the classification presented in [BouOl], two agchites are distin-
guished by IP address configuration flet-basedserver load balancing systems,
the dispatcher is involved in incoming and outgoing traffitie server load bal-
ancer and the backend servers are located in the same sAlpaetket is modified
according to the following steps:

1. The dispatcher rewrites the destination address of amimg packet and
forwards the modified packet there. The address of the bdckerver is
chosen by the scheduling algorithm.

2. The response of the server will go back to the load balascwse it is the
default route of the server for responses to the source ssldre

3. At the dispatcher, the source address of the outgoingepaskewritten to
the virtual IP of the server load balancer and the packetnd t@the client.

Flat-based setups can be used together titige-path route-path or di-
rect server returnsetups. These are the three classes of the return-patti-base
classification of load balancing systems according to [BuCA further clas-
sification used in [BouO1] is the physical connectivity tbah be one-armed or
two-armed. With flat-based configurations a one-armed seakes sense, since
the dispatcher and the backend servers are on the same.subnet

6.1.2.2 NAT-Based Server Load Balancing

NAT-basederver load balancers are used if the real servers shoutddwdifferent
subnet, e. g. for security reasons. In these casesarmedsetups make sense and
neither bridge-path nor direct server return are possiloiehe following, NAT-
based server load balancing implies route-path and twa@dsetups. The steps
required to answer a client request are the same as for 8adl@nfigurations.

6.1.3 Quality of Scheduling

The quality of a load balanced service is determined by tee af the client. The
best distribution will result in the best service qualitygraeters. In this thesis,
the quality is defined by three measurable parameters.

Dropped Requests The number of rejected alropped requestisas to be low if
good quality is a goal. If a client request is dropped by ttaellbalancing system,
the service is not available to that client. This means adieestit and potentially a
lost customer. Therefore, the number of requests drop@edimportant indicator
of the quality of a service.

134

CHAPTER 6. ONE-SIDED COMMUNICATION FOR SERVER LOAD
BALANCING

A request can be rejected for many reasons along the netvatinkffmm the
client to the server. For the evaluation of a server loadrizatg system, only
the server-based reasons are considered. These are lintits dispatcher or
the backend servers e.g. a socket-based application cgnopah about 6K
connections at the same time. Further connections have tejbeted. Other
limits are discussed in Section 6.3 where several metricsofd statistics are
presented.

Answer Time If the service is available, the shortest average answer ¢iha
request represents the second quality parameter.

If the dispatcher selects theast-loadedserver, the average answer time of
the service is expected to be the shortest. The answer tinsste of two parts:
theround trip time(RTT) of the network and the time to process the request. The
design and implementation of the server load balancingsys$ias an impact on
both.

The processing time is influenced by the capabilities of tbegssing machine
and the number of requests that are already waiting for gsicg.

The dispatcher’s scheduling algorithm will also have anactmn the round
trip time. The algorithm chooses the backend server andeinfles the load of
the dispatcher itself. Considering a large number of badlsarvers, arO(1)
scheduling algorithm is expected to be more scalable @{analgorithms. Since
the scheduling of requests requires processing, a highdb#de dispatcher is
expected to increase the round trip time.

Burst Length While the first two parameters can be measured by a singlgclie
the length of a burst is only measurable at the dispatcheg. |ditngth of a traffic
burst is an indicator of availability. Here, tlhengthis measured as the number of
requests that is contained in the burst. How many requestsechandled without
having to drop a request if a the request arrival rate is eguuatbove the maximum
capacity of the sum of all backend servers? This is the ma#stipn to anwer by
the burst tests.

The longer a burst can be without dropping a request, thertét load is dis-
tributed among the available servers. Since network trefficmown to be bursty
in nature [JD05], this measure is also important to evaltta¢eload balancing
system.

6.1.4 Load Balancing Algorithms

Many load balancing algorithms are used in practise. A sihestription of some
implemented algorithms of theinux Virtual Server(LVS project is presented

135

6.1. SERVER LOAD BALANCING

below. A complete description of the algorithms can be foum{dlin07a]

Round-robin This is the adoption of the classical scheduling scheme know
from operating systems. The requests are distributed ggaong the
servers regardless of their current load.

Least Connections This algorithm counts the number of open and inaéten-
nections. The next request is scheduled to the server wettettst number
of connections. According to the source code (Linux 2.6.k®&ctive con-
nections are Weightefg6 compared to active connections.

Shortest Expected DelayThis algorithm is very similar to the least connections
algorithm. It count the number of active connections onlyre Thext re-
guest is scheduled to the server where the number of cooneqtius one
is minimal.

Source Hashing The source address of a packet is put into a hash function. The
outcome is the number of the server the packet is scheduled to

Destination Hashing The destination address is put into the hash function. The
outcome is the number of the destination server. This isulifed service
is accessible via several different virtual IP addresses.

Never Queue The basic idea of this algorithm is to distribute packetsydol
servers that will not queue the request. Regardless of tespf the server,
gueueing the request is expected to be slower than handimgnediately
by a slow server. If no idle server is available, shortesteeigd delay is
applied.

6.1.5 Server Weights

Most of the above algorithms are able to use weights to refletdrogeneous
servers. This is a common technique. Tpeed factoin Equation 6.1 repre-
sents the speed of a machine in relation to the slowest machimthe litera-
ture, sometimes the speed factors defined reverse to this definition. Following
the specification of server weights in the popular served loalancing system
LVS[Zha00, Lin07b], the variant in Equation 6.1 is used. Aigte of 2 repre-
sents a server that is twice as fast as a server with weight 1.

. slowest avg. service time
~ avg. service time

(6.1)

Iclosed connections are considered inactive for a certaguanof time

136

CHAPTER 6. ONE-SIDED COMMUNICATION FOR SERVER LOAD
BALANCING

IP network | InfiniBand network Server 1
VIP%quinc) Server 2
— ‘

Internet
Gateway/ Server n

Dispatcher

,,

Figure 6.1: Architecture of SlibNet.

The capability of a server strongly depends on the servioe.ekample, if a
service requires processing only, the weights should brilzed from the CPU
speed. Any other resource of a machine can be the basis ohisgigee Sec-
tion 6.3.2).

Instead of given resources, the calculation of weights efywan measure-
ments. This will approximate the exact weight by firing a wodd to the servers
and use the results to determine the weights. This has tweabdicks. First, it
takes more effort to determine the weights. Second, thétieshe weight for the
chosen workload. Even if the workload consists of tracesfreal traffic of the
site, this workload will be different from future workloadeeated by real clients.
In general, requests are inhomogeneous and this can ndtdxted by predefined
weights. Thus, the weights can never be exact.

Weights have shown to be a critical issue, since their exeigrohination is
impossible. Inexact weights significantly reduce the quaii the distribution
[SLP94].

In [SSZL08], an example is described with two Apache backssrgers dif-
fering in CPU speed and memory. One machine has only half &g §peed
and the half memory of the other. Thus, one would expect thieecbserver
weights to be 1:4. The result was 3:4 when separately meastine performance
of the servers usinRUBIiStraces [CCE 03] with httperf [MJ98]. Finally, us-
ing Weighted Round-Robimith the weights 1:2 performed best with both servers
together.

6.1.6 Conclusion

Server load balancing is used to increase the reliabilitysmalability of services.
The homogeneity of the cluster is less important than foalperapplications.

137

6.2. A CASE FOR ONE-SIDED COMMUNICATION

Therefore, heterogeneous clusters are used often. Seeights are a common
technique to adopt to heterogeneous servers. These warghtsird to determine
and only reflect the heterogeneity of the servers. The pnoblaf heterogeneous
workload can not be solved by server weights.

SlibNet has to use a NAT-based approach, because the InfidiBeerconnect
between dispatcher and real servers implies a differemetutboom the public
Internet or classic Ethernet LAN technology. This is showfigure 6.1. Hence,
the return path will be route-path-based and the dispatghidoe two-armed.

The most important factors for the evaluation of the loadhbaing system
are the answer time, the number of dropped requests, andngthlof tolerated
bursts.

6.2 A Case for One-Sided Communication

The term one-sided communication was primarily used in thetext of MPI
and parallel applications. This section introduces odegicommunication to
resource monitoring and reporting in conjunction with gefead balancing.

6.2.1 Resource Monitoring

The dispatcher can rely on current load statistics of theessrto improve the
guality of the service. Three classes of scheduling algorithms eaiddntified
using the kind ofesource monitorin@s a classification criteria:

1. No resource monitoring at all: This class of algorithms does not use re-
source monitoring and distributes the load according toesdfpattern. This
pattern can be created from given knowledge about the sefeiqg. server
weights). LVS uses this concept for th@eund-robin(RR scheme to dis-
tribute requests.

Using no resource monitoring at all is a fast and simple agghrdo dis-
tribute incoming requests. However, it does not respectlarites result-
ing from inhomogeneous requests. An advantage of ignohegctirrent
load is that the scheduling decision easily can be impleeteby a simple
algorithm with low complexity. No calculation or search hade done on
the arrival of requests.

2. Dispatcher-based monitoring: If the dispatcher itself collects and calcu-
lates statistics of the servers to choose a server for therdurequest, this
is named aslispatcher-based monitoring heleast connectiond._C) algo-
rithm of LVS is an example since the dispatcher counts theeatinumber

138

CHAPTER 6. ONE-SIDED COMMUNICATION FOR SERVER LOAD
BALANCING

of connections to a server and uses the server with the laagbaer of con-
nections.

3. Backend-based monitoring: Using backend-based monitoringhe dis-
patcher requires the backend servers to provide statistieese statistics
can be pushed by the backend servers or pulled by the digpadtchse the
values for the determination of the server to send the réqae3 his con-
cept is implemented by thieedbackeextension [Ker08, Ker03] available
for LVS. This extension reports statistics from the backsedvers upon
request of the dispatcher (pull mechanism).

Additionally, a combination of dispatcher- and backenddzhresource monitor-
ing is possible. The dispatcher generates statistics that@ated or adjusted by
statistics from the backend servers.

The backend servers are a good place to gather load stasstme they have
the best knowledge of their current load. The drawback okéad-based sys-
tems is that the statistics have to be transmitted to theatibpr. This implies
additional traffic in the backend network and additionalgessing overhead at
the dispatcher. Since the dispatcher is a central compptienprocessing may
become a bottleneck that will limit the scalability of thengee. As noted in
Section 6.1, a higher load can result in increased roundini.

6.2.2 Characteristics of Resource Monitoring

Resource monitoring applications do not require remotelsyanisation. The
process interaction @ifferentfrom theproducer/consumescheme. Thus, there is
no need fomotificationandcompletion(see Chapter 4). Remote synchronisation
is unnecessary because the monitoring component is orsested in the most
recent value. For example, data can be silently writtenaaltbpatcher's memory.
The RMA routines of an API need to be used only.

In case of concurrent access to the data, mutual exclustbe isnly required
synchronisation. This is only a local synchronisation atdispatcher.

Before the data can be written, the remote process has to &nowt the target
buffer. This buffer has to be announced. However, since tiffeebdoes not
change and is always writable, thigffer announcemetias to occur only once.

Server load balanced systems are not highly dynamic enwieots of re-
source monitoring. New backend servers are added manumallyheir registra-
tion to the dispatcher is not time critical. Furthermore tftequency of machine
failures cannot be higher than the inclusion of new and reestanachines. Other-
wise, the service would fail completely after a time. Thisulés in a more or less
slowly or rarely changing number of communication partreeckend servers)

139

6.3. CREDIT-BASED SCHEDULING

of the dispatcher. This means that buffer announcementsereand non-time-
critical events.

Another issue of resource monitoring is the resource copsom Since the
monitoring requires processing, it consumes some of tleiress that are moni-
tored. For example, by measuring and transferring the CRtiide, CPU cycles
are consumed and adulterate the measurement. These affectsave to be con-
sidered for an efficient resource monitoring.

Assuming resource monitoring to be a case for InfiniBand RD&&Virtual
Representation Modélas to be applied as an indirect access model without the
remote process involved. If the servers shall access theonyamhthe dispatcher,
the following steps of synchronisation are required:

e Thebuffer announcemerhias to be sent once from the dispatcher to a new
registering server. Since the virtual representation efdispatcher at the
server delivers the data directly to the memory of the ddpat the an-
nouncement has to be sent over the network. Since this isasingle
event that is not time-critical, the performance does ndtena

e Waiting for an announcemert done at the server. During the registration,
the server has nothing to do. Therefore, this can even beyavoaising
(provided that only a single service runs on the server).

e Sendingnotificationmessages is only required if the server is re-registered.
This means, if the dispatcher took the server out of the adbexhd has to
be notified to take it back into the schedule. Even this natifie can be
omitted if the dispatcher frequently checks out-of-schedervers.

e Waiting or testing for a notificatiorran be omitted as long as there are
no servers taken out of the schedule. Otherwise waiting simig for a
notification is required.

Fast data delivery without the destination’s CPU being Iived in the communi-
cation is required together with infrequent and non-timaeal buffer announce-
ments. Thus, the InfiniBand Verbs API fits well.

6.3 Credit-Based Scheduling

This section explains theredit-based schedulingnd finds a metric to calculate
the number of credits. The basic scheduling algorithm isqumeed afterwards.

6.3.1 Credits

The basic idea behindaedit-based scheduling to let the servers tell the sched-
uler how many requests they can handle. Thus, credits wil beetric that rep-

140

CHAPTER 6. ONE-SIDED COMMUNICATION FOR SERVER LOAD
BALANCING

resents the availability of a server application. This danpetric can be used to
run a fast scheduling algorithm on top of it.

Credits are a common technique used for flow control of nekvpootocols
[Cia99, Inf02a]. In a similar sense, one can map the intendiccredits to server
load balancing. Credits are used to avoid forwarding retguesa server that
would drop the request due to overload. Primarily, theyesent the availability
of a service.

Credits are self-adapting and can remove the need to speeights. The key
is that a credit represents a free resource of a server. t/arggrocesses requests
faster, it will have more free resources. Thus, it will repmiore credits than a
slower machine and tells the dispatcher that it can handle mexjuests. This
makes the number of credits self-adapting to heterogersausrs.

Credits also self-adapt to heterogeneous requests. livarseas to process
requests that consume more resources, it has fewer freagrcesdo report. Thus,
it will tell the dispatcher to forward fewer requests by rapw a smaller number
of credits.

In this thesis, one server will run only one single serviceevéttheless, it
is expected that the presented concepts are applicable ltpleservices per
machine due to the self-adaptability of the credits.

6.3.2 Monitorable Resources

Modern operating systems provide several monitoringifeesl Some examples
of resources that can be monitored are idle time of the psaceavailable mem-
ory, or available disk space. But, how can these figures be tasealculate the
number of further requests a particular server can handienimber is hard to
determine in conjunction with a service that is requestedrbynpredictable num-
ber of clients. Depending on the service, each request cmgsan unpredictable
amount of resources.
The following resources are analysed concerning the pdisbto use them

as credits or to determine the number of credits:

e CPU
e memory

run-queue length of the CPU
number of established connections

CPU and Memory: CPU and memory are often the main resources used by
applications. Sometimes a limiting factor of a service skdiO or 1/O in gen-
eral. While this increases the service time of single reg&sdoes not limit the

141

6.3. CREDIT-BASED SCHEDULING

number of clients at all. The CPU can process other requesiisgdl/O if asyn-
chronous I/0, multiple processes, or threads are used tidamultiple clients
simultaneously.

The limited availability of memory and CPU will somehow lirntihe availabil-
ity of a service. Can these metrics be used to determine tinbeauof credits to
be reported to the dispatcher? The answer is: not generadlyat well. This is
because the number and type of resources consumed by atrsquesedictable.
For example, the question, how many requests will fit in 50 MBilable RAM,
can hardly be answered. Maybe it can be answered for fulllysed and static
services with a fixed type of request. However, this ignorgsedictable resource
consumption by the operating system itself.

A service dependent solution is not appreciated for a géperaose server
load balancing system. Therefore, available CPU and meiw@ynfavourable
metrics to determine credits, though they are still relevan

Run-queue Length of CPU: Simulation studies have shown that the run-queue
length of the CPU is a good metric for load balancing in honmegels sys-
tems[Kun91]. In heterogeneous environments, the runglength has to be
normalised byspeed facta@. As mentioned before, these factors strongly depend
on the application [SPL96].

Can the results of this research area be mapped to the dadoutd credits?
The run-queue may be a good metric to choose the least loadext.sHowever, it
does not help to determine the number of free resourcesssiate could specify
a maximum length of the run-queue. Specifying an upper ligrtihe only way to
tell the dispatcher how many requests it can safely forwattis server.

Established Connections: The number of established connections is a critical
metric of connection oriented client-server applicatj@isce the maximum num-
ber of connectionsis limited. Some commonly used schegdaligorithms in LVS
rely on the number of connections (least connections, skbexpected delay).
The main problem of this limit is that it neither reflects thex\&r’'s capabilities
nor prevents the service from overload.

Since the limit is just a theoretical value, using the numbleestablished
connections has the same drawback as the length of the eueqhe number
of future available connections cannot be determined froiw Ibad indicator.
Additionally, an established connection is a very fuzzydiaadicator because of
(generally) unpredictable behaviour of the clients.

142

CHAPTER 6. ONE-SIDED COMMUNICATION FOR SERVER LOAD
BALANCING

6.3.2.1 Communication Endpoints

A more general view on connections leads to the consideraficommunication
endpoints. Client-server-based services requa@namunication endpoirtt both
server and client sidés The type of endpoint depends on the protocol layer and
the kind of protocol. For example, the endpoints of the IBand-Verbs layer
(ISO/OSl-layer 4) are nameQueue Pair(QP) while communication endpoints
of socket applications are call&bcket(layer 5). From the point of view of a
TCP/IP socket-based application, an endpoint is a sockbtaninique descriptor
and an associated IP address and TCP port.

The basic assumption to use communication endpoints asreceetalculate
credits is thatin application consumes free communication endpointseegdime
speed as it is able to process requests long as there are incoming requests).
This is reverse to the idea of the least connections alguritthere an application
releases connections at the speed of processing of requests

The number of communication endpoints is usually limitedhbydware, soft-
ware, or protocol specific constraints. For example, thebemof open TCP/IP
sockets of an application is limited by the number of possBCP port$, which
is 65535. This is where credits come into place. A creditesents a free com-
munication endpoint. Thus, the dispatcher cannot didiilboore requests than
available credits, which means not more than available coneation endpoints.
Therefore, SlibNet is able to drop or reject requests alreathe dispatcher. This
avoids the load of the backend servers getting worse un@eyhead.

Reporting the number of free communication endpoints hagjamdrawback:
it is not always possible to determine the number of free eimdp. For example,
it will be an expensive operation, if not impossible, to det@e the number of
unused socket descriptors in a server application. Aneasigto calculate cred-
its is provided by the InfiniBand-Verbs layer. Each Queue Ras to be allocated
and registered by a central component, the communicatioagea (CM). There-
fore, the CM is good candidate to count allocated but unuseeu® Pairs that
can be reported as credits. A credit-based load balancingmiof InfiniBand
and Queue Pairs is developed in two masters theses [Frid87Rand is also
presented in [SSO7b].

The socket-based approach is investigated in a masteiis {d@¥7]. This
work presents a credit-based approach for TCP socket-lmgg@ttations. The
approach is designed, implemented, and evaluated. Ciaditsalculated from
the free entries of theocket backlog queueThis queue contains the pending

2Since the client is not part of the load balancing systemfdhas will be on the server side
communication endpoint here.

3if no other operating system boundaries like the maximum lemof open file descriptors
further limit the amount open sockets

143

6.3. CREDIT-BASED SCHEDULING

T s -3 “lo [
server with credits
""" ~ all

77777 9 T 1 -] 0 . — active

Figure 6.2: Rings of registered and available servers.

connection requests that are not accepted by the apphcdtiee increase and de-
crease of this queue indicates the current ability of theiseto process requests.
The length cannot exceed a limit that is specified by the apftn itself. Further
requests will be dropped. This makes the socket backlogegaegyood basis for
credits. This is also published in [SSZL08].

6.3.3 Scheduling

One of the main design goals of SlibNet was to achieve a deatfstem. In
theory, this is achieved by the consequent use(dj approaches for the schedul-
ing and credit handling components. The scheduling can beritbed in short as
round-robin among servers with available credits. Thilusirated in Figure 6.2
by theactive ring The outer ringdll ring) contains all servers that are registered.
The scheduler decrements the credits of a chosen serverebylfothere are no
more credits available for a server, it is taken out of theedcite until it reports
new credits.

SlibNet uses a combination of dispatcher-based and badkased resource
monitoring together with a push strategy to update credite backend servers
calculate the number of credits periodically and reportrésilting value. This
makes the system a backend-based monitoring. Since thetchigp removes con-
sumed credits, it performs a kind of dispatcher-based raond.

Since the scheduling is based on two states of a serverdblaibr not) and
is independent of the absolute amount of credits, the rigygoof credits will play
the central role for the quality of the distribution. Somedit reporting strategies
are analysed and evaluated by simulation below in Sectibn 6.

The availability check can be an issue in conjunction with tise of RMA,
since a new or newly available server has to be detected. AA Riite to the
dispatcher memory will not be noticed by the dispatcher.ré&toge, a detection
of a status change from zero credits to non-zero or back Hasdone. This is the
only case for a notification message from the back-end setodhe dispatcher.

However, it can also be solved by the scheduler or by an ertectdon/mon-
itoring component in the background. For example, the sdleedan do a fixed

144

CHAPTER 6. ONE-SIDED COMMUNICATION FOR SERVER LOAD
BALANCING

number of checks on each server selection triggered by amimg request. This
would keep the scheduling algorithm at the complexitp¢t), while still allows
for the use of RMA without notification. The dispatcher baskdck for new non-
zero credits can cause delays in the detection of new sesveesjuires a kind of
polling. The outcome will be a trade-off between overhead delay in server
detection. On the other hand, if the credit update is doneviysided communi-
cation, every update would require data processing at gpattiher. This reduces
the scalability of the service.

6.4 Credit Reporting Algorithms

The current scheduling ignores the absolute amount of réntacredits at the
dispatcher. Scheduling just over the availability of ctedirongly depends on the
algorithm used to report credits. This component of SlibiNehe focus of this
section. The section presents some algorithms to repatditsnesed to schedule
requests. A simulative approach is used to compare varspecss of reporting
credits.

6.4.1 Algorithms

Five algorithms to report credits are presented in this@ec he algorithms are
compared by their expected behaviour. A detailed analyistbeiv behaviour and
the quality of distribution is deferred to Section 6.5.4.

6.4.1.1 Plain Full Credits Reporting

The simplest method reports every available resource. Terméne the cred-

its, a so-calledookupis done after a given number of processed requests. This
algorithm uses a fixetbokup interval(li). The number of credits is calculated
according to Equation 6.2. The queue of a server is limitedy The current
length of the queue iScyrrent.

credits= Omax— Qeurrent (6.2)

This number is reported to the dispatcher. Thus, for PlaihGnedits Reporting
the report intervalis equal to the lookup interval. The only tuning parameter of
the algorithm is the lookup interval.

6.4.1.2 Low Watermark Reporting

This algorithm also calculates available credits withinaedi lookup interval
(same as the Plain Full Credits Reporting). At each lookhp,server decides

145

6.4. CREDIT REPORTING ALGORITHMS

to report or not. A report is triggered if the number efpected creditat the
dispatcher is below a thresholtb§ watermar. In case of a triggered report,
all available resources are reported according to EquétnThis algorithm is
explained in detail in the masters thesis of Sven Friedfci®p].

The servers calculate the numbeeapected creditsy decreasing the number
of reported credits themselves if a request is taken frongtieie. In this way,
the servers anticipate the number of credits at the dispat8ince there is a skew
between decreasing the credits at the dispatcher and aethersthe value is
calledexpected credits

Additionally, a minimum number of credits is specified to @ashing. This
can happen if the number of credits is short above or equakttotv watermark,
which results in more frequently triggered reports. Coragao the Plain Full
Credits Reporting, this algorithm reduces the number obntspwhile providing
fine-grained reporting interval under heavy load.

The behaviour of reporting will not be as good as one couldkihsince the
number of reports increases during heavy load phases. Tdigoadl overhead
of reports will further exacerbate the load. This is why th@imum number of
credits is introduced. On the other hand, more frequentrteygpincreases the
server’s availability and reduces the overall number opdro

6.4.1.3 Soft Credits Reporting

This algorithm extends the simple report by reporting tweddrvalues within a
fixed interval. It reports so-callezbft creditdo tell the dispatcher how much work
it wants. This can be seen as a recommendation to the digpaithe so-called
hard creditsrepresent the upper limit the server could handle if no cdkerer has
soft credits reported to the dispatcher. The number of heedits is calculated
according to the Plain Full Credits Reporting (see Equdaii@in

The number of soft credits is based on the relatigonbetween the lookup
interval (i) and new requests) since the last lookup (see Equation 6.3)is
similar to the load factop known from operational analysis [Jai91] and reflects
the server’s current request processing capability.

N = Qeurrent— (Qold — i)
Ii if
r = Jn Tnz0 (6.3)
1.0 otherwise
Cs = Chxmin(1.0,r) (6.4)
C
Ccorr = GCsx* n (6.5)
Omax

146

CHAPTER 6. ONE-SIDED COMMUNICATION FOR SERVER LOAD
BALANCING

Equation 6.4 works well it > 1.0. If r is smaller, the value of does not
influence the number of reported credits. This means thatvarsevhich is tem-
porarily under low loadr(< 1.0) but still has a long queue, will report full credits
and there will be no difference between soft and hard credits smooth out
this process, the number of reported credits can be addilyoreduced by a ra-
tio calculated from the maximum length and the current lerajtthe queue (see
Equation 6.5).

In contrast to the Plain Full Credits Reporting and Low Wai&rk Reporting,
the dispatcher has to be extended in order to check the safiterfirst and fall
back to hard credits if no soft credits are available. Thimdge complex, but still
has the complexity o®(1)%.

The Soft Credits Reporting is expected to improve the digtron of the load.
The reduced number of reported credits will result in eadiat-of-soft-credits
situations for single servers. These servers are consi@dgan after they report
new soft credits or if no more servers have soft credits teplorThe additional
reported hard credits are necessary to provide all availasiources to the dis-
patcher under heavy load.

6.4.1.4 Dynamic Lookup Soft Credits Reporting

This algorithm extends the Soft Credits Reporting by a dyindookup interval.
The interval is defined to be proportional to the length ofdbeue. This reduces
the number of lookups and reports under heavy load and iregrihe responsive-
ness under low load. A heavily loaded server with a long queilldhave some
more time to process the requests. A short lookup intervabesatolerated if the
server has fewer requests to process. Equation 6.6 shovwslitidation of the
dynamic lookup interval. The correlation factof is a tuning parametefiyi, is
used to avoid reporting after each requests under low load.

It is expected that the dynamic report interval will imprdte quality of the
distribution because loaded servers are taken from thelathéor a longer time.
But the long report interval is also used for hard creditser€fore, this algorithm
is expected to drop more requests under heavy load.

6.4.1.5 Dynamic Pressure Relieve Algorithm

TheDynamic Pressure Relieve Algorithathe result of the above analyses of the
lookup and report interval and the use of soft and hard gedhis algorithm uses

4The round-robin ring that contains all available servert soft credits will be empty and the
next server will be chosen from the round-robin ring of hanebldt available servers.

147

6.5. EVALUATION OF ALGORITHMS

a fixed interval to report hard credits and a dynamic intetwaéport soft credits.
In case of a soft credit report, hard credits are also repamel the counter for the
interval of hard credits is reset. In this way, the algorittwaorks like a pressure
relieve valve that additionally can be triggered dynantychy hand. Hence, the
namedynamic pressure relievagorithm.

This algorithm is expected to perform best among all preseatgorithms.
Due to the dynamic reporting interval for soft credits, a @oastribution should
be achieved. The fixed interval to report hard credits witluge the number
of dropped requests under heavy load. The only drawbackisfatgorithm is
the increased number of reports because more or less twoasepaports are
performed.

6.5 Evaluation of Algorithms

Each algorithm is implemented, evaluated, and comparedher @lgorithms.
Since all credit algorithms and the weighted round-robimesce areO(1), the
complexity is the same. The evaluation focuses on the gualithe distribution
as described in Section 6.1.3.

6.5.1 Factors

Before the algorithms are analysed with a simulation, th@edarmental setup is
prepared by determining the primary factors that affecpgréormance and qual-
ity. The following factors are found:

e request arrival rate or distribution

e request processing rate or distribution

e the algorithm

e lookup interval (absolute, relative for dyn-lookup)

report interval (if different from lookup)

server weights (for comparison with weighted round-robin)
server speeds

number of servers

low watermark

maximum length of the queue

The evaluation of the credit report algorithms is done by parmg the report
algorithms to the Plain Full Credits Reporting and to wesghtound-robin. A
comparison to more sophisticated algorithms li&ast connectionsr shortest
expected delais not yet done because these algorithms use a less sc@lable

148

CHAPTER 6. ONE-SIDED COMMUNICATION FOR SERVER LOAD
BALANCING

scheduling algorithm. Although, this comparison shouldsbéject of future
work. Round-robin and weighted round-robin use@() algorithm. Thus, the
credit algorithms are compared to round-robin.

6.5.2 Primary Factors

The goal is to compare the quality of the distribution usiiffecent algorithms in
homogeneous and heterogeneous environments. Therdferenly factors to be
varied are the server speed and the algorithm.

server speedThe server speeds determine the type of environment. Homoge

neous environments are represented by the same speed flomeabine.
To simulate heterogeneous environments, the server spgedsnequal.
The comparison to weighted round-robin requires experimefith exact
and non-exact weights to see the benefits of the credit-daaddalancing
if weights are not exactly determined. This is done by usixegfiweights of
1:1 for homogeneous and 1: 2 for heterogeneous environmBEmsserver
speeds are setto 1:1 and 1: 2. The simulation of inexact wsiglilone
by using 1: 105 and 1 : 11 for homogeneous and 1 :12and 1 : 22 for
heterogeneous environments. This simulates deviatiobs¥efand 10 %.
Note that the faster server will get the additional amouneglests in the
heterogeneous environment with inexact weights.

The number of setups sums up to 5 for weighted round robin dadeéach
credit algorithm since differing weights can not be spedifier the credit
algorithms.

algorithm All algorithms are evaluated. Including the weighted rowaldin al-
gorithm, this results in 6 experiments per environment.

As a result of the specified primary factors and their valtésxperiments have
to be conducted.

6.5.3 Secondary Factors

All algorithms will be evaluated using a 100 % loaded syst&he arrival interval
of requests is fixed at 10000 units of time to have the sameutgaty of time
for all experiments. Thus, the request processing time jisséetl respectively.
The processing time of 2 homogeneous servers will be inflgroalculated as
20000 units of time to get 100 % load. If heterogeneous seihare speed factors
of 1: 2, their average processing times are 15000 and 300@GvaAintervals
and processing time of requests are generated accordingegedive exponential
distribution. The number of servers is fixed and set to 2.

149

6.5. EVALUATION OF ALGORITHMS

Maximum Length of the Queue The maximum length of the queue determines
the maximum number of credits. It makes no sense to reporé mr@dits than
available slots in the queue. To make calculations morearent the maximum

is set to 100. This is fixed for all servers in all experimerftthe simulation.

Lookup Interval The overhead of a lookup includes the costs to determine the
number of credits to report. Some examples of such overheradhe required
calculations, system calls, or management overhead. Thedpokup interval
is one of the important impacts on the efficiency of the cregiort algorithm.
A heavily loaded server should use a coarse lookup inteovéddve as many
resources as possible to the service. But a coarse-grankdp is unfavourable
during phases of low load. The system will slowly react tadaghanges of load.
Thus, a short lookup interval is favourable under low loadixad lookup interval
can only be a compromise between overhead and reactivigrefdre, a dynamic
lookup interval is implemented in some algorithms.

The absolute value of a fixed interval is set to 10. This is ends lookup
for credits to report after 10 % of the maximum number of dsedThe dynamic
interval is set according to Equation 6.7.

|| — ma)<10, qcurrent* 0.5) * qmaX (67)

In case of the Dynamic Pressure Relieve Algorithm, tiei Equation 6.7
is set to 10. This results in earlyput-of-soft-creditsituations and thus a better
distribution of requests. In contrast to the Dynamic LooBgift Credits Report-
ing, it should not increase the overall drops because of xiee interval for hard
credits.

Report Interval The number of reports differs from the number of lookups if
the Low Watermark Reporting decides not to report any csedasically, the
overhead of a report is the cost of the network transfer antbpol processing.
Each server has to transmit the number of credits on eachtrépere, the same
considerations as for the lookup interval apply.

While the server has to process its own credit reports, thpaticher has to
process the credit reports of all servers. Hence, the nuaflseports will have an
impact on the scalability of the system. This impact is theedar RDMA, since
the reports via RDMA will not require any processing at thepditcher.

Minimum Number of Credits This factor is only relevant for the Low Water-
mark Reporting (see Section6.4.1). The number of reporisheareduced if a
minimum of credits to report is specified. If there are notwggiofree resources,
no credits can be reported until the lookup detects a sufi@mount of available

150

CHAPTER 6. ONE-SIDED COMMUNICATION FOR SERVER LOAD
BALANCING

parameter values

algorithm 5 credit algorithms, round-robin
server weights 1:1,1:1.05,1:1.1, 1:2, 1:2.1, 1:2.2
server speeds homogeneous (1:1), heterogeneous (1:2)
arrival rate 10000

avg. processing rate10000

lookup interval 10 or dynamic

number of servers | 1, 2

low watermark 10

minimum credits | 20 (Low Watermark Reporting only)
max queue length | 100

Table 6.1: Parameter overview of simulations.

resources. A smaller threshold can result in faster togdigtween zero and non-
zero credit situation for this particular server. The drabf zero and non-zero
credit situations will be extended by a high threshold. dsanvalue of 20 is a
result of a separate study with the Low Watermark Reportingdction 6.5.5.

All parameters used in the simulation are summarised ineT@fl.

6.5.4 Simulation

Simulation studies are applied to the algorithms to dedmebiest algorithm to
implement. Additionally, the simulation results were Halgo better understand
the behaviour of the particular algorithms.

A small simulation program is designed to simulate the beha\of the four
different algorithms. The following features are implertezh

e All above described reporting algorithms are included.

e Two distribution functions (negative exponential and amf) are included
to create traces of incoming requests and service timescbfreguest.

e The number of servers is configurable.

e The software can generate traces of the length of the quewkesraedit re-
ports for detailed analysis. It also can print summariesfatistical analy-
sis.

e Homogeneous and inhomogeneous setups are possible. Tdameésby
specifying their weights.

There are several counters and statistics available:

e The overall number of requests failed due to complete zexdicsituations.
It will be the primary counter to compare the algorithms fiyed requests).

151

6.5. EVALUATION OF ALGORITHMS

e The overall average length of the queues. This counter isdiodtor for
the average answer time of requests. Also the average arisnes are
calculated.

e The number of individual zero-credit situations of eachveer Each indi-
vidual drop represents a deviation from a plain round-raisimeduling.

e The number of individually handled requests of each serv@mnaindicator
how the requests were distributed.

e The individual average length of the queues including steshdeviation.
The length of individual queues should correlate with theadslities of the
servers to achieve similar answer times for each request.

At the initialisation of the simulation, a random trace ajuests is generated.
Each request will have a specified normalised serviceinTée random trace
depends on a seed that is taken from the command line. Thmspertant to
compare different algorithms based on the same trace oéstgu

The simulation is implemented as an event-based simulaiithrtwo types of
events: incoming requestequest eventandservice event€Each event contains
a timestamp to trigger the corresponding action. Furtheembcontains a process
or server ID to collect individual statistics. Request @gérigger the dispatcher to
schedule the request. Service events trigger the servé&ckap the next request
from the queue. As long as there are requests in the queueeatersservice
events are generated after the current request is processed

The scheduling of requests to a queue is done at a request @nemnumber
of credits is reduced and the length of the queue is increfethe selected
server. Each request event sets the timer for the next requesrding to the
interval given in the trace.

The service timeg of a servel is calculated according to Equation 6.9 on the
basis of the time of slowest servigr If ts is calculated according to Equation 6.8,
the system will run under 100 % load (s the average arrival rate of requests).
Since the slowest service time is a command line parametiéreasimulatorts
has to be calculated externally.

P2
o b
i = o (6.9)

SThe service time of the server with the speed factor 1 is used.

152

CHAPTER 6. ONE-SIDED COMMUNICATION FOR SERVER LOAD
BALANCING

6.5.4.1 Statistics

It is important to explain the details of how statistics ao#lerted to make the
simulation more understandable. First there is a spedif@dphaseto collect
data. The firstX) and the lasty{) requests are ignored to have a warm-up and
a cool-down phase. The calculation&ndy is shown in Equation6.10. The
values are retrieved from observation of detailed tracepieties.

— request;s y— requests (6.10)
4 8

e Dropped requests are counted during liwé phase A drop happens if a

request can not be scheduled due to a complete out-of-sitdition at the

dispatcher.

e The calculation of the average length of the queue is doneeay éime tick.
This makes the average queue independent from the durdtiequests and
their processing time.

e The average answer time of a request is calculated when thestis
scheduled to one of the servers. Since the load balancingmnsysas no
influence on the clients network interconnect and the pathutih the net-
work, only the time to wait in the queue and processing theiests are
considered in the simulations. This value influences thbajland the indi-
vidual statistics.

e Another counter is the number of requests handled by indalidervers.
This offers a way to evaluate the distribution of request®gating to given
server weights.

6.5.4.2 Simulated Testbed

The simulated testbed is specified by the secondary facsers $ection 6.5.3).
Statistics are calculated from 50 different but fixed randiaoes, generated from
50 stored random seeds. The distribution of arrival interaad service times is
set to negative exponential.

For load dependent analyses, the mean request intervaies yeom 9000 to
11000 to simulate high (9000) and low (11000) loaded situnasti

The idea of the burst length test is as follows: Starting faomdle system, a
particular load of incoming requests is put into the systenthis case, the same
50 traces as for the other tests are used. Until the first tiepyumber of requests
handled is counted and taken to compare the algorithms. iGinehthe number
of requests the better is the ability of the algorithm to Herdirsts.

153

6.5. EVALUATION OF ALGORITHMS

Minimum Credits for LWM
130

T T T
homogeneous =
heterogeneous =

125

120

115

110

(less is better)

105

100

answer time x drops / burst

95

90
5 10 15 20 25 30 35 40 45

minimum credits setting

Figure 6.3: Impact of the minimum credits on Low Watermarkp&w#ng.

6.5.5 Minimum Number of Credits

The Low Watermark Reporting requires an additional paraméthis parameter
will be determined by experiments instead of guessing. Timenmum number of
credits is required to trigger a report after a lookup. Theeas calledcyn. The
determination is done by simulating two homogeneous serfler 1), heteroge-
neous servers (1 : 2), and varying the minimum value. Staftom 10 (equals
the low watermark setting and the static lookup intervaljag0. A higher value
is expected to further reduce the overall quality.

The results of the tests with the Low Watermark Reportingsai@vn in Fig-
ure 6.3. The evaluation is done by normalising the droppgdests drops, the
answer timegnswertimg and the burst lengttb(rst) to the case where the min-
imum number of credits equals the low watermark (10). By coinly these
three normalised measurements, each of the parameters leagial impact on
the quality measure (see Equation 6.11). The detailed maasumts can be found
in Table C.1 in Appendix C.1.

dropsxanswertime
burst

f(drops answertimeburst) = (6.11)

It can be seen that the results are better (lower valuesg iimimum number is a
multiple of the low watermark. The reason is that the low watgk is also used
as the lookup interval.

f(drops answertimeburst) is best whercy, = 20. It has the best results

154

CHAPTER 6. ONE-SIDED COMMUNICATION FOR SERVER LOAD
BALANCING

Plain LWM SH DL-SH DPR | WRR
dropped 285.9 318.9 285.9 385.3 289.84263.16
answer time 234440 226653 234440 187729 23405550920
reports 2971 989.5 2971 1940.5 3315.70
drop-time | 1.0151 1.0946 1.0151 1.0954 1.0274.0

Table 6.2: Simulation results for a single server setup uh@e % load.

combined for the homogeneous and the heterogeneous experiiierefore, 20
is chosen for further experiments. The chosen value is mopéetely independent
from the other factors like the server speed, but since th@ighm is expected to
be suboptimal, it is not fully optimised.

6.5.6 Single Server

Using a single server, the credit algorithms are comparedund-robin (i. e. just
forwarding the requests to the server). There will be a difiebehaviour between
the credit algorithms due to different lookup and reporimgrvals. Also, a de-
viation from forwarding will occur. Depending on the reporterval, the server
may not have reported available credits in time, while trerpforwarding will
always consume every free slot in the queue. Therefore rdtit@lgorithms are
expected to perform a little worse than the forwarding.

To evaluate this, a simulation study is done according t@tieeve evaluation
testbed but with a single server (Section 6.5.4.2). TallesBows the results of
the simulations. Round-robin performs best in terms of thenlper of dropped
requests. LWM produces the lowest number of reports amoagrdit-based
algorithms.

The evaluation of the answer time is a little tricky since thember of re-
quests in the queue depends on the number of dropped requEsesefore,
the answer time is correlated to the number of dropped rés| @ ptimeygo
in Equation 6.12). This is done by normalising both measergsto the result
of weighted round-robinanswertime,,, dropsyr). The normalised values are
multiplied afterwards. The lower the product, the betteralgorithm performs.

answertimggo dropsugo
*

droptim = -
PHM&igo answertimg; dropSur

(6.12)

The results for a single server are shown in the last row ofe®R. This
correlation identifies round-rotfinas the best algorithm in terms of drops and
answer time on a single server even though it does not haveegteanswer time.

Swhich is just forwarding

155

6.5. EVALUATION OF ALGORITHMS

6.5.7 Two Servers

Using two servers, the load has to be distributed among thdalle servers.
Thus, the advantage of round-robin (or forwarding) willagipear.

The Figures 6.4 to 6.7 show the results of the simulationsoofidgeneous
and heterogeneous servers. They compare the credit algsriand weighted
round-robin with exact and non-exact weights. The exactbemnhare moved to
AppendixC.1.

The algorithms are compared by the parameters that detetimenquality of
the load balancing specified in Section6.1.3. These paemate the answer
time, the number of dropped requests, the length of burdisowi a dropped
request, and the number of reports.

The abbreviations of the algorithms are as follows:

Plain Plain Full Credits Reporting
LWM Low Watermark Reporting
SH Soft Credits Reporting
DL-SH Dynamic Lookup Soft Credits Reporting
DPR Dynamic Pressure Relieve Algorithm
WRR Weighted Round-Robin with weights set to the server’s sfaetdrs (which
means exact weights concerning the processing capatiliheservers)
WRR 5 Weighted Round-Robin with the weights of the second seriffarohg 5 %
from the speed factor of server 2
WRR 10 Weighted Round-Robin with the weights of the second serviéeriohg
10 % from the speed factor of server 2

6.5.7.1 Dropped Requests

Figure 6.4 compares the algorithms by the number of droppgulests during the
hot phaseof the simulation.

From the results of homogeneous environments, it is obwvioatsthe credit-
based algorithms perform better or equal to round-robine iFhprovement is
possible because of the self-adaptivity of the credit-8asbeduling. The credit-
base algorithms respect inhomogeneous requests.

Because of the approach to maximise the number of crediteatispatcher,
the Plain Full Credits Reporting and Low Watermark Repagrperform worse in
the heterogeneous environment. The dispatcher runs otgdit€ for a particular
server very late. The result is an imbalance because of tberiying round-
robin scheduling among servers with available creditss T¥sue is addressed by
the other credit-based algorithms. Significant improvetsare achieved by Soft
Credits Reporting and Dynamic Pressure Relieve Algorithm.

For a single server, a dynamic or longer lookup interval wasodlem. This
has a negative impact on the number of drops when using twersgtoo. In both

156

CHAPTER 6. ONE-SIDED COMMUNICATION FOR SERVER LOAD
BALANCING

Average Number of Dropped Requests
500

450
400
350
300
250
200
150
100

50

dropped requests out of 18750

1:1 (homogen.) 1:2 (heterogen.)
speed factors of servers

Plain == SH DPR mmsm \WRR 5 mmmm
LWM C—— DL-SH s WRR 27 WRR 10

Figure 6.4: Average number of dropped requests out of 18750

the homogeneous and the heterogeneous setups, the Dynaokigd_Soft Cred-
its Reporting performs worse than Soft Credits Reportincabee of the longer
interval. Due to Equation 6.6 at Page 147, the average mitesVonger than the
fixed interval of the Soft Credits Reporting.

If the weights for round-robin differ by 5 % or 10 % from the wer speeds,
the number of drops significantly raises. Even in heterogesenvironments, the
credit-based algorithms outperform weighted round-refth inexact weights.

6.5.7.2 Answer Time

The second important result is shown in Figure 6.5. It shdwesaverage answer
time in homogeneous and heterogeneous environments.

Comparing the answer time by their absolute value is notiplesisecause the
number of handled requests is different for each algoritiimerefore, the same
evaluation steps as for the single server is done.

While the Plain Full Credits Reporting and Low Watermark &®ipng had
a low number of dropped requests, the Dynamic Lookup Softli@&eporting
drops as many requests as the round-robin (see Figure @thdanswer time of
round-robin is 22 % longer (see Figure 6.5). This indicates & dynamic interval
improves the distribution of requests.

The main issue to achieve a good distribution is to diffenfr@und-robin as
early as possible, but, only if there’s an imbalance of |oHdis can be achieved
only if the dispatcher is out of credits of servers under brigbad. Thus, every

157

6.5. EVALUATION OF ALGORITHMS

Average Answer Time
800 T T

700

600
500
400
300
200

answer time [1k time units]

100

1:1 (homogen.) 1:2 (heterogen.)
speed factors of servers

Plain === SH DPR mmmm \WRR5 mmmm
LWM — DL-SH WRR =" WRR 10 ==

Figure 6.5: Average answer time.

Answer Time Correlated to Drops
3.5 T T

25

answer time per request * drops
(less is better)

1:1 (homogen.) 1:2 (heterogen.)
speed factors of servers

Plain === SH DPR mmsm \WRR5 mmmmm
LWM = DL-SH s WRR == WRR 10 D

Figure 6.6: Answer time correlated to number of drops noised|to WRR.

158

CHAPTER 6. ONE-SIDED COMMUNICATION FOR SERVER LOAD
BALANCING

Tolerated Burst Length
14000

12000

10000

8000

6000

(higher is better)

4000

burst length [requests]

2000

1:1 (homogen.) 1.2 (heterogen.)
speed factors of servers

Plain == SH DPR mmsm \WRR 5 mmmm
LWM C—— DL-SH s WRR 27 WRR 10

Figure 6.7: Average tolerated burst length

mechanism to avoid out-of-credit situations has a negatipact on the distribu-
tion. But, a global out-of-credit situation has to be avdidence it increases the
number of drops.

According to the drop-time-correlation in Figure 6.6, thetSCredits Report-
ing and the Dynamic Lookup Soft Credits Reporting performy\a@milar. The
former has a low number of dropped requests. The latter hater lanswer time.
The performance of the Dynamic Pressure Relieve Algoritlgorahm is best
among the simulated algorithms.

The answer time of weighted round-robin with inexact wesglktimproved
because the servers have to handle fewer requests. The 2yRsBsure Relieve
Algorithm performs similar to the weighted round-robin @lghm with exact
weights in the heterogeneous setup. This is a good reschuise only the avail-
ability of reported credits at the dispatcher adapts a gmgind-robin scheduling
to heterogeneous server speeds.

6.5.7.3 Burst Length

Figure 6.7 shows that bursts can be handled better with & ahdrfixed lookup
interval. This is derived from the comparison between Sodédiis Reporting and
Dynamic Lookup Soft Credits Reporting.

If the load is distributed better, the length of toleratedsts also increases.
This can be seen from the improvements of Soft Credits Rieygooer Plain Full
Credits Reporting. The former achieves a better distrouby using soft credits.

159

6.5. EVALUATION OF ALGORITHMS

DPR WRR DPR WRR
failed 44.7 1315 0 1241
queue 40.8 47.6 37.5 37.3
answer timel 4825350 48946903851840 3790920
drop-time | 0.0335 1.0 0.0 1.0

Table 6.3: Comparison between credit-based and WRR usisgri@rs.

Further, the Dynamic Pressure Relieve Algorithm signifisemutperforms all
other simulated algorithms in homogeneous as well as irdgg@eous environ-
ments. This is because it combines frequent reports withéseload balancing
among the compared algorithms.

6.5.7.4 More Servers

A a comparison between the Dynamic Pressure Relieve Algorénd weighted
round-robin is performed for 19 servers to test the credgeddl algorithms with
more than two servers. Because of the larger number of semheroverall num-
ber of incoming requests is increased to 3. A homogeneous and a het-
erogeneous setup is tested using exact weights for weigbted-robin. The
heterogeneous environment uses the server speed$12125:---:9.5:10
(hence the 19 servers). Each server of the homogeneoudsetam average ser-
vice time of 190000 units of time. The slowest server of thiettgeneous setup
processes requests in 1045000 units of time (avefage)

The results in Table 6.3 show that Dynamic Pressure Relidgerthm is
able to outperform weighted round-robin in both environteeWith two servers,
weighted round-robin performed similar to the credit-luaakyorithm. But, with
19 servers the Dynamic Pressure Relieve Algorithm wins.

This makes the credit-based load balancing even more aay@mis since de-
termining weights for a large number of servers requireg afleffort.

6.5.8 Summary of Important Impacts

The previous sections were to compare the credit-basedithligps as a whole.

This section is to find important factors and their influenoette quality of the

distribution of requests. The factors to observe are th&upanterval, the re-

porting interval, and the number of credits to report sirfuese factors can be
extracted from the five algorithms.

"The service times of the other servers are calculated aicgpial their speed factors.

160

CHAPTER 6. ONE-SIDED COMMUNICATION FOR SERVER LOAD
BALANCING

6.5.8.1 Lookup and Reporting Interval

The only algorithm with differences in lookup and reportiathe Low Watermark

Reporting. Since it has shown to be not the best algorithnitenceport of credits

is omitted only under special conditions, report and lookuervals are taken as
synonyms.

The influence of different lookup intervals can be derivemhrfra comparison
between algorithms with fixed and with dynamic lookup intdsv The dynamic
lookup interval algorithms use a larger interval under lydaad, which results
in a higher number of zero-credit situations and potentialhigher number of
dropped requests. This can be seen from Figure 6.4. Congp8oft Credits
Reporting and Dynamic Lookup Soft Credits Reporting, thenber of drops is
significantly higher with the latter algorithm.

A longer lookup interval increases the number of zero-¢retliations for a
particular server. This improves the distribution of resfgebecause the schedul-
ing differs from the underlying round-robin among avaibérvers.

The report interval has the same impact on the length of plessursts. Short
intervals increase the number of requests before the fqaest has to be dropped.

The Dynamic Pressure Relieve Algorithm is the result of cioinlg good
burst tolerance and few drops by a short interval with londgnamic) report-
intervals to improve the distribution.

There is another effect of the reporting interval that iseqilained yet. The
server itself consumes a number of requests from the cugtente until the next
report. The queue will be filled to 100 %. But, since no furthesuests will be
forwarded, the length of the queue will be reduced by theitregort interval.
The length of the queue will more or less alter between full futl minus credit
report interval. The average will be at about a full queueusihalf the credit
report interval. Thus, the average answer time will alsodateiced..

At least one important impact is not included in the simolatilt is the im-
plied overhead of reporting the credits. It usually corssigtnetwork communica-
tion, reading the length of the queue, and all its impactsenrtvolved machines.
CPU usage, network traffic, and interrupt handling are sohtiesooverheads not
observed here. Since it is overhead, the number of repooiscive as low as
possible. The number of reports is reduced by two mechaniBirs, to not re-
port credits at every lookup and, second, to extend the loakierval. Both have
their advantages and drawbacks seen in the simulatiortsesinfortunately, the
best performing algorithm (Dynamic Pressure Relieve Atgar) has the highest
number of reports.

161

6.5. EVALUATION OF ALGORITHMS

6.5.8.2 Number of Credits

The number of credits that are reported has the most imgartgract on the
quality of the distribution. It was noted above that zeresir situations of single
servers are essential to improve the balancing of requéktss, reporting only a
part of the available credits is useful. The quality is im@oif the reported value
depends on the current growth rate of the queue. This isatelicby the simula-
tion result of Soft Credits Reporting. This algorithm usdsva-step strategy by
reporting soft and hard credits, because the reduced nuohBeft credits would
result in an intolerable higher number of dropped requests.

6.5.9 Limitations of Simulation Results

Each simulation is a model of the real problem and this modekdot include
all aspects of reality. The following aspects are not inetlich the simulation:

6.5.9.1 Unimplemented Aspects

e The time between credit reduction at the dispatcher andubkeeaentry at
the server is ignored. This delay can result in reports vatimtich credits.
Some credits are not recognised at the server but are aloceadymed at
the dispatcher.

e The costs of a lookup are not included. Therefore, the pedoce of the
backend servers could be reduced in comparison to rourid-rob

e The time to report credits is not respected. If this time rglozero-credit
situations can happen more often, since it would have the &fact as a
long lookup interval.

e The scheduling time is not included. Thus, the influence efdtheduling
algorithm (credit-based or plain round robin) has no immercthe simula-
tion results. This is a expected to be a minor impact sincautiterlying
scheduling algorithm has a complexity©f1).

6.5.9.2 Multi-Process Applications and Wait Time

The simulation does not take into account the time that a ection is kept es-
tablished. If a server can handle a limited number of comeurconnections and
established connections are kept open but idle for some tmag be the queue is
processed slower than the server can process the requetts Ttis also holds
for the time, an open socket is in the statdvVE WAI T in practise.

This particular behaviour was observed during measureswéatit the Apache2
web-server application (see Section 6.6). In those cdsesjueue is processed at

162

CHAPTER 6. ONE-SIDED COMMUNICATION FOR SERVER LOAD
BALANCING

the speed that is determined by the behaviour of other sli@isconnect/con-
tinue).

6.5.10 Summary

Five credit-based algorithms were presented and evallgteanulations in this
section.

The conducted simulations were helpful to better undedstia@ behaviour of
the particular credit reporting algorithms and their inflae on the distribution of
requests. The simulations have shown that it is worth togaljwo separate val-
ues (soft and hard credits) because the most importantréact@redit reporting
(number of credits and reporting interval) have contrafgats.

Reporting fewer credits improves the distribution to rezltite answer time,
especially in heterogeneous environments. This is becaack time the dis-
patcher has no credits from a particular server, the schregstarts to differ from
round-robin. The simulation results show that algorithnithwarlier zero-credit
situations for particular servers produce a more balanstdllition of load. But,
a few available credits at the dispatcher increase the oisloipletely drop re-
quests.

Using a long reporting interval improves the distributicethuse of the same
reason as the fewer reported credits (by early out-of-tigtliations of single
servers). Longer intervals help to reduce the number ofrtepo

The best simulation results were achieved with a two-legkeduling. Pri-
mary scheduling based on a few and dynamically reported) (s@fdits improves
the distribution and helps the system to better adopt torbgémeous environ-
ments. A secondary (fallback) scheduling based on a fratyuerported maxi-
mum number of credits makes the service more robust to teléasts and re-
duces the overall rate of failed requests.

This section determined a good and promising credit-bagedinm that can
be used together with one-sided communication.

6.6 Implementations of SlibNet

Chapter 4 introduced the theoretic concepts of one-sidexaiamication. A credit-
based scheduling scheme was developed in the previousrseciihis section an-
swers the question if the concepts of one-sided commuaitaind credit-based
scheduling are implementable.

This work was done within the context of student theses §f%/107, Zin07].
However, since they show that the above theoretic analysisralementable, it
is presented here. Sorhestoric steps towards the current state are also explained.

163

6.6. IMPLEMENTATIONS OF SLIBNET

6.6.1 SlibNet: InfiniBand-Based Credit SLB

The firstimplementation of SlibNet did not focus on one-didemmunication. It
showed the applicability of credit-based scheduling. Timaber of free resources
in InfiniBand networks was determined from the number of edugueue pairs.
Since the communication manager (CM) as a central compareaach server
is able to calculate this value, a credit-based load batgngystem was designed
to study the behaviour in comparison to round-robin schiedul This was the
diploma thesis of Sven Friedrich [Fri06, FSS05].

The implemented approach was restricted to InfiniBand nedsvoBut, the
thesis proofed the concept of the Low Watermark Reporting.

6.6.2 SlibNet: Credit-Based Scheduling

The thesis of Olaf Ryl [Ryl07] took the next step towards edit-based load bal-
ancing system with one-sided communication. An implentenaf automatic
registration of backend servers and the correspondingtdsaded round-robin
scheduling was designed and implemented.

This thesis made the first use of RDMA write to report creditshows that
reporting credits and scheduling can be done with very favelssonisations.

e First, the data has to be written exclusively since two psees access the
data as explained in Section 6.2.2. Since credits can begepted by a very
small amount of data, the system can rely on atomic accesg tmémory
when writing single bytes or words.

o If servers report new credits but were taken out of the sdedaecause of
no credits, there has to be some notification. Otherwiseseimeer would
stay outside the active ring (see Section 6.3.3 and Fig@rer6Page 144).

In the current concepts and implementations, this notiGoaits omitted.
The dispatcher keeps track of the reported credits. Theemghtation in
[Ryl07] uses a separate thread to keep track of the ringsr@diogpto the
number of reported credits. This is improved in the followmugrk of Jorg
Zinke [Zin07] by using dook ahead pointe(see below).

Another outcome of these two works is that establishingialsld connection over
InfiniBand verbs takes a lot of time (about 308 measured with OFED 1.1). This
is not acceptable if connections have to be establishedédrety or on a critical
path of data. Establishing connections over InfiniBand iy oequired when a
new backend server is registered. Further details areghdaiin [SSO7b].

164

CHAPTER 6. ONE-SIDED COMMUNICATION FOR SERVER LOAD
BALANCING

Load Balancer Server
| dispatcher | : : |libslibnet |Application
Econtrol L\ \
libibcm ™ [ibibcm || TCP/IP Sockets
/dev/slibnet // ERDMA Userspace
V v Kernelspace
SLIBNet Scheduler | TCP/IP Sockets

LVS : :
v v_ i I v
IPoIB IB.CM | i IB_CM IPoIB

Verbs : : Verbs

Figure 6.8: Architecture of SlibNet for Socket-based agailons [Zin07].

6.6.3 SlibNet: Socket-Based Credit SLB

Jorg Zinke performed the next step in his masters thesi®[ZirHe designed and
implemented a credit-based load balancing module for thentVirtual Server
(LVS) [Zha00, Lin07b]. LVS is a popular kernel level load dater that is inte-
grated into the Linux kernel. Performance measurementsKi$506] show that
LVS can handle load balancing nearly at the speed of formgrtbr small num-
bers of servers. In conjunction with IP over InfiniBand, te@ftware is able to
distribute the load of TCP/IP socket-based services.

Figure 6.8 shows the architecture of the implement&tiocfwo components
are implemented at the dispatcher (Load Balancer): theekégmel scheduling
module for LVS and a user-level process to handle incomiriigiBand con-
nections from new servers. The memory area for credits ispefrom ker-
nel to user space via the devitdev/ sl i bnet . Therefore, the server-side lib
|'i bsli bnet directly writes the credit updates to the kernel memory efdfs-
patcher.

The current server implementation requires a small keradhpin order to
read the length of the socket’s backlog queue vipeasockopt -call. The im-
plementation transparently works for TCP/IP-Socket agpions. It modifies the
socket API call ofl i st en, bi nd, andaccept . The modification obi nd is
required to prepare the library to report credits and coaoepts.

If the server starts listening on the port, it establishesn@éniBand reliable
connection to the dispatcher and performs the first repodredits. After this

8The original picture is taken from [Zin07]. The only modifim is the translation of the
German wordAnwendundo the wordApplication

165

6.6. IMPLEMENTATIONS OF SLIBNET

registration, the dispatcher can distribute incoming estii from clients to the
server.

The reports are triggered by counting the number of accéjitst a specified
number of accepts (see Section 6.4), the credits are ctddudad reported to the
dispatcher’'s memory.

The update of the rings of servers at the dispatcher is dorteebgcheduler
itself. It uses a kind of look ahead strategy. If a server cked up, a check is
performed for a fixed number of registered servers. A drawbéthis scheme is
that some servers are considered for scheduling a litde Hdwever, it introduces
less overhead compared to a thread and keeps the schedaflapgexity ofO(1).

This work shows that the credit-based scheduling worksthegevith credits
reported via one-sided communication (that is, RDMA in cafsthe InfiniBand
implementation). The presented approach works for theslatgss of TCP/IP
socket-based client-server applications.

6.6.4 Problems with InfiniBand

The concepts of InfiniBand RDMA fit well to the concept of refiog credits
without synchronisation. However, during the implemebotatthere were several
problems that are introduced by the OFED stack implemeamtati

An important issue is implied by the nature of common clieatver appli-
cations. For example, the server process of Apache crehiigsprocesses to
process several clients in parallel. Each of these prosesseaccept new con-
nections from the same socket backlog queue. Since eachgsraalls its own
accept, accepts have to be counted globally. By using a sthafik of shared
memory, this issue can easily be solved. However, it requimatual exclusion
for the access of the counter.

Another issue arises from the fact that any of the child psses can be the
one to report the current amount of credits. Each of the gsEsemust be able to
write to the dispatcher’s memory. During the initialisatiof the service socket, a
reliable connection is established. The implementatidnfofiBand is not able to
inherit the open connection to the child processes. Thexgéwery child process
has to establish a new connection to the dispatcher. Thisesfarmance issue for
the current implementation since processes are dynapnmaihted and stopped.

One result of this issue is a limited number of concurrentesses. Each
process requires a connection. Each connection requiregadPair (according
to the OFED Mailing list[Ope] about 1 MB per Queue Pair). Aratle Queue
Pair consumes resources. Especially, at the dispatcteemtiplementation will
not scale with a large number of servers.

A second issue arises from the mapping of memory betweendbeand
kernel at the dispatcher. For the handling of incoming IBf@md connections

166

CHAPTER 6. ONE-SIDED COMMUNICATION FOR SERVER LOAD
BALANCING

Response Time for Two Heterogeneous Servers
500

RR (1:1) ——
450 Plain -
WRR (3:4) -—a—-

400

350
300 '
250 T
200 L
150 A
100 < ’ -

60 b e

0
1000 1100 1200 1300 1400 1500 1600 1700

number of clients

time [us]

Figure 6.9: Response time of Round-Robin with and withoughts compared
to SLIBNet.

it is easier to map the user-space memory into the kernelhi¢nchse the state
of the mapped memory collides with requirements of the OREBPIémentation.
Memory, intended for RDMA operations, must not be previgushpped, since
the kernel part of the OFED stack needs to map and lock it$amitn purposes.

6.6.5 Evaluation

In the context of a case study by Janette Lehmann, severdislthg algorithms
of LVS were analysed and compared. The results of the cosgrabetween LVS
and the implementation of the Plain Full Credits Reportiagenconfirmed the
simulation results of the Plain Full Credits Reporting aitjon in Section 6.5.
This is presented in [SSZL08]. Currently, only an implenagion of the Plain
Full Credits Reporting algorithm exists. In homogeneowsrenments, the credit
approach is able to outperform round-robin. In heterogesemnvironments,
weighted round-robin performs better. This confirms theusation results (see
Figure 6.9).

A comparison to more sophisticated algorithms is subjedtifre work. It
was deferred because algorithms like least connectionaatest expected de-
lay have a complexity 0O(n). The credit-based scheduling uses a stii¢t)
approach.

The conclusions of the case study are:

e The time to establish a connection does not depend on thefdhd server.

167

6.6. IMPLEMENTATIONS OF SLIBNET

The kernel handles the SYN and ACK packets by interruptss fias con-
sequences for the Least Connections (LC) algorithm, sihcetnts the
established connections at the dispatcher. The dispatetseno informa-
tion whether the connection is accepted by the service ofTi indicates
an advantage for the credit-based algorithm, because fttsde number
of pending connections in the backlog queue of the service.

Round-robin, LC, and Shortest-Expected-Delay (SED) parfeery simi-

lar if the service has a very low load, even in heterogeneousaments.
Thus, the underlying unweighted round-robin of the crédised load bal-
ancing is sufficient.

The self-adaptivity of LC and SED in heterogeneous setup&s\ince the
faster servers close handled connections faster. But,imétktact weights,
they perform less efficient because they cannot estimateuimder of con-
nections that a particular server can handle in the future.

If the service is configured to accept long lasting connestithe impact of
the scheduling algorithm disappears. The main reasontitacheduling
algorithm is responsible only for the very first packet tabssh a new TCP
connection. All further packets have to be forwarded to traes server re-
gardless of the load of the chosen backend server. If the auoflzoncur-
rent connections is limited, the machine can become plgridie without
being able accept further connections. Neverthelessdtes not contra-
dict the assumption, since the maximum number of concuoc@miections
is a limited resource as well as CPU or RAM. If the service id wenfig-
ured, the consumption of resources (CPU, RAM, number of ecions,
etc.) should be balanced. This balance is out of the contilhbaope of the
load balancing algorithm.

The Experiments with the Apache2 server show that the InfindBbased report-
ing of credits suffers from the fact that established cotinas between Queue
Pairs are not inherited to child processesfloy k (see Section6.6.4). This has
to be taken into account when comparing the credit-basetemgmtation to the
other LVS scheduling algorithms.

Figure 6.9 shows the average response time of the abovamegoes. It shows

that the Plain Full Credits Reporting is able to slightlymerform Round-Robin
in heterogeneous environments if Round-Robin is used wikact weights. In
general, the measurements confirm the results of the siimgan Section 6.5.

168

CHAPTER 6. ONE-SIDED COMMUNICATION FOR SERVER LOAD
BALANCING

6.7 Conclusion

Monitoring is a good case for one-sided communication beeaus possible to
work without synchronisation. The issues of parallel aggilons with MPI and
NEON are unimportant for monitoring since pooducer/consumeinteraction
occurs.

Buffer announcements (similar Pl _W n_Post or NEON_Post) have to
be done only once when a server is registered. Notificatiomeg®ource moni-
toring is only required in case of a status change of a server tinavailable to
available. This can be omitted if dispatcher-based looktgtegies are imple-
mented. In this way, the dispatcher has control of the lo&dduced by reports.
This makes the system more scalable.

The credit-based load balancing has shown to be self-adpfii heteroge-
neous servers and heterogeneous workload. This is achigvatackend-based
metric that uses the available connection endpoints of wécgeto tell the dis-
patcher the maximum number of requests that can be forwdadadparticular
machine. This prevents servers from overloading. It alkmalthe dispatcher to
early drop requests if there are no more resources left. aMuigls forwarding of
requests that would be dropped by the overloaded server.

A simulation study of five credit-based algorithms was caned to under-
stand the behaviour of reporting credits. It is essentialefwort two separate
values within two different intervals. A soft credits valigds the dispatcher how
many requests a server recommends to forward. The hardscregdort all avail-
able resources to the dispatcher.

The dispatcher works best with a two-level scheduling basethe two val-
ues. The primary scheduling should rely on soft credits@inatreported within a
dynamic interval. This improves the distribution of loadsécondary scheduling
based on frequently reported hard credits helps to keepethies available under
heavy load.

The current state of implementations is a scheduling mofitul¢he Linux
Virtual Server and a small library for TCP/IP-based socksgtligations. The ap-
proach uses the backlog of a socket to calculate the numbzedits to report.
The report is done via InfiniBand RDMA.

An evaluation has confirmed the simulations of the Plain Eudldits Report-
ing algorithm. Therefore, it is expected that the good ftssof the Dynamic
Pressure Relieve Algorithm will further improve the resultThe experiments
have shown that the approach has the potential to improverskerad balancing
in heterogeneous environments without specifying weights

169

6.7. CONCLUSION

170

Chapter 7

Conclusions

171

7.1. CONCLUSIONS FROM THE COMMUNICATION MODEL

This work proofs that the benefits of one-sided communiocatise and fall
with the nature of synchronisation required by the applicatApplications that
require less synchronisation can benefit from one-sidedhuamcation. If ap-
plications cannot benefit from one-sided communicatioeneRDMA-capable
hardware cannot improve the performance compared to s&ed/e based com-
munication.

7.1 Conclusions from the Communication Model

In Chapter 4, thé/irtual Representation Modetas proposed to abstract inter-
process communication. It includes the application int® ¢kerall process of
communication (like the ISO/OSI model). However, it abstsahe layers 1 to 6
of the ISO/OSI model into a communication system to allow@ifoon the effi-
ciency of the API and its implementation. Furthermore, #iistraction combines
the synchronisation according to theducer/consumesynchronisation with the
concept of data transfer over a pipeline.

The general model can be applied to several transports bygetgsome of
the virtual representations into physical representatidine application to a spe-
cific environment enables the retrieval of essential hiotgtie design of a com-
munication interface and its implementation. For example:

e the model indicates whether the buffer announcement hasverse the
network or not.

¢ if the characteristics of the external and internal commation steps are
known, the model helps to decide whether internal buffexdatpful or not
and if the message transfer can be deferred or not in caseeairbrsender
problem

e a physical representation does not require API calls. Taergit helps to
decide which functionality has to be exposed to the appiinand which
can be handled transparently.

The basic layout of an efficient one-sided communicationi8@hother result
of combining thgproducer/consumesynchronisation and the pipeline model. The
main property of this API is the separation of notificationl@ompletion for non-
blocking communication.

7.2 Results from the NEON API

The result of Chapter5 is the design and implementation oEa KDNe-sided
communication APl (NEON). The API proves the applicabibfythe communi-

172

CHAPTER 7. CONCLUSIONS

cation model for parallel applications. NEON is implemehts top of Sockets
and on top of InfiniBand. The results show that the perforraasfcapplications
can be improved by the separation of notification and congriet

If a communication pipeline imposes a bottleneck step, thidication has
to happen as early as possible to enable overlap of the symishtion message.
Completion has to happen as late as possible to increasegsrskew tolerance
and the potential to overlap communication and computation

Applications with a bidirectional synchronisation willfér from an implicit
barrier if the notification and the completion are combine@isingle API call.
In case of the Cellular Automaton, this reduces efficiencinio ways. First, it
reduces the process skew tolerance of the application amdftine the runtime
variance in one of the processes will affect other procesddsast the communi-
cation partners). Second, a slight process skew allowsst te1ie communication
partner to announce its buffer. This implies a lower risk efiedired data transfers.
The data transfer has not to be deferred and communicatiobeaverlapped
with computation.

An APl is efficiently implementable on various networks igthotification can
be embedded into the communication API calls. A networle liffiniBand, that
iIs most efficient by transferring the notification messagea aeparate message
can easily and efficiently split the API call into a data m@gsand a notification
message. However, the opposite way does not work efficieiftliye underlying
transport, like Ethernet, performs better with the nottfmaincluded in the data
message, the data transfer has to be deferred until thecatibfh API is called.
This would violate the pipeline model.

One-sided communication can synchronise multiple compatioin opera-
tions within a singleproducer/consumesynchronisation. This is where appli-
cations may benefit from one-sided communication.

Synchronisation becomes a problem with one-sided comratiarcif multi-
ple networks are available. Independently of using impbeciexplicit synchro-
nisation, the synchronisation has to be the last message tielvered to the
destination process.

7.3 Results from Server Load Balancing

One-sided communication is beneficial for resource momigsince this applica-
tion requires only sparse synchronisation. Resource mamit does not require
theproducer/consumesynchronisation. Therefore, efficient implementations ca
be done especially on top of RDMA-capable hardware.

The proposed credit-based server load balancing scheimee o resource
monitoring and reporting. It benefits from the usage of adegscommunication.

173

7.4. FUTURE WORK

Credits can be directly written into the memory of the dispat.

The credits are a simple and powerful metric to represenfutuze service
capabilities of a server. However, this only works if the riosiaken to determine
the number of credits has an upper limit. The number of cammeendpoints
has shown to be such a metric for client-server applicatiortse result of the
research presented in Chapter 6 is a self-adapting seagbllancing technique
that makes efficient use of one-sided communication.

Client-server applications put some limits on the selfpadhility of the credit
mechanism. If the load balancer relies on a connection eoypstablished or
available connection slots) the quality of the load disttidn will depend on how
the application works with connections. If connectionssrert-living, the result-
ing schedule will quickly self-adapt to the current load loé server. If connec-
tions are long term connections with much idle time, thelatdity of a service
depends on the overall number of simultaneous connectiensltister can han-
dle. For connection oriented services, connections arsthie factor to monitor,
since connections are the limiting factor of the service.

7.4 Future Work

The analyses in this work have pointed out some future dmesthat could not
be part of the research of this work.

Separate notification messages or messages with and witbafication to
the same buffer require special treatment in networks witlhessage order-
ing. For example on multi-rail networks (e.g. multi-porfimBand) or mesh
networks, messages can easily arrive without orderinghdse networks, it has
to be assured that the notification is delivered as the lassage.

The Dynamic Pressure Relieve algorithm is worth to inveségThe simula-
tions showed promising results of this algorithm. Anotheresting study is the
impact of additional information on the number of reportsaoff) credits.

174

Appendix A

Benchmark Testbeds

In this section, the main testbeds are described. The haedaval the software
is used in several experiments. Therefore, this is the alpitace to describe the
environments.

A.1 Uranus

Uranus is a cluster of 8 Double-CPU nodes plus a master. This@re 1 GHz
Pentium Il machines equipped with 1 GB of SDR-RAM. The Siyiero 370DE6
mainboard contains a NetGear GA-621 Gigabit Ethernet néteard attached to
a 64 bit/66 MHz PCI-Bus. This network is intended for high egpeeommuni-
cation of parallel applications. The switch is a BATM-Tit8630. The Gigabit
Ethernet is fiber-based. An administrative network is adé via a EtherExpress
PRO/100 Fast Ethernet network interface.

The software environment of this cluster is based on Dehias&geusing
Linux-Kernel version 2.6.8. The network driver for the GR&36is the ns87415
driver (out of the box without further tuning).

The MPI library is the MPICHZ2 implementation (mpich2-1,014. It uses the
ssmmodule for communication. This module implements sodleted commu-
nication together with optimisations for shared memory.

A.2 Einstein

Einstein consists of 16 compute nodes and 2 masters. Eaehsieduipped with
Intel XEON 26 GHz processors and 1 GB of ECC-DDR RAM.

The nodes are interconnected via Intel 82540 Ethernet mktimberfaces.
This network link is used for administration as well as comimation between
applications.

175

A.3. INFINIBAND CLUSTER

The Einstein cluster runs a Debian 3arge GNU/Linux with Kernel2.6.8.
The network driver is the e1000 driver.

A.3 InfiniBand Cluster

This cluster is heterogeneous. It consists of 3 pairs of mashthat have been
added step by step. Table A.1 shows the setup of the 3 paiesfirfhpair and the
second pair differ only in the version of the host channepaeta HCA). The last
pair is equipped with more modern hardware and PCI-Expressad of PCI-X.

IB1 and IB2
CPU Intel XEON 266 GHz
RAM 1GB
HCA 2-Port Mellanox MT23108 MHX-CE128-T
Firmware| 3.5.0

PCI PCI-X

IB3 and IB4
CPU Intel XEON 266 GHz
RAM 1GB

HCA 2-Port Mellanox MT23108 MHXL-CF128-T
Firmware| 3.5.0

PCI PCI-X

IB5 and IB6
CPU Intel Pentium 4 280 GHz
RAM 1GB

HCA 2-Port Mellanox MT25208 MHEL-CF128-T
Firmware| 4.7.6
PCI PCI-Express

Table A.1: Machines of the InfiniBand cluster.

Each machine runs a Debian 3argeLinux system. The Kernel2.6.18 is
patched with the OFED extensions to provide InfiniBand HCieats. The OFED
release is version 1.1.

176

Appendix B

Benchmarks

A detailed description of benchmarks is required in ordeatimpare the results of
an experiment to others. This is done in this section. Rinstmicro-benchmarks
are explained (ping-pong, Cellular Automaton). Afterwsardome application
benchmarks are presented.

B.1 Micro-Benchmarks

Micro-benchmarks are mainly used to evaluate one or a feanpeters of a sys-
tem. In case of networks, the ping-pong test is very commospécial version
of this test is implemented at the institute for computeessce calleEins

Itis important to describe how the measurement is done.r@tbe, the results
can be misinterpreted or cannot be compared to other measaots.

B.1.1 MPI Ping-Pong

This MPI-based ping-pong test was derived fromghggpongZxample in [SW97].
It starts a parallel application. The processes with an e@aek perform the
measurement and start to send data to a single odd @mk fank+ 1) us-
ing MPI _Send. After sending dataMPl _Recv is called to receive the re-
ply. The timestamps are retrieved bPl _W i ne beforeMPl _Send and after
MPI _Recv (see ListingB.1).

1 for (i = 0; 1 < tries; i++) {
/« start time x/

lastTime = MPI_Wtime ();

I« Ping —Pong =/

MPI_Send(buffer , length, MPI_ DOUBLE, myld+1, PING,

o (4] EN w N

177

10

11

12

13

14

15

16

17

= w N =

B.1. MICRO-BENCHMARKS

MP|_COMM_WORLD)

MPI_Recv(buffer , length, MPI_DOUBLE, myld+1, PONG,
MPI_COMM_WORLD, &status);

/'« end time x/

nowTime = MPI_Wtime ();

timing[i] = nowTime — lastTime;
lastTime = nowTime;
}
Listing B.1: Measurement loop of the MPI ping-pong
B.1.2 Eins

Einsis a recursive acronym and stands Eins is not sockpinglt was derived
from a TCP/IP ping-pong micro-benchmark developed in [S¢hEins is de-
signed and written by Hynek Schlawack in [Sch06]. He extdrttle socket ping-
pong to make it more flexible and usable to measure other miefevotocols.

The first extension was IPv6 support. A UDP module is includ&ds allows
user level fragmentation and measurement sequences. ihigidcluded a new
module to measure the time to establish a TCP/IP connection.

This tool has become the defacto standard pingpong mianokmeark at the
professorship for Operating Systems and Distributed &yst& Prof. Dr. Bettina
Schnor.

/'l Main measure—loop
for (size_t try = 0; try < ma.tries; try++) {
alltime[try] = (nm—>measure()— measuredelta) / 2;

}

Listing B.2: Measurement loop of Eins

The central measurement routine works as follows (seenggi2). It runs
the module-specific routine. The requirement for this moits to return the dura-
tion of a single ping-pong sequence. The overhead of a measut is subtracted
and the one-way latency is calculated (also cafiati round-trip-time. The val-
ues are collected in an array that is evaluated afterwardie rmedian and the
standard deviation are calculated.

The timestamps are based on fetching the TSC (time stamf)degister
of modern CPUs of 1A32 family (i586 and above). Initially,rSi calculates the

178

APPENDIX B. BENCHMARKS

number of ticks per second to calculate a duration from th€ V&8lues. This
makes the current version of Eins stick to CPUs which protheel SC
The current version of Eins supports the measurement of:

e TCP

e UDP

e BMI (buffered message interface of PVFS2)

e TCP connection establishment

e malloc() memory allocation

e SCTP (Stream Control Transmission Protocol)
e NEON (only original Socket-based API)

B.2 Application Benchmarks

Micro-benchmarks are a common way to discover performassiges or bottle-
necks. However, it is not sufficient to evaluate a softwanegusiicro-benchmarks
only [SS07a]. Applications make use of communication pagi¢hat are different
from micro-benchmarks. Furthermore if an application isning, the main task
of the machine should be to process the implemented algoiitstead of pro-

cessing communication. Often this aspect is not recograeddlso not intended
by miro-benchmarks.

B.2.1 The Cellular Automaton

TheCellular Automatons an example for the large classtnflk-synchronouap-
plications. The algorithm allows the overlapping of comncation and computa-
tion of all calculations except the topmost and undermastdif cells. Listing B.3
shows the pseudocode of the Cellular Automaton.

for (all iterations) {
Buffer _announcement(neighbours);

/I« calculate first and last row x/
simulate (first_row);
simulate (last_row);

/« include Notification =/
Initiate_Transmission (first_row , previousPE);

10

11

| include Notification x/

179

12

13

14

15

16

17

18

19

B.2. APPLICATION BENCHMARKS

Initiate_Transmission (last_row , nextPE);

/I« calculate remaining cells x/

simulate (2 — last_row—1);

/I« synchronise x/

Complete_All();

Listing B.3: Pseudocode of the Cellular Automaton.

The pseudocode shows a kind of ideal solution. The buffepancement
is initiated as early as possible. Then the minimum of cellsdmmunicate is
simulated before the transfer of these cells is initiatedxtNall remaining cells
are updated. Finally, all non-blocking communication @pens have to be com-
pleted.

B.2.2 httperf

httperf simulates clients accessing a web server by firing html retguat the
server. It can be configured to simulate a number of cliertisg at a certain
rate. httperf can also inject the requests by following recorded tracgsn8lud-

ing idle times into these tracdsttperf can simulate the behaviour o#al surfers
following a click/read sequence.

This feature ohttperf was used to create the workload for the load balancing

tests.httperf executed traces that were recorded using RUBIS.

B.2.3 RUBIS

RUBIS is the abbreviation of Rice University Bidding Systehis intended to
simulate a bidding, browsing, and selling web site simitaebay?. It simulates
a number clients navigating through the service. Accordlingjven probabilities
a client accesses different documents and services stémbim an entry page.

Only the browsing component of RUBIS is active for the measwents in the
context of this thesis. This only employs the web server @hgain this case). It
avoids interference with other services like databasepplication servers that
are required for the bidding and selling components.

180

Appendix C

Measurement Data

C.1 SlibNet: Simulation of Credit Algorithms

min | drops answertime burst Iength product
homogeneous
10| 133.06 541538 6249 1
15| 149.64 494667 68410.938372
20 | 149.22 497269 65580.982002
25| 167.42 456509 5727 1.15735
30| 164.64 449158 5979 1.07261
35| 183.6 401697 5379 1.18906
40| 189.18 403385 5161 1.28232
heterogeneous
10| 278.44 683909 1300 1
15| 316.28 630916 1268 1.07858
20 | 304.26 629395 1339 0.97634
25| 334.58 573616 1309 1.00091
30| 332.34 566432 1186 1.08358
35| 374.96 512891 1115 1.17747
40| 364.44 511429 1161 1.09595

Table C.1: LWM minimum number of credits.

181

C.1. SLIBNET: SIMULATION OF CREDIT ALGORITHMS

Plain LWM SH DL-SH DPR | WRR
dropped 162 164 153 210 145 | 203
queue 52.0 51.9 49.9 40.6 48.2 | 49.0

answer time 551539 549688 532874 428104 51336825986
queue ratio | 1.009 0.968 1.019 1.012 0.996 1.054
drop-time | 0.8368 0.8443 0.7636 0.8420 0.6991.0

Table C.2: Simulation results for homogeneous setup withh $ervers under
100 % load.

Plain LWM SH DL-SH DPR | WRR
dropped 162 164 153 210 145 | 645
gueue 52.0 51.9 49.9 40.6 48.2 | 50.7

answer time 551539 549688 532874 428104 51336824385
queueratio | 1.009 0.968 1.019 1.012 0.997 5.290
drop-time | 0.2642 0.2665 0.2410 0.266 0.2211.0

Table C.3: Simulation results for non-exact-homogeneaeights.

Plain LWM SH DL-SH DPR |WRR
failed 314 332 245 309 196 | 219
gueue 69.2 68.4 63.1 49.7 56.4 | 48.2

answer time 714531 706006 652111 518468 59309920337
queueratio | 1.941 2.016 1.451 1.422 1.387 0.900
drop-time | 1.963 2.0546 1.3973 1.4031 1.0183L.0

Table C.4: Simulation results for heterogeneous setup trith servers under
100 % load.

Plain DPR WRR WRR5 WRR10
failed 314 196 219 355 627
queue 69.2 56.4 48.2 42.8 43.2
answer time 714531 593099 520337 451034 453568
queue ratio | 1.941 1.387 0.900 0.3086 0.1289
drop-time | 1.963 1.0183 1.0 1.4011 2.4897

Table C.5: Simulation results for heterogeneous setuptwibhservers using non-
exact weights (10 %) under 100 % load.

182

Appendix D

Specification of Units

Unit Measure| Explanation

1kB 1000 Bytes| size of messages or buffers
1 MB 1000 kB | size of messages or buffers
1GB 1000 MB | size of messages or buffers
1 KiB 1024 Bytes| size of messages or buffers
1 MiB 1024 KiB | size of messages or buffers
1GiB 1024 MiB | size of messages or buffers
1 kbit/s 1000 bit/s | transfer rate, throughput

1 Mbit/s| 1000 kbit/s | transfer rate, throughput

1 Gbit/s | 1000 Mbit/s | transfer rate, throughput
1kB/s 1000 B/s | transfer rate, throughput
1MB/s 1000 kB/s | transfer rate, throughput
1GB/s | 1000 MB/s | transfer rate, throughput
1KiB/s 1024 B/s | transfer rate, throughput
1MiB/s | 1024 KiB/s | transfer rate, throughput
1GiB/s | 1024 MiB/s | transfer rate, throughput

Table D.1: Specification of Units.

183

184

List of Figures

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4

General Ethernet data transmission scheme using DMA.. . . 25
Ratio of transmission times (network vs. memory). 27
InfiniBand network overview[Inf02a]. 28
InfiniBand Programming Interfaces and Protocols[Rn9HO . . 29
Data transmission scheme of InfiniBand (non-RDMA). 30

VI Architectural Model [CCCO7] 38
Direct Access Transport Framework [DATO7b] 40
Fence synchronisation mechanism of MPI-2 [MPI197]. 45
Post-Start-Complete-Wait synchronisation of MPI-P8I7]. . . 45
Architecture of MPICHand MPICH2 47
Abstraction Layersof Open MPIL. 48
Basic rendezvous transmission scheme. 57.
Communication pipelineexample. 58
Effect of sending fragments through a pipeline. 59
Comparing eager (upper) and rendezvous (lower) modiAan»f

1.2.7. e e 62
Producer/Consumer Example. 70
Communication model of virtually provided remote psge . . . 71
Pipeline steps of the communication model. 71
Physical mapping of process B into the communicatiotesys. . 77
Physical mapping in case of shared memory as transpart. ... 78
Physical mapping in case of shared address space. 78
Implicit barrier with bi-directional synchronisation 86
Bi-directional synchronisation in the proposed API. 92

One-dimensional domain decomposition of the Cellulatofaton. 96

Jumpshot visualisation of the CA with MPI_Sendrecv. 98
Time spent in the barrierattheend. 0 10
Communication between two processes. 04. 1

185

LIST OF FIGURES

5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Architecture of the NEON implementation (derived frdbaf08]) 113
Impact of early notification and implicit barrier in MRI-. 124
Application of the Communication Model to Shared Memory. 126

Architecture of SlibNet. 137
Rings of registered and available servers. 144
Impact of the minimum credits on Low Watermark Reportlng 154
Average number of dropped requests out of 18750 157
Average answertime. oo 158
Answer time correlated to number of drops normalised RRV . 158
Average tolerated burstlength L. 915

Architecture of SlibNet for Socket-based applicatipfis07]. . . 165
Response time of Round-Robin with and without weights-co
paredto SLIBNet. L 167

186

List of Tables

5.1
5.2
5.3

5.4

6.1
6.2
6.3

Al

C1l
C.2

C.3
C4

C5

D.1

Runtime and of communication time of the Cellular Autéoma . 97
Latency and Bandwith of NEON and MPICH2. 120
Runtime comparison (in seconds) of the cellular automasing

MPICH2 one-sided and two-sided communication and NEON. 21 1

Time per iteration of Cellular Automaton. 124
Parameter overview of simulations. 151
Simulation results for a single server setup under 108d.1. . . 155

Comparison between credit-based and WRR using 19 server 160

Machines of the InfiniBand cluster. 761
LWM minimum number ofcredits. 181
Simulation results for homogeneous setup with two senveder
100%load. 182
Simulation results for non-exact-homogeneous weights. . . . 182
Simulation results for heterogeneous setup with tweessrunder
100%load. 182
Simulation results for heterogeneous setup with tweessusing
non-exact weights (10 %) under 100%load. 182
Specificationof Units. 183

187

LIST OF TABLES

188

Bibliography

[AACT04] George Almasi, Charles Archer, José G. Castafios, Cs E&miay,
Philip Heidelberger, Xavier Martorell, José E. Moreira,rKBinnow,
Joe Ratterman, Nils Smeds, Burkhard Steinmacher-burowjaxii
Gropp, and Brian Toonen. Implementing MPI on the BlueGergiL
percomputer. In Danelutto et al. [DVL04], pages 833—-845.

[ACH™08] Eric Allen, David Chase, Joe Hallett, Victor Luchangdan-Willem
Maessen, Sukyoung Ryu, Guy L. Steele Jr., and Sam Tobingtadh
The Fortress Language Specification. Technical reportN8arosys-
tems, Inc., March 2008.

[ADD "04] Rob T. Aulwes, David J. Daniel, Nehal N. Desai, Richarddra-
ham, L. Dean Risinger, Mark A. Taylor, Timothy S. Woodall,dan
Mitchel W. Sukalski. Architecture of LA-MPI, A Network-F#u
Tolerant MPI. Proceedings of 18th International Parallel and Dis-
tributed Processing Symposium (IPDPS’0Ogage 15b, 2004.

[AGSZ06] Michael Andraschek, Stephan Gensch, MatthiasuR¢chand Jorg
Zinke. NEON: A New Efficient One-sided communications iNter
face. Seminar Paper, Universitat Potsdam, Institut fUorimftik,
April 2006.

[ASO06] Michael Andraschek and Matthias Schulz. Evaluigrmon MPI-2
One-Sided Communications auf TCP/IP-Netzwerken. Stuéemt
search Project, Universitat Potsdam, Institut fur Infotik)&2006.

[Ass98] VMEDbus International Trade Association. Myrinet WME Protocol
Specification. http://www.myri.com/open-specs, Auguia.

[Ast08] Astrophysikalisches Institut Potsdam. AMIGAhtt p:// ww.
ai p. de/ Peopl e/ AKnebe/ AM GA/ , 2008. accessed 02/2009.

[BB0O3] Christian Bell and Dan Bonachea. A New DMA RegiswatiStrat-
egy for Pinning-Based High Performance Networks.IRDPS '03:

189

BIBLIOGRAPHY

Proceedings of the 17th International Symposium on Pdraiid Dis-
tributed Processingpage 198.1, Washington, DC, USA, 2003. IEEE
Computer Society.

[BBBT91] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R Qarter,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, H. D. Simon
V. Venkatakrishnan, and S. K. Weeratunga. The NAS ParakelcB-
marks. Technical report, The International Journal of Stgaputer
Applications, 1991.

[BBNYO06] Christian Bell, Dan Bonachea, Rajesh Nishtalal Katherine Yelick.
Optimizing bandwidth limited problems using one-sided camica-
tion and overlap. IfProceedings of the 20th IEEE International Par-
allel and Distributed Processing Symposium (IPDFPZR)06.

[BCO5] Daniel P. Bovet and Marco Cesatilnderstanding the Linux Kernel
O'Reilly, 3 edition, November 2005. covers version 2.6.

[BCF"95] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Elan
Kulawik, Charles L. Seitz, Jakov N. Seizovic, and Wen-King. S
Myrinet: A Gigabit-per-Second Local Area NetworkEEE Micro,
15(1):29-36, 1995.

[BDO3] Dan Bonachea and Jason Duell. Problems with using MPland
2.0 as compilation targets for parallel language implemu@mts. Inin
Proc. Support for High Performance Scientific and EnginegcCom-
puting (SHPSEC-Q3ages 91-99, 2003.

[BDV94] Greg Burns, Raja Daoud, and James Vaigl. LAM: An O&oster
Environment for MPI. InProceedings of Supercomputing Symposium
pages 379-386, 1994.

[BJLT06] Tim Brecht, G. (John) Janakiraman, Brian Lynn, Vikrante®are, and
Yoshio Turner. Evaluating network processing efficiencihvpiroces-
sor partitioning and asynchronous I/GBIGOPS Operating Systems
Review 40(4):265-278, 2006.

[BMGO6a] Darius Buntinas, Guillaume Mercier, and Willianndpp. Design and
Evaluation of Nemesis, a Scalable, Low-Latency, MessagsiRg
Communication Subsystem. GCGRID '06: Proceedings of the Sixth
IEEE International Symposium on Cluster Computing and thiel G
(CCGRID’06) pages 521-530, Washington, DC, USA, 2006. IEEE
Computer Society.

190

BIBLIOGRAPHY

[BMGO6b] Darius Buntinas, Guillaume Mercier, and William Gropp. Im-

plementation and Shared-Memory Evaluation of MPICH2 over t
Nemesis Communication Subsystem. In Mohr et al. [MTWDO6],
pages 86—95.

[BMM T05] Christine Bockmann, Irina Mironova, Detlef Miiller, IsaBchnei-

[BouO1]
[Bru99]

[BRUO5]

[BSLO7]

denbach, and Remo Nessler. Microphysical Aerosol Parasten
Multiwavelength Lidar. Optical Society of Ameriga22(3), March
2005.

Tony Bourke.Server Load BalancingO’Reilly, 2001.

J. C. Brustoloni. Interoperation of copy avoidamt@&etwork and file
I/0. In Proceedings of IEEE Infocompages pp. 534-542, 1999.

Ron Brightwell, Rolf Riesen, and Keith D. Underwoodnalyzing
the Impact of Overlap, Offload, and Independent Progres$/fes-
sage Passing Interface Applicationfnternational Journal of High
Performance Computing Applicationt9(2):103-117, 2005.

Brian Barrett, Galen M. Shipman, and Andrew Lumsaai Analysis
of Implementation Options for MPI-2 One-Sided. In Cappeital.
[CHDO7], pages 242-250.

[BSWPO02] Pavan Balaji, Piyush Shivam, Pete Wyckoff, and litheswar K.

[BUO3]

[BUO4]

[CC99]

[CCCO7]

Panda. High Performance User Level Sockets over Gigabér&ét.
In CLUSTER pages 179-186. IEEE Computer Society, 2002.

Ron Brightwell and Keith D. Underwood. Evaluationai Eager Pro-
tocol Optimization for MPI. In Jack Dongarra, Domenico Liainza,
and Salvatore Orlando, editoBYM/MPI, volume 2840 ofLecture
Notes in Computer Sciengeages 327—-334. Springer, 2003.

Ron Brightwell and Keith D. Underwood. An Analysis bfiC Re-
source Usage for Offloading MPipdps 09:183a, 2004.

G. Chiola and G. Ciaccio. Porting MPICH ADI on GAMMA thi
Flow Control. InProceedings of IEEE - ACM 1999 Midwest Workshop
on Parallel Processing (MWPP 199%ent, OH, August 1999.

Compaq Computer Corporation, Intel Corporationd aicrosoft
Corporation. Virtual Interface Architecture Specificati®ersion
1.0. ftp://downl oad. i ntel.com desi gn/servers/vi/

VI _Arch_Speci ficationl0. pdf, December 1997. accessed
12/2007.

191

BIBLIOGRAPHY

[CCE"03] Emmanuel Cecchet, Anupam Chanda, Sameh Elnikety, Mdie

[CCZ07]

[CES02]

[CHDO7]

[Chu96]

[Cia]

[Cia99]

[Clu03]

guerite, and Willy Zwaenepoel. Performance Comparison af-M
dleware Architectures for Generating Dynamic Web Conterh
4th ACM/IFIP/USENIX International Middleware Conferené&go de
Janeiro, Brazil, June 2003.

B.L. Chamberlain, D. Callahan, and H.P. Zima. Raft&rogramma-
bility and the Chapel Languagént. J. High Perform. Comput. Appl.
21(3):291-312, 2007.

G. Ciaccio, M. Ehlert, and B. Schnor. Exploiting @it ethernet ca-
pacity for cluster applications. IbCN '02: Proceedings of the 27th
Annual IEEE Conference on Local Computer Netwpipkage 0669,
Tampa, Florida, USA, 2002. IEEE Computer Society.

Franck Cappello, Thomas Hérault, and Jack Dongau#ors. Re-
cent Advances in Parallel Virtual Machine and Message Paghiter-
face, 14th European PVM/MPI User’'s Group Meeting, Parisariee,
September 30 - October 3, 2007, Proceedjrgtume 4757 of_ecture
Notes in Computer Scienc8pringer, 2007.

H.K. Chu. Zero-copy TCP in Solaris. Rroceedings of the USENIX
1996 Annual Technical Conferenclnuary 1996. San Diego, CA.

G. Ciaccio. MPI/GAMMA home page. http://wwv. di si .
uni ge. it/ project/gamma/ npi gama/ .

Giuseppe CiaccioEfficient Protocols for Cluster ComputingPhD
thesis, University of Genoa, 1999.

Cluster File Systems, Inc. Lustre File Systenmtt p:// ww.
clusterfs.conm ,2003. accessed 01/2008.

[CYZEGO04] Francois Cantonnet, Yiyi Yao, Mohamed Zahrang diarek El-

Ghazawi. Productivity Analysis of the UPC Languaigelps 15:254a,
2004.

[DATO7a] DAT collaborative. Kernel Direct Access Programg Library.

http://ww. dat col | abor ati ve. org/ kdapl . ht M, Jan-
uary 2007. accessed 12/2007.

[DATO7b] DAT collaborative. User Direct Access Programumiribrary.

http://ww. dat col | abor ati ve. or g/ udapl . ht M, Jan-
uary 2007. accessed 12/2007.

192

BIBLIOGRAPHY

[Dav08]

[Day95]

[DBO6]

[DBP+08]

[DVLO4]

[DWO08]

[DZ83]

[EA07]

[EAROS]

[EGCO1]

[EGC02]

David Bohme. Porting and Analysis of NEON over Indand.
Diploma thesis, Universitat Potsdam, January 2008.

John Day. The (un)revised OSI reference mo86ECOMM Comput.
Commun. Rey25(5):39-55, 1995.

Douglas Doerfler and Ron Brightwell. Measuring MPInSeand
Receive Overhead and Application Availability in High Rerhance
Network Interfaces. In Mohr et al. [MTWDO06], pages 331-338.

Anthony Danalis, Aaron Brown, Lori L. Pollock, D. Marti@wany,
and John Cavazos. Gravel: A Communication Library to Fagt Pa
MPI. In Alexey L. Lastovetsky, Tahar Kechadi, and Jack Daorga
editors,PVM/MPI, volume 5205 ofLecture Notes in Computer Sci-
ence pages 111-119. Springer, 2008.

Marco Danelutto, Marco Vanneschi, and Domenico drahza, edi-
tors. Euro-Par 2004 Parallel Processing, 10th International BufPar
Conference, Pisa, Italy, August 31-September 3, 2004,eeatings
volume 3149 ol ecture Notes in Computer Scien&pringer, 2004.

Dennis Dalessandro and Pete Wyckoff. RDMA Enabledaéte.
http://ww. osc. edu/ research/ network _fil e/
proj ects/rdnma/ overvi ew. sht nl , accessed 12/2008.

J. D. Day and H. Zimmermann. The OSI reference mo&ehceed-
ings of the IEEE71(12):1334-1340, 1983.

Enrico Ellguth and Michael Augustin. Vergleich defAOSC Im-
plementationen MVAPICH, Open MPI und HP-MPI tber InfiniBand
Student Research Project, Universitat Potsdam, Institubformatik,
2007.

EARLINET. the European Aerosol Research Lldar NBikvht t p:
/ I ww. ear | i net. org/,2008. accessed 09/2008.

Tarek EI-Ghazawi and Sebastien Chauvin. UPC Beackinmg Issues.

In ICPP '01: Proceedings of the International Conference omaka

lel Processing pages 365-372, Washington, DC, USA, 2001. IEEE
Computer Society.

Tarek EI-Ghazawi and Francois Cantonnet. UPC paidoce and po-
tential: a NPB experimental study. 8upercomputing '02: Proceed-
ings of the 2002 ACM/IEEE conference on Supercompupiages 1—
26, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press

193

BIBLIOGRAPHY

[EhIO3]

[ELO6]

[EII08]

[FDOO]

Marko Ehlert. Portierung der Genoa Active Messagédiine
(GAMMA) auf die GigabitEthernet Netzwerkkarte Netgear A6
Diploma thesis, Universitat Potsdam, February 2003.

Norbert Eicker and Thomas Lippert. Scalable Ethe@les-Switches.
In Euro-Par, pages 874-883, 2006.

Enrico Ellguth. Parallelisierung von Clasp. Dipha thesis, Univer-
sitat Potsdam, October 2008.

Graham E. Fagg and Jack Dongarra. FT-MPI: Fault aoleMPI,
Supporting Dynamic Applications in a Dynamic World. Proceed-
ings of the 7th European PVM/MPI Users’ Group Meeting on Réece
Advances in Parallel Virtual Machine and Message Passitgrface
pages 346—353, London, UK, 2000. Springer-Verlag.

[FHLT05] Doug Freimuth, Elbert Hu, Jason LaVoie, Ronald Mraz¢cENahum,

Prashant Pradhan, and John Tracey. Server network saglait
TCP offload. IPATEC’05: Proceedings of the USENIX Annual Techni-
cal Conference 2005 on USENIX Annual Technical Confergranges
15-15, Berkeley, CA, USA, 2005. USENIX Association.

[FKSS06] Sven Friedrich, Sebastian Krahmer, Lars Schnéaeh, and Bettina

[Frios]

[FSS05]

[GASO06]

[Geo06]

Schnor. Loaded: Server Load Balancing for IPv6.IONS page 8.
IEEE Computer Society, 2006.

Sven Friedrich. Lastverteilung in InfiniBand-Neterken. Diploma
thesis, Universitat Potsdam, January 2006.

Sven Friedrich, Lars Schneidenbach, and Bettitm&c SLIBNet:
Server Load Balancing for InfiniBand Networks. TechnicapBw
ISSN 0946-7580, TR-2005-12, Institute for Computer Sagndni-
versity of Potsdam, December 2005.

GASNet Specificationht t p: / / gasnet . cs. ber kel ey. edu/,
November 2006. Release 1.8.

Patrick Geoffray. A Critique of RDMAWt t p: / / www. hpcwi r e.
com hpc/ 815242. ht M , 2006.

[GFB*04] Edgar Gabriel, Graham E. Fagg, George Bosilca, Tharaskuny

Jack J. Dongarra, Jeffrey M. Squyres, Vishal Sahay, Prabh&tam-
badur, Brian Barrett, Andrew Lumsdaine, Ralph H. Castaiavi® J.
Daniel, Richard L. Graham, and Timothy S. Woodall. Open MPI:

194

BIBLIOGRAPHY

Goals, Concept, and Design of a Next Generation MPI Impléaaen
tion. In Proceedings, 11th European PVM/MPI Users’ Group Meet-
ing, pages 97-104, Budapest, Hungary, September 2004.

[GIMT05] J. Gressmann, T. Janhunen, R. Mercer, T. Schaub, S.eThiad
R. Tichy. Platypus: A platform for distributed answer selvsw.
In C. Baral, G. Greco, N. Leone, and G. Terracina, editBreceed-
ings of the Eighth International Conference on Logic Pragraing
and Nonmonotonic Reasoning (LPNMR’0Sblume 3662 ofLNAI,
pages 227-239. Springer, 2005.

[GIMT06] J. Gressmann, T. Janhunen, R. Mercer, T. Schaub, S.eTtiad
R. Tichy. On Probing and Multi-Threading in Platypus. In Ge®ka,
S. Coradeschi, A. Perini, and P. Traverso, editBreceedings of the
European Conference on Artificial Intelligence (ECAI'0pages 392—
396. I0S Press, 2006.

[GKNSO7a] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaalasp: A
Conflict-Driven Answer Set Solver. In C. Baral, G. Brewkadan
J. Schlipf, editorsProceedings of the Ninth International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’07
volume 4483 ofLecture Notes in Artificial Intelligencepages 260—
265. Springer-Verlag, 2007.

[GKNSO7b] M. Gebser, B. Kaufmann, A. Neumann, and T. Scha@bnflict-
Driven Answer Set Solving. In M. Veloso, editdtroceedings of the
Twentieth International Joint Conference on Artificialetiigence (13-
CAI'07), pages 386—392. AAAI Press/The MIT Press, 2007. Available
at http://www.ijcai.org/papers07/contents.php.

[GL94] William Gropp and Ewing Lusk. An abstract device défon to
support the implementation of a high-level point-to-paméssage-
passing interface. Technical report, Argonne Nationaldratory,
1994. Preprint MCS-P342-1193.

[GLDS96] William Gropp, Ewing Lusk, Nathan Doss, and Antlgddkjellum.
A High-Performance, Portable Implementation of the MPI béege
Passing Standard. Technical report, Argonne National tsboy and
Mississippi State University, 1996.

[GRBK98] Edgar Gabriel, Michael Resch, Thomas Beisel, aath& Keller.
Distributed Computing in a Heterogeneous Computing Emvirent.
In Proceedings of the 5th European PVM/MPI Users’ Group Megtin

195

BIBLIOGRAPHY

[GTOS5]

[GTO7]

[HCO7]

[HP96]

on Recent Advances in Parallel Virtual Machine and MessagsiAg
Interface pages 180-187, London, UK, 1998. Springer-Verlag.

William D. Gropp and Rajeev Thakur. An Evaluation afplemen-
tation Options for MPI One-Sided Communication. In Martetoal.
[MKDO5], pages 415-424.

William D. Gropp and Rajeev Thakur. Revealing thef®enance of
MPI RMA Implementations. In Cappello et al. [CHDO7], pagg22
280.

Nor Asilah Wati Abdul Hamid and Paul Coddington. Asges, Distri-
butions and Scalability of MPI Communication Times for Htiet and
Myrinet Networks. INPDCN’07: Proceedings of the 25th conference
on Proceedings of the 25th IASTED International Multi-Gaehce
pages 269-276, Anaheim, CA, USA, 2007. ACTA Press.

John L. Hennessy and David A. Patters@omputer Architecture a
Quantitative ApproachMorgan Kaufmann Publishers, Inc., 2 edition,
1996.

[HSJPO5a] Wei Huang, Gopalakrishnan Santhanaraman, Myaok Jin, and

Dhabaleswar K. Panda. Design Alternatives and Perform@rame-
Offs for Implementing MPI-2 over InfiniBand. In Martino et.al
[MKDO5], pages 191-199.

[HSJPO5b] Wei Huang, Gopalakrishnan Santhanaraman, Myaok Jin, and

[HX97]

[Inc08]

[InfO2a]

Dhabaleswar K. Panda. Scheduling of MPI-2 One Sided Opersti
over InfiniBand. INIPDPS '05: Proceedings of the 19th IEEE Inter-
national Parallel and Distributed Processing SymposiuROPS’05)

- Workshop 9page 215.1, Washington, DC, USA, 2005. IEEE Com-
puter Society.

Kai Hwang and Zhiwei XuScalable Parallel Computing, Technology,
Architecture, ProgrammingWCB/McGraw-Hill, 1997.

Cray Inc. Chapel Language Specification 0.775. el report,
Cray Inc., 2008.

InfiniBand Trade Association. InfiniBand Architece Specification
Volumes 1 and 2 Release 1.1Ihtt p:// ww. i nfi ni bandt a.
or g/ specs, November 2002.

196

BIBLIOGRAPHY

[Inf02b] InfiniBand Trade Association. Sockets Direct Fail v1.0. ht t p:
/I ww. i nfi ni bandt a. or g/ specs, November 2002.

[Ins85] Institute of Electrical and Electronics EnginedEEE 802.3 Standard,
1985.

[Jai9l] Raj Jain.The Art of Computer Systems Performance Analysis. Tech-
niques for Experimental Design, Measurement, Simulatiod,Mod-
eling. John Wiley & Sons, 1991.

[JCB96] P. Steenkiste J. C. Brustoloni. Effects of buffgrgemantics on 1/O
performance. IfProceedings OSDI'9Gages pp. 277-291. USENIX,
October 1996. Seattle, WA.

[JDO5] Hao Jiang and Constantinos Dovrolis. Why is the imgerTraffic
Bursty in Short Time Scales? SIGMETRICS Perform. Eval. Rev.
33(1):241-252, 2005.

[JTC94] JTC1.1SO 7498-1, textgleich mit DIN ISO 7498, hat déel: Infor-
mation technology - Open Systems Interconnection - BasierRece
Model: The basic model, 1994.

[Julo8] Forschungszentrum Jilich. Scalasca. http://ww.
fz-juelich.de/jsc/scal ascal/,2008. accessed 09/2008.

[Ker03] Jeremy Kerr. Using Dynamic Feedback to Optimised.&alancing
Decisions. Australian Linux Conference - linux.conf.a003.

[Ker08] Jeremy Kerr. Feedbackd Project Homepadw.t p: / / ozl abs.
or g/ ~j k/ proj ect s/ f eedbackd/ , 2008.

[KKO7] Christoph Kessler and Jorg Keller. Models for PaghlComputing:
Review and Perspectiveditteilungen - Gesellschaft fur Informatik
e.V., Parallel-Algorithmen und Rechnerstrukturen PAR&:13-29,
2007.

[KKF+08] Adrian Knoth, Christian Kauhaus, Dietmar Fey, Lars Sstlenbach,
and Bettina Schnor. Challenges of MPI over IPv6. Rroceed-
ings of the 4th IARIA International Conference on Netwonkd 8ys-
tems (ICNS), IPv6 Deploying Future Internet Workshagges xx—yy,
Gossier, Guadeloupe, 2008. IEEE Computer Society.

[KKPFQ7] Christian Kauhaus, Adrian Knoth, Thomas Peisatiii Dietmar Fey.
Efficient Message Passing on Multi-Clusters: An IPv6 Exi@ms

197

BIBLIOGRAPHY

to Open MPI. InProceedings of KiCC'07, Chemnitzer Informatik
Berichte February 2007.

[KKZLO03] Laxmikant V. Kalé, Sameer Kumar, Gengbin Zhengdabhee Wali
Lee. Scaling Molecular Dynamics to 3000 Processors withelero
tions: A Performance Analysis Case Study. In Peter M. A. §loo
David Abramson, Alexander V. Bogdanov, Jack Dongarra, Alle
Zomaya, and Yuri E. Gorbacheyv, editolsternational Conference on
Computational Sciengerolume 2660 ofLecture Notes in Computer
Sciencepages 23-32. Springer, 2003.

[KRS01] Christian Kurmann, Felix Rauch, and Thomas Strick&peculative
Defragmentation - Leading Gigabit Ethernet to True Zerg@CGom-
munication.Cluster Computing4(1):7-18, 2001.

[KTFO2] Nicholas T. Karonis, Brian Toonen, and lan Foster. PIH-G2:
A Grid-Enabled Implementation of the Message Passing fater
November 2002.

[Kun9l] T. Kunz. The Influence of Different Workload Desdigns on a
Heuristic Load Balancing SystemlEEE Transactions on Software
Engineering 17(7):725-730, July 1991.

[LinO7a] Linux VS Group. Job Scheduling Algorithmsin LVt t p: / / www.
I i nuxvirtual server. org/docs/scheduling. htn,
2007.

[LinO7b] Linux VS Group. Linux Virtual Server. http://ww.
I i nuxvirtual server. org, 2007.

[LWPO04] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K. Pandagh Perfor-
mance RDMA-Based MPI Implementation Over InfiniBantht. J.
Parallel Program, 32(3):167-198, 2004.

[MBKQOO] Marshall Kirk McKusick, Keith Bostic, Michael J. &rels, and
John S. QuartermanThe Design and Implementation of the 4.4 BSD
Operating SystemAddison Wesley, March 2000.

[MJ98] David Mosberger and Tai Jin. httperf: A Tool for Measg Web
Server PerformancePerformance Evaluation RevieW®6(3):31-37,
December 1998. (Originally appeared in Proceedings of 898 1In-
ternet Server Performance Workshop, June 1998, 59-67.).

198

BIBLIOGRAPHY

[MKDO5] Beniamino Di Martino, Dieter Kranzlmduller, and Ja®ongarra, edi-

[Mog03]

[MPI95]

[MPI97]

[MPI07]

[MR97]

tors. Recent Advances in Parallel Virtual Machine and Messags+Pas
ing Interface, 12th European PVM/MPI Users’ Group MeetiSgr-
rento, Italy, September 18-21, 2005, Proceedjngdume 3666 of
Lecture Notes in Computer Scien&pringer, 2005.

Jeffrey C. Mogul. TCP offload is a dumb idea whose timas come.

In HOTOS’03: Proceedings of the 9th conference on Hot Topics in
Operating Systempages 25-30, Berkeley, CA, USA, 2003. USENIX
Association.

MPI: A Message Passing Interface Standard, Juné.199lessage
Passing Interface Forum.

MPI-2: Extensions to the Message Passing Interfagly 1997. Mes-
sage Passing Interface Forum.

The MPICH2 Project. http://ww. nts. anl . gov/
resear ch/ proj ect s/ npi ch2/i ndex. php, 2007. Argonne
National Laboratory.

Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminatiregeive live-
lock in an interrupt-driven kernelACM Transactions on Computer
Systemsl5:217-252, 1997.

[MRB*06] Frank Mietke, Rober Rex, Rober Baumgartl, Torsten Mehlarsten

[MS05]

Hofler, and Wolfgang Rehm. Analysis of the Memory Registrati
Process in the Mellanox InfiniBand Software Stack. In Watig&.
Nagel, Wolfgang V. Walter, and Wolfgang Lehner, editdsyo-Par,
volume 4128 ofLecture Notes in Computer Sciengages 125-133.
Springer, 2006.

Arthur A. Mirin and William B. Sawyer. A Scalable Img@nentation
of a Finite-Volume Dynamical Core in the Community Atmosghe
Model. Int. J. High Perform. Comput. Appl19(3):203-212, 2005.

[MTWDO06] Bernd Mohr, Jesper Larsson Traff, Joachim Worengand Jack

Dongarra, editorsRecent Advances in Parallel Virtual Machine and
Message Passing Interface, 13th European PVM/MPI Usersu@r
Meeting, Bonn, Germany, September 17-20, 2006, Procegdialy
ume 4192 ol ecture Notes in Computer Scien&pringer, 2006.

[MVAO7] MVAPICH: MPI over InfiniBand and iWARP.ht t p: / / mvapi ch.

cse. ohi o- st at e. edu/ , 2007.

199

BIBLIOGRAPHY

[Myr05]

[NASO7]

[NC99]

Myricom, Inc. Myrinet Exprress (MX): A High-perfanacne, Low-
Level, Message-Passing Interface for Myrinet. Technicgdrt 1.0,
Myricom, Inc., January 2005.

NAS Parallel Benchmark Suiteht t p: / / ww. nas. nasa. gov/
Resour ces/ Sof t war e/ npb. ht m , 2007.

Jarek Nieplocha and Bryan Carpenter. ARMCI: A PdaaRemote
Memory Copy Libray for Distributed Array Libraries and Coit@p
Run-Time Systems. In José D. P. Rolim, Frank Mueller, Albért
Zomaya, Fikret Ercal, Stephan Olariu, Binoy Ravindran, Gastafs-
son, Hiroaki Takada, Ronald A. Olsson, Laxmikant V. Kalé&ePéd.
Beckman, Matthew Haines, Hossam A. EIGindy, Denis Caromel,
Serge Chaumette, Geoffrey Fox, Yi Pan, Keqin Li, Tao YangGGi-
ola, Gianni Conte, Luigi V. Mancini, Dominique Méry, BevgrA.
Sanders, Devesh Bhatt, and Viktor K. Prasanna, editBRS/SPDP
Workshopsvolume 1586 of ecture Notes in Computer Scienpages
533-546. Springer, 1999.

[NTKPO6] J. Nieplocha, V. Tipparaju, M. Krishnan, and D. Han High Per-

[OMPO7]

[Ope]

[Ope05]

formance Remote Memory Access Comunications: The ARMCI Ap-
proach. International Journal of High Performance Computing and
Applications 20(2):233-253, 2006.

The Open MPI Projectit t p: / / www. open- npi . or g/, 2007.

Open Fabrics Allianceht t p: / / ww. openf abri cs. org/ . ac-
cessed 12/2007.

OpenMP Architecture Review Board. OpenMP Appiaafrogram
Interface. Technical report, OpenMP Architecture Revieoaisl,
2005.

[PBWT05] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhats

E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten. Btde
molecular dynamics with namd. Comput Chen26(16):1781-1802,
December 2005.

[PcFH"02] Fabrizio Petrini, Wu chun Feng, Adolfy Hoisie, Salvadiwll, and

Eitan Frachtenberg. The Quadrics Network: High-Perforreadlus-
tering TechnologylEEE Micro, 22(1):46-57, January/February 2002.
ISSN 0272-1732.

200

BIBLIOGRAPHY

[PKPO3]

[Pot04]

[PVF03]

[Rajo5]

Fabrizio Petrini, Darren J. Kerbyson, and ScottiRakihe Case of
the Missing Supercomputer Performance: Achieving Optifeafor-
mance on the 8,192 Processors of ASCI QS®’'03: Proceedings of
the 2003 ACM/IEEE conference on Supercompuytpage 55, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

Potsdam Institute for Climate Impact Research. adOcean
Model 3. http://ww. pi k- pot sdam de/ resear ch/
resear ch- domai ns/ eart h- syst em anal ysi s/

cl i mber 3/ ocean. ht nl , 2004. accessed 09/2008.

PVFS-Development-Team. Parallel Virtual File ®ys, Version 2.
htt p: / / ww. pvfs. or g/, sep 2003. accessed 01/2008.

Rajeev Thakur and William Gropp and Brian Toonenti@jzing the
Synchronization Operations in MPI One-Sided Communicatitigh
Performance Computing Applicationk9(2):119-128, 2005.

[RnSHO5] Hal Rosenstock and Roland Dreier nad Sean Heftyen@®o Core

[Ryl07]

Software: Architectural Overviewht t p: / / openf abri cs. or g/
docs/ oi b_wkshp 022005/ openi b_core_SW.. pdf, 2005.
Slides from OpenlB Developers Workshop, accessed 01/2008.

Olaf Ryll. Native Lastverteilung in InfiniBand-Netverken. Diploma
thesis, Universitat Potsdam, March 2007.

[SBB*07] Galen M. Shipman, Ron Brightwell, Brian Barrett, Jeffré.

[SBS08]

[SCO3]

Squyres, and Gil Bloch. Investigations on InfiniBand: Eéiti Net-
work Buffer Utilization at Scale. In Cappello et al. [CHDQflages
178-186.

Lars Schneidenbach, David Béhme, and Bettina Sclit@formance
Issues of Synchronisation in the MPI-2 One-Sided Commiamct
API. In 15th European PVM/MPI Users’ Group Meetingages 177
— 184, Dublin, Ireland, September 2008. Spinger, Lecturéedln
Computer Science 5205.

Piyush Shivam and Jeffrey S. Chase. On the elusivefitgiof pro-
tocol offload. InNICELI '03: Proceedings of the ACM SIGCOMM
workshop on Network-1/O convergengeages 179-184, New York,
NY, USA, 2003. ACM.

201

BIBLIOGRAPHY

[Sch03]

[Sch06]

[ShmO1]

[Sil0g]

[SLO3]

[SLP94]

[SNO8]

Lars Schneidenbach. Design und Implementierungresocket-
Schnittstelle fur das Leichtgewichtprotokoll GAMMA. Dipina the-
sis, Universitat Potsdam, March 2003.

Hynek Schlawack. Analyse und Optimierung der
Netwerkschnittstellen BMI und NEON. Diploma thesis, Unsigit
Potsdam, September 2006.

Quadrics Supercomputers World L®8hmem Programming Manyal
3 edition, June 2001. Quadrics Shmem Manual.

Silicon Graphics, Inc. SHMEM API for Parallel Pragnming.
http://ww. shmem or g/, 2008. accessed 09/2008.

Jeffrey M. Squyres and Andrew Lumsdaine. A Comporfechitec-
ture for LAM/MPI. In Proceedings, 10th European PVM/MPI Users’
Group Meetingnumber 2840 in Lecture Notes in Computer Science,
pages 379-387, Venice, Italy, September / October 2003ngpr
Verlag.

B. Schnor, H. Langendoérfer, and S. Petri. Einsatromaler Netze
zur Lastbalancierung in Workstationclustern. In H. Lardjifer, edi-
tor, Praxisorientierte Parallelverarbeitungages 154-165, Minchen,
October 1994. Hanser Verlag.

Vijay Saraswat and Nathaniel Nystrom. Report on tkpdfimental
Language X10. Technical Report Version 1.7, IBM CorporatR008.

[SNMT98] Gautam Shah, Jarek Nieplocha, Jamshed Mirza, Chulho Rahert

[SOKO01]

[SPO4]

Harrison, Rama K. Govindaraju, Kevin Gildea, Paul Dini¢cadad
Carl Bender. Performance and Experience with LAPI - a NewhHig
Performance. IrCommunication Library for the IBM RS/6000 SP.
In Proceedings of the International Parallel Processingrippsium
pages 260-266, 1998.

Jamal Hadi Salim, Robert Olsson, and Alexey KuzoetzBeyond
Softnet. InProceedings of the USENIX 2001 Annual Technical Con-
ference 2001.

Taher Saif and Manish Parashar. Understanding thavBa and Per-
formance of Non-blocking Communications in MPI. In Dan&ut
et al. [DVLO04], pages 173-182.

202

BIBLIOGRAPHY

[SPLO6]

[SprO5]

[SS05]

[SS07a]

[SS07h]

[SSO95]

[SSPO3]

[SSZLO8]

B. Schnor, S. Petri, and H. Langendérfer. Load Managnt for Load
Balancing on Heterogeneous Platforms: A Comparison ofiticsul

and Neural Network Based Approaches. In Luc Bougé, PiemggFr
niaud, Anne Mignotte, and Yves Robert, editdParallel Processing,
Volume 1l of the Proceedings of the Second InternationaloERar

Conference (Euro-Par'96)volume 1124 ofLecture Notes in Com-
puter Sciencgpages 615-620. ENS Lyon, Springer, August 1996.

\Volker Springel. The cosmological simulation coGADGET-2.
Monthly Notices of the Royal Astronomical Socie®$4(4):1105—
1134, 2005.

Lars Schneidenbach and Bettina Schnor. MigratioMBf Appli-
cations to IPv6 Networks. IiProceedings of the 23rd Conference
on Parallel and Distributed Computing and Networks (PDCpBges
172-176, Innsbruck, Austria, February 2005.

Lars Schneidenbach and Bettina Schnor. Desigesssuthe im-
plementation of MPI2 one sided communication in Etherneteda
networks. InProceedings of the 25th IASTED Parallel and Dis-
tributed Computing and Networks (PDCN)ages 277-284. ACTA
Press, February 2007.

Lars Schneidenbach and Bettina Schnor. Self-Aug&erver Load
Balancing in InfiniBand Networks. Technical Report ISSN 694
7580, TR-2007-2, Institute for Computer Science, Uniugrsf Pots-

dam, 2007.

T. Stricker, J. Stichnoth, D. O’Hallaron, S. HinrichsydaT. Gross.
Decoupling Synchronization and Data Transfer in MessagsiRg
Systems of Parallel Computers. DS '95: Proceedings of the 9th in-
ternational conference on Supercomputipgges 1-10. ACM, 1995.

Lars Schneidenbach, Bettina Schnor, and Stefan Pethitecture
and Implementation of the Socket Interface on Top of GAMMA. |
LCN '03: Proceedings of the 28th Annual IEEE Internationalter-
ence on Local Computer Networksages 528-536, Washington, DC,
USA, 2003. IEEE Computer Society.

Lars Schneidenbach, Bettina Schnor, Jorg Zinked danette
Lehmann. Self-Adapting Credit-based Server Load Balanciin
Proceedings of the 26th International Conference on Patalhd Dis-
tributed Computing and Networks (PDCNbages xx-yy, Innsbruck,
Austria, February 2008. Acta Press.

203

BIBLIOGRAPHY

[Sun88] Sun Microsystems, Inc. RPC: Remote Procedure CatbEol speci-
fication: Version 2. Sun Microsystemist t p: / / www. i et f. or g/
rfc/rfcl057.txt,June 1988. Status: Informational.

[SW97] Peter Sanders and Thomas Worsdtarallele Programmierung mit
MPI: ein Praktikum Logos Verlag Berlin, 1997.

[SYWO1] V. Springel, N. Yoshida, and S. D. M. White. GADGETcade for
collisionless and gasdynamical cosmological simulatiohlew As-
tronomy 6:79-117, April 2001.

[Tan01] Andrew S. TanenbaumModern Operating SystemsPrentice-Hall,
Inc., 2 edition, 2001.

[TOHI98] H. Tezuka, F. O'Carrol, A. Hori, and Y. Ishikawa.rRdown Cache: A
Virtual Memory Management Technique for Zero-copy Comroani
tion. International Parallel Processing Symposium (IPR&ge 0308,
1998.

[TOP0O8] Top 500 Suptercomputer Siteshtt p://ww. t op500. org/,
November 2008. accessed 01/2009.

[TRHOO] Jasper Larsson Traff, Hubert Ritzdorf, and Rolf Heh The Imple-
mentation of MPI-2 One-Sided Communication for the NEC SKX. |
Proceedings of Supercomputirp00.

[UPCO5] UPC Consortium. UPC Language Specifications viezhiiical Re-
port LBNL-59208, Lawrence Berkeley National Lab, May 2005.

[VBR*04] Kees Verstoep, RAOUL A.F. Bhoedjang, Tim Ruhl, Henri &l,Band
Rutger F.H. Hofman. Cluster Communication Protocols faiabal-
Programming System#&CM, 22(3), Aug 2004.

[WA99] Barry Wilkinson and Michael Allen. Parallel Programming: Tech-
niques and Applications Using Networked Workstations aau@lre|
Computers Prentice-Hall, Inc., 1999.

[WINB95] Paul R. Wilson, Mark S. Johnstone, Michael Neethy ®avid Boles.
Dynamic Storage Allocation: A Survey and Critical Review.FAroc.
Int. Workshop on Memory Managemgiinross Scotland (UK), 1995.

[WKM t98] R. Wang, A. Krishnamurthy, R. Martin, T. Anderson, anddller.
Modeling and Optimizing Communication Pipelines. Rroceedings
of the 1998 Conference on Measurement and Modeling of Canput
Systems (SIGMETRICS)998. Madison.

204

BIBLIOGRAPHY

[WWO05] P. Wyckoff and J. Wu. Memory Registration Caching f@atness. In
CCGRID '05: Proceedings of the Fifth IEEE International Syesium
on Cluster Computing and the Grid (CCGrid’05) - Volumepages
1008-1015, Washington, DC, USA, 2005. IEEE Computer Spciet

[YGPO06] Weikuan Yu, Qi Gao, and D.K. Panda. Adaptive conioectnan-
agement for scalable MPI over InfiniBan®arallel and Distributed
Processing Symposium, Internation@i81, 2006.

[Zha00] Wensong Zhang. Linux Virtual Server for Scalabléek Services.
In Proceedings of Ottawa Linux Symposjif00.

[Zin07] Jorg Zinke. Server Load Balancing fiur TCP/IP-Anwlengen in
InfiniBand-Netzen. Master’s thesis, Universitat Potsd&eptember
2007.

[Zit95] Martina Zitterbart.Flexible und effiziente Kommunikationssysteme fir
Hochleistungsnetzénternational Thomson Publishing, 1995.

205

Index

Abstract Device Interface, 46 credit-based scheduling, 140
access, 72
active ring, 144 DAPL, 39
active target synchronisation, 46, 75, 99AT, 39
ADI, 46, 47 direct access, 18, 42, 72, 90
aggregated handles, 51 Direct Access Programming Library, 39
all ring, 144 Direct Access Transport, 39
ARMCI, 50 direct memory access, 64
asynchronous’ 17 direct server return, 134

Direct User Sockets Interface, 36
backend server, 133 dispatcher, 133
backend-based monitoring, 139 dispatcher-based monitoring, 138
blocking, 17, 18 DMA, 64
bridge-path, 134 Doorbell, 37
buffer, 17 double buffering, 102
buffer announced, 75 dropped requests, 134

buffer announcement, 73, 74, 76, 7DUSI, 36
79, 83,85, 89,91, 124,139 Dynamic Pressure Relieve Algorithm, 147

buffer management, 53 dynamic process management, 45
bulk-synchronous, 22, 86, 96, 112, 179
eager, 77,119

cache pollution, 54, 81 eager buffer, 55, 56

Cellular Automaton, 86 eager mode, 56

Cellular Automaton, 179 early sender problem, 55, 62, 81, 84,
channel device, 46 115, 122, 124,125, 129, 172
clusters, 16 efficiency, 34, 35

communication endpoint, 142 Eins, 30, 177, 178

communication model, 71 Ethernet, 24

communication progress, 50 expected, 55

communication system, 53, 55, 71 expected credits, 145, 146
completion, 17, 18, 73-76, 79, 85, 8&xplicit notification, 90

91-93, 139 external interaction, 76
completion queue, 28
computer, 17 fast path, 55

206

INDEX

feedbackd, 139 Linux Virtual Server, 135
flat-based, 134 LMT, 57
fragmentation, 63 lookup, 145
frontend server, 133 lookup interval, 145
low watermark, 145
GAMMA, 37 LVS, 135
GASNet, 52
get, 104 machine, 17

global address space language, 52, 53nassively parallel processor, 17
master-worker, 23

half round-trip-time, 178 Maximum Transfer Unit, 56, 63
hard credits, 146 memory constraints, 81
HCA, 106 memory pooling, 56
host, 17 memory region, 17
Host Channel Adapter, 27, 106 memory registration, 54
httperf, 137, 180 memory window, 105
hybrid, 43, 49, 84, 115, 117 message passing, 42
S _ Message Passing Interface, 10, 43
implicit barrier, 87, 124 minimal copy, 54
implicit notification, 90 MPI, 10, 43
independent progress, 61 MPI Forum, 129
indirect access, 72, 90 MPI-2, 44, 47
InfiniBand, 27, 47 MPI-3, 129
interface, 17 MPICH2, 46, 47
internal interaction, 76 MPP, 17
interrupt service routines, 37 MTU, 56, 63, 64
ISO/OSI Model, 71 Mutual exclusion, 42
: MVAPICH, 47
job, 117 Myrinet, 26, 64
Jumbo-frames, 63
jumpshot, 61 NAPI, 65
, NAT-based, 134
language complexity, 34 Nemesis, 46
large message transfer, 57 NEON, 96
late receiver problem, 55 node, 17
late sender problem, 82 non-blocking, 18
latency, 58 notification, 17, 18, 73, 74, 76, 79, 83,
Iatency hldlng, 59 85, 88, 93, 139
LC, 138
least connections, 138, 148 offloading, 53, 60
lightweight protocol, 37 one-sided, 10, 43, 45, 70
Linux AlO, 36 Open Portable Access Layer, 47

207

INDEX

Open Run-Time Environment, 47
Open MPI, 47

overlap, 50, 58

overlapping, 53

packet size, 63

parallel I/O, 45

Parallel Virtual Machine, 43

partially synchronous, 99

passive target synchronisation, 46

PIO, 64

pipeline, 57

Point-to-point, 42

post-start-complete-wait, 86

process group, 43

process skew tolerance, 124

producer/consumer, 18, 42, 70, 71, 7
76, 79, 90, 92, 93, 105, 112
139, 169,172,173

program complexity, 34

progress engine, 117

put, 104

Queue Pair, 28, 39, 143

rank, 43

RDMA, 10, 13, 18, 39, 47,54, 70

remote direct memory access, 10, 1
54

remote memory access, 18, 42, 45

Remote Procedure Calls, 37

rendezvous, 77,119

rendezvous mode, 56, 57, 61

rendezvous protocol, 57

report interval, 145

resource monitoring, 138

RMA, 18, 42, 45

RMA-capable, 18

round trip time, 135

round-robin, 138

route-path, 134

RR, 138

RTT, 135
RUBIS, 137

segregated free lists, 56
server load balancer, 133
Server load balancing, 132
server load balancing, 14, 24
shortest expected delay, 148
Socket, 35, 143

socket backlog queue, 143
soft credits, 146

speed factor, 136, 142
stencil, 96

synchronisation, 73
synchronisation point, 18, 55, 90, 103
synchronous, 18

8ystem area network, 27

tag, 105

Target Channel Adapters, 27
two-armed, 134

two-sided, 42, 70

unexpected message, 55, 62, 115, 119
Unified Parallel C, 34, 52
UPC, 52,53

erbs, 29, 39, 47
P, 133
Virtual Interface, 37
Virtual Interface Architecture, 37
virtual IP, 133
Virtual Representation Model, 10, 13,
18,70, 71,76, 79, 93, 132, 140,
172

Weighted Round-Robin, 137
window, 105

work queue, 37

work queue entry, 28

work requests, 28

zero-copy, 54

20

8

