Answer Set Programming

Torsten Schaub
University of Potsdam
torsten@cs.uni-potsdam.de

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

1/ 453

Answer Set Programming
Winter Semester 2011/12

m Martin Gebser
m Torsten Schaub

m Marius Schneider

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 2 /453

Information

m Lecture: 2h (weekly)

m Exercises: 2h (weekly)
m Credits: 6 if

Written exam (at least “ausreichend”)
Two successful projects (= Implementation+Consultation)

Mark: mark of written exam
C(ourse)MS: http://moodle.cs.uni-potsdam.de/

General Info: http://www.cs.uni-potsdam.de/wv/lehre
Contact:

Lecture& Exercises: asp@cs.uni-potsdam.de
Projects: aspl@cs.uni-potsdam.de

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

3 /453

Information

m Lecture: 2h (weekly)

m Exercises: 2h (weekly)
m Credits: 6 if

Written exam (at least “ausreichend”)
Two successful projects (= Implementation+Consultation)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 3/ 453

Information

Lecture: 2h (weekly)

Exercises: 2h (weekly)
Credits: 6 if

Written exam (at least “ausreichend”)
Two successful projects (= Implementation+Consultation)

m Mark: mark of written exam

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

3 /453

Information

Lecture: 2h (weekly)

Exercises: 2h (weekly)
Credits: 6 if

Written exam (at least “ausreichend”)
Two successful projects (= Implementation+Consultation)

Mark: mark of written exam
C(ourse)MS: http://moodle.cs.uni-potsdam.de/
General Info: http://www.cs.uni-potsdam.de/wv/lehre

Contact:

m Lecture& Exercises: asp@cs.uni-potsdam.de
m Projects: asp1@cs.uni-potsdam.de

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 3 /453

Introduction
Modeling
Language Extensions

Applications

Torsten Schaub (KRRQUP)

Operators, Algorithms, and Systems

Answer Set Programming

Roadmap

January 18, 2012

4 / 453

m Course material

Resources

® http://www.cs.uni-potsdam.de/wv/lehre
m http://moodle.cs.uni-potsdam.de
m http://www.cs.uni-potsdam.de/~torsten/asp

m Systems

clasp
dlv
smodels

gringo
Iparse
clingo
iclingo
oclingo

asparagus

Torsten Schaub (KRRQUP)

http://potassco.sourceforge.net
http://www.dbai.tuwien.ac.at/proj/dlv
http://www.tcs.hut.fi/Software/smodels

http://potassco.sourceforge.net
http://www.tcs.hut.fi/Software/smodels

http://potassco.sourceforge.net
http://potassco.sourceforge.net
http://potassco.sourceforge.net

http://asparagus.cs.uni-potsdam.de

Answer Set Programming January 18, 2012 5/ 453

http://www.cs.uni-potsdam.de/wv/lehre
http://moodle.cs.uni-potsdam.de
http://www.cs.uni-potsdam.de/~torsten/asp
http://potassco.sourceforge.net
 http://www.dbai.tuwien.ac.at/proj/dlv
 http://www.tcs.hut.fi/Software/smodels
http://potassco.sourceforge.net
http://www.tcs.hut.fi/Software/smodels
http://potassco.sourceforge.net
http://potassco.sourceforge.net
http://potassco.sourceforge.net
 http://asparagus.cs.uni-potsdam.de

Literature

Books [5], [65]
Surveys [59], [3], [47]
Articles [49], [50], [7], [71], [66], [58], [48], etc.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 6 /453

Motivation: Overview

Objective

Answer Set Programming
Historic Roots

Problem Solving
Applications

@ A First Example

Torsten Schaub (KRRQUP) Answer Set Programming

January 18, 2012

7/ 453

Objective

Overview

Objective

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 8 /453

Objective

Goal: Declarative problem solving

“What is the problem?”

instead of

“How to solve the problem?”

Problem

Modeling

Representation

Solution

Interpretation

Torsten Schaub (KRRQUP)

Computation

Answer Set Programming

Output

January 18, 2012

9 /453

Objective

Goal: Declarative problem solving
m “What is the problem?”

instead of

m “How to solve the problem?”

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 9 /453

Objective

Goal: Declarative problem solving

m “What is the problem?”

instead of

m “How to solve the problem?”

Problem

Modeling

Representation

Solution

Interpretation

Torsten Schaub (KRRQUP)

Computation

Answer Set Programming

Output

January 18, 2012

9 /453

Answer Set Programming

Overview

Answer Set Programming

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 10 / 453

Answer Set Programming

Answer Set Programming (ASP)
in a Nutshell

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with high-performance solving capacities
tailored to Knowledge Representation and Reasoning
ASP allows for solving all search problems in NP (and NPNF)
in a uniform way (being more compact than SAT)

The versatility of ASP is reflected by the ASP solver clasp,

winning first places at ASP'07/09/11, PB'09/11, and SAT'09/11
http://potassco.sourceforge.net

ASP embraces many emerging application areas, eg.

second place at RoboCup@Home 2011 by USTC, Peking
configuration by SIEMENS, Vienna

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 11 / 453

http://potassco.sourceforge.net

Answer Set Programming

Answer Set Programming (ASP)
ER B

m ASP is an approach to declarative problem solving, combining

m a rich yet simple modeling language
m with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 11 / 453

http://potassco.sourceforge.net

Answer Set Programming

Answer Set Programming (ASP)
ER N

m ASP is an approach to declarative problem solving, combining

m a rich yet simple modeling language
m with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

m ASP allows for solving all search problems in NP (and NPVP)
in a uniform way (being more compact than SAT)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

11 / 453

http://potassco.sourceforge.net

Answer Set Programming

Answer Set Programming (ASP)
ER N

m ASP is an approach to declarative problem solving, combining

m a rich yet simple modeling language
m with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

m ASP allows for solving all search problems in NP (and NPVP)
in a uniform way (being more compact than SAT)

m The versatility of ASP is reflected by the ASP solver clasp,
winning first places at ASP'07/09/11, PB'09/11, and SAT'09/11

m http://potassco.sourceforge.net

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 11 / 453

http://potassco.sourceforge.net

Answer Set Programming

Answer Set Programming (ASP)
ER N

m ASP is an approach to declarative problem solving, combining

m a rich yet simple modeling language
m with high-performance solving capacities

tailored to Knowledge Representation and Reasoning
m ASP allows for solving all search problems in NP (and NPVP)
in a uniform way (being more compact than SAT)

m The versatility of ASP is reflected by the ASP solver clasp,
winning first places at ASP'07/09/11, PB'09/11, and SAT'09/11
m http://potassco.sourceforge.net
m ASP embraces many emerging application areas, eg.

m second place at RoboCup@Home 2011 by USTC, Peking
m configuration by SIEMENS, Vienna

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 11 / 453

http://potassco.sourceforge.net

Historic Roots

Overview

Historic Roots

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 12 / 453

Historic Roots

Logic Programming

m Algorithm = Logic + Control [55]
m Logic as a programming language

= Prolog (Colmerauer, Kowalski)
m Features of Prolog

m Declarative (relational) programming language

Based on SLD(NF) Resolution
Top-down query evaluation
Terms as data structures
Parameter passing by unification
Solutions are extracted from instantiations of variables
occurring in the query

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 13 / 453

Historic Roots

Prolog: Programming in logic

Prolog is great, it's almost declarative!
To see this, consider

above (X,Y)
above (X,Y)

on(X,Y).
on(X,Z) ,above(Z,Y).

and compare it to

above (X,Y)
above (X,Y)

above(Z,Y),on(X,Z).
on(X,Y).

An interpretation in classical logic amounts to

Vxy(on(x,y) V 3z(on(x, z) A above(z,y)) — above(x,y))

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

14 / 453

Historic Roots

Prolog: Programming in logic

Prolog is great, it's almost declarative!
To see this, consider

above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z),above(Z,Y).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

14 / 453

Historic Roots

Prolog: Programming in logic

Prolog is great, it's almost declarative!
To see this, consider

above (X,Y)
above (X,Y)

on(X,Y).
on(X,Z) ,above(Z,Y).

and compare it to

above(X,Y)
above (X,Y)

above(Z,Y) ,on(X,Z).
on(X,Y).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

14 / 453

Historic Roots

Prolog: Programming in logic

Prolog is great, it's almost declarative!
To see this, consider

above (X,Y)
above (X,Y)

on(X,Y).
on(X,Z) ,above(Z,Y).

and compare it to

above(X,Y)
above (X,Y)

above(Z,Y) ,on(X,Z).
on(X,Y).

An interpretation in classical logic amounts to

Vxy(on(x,y) V 3z(on(x,z) A above(z,y)) — above(x, y))

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

14 / 453

Historic Roots

Model-based Problem Solving

Traditional approach (e.g. Prolog)

Provide a specification of the problem.
A solution is given by a derivation of an appropriate

query.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 15 / 453

Historic Roots

Model-based Problem Solving

Traditional approach (e.g. Prolog)
Provide a specification of the problem.
A solution is given by a derivation of an appropriate
query.
Model-based approach (e.g. ASP and SAT)

Provide a specification of the problem.
A solution is given by a model of the specification.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 15 / 453

Historic Roots

Model-based Problem Solving

Traditional approach (e.g. Prolog)
Provide a specification of the problem.
A solution is given by a derivation of an appropriate
query.
Model-based approach (e.g. ASP and SAT)
Provide a specification of the problem.
A solution is given by a model of the specification.

Automated planning, Kautz and Selman [53]

Represent planning problems as propositional theories so that models
not proofs describe solutions (e.g. Satplan)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

15 / 453

Problem Solving

Overview

Problem Solving

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 16 / 453

Problem Solving

Model-based Problem Solving

Specification

Associated Structures

constraint satisfaction problem
propositional horn theories
propositional theories
propositional theories
propositional theories
propositional programs
propositional programs
propositional programs
first-order theories

default theories

assignment
smallest model
models

minimal models
stable models
minimal models
supported models
stable models
models
extensions

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

17 / 453

Problem Solving

Model-based Problem Solving

Specification

Associated Structures

constraint satisfaction problem
propositional horn theories
propositional theories
propositional theories
propositional theories
propositional programs
propositional programs
propositional programs
first-order theories

default theories

assignment
smallest model
models

minimal models
stable models
minimal models
supported models
stable models
models
extensions

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

17 / 453

Problem Solving

ASP as High-level Language

m Basic ldea:

m Encode problem (class+instance) as a set of rules
m Read off solutions from answer sets of the rules

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 18 / 453

Problem Solving

ASP as High-level Language

m Basic ldea:

m Encode problem (class+instance) as a set of rules
m Read off solutions from answer sets of the rules

Problem Solution(s)
Modelling Interpretation
Logic program Answer set(s)

Computation

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 18 / 453

Problem Solving

ASP as Low-level Language

m Basic ldea:

m Compile a problem automatically into a logic program
m Solve the original problem by solving its compilation

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 19 / 453

m Basic ldea:

Problem Solving

ASP as Low-level Language

m Compile a problem automatically into a logic program

m Solve the original problem by solving its compilation

Special
Purpose
System

Special
Purpose
Compiler

Torsten Schaub (KRRQUP)

ASP Solver

Answer Set Programming

January 18, 2012

19 / 453

Applications

Overview

Applications

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 20 / 453

Applications

What is ASP good for?

m Combinatorial search problems
(some with substantial amount of data):

m For instance, auctions, bio-informatics, computer-aided verification,
configuration, constraint satisfaction, diagnosis, information integration,
planning and scheduling, security analysis, semantic web, wire-routing,
zoology and linguistics, and many more

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 21 / 453

Applications

What is ASP good for?

m Combinatorial search problems
(some with substantial amount of data):

m My favorite: Using ASP as a basis for a decision support system for
NASA's space shuttle (Gelfond et al., Texas Tech)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 21 / 453

Applications

What is ASP good for?

m Combinatorial search problems
(some with substantial amount of data):

m Our own applications:

m Automatic synthesis of multiprocessor systems
m Inconsistency detection, diagnosis, repair, and prediction
in large biological networks

m Home monitoring for risk prevention in ambient assisted living
m General game playing

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

21 / 453

Applications

What does ASP offer?

Integration of KR, DB, and search techniques
Compact, easily maintainable problem representations
Rapid application development tool

Easy handling of dynamic, knowledge intensive applications
(including: data, frame axioms, exceptions, defaults, closures, etc.)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

22 / 453

Applications

What does ASP offer?

Integration of KR, DB, and search techniques
Compact, easily maintainable problem representations

Rapid application development tool

Easy handling of dynamic, knowledge intensive applications
(including: data, frame axioms, exceptions, defaults, closures, etc.)

ASP = KR + DB + Search

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

22 / 453

A First Example

Overview

@ A First Example

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 23 / 453

A First Example

An instance of Towers of Hanoi

a b c
) | 6 |
Init:
7 4
| 1 |2] [3]
peg(a;b;c). disk(1..7).
init_on(1,a).
init_on(2;7,b).
init_on(3;4;5;6,c).
Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 24 / 453

A First Example

An instance of Towers of Hanoi

Init:
|
Goal:
peg(a;b;c). disk(1..7).
init_on(1,a). goal_on(3;4,a).
init_on(2;7,b). goal on(1;2;5;6;7,c).
init_on(3;4;5;6,c). moves (70) .

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 24 / 453

A First Example

An encoding of Towers of Hanoi
on(D,P,0) :— init_on(D,P).

1 {move(D,P,T) : disk(D) : peg(P)}1 :- moves(M), T = 1..M.
move(D,T) :— move(D,_,T).

on(D,P,T) :— move(D,P,T).
on(D,P,T+1) :- on(D,P,T), not move(D,T+1), not moves(T).

blocked(D-1,P,T+1) :- on(D,P,T), not moves(T).
blocked(D-1,P,T) :— blocked(D,P,T), disk(D).

move(D,P,T), blocked(D-1,P,T).

move(D,T), on(D,P,T-1), blocked(D,P,T).

not 1{on(D,P,T) } 1, disk(D), moves(M), T = 1..M.
:- goal on(D,P), not on(D,P,M), moves(M).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 25 / 453

A First Example

An encoding of Towers of Hanoi
on(D,P,0) :— init_on(D,P).

1 {move(D,P,T) : disk(D) : peg(P)}1 :- moves(M), T = 1..M.
move (D, T) :— move(D,_,T).

on(D,P,T) :— move(D,P,T).
on(D,P,T+1) :- on(D,P,T), not move(D,T+1), not moves(T).

blocked(D-1,P,T+1) :- on(D,P,T), not moves(T).
blocked(D-1,P,T) :— blocked(D,P,T), disk(D).

:- move(D,P,T), blocked(D-1,P,T).

:— move(D,T), on(D,P,T-1), blocked(D,P,T).

:— not 1{on(D,P,T) }1, disk(D), moves(M), T = 1..M.
:— goal_on(D,P), not on(D,P,M), moves(M).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 25 / 453

A First Example

An encoding of Towers of Hanoi
on(D,P,0) :— init_on(D,P).

1 {move(D,P,T) : disk(D) : peg(P)}1 :- moves(M), T = 1..M.
move (D, T) :— move(D,_,T).

on(D,P,T) :— move(D,P,T).
on(D,P,T+1) :- on(D,P,T), not move(D,T+1), not moves(T).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 25 / 453

A First Example

An encoding of Towers of Hanoi

a b C
I [6]

1 |

blocked(D-1,P,T+1) :- on(D,P,T), not moves(T).
blocked(D-1,P,T) :— blocked(D,P,T), disk(D).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

25 / 453

A First Example

An encoding of Towers of Hanoi
on(D,P,0) :— init_on(D,P).

1 {move(D,P,T) : disk(D) : peg(P)}1 :- moves(M), T = 1..M.
move (D, T) :— move(D,_,T).

on(D,P,T) :— move(D,P,T).
on(D,P,T+1) :- on(D,P,T), not move(D,T+1), not moves(T).

blocked(D-1,P,T+1) :- on(D,P,T), not moves(T).
blocked(D-1,P,T) :— blocked(D,P,T), disk(D).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 25 / 453

A First Example

An encoding of Towers of Hanoi

a b C

| 2

:- move(D,P,T), blocked(D-1,P,T).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 25 / 453

A First Example

An encoding of Towers of Hanoi

:— move(D,P,T), blocked(D-1,P,T).
:— move(D,T), on(D,P,T-1), blocked(D,P,T).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 25 / 453

A First Example

An encoding of Towers of Hanoi
on(D,P,0) :— init_on(D,P).

1 {move(D,P,T) : disk(D) : peg(P)}1 :- moves(M), T = 1..M.
move (D, T) :— move(D,_,T).

on(D,P,T) :— move(D,P,T).
on(D,P,T+1) :- on(D,P,T), not move(D,T+1), not moves(T).

blocked(D-1,P,T+1) :- on(D,P,T), not moves(T).
blocked(D-1,P,T) :— blocked(D,P,T), disk(D).

:— move(D,P,T), blocked(D-1,P,T).
:- move(D,T), on(D,P,T-1), blocked(D,P,T).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 25 / 453

A First Example

An encoding of Towers of Hanoi
on(D,P,0) :— init_on(D,P).

1 {move(D,P,T) : disk(D) : peg(P)}1 :- moves(M), T = 1..M.
move (D, T) :— move(D,_,T).

on(D,P,T) :— move(D,P,T).
on(D,P,T+1) :- on(D,P,T), not move(D,T+1), not moves(T).

blocked(D-1,P,T+1) :- on(D,P,T), not moves(T).
blocked(D-1,P,T) :— blocked(D,P,T), disk(D).

:— move(D,P,T), blocked(D-1,P,T).
:- move(D,T), on(D,P,T-1), blocked(D,P,T).
:- not 1{on(D,P,T) }1, disk(D), moves(M), T = 1..M.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 25 / 453

A First Example

An encoding of Towers of Hanoi
on(D,P,0) :— init_on(D,P).

1 {move(D,P,T) : disk(D) : peg(P)}1 :- moves(M), T = 1..M.
move (D, T) :— move(D,_,T).

on(D,P,T) :— move(D,P,T).
on(D,P,T+1) :- on(D,P,T), not move(D,T+1), not moves(T).

blocked(D-1,P,T+1) :- on(D,P,T), not moves(T).
blocked(D-1,P,T) :— blocked(D,P,T), disk(D).

move(D,P,T), blocked(D-1,P,T).

move(D,T), on(D,P,T-1), blocked(D,P,T).

not 1{on(D,P,T) } 1, disk(D), moves(M), T = 1..M.
:- goal_on(D,P), not on(D,P,M), moves(M).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 25 / 453

A First Example

Let it run!

torsten@raz > gringo toh_instance.lp toh_encoding.lp | clasp --stats
clasp version 1.3.5

Reading from stdin

Solving. ..

Answer: 1

peg(a) peg(c) peg(b) init_on(l,a) init_on(2,b)
move(6,a,1) move(7,a,2) move(5,b,3) move(7,c,4)
move(6,b,5) move(7,b,6) move(4,a,7) move(7,a,8)
move(2,c,63) move(7,c,64) move(6,b,65) move(7,b,66)
move(5,c,67) move(7,a,68) move(6,c,69) move(7,c,70)
move(7,70) move(6,69) move(7,68) move(5,67) move(7,66)
SATISFIABLE

Models 1+
Time : 3.280s (Solving: 3.23s 1st Model: 3.23s Unsat: 0.00s)
Choices : 130907
Conflicts : 35738
Restarts : 12
Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

26 / 453

Introduction: Overview

Syntax

Bl Semantics

El Examples

Language Constructs
Variables and Grounding
Computation

Reasoning Modes

Torsten Schaub (KRRQUP) Answer Set Programming

January 18, 2012

27 / 453

Syntax

Overview

Syntax

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 28 / 453

Syntax

Problem solving in ASP: Syntax

Problem Solution(s)
Modeling Interpretation
Logic Program Answer set(s)

Computation

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 29 / 453

Syntax

Normal logic programs

m A (normal) rule, r, is an ordered pair of the form
Ao < A1, ..., Am, not Ami1,...,not Ap,

where n > m >0, and each A; (0 < i < n) is an atom.

m A (normal) logic program is a finite set of rules.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 30 / 453

Syntax

Normal logic programs

m A (normal) rule, r, is an ordered pair of the form
Ao < A1, ..., Am, not Ami1,...,not Ap,

where n > m >0, and each A; (0 < i < n) is an atom.
m A (normal) logic program is a finite set of rules.
m Notation
) = Ao
) {A1,...,Am,not Amt1,...,not A,}
body™(r) = {A1,...,Am}
) {Am+1a---,An}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

30 / 453

Syntax

Normal logic programs

m A (normal) rule, r, is an ordered pair of the form
Ao < A1, ..., Am, not Ami1,...,not Ap,

where n > m >0, and each A; (0 < i < n) is an atom.

m A (normal) logic program is a finite set of rules.

m Notation
head(r) = Ao
body(r) = {Ai,...,Am,not Ami1,...,not Ap}
body™(r) = {A1,...,Am}
body (r) = {Am+1,...,An}

m A program is called positive if body~ (r) =) for all its rules.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

30 / 453

Semantics

Overview

Bl Semantics

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 31 / 453

Semantics

Problem solving in ASP: Semantics

Problem Solution(s)
Modeling Interpretation
Logic Program Answer set(s)

Computation

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 32 / 453

Semantics

Answer set: Formal Definition
Positive programs

A set of atoms X is closed under a positive program [T iff
for any r € I, head(r) € X whenever body™(r) C X.

X corresponds to a model of I (seen as a formula).

The smallest set of atoms which is closed under a positive program [1
is denoted by Cn(IT).

Cn(IM) corresponds to the C-smallest model of I (ditto).

The set Cn(IM) of atoms is the answer set of a positive program I1.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 33 / 453

Semantics

Answer set: Formal Definition

Positive programs

m A set of atoms X is closed under a positive program [I1 iff
for any r € I, head(r) € X whenever body™(r) C X.

= X corresponds to a model of I (seen as a formula).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 33 / 453

Semantics

Answer set: Formal Definition

Positive programs

m A set of atoms X is closed under a positive program [I1 iff
for any r € I, head(r) € X whenever body™(r) C X.

= X corresponds to a model of I (seen as a formula).

m The smallest set of atoms which is closed under a positive program [l
is denoted by Cn(IT).

= Cn(I) corresponds to the C-smallest model of I1 (ditto).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 33 / 453

Semantics

Answer set: Formal Definition
Positive programs

m A set of atoms X is closed under a positive program [I1 iff
for any r € I, head(r) € X whenever body™(r) C X.

= X corresponds to a model of I (seen as a formula).

m The smallest set of atoms which is closed under a positive program [l
is denoted by Cn(IT).

= Cn(I) corresponds to the C-smallest model of I1 (ditto).

m The set Cn(IM) of atoms is the answer set of a positive program I1.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 33 / 453

Semantics

Some “logical” remarks

m Positive rules are also referred to as definite clauses.
m Definite clauses are disjunctions with exactly one positive atom:

AgV ALV -V DA,

m A set of definite clauses has a (unique) smallest model.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 34 / 453

Semantics

Some “logical” remarks
m Positive rules are also referred to as definite clauses.
m Definite clauses are disjunctions with exactly one positive atom:

AgV ALV -V DA,

m A set of definite clauses has a (unique) smallest model.
m Horn clauses are clauses with at most one positive atom.

m Every definite clause is a Horn clause but not vice versa.
m A set of Horn clauses has a smallest model or none.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 34 / 453

Semantics

Some “logical” remarks

m Positive rules are also referred to as definite clauses.
m Definite clauses are disjunctions with exactly one positive atom:

AgV ALV -V DA,

m A set of definite clauses has a (unique) smallest model.
m Horn clauses are clauses with at most one positive atom.

m Every definite clause is a Horn clause but not vice versa.

m A set of Horn clauses has a smallest model or none.
m This smallest model is the intended semantics of a set of Horn

clauses.
15" Given a positive program I1, Cn(I) corresponds to the smallest model
of the set of definite clauses corresponding to [1.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 34 / 453

Semantics

Answer set: Basic idea

Consider the logical formula ® and its three
(classical) models:

® g A (gh-r—p)]

{p,q}.{q,r}, and {p,q,r}

Formula ® has one stable model,
called answer set:

{p,q}

Mo

qg <
p < g, notr

Informally, a set X of atoms is an answer set of a logic program [1
if X is a (classical) model of I1 and
if all atoms in X are justified by some rule in Il

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gddel, 1932))

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 35 / 453

Semantics

Answer set: Basic idea

Consider the logical formula and its three

(classical) models: ®[qg A (gA-r—p)]

{p,q}.{q,r}, and {p,q,r}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 35 / 453

Semantics

Answer set: Basic idea

Consider the logical formula ¢ and its three
(classical) models:

{p,q}.{q,r}, and {p,q,r}

PN

~

e

~Q T
111

Torsten Schaub (KRRQUP) Answer Set Programming

®lqg A (qA-r—p)]

January 18, 2012

35 / 453

Semantics

Answer set: Basic idea

Consider the logical formula ¢ and its three

(classical) models: ®[qg A (gA-r—p)]

{p,q}.{q,r}, and {p,q,r}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 35 / 453

Semantics

Answer set: Basic idea

Consider the logical formula ¢ and its three
(classical) models:

{p,q}.{q,r}, and {p,q,r}

Formula ® has one stable model,
called answer set:

{p,q}

Torsten Schaub (KRRQUP) Answer Set Programming

®lqg A (qA-r—p)]

January 18, 2012

35 / 453

Semantics

Answer set: Basic idea

Consider the logical formula ¢ and its three
(classical) models:

{p,q}.{q,r}, and {p,q,r}

Formula ® has one stable model,
called answer set:

{p.q}

Torsten Schaub (KRRQUP) Answer Set Programming

®lqg A (qA-r—p)]

Mo

T Q

T 7T

q, not r

January 18, 2012

35 / 453

Semantics

Answer set: Basic idea

Consider the logical formula ¢ and its three
(classical) models:

®lqg A (qA-r—p)]

{p,q}.{q,r}, and {p,q,r}

Formula ® has one stable model,
called answer set:

{p.q}

Mo

qg <
p < g, notr

Informally, a set X of atoms is an answer set of a logic program [1
m if X is a (classical) model of I and
m if all atoms in X are justified by some rule in [1

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gddel, 1932))

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 35 / 453

Semantics

Answer set: Formal Definition

Normal programs

The reduct, MX, of a program I relative to a set X of atoms is
defined by

NX = {head(r) < body™*(r) | r € M and body~(r) N X = 0}.

A set X of atoms is an answer set of a program [if Cn(X) = X.
Recall: Cn(NX) is the C—smallest (classical) model of NX.

X is stable under “applying rules from 1"
Every atom in X is justified by an “applying rule from 1"

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 36 / 453

Semantics

Answer set: Formal Definition

Normal programs

m The reduct, MX, of a program I relative to a set X of atoms is
defined by

NX = {head(r) < body™(r) | r € M and body(r) N X = (}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 36 / 453

Semantics

Answer set: Formal Definition

Normal programs

m The reduct, MX, of a program I relative to a set X of atoms is
defined by

NX = {head(r) < body™(r) | r € M and body(r) N X = (}.

m A set X of atoms is an answer set of a program I if Cn(NX) = X.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 36 / 453

Semantics

Answer set: Formal Definition

Normal programs

m The reduct, MX, of a program I relative to a set X of atoms is
defined by

NX = {head(r) < body™(r) | r € M and body(r) N X = (}.

m A set X of atoms is an answer set of a program I if Cn(NX) = X.
Recall: Cn(MX) is the C—smallest (classical) model of MX.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 36 / 453

Semantics

Answer set: Formal Definition

Normal programs

m The reduct, MX, of a program I relative to a set X of atoms is
defined by

NX = {head(r) < body™(r) | r € M and body(r) N X = (}.

m A set X of atoms is an answer set of a program I if Cn(NX) = X.
Recall: Cn(MX) is the C—smallest (classical) model of MX.

Intuition: X is stable under “applying rules from 1"

Note: Every atom in X is justified by an “applying rule from 1"

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 36 / 453

Semantics

A closer look at MX

In other words, given a set X of atoms from I1,

MX is obtained from I by deleting

each rule having a not A in its body with A € X
and then

all negative atoms of the form not A
in the bodies of the remaining rules.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

37 / 453

Examples

Overview

El Examples

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 38 / 453

Examples

A first example

N={p <+ p, g« not p}

X nx Cn(I%)
] p — p {q}
q <
{p} p — p 0
{q} p «— p {q}
q <
{p,q} p < p 0

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 39 / 453

Examples

A first example

N={p< p, g« not p}

X nx Cn(%)
0 p «— p h
q <
{p} p < p 0
h p — p {q}
q <
{p,q} p < p 0

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 39 / 453

Examples

A first example

N={p< p, g« not p}

X nx Cn(%)
0 p «— p h
q <
{p} p < p 0
h p «— p {q}
q <
{p,q} p < p 0

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 39 / 453

Examples

A first example

N={p< p, g« not p}

X nx Cn(%)
0 p «— p h
q <
{p} p < p 0
h p «— p {q}
q <
{p,q} p < p 0

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 39 / 453

Examples

A first example

N={p< p, g« not p}

X nx Cn(%)

0 p «— p h
q <

{p} p < p 0

h p «— p {q} 4
q <

{p,q} p < p 0

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 39 / 453

Examples

A first example

N={p< p, g« not p}

X nx Cn(%)

0 p «— p h
q <

{p} p < p 0

h p «— p {q} 4
q <

{p,q} p < p 0

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 39 / 453

Examples

A second example

M= {p <+ not q, q <+ not p}

X nx Cn(NX)
) p {p,q}
q <
{p} p {p}
{q} {q}
q <
{p,q} 0

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 40 / 453

Examples

A second example

M= {p <« not q, g < not p}

X nx Cn(N%)

0 p {p.q}
q <

{p} p < {p}

ch

{a}

{p,q}

Torsten Schaub (KRRQUP)

0

Answer Set Programming January 18, 2012

40 / 453

Examples

A second example

M= {p <« not q, g < not p}

X nx Cn(N%)

0 p {p.q}
q <

{p} p < {p}

ch

{a}

{p,q}

Torsten Schaub (KRRQUP)

0

Answer Set Programming January 18, 2012

40 / 453

Examples

A second example

M= {p <« not q, g < not p}

X nx Cn(N%)
0 p {p,q}
q <
{pr} p < {pr} 4
{q} {q}
q <
{pr,q} 0

Torsten Schaub (KRRQUP)

Answer Set Programming January 18, 2012

40 / 453

Examples

A second example

M= {p <« not q, g < not p}

X nx Cn(X)
0 p {p,q}
q <
{pr} p < {pr} 4
{q} {q} 4
q <
{p,q} 0

Torsten Schaub (KRRQUP)

Answer Set Programming January 18, 2012

40 / 453

Examples

A second example

M= {p <« not q, g < not p}

X nx Cn(X)
0 p {p,q}
q <
{pr} p < {pr} 4
{q} {q} 4
q <
{p,q} 0

Torsten Schaub (KRRQUP)

Answer Set Programming January 18, 2012

40 / 453

Examples

A third example

M= {p <« not p}

X nx Cn(I%)
0 p {r}
{pr} 0

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 41 / 453

Examples

A third example

M= {p <« not p}

nx Cn(NX)
p ép}

=

=

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 41 / 453

Examples

A third example

M= {p <« not p}

nx Cn(NX)
p ép}

=

=

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 41 / 453

Examples

A third example

M= {p <« not p}

nx Cn(NX)
p ép}

=

=

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 41 / 453

Examples

Answer set: Some properties

m A logic program may have zero, one, or multiple answer sets!

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 42 / 453

Examples

Answer set: Some properties

m A logic program may have zero, one, or multiple answer sets!
m If X is an answer set of a logic program [1,
then X is a model of I1 (seen as a formula).

m If X and Y are answer sets of a normal program TI1,
then X Z Y.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

42 / 453

Examples

Answer set: Alternative Definition
Let I1 be a normal program and X a set of atoms.

m The set of generating rules of X relative to I is defined by

Mx = {r € M| body*(r) € X and body (r) N X = 0}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

43 / 453

Examples

Answer set: Alternative Definition
Let I1 be a normal program and X a set of atoms.

m The set of generating rules of X relative to I is defined by

Mx = {r € M| body*(r) € X and body (r) N X = 0}.

m X is an answer set of I1 iff X is a C-minimal model of M.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

43 / 453

Examples

Answer set: Alternative Definition
Let I1 be a normal program and X a set of atoms.
m The set of generating rules of X relative to I is defined by

Mx = {r € M| body*(r) € X and body (r) N X = 0}.

m X is an answer set of I1 iff X is a C-minimal model of M.

m Or, X is an answer set of I iff X € minc(lMx), where
minc () is the set of C-minimal models of a program T1.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

43 / 453

Examples

The second example revisited

M= {p <+ not q, q <+ not p}

X My “logically” ming(ﬂx)
0 p < notq pVaq {p},{q}
q < notp

{p} p < notgq pVaq {p}.{q}

{q} pVgq {p}.{q}
< not p

{p,q} T 0

Q

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 44 / 453

Examples

The second example revisited

M= {p <« not q, g < not p}

0% Mx “logically” | minc (Mx)
0 p <« notgq pPVq {p},{q}
q < notp
{p} p <« notgq pVq {r}.{q} |V
{a} pva | {p}{a} |V
q < notp
{p.q} U 0

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 44 / 453

Examples

A closer look at Cn
Inductive characterization

Let I1 be a positive program and X a set of atoms.

m The immediate consequence operator Tp is defined as follows:
TnX = {head(r) | r € I and body(r) C X}

Iterated applications of Tp are written as Tﬁ for j >0,
where TSX = X and T\ X = Tn T X for i > 1.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

45 / 453

Examples

A closer look at Cn
Inductive characterization

Let I1 be a positive program and X a set of atoms.

m The immediate consequence operator Tp is defined as follows:
TnX = {head(r) | r € I and body(r) C X}

m lterated applications of T are written as Té for j >0,
where TSX = X and T\ X = Tn T X for i > 1.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

45 / 453

Examples

A closer look at Cn
Inductive characterization

Let I1 be a positive program and X a set of atoms.

m The immediate consequence operator Tp is defined as follows:
TnX = {head(r) | r € I and body(r) C X}

m lterated applications of T are written as Té for j >0,
where TSX = X and T\ X = Tn T X for i > 1.

Theorem
For any positive program I1, we have
m Cn(MN) = Uiso THO,
m X C Y implies TnX C TnY,
m Cn(M) is the smallest fixpoint of Tp.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

45 / 453

Examples

Let's iterate Tp

NM={p<+, g, r<p, s« q,t, t<r, u< v}

T30
T30
T30
T30
TA0
T30
T80

0

{p,q}
{p,q,r}
{p,q,r t}
{p,q,r t,s}
{p,q,r t, s}
{p,q,r,t,s}

= TnTQ0
= TnTi0
= TnT30
= TnT30
= TnTA0
= TpT30

ThO

Tn{p, q}
Tﬂ{P; q, r}
7—I'I{p-/ q,r, t}
TI_I{p7 q, It S}
Tn{p,q,r,t, s}

To see that Cn(M) = {p, q,r, t,s} is the smallest fixpoint of T, note that
Tn{p,q,r,t,s} ={p,q,r,t,s} and TnX # X for every X C {p, q,r, t,s}.

Torsten Schaub (KRRQUP)

Answer Set Programming

January 18, 2012 46 / 453

Examples

Let's iterate Tp

M={p<, g, r<p, s« q,t, t<r, u< v}

TR0 = 0

T|—1|® = {p,q} = TﬂT|9|® = Tn@

T30 = {p,q,r} = TnTi0 = Tn{p,q}

T30 = {p,q,r,t} = TaTi0 = Tn{p.qr}
T20 = {p,q,r,t,s} = TnT30 = Tn{p,q,r, t}
T30 = {p,q,r,t,s} = TnTi0D = Tn{p,q,r, t,s}
T80 = {p,q,r,t,s} = TnT3® = Tn{p,q,r,t,s}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 46 / 453

Examples

Let's iterate Tp

M={p<, g, r<p, s« q,t, t<r, u< v}

T30
T50
T30
T30
TA0
T30
T80

0

{p,q}
{p.q,r}
{p.q,r, t}
{p,q,r t,s}
{p.q,r t s}
{p,q,r,t,s}

= TnT20
= TnTi0
= TnT30
= TnT30
= TnTh0
= TnT30

Tl

Tn{p, q}
Tn{p,q.r}
TI'I{p> q,r, t}
TI_I{p7 q,r,t, S}
TI'I{p7 q,r,t, S}

To see that Cn(M) = {p, g, r, t,s} is the smallest fixpoint of Tp, note that
Tn{p,q,r,t,s} ={p,q,r,t,s} and TnX # X for every X C {p,q,r,t,s}.

Torsten Schaub (KRRQUP)

Answer Set Programming

January 18, 2012 46 / 453

Language Constructs

Overview

Language Constructs

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 47 / 453

Language Constructs

Problem solving in ASP: Modeling

Problem Solution(s)
Modeling Interpretation
Logic Program Answer set(s)

Computation

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 48 / 453

Language Constructs

(Rough) notational convention

We sometimes use the following notation interchangeably in order to stress

the respective view:

negation classical

if and or as failure negation
source code 3= , | not =
logic program | < , ; not [~ =
formula - AV ~/(7) -

Torsten Schaub (KRRQUP) Answer Set Programming

January 18, 2012

49 / 453

Language Constructs

Language Constructs

Variables (over the Herbrand Universe)
p(X) :- q(X) over constants {a,b,c} stands for
pa) :- gq(a), p) :- q), plc) :- qlc)
Conditional Literals
p :- qX) : r(X) given r(a), r(b), r(c) stands for
p :- q(a, q), qlc)
Disjunction
pX) | qX) :- r(X)
Integrity Constraints

- qX), pX)
Choice
2 {p&X,Y) : qX) } 7 :- r(V)
Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7
also: #sum, #avg, #min, #max, #even, #odd

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 50 / 453

Language Constructs

Language Constructs

m Variables (over the Herbrand Universe)

m p(X) :- q(X) over constants {a,b,c} stands for
p(a) :- q(a), p(b) :- q®), p(c) :- qlc)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

50 / 453

Language Constructs

Language Constructs

Variables (over the Herbrand Universe)
p(X) := gq(X) over constants {a,b,c} stands for
p(a) :- q(a), p(b) :- q(b), plc) :- q(c)
m Conditional Literals
mp - qgiX) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), qlc)
Disjunction
pX) | qX) :- r(X)
Integrity Constraints

= q(X), pX
Choice

2 {p&,Y) : qX) } 7 :- r(V)
Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7
also: #sum, #avg, #min, #max, #even, #odd

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

50 / 453

Language Constructs

Language Constructs

Variables (over the Herbrand Universe)
p(X) :- q(X) over constants {a,b,c} stands for
p(a) :- qa), pb) :- q®), plc) :- qlc)
Conditional Literals
p :- qX) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), qlc)
m Disjunction
EpX) | gX) - r(X)
Integrity Constraints

= q(X), pX)
Choice

2 {p&X,Y) : qX) } 7 :- r(V)
Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : qX) } 7
also: #sum, #avg, #min, #max, #even, #odd

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

50 / 453

Language Constructs

Language Constructs

Variables (over the Herbrand Universe)
p(X) :- q(X) over constants {a,b,c} stands for
p(a) :- qa), p(b) :- q(b), plc) :- q(c)
Conditional Literals
p :- qX) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q), qlc)
Disjunction
pX) | qX) :- r(X)
m Integrity Constraints
B - qX), pX)
Choice
2 { p&X,Y) : qX) } 7 :- x(Y)
Aggregates
s(Y) :- r(Y), 2 #count { p(X,Y) : qX) } 7

also: #sum, #avg, #min, #max, #even, #odd

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

50 / 453

Language Constructs

Language Constructs

Variables (over the Herbrand Universe)
p(X) :- q(X) over constants {a,b,c} stands for
p(a) :- qa), pb) :- q®), plc) :- qlc)
Conditional Literals
p :- qX) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), qlc)
Disjunction
pX) | qX) :- r(X)
Integrity Constraints

= q(X), pX)
m Choice
B2 {pX,Y) : qX) } 7 :- r(¥)
Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7
also: #sum, #avg, #min, #max, #even, #odd

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

50 / 453

Language Constructs

Language Constructs

m Aggregates
ms(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7
m also: #sum, #avg, #min, #max, #even, #odd

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 50 / 453

Language Constructs

Language Constructs

Variables (over the Herbrand Universe)
m p(X) :- q(X) over constants {a,b,c} stands for
p(a) :- gqa), p(b) :- q), p(c) :- qlc)
m Conditional Literals
Ep :- qX) : r(X) given r(a), r(b), r(c) stands for
p :- q(a, q), qlc)
Disjunction
BpX) | gX) - r(X)
Integrity Constraints
B - qX), pX)
Choice
B2 {pX,Y) : gX) } 7 :- r(¥)
m Aggregates
ms(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7
m also: #sum, #avg, #min, #max, #even, #odd

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 50 / 453

Variables and Grounding

Overview

Variables and Grounding

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 51 / 453

Variables and Grounding

Programs with Variables

Let I1 be a logic program.
m Herbranduniverse U": Set of constants in

m Herbrandbase B™: Set of (variable-free) atoms constructible from U™

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 52 / 453

Variables and Grounding

Programs with Variables

Let I1 be a logic program.
m Herbranduniverse U": Set of constants in

m Herbrandbase B™: Set of (variable-free) atoms constructible from U™
1 \We usually denote this as A, and call it alphabet.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 52 / 453

Variables and Grounding

Programs with Variables

Let I1 be a logic program.
m Herbranduniverse U": Set of constants in

m Herbrandbase B™: Set of (variable-free) atoms constructible from U™
1 \We usually denote this as A, and call it alphabet.

m Ground Instances of r € I1: Set of variable-free rules obtained by
replacing all variables in r by elements from U™:

ground(r) = {r6 | 0 : var(r) — U™}

where var(r) stands for the set of all variables occurring in r;
0 is a (ground) substitution.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 52 / 453

Variables and Grounding

Programs with Variables

Let I1 be a logic program.
m Herbranduniverse U": Set of constants in

m Herbrandbase B™: Set of (variable-free) atoms constructible from U™
1 \We usually denote this as A, and call it alphabet.

m Ground Instances of r € I1: Set of variable-free rules obtained by
replacing all variables in r by elements from U™:

ground(r) = {r6 | 0 : var(r) — U™}

where var(r) stands for the set of all variables occurring in r;
0 is a (ground) substitution.

m Ground Instantiation of [1:
ground(IM) = |J,cnground(r)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 52 / 453

Variables and Grounding

An example

M={ r(a,b) +, r(b,c) <, t(X,Y)+ r(X,Y)}
U™ ={a, b,c}

BN _ r(a, a), r(a, b), r(a,c), r(b,a), r(b,b), r(b,c
B { t(a,a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 53 / 453

Variables and Grounding

An example

M={ r(a,b) +, r(b,c) <, t(X,Y)+ r(X,Y)}
U™ ={a, b,c}

BN _ r(a, a), r(a, b), r(a,c), r(b,a), r(b,b), r(b,c),r(c,a),r(c,b),r(c,c),
| t(a,), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c)
r(a,b) « ,
r(b,c) « ,
ground () = t(a,a) < r(a,a), t(b,a) < r(b,a), t(c,a) « r(c,a),
t(a,b) « r(a,b), t(b,b) < r(b,b), t(c,b) < r(c,b),
t(a,c) « r(a,c), t(b,c) < r(b,c), t(c,c) + r(c,c)
Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 53 / 453

Variables and Grounding

An example

M={ r(a,b) +, r(b,c) <, t(X,Y)+ r(X,Y)}
U™ ={a, b,c}

BN _ { r(a,a), r(a, b), r(a, c), r(b,a), r(b, b), r(b,c), r(c,a), r(c,b), r(c,c), }
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c)
r(a, b) « ,
r(b,c) « ,
ground () = o
t(a, b) « :

t(b,c) +

1= |ntelligent Grounding aims at reducing the ground instantiation.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 53 / 453

Variables and Grounding

Answer sets of programs with Variables

Let 1 be a normal logic program with variables.

We define a set X of (ground) atoms as an answer set of I1
if Cn(ground(N)X) = X.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

54 / 453

Computation

Overview

Computation

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 55 / 453

Computation

Problem solving in ASP: Computation

Problem Solution(s)
Modeling Interpretation
Logic Program Answer set(s)

Computation

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 56 / 453

i Logic
{Program!

Modeling

Torsten Schaub (KRRQUP)

Computation

Grounder

Solver

Answer Set Programming

ASP Solving Process

Answer
Set(s)

January 18, 2012

57 / 453

Computation

ASP Solving Process

Logic
Program

Grounder

Solver

Answer
Set(s)

T

Modeling

Torsten Schaub (KRRQUP)

Answer Set Programming

January 18, 2012

57 / 453

Computation

ASP Solving Process

Logic
Program

Grounder

Solver

Answer
Set(s)

T

Modeling

Torsten Schaub (KRRQUP)

Answer Set Programming

January 18, 2012

57 / 453

Computation

ASP Solving Process

Logic
Program

Grounder

Solver

Answer
Set(s)

T

Modeling

Torsten Schaub (KRRQUP)

Answer Set Programming

January 18, 2012

57 / 453

Computation

ASP Solving Process

Logic
Program

Grounder

Solver

Answer
Set(s)

T

Modeling

Torsten Schaub (KRRQUP)

Answer Set Programming

January 18, 2012

57 / 453

Computation

Traditional Solving Procedure

Global parameters: Logic program [1 and its set A of atoms.

solven (X, Y)
(X, Y) < propagaten(X,Y)
if (XNY)# 0 then fail
if (XU Y) = A then return(X)
select Ac A\ (XUY)
solven (X U{A},Y)
@A solven(X,Y U{A})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 58 / 453

Computation

Traditional Solving Procedure

Global parameters: Logic program [1 and its set A of atoms.

solven (X, Y)
(X, Y) < propagaten(X,Y)
if (XNY)# 0 then fail
if (XU Y) = A then return(X)
select Ac A\ (XUY)
solven (X U{A},Y)
@A solven(X,Y U{A})
Comments:
m (X, Y) is supposed to be a 3-valued model such that X C Zand YNZ =10
for any answer set Z of 1.
m Key operations: propagaten (X, Y) and ‘select A€ A\ (XU Y)

m Worst case complexity: O(2141)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 58 / 453

Reasoning Modes

Overview

Reasoning Modes

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 59 / 453

Reasoning Modes

Reasoning Modes

Satisfiability
Enumeration'
Projection'
Intersection?
Union?

Optimization

Sampling

T without solution recording

¥ without solution enumeration

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 60 / 453

Basic Modeling: Overview

ASP Solving Process

Problems as Logic Programs
m Graph Coloring

Methodology
m Satisfiability
m Queens
m Reviewer Assignment

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 61 / 453

Modeling and Interpreting

Problem Solution(s)
Modeling Interpretation
Logic Program Answer sets

Computation

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 62 / 453

Modeling

For solving a problem class P for a problem instance |,
encode
the problem instance | as a set C(l) of facts and
the problem class P as a set C(P) of rules

such that the solutions to P for | can be (polynomially) extracted
from the answer sets of C(I) U C(P).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

63 / 453

ASP Solving Process

Overview

ASP Solving Process

Graph Coloring

Satisfiability
Queens
Reviewer Assignment

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 64 / 453

i Logic
{Program!

Modeling

Torsten Schaub (KRRQUP)

ASP Solving Process

Grounder

Solver

Answer Set Programming

ASP Solving Process

Answer
Set(s)

January 18, 2012

65 / 453

ASP Solving Process

ASP Solving Process

Logic Answer
e Grounder Solver Set(s)
Modeling

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

65 / 453

ASP Solving Process

ASP Solving Process

Logic Answer
e Grounder Solver Set(s)
Modeling

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

65 / 453

ASP Solving Process

ASP Solving Process

Logic Answer
e Grounder Solver Set(s)
Modeling

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

65 / 453

ASP Solving Process

ASP Solving Process

Logic
Program

Grounder

Solver

Answer
Set(s)

T

Modeling

Torsten Schaub (KRRQUP)

Answer Set Programming

January 18, 2012

65 / 453

Problems as Logic Programs

Overview

Problems as Logic Programs
m Graph Coloring

Satisfiability
Queens
Reviewer Assignment

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 66 / 453

Problems as Logic Programs Graph Coloring

Graph Coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g) .

1 {color(X,C) : col(C)} 1 :- node(X).

:— edge(X,Y), color(X,C), color(Y,C).
Torsten Schaub (KRRQUP)

Answer Set Programming January 18, 2012

67 / 453

Problems as Logic Programs Graph Coloring

Graph Coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).

Torsten Schaub (KRRQUP)

Answer Set Programming

node(1..6).

edge(1,2).
edge(2,4).
edge(3,1).
edge(4,1).
edge(5,3).
edge(6,2).

col(r).

Problems as Logic Programs

Torsten Schaub (KRRQUP)

edge(1,3). edge(1,4).

edge(2,5). edge(2,6).

edge(3,4). edge(3,5).

edge(4,2).

edge(5,4). edge(5,6).

edge(6,3). edge(6,5).
col(b). col(g).

Answer Set Programming

Graph Coloring

Graph Coloring

January 18, 2012

67 / 453

Problems as Logic Programs Graph Coloring

Graph Coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).
1 {color(X,C) : col(C)} 1 :- node(X).
:— edge(X,Y), color(X,C), color(Y,C).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

67 / 453

Problems as Logic Programs

Graph Coloring:

$ gringo -t color.lp

Graph Coloring

node(1). node(2). node(3). mnode(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2). edge(5,3).

edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(1,r), color(1,b), color(i,g)} 1

1 {color(2,r), color(2,b), color(2,g)} 1

1 {color(3,r), color(3,b), color(3,g)} 1.

1 {color(4,r), color(4,b), color(4,g)} 1

1 {color(5,r), color(5,b), color(5,g)} 1

1 {color(6,r), color(6,b), color(6,g)} 1
:= color(1,r), color(2,r). :- color(2,g), color(5,g). := color(6,r)
- color(1,b), color(2,b). :- color(2,r), color(6,r). - color(6,b),
:= color(l,g), color(2,g). - color(2,b), color(6,b). := color(6,g)
:- color(1,r), color(3,r). - color(2,g), color(6,g). := color(6,r)
- color(1,b), color(3,b). - color(3,r), color(l,r). - color(6,b)
- color(l,g), color(3,g). :- color(3,b), color(l,b). - color(6,g)
:- color(1,r), color(4,r). - color(3,g), color(l,g). :— color(6,r)
- color(1,b), color(4,b). - color(3,r), color(4,r). - color(6,b),
- color(1l,g), color(4,g). - color(3,b), color(4,b). - color(6,g)
:— color(2,r), color(4,r). - color(3,g), color(4,g)
- color(2,b), color(4,b). - color(3,r), color(5,r)
- color(2,g), color(4,g). - color(3,b), color(5,b)

Torsten Schaub (KRRQUP)

Answer Set Programming

Grounding

color(2,r).
color(2,b).
color(2,g).
color(3,r).
color(3,b).
color(3,g) .
color(5,r).
color(5,b).
color(5,g) .

January 18, 2012

68 / 453

Problems as Logic Programs

$ gringo -t color.lp

Graph

Graph Coloring

Coloring: Grounding

node(1). node(2). node(3). mnode(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2). edge(5,3).

edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(1,r), color(1,b), color(i,g)} 1

1 {color(2,r), color(2,b), color(2,g)} 1

1 {color(3,r), color(3,b), color(3,g)} 1.

1 {color(4,r), color(4,b), color(4,g)} 1.

1 {color(5,r), color(5,b), color(5,g)} 1

1 {color(6,r), color(6,b), color(6,g)} 1
:= color(1,r), color(2,r). :- color(2,g), color(5,g). - color(6,r),
- color(1,b), color(2,b). - color(2,r), color(6,r). - color(6,b),
- color(1,g), color(2,g). - color(2,b), color(6,b). - color(6,g),
:= color(1,r), color(3,r). :- color(2,g), color(6,g). := color(6,r),
- color(1,b), color(3,b). - color(3,r), color(l,r). - color(6,b),
- color(1,g), color(3,g). - color(3,b), color(1,b). - color(6,g),
:- color(1,r), color(4,r). - color(3,g), color(l,g). :- color(6,r),
- color(1,b), color(4,b). - color(3,r), color(4,r). - color(6,b),
- color(1,g), color(4,g). - color(3,b), color(4,b). - color(6,g),
:= color(2,r), color(4,r). - color(3,g), color(4,g).
- color(2,b), color(4,b). - color(3,r), color(5,r).
- color(2,g), color(4,g). - color(3,b), color(5,b).

Torsten Schaub (KRRQUP)

Answer Set Programming

color(2,r).
color(2,b).
color(2,g) .
color(3,r).
color(3,b).
color(3,g) .
color(5,r).
color(5,b).
color(5,g) .

January 18, 2012

68 / 453

Problems as Logic Programs

Graph Coloring

Graph Coloring: Solving

$ gringo color.lp | clasp O

clasp version 1.2.1
Reading from stdin

Reading

: Done(0.000s)

Preprocessing: Done(0.000s)

Solving...
Answer: 1
color(1,b)
Answer: 2
color(1,g)
Answer: 3
color(1,b)
Answer: 4
color(l,g)
Answer: 5
color(1,r)
Answer: 6
color(1,r)

Models
Time

color(2,r) color(3,r)
color(2,r) color(3,r)
color(2,g) color(3,g)
color(2,b) color(3,b)
color(2,b) color(3,b)
color(2,g) color(3,g)

N6
: 0.000 (Solving: O.

Torsten Schaub (KRRQUP)

color(4,g)
color(4,b)
color(4,r)
color(4,r)
color(4,g)

color(4,b)

000)

color(5,b)
color(5,g)
color(5,b)
color(5,g)
color(5,r)

color(5,r)

color(6,g)
color(6,b)
color(6,r)
color(6,r)
color(6,g)

color(6,b)

Answer Set Programming

node (1)

node (1)

node (1)

node (1)

node (1)

node (1)

. edge(1,2)
. edge(1,2)
. edge(1,2)
. edge(1,2)
. edge(1,2)

. edge(1,2)

. col(xr)

. col(r)

col(r)

. col(r)

. col(r)

. col(r)

January 18, 2012

69 / 453

Problems as Logic Programs

Graph Coloring

$ gringo color.lp | clasp O

clasp version 1.2.1
Reading from stdin

Reading : Done(0.
Preprocessing: Done(0.
Solving...
Answer: 1

color(1,b) color(2,r)
Answer: 2
color(1l,g) color(2,r)
Answer: 3
color(1,b) color(2,g)
Answer: 4
color(1,g) color(2,b)
Answer: 5
color(1l,r) color(2,b)
Answer: 6

color(1,r) color(2,g)
Models : 6
Time : 0.000

000s)

000s)

color(3,r)
color(3,r)
color(3,g)
color(3,b)
color(3,b)

color(3,g)

(Solving: 0.

Torsten Schaub (KRRQUP)

color(4,g)
color(4,b)
color(4,r)
color(4,r)
color(4,g)

color(4,b)

000)

color(5,b) color(6,g)
color(5,g) color(6,b)
color(5,b) color(6,r)
color(5,g) color(6,r)
color(5,r) color(6,g)

color(5,r) color(6,b)

Answer Set Programming

Graph Coloring

node (1)
node (1)
node (1)
node (1)
node (1)

node (1)

Solving

. edge(1,2)
. edge(1,2)
. edge(1,2)
. edge(1,2)
. edge(1,2)

. edge(1,2)

. col(r)
. col(r)
. col(r)
. col(r)
. col(r)

. col(r)

January 18, 2012

69 / 453

Methodology

Overview

Graph Coloring

Methodology
m Satisfiability
m Queens
m Reviewer Assignment

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 70 / 453

Methodology

Basic Methodology

Generate and Test (or: Guess and Check) approach

Generator Generate potential answer set candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

71 / 453

Methodology

Basic Methodology

Generate and Test (or: Guess and Check) approach

Generator Generate potential answer set candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell
Logic program = Data + Generator + Tester
(+ Optimizer)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

71 / 453

Methodology Satisfiability

Satisfiability

m Problem Instance: A propositional formula ¢.

m Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula ¢ is true.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 72 / 453

Methodology Satisfiability

Satisfiability

m Problem Instance: A propositional formula ¢.

m Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula ¢ is true.

m Example: Consider formula (aVV =b) A (—a V b).

m Logic Program:

Generator Tester Answer sets
{a,b} <« <+ nota,b X1 = {ab}
< a,notb Xo = {}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 72 / 453

Methodology Queens

The n-Queens Problem

)
< c
X 0
X~
=8
=
I B
s 5
= 9]
0 =
5.8 2
o) [%2]
s 2 =
G.wm
—
s 52 M
83 9=
8L 2%
oo COw
(=

B -
L
%////3
R .

n < oo N -

ry 18, 2012 73 / 453

Janua

Answer Set Programming

Schaub (KRRQUP)

Torsten

Methodology Queens

Defining the Field

queens.lp

row(1l..n).
col(l..n).

m Create file queens.1p
m Define the field

m N rows
m n columns

Torsten Schaub (KRRQUP) Answer Set Programming

January 18, 2012

74 | 453

Methodology Queens

Defining the Field
Running ...

$ clingo queens.lp -c n=5

Answer: 1

row (1) row(2) row(3) row(4) row(5) \
col (1) col(2) col(3) col(4) col(5)

SATISFIABLE

Models 1

Time 0.000
Prepare 0.000
Prepro. 0.000
Solving 0.000

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

75 / 453

Methodology Queens

Placing some Queens

queens.lp

row(1l..n).
col(l..n).

{ queen(I,J) : row(I) : col(J) }.

m Guess a solution candidate

m Place some queens on the board

Torsten Schaub (KRRQUP) Answer Set Programming

January 18, 2012

76 / 453

Running

Methodology Queens

Placing some Queens

$ clingo queens.lp -c n=5 3

Answer:

row (1)
col (1)

Answer:

row (1)
col (1)

Answer:

row (1)
col (1)

1
row (2)
col (2)
2
row (2)
col (2)
3
row (2)
col (2)

SATISFIABLE

Models

Torsten Schaub (KRRQUP)

row (3)
col (3)

row (3)
col (3)

row (3)
col (3)

3+

row (4) row(5) \
col (4) col(b)

row (4) row(5) \
col(4) col(5) queen(l,1)

row (4) row(5) \
col(4) col(5) queen(2,1)

Answer Set Programming January 18, 2012

77 / 453

Methodology ~ Queens

Placing some Queens: Answer 1

Answer 1

///%
4////
37//

_
3

&

/
%%

I R

Torsten Schaub (KRRQUP) Answer Set Programming NELUELY 18, 2012 78 / 453

Placing some Queens: Answer 2

Answer 2

1 2

Torsten Schaub (KRRQUP) Answer Set Programming Januar y 18, 2012 79 / 453

Methodology Queens

Placing some Queens: Answer 3

Answer 3

7///%
_

B
//

I R

Torsten Schaub (KRRQUP) Answer Set Programming NELUELY 18, 2012 80 / 453

Methodology Queens

Placing n Queens

queens.lp

row(l..n).

col(l..n).

{ queen(I,J) : row(I) : col(J) 1I.
:-= not { queen(I,J) } == n.

m Place exactly n queens on the board

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 81 / 453

Methodology Queens

Placing n Queens

Running ...

$ clingo queens.lp -c n=5 2

Answer: 1

row (1) row(2) row(3) row(4) row(b) \
col (1) col(2) col(3) col(4) col(5) \
queen(5,1) queen(4,1) queen(3,1) \
queen(2,1) queen(1,1)

Answer: 2

row (1) row(2) row(3) row(4) row(5) \
col (1) col(2) col(3) col(4) col(5) \
queen(1,2) queen(4,1) queen(3,1) \
queen(2,1) queen(1,1)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 82 / 453

Answer 1

Torsten Schaub (KRRQUP) Answer Set Programming Januar y 18, 2012 83 / 453

Answer 2

Torsten Schaub (KRRQUP) Answer Set Programming Januar y 18, 2012 84 / 453

Methodology Queens

Horizontal and vertical Attack

queens.lp

row(1l..n).

col(l..n).
{ queen(I,J) : row(I) : col(J) 1I.
:- not { queen(I,J) } == n.

:— queen(I,J), queen(I,JJ), J != JJ.

m Forbid horizontal attacks

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 85 / 453

Methodology Queens

Horizontal and vertical Attack

queens.lp

row(1l..n).

col(l..n).

{ queen(I,J) : row(I) : col(J) 1I.
:- not { queen(I,J) } == n.

:- queen(I,J), queen(I,JJ), J != JJ.

:- queen(I,J), queen(II,J), I != II.

m Forbid horizontal attacks

m Forbid vertical attacks

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 85 / 453

Methodology Queens

Horizontal and vertical Attack

Running ...

$ clingo queens.lp -c n=5

Answer: 1

row(1l) row(2) row(3) row(4) row(5) \
col (1) co0l(2) col(3) col(4) col(5) \
queen(5,5) queen(4,4) queen(3,3) \
queen(2,2) queen(1,1)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

86 / 453

Methodology Queens

Horizontal and vertical Attack: Answer 1

Answer 1

Torsten Schaub (KRRQUP) Answer Set Programming Januar y 18, 2012 87 / 453

Methodology Queens

Diagonal Attack
queens.lp

row(1l..n).

col(l..n).

{ queen(I,J) : row(I) : col(J) 1I.

:- not { queen(I,J) } == n.

:- queen(I,J), queen(I,JJ), J !'= JJ.

:- queen(I,J), queen(II,J), I != II.

:— queen(I,J), queen(II,JJ), (I,J) '= (IL,J0),
I-J == II-JJ.

:- queen(I,J), queen(II,JJ), (I,J) !'= (IL,J0),
I+J == II+JJ.

m Forbid diagonal attacks

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

88 / 453

Methodology Queens

Diagonal Attack
Running . ..

$ clingo queens.lp -c n=5

Answer: 1

row (1) row(2) row(3) row(4) row(5) \
col (1) col(2) col(3) col(4) col(5) \
queen(4,5) queen(1,4) queen(3,3) \
queen(5,2) queen(2,1)

SATISFIABLE

Models : 1+

Time : 0.000
Prepare 0.000
Prepro. 0.000
Solving 0.000

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

89 / 453

Methodology Queens

Diagonal Attack: Answer 1

Answer 1

Torsten Schaub (KRRQUP) Answer Set Programming NELUELY 18, 2012 90 / 453

Methodology Queens

Optimizing
queens-opt.1lp
{ queen(I,1..n) } == 1 :- I = 1..n
{ queen(1..n,J) } == 1 :- J = 1..n
:- { queen(D-J,J) } >= 2, D = 2..2%n.
:- { queen(D+J,J) } >= 2, D = 1-n..n-1

m Encoding can be optimized

m Much faster to solve

m See Section Tweaking N-Queens

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

01 / 453

Methodology Reviewer Assignment

Reviewer Assignment
by llkka Niemela

reviewer(rl) . paper(pl). classA(rl,pl). classB(rl,p2). coi(rl,p5).
reviewer(r2). paper(p2). classA(ril,p3). classB(ril,p4). coi(rl,p6).

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).
:— assigned(P,R), coi(R,P).
:— assigned(P,R), not classA(R,P), not classB(R,P).
:= 9 { assigned(P,R) : paper(P) } , reviewer(R).
:= { assigned(P,R) : paper(P) } 6, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).
:— 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { assignedB(P,R) : paper(P) : reviewer(R) }.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

02 / 453

Methodology Reviewer Assignment

Reviewer Assignment
by llkka Niemel3

reviewer(rl) . paper(pl). classA(rl,pl). classB(rl,p2). coi(rl,p5).
reviewer(r2). paper(p2). classA(rl,p3). classB(rl,p4). coi(rl,p6).

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

02 / 453

Methodology Reviewer Assignment

Reviewer Assignment
by llkka Niemel3

reviewer(rl) . paper(pl). classA(rl,pl). classB(rl,p2). coi(rl,p5).
reviewer(r2). paper(p2). classA(rl,p3). classB(rl,p4). coi(rl,p6).

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).
:— assigned(P,R), coi(R,P).
:— assigned(P,R), not classA(R,P), not classB(R,P).

:= 9 { assigned(P,R) : paper(P) } , reviewer(R).
:= { assigned(P,R) : paper(P) } 6, reviewer(R).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 92 / 453

Methodology Reviewer Assignment

Reviewer Assignment
by llkka Niemel3

reviewer(rl) . paper(pl). classA(rl,pl). classB(rl,p2). coi(rl,p5).
reviewer(r2). paper(p2). classA(rl,p3). classB(rl,p4). coi(rl,p6).

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).
:— assigned(P,R), coi(R,P).
:— assigned(P,R), not classA(R,P), not classB(R,P).
:= 9 { assigned(P,R) : paper(P) } , reviewer(R).

:= { assigned(P,R) : paper(P) } 6, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).
:— 3 { assignedB(P,R) : paper(P) }, reviewer(R).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

02 / 453

Methodology Reviewer Assignment

Reviewer Assignment
by llkka Niemel3

reviewer(rl) . paper(pl). classA(rl,pl). classB(rl,p2). coi(rl,p5).
reviewer(r2). paper(p2). classA(rl,p3). classB(rl,p4). coi(rl,p6).
3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:— assigned(P,R), coi(R,P).

:— assigned(P,R), not classA(R,P), not classB(R,P).

:= 9 { assigned(P,R) : paper(P) } , reviewer(R).

:= { assigned(P,R) : paper(P) } 6, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).
:— 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { assignedB(P,R) : paper(P) : reviewer(R) }.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

02 / 453

fluent (p) . fluent(q) .
action(a). pre(a,p).
action(b) . pre(b,q) .
init(p). query(r).

Torsten Schaub (KRRQUP)

Methodology Reviewer Assignment

Simplistic STRIPS Planning

fluent ().

add(a,q) . del(a,p).

add(b,r). del(b,q).

Answer Set Programming January 18, 2012

03 / 453

fluent (p) .
action(a).
action(b).
init(p).

time(1..k).

Methodology Reviewer Assignment

Simplistic STRIPS Planning

fluent(q) . fluent ().

pre(a,p). add(a,q) . del(a,p).
pre(b,q) . add(b,r) . del(b,q) .
query(r).

lasttime(T) :- time(T), not time(T+1).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

03 / 453

Methodology Reviewer Assignment

Simplistic STRIPS Planning

fluent (p) . fluent(q) . fluent ().

action(a). pre(a,p). add(a,q) . del(a,p).
action(b) . pre(b,q) . add(b,r) . del(b,q) .
init(p). query(r).

time(1..k). lasttime(T) :- time(T), not time(T+1).

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).
:— occ(A,T), pre(A,F), not holds(F,T-1).

ocdel(F,T) :- occ(A,T), del(A,F).
holds(F,T) :- occ(A,T), add(A,F).
holds(F,T) :- holds(F,T-1), not ocdel(F,T), time(T).

:— query(F), not holds(F,T), lasttime(T).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 93 / 453

#base.

fluent (p) .
action(a) .
action(b).
init(p).
holds(P,0) :-
#cumulative t.
1 { occ(A,t)
:— occ(A,t),

ocdel(F,t) :-
holds(F,t) :-
holds(F,t) :-

#volatile t.

:= query(F),

Methodology Reviewer Assignment

Simplistic STRIPS Planning with iASP

fluent(q) . fluent ().

pre(a,p). add(a,q) . del(a,p).
pre(b,q) . add(b,r) . del(b,q) .
query(r) .

init (P).

action(A) } 1.
pre(A,F), not holds(F,t-1).

occ(A,t), del(A,F).

occ(A,t), add(A,F).
holds(F,t-1), not ocdel(F,t).

not holds(F,t).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

04 / 453

Methodology Reviewer Assignment

Simplistic STRIPS Planning with iASP

#base.

fluent (p). fluent(q) . fluent ().

action(a) . pre(a,p). add(a,q) . del(a,p).
action(b) . pre(b,q) . add(b,r) . del(b,q) .
init(p). query(r).

holds(P,0) :- init(P).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 94 / 453

#base.

fluent (p).
action(a).
action(b).
init(p).

holds(P,0) :-
#cumulative t.
1 { occ(A,t)

:— occ(A,t),

ocdel(F,t) :-
holds(F,t) :-
holds(F,t) :-

Methodology Reviewer Assignment

Simplistic STRIPS Planning with iASP

fluent(q) . fluent ().

pre(a,p). add(a,q) . del(a,p).
pre(b,q) . add(b,r) . del(b,q) .
query(r).

init(P).

: action(A) } 1.

pre(A,F), not holds(F,t-1).

occ(A,t), del(A,F).
occ(A,t), add(A,F).
holds(F,t-1), not ocdel(F,t).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

94 / 453

#base.

fluent (p).
action(a).
action(b).
init(p).
holds(P,0) :-
#cumulative t.
1 { occ(A,t)
:— occ(A,t),

ocdel(F,t) :-
holds(F,t) :-
holds(F,t) :-

#volatile t.

:— query(F),

Methodology Reviewer Assignment

Simplistic STRIPS Planning with iASP

fluent(q) . fluent ().

pre(a,p). add(a,q) . del(a,p).
pre(b,q) . add(b,r) . del(b,q) .
query(r).

init(P).

: action(A) } 1.

pre(A,F), not holds(F,t-1).
occ(A,t), del(A,F).

occ(A,t), add(A,F).
holds(F,t-1), not ocdel(F,t).

not holds(F,t).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

94 / 453

Disjunctive logic programs: Overview

Syntax

Semantics

Examples

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 95 / 453

Syntax

Overview

Syntax

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 96 / 453

Syntax

Disjunctive logic programs
m A disjunctive rule, r, is an ordered pair of the form
Al;...;An <—Am+1,...,An,not An+1,...,not Ao,

where 0 > n>m >0, and each A; (0 </ < o) is an atom.
m A disjunctive logic program is a finite set of disjunctive rules.

m (Generalized) Notation

head(r) = {A1,...,Amn}
body(r) = {Am+1,...,An,not Apii,...,not Ay}
body™(r) = {Ami1,---,An}

body™(r) = {Ant1,---,A0}
m A program is called positive if body~(r) =) for all its rules.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

97 / 453

Semantics

Overview

Semantics

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 98 / 453

Semantics

Answer sets

m Positive programs:

m A set X of atoms is closed under a positive program [T iff
for any r € I, head(r) N X # () whenever body™ (r) C X.

= X corresponds to a model of 1 (seen as a formula).

m The set of all C-minimal sets of atoms being closed under a positive
program [1 is denoted by minc (I1).

= minc (M) corresponds to the C-minimal models of I (ditto).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 99 / 453

Semantics

Answer sets

m Positive programs:

m A set X of atoms is closed under a positive program [T iff
for any r € I, head(r) N X # () whenever body™ (r) C X.

= X corresponds to a model of 1 (seen as a formula).

m The set of all C-minimal sets of atoms being closed under a positive
program [1 is denoted by minc (I1).

= minc (M) corresponds to the C-minimal models of I (ditto).
m Disjunctive programs:
m The reduct, MX, of a disjunctive program I relative to a set X of
atoms is defined by

NX = {head(r) + body™(r) | r € M and body™ (r)N X = }.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 99 / 453

Semantics

Answer sets

m Positive programs:

m A set X of atoms is closed under a positive program [T iff
for any r € I, head(r) N X # () whenever body™ (r) C X.

= X corresponds to a model of 1 (seen as a formula).

m The set of all C-minimal sets of atoms being closed under a positive
program [1 is denoted by minc (I1).

= minc (M) corresponds to the C-minimal models of I (ditto).
m Disjunctive programs:
m The reduct, MX, of a disjunctive program I relative to a set X of
atoms is defined by

NX = {head(r) + body™(r) | r € M and body™ (r)N X = }.

m A set X of atoms is an answer set of a disjunctive program [1 if
X € minc (MX).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 99 / 453

Semantics

Answer sets

m Positive programs:

m A set X of atoms is closed under a positive program [T iff
for any r € I, head(r) N X # () whenever body™ (r) C X.

= X corresponds to a model of 1 (seen as a formula).

m The set of all C-minimal sets of atoms being closed under a positive
program [1 is denoted by minc (I1).

= minc (M) corresponds to the C-minimal models of I (ditto).
m Disjunctive programs:

m The reduct, MX, of a disjunctive program I relative to a set X of
atoms is defined by

NX = {head(r) + body™(r) | r € M and body™ (r)N X = }.

m A set X of atoms is an answer set of a disjunctive program [1 if
X € minc (MX).

m FYI: The alternative definition on Page 104 is applicable as well.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 99 / 453

Examples

Overview

Examples

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 100 / 453

Examples

A “positive” example

a —
I-I_{b;c — a}

The sets {a, b}, {a,c}, and {a, b, c} are closed under I1.
We have minc (M) = { {a, b}, {a,c} }.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 101 / 453

Examples

A “positive” example

a —
I_I_{b;c — a}

m The sets {a, b}, {a,c}, and {a, b, c} are closed under IN.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 101 / 453

Examples

A “positive” example

a —
I_I_{b;c — a}

m The sets {a, b}, {a,c}, and {a, b, c} are closed under IN.
m We have minc (M) = { {a, b}, {a,c} }.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 101 / 453

Examples

3-colorability revisited

node(1..6).

edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).
edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).

colored(X,r) | colored(X,b) | colored(X,g) :- node(X).

:— edge(X,Y), color(X,C), color(Y,C).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

102 / 453

Examples

3-colorability revisited

node(1..6).

edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).
edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).

col(r). col(b). col(g).
colored(X,C) : col(X) :- node(X).
:— edge(X,Y), color(X,C), color(Y,C).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

102 / 453

Examples

More Examples
m [, ={a;b;c<«} has answer sets {a}, {b}, and {c}.
My ={a;b;c<« , < a} has answer sets {b} and {c}.
M3 ={a;b;c«, < a, b« c, c< b} has answer set {b, c}.

My={a;b< c, b< not a,not c, a;c < not b}
has answer sets {a} and {b}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 103 / 453

Examples

More Examples

m [, ={a;b;c<«} has answer sets {a}, {b}, and {c}.
m[y={a;b;c<«, < a} has answer sets {b} and {c}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 103 / 453

Examples

More Examples

m [, ={a;b;c<«} has answer sets {a}, {b}, and {c}.
m[y={a;b;c<«, < a} has answer sets {b} and {c}.
mllz={a;b;c«, < a, b« c, c< b} has answer set {b, c}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 103 / 453

Examples

More Examples
My ={a;b;c <} has answer sets {a}, {b}, and {c}.
My ={a;b;c<+, < a} has answer sets {b} and {c}.
M3={a;b;c<+, < a, b« c, c <+ b} has answer set {b,c}.
My={a;b+ c, b< not a,not c, a;c <+ not b}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 103 / 453

Examples

More Examples

My ={a;b;c <} has answer sets {a}, {b}, and {c}.
My ={a;b;c<+, < a} has answer sets {b} and {c}.
M3={a;b;c<+, < a, b« c, c <+ b} has answer set {b,c}.

My={a;b+ c, b< not a,not c, a;c <+ not b}
has answer sets {a} and {b}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 103 / 453

Examples

Answer set: Some properties

m A disjunctive logic program may have zero, one, or multiple answer
sets.

m If X is an answer set of a disjunctive logic program I1,
then X is a model of 1 (seen as a formula).

m If X and Y are answer sets of a disjunctive logic program I1,
then X Z Y.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 104 / 453

Examples

Answer set: Some properties

m A disjunctive logic program may have zero, one, or multiple answer
sets.

m If X is an answer set of a disjunctive logic program I1,
then X is a model of 1 (seen as a formula).

m If X and Y are answer sets of a disjunctive logic program I1,
then X Z Y.

m If A€ X for some answer X set of a disjunctive logic program I1,
then there is a rule r € MNx such that {A} = head(r) N X.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 104 / 453

Examples

An example with variables

- a(1,2) —
i { B(X) :c(Y) « a(X,Y),not c(Y) }
a(1,2) +—
b(1);¢c(1) <« a(1,1),not c(1)
ground() = b(1);c(2) <+ a(1,2),not c(2)
b(2);¢c(l) <+ a(2,1),not c(1)
b(2);c(2) <+ a(2,2),not c(2)

For every answer set X of I, we have
a(1,2) € X and
{a(1,1),a(2,1),a(2,2)} N X = 0.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

105 / 453

ground(l) =

Torsten Schaub (KRRQUP)

Examples

An example with variables

trrrr T

Answer Set Programming

a(1,1), not c(1)
a(1,2), not ¢(2)
a(2,1), not c¢(1)
a(2,2), not c¢(2)

January 18, 2012

105 / 453

Examples

An example with variables

- a(1,2) —
= { b(X):c(Y) « a(X,Y),not c(Y) }
a(1,2) —
b(1);¢c(l) <+ a(1,1),not c(1)
ground(M) = b(1);c(2) <+ a(1,2),not c(2)
b(2);¢c(l) <+ a(2,1),not c(1)
b(2);¢c(2) <« a(2,2),not c(2)

For every answer set X of I, we have
m a(1,2) € X and
m {a(1,1),a(2,1),a(2,2)} n X = 0.
Torsten Schaub (KRRQUP)

Answer Set Programming January 18, 2012

105 / 453

ground(IT)

Torsten Schaub (KRRQUP)

Examples

An example with variables

1,2) —
1);¢c(1) <«
1);c(2) <«
2);c(l) <«
2);¢c(2) <+

Answer Set Programming

January 18, 2012

106 / 453

ground(IT)

Examples

An example with variables

1,2) —
1);¢c(1) <«
1);c(2) <«
2);c(l) <«
2);¢c(2) <+

m Consider X = {a(1,2), b(1)}.

Torsten Schaub (KRRQUP)

Answer Set Programming

January 18, 2012

106 / 453

Examples

An example with variables

a(1,2) —
b(1);¢c(l) <+ a(1,1)
ground(M)X = b(1);c(2) <« a(1,2)
b(2);¢c(l) <+ a(2,1)
b(2);c(2) <+ a(2,2)

m Consider X = {a(1,2), b(1)}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 106 / 453

Examples

An example with variables

a(1,2) —
b(1);¢c(l) <+ a(1,1)
ground(I)" = b(1);c(2) <« a(1,2)
b(2);¢c(l) <+ a(2,1)
b(2);c(2) <+ a(2,2)

m Consider X = {a(1,2), b
m We get minc(ground(M)X) = { {a(1,2), b(1)}, {a(1,2), c(2)} }.

—

—
~—
——

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 106 / 453

Examples

An example with variables

a(1,2) —
b(1);¢c(l) <+ a(1,1)
ground(I)" = b(1);c(2) <« a(1,2)
b(2);¢c(l) <+ a(2,1)
b(2);c(2) <+ a(2,2)

m Consider X = {a(1,2), b(1)}.
m We get minc(ground(M)X) = { {a(1,2), b(1)}, {a(1,2), c(2)} }.

m X is an answer set of I1 because X € minc(ground(M)X).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 106 / 453

Examples

An example with variables

a(1,2) —

b(1);c(1) <+ a(1,1),not c(1)
ground(I)" = b(1);c(2) <+ a(1,2),not c(2)

b(2);¢c(l) <« a(2,1),not c(1)

b(2);c(2) <+ a(2,2),not c(2)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 107 / 453

Examples

An example with variables

a(1,2) —

b(1);c(1) <+ a(1,1),not c(1)
ground(I)" = b(1);c(2) <+ a(1,2),not c(2)

b(2);¢c(l) <« a(2,1),not c(1)

b(2);c(2) <+ a(2,2),not c(2)

m Consider X = {a(1,2), c(2)}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 107 / 453

Examples

An example with variables

ground(M)X =

m Consider X = {a(1,2), c(2)}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 107 / 453

Examples

An example with variables

a(1,2) —

b(1);¢c(l) <« a(1,1)
ground(I)" =

b(2);¢c(l) <+ a(2,1)

m Consider X = {a(1,2), c(2)}.
m We get minc(ground(M)X) = { {a(1,2)} }.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 107 / 453

Examples

An example with variables

a(1,2) —

b(1);¢c(l) <« a(1,1)
ground(I)" =

b(2);¢c(l) <+ a(2,1)

m Consider X = {a(1,2), c(2)}.
m We get minc(ground(M)X) = { {a(1,2)} }.

m X is no answer set of I1 because X & minc(ground(M)X).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 107 / 453

Nested logic programs: Overview

Syntax

Semantics

Examples

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 108 / 453

Syntax

Overview

Syntax

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 109 / 453

Syntax

Nested logic programs

m Formulas are formed from

m propositional atoms and
m [and L

using
m negation-as-failure (not),
m conjunction (,), and
m disjunction (;).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 110 / 453

Syntax

Nested logic programs

m Formulas are formed from

m propositional atoms and
m [and L

using
m negation-as-failure (not),
m conjunction (,), and
m disjunction (;).
m A nested rule, r, is an ordered pair of the form F < G
where F and G are formulas.

m A nested program is a finite set of rules.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

110 / 453

Syntax

Nested logic programs

m Formulas are formed from

m propositional atoms and
m [and L
using
m negation-as-failure (not),
m conjunction (,), and
m disjunction (;).
m A nested rule, r, is an ordered pair of the form F < G
where F and G are formulas.
m A nested program is a finite set of rules.
m Notation: head(r) = F and body(r) = G.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

110 / 453

Semantics

Overview

Semantics

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 111 / 453

Semantics

Satisfaction relation

m The satisfaction relation X |= F between a set of atoms and a
formula F is defined recursively as follows:

XEF if F € X for an atom F,
XET,

XL,

XE(F,G) ifXEFand X =G,
XE(F;G) ifXEFoXEG,
X E not Fif X £ F.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 112 / 453

Semantics

Satisfaction relation

m The satisfaction relation X |= F between a set of atoms and a
formula F is defined recursively as follows:

XEF if F € X for an atom F,
XET,

XL,

XE(F,G) ifXEFand X =G,
XE(F;G) ifXEFoXEG,
X E not Fif X £ F.

m A set X of atoms satisfies a nested program I1, written X |= I, iff
for any r € N, X |= head(r) whenever X = body(r).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 112 / 453

Semantics

Satisfaction relation

m The satisfaction relation X |= F between a set of atoms and a
formula F is defined recursively as follows:

XEF if F € X for an atom F,
XET,

XL,

XE(F,G) ifXEFand X =G,
XE(F;G) ifXEFoXEG,
X E not Fif X £ F.

m A set X of atoms satisfies a nested program I1, written X |= I, iff
for any r € N, X |= head(r) whenever X = body(r).

m The set of all C-minimal sets of atoms satisfying program [I1 is
denoted by minc ().

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 112 / 453

Semantics

Reduct

m The reduct, FX, of a formula F relative to a set X of atoms is
defined recursively as follows:

m FX=F if Fisanatomor T or L,
m (F,G)X = (F%,)
m (F; G)X (F

|f XEF
m (not F { T otherwise

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 113 / 453

Semantics

Reduct

m The reduct, FX, of a formula F relative to a set X of atoms is
defined recursively as follows:

m FX=F if Fisanatomor T or L,
m (F,G)X = (F%,)
m (F; G)X = (FX
|f XEF
m (not F { T otherwise

m The reduct, MX, of a nested program [relative to a set X of atoms
is defined by

X = {head(r)X « body(r)* | ren}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 113 / 453

Semantics

Reduct

m The reduct, FX, of a formula F relative to a set X of atoms is
defined recursively as follows:

m FX=F if Fisanatomor T or L,
m (F,G)X = (F%,)
m (F; G)X = (FX
|f XEF
m (not F { T otherwise

m The reduct, MX, of a nested program [relative to a set X of atoms
is defined by

X = {head(r)X « body(r)* | ren}.

m A set X of atoms is an answer set of a nested program [I1 if
X € minc (M%),

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 113 / 453

Examples

Overview

Examples

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 114 / 453

Examples

Two examples

m My = {(p:not p) < T}
For X = (), we get
N ={(p;T)+ T}
minc (M) = {0}.
For X = {p}, we get
MNP ={(p; 1) « T}
minc (N{”) = {{p}}.
My = {p < not not p}
For X = (), we get M3 = {p + L} and minc (M%) = {0}.
For X = {p}, we get I'Iép} ={p<« T} and ming(l'lép}) = {{p}}-
In general,

F < G, not not H s equivalentto F ;not H<+ G
F; not not G < H s equivalentto F < H,not G
not not not F is equivalent to not F

w |ntuitionistic Logics HT (Heyting, 1930) and G3 (Godel, 1932)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 115 / 453

Examples

Two examples

m My = {(p:not p) < T}
m For X =0, we get
N ={(p;T)+ T}
minc (M%) = {0}.
For X = {p}, we get
N7 = {(p; 1) « T}
minc (M{*") = {{p}}.
My = {p < not not p}
For X =0, we get N9 = {p + L} and minc(NY) = {0}.
For X = {p}, we get "' = {p < T} and minc(NMP}) = {{p}}.
In general,

F < G, not not H s equivalentto F ;not H<+ G
F; not not G < H s equivalentto F < H,not G
not not not F is equivalent to not F

w |ntuitionistic Logics HT (Heyting, 1930) and G3 (Godel, 1932)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 115 / 453

Examples

Two examples

m My = {(p:not p) < T}
m For X =0, we get
m M0 ={(p;T) < T}
minc (M7) = {0}.
For X = {p}, we get
N ={(p: 1) « T}
minc (M{*") = {{p}}.
My = {p < not not p}
For X =0, we get N9 = {p + L} and minc(NY) = {0}.
For X = {p}, we get "' = {p < T} and minc(NMP}) = {{p}}.
In general,

F < G, not not H s equivalentto F ;not H<+ G
F; not not G < H s equivalentto F < H,not G
not not not F is equivalent to not F

w |ntuitionistic Logics HT (Heyting, 1930) and G3 (Godel, 1932)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 115 / 453

Examples

Two examples

m My = {(p:not p) < T}
m For X =0, we get
m M0 ={(p;T) < T}
m minc(N?) = {0}.
For X = {p}, we get
N ={(p; L) < T}
minc (M{*") = {{p}}.
My = {p < not not p}
For X =0, we get N9 = {p + L} and minc(NY) = {0}.
For X = {p}, we get M3"" = {p « T} and minc (M?}) = {{p}}.
In general,

F < G, not not H s equivalentto F ;not H<+ G
F; not not G < H s equivalentto F < H,not G
not not not F is equivalent to not F

w |ntuitionistic Logics HT (Heyting, 1930) and G3 (Godel, 1932)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 115 / 453

Examples

Two examples

m My = {(p:not p) < T}
m For X =0, we get
m M ={(p;T) < T}
m minc(N?) = {0}. v
For X = {p}, we get
N ={(p; L) « T}
minc (M{*") = {{p}}.
My = {p < not not p}
For X =0, we get N9 = {p « L} and minc(NY) = {0}.
For X = {p}, we get 3" = {p « T} and minc (M) = {{p}}.
In general,

F < G, not not H s equivalentto F ;not H<+ G
F; not not G < H s equivalentto F < H,not G
not not not F is equivalent to not F

w |ntuitionistic Logics HT (Heyting, 1930) and G3 (Godel, 1932)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 115 / 453

Examples

Two examples

m My = {(p:not p) < T}
m For X =0, we get
m N ={(p;T)« T}
m minc(N?) = {0}. v
m For X = {p}, we get
N ={(p: 1) « T}
minc (M{*") = {{p}}.
My = {p < not not p}
For X =0, we get N9 = {p « L} and minc(NY) = {0}.
For X = {p}, we get 3" = {p « T} and minc (M) = {{p}}.
In general,

F < G, not not H s equivalentto F ;not H<+ G
F; not not G < H s equivalentto F < H,not G
not not not F is equivalent to not F

w |ntuitionistic Logics HT (Heyting, 1930) and G3 (Godel, 1932)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 115 / 453

Examples

Two examples

m [y ={(p;not p)« T}
m For X = (), we get
w0 ={(p;T) T}
m minc(N?) = {0}. v
m For X = {p}, we get
n N7 ={(p: L)+ T}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 115 / 453

Examples

Two examples

m [y ={(p;not p)« T}
m For X = (), we get
m Ny ={(p;T)« T}
m minc(N?) = {0}. v
m For X = {p}, we get
n NP ={(p; 1) < T}
m minc(N{™) = {{p}}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 115 / 453

Examples

Two examples

m [y ={(p;not p)« T}
m For X = (), we get
m Ny ={(p;T)« T}
m minc(N?) = {0}. v
m For X = {p}, we get
n NP ={(p; 1) < T}
= minc(N{”) = {{p}}. v

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 115 / 453

Examples

Two examples

m [y ={(p;not p)« T}
m For X = (), we get
w0 ={(p;T) T}
m minc(N?) = {0}. v
m For X = {p}, we get
n N7 ={(p; L)« T}
= minc(M}”) = {{p}}. v
m [, = {p < not not p}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 115 / 453

Examples

Two examples

m [y ={(p;not p)« T}
m For X = (), we get
w0 ={(p;T) T}
m minc(N?) = {0}. v
m For X = {p}, we get
n {7 ={(p; 1) « T}
= minc(M}”) = {{p}}. v
m [, = {p < not not p}
m For X =0, we get N9 = {p <~ L} and minc(NY) = {0}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 115 / 453

Examples

Two examples

m [y ={(p;not p)« T}
m For X = (), we get
M ={(p:T)« T}
m minc(N?) = {0}. v
m For X = {p}, we get
n NP = {(pil) « T}
= minc(M”) = {{p}}. v/
m [, = {p < not not p}
m For X =0, we get N9 = {p <~ L} and minc(N9) = {0}. v/

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 115 / 453

Examples

Two examples

m [y ={(p;not p)« T}
m For X = (), we get
Y ={(p:T) T}
m minc(N?) = {0}. v
m For X = {p}, we get
n {7 ={(p; 1) « T}
m minc (M) = {{p}}. v
m [, = {p < not not p}
m For X =0, we get N9 = {p <~ L} and minc(N9) = {0}. v/
m For X = {p}, we get I'Iép} ={p<+ T} and ming(l'lép}) = {{p}}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 115 / 453

Examples

Two examples

m [y ={(p;not p)« T}
m For X = (), we get
Y ={(p:T) T}
m minc(N?) = {0}. v
m For X = {p}, we get
n {7 ={(p; 1) « T}
m minc (M) = {{p}}. v
m [, = {p < not not p}
m For X =0, we get N9 = {p <~ L} and minc(N9) = {0}. v/
m For X = {p}, we get I'Iép} ={p<+ T} and ming(l'lép}) ={{p}}. v

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 115 / 453

Examples

Two examples

m [y ={(p;not p)« T}
m For X = (), we get
Y ={(p:T) T}
m minc(N?) = {0}. v
m For X = {p}, we get
n {7 ={(p; 1) « T}
= minc(M}”) = {{p}}. v
m [, = {p < not not p}
m For X =0, we get N9 = {p <~ L} and minc(N9) = {0}. v/
m For X = {p}, we get I'Iép} ={p<+ T} and ming(l'lép}) ={{p}}. v
m In general,

m F < G, not not H isequivalentto F ;not H<+ G
m F; not not G+ H isequivalentto F <« H,not G
m not not not F is equivalent to not F

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 115 / 453

Examples

Two examples

m [y ={(p;not p)« T}
m For X = (), we get
Y ={(p:T) T}
m minc(N?) = {0}. v
m For X = {p}, we get
n {7 ={(p; 1) « T}
m minc(M{”) = {{p}}. v
m [, = {p < not not p}
m For X =0, we get N9 = {p <~ L} and minc(N9) = {0}. v/
m For X = {p}, we get I'Iép} ={p<+ T} and ming(l'lép}) ={{p}}. v
m In general,

m F < G, not not H isequivalentto F ;not H<+ G
m F; not not G+ H isequivalentto F <« H,not G
m not not not F is equivalent to not F

w |ntuitionistic Logics HT (Heyting, 1930) and G3 (Godel, 1932)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 115 / 453

Examples

Some more examples

M3 = {p<+(q,r);(not g,not s)}
My = {(p;not p),(q;not q),(r;not r)« T}
Ms = {(p;not p),(q;notq),(r;notr)« T, L< p,q}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 116 / 453

Propositional Theories: Overview

Syntax

Semantics

SEES

Relationship with Logic Programs

Torsten Schaub (KRRQUP) Answer Set Programming

January 18, 2012

117 / 453

Syntax

Overview

Syntax

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 118 / 453

Syntax

Propositional theories

m Formulas are formed from

m propositional atoms and
[

using
m conjunction (A),
m disjunction (V), and
m implication (—).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 119 / 453

Syntax

Propositional theories

m Formulas are formed from

m propositional atoms and
[

using
m conjunction (A),
m disjunction (V), and
m implication (—).
m Notation
T = (L—>1)
~F = (F— 1) (or: not F)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 119 / 453

Syntax

Propositional theories

m Formulas are formed from

m propositional atoms and
m L
using
m conjunction (A),
m disjunction (V), and
m implication (—).

m Notation
T = (L—>1)
~F = (F—=1) (or: not F)

m A propositional theory is a finite set of formulas.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

119 / 453

Semantics

Overview

Semantics

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 120 / 453

Semantics

Reduct

m The satisfaction relation X = F between a set X of atoms and
a (set of) formula(s) F is defined as in propositional logic.

m The reduct, FX, of a formula F relative to a set X of atoms is
defined recursively as follows:

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

121 / 453

Semantics

Reduct

m The satisfaction relation X = F between a set X of atoms and
a (set of) formula(s) F is defined as in propositional logic.

m The reduct, FX, of a formula F relative to a set X of atoms is
defined recursively as follows:

m FX =1 if X J£ F

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

121 / 453

Semantics

Reduct

m The satisfaction relation X = F between a set X of atoms and
a (set of) formula(s) F is defined as in propositional logic.
m The reduct, FX, of a formula F relative to a set X of atoms is
defined recursively as follows:
m FX =1 if X £ F
m FX=F if F e X

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

121 / 453

Semantics

Reduct

m The satisfaction relation X = F between a set X of atoms and
a (set of) formula(s) F is defined as in propositional logic.
m The reduct, FX, of a formula F relative to a set X of atoms is
defined recursively as follows:
m FX =1 if X £ F
m FX=F if F e X
B FX=(GXoHX) if X[Fand F=(GoH)foroe{AV,—}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 121 / 453

Semantics

Reduct

m The satisfaction relation X = F between a set X of atoms and
a (set of) formula(s) F is defined as in propositional logic.

m The reduct, FX, of a formula F relative to a set X of atoms is
defined recursively as follows:
m FX =1 if X £ F
m FX=F if Fe X
B FX=(GXoHX) if X[Fand F=(GoH)foroe{AV,—}
- fF=~nG=(G— J_)
then FX = (L — 1) =T, if X £ G, and FX = L, otherwise.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 121 / 453

Semantics

Reduct

m The satisfaction relation X = F between a set X of atoms and
a (set of) formula(s) F is defined as in propositional logic.
m The reduct, FX, of a formula F relative to a set X of atoms is
defined recursively as follows:
m FX =1 if X |£F
m FX=F if FeX
B FX=(GXoHX) if X[Fand F=(GoH)foroe{AV,—}
- |fF=~G= (G—>J_)
then FX = (L — 1) =T, if X £ G, and FX = L, otherwise.

m The reduct, FX, of a propositional theory F relative to a set X of
atoms is defined as

X={FX|F e F}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 121 / 453

Semantics

Answer sets

m The set of all C-minimal sets of atoms satisfying a propositional
theory F is denoted by minc(F).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 122 / 453

Semantics

Answer sets

m The set of all C-minimal sets of atoms satisfying a propositional
theory F is denoted by minc(F).

m A set X of atoms is an answer set of a propositional theory F if
X € minc(FX).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 122 / 453

Semantics

Answer sets

m The set of all C-minimal sets of atoms satisfying a propositional
theory F is denoted by minc(F).

m A set X of atoms is an answer set of a propositional theory F if
X € minc(FX).

m If X is an answer set of F, then

s X = F and
= minc (FX) = {X}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 122 / 453

Semantics

Answer sets

m The set of all C-minimal sets of atoms satisfying a propositional
theory F is denoted by minc(F).

m A set X of atoms is an answer set of a propositional theory F if
X € minc(FX).
m If X is an answer set of F, then

m X =F and
= minc (FX) = {X}.
1= |n general, this does not imply X € minc (F)!

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 122 / 453

Examples

Overview

SEES

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 123 / 453

Examples

Two examples

. F— {pV (oo (@A)
For X ={p, q, r}, we get
FP = {pv(p—(aAr)} and minc(FP) = {0},
For X = (), we get
Fl={1Vv (L= 1)} and minc(F?) = {0}.

Fa={pV(~p—(qAr))}
For X = (), we get
]—“2@ ={1l} and ming(}}@) = .
For X = {p}, we get
FPY = {pv (L = 1)} and minc(FP) = {0},
For X = {q, r}, we get
Fi4 = {1V (T = (gAn)} and minc(F") = {{q,r}}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 124 / 453

Examples

Two examples

m Fi={pVv(p—=(qAr))}
m For X ={p,q,r}, we get
FP = {pv (p = (aAr))}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 124 / 453

Examples

Two examples

.« Fim {pV (P = (gD}
m For X ={p,q,r}, we get
FPed = {pv(p—(qAr)} and ming(F{P*7) = {0},

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 124 / 453

Examples

Two examples

m Fi={pV(p—(qgAr)}
m For X ={p,q,r}, we get
FPoY = {pv(p—(gAr)} and minc(FP7) = {0}.
m For X =0, we get
F={Lv(L 1)}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 124 / 453

Examples

Two examples

m Fi={pV(p—(gAr))}
m For X ={p,q,r}, we get
FPe = {pv(p—(qAr)} and ming(FP*7) = {0},
m For X =0, we get
FP={Lv(L—> 1)} and minc(FP) = {0}. v

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 124 / 453

Examples

Two examples

m Fi={pV(p—(gAr))}
m For X ={p,q,r}, we get
FPe = {pv(p—(qAr)} and ming(FP*7) = {0},
m For X =0, we get
FP={Lv(L—> 1)} and minc(FP) = {0}. v

m FH={pV(~p—=(qAT))}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 124 / 453

Examples

Two examples

Fi={pV(p—(gAr))}
m For X ={p,q,r}, we get
FPe = {pv(p—(qAr)} and ming(FP*7) = {0},
m For X =0, we get
FP={Lv(L—> 1)} and minc(FP) = {0}. v

m ={pV(~p—(qAr))}
m For X = (), we get
7= {1}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

124 / 453

Examples

Two examples

m Fi={pV(p—(gAr))}
m For X ={p,q,r}, we get
FPe = {pv(p—(qAr)} and ming(FP*7) = {0},
m For X =0, we get
FP={Lv(L—> 1)} and minc(FP) = {0}. v

m Fo={pV(~p—(qAr))}
m For X = (), we get
FY={1} and minc(F?) =0.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

124 / 453

Examples

Two examples

m Fi={pV(p—(gAr))}
m For X ={p,q,r}, we get
FPe = {pv(p—(qAr)} and ming(FP*7) = {0},
m For X =0, we get
FP={Lv(L—> 1)} and minc(FP) = {0}. v

m Fr={pV(~p—(qAr))}
m For X = (), we get
FY={1} and minc(F?) =0.
m For X = {p}, we get
FP = {pv (L~ 1)}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 124 / 453

Examples

Two examples

m Fi={pV(p—(gAr))}
m For X ={p,q,r}, we get
FPe = {pv(p—(qAr)} and ming(FP*7) = {0},
m For X =0, we get
FP={Lv(L—> 1)} and minc(FP) = {0}. v

m Fo={pV(~p—(qAr))}
m For X = (), we get
FY={1} and minc(F?) =0.
m For X = {p}, we get
FiPY = {pv (L — 1)} and minc(FPY) = {0}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 124 / 453

Examples

Two examples

m For X = {p,q,r}, we get

FP = {pv(p— (anr)} and ming(FP) = {0},
m For X = 0, we get

F ={LV(L— 1)} and minc(F}) = {0}. v

m Fo={pV(~p—(qAr))}
m For X = (), we get
FY={1} and minc(F?) =0.
m For X = {p}, we get
FiPY = {pv (L — 1)} and minc(FPY) = {0}.
m For X ={q, r}, we get
FL = {1V (T = (gAn)}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 124 / 453

Examples

Two examples

m For X = {p,q,r}, we get

FP = {pv(p— (anr)} and ming(FP) = {0},
m For X = 0, we get

F ={LV(L— 1)} and minc(F}) = {0}. v

m Fo={pV(~p—=(qAr))}
m For X =0, we get
F) = {1} and minc(FP)=0.
m For X = {p}, we get
FiPY = {pv (L — 1)} and minc(FPY) = {0}.
m For X ={q, r}, we get
]_—{q ry_ ={LV(T = (qAr))} and mlnc(}'{q’r}) ={qr}}t. v

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 124 / 453

Relationship with Logic Programs

Overview

Relationship with Logic Programs

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 125 / 453

Relationship with Logic Programs

Relationship with logic programs

m The translation, 7[(F < G)], of a (nested) rule (F < G) is defined
recursively as follows:

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 126 / 453

Relationship with Logic Programs

Relationship with logic programs

m The translation, 7[(F < G)], of a (nested) rule (F < G) is defined
recursively as follows:

[(F « G)] = (7[6] = 7[F]),

T[l] = 1,

T[T]=T,

T[F]=F if F is an atom,
T[not F| = ~T[F],

7[(F, G)] = (r[F] A 7[G]),
7[(F; 6)] = (7[F] v 7[G]).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

126 / 453

Relationship with Logic Programs

Relationship with logic programs

m The translation, 7[(F < G)], of a (nested) rule (F < G) is defined
recursively as follows:

[(F « G)] = (7[6] = 7[F]),

T[l] = 1,

T[T]=T,

T[F]=F if F is an atom,
T[not F| = ~T[F],

7[(F, G)] = (r[F] A 7[G]),
7[(F; 6)] = (7[F] v 7[G]).

m The translation of a logic program I is 7[[] = {7[r] | r € M}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

126 / 453

Relationship with Logic Programs

Relationship with logic programs

m The translation, 7[(F < G)], of a (nested) rule (F < G) is defined
recursively as follows:
m 7[(F + G)] = (7[G] — T[F]),
T[l] = 1,
T[T]=T,
T[F]=F if F is an atom,
T[not F| = ~T[F],
7[(F, G)] = (r[F] A 7[G]),
7[(F; 6)] = (7[F] v 7[G]).

m The translation of a logic program I is 7[[] = {7[r] | r € M}.

= Given a logic program I1 and a set X of atoms,
X is an answer set of M iff X is an answer set of 7[I].

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 126 / 453

Relationship with Logic Programs

Logic programs as propositional theories

m The normal logic program Il = {p < not q, q < not p}
corresponds to T[] = {~qg — p, ~p — q}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 127 / 453

Relationship with Logic Programs

Logic programs as propositional theories

m The normal logic program Il = {p < not q, q < not p}
corresponds to T[] = {~qg — p, ~p — q}.
= Answer sets: {p} and {q}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 127 / 453

Relationship with Logic Programs

Logic programs as propositional theories

m The normal logic program Il = {p < not q, q < not p}
corresponds to T[] = {~qg — p, ~p — q}.
= Answer sets: {p} and {q}

m The disjunctive logic program = {p;q+}
corresponds to T[] ={T — pV q}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 127 / 453

Relationship with Logic Programs

Logic programs as propositional theories

m The normal logic program Il = {p < not q, q < not p}
corresponds to T[] = {~qg — p, ~p — q}.
= Answer sets: {p} and {q}

m The disjunctive logic program = {p;q+}
corresponds to T[] ={T — pV q}.
= Answer sets: {p} and {q}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

127 / 453

Relationship with Logic Programs

Logic programs as propositional theories

m The normal logic program Il = {p < not q, q < not p}
corresponds to T[] = {~qg — p, ~p — q}.
= Answer sets: {p} and {q}

m The disjunctive logic program = {p;q+}
corresponds to T[] ={T — pV q}.
= Answer sets: {p} and {q}

m The nested logic program 1 = {p < not not p}
corresponds to T[] = {~~p — p}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

127 / 453

Relationship with Logic Programs

Logic programs as propositional theories

m The normal logic program Il = {p < not q, q < not p}
corresponds to T[] = {~qg — p, ~p — q}.
= Answer sets: {p} and {q}

m The disjunctive logic program = {p;q+}
corresponds to T[] ={T — pV q}.
= Answer sets: {p} and {q}

m The nested logic program 1 = {p < not not p}
corresponds to T[] = {~~p — p}.
= Answer sets: () and {p}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

127 / 453

Classical Negation: Overview

Syntax

Semantics

Examples

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 128 / 453

Syntax

Overview

Syntax

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 129 / 453

Syntax

Syntax

Status quo
m In logic programs not (or ~) denotes default negation.

We allow classical negation for atoms (only!).
Logic programs in “negation normal form.”

Given an alphabet A of atoms, let A= {-A|Ac A}.
We assume AN A = (.

The atoms A and —A are complementary.
—A is the classical negation of A, and vice versa.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 130 / 453

Syntax

Syntax

Status quo
m In logic programs not (or ~) denotes default negation.

Generalization
m We allow classical negation for atoms (only!).
= | ogic programs in “negation normal form.”

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 130 / 453

Syntax

Syntax

Status quo
m In logic programs not (or ~) denotes default negation.
Generalization

m We allow classical negation for atoms (only!).
= | ogic programs in “negation normal form.”

m Given an alphabet A of atoms, let A = {-A| A c A}.
1= We assume AN A = ().

m The atoms A and —A are complementary.
= —A is the classical negation of A, and vice versa.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 130 / 453

Semantics

Overview

Semantics

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 131 / 453

Semantics

Semantics

m A set X of atoms is consistent, if X N {=A|Ae (AN X)} =1,
and inconsistent, otherwise.

A set X of atoms is an answer set of a logic program I over AU A if
X is an answer set of MU {B + A, —-A|Aec A, Be (AU A)}

The only inconsistent answer set (candidate) is X = AU A.

For a normal or disjunctive logic program I over AU A,
exactly one of the following two cases applies:

All answer sets of [1 are consistent or
X = AU A is the only answer set of .

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 132 / 453

Semantics

Semantics

m A set X of atoms is consistent, if X N {=A|Ae (AN X)} =1,
and inconsistent, otherwise.

m A set X of atoms is an answer set of a logic program I over AU A if
X is an answer set of MU{B «+ A, ~A|A€ A, Be (AUA)}

= The only inconsistent answer set (candidate) is X = AU A.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 132 / 453

Semantics

Semantics

m A set X of atoms is consistent, if X N {=A|Ae (AN X)} =1,
and inconsistent, otherwise.

m A set X of atoms is an answer set of a logic program I over AU A if
X is an answer set of MU{B «+ A, ~A|A€ A, Be (AUA)}

= The only inconsistent answer set (candidate) is X = AU A.

m For a normal or disjunctive logic program I over AU A,
exactly one of the following two cases applies:

All answer sets of 1 are consistent or
X = AU A is the only answer set of I1.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 132 / 453

Examples

Overview

Examples

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 133 / 453

Examples

To cross or not to cross. .. ?

My = {cross + not train}
Answer set: {cross}

My = {cross < —train}
Answer set: ()

M3 = {cross < —train, —train <}
Answer set: {cross, —train}

M4 = {cross < —train, —train <—, —cross <}
Answer set: {cross, —cross, train, —train}

Ms = {cross < —train, —train <— not train, —cross <}

No answer set

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 134 / 453

Examples

To cross or not to cross. .. ?

m [1; = {cross < not train}
m Answer set: {cross}

m [y = {cross < —train}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 134 / 453

Examples

To cross or not to cross. .. ?

m [1; = {cross < not train}

m Answer set: {cross}

My = {cross < —train}
m Answer set: ()
M3 = {cross < —train,

Torsten Schaub (KRRQUP)

—train <}

Answer Set Programming January 18, 2012

134 / 453

Examples

To cross or not to cross. .. ?

m [1; = {cross < not train}
m Answer set: {cross}

My = {cross < —train}
m Answer set: ()

M3 = {cross < —train, —train <}
m Answer set: {cross,—train}

M4 = {cross < —train, —train <—, —cross <}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 134 / 453

Examples

To cross or not to cross. .. ?

m [1; = {cross < not train}
m Answer set: {cross}

My = {cross < —train}
m Answer set: ()

M3 = {cross < —train, —train <}
m Answer set: {cross,—train}

M4 = {cross < —train, —train <—, —cross <}
m Answer set: {cross, —cross, train, —train}

Ms = {cross <— —train, —train <— not train, —cross <}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 134 / 453

Examples

To cross or not to cross. .. ?

m [1; = {cross < not train}
m Answer set: {cross}

My = {cross < —train}
m Answer set: ()

M3 = {cross < —train, —train <}
m Answer set: {cross,—train}

M4 = {cross < —train, —train <—, —cross <}
m Answer set: {cross, —cross, train, —train}

Ms = {cross <— —train, —train <— not train, —cross <}
m No answer set

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 134 / 453

Examples

Example

ml={p«, -p<, g« notr}
M =NU{A<« (B,~B), ~A« (B,—~B)| A B¢€ {p.q,r}}
Answer set: {p,—p, q,—q,r,—r}
N={p;qg«, r<p, -r<p}
MN'=NU{A+« (B,~B), ~A« (B,~B)| A B¢€ {p.q,r}}
Answer set: {q}
M={p;not p< T, =p;not g« T, q;not g« T}
N=NU{A+ (B,-B), A+ (B,-B) | A,Be{p,q}}

Answer sets: (), {p}, {-p,q}, and {p,—p, q,~q}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 135 / 453

Examples

Example

ml={p«, -p, g« notr}
M =NU{A« (B,~B), ~A« (B,~B)| A B € {p.q,r}}
Answer set: {p,—p,q,—q,r,—r}
N={p;q«, r<p, -r<p}
MN'=NU{A+« (B,~B), ~A« (B,~B)| A B¢€ {p.q,r}}
Answer set: {q}
M={p;not p< T, =p;not g« T, q;not g« T}
MN=NU{A+ (B,-B), A+ (B,-B) | A,Be{p,q}}
Answer sets: 0, {p}, {—p,q}, and {p,—p, q,q}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 135 / 453

Examples

Example

mN={p<, =p<, g« not r}
N'=NU{A <« (B,=B), A+ (B,=B)| A B e {p,q,r}}
Answer set: {p,—p,q,—q,r,—r}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 135 / 453

Examples

Example
mN={p<, =p<, g« not r}
N'=NU{A <« (B,=B), A+ (B,=B)| A B e {p,q,r}}
Answer set: {p,—p,q,—q,r,—r}
mlM={p;g«, r<p, r<p}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 135 / 453

Examples

Example
= {p<, -p<, g< not r}
M"=NU{A«+ (B,-B), ~A« (B,-B) | A,B<c {p,q,r}}
Answer set: {p,—p,q,—q,r,—r}
mN={p;g, rep, —rep}
N"=NU{A+ (B,~B), ~A« (B,-B) | A,B € {p,q,r}}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 135 / 453

Examples

Example
= {p<, -p<, g< not r}
M"=NU{A«+ (B,-B), ~A« (B,-B) | A,B<c {p,q,r}}
Answer set: {p,—p,q,—q,r,—r}
mN={p;g, rep, —rep}
N"=NU{A+ (B,~B), ~A« (B,-B) | A,B € {p,q,r}}
Answer set: {q}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 135 / 453

Examples

Example

= {p<, -p<, g< not r}
M"=NU{A«+ (B,-B), ~A« (B,-B) | A,B<c {p,q,r}}
Answer set: {p,—p,q,—q,r,—r}

mN={p;g, rep, —rep}
N"=NU{A+ (B,~B), ~A« (B,-B) | A,B € {p,q,r}}
Answer set: {q}

mM={p;not p« T, =p;not g« T, q;not q< T}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 135 / 453

Examples

Example

ml={p«, -p, g« notr}
N"=NU{A+ (B,-B), “A«+ (B,-B) | A,Be{p,q,r}}
Answer set: {p,—p,q,—q,r,—r}

mll={p;qg, rp, -r<p}
MN"=NU{A+ (B,-B), “A«+ (B,-B) | A,Be{p,q,r}}
Answer set: {q}

ml={p;not p< T, =p;not q< T, q,not g+« T}
MN=NU{A+ (B,-B), A+ (B,-B) | A,B<{p,q}}
Answer sets: 0, {p}, {-p,q}, and {p,—p, q,q}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 135 / 453

Examples

Complexity

Let A be an atom and X be a set of atoms.
m For a positive normal logic program [1:
m Deciding whether X is the answer set of [1 is P-complete.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

136 / 453

Examples

Complexity

Let A be an atom and X be a set of atoms.
m For a positive normal logic program [1:
m Deciding whether X is the answer set of [1 is P-complete.

m For a normal logic program [1:

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

136 / 453

Examples

Complexity

Let A be an atom and X be a set of atoms.
m For a positive normal logic program [1:
m Deciding whether X is the answer set of [1 is P-complete.

m For a normal logic program [1:
m Deciding whether X is an answer set of [1 is P-complete.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

136 / 453

Examples

Complexity

Let A be an atom and X be a set of atoms.
m For a positive normal logic program [1:

m Deciding whether X is the answer set of [1 is P-complete.
m Deciding whether A is in the answer set of 1 is P-complete.

m For a normal logic program [1:
m Deciding whether X is an answer set of [1 is P-complete.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

136 / 453

Examples

Complexity

Let A be an atom and X be a set of atoms.
m For a positive normal logic program [1:

m Deciding whether X is the answer set of [1 is P-complete.
m Deciding whether A is in the answer set of 1 is P-complete.

m For a normal logic program [1:

m Deciding whether X is an answer set of [1 is P-complete.
m Deciding whether A is in an answer set of I1 is NP-complete.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

136 / 453

Examples

Complexity (ctd)

m For a positive disjunctive logic program [1:
m Deciding whether X is an answer set of 1 is co-NP-complete.
Deciding whether A is in an answer set of I is NPNP-complete.

For a disjunctive logic program [1:

Deciding whether X is an answer set of 1 is co-NP-complete.
Deciding whether A is in an answer set of 1 is NPNP-complete.

For a nested logic program [1:

Deciding whether X is an answer set of 1 is co-NP-complete.
Deciding whether A is in an answer set of 1 is NPNP-complete.

For a propositional theory F:

Deciding whether X is an answer set of F is co-NP-complete.
Deciding whether A is in an answer set of F is NPNP-complete.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 137 / 453

Examples

Complexity (ctd)

m For a positive disjunctive logic program [1:
m Deciding whether X is an answer set of I1 is co-NP-complete.
m For a disjunctive logic program [1:

m For a nested logic program [1:

m For a propositional theory F:

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

137 / 453

Examples

Complexity (ctd)

m For a positive disjunctive logic program [1:
m Deciding whether X is an answer set of I1 is co-NP-complete.

m For a disjunctive logic program [1:
m Deciding whether X is an answer set of [1 is co-NP-complete.

m For a nested logic program [1:
m Deciding whether X is an answer set of I1 is co-NP-complete.

m For a propositional theory F:
m Deciding whether X is an answer set of F is co-NP-complete.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

137 / 453

Examples

Complexity (ctd)

m For a positive disjunctive logic program [1:
m Deciding whether X is an answer set of I1 is co-NP-complete.
m Deciding whether A is in an answer set of 1 is NPNP

m For a disjunctive logic program [1:
m Deciding whether X is an answer set of [1 is co-NP-complete.

m For a nested logic program [1:
m Deciding whether X is an answer set of I1 is co-NP-complete.

m For a propositional theory F:
m Deciding whether X is an answer set of F is co-NP-complete.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

-complete.

137 / 453

Examples

Complexity (ctd)

m For a positive disjunctive logic program [1:
m Deciding whether X is an answer set of I1 is co-NP-complete.
m Deciding whether A is in an answer set of 1 is NPNP-complete.

m For a disjunctive logic program [1:

m Deciding whether X is an answer set of [1 is co-NP-complete.
m Deciding whether A is in an answer set of I is NPNP-complete.

m For a nested logic program [1:

m Deciding whether X is an answer set of I1 is co-NP-complete.
m Deciding whether A is in an answer set of 1 is NPNP-complete.

m For a propositional theory F:

m Deciding whether X is an answer set of F is co-NP-complete.
m Deciding whether A is in an answer set of F is NPNP-complete.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 137 / 453

Language Extensions: Overview

Motivation

Integrity Constraints

Choice Rules

Cardinality Constraints
Cardinality Rules

Weight Constraints (and more)

Modeling Practice

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 138 / 453

Motivation

Overview

Motivation

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 139 / 453

Motivation

Language extensions

m The expressiveness of a language can be enhanced by introducing new
constructs.
m To this end, we must address the following issues:

m What is the syntax of the new language construct?
m What is the semantics of the new language construct?
m How to implement the new language construct?

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 140 / 453

Motivation

Language extensions

m The expressiveness of a language can be enhanced by introducing new
constructs.
m To this end, we must address the following issues:

m What is the syntax of the new language construct?
m What is the semantics of the new language construct?
m How to implement the new language construct?

m A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 140 / 453

Motivation

Language extensions

m The expressiveness of a language can be enhanced by introducing new
constructs.
m To this end, we must address the following issues:

m What is the syntax of the new language construct?
m What is the semantics of the new language construct?
m How to implement the new language construct?

m A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation.

m This translation might also be used for implementing the language
extension. When is this feasible?

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 140 / 453

Integrity Constraints

Overview

Integrity Constraints

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 141 / 453

Integrity Constraints

Integrity Constraints

m Purpose Integrity constraints eliminate unwanted solution candidates

m Syntax An integrity constraint is of the form
— Ai,...,An, not Am+17 ..., not A,

where n > m > 1, and each A; (1 < < n)is a atom.
m Example :— edge(X,Y), color(X,C), color(Y,C).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 142 / 453

Integrity Constraints

Integrity Constraints

m Purpose Integrity constraints eliminate unwanted solution candidates

m Syntax An integrity constraint is of the form
— Ai,...,An, not Am+17 ..., not A,

where n > m > 1, and each A; (1 < < n)is a atom.
m Example :— edge(X,Y), color(X,C), color(Y,C).

m Implementation For a new symbol x, map

— Al,...,Am,notAm+1,...,notA,,
— x < Ai,...,Am,not Amy1,...,not A, not x

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

142 / 453

Integrity Constraints

Integrity Constraints

m Purpose Integrity constraints eliminate unwanted solution candidates
m Syntax An integrity constraint is of the form

— Ai,...,An, not Am+17 ..., not A,

where n > m > 1, and each A; (1 < < n)is a atom.
m Example :— edge(X,Y), color(X,C), color(Y,C).
m Implementation For a new symbol x, map
— Ai,...,An, not Am+1,...,not An
— x < Ai,...,Am,not Amy1,...,not A, not x

m Another example 1 = {p < not q, q + not p}
versus " =MU{« p} and N” =MNU{«+ not p}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 142 / 453

Choice Rules

Overview

Choice Rules

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 143 / 453

Choice Rules

Choice rules

m Idea Choices over subsets.

m Syntax
{Al, ... 7Am} — Amt1,...,Anp, not An+1, ..., not Ao,

m Informal meaning If the body is satisfied in an answer set,
then any subset of {A;,...,An} can be included in the answer set.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 144 / 453

Choice Rules

Choice rules

m Idea Choices over subsets.

m Syntax
{Al, ... 7Am} — Amt1,...,Anp, not An+1, ..., not Ao,

m Informal meaning If the body is satisfied in an answer set,
then any subset of {A;,...,An} can be included in the answer set.

m Example 1 {color(X,C) : col(C)} 1 :- node(X).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 144 / 453

Choice Rules

Choice rules

Idea Choices over subsets.

Syntax
{Al, ... 7Am} — Amt1,...,Anp, not An+1, ..., not Ao,

Informal meaning If the body is satisfied in an answer set,
then any subset of {A;,...,An} can be included in the answer set.

Example 1 {color(X,C) : col(C)} 1 :- node(X).

Another Example The program N = { {a} < b, b <} has two
answer sets: {b} and {a, b}.

Implementation Iparse/gringo + smodels/cmodels/clasp

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 144 / 453

Choice Rules

Embedding in normal logic programs
m A choice rule of form

{Al,.. . 7Am} — Am+1,...,An,not A,H_l,.. ., hot Ao

can be translated into 2m + 1 rules

A «— Amii,...,Ap,not Apia,...,not A,

A1« A, not Ay Am < A not An,

Al <« not A; ... Am <+« not Anm

by introducing new atoms A, Aq,..., A,

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 145 / 453

Cardinality Constraints

Overview

Cardinality Constraints

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 146 / 453

Cardinality Constraints

Cardinality constraints

Syntax A (positive) cardinality constraint is of the form

I {A1,....,Am} u

Informal meaning A cardinality constraint is satisfied in an answer set
X, if the number of atoms from {Ai,..., Ay} satisfied in X is
between / and u (inclusive).

More formally, if / < |{A1,...,An} N X| < u.

Conditions I {A1:Bi,...,Am:Bn}t u

where Bi, ..., By are used for restricting instantiations of variables
occurring in Ay, ..., Am.

Example 2 {hd(a),...,hd(m)} 4

Implementation Iparse/gringo + smodels/cmodels/clasp

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 147 / 453

Cardinality Rules

Overview

Cardinality Rules

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 148 / 453

Cardinality Rules

Cardinality rules

Idea Control cardinality of subsets.

Syntax
Ao < | {Al,...,Am,not Am+1, ..., not An}

m Informal meaning If at least / elements of the “body” are true in an
answer set, then add Ag to the answer set.

= /[is a lower bound on the “body”

Example The program N = { a < 1{b,c}, b <} has one answer set:
{a, b}.

m Implementation Iparse/gringo + smodels/cmodels/clasp

1= gringo distinguishes sets and multi-sets!

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 149 / 453

Cardinality Rules

Embedding in normal logic programs (ctd)

m Replace each cardinality rule
Ao%/{Al,...,Am} by A()%CC(A;[,/)

where atom cc(A;,) represents the fact that at least j of the atoms
in {A;,...,An}, that is, of the atoms that have an equal or greater
index than i/, are in a particular answer set.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 150 / 453

Cardinality Rules

Embedding in normal logic programs (ctd)

Replace each cardinality rule
Ao%/{Al,...,Am} by A()%CC(A;[,/)

where atom cc(A;,) represents the fact that at least j of the atoms
in {A;,...,An}, that is, of the atoms that have an equal or greater
index than i/, are in a particular answer set.

The definition of cc(A;,) is given by the rules

cc(Ai,j+1) < cc(Ait1,)), Ai
CC(Af7.j) < CC(AI'+17.j)
cc(Am+1,0)

What about space complexity?

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 150 / 453

Cardinality Rules

and vice versa

m A normal rule
Ao < A1, ..., Am,not Ami1,...,not Ap,
can be represented by the cardinality rule

Ao < n+m {A1,...,Am,not Apmi1,...,not Ap}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 151 / 453

Cardinality Rules

Cardinality rules with upper bounds
m A rule of the form
Ag </ {Al,...,Am,not Am+1,-..,not An} u

stands for
Ay < B,not C
B « [I{Ai,...,An,not Api1,...,not Ap}
C « u+tl{A1,...,Am,not Apii,...,not A}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

152 / 453

Cardinality Rules

Cardinality constraints as heads

m A rule of the form

/{Al,...,Am} U<+ Amii,-..,Ap,not Apy1,...,not Ao,

stands for
B « Ami1,...,An not Apt1,...,not A,
{A1,...,An} « B
C «+ I{A1,....,An} u
< B,not C

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 153 / 453

Cardinality Rules

Full-fledged cardinality rules
m A rule of the form
/0 50 UO<—/1 51 ul,...,/,, S,-, up

stands for 0 </ < n

= S
G + u+ls5;
A < Bi,....,B,,not Cq,..., not C,
<+ A, not By
+— A G
S5NA «— A

where A is the underlying alphabet.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 154 / 453

Cardinality Rules

Full-fledged cardinality rules

m A rule of the form
/0 50 Uo%/l 51 U1,...,/n Sn Up

stands for 0 < j <n

B, «~ IS
Cpo= el Sy
A < Bi,...,By,not Gq,...,not C,
<~ A, not By
— A G
S5NA «— A

where A is the underlying alphabet.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 154 / 453

Weight Constraints (and more)

Overview

Weight Constraints (and more)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 155 / 453

Weight Constraints (and more)

Weight constraints

m Syntax | [A1 = wi,...,Am = Wn,
not Am+1 = Wm41,-..,n0t Ay = wp| u

m Informal meaning A weight constraint is satisfied in an answer set X,

if

| < Z w; + Z wi | <u.

1<i<m,A;eX m<i<n,A:ZX

w Generalization of cardinality constraints.
m Example 80 [hd(a)=50,...,hd(m)=100] 400

m Implementation Iparse/gringo + smodels/cmodels/clasp
1= gringo distinguishes sets and multi-sets!

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

156 / 453

Weight Constraints (and more)

Optimization statements

m ldea Compute optimal answer sets by minimizing or maximizing a
weighted sum of given elements, respectively.
m Syntax
m #minimize [Ai=wi,..., An=wpn,
not Am+1=Wm41, ..., N0t A,=w,]
m #maximize [Ay=wy, ..., An=wWpn,
not Ami1=Wmi1, ..., N0t Ay=w,]
m Several optimization statements are interpreted lexicographically.
m Example

m #minimize [hd(a)=30,...,hd(m)=50]
B #minimize [road(X,Y) : length(X,Y,L) = L]

m Implementation Iparse/gringo + smodels/clasp

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 157 / 453

Weight Constraints (and more)

Weak integrity constraints

m Syntax i~ A1, ..., Am,not Apmii,...,not Ay [w:]
m Informal meaning

minimize the sum of weights of violated constraints in the highest level,

minimize the sum of weights of violated constraints in the next lower
level;

etc

m Implementation dlv

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 158 / 453

Modeling Practice

Overview

Modeling Practice

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 159 / 453

Modeling Practice

Conditional literals in 1parse and gringo
We often want to encode the contents of a (multi-)set rather than
enumerating each of the elements.

To support this, 1parse and gringo allow for conditional literals.

Syntax

Ap:Ar:. ..t Apinot Apy1 i ... not A,

Informal meaning

List all ground instances of Ag such that corresponding instances of

Ai,...,Am, not Ami1,...,not A, are true.
Example gringo instantiates the program:

p(1). p(2). p(3). q(2). {rX) : pX) : not q(X)}.
to:

p(1). p(2). p(3). q(2). {r(1), r(3)?.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 160 / 453

Modeling Practice

Domain predicates in 1parse and gringo

m The predicates of literals on the right-hand side of a colon (:) must be
defined from facts without any negative recursion.

m Such domain predicates are fully evaluated by 1parse and gringo.

m Example

p(1). p(2).

qX) :- p(X), not p(X+1).
q(X) :- p(X), qX+1).
r(X) :- p(X), not r(X+1).

m p/1 and gq/1 are domain predicates because none of them negatively
depends on itself.

m r/1 is not a domain predicate because it is defined in terms
of not r(X+1).

m See gringo documentation for further details.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 161 / 453

Modeling Practice

Normal form in 1parse and gringo

m Consider a logic program consisting of

m normal rules

choice rules

cardinality rules

weight rules
optimization statements

m Such a format is obtained by 1parse or gringo

and directly implemented by smodels and clasp.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 162 / 453

Aggregates: Overview

Motivation

Syntax

Semantics

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 163 / 453

Motivation

Overview

Motivation

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 164 / 453

Motivation

Motivation

m Aggregates provide a general way to obtain a single value from a
collection of input values given as a set, a bag, or a list.
m Popular aggregate (functions):
m Average
Count
Maximum
Minimum
Sum

m Cardinality and Weight constraints rely on Count and Sum aggregates.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 165 / 453

Syntax

Overview

Syntax

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 166 / 453

Syntax

Syntax

m An aggregate has the form:
F{Ai=w1,...,Am = Wm,not Ami1 = Wmy1,...,n0t Ap = wp) < k

where
m F stands for a function mapping multi-sets of Z to Z U {+o00, —00},
< stands for a relation between Z U {400, —o0} and Z,
k an integer,
A; is an atom, and
w; are integers

forl <i<n.
m For instance, sum (hd(a) = 30, ..., hd(m) = 50) < 300

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 167 / 453

Semantics

Overview

Semantics

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 168 / 453

Semantics

Semantics

m A (positive) aggregate F (A1 = wa,..., A, = w,) < k can be
represented by the formula:

/\ /\ A,‘ = \/ A,‘
IC{1,....,n},F(w;|i€l) Ak \i€l iel

where [= {1,...,n}\ I and 4 is the complement of <.

m Then, F (A1 =wi,...,Ap = wp) < kis true in X iff
the above formula is true in X.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

169 / 453

Semantics

An example

m Consider sum{(p=1,g=1) #1
w thatis, Ay =p, Ao=qgand wy =1, wp =1

m Calculemus!

| [wiliel) | Swlieh|Swlich=1

0 () 0 false
{1} (1) 1 true
{2} (1) 1 true

{1,2} (1,1) 2 false

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

170 / 453

Semantics

An example

m Consider sum{(p=1,g=1) #1
w thatis, Ay =p, Ao=qgand wy =1, wp =1

m Calculemus!

| [wiliel) | Swlieh|Swlich=1

0 () 0 false
{1} (1) 1 true
{2} (1) 1 true

{1,2} (1,1) 2 false

m We get (p — q) A (q — p)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

170 / 453

Semantics

An example

m Consider sum{(p=1,g=1) #1
w thatis, Ay =p, Ao=qgand wy =1, wp =1

m Calculemus!

| [wiliel) | Swlieh|Swlich=1

0 () 0 false
{1} (1) 1 true
{2} (1) 1 true

{1,2} (1,1) 2 false

m We get (p — q) A (q — p)
m Analogously, we obtain (pV q) A =(p A q) for sum(p=1,g=1) =1.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 170 / 453

Semantics

Monotonicity

m Monotone aggregates
m For instance,
m body ™ (r)
B sum(p=1,g=1)>1
m We get a simpler characterization: \;c1 oy prujien 2k Viel Ai
m Anti-monotone aggregates
m For instance,
m body~(r)
B sum(p=1g=1)<1
m We get a simpler characterization: ;1 o1 powjien <k 7 Nies Ai
m Non-monotone aggregates

m For instance, sum{p =1,q = 1) # 1 is non-monotone.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 171 / 453

Semantics

Monotonicity

m Monotone aggregates
m For instance,
m body ™ (r)
B sum(p=1,g=1)>1 amountsto pAgq
m We get a simpler characterization: /\Ig{l,...,n},F<w,-\ie/>7<k Vici Ai
m Anti-monotone aggregates
m For instance,
m body~(r)
B sum{p=1,g=1) <1 amounts to =p A g
m We get a simpler characterization: /\Ig{l,i..,n},F(wf\iele _‘/\ie/ A;
m Non-monotone aggregates

m For instance, sum{p =1,q = 1) # 1 is non-monotone.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 171 / 453

The smodels approach: Overview

Motivation

Approximation

Partial Interpretations

Basic Algorithms

Torsten Schaub (KRRQUP) Answer Set Programming

January 18, 2012

172 / 453

Motivation

Overview

Motivation

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 173 / 453

Motivation

(Towards) the smodels approach
m Wanted:

m An efficient procedure to compute answer sets
m The smodels approach:

m Backtracking search building a binary search tree
m A node in the search tree corresponds to a 3-valued interpretation

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 174 / 453

Motivation

(Towards) the smodels approach

m Wanted:

m An efficient procedure to compute answer sets

m The smodels approach:
m Backtracking search building a binary search tree
m A node in the search tree corresponds to a 3-valued interpretation
m The search space is pruned by
m deriving deterministic consequences and detecting conflicts (expand)
® making one choice at a time by appeal to a heuristic (select)

= Heuristic choices are made on atoms

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 174 / 453

Approximation

Overview

Approximation

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 175 / 453

Approximation

Approximating answer sets
First Idea Approximate an answer set X by two sets of atoms L and U

such that L C X C U.

L and U constitute lower and upper bounds on X.
L and (A\ U) describe a 3-valued model of the program.

X C Y implies MY C M implies Cn(NY) C Cn(NX)

Let X be an answer set of normal logic program [1.
If L C X, then X C Cn(N%).
If X C U, then Cn(MY) C X.
If LC X C U, then LU Cn(NY) C X C Un Cn(Nh).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 176 / 453

Approximation

Approximating answer sets

First Idea Approximate an answer set X by two sets of atoms L and U
such that L C X C U.

w [and U constitute lower and upper bounds on X.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 176 / 453

Approximation

Approximating answer sets

First Idea Approximate an answer set X by two sets of atoms L and U
such that L C X C U.

w [and U constitute lower and upper bounds on X.
w | and (A\ U) describe a 3-valued model of the program.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 176 / 453

Approximation

Approximating answer sets

First Idea Approximate an answer set X by two sets of atoms L and U
such that L C X C U.

w [and U constitute lower and upper bounds on X.
w | and (A\ U) describe a 3-valued model of the program.

Observation

X C Y implies MY € NX implies Cn(NY) C Cn(NX)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 176 / 453

Approximation

Approximating answer sets

First Idea Approximate an answer set X by two sets of atoms L and U
such that L C X C U.

w [and U constitute lower and upper bounds on X.
w | and (A\ U) describe a 3-valued model of the program.

Observation

X C Y implies MY € NX implies Cn(NY) C Cn(NX)

Properties Let X be an answer set of normal logic program [1.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 176 / 453

Approximation

Approximating answer sets

First Idea Approximate an answer set X by two sets of atoms L and U
such that L C X C U.

w [and U constitute lower and upper bounds on X.
w | and (A\ U) describe a 3-valued model of the program.

Observation
X C Y implies MY € NX implies Cn(NY) C Cn(NX)
Properties Let X be an answer set of normal logic program [1.

mIf LCX,

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 176 / 453

Approximation

Approximating answer sets

First Idea Approximate an answer set X by two sets of atoms L and U
such that L C X C U.

w [and U constitute lower and upper bounds on X.
w | and (A\ U) describe a 3-valued model of the program.

Observation
X C Y implies MY € NX implies Cn(NY) C Cn(NX)
Properties Let X be an answer set of normal logic program [1.

mIf L C X, then X C Cn(ﬂL).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 176 / 453

Approximation

Approximating answer sets

First Idea Approximate an answer set X by two sets of atoms L and U
such that L C X C U.

w [and U constitute lower and upper bounds on X.
w | and (A\ U) describe a 3-valued model of the program.

Observation

X C Y implies MY € NX implies Cn(NY) C Cn(NX)

Properties Let X be an answer set of normal logic program [1.
mIf L C X, then X C Cn(ﬂL).
m If X C U,

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 176 / 453

Approximation

Approximating answer sets

First Idea Approximate an answer set X by two sets of atoms L and U
such that L C X C U.

w [and U constitute lower and upper bounds on X.
w | and (A\ U) describe a 3-valued model of the program.

Observation

X C Y implies MY € NX implies Cn(NY) C Cn(NX)

Properties Let X be an answer set of normal logic program [1.
mIf L C X, then X C Cn(ﬂL).
m If X C U, then Cn(NY) C X.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 176 / 453

Approximation

Approximating answer sets
First Idea Approximate an answer set X by two sets of atoms L and U

such that L C X C U.

w [and U constitute lower and upper bounds on X.
w | and (A\ U) describe a 3-valued model of the program.

Observation

X C Y implies MY € NX implies Cn(NY) C Cn(NX)

Properties Let X be an answer set of normal logic program I1.
mIf L C X, then X C Cn(ﬂL).
m If X C U, then Cn(NY) C X.
miIf LCXCU,

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 176 / 453

Approximation

Approximating answer sets
First Idea Approximate an answer set X by two sets of atoms L and U

such that L C X C U.

w [and U constitute lower and upper bounds on X.
w | and (A\ U) describe a 3-valued model of the program.

Observation

X C Y implies MY € NX implies Cn(NY) C Cn(NX)

Properties Let X be an answer set of normal logic program I1.
mIf L C X, then X C Cn(ﬂL).
m If X C U, then Cn(NY) C X.
miIf LC X CU, then LU Cn(FIU) cCXCUn Cn(I'IL).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 176 / 453

Approximation

Approximating answer sets (ctd)

Second Idea
Iterate

m Replace L by LU Cn(MY)
m Replace U by Un Cn(Nt)

until L and U do not change anymore.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

177 / 453

Approximation

Approximating answer sets (ctd)

Second Idea
Iterate
m Replace L by LU Cn(MY)
m Replace U by Un Cn(Nt)

until L and U do not change anymore.

Observations
m At each iteration step

m L becomes larger (or equal)
m U becomes smaller (or equal)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

177 / 453

Approximation

Approximating answer sets (ctd)

Second Idea
Iterate
m Replace L by LU Cn(MY)
m Replace U by Un Cn(Nt)
until L and U do not change anymore.
Observations
m At each iteration step

m L becomes larger (or equal)
m U becomes smaller (or equal)

m L C X C U is invariant for every answer set X of [l

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 177 / 453

Approximation

Approximating answer sets (ctd)

Second Idea
Iterate
m Replace L by LU Cn(MY)
m Replace U by Un Cn(Nt)

until L and U do not change anymore.
Observations

m At each iteration step

m L becomes larger (or equal)
m U becomes smaller (or equal)

m L C X C U is invariant for every answer set X of [l
mif LZ U,

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 177 / 453

Approximation

Approximating answer sets (ctd)

Second Idea
Iterate
m Replace L by LU Cn(MY)
m Replace U by Un Cn(Nt)

until L and U do not change anymore.
Observations

m At each iteration step

m L becomes larger (or equal)
m U becomes smaller (or equal)

m L C X C U is invariant for every answer set X of [l
m If L £ U, then I has no answer set!

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 177 / 453

Approximation

Approximating answer sets (ctd)

Second Idea
Iterate
m Replace L by LU Cn(MY)
m Replace U by Un Cn(Nt)

until L and U do not change anymore.
Observations

m At each iteration step

m L becomes larger (or equal)
m U becomes smaller (or equal)

L € X C U is invariant for every answer set X of Il
If L Z U, then 1 has no answer set!
If L=U,

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 177 / 453

Approximation

Approximating answer sets (ctd)

Second Idea
Iterate
m Replace L by LU Cn(MY)
m Replace U by Un Cn(Nt)

until L and U do not change anymore.
Observations

m At each iteration step

m L becomes larger (or equal)
m U becomes smaller (or equal)

L € X C U is invariant for every answer set X of Il
If L Z U, then 1 has no answer set!
If L = U, then L is an answer set of 1.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 177 / 453

Approximation

The simplistic expand algorithm

expand(L, V)
repeat
L'+ L
U «+u
L+ L'ucCn(nY
U<+ U'ncCn(Nt)
if L U then return
until L=1L"and U=U'

1= [] is a global parameter!

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 178 / 453

Approximation

Let's expand!

a<+—

b < a, not ¢
d <+ b, not e
e+ notd

L’ Ccn(nY) L U cn(nty U
10 {a} {a} {a,b,c,d,e} {a b,d,e} {a b,d, e}
2 {a} {a, b} {a,b} {a,b,d,e} {a,b,d,e} {a,b,d, e}
3 {a, b} {a b} {a,b} {a,b,d, e} {a,b,d,e} {a,b,d,e}

We have {a, b} C X and
(A\{a,b,d,e})NX={c}NnX)=10

for every answer set X of 1.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 179 / 453

Approximation

Let's expand!

a<+
m— b < a, not c
d < b, not e
e <+ not d
L Cn(NY") L U cn(nt) U
{a} {a} {a,b,c,d,e} {a,b,d,e} {a b,d e}

10
2 {a} {a, b} {a,b} {a,b,d, e} {a,b,d,e} {a, b,d, e}
3 {a,b} {a b} {a,b} {a,b,d,e} {a,b,d,e} {a,b,d,e}

= \We have {a, b} C X and
(A\{a,b,d,e})ﬂX:({c}mx):(/)

for every answer set X of 1.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 179 / 453

Approximation

The simplistic expand algorithm (ctd)

expand
m tightens the approximation on answer sets

B is answer set preserving

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

180 / 453

Approximation

Let's expand with d !

a<

b < a, not ¢
= d <+ b, not e

e+ notd

L Ccn(nYy L U cn(nt) U

1 {d} {a} {a,d} {a,b,c,d,e} {a,b,d} {a,b,d}
2 {a,d} {a,b,d} {a,b,d} {a,b,d} {a,b,d} {a,b,d}
3 {a,b,d} {a,b,d} {a,b,d} {a, b,d} {a,b,d} {a,b,d}

{a, b,d} is an answer set X of I1.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 181 / 453

Approximation

Let's expand with d !

a<
m— b < a, not c

d < b, not e

e< notd

L' cn(nYy L U cn(nty U

1 {d} {a} {a,d} {a,b,c,d,e} {a,b,d} {a,b,d}
2 {ad} {a,b,d} {a,b,d} {a,b,d} {a,b,d} {a,b,d}
3 {a b, d} {a,b,d} {a b,d} {a, b,d} {a,b,d} {a,b,d}

w {a, b,d} is an answer set X of IN.

Torsten Schaub (KRRQUP)

Answer Set Programming

January 18, 2012 181 / 453

Approximation

Let's expand with “not d" !

a<+—

b < a, not ¢
d <+ b, not e
e+ notd

L cn(nYy L U cn(nty U
10 {a, e} {a,e} {a,b,c,e} {a,b,d,e} {a, b, e}
2 {{a,e} {a,b,e} {a,b,e} {a, b, e} {a, b, e} {a, b, e}
3

a,b,e} {a,b,e} {a b,e} {a b, e} {a, b, e} {a, b, e}
{a, b, e} is an answer set X of Il.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 182 / 453

Approximation

Let's expand with “not d" |

a<+
m— b < a, not c
d < b, not e
e< notd
L' cn(nYy L U cn(nty U
10 {a, e} {a,e} {a,b,c,e} {a,b,d,e} {a, b, e}

2 {a e} {a,b,e} {a,b,e} {a, b, e} {a, b, e} {a, b, e}
3 {a b,e} {a b,e} {a b,e} {a b, e} {a, b, e} {a, b, e}

w {a, b, e} is an answer set X of I

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 182 / 453

Partial Interpretations

Overview

Partial Interpretations

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 183 / 453

Partial Interpretations

Interlude: Partial interpretations
or: 3-valued interpretations
A partial interpretation of a logic program 1 maps atoms on truth values:
{true, false, unknown}.

Representation (T, F), where

m 7T is the set of all true atoms and
m F is the set of all false atoms.
m Truth of atoms in atom(MN) \ (T U F) is unknown.

i By atom([1), we denote the set of atoms occuring in [1.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 184 / 453

Partial Interpretations

Interlude: Partial interpretations
or: 3-valued interpretations
A partial interpretation of a logic program 1 maps atoms on truth values:
{true, false, unknown}.

Representation (T, F), where
m T is the set of all true atoms and
m F is the set of all false atoms.
m Truth of atoms in atom(MN) \ (T U F) is unknown.
i By atom([1), we denote the set of atoms occuring in [1.

Properties m (T, F) is conflicting iff T N F = ().
m (T,F)is total iff TUF = atom(M) and T NF = 0.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 184 / 453

Partial Interpretations

Interlude: Partial interpretations

or: 3-valued interpretations

A partial interpretation of a logic program 1 maps atoms on truth values:
{true, false, unknown}.
Representation (T, F), where

m 7T is the set of all true atoms and
m F is the set of all false atoms.
m Truth of atoms in atom(MN) \ (T U F) is unknown.

i By atom([1), we denote the set of atoms occuring in [1.
Properties m (T, F) is conflicting iff T N F = ().
m (T,F)is total iff TUF = atom(M) and T NF = 0.
Definition For (T1, F1) and (T, F), define:
| | <T1,F1> E <T2, F2> ifF Tl g T2 and Fl g F2
] <T1, F1> L (Tg, F2> = <T1 UTy FU F2>

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 184 / 453

Basic Algorithms

Overview

Basic Algorithms

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 185 / 453

Basic Algorithms

The smodels (decision) algorithm

Global: Normal logic program [1

smodels((T, F))

(T,F) < expand((T, F))

if (T, F) is conflicting then return

else if (T, F) is total then exit with T

else
A < select(atom() \ (T U F))
smodels((T U {A}, F))
smodels((T, F U {A}))

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

186 / 453

Basic Algorithms

The smodels (decision) algorithm

Global: Normal logic program [1

smodels((T, F))

(T,F) < expand((T, F))

if (T, F) is conflicting then return

else if (T, F) is total then exit with T

else
A < select(atom() \ (T U F))
smodels((T U {A}, F))
smodels((T, F U {A}))

Call: smodels((0,))

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

186 / 453

Basic Algorithms

Deterministic consequences via expand

Global: Normal logic program [1
expand((T, F))
repeat
(T, F) < atleast({T, F))
if (T, F) is conflicting then return (T, F)
else
F'«~ F
F < F Uatmost((T, F))
until F = F'
return (T, F)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

187 / 453

Basic Algorithms

Deterministic consequences via expand

Global: Normal logic program [1
expand((T, F))
repeat
(T, F) < atleast({T, F))

if (T, F) is conflicting then return (T, F)
else

F'«~ F

F < F Uatmost((T, F))
until F = F/
return (T, F)

v atleast((T, F)) derives deterministic consequences from
Clark’s completion

v atmost((T, F)) derives deterministic consequences from
unfounded sets

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 187 / 453

Basic Algorithms

A glimpse at atleast((T, F))

repeat
if (T, F) is conflicting then return (T, F)
(T',F') (T, F)
case of
r € N such that head(r) ¢ T and
body™(r) C T, body™(r) C F:
T + T U {head(r)}
A € (atom(MM) \ F) such that for all r € :
head(r) # A or (body™(r) N F) U (body (r)N T) # 0:
F < FU{A}
head(r) € F,r € I such that body™*(r) N body ™ (r) = 0 and
(body™ (1) \ T) U (body™(r) \ F) = {A}:
if A€ body™(r)then F <+ FU{A}else T < T U{A}
(A = head(r)) € T,r € I such that body™(r) Z T or body™ (r) Z F and
for all r' € M\ {r}: head(r') # A or (body™(r') N F)U (body (r')N T) # 0:
T < T Ubody™(r)
F < F U body~(r)

until (T, F) = (T, F')
return (T, F)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 188 / 453

Basic Algorithms

A glimpse at atleast((T, F))

repeat
if (T, F) is conflicting then return (T, F)
(T',F') (T, F)
case of

until (T, F) = (T, F’)
return (T, F)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 188 / 453

Basic Algorithms

A glimpse at atmost((T, F))
return Un(T, F)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 189 / 453

Basic Algorithms

A glimpse at atmost((T, F))

return

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 189 / 453

Completion: Overview

Supported Models

Fitting Operator

Implementation via smodels

Tightness

Torsten Schaub (KRRQUP) Answer Set Programming

January 18, 2012

190 / 453

Supported Models

Overview

Supported Models

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 191 / 453

Supported Models

Completion

Let 1 be a normal logic program.
The completion of I1 is defined as follows:

Comp(body(r)) = Aacbody*(r)A N Naebody—(r) ™A
Comp(M) = {A <V cn head(ry=a Comp(body(r)) | A € atom(I)}

Every answer set of 1 is a model of Comp(IT), but not vice versa.

Models of Comp(I) are called the supported models of IT.

In other words, every answer set of I1 is a supported model of 1.

By definition, every supported model of I is also a model of 1.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 192 / 453

Supported Models

Completion

Let 1 be a normal logic program.
The completion of I1 is defined as follows:

Comp(body(r)) = Aacpody*(rA N Nacbody—(r) A
Comp(M) = {A < V e head(r)=aComp(body(r)) | A € atom(I)}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 192 / 453

Supported Models

Completion

Let 1 be a normal logic program.
The completion of I1 is defined as follows:

Comp(body(r)) = Aacpody*(rA N Nacbody—(r) A
Comp(M) = {A < V e head(r)=aComp(body(r)) | A € atom(I)}

m Every answer set of [1is a model of Comp(IN),

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 192 / 453

Supported Models

Completion

Let 1 be a normal logic program.
The completion of I1 is defined as follows:

Comp(body(r)) = Aacpody*(rA N Nacbody—(r) A
Comp(M) = {A < V e head(r)=aComp(body(r)) | A € atom(I)}

m Every answer set of [1is a model of Comp(IT), but not vice versa.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 192 / 453

Supported Models

Completion

Let 1 be a normal logic program.
The completion of I1 is defined as follows:

Comp(body(r)) = Aacpody*(rA N Nacbody—(r) A
Comp(M) = {A < V e head(r)=aComp(body(r)) | A € atom(I)}

m Every answer set of [1is a model of Comp(IT), but not vice versa.

m Models of Comp(IN) are called the supported models of I1.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 192 / 453

Supported Models

Completion

Let 1 be a normal logic program.
The completion of I1 is defined as follows:

Comp(body(r)) = Aacpody*(rA N Nacbody—(r) A
Comp(M) = {A < V e head(r)=aComp(body(r)) | A € atom(I)}

Every answer set of 1 is a model of Comp(IT), but not vice versa.

Models of Comp(I) are called the supported models of I1.

In other words, every answer set of I is a supported model of IT.

By definition, every supported model of I1 is also a model of IT.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 192 / 453

Supported Models

A first example

a + a & T
b + a b < a

M=< ¢ « b Comp(M) =1 ¢ « (bVd)
c « d d < (cAhe)
d <« c,e e — L

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 193 / 453

Supported Models

A first example

a + a & T
b + a b < a

M=< ¢ « b Comp(M) =1 ¢ « (bVd)
c « d d < (cAhe)
d <« c,e e — L

m The supported model of I is {a, b, c}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 193 / 453

Supported Models

A first example

a + a & T
b + a b < a

M=< ¢ « b Comp(M) =1 ¢ « (bVd)
c « d d < (cAhe)
d <« c,e e — L

m The supported model of I is {a, b, c}.

m The answer set of I is {a, b, c}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 193 / 453

Supported Models

A second example

qg < notp q & P
n= Comp(M) =< p < (—gA—x)
p < not q,not x x o L

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 194 / 453

Supported Models

A second example

qg < notp q & P
n= Comp(M) =< p < (—gA—x)
p < not q,not x x o L

m The supported models of I are {p} and {q}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 194 / 453

Supported Models

A second example

qg < notp q & P
n= Comp(M) =< p < (—gA—x)
p < not q,not x x o L

m The supported models of I are {p} and {q}.
m The answer sets of 1 are {p} and {q}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 194 / 453

Supported Models

A third example

NM={p«p} Comp(M)={p«p}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 195 / 453

Supported Models

A third example

NM={p«p} Comp(M)={p«p}

m The supported models of I are () and {p}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 195 / 453

Supported Models

A third example

NM={p«p} Comp(M)={p«p}

m The supported models of I are () and {p}.

m The answer set of s () !

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 195 / 453

Fitting Operator

Overview

Fitting Operator

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 196 / 453

Fitting Operator

Fitting operator: Basic idea

Idea Extend Tp to normal logic programs.

Logical background Completion

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

197 / 453

Fitting Operator

Fitting operator: Basic idea

Idea Extend Tp to normal logic programs.
Logical background Completion

m The head atom of a rule must be true
if the rule’s body is true.
m An atom must be false

if the body of each rule having it as head is false.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

197 / 453

Fitting Operator

Fitting operator: Definition

Let 1 be a normal logic program.
Define
Sn(T,F) =(Tn(T,F),Fn(T,F))

where

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

198 / 453

Fitting Operator

Fitting operator: Definition
Let 1 be a normal logic program.
Define
On(T, F) =(Tn(T, F),Fn(T,F))
where

Tn(T,F) = {head(r) | r € N, body™(r) C T,body (r) C F}
Fr(T,F) = {A € atom(N) | body™(r)NF # () or body (r)N' T # 0
for each r € I such that head(r) = A}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 198 / 453

Fitting Operator

Fitting operator: Example

M — a<+ c < a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 199 / 453

Fitting Operator

Fitting operator: Example

M — a<+ c < a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Let's iterate ®p, on ({a},{d}):
®n, ({a}, {d}) =

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

199 / 453

Fitting Operator

Fitting operator: Example

M — a<+ c < a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Let's iterate ®p, on ({a},{d}):

®n,({a}, {d}) = ({a,c},{b})
®n,({a,c}, {b}) =

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

199 / 453

Fitting Operator

Fitting operator: Example

M — a<+ c < a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Let's iterate ®p, on ({a},{d}):

(
®n,({a}, {d}) = ({a,c},{b})
®n,({a,c}, {b}) = ({a},{b,d})
®n, ({a}, {b,d})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

199 / 453

Fitting Operator

Fitting operator: Example

M — a<+ c < a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Let's iterate ®p, on ({a},{d}):

(
®n,({a}, {d}) = ({a,c},{b})
®n,({a,c}, {b}) = ({a},{b,d})
®n,({a}, {b,d}) = ({ac}, {b})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

199 / 453

Fitting Operator

Fitting semantics

Define the iterative variant of ®n analogously to Tn:

®P(T,F) = (T,F) O T, F) = drodi(T,F)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 200 / 453

Fitting Operator

Fitting semantics

Define the iterative variant of ®n analogously to Tn:
o (T, F) = (T, F) O (T, F) = onop(T, F)

Define the Fitting semantics of a normal logic program [T as the
partial interpretation:

Lli=o®n(0,0)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

200 / 453

Fitting Operator

Fitting semantics: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 201 / 453

Fitting Operator

Fitting semantics: Example

{a(— c <+ a,not d e<—b}
M, =

b < not a d < not c, not e e+ e

®Q (0,0) = (0, 0)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 201 / 453

Fitting Operator

Fitting semantics: Example

{a(— c <+ a,not d e<—b}
N, =
b < not a d < not c, not e e+ e
¢0|_|1 <®7 ®> _ <®7 ®>
d>1I'I1 <®7®> - ¢ﬂ1<®7®> =

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 201 / 453

Fitting Operator

Fitting semantics: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e

¢0|'|1<) > = <®7®>
= ({a},0)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 201 / 453

Fitting Operator

Fitting semantics: Example

M4 ac c < a,not d e« b
'™\ b+ nota d<«notc,note e<«e
¢0|_|1 <®7 ®> _ <®7 Q)>
oL (0,0) = &n,(0,0) = ({a},0)
@7 (0,0) = on({a},0) = ({a},{b})
¢I§I1 <®7 ®> = ¢|_|1<{a}7 {b}> =
Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 201 / 453

Fitting Operator

Fitting semantics: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e

P (0,0) = (0,0)
op, (0,0) = n,(0,0) = ({a},0)
o3, (0,0) = on({a}.0) = ({a},{b})
o3 (0,0) = on({a},{b}) = ({a}{b})
Liso ®h,(0,0) = ({a}, {b})
Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

201 / 453

Fitting Operator

Fitting semantics: Properties

Let 1 be a normal logic program.
m O (0, 0) is monotonic.
That is, ®%(0,0) C & (0, 0).
m The Fitting semantics of [1 is

m not conflicting,
m and generally not total.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

202 / 453

Fitting Operator

Fitting fixpoints

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

Define (T, F) as a Fitting fixpoint of 1 if ®n(T,F) = (T, F).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

203 / 453

Fitting Operator

Fitting fixpoints

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

Define (T, F) as a Fitting fixpoint of 1 if ®n(T,F) = (T, F).
m The Fitting semantics is the C-least Fitting fixpoint of I1.
m Any other Fitting fixpoint extends the Fitting semantics.

m Total Fitting fixpoints correspond to supported models.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

203 / 453

Fitting Operator

Fitting fixpoints: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 204 / 453

Fitting Operator

Fitting fixpoints: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Iy has three total Fitting fixpoints:

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

204 / 453

Fitting Operator

Fitting fixpoints: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Iy has three total Fitting fixpoints:
({a,c},{b,d,e})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

204 / 453

Fitting Operator

Fitting fixpoints: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Iy has three total Fitting fixpoints:
({a,c},{b,d,e})
({a,d}, {b,c,e})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

204 / 453

Fitting Operator

Fitting fixpoints: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Iy has three total Fitting fixpoints:
({a,c}.{b,d,e})
({a,d},{b,c,e})

({a,c, e}, {b,d})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

204 / 453

Fitting Operator

Fitting fixpoints: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Iy has three total Fitting fixpoints:
({a,c}.{b,d,e})
({a,d},{b,c,e})

({a,c, e}, {b,d})

3 has three supported models, two of them are answer sets.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

204 / 453

Fitting Operator

Properties of Fitting operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

m Let ®n(T,F) = (T, F').
If X is an answer set of 1 such that T C X and X N F =),
then T/ C X and X N F' = 0.

That is, ® is answer set preserving.
@ can be used for approximating answer sets and so for propagation
in ASP-solvers.

However, @ is still insufficient, because total fixpoints correspond to
supported models, not necessarily answer sets.
The problem is the same as with program completion.

The missing piece is non-circularity of derivations !

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 205 / 453

Fitting Operator

Properties of Fitting operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

m Let ®n(T,F) = (T, F').
If X is an answer set of Nl such that T C X and X N F = 0,
then T/ C X and X N F' = 0.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

205 / 453

Fitting Operator

Properties of Fitting operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.
m Let ®n(T,F) = (T, F').
If X is an answer set of Nl such that T C X and X N F = 0,
then T/ C X and X N F' = 0.
m That is, ®p is answer set preserving.
= @& can be used for approximating answer sets and so for propagation
in ASP-solvers.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 205 / 453

Fitting Operator

Properties of Fitting operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

m Let ®n(T,F) = (T, F').
If X is an answer set of Nl such that T C X and X N F = 0,
then T/ C X and X N F' = 0.

m That is, ®py is answer set preserving.
= @& can be used for approximating answer sets and so for propagation

in ASP-solvers.
However, @ is still insufficient, because total fixpoints correspond to
supported models, not necessarily answer sets.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 205 / 453

Fitting Operator

Properties of Fitting operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

m Let ®n(T,F) = (T, F').
If X is an answer set of Nl such that T C X and X N F = 0,
then T/ C X and X N F' = 0.

m That is, ®py is answer set preserving.
= @& can be used for approximating answer sets and so for propagation

in ASP-solvers.
However, @ is still insufficient, because total fixpoints correspond to
supported models, not necessarily answer sets.
1= The problem is the same as with program completion.

The missing piece is non-circularity of derivations !

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 205 / 453

Fitting Operator

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 206 / 453

Fitting Operator

e B S0, 0) = (0,0)
”‘{ b« } on(0.0) = (0.0)

That is, Fitting semantics cannot assign false to a and b,
although they can never become true !

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

206 / 453

Implementation via smodels

Overview

Implementation via smodels

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 207 / 453

Implementation via smodels

Rebuilding atleast((T, F))

repeat from Fitting operator
if (T, F) is conflicting then return (T, F)
(T' F"y « (T,F)
case of

until (T, F) = (T',F')
return (T, F)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 208 / 453

Implementation via smodels

Rebuilding atleast((T, F))

repeat from Fitting operator
if (T, F) is conflicting then return (T, F)
(T',F"y + (T,F)
case of
r € I such that head(r) ¢ T and
body™(r) C T, body™(r) C F:
T < T U {head(r)}
A € (atom(MM) \ F) such that for all r € I:
head(r) # A or (body™(r) N F) U (body ™ (r)N T) # 0:
F « FU{A}

until (T, F) = (T',F')
return (T, F)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 208 / 453

Implementation via smodels

Relationship with Fitting semantics

Let 1 be a normal logic program.

= atleast((0), 0)) = | |;»o®{(0.0)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

209 / 453

Implementation via smodels

Relationship with Fitting semantics

Let 1 be a normal logic program.

= atleast((0), 0)) = | |;»o®{(0.0)

What about supported models?

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

209 / 453

Implementation via smodels

Relationship with Fitting semantics
Let 1 be a normal logic program.

= atleast((0), 0)) = | |;»o®{(0.0)

What about supported models?
Consider:

a< b b < not ¢ c <+ not b
M=
d<+ e e < not f f < not e

m atleast(({a},{d})) =

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

209 / 453

Implementation via smodels

Relationship with Fitting semantics

Let 1 be a normal logic program.

= atleast((0), 0)) = | |;»o®{(0.0)

What about supported models?
Consider:

a< b b < not ¢ c <+ not b
M=
d<+ e e < not f f < not e

m atleast(({a}, {d})) = ({a}, {d})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

209 / 453

Implementation via smodels

Relationship with Fitting semantics

Let 1 be a normal logic program.
m atleast((0,0)) = | |;=o®H(0,0)
What about supported models?

Consider:

a< b b < not ¢ c <+ not b
M=
d<+ e e < not f f < not e

m atleast(({a}, {d})) = ({a}, {d})

m The only supported model X of 1 such that a€ X and d ¢ X is
{a,b,f} !

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 209 / 453

Implementation via smodels

Relationship with Fitting semantics
Let 1 be a normal logic program.

= atleast((0), 0)) = | |;»o®{(0.0)

What about supported models?
Consider:

a< b b < not ¢ c <+ not b
M=
d<+ e e < not f f < not e

m atleast(({a}, {d})) = ({a}, {d})

m The only supported model X of 1 such that a€ X and d ¢ X is

{a,b,f}!

We can enhance atleast((T, F)) by backward propagation !

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

Implementation via smodels

Rebuilding atleast((T, F))

repeat from supported models
if (T, F) is conflicting then return (T, F)
(T',F"y + (T,F)
case of
r € I such that head(r) ¢ T and
body™(r) C T, body™(r) C F:
T < T U {head(r)}
A € (atom(MM) \ F) such that for all r € I:
head(r) # A or (body™(r) N F) U (body ™ (r)N T) # 0:
F+ FU{A}

until (T, F) = (T',F')
return (T, F)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 210 / 453

Implementation via smodels

Rebuilding atleast((T, F))

repeat from supported models
if (T, F) is conflicting then return (T, F)
(T',F"y + (T,F)
case of
r € I such that head(r) ¢ T and
body™(r) C T, body™(r) C F:
T < T U {head(r)}
A € (atom(MM) \ F) such that for all r € I:
head(r) # A or (body™(r) N F) U (body ™ (r)N T) # 0:
F < FU{A}
head(r) € F,r € N such that body™(r) N body ™ (r) = () and
(body™(r)\ T) U (body™(r) \ F) = {A}:
if A€ body*(r) then F « F U {A} else T < T U{A}
(A = head(r)) € T,r € N such that body™(r) Z T or body (r) Z F and
for all r' € M\ {r}: head(r’) # A or (body™(r') N F)U (body(r')N T) # 0:
T < T U body™(r)
F < F U body(r)

until (T, F) = (T',F')
return (T, F)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 210 / 453

Implementation via smodels

Relationship with supported models

Let M be a normal logic program and (T, F) a total interpretation.
m atleast((T,F)) = (T,F) iff T is a supported model of

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

211 / 453

Implementation via smodels

Relationship with supported models

Let M be a normal logic program and (T, F) a total interpretation.
m atleast((T,F)) = (T,F) iff T is a supported model of

Assuming atmost((T, F)) =0 for all (T, F),
we can apply smodels to compute supported models !

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

211 / 453

Implementation via smodels

Relationship with supported models
Let M be a normal logic program and (T, F) a total interpretation.
m atleast((T,F)) = (T,F) iff T is a supported model of

Assuming atmost((T, F)) =0 for all (T, F),
we can apply smodels to compute supported models !

Reconsider:
no—4 2a< c < a,not d e« b
1= b+ not a d « not c, not e e+ e
Call Interpretation Result
smodels (0, 0)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

211 / 453

Implementation via smodels

Relationship with supported models
Let M be a normal logic program and (T, F) a total interpretation.
m atleast((T,F)) = (T,F) iff T is a supported model of

Assuming atmost((T, F)) =0 for all (T, F),
we can apply smodels to compute supported models !

Reconsider:
a<+ c < a,not d e+ b
n =
b < not a d < not c, not e e+ e
Call Interpretation Result
smodels (0, 0)
expand (0, 0)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 211 / 453

Implementation via smodels

Relationship with supported models
Let M be a normal logic program and (T, F) a total interpretation.
m atleast((T,F)) = (T,F) iff T is a supported model of

Assuming atmost((T, F)) =0 for all (T, F),
we can apply smodels to compute supported models !

Reconsider:
a<+ c < a,not d e+ b
n =
b < not a d < not c, not e e+ e
Call Interpretation Result
smodels (0,0)
expand (0, 0) ({a},{b})

select ({a},{b})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 211 / 453

Implementation via smodels

Relationship with supported models
Let M be a normal logic program and (T, F) a total interpretation.
m atleast((T,F)) = (T,F) iff T is a supported model of

Assuming atmost((T, F)) =0 for all (T, F),
we can apply smodels to compute supported models !

Reconsider:
a<+ c < a,not d e+ b
n =
b < not a d < not c, not e e+ e
Call Interpretation Result
smodels (0,0)
expand (0, 0) ({a},{b})

select ({a}, {b}) ({a, e}, {b})
expand | ({a,e}, {b})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

211 / 453

Implementation via smodels

Relationship with supported models
Let M be a normal logic program and (T, F) a total interpretation.
m atleast((T,F)) = (T,F) iff T is a supported model of

Assuming atmost((T, F)) =0 for all (T, F),
we can apply smodels to compute supported models !

Reconsider:
a<+ c < a,not d e+ b
n =
b < not a d < not c, not e e+ e
Call Interpretation Result
smodels (0,0)
expand (0, 0) ({a},{b})

select ({a}, {b}) ({a, e}, {b})
expand | ({a e}, {b}) | ({a,c e}, {b,d})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

211 / 453

Implementation via smodels

Relationship with supported models
Let M be a normal logic program and (T, F) a total interpretation.
m atleast((T,F)) = (T,F) iff T is a supported model of

Assuming atmost((T, F)) =0 for all (T, F),
we can apply smodels to compute supported models !

Reconsider:
{ae c <+ a,not d e<—b}
n =
b < not a d < not c, not e e+ e
Call Interpretation Result
smodels (0,0)
expand (0, 0) ({a},{b})

select ({a}, {p}) ({a, e}, {b})
expand | ({a e}, {b}) | ({a,c e}, {b,d})
smodels <®, ®> {37 G, e}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

211 / 453

Tightness

Overview

Tightness

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 212 / 453

Tightness

(Non-)cyclic derivations

m Cyclic derivations are causing the mismatch between supported
models and answer sets.

m Atoms in an answer set can be “derived” from a program in a finite
number of steps.

m Atoms in a cycle (not being “supported from outside the cycle")
cannot be “derived” from a program in a finite number of steps.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 213 / 453

Tightness

(Non-)cyclic derivations

m Cyclic derivations are causing the mismatch between supported
models and answer sets.

m Atoms in an answer set can be “derived” from a program in a finite
number of steps.

m Atoms in a cycle (not being “supported from outside the cycle")
cannot be “derived” from a program in a finite number of steps.

== But they do not contradict the completion of a program.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 213 / 453

Tightness

Non-cyclic derivations

Let X be an answer set of normal logic program 1.
m For every atom A € X, there is a finite sequence of positive rules

(M. .y rn)

such that

head(r)) = A,
body™ (r;) C {head(r;) | i <j < n}for1<i<n,

BrieclXforl1<i<n.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 214 / 453

Tightness

Non-cyclic derivations

Let X be an answer set of normal logic program 1.

m For every atom A € X, there is a finite sequence of positive rules

(M. .y rn)

such that
head(r)) = A,
body™ (r;) C {head(r;) | i <j < n}for1<i<n,
reMXforl1<i<n.

m That is, each atom of X has a non-cyclic derivation from MX.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 214 / 453

Tightness

Non-cyclic derivations

Let X be an answer set of normal logic program 1.

m For every atom A € X, there is a finite sequence of positive rules

(M. .y rn)

such that
head(r)) = A,
body™ (r;) C {head(r;) | i <j < n}for1<i<n,
reMXforl1<i<n.

m That is, each atom of X has a non-cyclic derivation from MX.

m Is a derivable from program {a « b, b+ a} ?

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 214 / 453

Tightness

Positive atom dependency graph

Let 1 be a normal logic program.
The positive atom dependency graph of [1 is a directed graph
G(M) = (V, E) such that

V = atom(I) and

E=1{(p,q) | reN,pe body*(r), head(r) = q}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

215 / 453

Tightness

Examples

a< notb b < not a -
My =<{ c<¢ a,notd d + a, not ¢ c/ \d

e+ c,not a e <+ d,not b b

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 216 / 453

a< not b
My =< c<+ a,not d
e < c,not a

a< not b
M3 = C < not a
d<+ ab

Torsten Schaub (KRRQUP)

Tightness

Examples

b <+ not a
d < a, not c

e <+ d,not b Y~ b

b < not a c— =

c+d /T
d+c ; b

Answer Set Programming January 18, 2012 216 / 453

Tightness

Tight programs

m A normal logic program [is tight iff G(I) is acyclic.

m For example, Iy is tight, whereas I3 is not.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 217 / 453

Tightness

Tight programs

m A normal logic program [is tight iff G(I) is acyclic.
m For example, Iy is tight, whereas I3 is not.

m If a normal logic program 1 is tight, then
X is an answer set of M iff X is a model of Comp(IN).

That is, for tight programs, answer sets and supported models
coincide.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

217 / 453

Tightness

Tight programs

A normal logic program [is tight iff G(IT) is acyclic.

For example, I is tight, whereas I3 is not.

If a normal logic program I is tight, then
X is an answer set of M iff X is a model of Comp(IN).

That is, for tight programs, answer sets and supported models
coincide.

m Also, for tight programs, ®p, is sufficient for propagation.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

217 / 453

Tightness

(Non-)tight programs: Examples

a< not b b <+ not a
My=< c+ a,not d d < a, not c
e+ c,not a e+ d,not b

c/e\d

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 218 / 453

Tightness

(Non-)tight programs: Examples

e
a< not b b < not a
c/ \d

My=< c+ a,not d d < a, not c

e+ c,not a e+ d,not b \a/ b
Answer sets: {{a,c},{a,d, e}, {b}}
Supported models: {{a,c},{a,d, e}, {b}}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 218 / 453

Tightness

(Non-)tight programs: Examples

a< not b b <+ not a /e\d
My=< c+ a,not d d < a, not c g

e+ c,not a e+ d,not b

Answer sets: {{a,c}, {a.d, e}, {b}}
Supported models: {{a;c}t. {a,d, e}, {b}}
a< not b b+ not a c—______——d
M3 =< c< not a c+d /T
d<+ a,b d+ c a b

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 218 / 453

Tightness

(Non-)tight programs: Examples

e
a< not b b <+ not a
My=1<¢ c<« a notd d < a,not c C< >d
e+ c,not a e+ d,not b = b
Answer sets: {{a,c},{a,d, e}, {b}}
Supported models: {{a,c},{a,d, e}, {b}}
a< not b b+ not a (o —
M3 =< c< not a c+d /T
d<+ a,b d+ c a b
Answer sets: {{a}, {b,c,d}}
Supported models: {{a},{b,c,d},{a,c,d}}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 218 / 453

Unfounded Sets: Overview

Definitions

Well-Founded Operator

Implementation via smodels

Loops and Loop Formulas

Torsten Schaub (KRRQUP) Answer Set Programming

January 18, 2012

219 / 453

Definitions

Overview

Definitions

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 220 / 453

Definitions

Unfounded sets

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

A set U C atom(IN) is an unfounded set of I with respect to (T, F) if,

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 221 / 453

Definitions

Unfounded sets

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

A set U C atom(IN) is an unfounded set of I with respect to (T, F) if,
for each rule r € T1, we have

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 221 / 453

Definitions

Unfounded sets
Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

A set U C atom(IN) is an unfounded set of I with respect to (T, F) if,
for each rule r € T1, we have

head(r) & U,

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 221 / 453

Definitions

Unfounded sets

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.
A set U C atom(IN) is an unfounded set of I with respect to (T, F) if,
for each rule r € T1, we have
head(r) & U,
body™t(r)N F # () or body (r)N T # (), or

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 221 / 453

Definitions

Unfounded sets

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

A set U C atom(IN) is an unfounded set of I with respect to (T, F) if,
for each rule r € T1, we have

head(r) & U,

body™t(r)N F # () or body (r)N T # (), or

bodyt(r)n U # 0.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 221 / 453

Definitions

Unfounded sets

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

A set U C atom(IN) is an unfounded set of I with respect to (T, F) if,
for each rule r € T1, we have

head(r) & U,

body™t(r)N F # () or body (r)N T # (), or

bodyt(r)n U # 0.

m Intuitively, (T, F) is what we already know about I1.
m Rules satisfying Condition 1 or 2 are not usable for further derivations.

m Condition 3 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 221 / 453

Definitions

Example
a «< b
i :{ b < a }

() is an unfounded set (by definition).

{a} is not an unfounded set of I wrt ((), ().
{a} is an unfounded set of I wrt (0, {b}).
{a} is not an unfounded set of M wrt ({b},).
= Analogously for {b}.

{a, b} is an unfounded set of M wrt (), 0).

{a, b} is an unfounded set of I wrt any partial interpretation.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 222 / 453

Definitions

Example
a «< b
f :{ b < a }

m () is an unfounded set (by definition).
{a} is not an unfounded set of I wrt ((), ().
{a} is an unfounded set of T wrt (), {b}).
{a} is not an unfounded set of I wrt ({b}, ().
= Analogously for {b}.
{a, b} is an unfounded set of M wrt ({0, 0).

{a, b} is an unfounded set of I wrt any partial interpretation.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 222 / 453

Definitions

Example
a < b
4 :{ b +— a }

m () is an unfounded set (by definition).
m {a} is not an unfounded set of M wrt (0, ().

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 222 / 453

Definitions

Example
a < b
4 :{ b +— a }

m () is an unfounded set (by definition).
m {a} is not an unfounded set of M wrt (0, ().
m {a} is an unfounded set of M wrt (0, {b}).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 222 / 453

Definitions

Example
a < b
4 :{ b +— a }

m () is an unfounded set (by definition).

m {a} is not an unfounded set of M wrt (0, ().

m {a} is an unfounded set of M wrt (0, {b}).

m {a} is not an unfounded set of M wrt ({b}, D).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 222 / 453

Definitions

Example
a < b
4 :{ b +— a }

m () is an unfounded set (by definition).

m {a} is not an unfounded set of M wrt (0, ().

m {a} is an unfounded set of M wrt (0, {b}).

m {a} is not an unfounded set of M wrt ({b}, D).
= Analogously for {b}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 222 / 453

Definitions

Example
a < b
4 :{ b +— a }

m () is an unfounded set (by definition).

m {a} is not an unfounded set of M wrt (0, ().

m {a} is an unfounded set of M wrt (0, {b}).

m {a} is not an unfounded set of M wrt ({b}, D).
= Analogously for {b}.

m {a, b} is an unfounded set of I wrt (),).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 222 / 453

Definitions

Example
a < b
4 :{ b +— a }

m () is an unfounded set (by definition).

m {a} is not an unfounded set of M wrt (0, ().

m {a} is an unfounded set of M wrt (0, {b}).

m {a} is not an unfounded set of M wrt ({b}, D).
= Analogously for {b}.

m {a, b} is an unfounded set of I wrt (),).

m {a, b} is an unfounded set of 1 wrt any partial interpretation.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 222 / 453

Definitions

Greatest unfounded sets
Observation The union of two unfounded sets is an unfounded set.

Let 1 be a normal logic program,

and let (T, F) be a partial interpretation.

The greatest unfounded set of N with respect to (T, F), denoted by
Un(T, F), is the union of all unfounded sets of M with respect to (T, F).

Alternatively, we may define
Un(T,F) = atom(N) \ Cn({r € N | body™(r)N F =0}7).

Observe that Cn({r € M| body™(r) N F =}) contains all
non-circularly derivable atoms from M wrt (T, F).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 223 / 453

Definitions

Greatest unfounded sets
Observation The union of two unfounded sets is an unfounded set.

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.
The greatest unfounded set of N with respect to (T, F), denoted by

Un (T, F), is the union of all unfounded sets of I with respect to (T, F).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

223 / 453

Definitions

Greatest unfounded sets
Observation The union of two unfounded sets is an unfounded set.

Let 1 be a normal logic program,

and let (T, F) be a partial interpretation.

The greatest unfounded set of N with respect to (T, F), denoted by

Un (T, F), is the union of all unfounded sets of I with respect to (T, F).

m Alternatively, we may define
Un(T,F) = atom(M) \ Cn({r € N | body (r)NnF =0}T).

m Observe that Cn({r € M| body™(r)N F = ()}) contains all
non-circularly derivable atoms from I wrt (T, F).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 223 / 453

Well-Founded Operator

Overview

Well-Founded Operator

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 224 / 453

Well-Founded Operator

Well-founded operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

Condition 2 (in the definition of an unfounded set)
corresponds to set Fn(T, F) of Fitting's ®n (T, F).
Extend (negative part of) Fitting's operator ®p.
That is,
keep definition of T (T, F) from ®r (T, F) and
replace Fn(T, F) from ®n(T,F) by Un(T,F).

In words, an atom must be false
if it belongs to the greatest unfounded set.

QI_I<T F> : <T|_|<T F>U|_|<T F>>
on(T,F) CQn(T, F)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 225 / 453

Well-Founded Operator

Well-founded operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

Observation Condition 2 (in the definition of an unfounded set)
corresponds to set Fn(T, F) of Fitting's ®n (T, F).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

225 / 453

Well-Founded Operator

Well-founded operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

Observation Condition 2 (in the definition of an unfounded set)
corresponds to set Fn(T, F) of Fitting's ®n (T, F).

Idea Extend (negative part of) Fitting's operator ®p.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

225 / 453

Well-Founded Operator

Well-founded operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

Observation Condition 2 (in the definition of an unfounded set)
corresponds to set Fn(T, F) of Fitting's ®n (T, F).
Idea Extend (negative part of) Fitting's operator ®p.
That is,
m keep definition of Tp(T, F) from ®n(T, F) and
m replace Fn(T, F) from ®n(T, F) by Un(T, F).
In words, an atom must be false
if it belongs to the greatest unfounded set.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

225 / 453

Well-Founded Operator

Well-founded operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

Observation Condition 2 (in the definition of an unfounded set)
corresponds to set Fn(T, F) of Fitting's ®n (T, F).
Idea Extend (negative part of) Fitting's operator ®p.
That is,
m keep definition of Tp(T, F) from ®n(T, F) and
m replace Fn(T, F) from ®n(T, F) by Un(T, F).
In words, an atom must be false
if it belongs to the greatest unfounded set.

Definition Qn(T,F) = (Tn(T, F),Un(T, F))

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

225 / 453

Well-Founded Operator

Well-founded operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

Observation Condition 2 (in the definition of an unfounded set)
corresponds to set Fn(T, F) of Fitting's ®n (T, F).
Idea Extend (negative part of) Fitting's operator ®p.
That is,
m keep definition of Tp(T, F) from ®n(T, F) and
m replace Fn(T, F) from ®n(T, F) by Un(T, F).
In words, an atom must be false
if it belongs to the greatest unfounded set.
Definition Qn(T,F) = (Tn(T,F),Un(T,F))
Property ®n(T,F) C Qn(T,F)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

225 / 453

Well-Founded Operator

Well-founded operator: Example

M — a<+ c < a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 226 / 453

Well-Founded Operator

Well-founded operator: Example

M — a<+ c < a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Let's iterate Qp, on ({c},0):

th({c}, ®> =

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

226 / 453

Well-Founded Operator

Well-founded operator: Example

M — a<+ c < a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Let's iterate Qp, on ({c},0):

Qn,({c},0) = {a},{d})
Qn,({a}, {d}) =

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

226 / 453

Well-Founded Operator

Well-founded operator: Example

a<+ c < a,not d e+ b
M, =
b < not a d < not c, not e

e« e
Let's iterate Qp, on ({c},0):

Qn,({c},0) = {a},{d})
Qn,({a}, {d}) =

= ({ac}.{b,e})
th <{a7 C}7 {b7 e}>

Torsten Schaub (KRRQUP) Answer Set Programming

January 18, 2012

226 / 453

Well-Founded Operator

Well-founded operator: Example

M — a<+ c < a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Let's iterate Qp, on ({c},0):

Qn,({c},0) = {a},{d})
Qn,({a},{d}) = ({a,c} {be})
Qn,({a,c}, {be}) = ({a},{b,d,e})
Qn, ({a}, {b,d, e})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

226 / 453

Well-Founded Operator

Well-founded operator: Example

M — a<+ c < a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Let's iterate Qp, on ({c},0):

Qn, ({c},0) {a}, {d})
Qn, ({a}, {d}) ({a,c}, {b,e})
Qn,({a,c}, {be}) = ({a},{b,d,e})
Qn, ({a}, {b,d, e}) ({a;c},{be})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

226 / 453

Well-Founded Operator

Well-founded semantics

Define the iterative variant of n analogously to ®p:

QY(T,F) = (T,F) QLT F) = QuQL(T, F)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

227 / 453

Well-Founded Operator

Well-founded semantics

Define the iterative variant of n analogously to ®p:
(T, F) = (T, F) QY (T, F) = Qn@n (T, F)

Define the well-founded semantics of a normal logic program I1 as the
partial interpretation:

Lli=0%n (0, 0)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 227 / 453

Well-Founded Operator

Well-founded semantics: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 228 / 453

Well-Founded Operator

Well-founded semantics: Example

{a(— c <+ a,not d e<—b}
M, =

b < not a d < not c, not e e+ e

Qg (0,0) = (0, 0)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 228 / 453

Well-Founded Operator

Well-founded semantics: Example

M — a<+ c <+ a,not d e+ b

1=\ b« not a d < not c, not e e+ e
Qp (0,0) = (0,0)
Qll'h <®7 ®> = Qn1<®7®> =

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 228 / 453

Qp, (0,0)
QL (0.0
Qf (0,0)

Torsten Schaub (KRRQUP)

Well-Founded Operator

Well-founded semantics: Example

c <+ a,not d
d < not c, not e

Answer Set Programming

e+ b
e+ e

(0,0)
{a},0)

January 18, 2012

228 / 453

Well-Founded Operator

Well-founded semantics: Example

a<+ c <+ a,not d e+ b
I_Ilz{b<—nota d < not c, not e e<—e}
Qp, (0,0) = (0,0)
Q, (0,0) = 2n,(0,0) = ({ah,0)
QF.(0,0) = Qn,({a},0) = ({a}{b,e})
QI?lll <®7®> = Qﬂ1<{a}v{bv e}> =

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 228 / 453

Well-Founded Operator

Well-founded semantics: Example

a<+ c <+ a,not d e+ b
I_Ilz{b<—nota d < not c, not e e<—e}
Q) 0,0) = (0,0)
Q, (0,0) = 2n,(0,0) = ({a},0)
QF.(0,0) = Qn,({a},0) = ({ah{be})
Q5,000 = Qn({a}.{be}) = ({a},{be})
Lliso @0, (0,0) = ({a},{b.e})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 228 / 453

Well-Founded Operator

Well-founded semantics: Properties

Let 1 be a normal logic program.
m Qn(0,0) is monotonic.
That is, Q4(0,0) T Q57(0,0).
m The well-founded semantics of I1 is

m not conflicting,
m and generally not total.

m We have |_|,-20 ¢in (@, @) C |_|,'20 Qir] ((Z), ®>

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

229 / 453

Well-Founded Operator

Well-founded fixpoints

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.
Define (T, F) as a well-founded fixpoint of I if Qn(T, F) = (T, F).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 230 / 453

Well-Founded Operator

Well-founded fixpoints

Let 1 be a normal logic program,

and let (T, F) be a partial interpretation.

Define (T, F) as a well-founded fixpoint of I if Qn(T, F) = (T, F).
m The well-founded semantics is the C-least well-founded fixpoint of I1.
m Any other well-founded fixpoint extends the well-founded semantics.

m Total well-founded fixpoints correspond to answer sets.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 230 / 453

Well-Founded Operator

Well-founded fixpoints: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 231 / 453

Well-Founded Operator

Well-founded fixpoints: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e

My has two total well-founded fixpoints:

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

231 / 453

Well-Founded Operator

Well-founded fixpoints: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e

My has two total well-founded fixpoints:
({a,c},{b,d,e})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

231 / 453

Well-Founded Operator

Well-founded fixpoints: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e

My has two total well-founded fixpoints:
({a,c},{b,d,e})
({a,d}, {b,c,e})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

231 / 453

Well-Founded Operator

Well-founded fixpoints: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e

My has two total well-founded fixpoints:
({a,c},{b,d,e})
({a,d},{b,c,e})

Both of them represent answer sets.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

231 / 453

Well-Founded Operator

Properties of well-founded operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.
m Let Qn(T,F) = (T, F').
If X is an answer set of Il such that 7T € X and X N F = 0,
then T/ C X and X N F' = 0.
That is, Q2 is answer set preserving.

Qp can be used for approximating answer sets and so for propagation
in ASP-solvers.

Unlike ®p, operator Q2 is sufficient for propagation because total
fixpoints correspond to answer sets.

In addition to 2, most ASP-solvers apply backward propagation (cf.
Page 488), originating from program completion (although this is
unnecessary from a formal point of view).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 232 / 453

Well-Founded Operator

Properties of well-founded operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

m Let Qn(T,F) = (T, F').
If X is an answer set of Nl such that T C X and X N F = 0,
then T/ C X and X N F' = 0.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

232 / 453

Well-Founded Operator

Properties of well-founded operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.
m Let Qn(T,F) = (T, F').
If X is an answer set of Nl such that T C X and X N F = 0,
then T/ C X and X N F' = 0.
m That is, Qp is answer set preserving.
= Qp can be used for approximating answer sets and so for propagation
in ASP-solvers.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 232 / 453

Well-Founded Operator

Properties of well-founded operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

m Let Qn(T,F) = (T, F').
If X is an answer set of Nl such that T C X and X N F = 0,
then T/ C X and X N F' = 0.

m That is, Qp is answer set preserving.
= Qp can be used for approximating answer sets and so for propagation

in ASP-solvers.

Unlike @, operator Qp is sufficient for propagation because total
fixpoints correspond to answer sets.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 232 / 453

Well-Founded Operator

Properties of well-founded operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

m Let Qn(T,F) = (T, F').
If X is an answer set of Nl such that T C X and X N F = 0,
then T/ C X and X N F' = 0.

m That is, Qp is answer set preserving.
= Qp can be used for approximating answer sets and so for propagation

in ASP-solvers.
Unlike @, operator Qp is sufficient for propagation because total
fixpoints correspond to answer sets.
w= |n addition to p, most ASP-solvers apply backward propagation (cf.

Page 488), originating from program completion (although this is
unnecessary from a formal point of view).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 232 / 453

Implementation via smodels

Overview

Implementation via smodels

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 233 / 453

Implementation via smodels

Rebuilding atmost((T, F))

from (greatest) unfounded sets

return

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 234 / 453

Implementation via smodels

Rebuilding atmost((T, F))

from (greatest) unfounded sets

return Un (T, F)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 234 / 453

Implementation via smodels

Recalling expand

Global: Normal logic program [1
expand((T, F))
repeat
(T, F) < atleast({T, F))

if (T, F) is conflicting then return (T, F)
else

F'«~ F

F < F Uatmost((T, F))
until F = F/
return (T, F)

v atleast((T, F)) derives deterministic consequences from
Clark’s completion

w= atmost((T, F)) derives deterministic consequences from
unfounded sets

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 235 / 453

Implementation via smodels

Relationship with well-founded semantics

Let 1 be a normal logic program.

|] expand((@, @>) = I_lizoﬂ{'l <®7 ®>

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

236 / 453

Implementation via smodels

Relationship with well-founded semantics

Let 1 be a normal logic program.
m expand((0,0)) = | |;5,2n(0,0)

1= That is, expand is basically an implementation of well-founded
semantics !

1= Additional backward propagation in atleast prunes the search space
further !

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 236 / 453

Implementation via smodels

Relationship with answer sets

Let M be a normal logic program and (T, F) a total interpretation.
m expand((T,F)) = (T, F) iff T is an answer set of Il

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

237 / 453

Implementation via smodels

Relationship with answer sets

Let M be a normal logic program and (T, F) a total interpretation.
m expand((T,F)) = (T, F) iff T is an answer set of Il

Given atmost((T,F)) = Unp(T,F),

we can apply smodels to compute answer sets !

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

237 / 453

Implementation via smodels

Relationship with answer sets

Let M be a normal logic program and (T, F) a total interpretation.
m expand((T,F)) = (T, F) iff T is an answer set of Il

Given atmost((T,F)) = Unp(T,F),
we can apply smodels to compute answer sets !

Reconsider:
Mo—4 < ¢ < a,not d e+ b
L=\ b« not a d < not c, not e e+ e
Call Interpretation Result
smodels (0, 0)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

237 / 453

Implementation via smodels

Relationship with answer sets

Let M be a normal logic program and (T, F) a total interpretation.
m expand((T,F)) = (T, F) iff T is an answer set of Il

Given atmost((T,F)) = Unp(T,F),
we can apply smodels to compute answer sets !

Reconsider:
a<+ c < a,not d e+ b
M =
b < not a d < not c, not e e+ e
Call Interpretation Result
smodels (0, 0)
expand (0,0)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 237 / 453

Implementation via smodels

Relationship with answer sets

Let M be a normal logic program and (T, F) a total interpretation.
m expand((T,F)) = (T, F) iff T is an answer set of Il

Given atmost((T,F)) = Unp(T,F),
we can apply smodels to compute answer sets !

Reconsider:
{a% c <+ a,not d e%b}
M =
b < not a d < not c, not e e+ e
Call Interpretation Result
smodels (0, 0)
expand (0,0) ({a}, {b,e})

select ({a}, {b, e})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

237 / 453

Implementation via smodels

Relationship with answer sets

Let M be a normal logic program and (T, F) a total interpretation.
m expand((T,F)) = (T, F) iff T is an answer set of Il

Given atmost((T,F)) = Unp(T,F),
we can apply smodels to compute answer sets !

Reconsider:
{a% c <+ a,not d e%b}
M =
b < not a d < not c, not e e+ e
Call Interpretation Result
smodels (0, 0)
expand (0,0) ({a}, {b,e})

select ({a},{b, e}) ({a,c}, {b,e})
expand | ({a,c},{b,e})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

237 / 453

Implementation via smodels

Relationship with answer sets

Let M be a normal logic program and (T, F) a total interpretation.
m expand((T,F)) = (T, F) iff T is an answer set of Il

Given atmost((T,F)) = Unp(T,F),
we can apply smodels to compute answer sets !

Reconsider:
{a% c <+ a,not d eeb}
M =
b < not a d < not c, not e e+ e
Call Interpretation Result
smodels (0, 0)
expand (0,0) ({a}, {b,e})

select ({a},{b, e}) ({a,c}, {b,e})
expand | ({a,c},{b,e}) | ({a,c},{b,d,e})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

237 / 453

Implementation via smodels

Relationship with answer sets

Let M be a normal logic program and (T, F) a total interpretation.
m expand((T,F)) = (T, F) iff T is an answer set of Il

Given atmost((T,F)) = Unp(T,F),
we can apply smodels to compute answer sets !

Reconsider:
{a% c <+ a,not d e%b}
M =
b < not a d < not c, not e e+ e
Call Interpretation Result
smodels (0, 0)
expand (0,0) ({a}, {b,e})

select ({a},{b, e}) ({a,c}, {b,e})
expand | ({a,c},{b,e}) | ({a,c},{b,d,e})
smodels (0, 0) {a, c}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

237 / 453

Implementation via smodels

Additional remarks on smodels

The smodels implementation also features:
m Extended rules

m Cardinality constraints
m Weight constraints

Optimiziation via minimize and maximize
Efficient counter-based propagation

Lazy implementation of atmost based on “source pointers”

Failed-literal detection, also called lookahead, for stronger propagation

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 238 / 453

Loops and Loop Formulas

Overview

Loops and Loop Formulas

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 239 / 453

Loops and Loop Formulas

Characterizing non-cyclic derivations

An alternative approach

Question Is there a propositional formula F(I1) such that the models
of F(M) correspond to the answer sets of 1 ?
If we consider the completion of a program, Comp(I),
then the problem boils down to eliminating the circular
support of atoms that are true in the supported models
of I1.
Add formulas to Comp(IN) that prohibit circular support of
sets of atoms.
Circular support between atoms p and g is possible
if p has a path to g and g has a path to p
in a program’s positive atom dependency graph.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 240 / 453

Loops and Loop Formulas

Characterizing non-cyclic derivations

An alternative approach

Question Is there a propositional formula F(I) such that the models
of F(IM) correspond to the answer sets of 1 ?
w= |f we consider the completion of a program, Comp(I1),
then the problem boils down to eliminating the circular
support of atoms that are true in the supported models
of IN.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 240 / 453

Loops and Loop Formulas

Characterizing non-cyclic derivations

An alternative approach

Question Is there a propositional formula F(I) such that the models
of F(IM) correspond to the answer sets of 1 ?
w= |f we consider the completion of a program, Comp(I1),
then the problem boils down to eliminating the circular
support of atoms that are true in the supported models
of .
Idea Add formulas to Comp(I) that prohibit circular support of
sets of atoms.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 240 / 453

Loops and Loop Formulas

Characterizing non-cyclic derivations

An alternative approach

Question Is there a propositional formula F(I) such that the models
of F(IM) correspond to the answer sets of 1 ?
w= |f we consider the completion of a program, Comp(I1),
then the problem boils down to eliminating the circular
support of atoms that are true in the supported models
of .
Idea Add formulas to Comp(I) that prohibit circular support of
sets of atoms.
1= Circular support between atoms p and g is possible
if p has a path to g and g has a path to p
in a program’s positive atom dependency graph.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 240 / 453

Loops and Loop Formulas

Loops
Let 1 be a normal logic program, and

let G(INM) = (atom(I), E) be the positive atom dependency graph of I1.

m Aset () C L C atom(N) is a loop of N
if it induces a non-trivial strongly connected subgraph of G(IN).

m That is, each pair of atoms in L is connected by a path of non-zero
length in (L, EN (L x L)).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 241 / 453

Loops and Loop Formulas

Loops

Let 1 be a normal logic program, and
let G(INM) = (atom(I), E) be the positive atom dependency graph of I1.

m Aset () C L C atom(N) is a loop of N
if it induces a non-trivial strongly connected subgraph of G(IN).

m That is, each pair of atoms in L is connected by a path of non-zero
length in (L, EN (L x L)).

m We denote the set of all loops of I by Loop(IN).

Observation Program I is tight iff Loop(I) = (.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 241 / 453

Loops and Loop Formulas

Loop formulas

Let 1 be a normal logic program.
m For L C atom(IN), define the external supports of L for 1 as

ESn(L) = { r € M| head(r) € L, body™(r)NnL=10}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

242 / 453

Loops and Loop Formulas

Loop formulas

Let 1 be a normal logic program.
m For L C atom(IN), define the external supports of L for 1 as

ESn(L) = { r € M| head(r) € L, body™(r)NnL=10}.

m The (disjunctive) loop formula of L for I is
LFa(L) = (VaelA) — (\/rEESn(L) Comp(body(r)))

= (Areesyy~Comp(body(r))) — (Aaci—A)-

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

242 / 453

Loops and Loop Formulas

Loop formulas

Let 1 be a normal logic program.
m For L C atom(IN), define the external supports of L for 1 as

ESn(L) = { r € M| head(r) € L, body™(r)NnL=10}.

m The (disjunctive) loop formula of L for I is
LFa(L) = (VaelA) — (\/rEESn(L) Comp(body(r)))

= (Areesyy~Comp(body(r))) — (Aaci—A)-

== The loop formula of L enforces all atoms in L to be false whenever L is
not externally supported.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 242 / 453

Loops and Loop Formulas

Loop formulas

Let 1 be a normal logic program.
m For L C atom(IN), define the external supports of L for 1 as

ESn(L) = { r € M| head(r) € L, body™(r)NnL=10}.

m The (disjunctive) loop formula of L for I is
LFa(L) = (VaelA) — (\/rEESn(L) Comp(body(r)))

= (Areesyy~Comp(body(r))) — (Aaci—A)-

== The loop formula of L enforces all atoms in L to be false whenever L is
not externally supported.

m Define
LF(M)={LFn(L) | L € Loop() }.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 242 / 453

Loops and Loop Formulas

Lin-Zhao Theorem

Theorem

Let I be a normal logic program and X C atom(I).
Then, X is an answer set of I iff X |= Comp(T) U LF(I).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

243 / 453

Loops and Loop Formulas

Loops and loop formulas: Examples

a< not b b <+ not a -
My=< c<« a,notd d < a,not ¢ c/ \d
e< c,not a e<d,not b \a/
Loop(M,) = ()
LF(My) =0

b

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 244 / 453

Loops and Loop Formulas

Loops and loop formulas: Examples

a< not b b <+ not a -
My=< c<« a,notd d < a,not ¢ c/ \d
e< c,not a e<d,not b \a/ b
Loop(M,) = ()
LF(My) =0
a< not b b <+ not a =

M3 = c 4+ not a c+d T
d<+ ab d<+c 5 b

Loop(N3) = {{c, d}}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 244 / 453

Loops and Loop Formulas

Loops and loop formulas: Examples

a< not b b <+ not a -
M =< c<« a,notd d < a, not ¢ c/ \d

e+ c,not a e+ d,not b b

Loop(M,) = ()
LF(My) =0

a< not b b < not a =

M3={ c<nota c<+d T =
’ d<ab d«c a/L

Loop(M3) = {{c, d}}

LF(N3) ={(cVvd)— (-aV(anb))}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 244 / 453

Loops and Loop Formulas

Loops and loop formulas: Properties

Let X be a supported model of normal logic program I1.

Then, X is an answer set of I iff

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

245 / 453

Loops and Loop Formulas

Loops and loop formulas: Properties

Let X be a supported model of normal logic program I1.

Then, X is an answer set of I iff
m X ={LFn(U) | UC atom(N) };

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

245 / 453

Loops and Loop Formulas

Loops and loop formulas: Properties

Let X be a supported model of normal logic program I1.

Then, X is an answer set of I iff
m X ={LFn(U) | UC atom(N) };
s X E{LFn(U) | UC X };

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

245 / 453

Loops and Loop Formulas

Loops and loop formulas: Properties

Let X be a supported model of normal logic program I1.

Then, X is an answer set of I iff
m X ={LFn(U) | UC atom(N) };
m X E{LFr(U)|UCX};
m X ={LFn(L)| L€ Loop(N) }, thatis, X = LF(MN);

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

245 / 453

Loops and Loop Formulas

Loops and loop formulas: Properties

Let X be a supported model of normal logic program I1.

Then, X is an answer set of I iff
m X ={LFn(VU)| UC atom(N) };
s X E{LFn(U) | UC X };
m X ={LFn(L)| L€ Loop(N) }, thatis, X = LF(MN);
m X ={LFn(L)| L€ Loop(N),LC X }.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

245 / 453

Loops and Loop Formulas

Loops and loop formulas: Properties

Let X be a supported model of normal logic program I1.

Then, X is an answer set of I iff
m X ={LFn(VU)| UC atom(N) };
s X E{LFn(U) | UC X };
m X ={LFn(L)| L€ Loop(N) }, thatis, X = LF(MN);
m X ={LFn(L)| L€ Loop(N),LC X }.

w |f X is not an answer set of 1,
then there is a loop L C X \ Cn(MX) such that X & LFp(L).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

245 / 453

Loops and Loop Formulas

Loops and loop formulas: Properties (ctd)

If P & N'CY/poly,! then there is no translation 7 from logic programs to
propositional formulas such that, for each normal logic program [1, both of
the following conditions hold:

The propositional variables in T[] are a subset of atom(IN).

The size of T[] is polynomial in the size of .

LA conjecture from the theory of complexity that is widely believed to be true.
Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 246 / 453

Loops and Loop Formulas

Loops and loop formulas: Properties (ctd)

If P & N'CY/poly,! then there is no translation 7 from logic programs to
propositional formulas such that, for each normal logic program [1, both of
the following conditions hold:

The propositional variables in T[] are a subset of atom(IN).

The size of T[] is polynomial in the size of .

== Every vocabulary-preserving translation from normal logic programs to
propositional formulas must be exponential
(in the worst case).

LA conjecture from the theory of complexity that is widely believed to be true.
Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 246 / 453

Loops and Loop Formulas

Loops and loop formulas: Properties (ctd)

If P & N'CY/poly,! then there is no translation 7 from logic programs to
propositional formulas such that, for each normal logic program [1, both of
the following conditions hold:

The propositional variables in T[] are a subset of atom(IN).

The size of T[] is polynomial in the size of .

== Every vocabulary-preserving translation from normal logic programs to
propositional formulas must be exponential
(in the worst case).

Observations
m Translation Comp(M) U LF(IM) preserves the vocabulary
of I.
m The number of loops in Loop([T) may be exponential in
|atom(I)].

LA conjecture from the theory of complexity that is widely believed to be true.
Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 246 / 453

Tableau Calculi: Overview

Motivation
Tableau Methods

Tableau Calculi for ASP
m Definitions
m Tableau Rules for Clark’'s Completion
m Tableau Rules for Unfounded Sets
m Tableau Rules for Case Analysis
m Particular Tableau Calculi
m Relative Efficiency
m Example Tableaux

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 247 / 453

Motivation

Overview

Motivation

Definitions

Tableau Rules for Clark’s Completion
Tableau Rules for Unfounded Sets
Tableau Rules for Case Analysis
Particular Tableau Calculi

Relative Efficiency

Example Tableaux

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 248 / 453

Motivation

Motivation

Goal Analyze computations in ASP-solvers

A declarative and fine-grained instrument for characterizing
operations as well as strategies of ASP-solvers

View answer set computations as derivations in an

inference system

= Tableau-based proof system for analyzing ASP-solving

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 249 / 453

Motivation

Motivation

Goal Analyze computations in ASP-solvers

Wanted A declarative and fine-grained instrument for characterizing
operations as well as strategies of ASP-solvers

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 249 / 453

Motivation

Motivation

Goal Analyze computations in ASP-solvers

Wanted A declarative and fine-grained instrument for characterizing
operations as well as strategies of ASP-solvers

Idea View answer set computations as derivations in an
inference system

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 249 / 453

Motivation

Motivation

Goal Analyze computations in ASP-solvers

Wanted A declarative and fine-grained instrument for characterizing
operations as well as strategies of ASP-solvers

Idea View answer set computations as derivations in an
inference system

= Tableau-based proof system for analyzing ASP-solving

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 249 / 453

Motivation

Tableau calculi

m Traditionally, tableau calculi are used for

m automated theorem proving and
m proof theoretical analysis

in classical as well as non-classical logics.

m General idea: Given an input, prove some property by
decomposition. Decomposition is done by applying deduction rules.

m For details, see [17].

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 250 / 453

Tableau Methods

Overview

Tableau Methods

Definitions

Tableau Rules for Clark’s Completion
Tableau Rules for Unfounded Sets
Tableau Rules for Case Analysis
Particular Tableau Calculi

Relative Efficiency

Example Tableaux

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 251 / 453

Tableau Methods

Tableau calculi: General definitions

m A tableau is a (mostly binary) tree.
m A branch in a tableau is a path from the root to a leaf.

A branch containing 71, ...,7vm can be extended by applying
tableau rules of form:

71 » Ym 71 » Ym
a1 ,‘31 ‘ 000 ‘ 3n
G
Rules of the former format append entries aq, ..., a, to the branch.
Rules of the latter format create multiple sub-branches for 51, ...,/ 3.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 252 / 453

Tableau Methods

Tableau calculi: General definitions

m A tableau is a (mostly binary) tree.
m A branch in a tableau is a path from the root to a leaf.
m A branch containing 71, ...,vm can be extended by applying
tableau rules of form:
Vl)"'arym ’Yl,---a’Ym

a1 b1 ’ oo | Bn

an
m Rules of the former format append entries as, ..., a, to the branch.
m Rules of the latter format create multiple sub-branches for (1, ..., ;.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 252 / 453

Tableau Methods

Tableau calculus: Example

A simple tableau calculus for proving unsatisfiability of propositional
formulas, composed from —, A, and V, consists of rules:

o a1 A oo B1V B
a ag B | B2
a

All rules are semantically valid, interpreting entries in a branch as
connected via “and” and distinct (sub-)branches as connected via

or .

A propositional formula ¢ (composed from —, A, and V) is
unsatisfiable iff there is a tableau with ¢ as the root node such that

all other entries can be produced by tableau rules and
every branch contains some formulas o and —a.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 253 / 453

Tableau Methods

Tableau calculus: Example

A simple tableau calculus for proving unsatisfiability of propositional
formulas, composed from —, A, and V, consists of rules:

- a1 A ap B1V B2
! a1 B | B2
as

m All rules are semantically valid, interpreting entries in a branch as
connected via “and” and distinct (sub-)branches as connected via

or .

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 253 / 453

Tableau Methods

Tableau calculus: Example

A simple tableau calculus for proving unsatisfiability of propositional
formulas, composed from —, A, and V, consists of rules:

- a1 A ap B1V B2
a a1 B | B2
as

m All rules are semantically valid, interpreting entries in a branch as
connected via “and” and distinct (sub-)branches as connected via

or .

m A propositional formula ¢ (composed from —, A, and V) is
unsatisfiable iff there is a tableau with ¢ as the root node such that

all other entries can be produced by tableau rules and
every branch contains some formulas o and —a.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 253 / 453

Tableau Methods

Tableau calculus: Example (ctd)

(1) an((=bA(=aV b))V -mma) [+]
(2) a [1]
(3) (b A (—aV b))V -—ma [1]
(4) —-bA(maVvb) [3] 9) -—-a [3]
(5) —b [4] (10) -a [9]
(6) —aVb [4]
(7) —a [o] (8) b [6]

All three branches of the tableau are contradictory (cf. 2, 5, 7, 8, 10).
w aA((=bA(—aV b))V ——-a) is unsatisfiable.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 254 / 453

Tableau Methods

Tableau calculus: Example (ctd)

(1) an((=bA(=aV b))V -—-a) [
(2) a [1]
(3) (b A (—aV b))V -—a [1]

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 254 / 453

Tableau Methods

Tableau calculus: Example (ctd)

(1) aA((=bA(maV b))V -mma) [¢]
(2) a [1]
(€))] (=bA(—-aV b))V -—-—a [1]
(4) -bA(-avb) [3] (9) -—-a [3]

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 254 / 453

Tableau Methods

Tableau calculus: Example (ctd)

(1) aA((=bA(maV b))V -mma) [¢]

(2) a [1]

(€))] (=bA(—-aV b))V -—-—a 1]
(4) -bA(-avb) [3] (9) -—-a [3]
C)) —b [4]
(6) -aVb [4]

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 254 / 453

Tableau Methods

Tableau calculus: Example (ctd)

(1) an((=bA(=aV b))V -—-a) [
(2) a [1]
(3) (b A (—aV b))V -—a [1]
(4) -bA(-avb) [3] (9) -—-a [3]
C)) —b [4]
(6) -aV b [4]
(7) —a [6] (8) b [o]

Torsten Schaub (KRRQUP) Answer Set Programming Januan y 18, 2012 254 / 453

Tableau Methods

Tableau calculus: Example (ctd)

(1) an((=bA(=aV b))V -—-a) [
(2) a [1]
(3) (b A (—aV b))V -—a [1]
(4) -bA(-avb) [3] (9) -—-a [3]
C)) —b [4]
(6) -aV b [4]
(7) —a [6] (8) b [o]

Torsten Schaub (KRRQUP) Answer Set Programming Januan y 18, 2012 254 / 453

Tableau Methods

Tableau calculus: Example (ctd)

(1) an((=bA(=aV b))V -—-a) [
(2) a [1]
(3) (b A (—aV b))V -—a [1]
(4) -bA(-avb) [3] (9) -—-a [3]
C)) —b [4]
(6) -aV b [4]
(7) —a [6] (8) b [o]

Torsten Schaub (KRRQUP) Answer Set Programming Januan y 18, 2012 254 / 453

Tableau Methods

Tableau calculus: Example (ctd)

(1) an((=bA(=aV b))V -—-a) [
(2) a [1]
(3) (b A (—aV b))V -—a [1]
(4) -bA(-avb) [3] (9) —-——a [3]
(5) —b [4] (10) —a [9]
(6) —-aVb [4]
(7) —a [6] (8) b [6]

Torsten Schaub (KRRQUP) Answer Set Programming Januan y 18, 2012 254 / 453

Tableau Methods

Tableau calculus: Example (ctd)

(1) an((=bA(=aV b))V -—-a) [
(2) a [1]
(3) (b A (—aV b))V -—a [1]
(4) -bA(-avb) [3] (9) —-——a [3]
(5) —b [4] (10) —a [9]
(6) —-aVb [4]
(7) —a [6] (8) b [6]

Torsten Schaub (KRRQUP) Answer Set Programming Januan y 18, 2012 254 / 453

Tableau Methods

Tableau calculus: Example (ctd)

(1) an((=bA(=aV b))V -—-a) [
(2) a [1]
(3) (b A (—aV b))V -—a [1]
(4) -bA(-avb) [3] (9) —-——a [3]
(5) —b [4] (10) —a [9]
(6) —-aVb [4]
(7) —a [6] (8) b [6]

All three branches of the tableau are contradictory (cf. 2, 5, 7, 8, 10).
= aA((=bA(—aV b))V ——a)is unsatisfiable.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 254 / 453

Tableau Calculi for ASP

Overview

Tableau Calculi for ASP
m Definitions
m Tableau Rules for Clark’'s Completion
m Tableau Rules for Unfounded Sets
m Tableau Rules for Case Analysis
m Particular Tableau Calculi
m Relative Efficiency
m Example Tableaux

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 255 / 453

Tableau Calculi for ASP

Tableaux and ASP: The idea
m A tableau rule captures an elementary inference scheme in an
ASP-solver.

m A branch in a tableau corresponds to a successful or unsuccessful
computation of an answer set.

m An entire tableau represents a traversal of the search space.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 256 / 453

Tableau Calculi for ASP Definitions

Tableaux and ASP: Specific definitions

m A (signed) tableau for a logic program I is a binary tree such that
m the root node of the tree consists of the rules in I1;
m the other nodes in the tree are entries of the form Tv or Fv, called
signed literals, where v is a variable,
m generated by extending a tableau using deduction rules (given below).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 257 / 453

Tableau Calculi for ASP Definitions

Tableaux and ASP: Specific definitions

m A (signed) tableau for a logic program I is a binary tree such that
m the root node of the tree consists of the rules in I1;
m the other nodes in the tree are entries of the form Tv or Fv, called
signed literals, where v is a variable,
m generated by extending a tableau using deduction rules (given below).
m An entry Tv (Fv) reflects that variable v is true (false) in a
corresponding variable assignment.

= A set of signed literals constitutes a partial assignment.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 257 / 453

Tableau Calculi for ASP Definitions

Tableaux and ASP: Specific definitions

m A (signed) tableau for a logic program I is a binary tree such that

m the root node of the tree consists of the rules in I1;

m the other nodes in the tree are entries of the form Tv or Fv, called
signed literals, where v is a variable,

m generated by extending a tableau using deduction rules (given below).

m An entry Tv (Fv) reflects that variable v is true (false) in a
corresponding variable assignment.

= A set of signed literals constitutes a partial assignment.
m For a normal logic program [1,

m atoms of [1 in atom(I) and
m bodies of M in body (M) = {body(r) | r € M}

can occur as variables in signed literals.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 257 / 453

Tableau Calculi for ASP Definitions

Tableau rules for ASP at a glance

p<hy.oishn
(FTB) th,. .. tl (BFB)
T{h,...,In}
p<h,....lh
(FTA) Tf{h,..h} (BFA)
Tp
&= lfgaaoglhyacaglh
GiE) fl; (BTB)
F{h,....0i,.... In}
(FFA) M () (BTA)
P
(WFN) FBl’Fi’FBm 1) (WFJ)
P
FBi,...,FBn
(FL PR) (BL)
(Cut[X]) B v v

Torsten Schaub (KRRQUP)

Answer Set Programming

[43]
F{’l:"'»’f»"w’ﬂ}
th,...,th1,thigg, ... th
fl;

p < Il:- 0o 7In
i
F{/ly- 0o g /n}
T{h,.. s i, In}

t/;

Tp
FBi,...,FBi_1,FBiy1,...,FBn
TB;

Tp

FBi,...,FBi_1,FBii1,...,FBn
i
Tp
FBi,...,FBi_1,FBi.1,...,FBny

T5;
(#1X1)

January 18, 2012 258 / 453

Tableau Calculi for ASP Definitions

More concepts

m A tableau calculus is a set of tableau rules.

A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v.

A branch in a tableau is total for a program I1,
if it contains either Tv or Fv for each v € atom([T) U body().

A branch in a tableau of some calculus 7 is closed,
if no rule in 7 other than Cut can produce any new entries.

A branch in a tableau is complete,
if it is either conflicting or both total and closed.

A tableau is complete,
if all its branches are complete.

A tableau of some calculus 7 is a refutation of T for a program 1,
if every branch in the tableau is conflicting.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 259 / 453

Tableau Calculi for ASP Definitions

More concepts

m A tableau calculus is a set of tableau rules.

m A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v.

A branch in a tableau is total for a program [T,
if it contains either Tv or Fv for each v € atom() U body ().

A branch in a tableau of some calculus 7 is closed,
if no rule in 7 other than Cut can produce any new entries.

A branch in a tableau is complete,
if it is either conflicting or both total and closed.

A tableau is complete,
if all its branches are complete.

A tableau of some calculus 7 is a refutation of T for a program 1,
if every branch in the tableau is conflicting.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 259 / 453

Tableau Calculi for ASP Definitions

More concepts

m A tableau calculus is a set of tableau rules.

m A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v.

m A branch in a tableau is total for a program I1,
if it contains either Tv or Fv for each v € atom(I) U body(I).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 259 / 453

Tableau Calculi for ASP Definitions

More concepts

m A tableau calculus is a set of tableau rules.

m A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v.

m A branch in a tableau is total for a program I1,
if it contains either Tv or Fv for each v € atom(I) U body(I).

m A branch in a tableau of some calculus 7T is closed,
if no rule in 7 other than Cut can produce any new entries.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 259 / 453

Tableau Calculi for ASP Definitions

More concepts

A tableau calculus is a set of tableau rules.

A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v.

A branch in a tableau is total for a program I1,
if it contains either Tv or Fv for each v € atom(I) U body(I).

A branch in a tableau of some calculus 7T is closed,
if no rule in 7 other than Cut can produce any new entries.

m A branch in a tableau is complete,
if it is either conflicting or both total and closed.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 259 / 453

Tableau Calculi for ASP Definitions

More concepts

A tableau calculus is a set of tableau rules.

A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v.

A branch in a tableau is total for a program I1,
if it contains either Tv or Fv for each v € atom(I) U body(I).

A branch in a tableau of some calculus 7T is closed,
if no rule in 7 other than Cut can produce any new entries.

m A branch in a tableau is complete,
if it is either conflicting or both total and closed.

m A tableau is complete,
if all its branches are complete.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 259 / 453

Tableau Calculi for ASP Definitions

More concepts

A tableau calculus is a set of tableau rules.

A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v.

m A branch in a tableau is total for a program I1,
if it contains either Tv or Fv for each v € atom(I) U body(I).

m A branch in a tableau of some calculus 7T is closed,
if no rule in 7 other than Cut can produce any new entries.

m A branch in a tableau is complete,
if it is either conflicting or both total and closed.

m A tableau is complete,
if all its branches are complete.

m A tableau of some calculus 7T is a refutation of 7 for a program [1,
if every branch in the tableau is conflicting.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 259 / 453

Tableau Calculi for ASP Definitions

Consider the program

a <
[M=< c <« not b,not d
d + a,not ¢

having two answer sets {a, c} and {a, d}.

Torsten Schaub (KRRQUP) Answer Set Programming

Example

January 18, 2012

260 / 453

Tableau Calculi for ASP Definitions

(Previewed) Example

a <

c < not b, not d
d < a,not ¢

(FTB)
(FTA)
(FFA)
(Cut[atom()]) Tc
(BTA) T{not b, not d}
(BTB) Fd

(FFB) F{a, not c}

Recall answer sets {a, c} and {a, d}.

Torsten Schaub (KRRQUP) Answer Set Programming

TO
Ta
Fb

Fc
(BFA) F{not b, not d
(BFB) Td

(FTB) T{a, not c}

January 18, 2012 261 / 453

(FTB)
(FTA)
(FFA)

Torsten Schaub (KRRQUP)

Tableau Calculi for ASP Definitions

(Previewed) Example

a<
c < not b, not d
d < a,not ¢
T
Ta
Fb

Answer Set Programming January 18, 2012

261 / 453

Tableau Calculi for ASP Definitions

(Previewed) Example

a<
c < not b, not d
d < a,not ¢

(FTB) T0

(FTA) LIE

FFA) Fb
(Cut[atom()]) Tc Fc

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 261 / 453

Tableau Calculi for ASP Definitions

(Previewed) Example

a<
c < not b, not d
d < a,not c

(FTB) T0
(FTA) Ta
(FFA) Fb
(Cut[atom()]) Tc Fc
(BTA) T{not b, not d}
(BTB) Fd

(FFB) F{a, not c}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 261 / 453

Tableau Calculi for ASP Definitions

(Previewed) Example

a<
c < not b, not d
d < a,not c

(FTB) T0
(FTA) Ta
(FFA) Fb
(Cut[atom()]) Tc Fc
(BTA) T{not b, not d} (BFA) F{not b, not d
(BTB) Fd (BFB) Td
(FFB) F{a, not c} (FTB) T{a,not c}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 261 / 453

Tableau Calculi for ASP Definitions

(Previewed) Example

a<
c < not b, not d
d < a,not c

(FTB) T0
(FTA) Ta
(FFA) Fb
(Cut[atom()]) Tc Fc
(BTA) T{not b, not d} (BFA) F{not b, not d
(BTB) Fd (BFB) Td
(FFB) F{a, not c} (FTB) T{a,not c}

Recall answer sets {a, c} and {a, d}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 261 / 453

Tableau Calculi for ASP Definitions

Tableau rules: Auxiliary definitions

m The application of rules makes use of two conjugation functions
t and f.

m For a literal /, define:

= T/ if [is an atom
N Fp if | = not p for an atom p

£l — F/ if | is an atom
Tp if I = not p for an atom p

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

262 / 453

Tableau Calculi for ASP Definitions

Tableau rules: Auxiliary definitions

m The application of rules makes use of two conjugation functions,
t and f.

m For a literal /, define:

= T/ if [is an atom
N Fp if | = not p for an atom p

£l — F/ if | is an atom
a Tp if | = not p for an atom p

Examples

tp=Tp fp=Fp tnot p=Fp fnot p=Tp

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 262 / 453

Tableau Calculi for ASP Definitions

Tableau rules: Auxiliary definitions (ctd)

m Some tableau rules require conditions for their application.
Such conditions are specified as provisos:

prerequisites

consequence (proviso) proviso: some condition(s)

i All tableau rules given in the sequel are answer set preserving.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 263 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Forward True Body (FTB)

Prerequisites All of a body'’s literals are true.
Consequence The body is true.
Tableau Rule FTB
p+—h,.... 1,
th,..., th
T{h,..., I}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

264 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Forward True Body (FTB)

Prerequisites All of a body'’s literals are true.
Consequence The body is true.
Tableau Rule FTB
p+—h,.... 1,
th,..., th
T{h,..., I}

Example

a< b, not c
Tb
Fc
T{b, not c}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

264 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Backward False Body (BFB)

Prerequisites A body is false, and all its literals except for one are true.
Consequence The residual body literal is false.
Tableau Rule BFB

F{h,....li,.... In}

th,...,thq,thyg,... th
fl;

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 265 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Backward False Body (BFB)

Prerequisites A body is false, and all its literals except for one are true.
Consequence The residual body literal is false.
Tableau Rule BFB

U A
th,...,thq,thyg,... th

fl;
Examples
F{b, not c} F{b, not c}
_Ub 6
Tc Fb

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 265 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Forward False Body (FFB)

Prerequisites Some literal of a body is false.
Consequence The body is false.
Tableau Rule FFB
ph,....li,....
fl;
F{h,....0i,..., [}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

266 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Forward False Body (FFB)

Prerequisites Some literal of a body is false.
Consequence The body is false.
Tableau Rule FFB
ph,... li,... 1
fl;
F{h,....0i,..., [}

Examples
a< b,not c a<+ b,not c
B . Je
F{b, not c} F{b, not c}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

266 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Backward True Body (BTB)

Prerequisites A body is true.
Consequence The body's literals are true.
Tableau Rule BTB

T{h, oo by}
t/;

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

267 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Backward True Body (BTB)

Prerequisites A body is true.
Consequence The body's literals are true.
Tableau Rule BTB

T{h, oo by}
t/;

Examples

T{b, not c} T{b, not c}
Tb Fc

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

267 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Reviewing tableau rules for bodies
Consider rule body B = {h,...,I,}.

m Rules FTB and BFB amount to implication:
hnAN---Nl,— B
m Rules FFB and BTB amount to implication:

B—s>hA---Nly

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

268 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Reviewing tableau rules for bodies
Consider rule body B = {h,...,I,}.

m Rules FTB and BFB amount to implication:
hnAN---Nl,— B
m Rules FFB and BTB amount to implication:

B—s>hA---Nly

1= Together they yield:

B=hAN---Nly

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

268 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Forward True Atom (FTA)

Prerequisites Some of an atom's bodies is true.
Consequence The atom is true.
Tableau Rule FTA

p+—h,.... 1,
T{h,..., I}
Tp

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

269 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Forward True Atom (FTA)

Prerequisites Some of an atom's bodies is true.
Consequence The atom is true.
Tableau Rule FTA

p+—h,.... 1,

T{h,..., I}
Tp
Examples
a< b,not c a<+d,not e
T{b, not c} T{d, not e}
LE] LIE

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

269 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Backward False Atom (BFA)

Prerequisites An atom is false.

Consequence The bodies of all rules with the atom as head are false.

Tableau Rule BFA
p < /1,...,/,,
Fp
F{h,....Ih}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

270 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Backward False Atom (BFA)

Prerequisites An atom is false.
Consequence The bodies of all rules with the atom as head are false.
Tableau Rule BFA

p+—h,.... 1,
Fp
F{h,....Ih}
Examples
a< b,not c a<+d,not e
e B
F{b, not c} F{d, not e}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 270 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Forward False Atom (FFA)

Prerequisites For some atom, the bodies of all rules with the atom as head
are false.

Consequence The atom is false.
Tableau Rule FFA

FBy,...,FB,,
Fom " (body(p) = {B1, .., Bn})

1= For an atom p occurring in a logic program [1, we let
body(p) = {body(r) | r € N, head(r) = p}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 271 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Forward False Atom (FFA)

Prerequisites For some atom, the bodies of all rules with the atom as head
are false.

Consequence The atom is false.
Tableau Rule FFA

FBy,...,FB,,
Fom " (body(p) = {B1, .., Bn})

1= For an atom p occurring in a logic program [1, we let
body(p) = {body(r) | r € N, head(r) = p}.
Example

F{b, not c}

F{d’+§te} (body(a) = {{b, not c},{d, not e}})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 271 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Backward True Atom (BTA)

Prerequisites An atom is true, and the bodies of all rules with the atom as
head except for one are false.

Consequence The residual body is true.

Tableau Rule BTA

Tp

FBi,....FB;_1,FBi,1,....,FB,,
T8 (body(p) = {B1,- -, Bm})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 272 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Backward True Atom (BTA)

Prerequisites An atom is true, and the bodies of all rules with the atom as

head except for one are false.
Consequence The residual body is true.
Tableau Rule BTA

Tp
FBi,...,FB; 1,FBj.1,...,FBy,
T8 (body(p) = {B, ...
Examples
LE] LE]
F{b, not c} F{d, not e}
T{d, not e} Q) T{b, not c} Q)

(¥): body(a) = {{b, not c},{d, not e}}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

,Bm})

272 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Reviewing tableau rules for atoms

Consider an atom p such that body(p) = {Bi, ..., Bm}.

m Rules FTA and BFA amount to implication:
Biv---VB,—p
m Rules FFA and BTA amount to implication:

p—BiV--V Bnm

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

273 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Reviewing tableau rules for atoms

Consider an atom p such that body(p) = {Bi, ..., Bm}.

m Rules FTA and BFA amount to implication:
Biv---VB,—p
m Rules FFA and BTA amount to implication:

p—BiV--V Bnm

1= Together they yield:

p=B1V---V B,

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

273 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Relationship with Clark's completion

Let 1 be a normal logic program.
The eight tableau rules introduced so far essentially provide:

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 274 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Relationship with Clark's completion

Let 1 be a normal logic program.
The eight tableau rules introduced so far essentially provide:
m (straightforward) inferences from Comp(IN) (cf. Page 430)

m inferences via atleast (cf. Page 488)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 274 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Relationship with Clark's completion
Let 1 be a normal logic program.
The eight tableau rules introduced so far essentially provide:
m (straightforward) inferences from Comp(IN) (cf. Page 430)
m inferences via atleast (cf. Page 488)
Given the same partial assignment (of atoms),

m any literal derived by atleast is also derived by tableau rules,

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 274 / 453

Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Relationship with Clark's completion
Let 1 be a normal logic program.
The eight tableau rules introduced so far essentially provide:
m (straightforward) inferences from Comp(IN) (cf. Page 430)
m inferences via atleast (cf. Page 488)
Given the same partial assignment (of atoms),
m any literal derived by atleast is also derived by tableau rules,

m while the converse does not hold in general.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 274 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Preliminaries for unfounded sets

Let 1 be a normal logic program.

m For " C I, define the greatest unfounded set, denoted by GUS(IT"),
of M with respect to N’ as:

GUS(I") = atom(M) \ Cn((M")")

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 275 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Preliminaries for unfounded sets

Let 1 be a normal logic program.

m For " C I, define the greatest unfounded set, denoted by GUS(IT"),
of M with respect to N’ as:

GUS(I") = atom(M) \ Cn((M")")

m For a loop L € Loop(I), define
EB(L) = {body(r) | r € N, head(r) € L, body™*(r)N L= 0}

as the external bodies of L.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 275 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Well-Founded Negation (WFN)

Prerequisites An atom is in the greatest unfounded set with respect to
rules whose bodies are false.

Consequence The atom is false.
Tableau Rule WEN

Wﬂ (p€ GUS({r € N | body(r) & {Bi,...,Bm}}))

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 276 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Well-Founded Negation (WFN)

Prerequisites An atom is in the greatest unfounded set with respect to
rules whose bodies are false.

Consequence The atom is false.
Tableau Rule WEN

FBi,...,FBy,
—Fp (P GUS({r € N | body(r) ¢ {B1..... Bn}}))
Examples
a<— a
a<+ not b a<+ notb
F{not b} F{not b}
T Fa ™ T Fa ™

(x): a€ GUS(N\ {a < not b})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 276 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Well-Founded Justification (WFJ)

Prerequisites A true atom is in the greatest unfounded set with respect to
rules whose bodies are false if a particular body is made false.
Consequence The respective body is true.
Tableau Rule WFJ
Tp
FBi,...,FBi_1,FBii1,...,FBn

TB (p e GUS({r e N | body(r) & {Bx1,...,Bm}}))

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 277 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Well-Founded Justification (WFJ)

Prerequisites A true atom is in the greatest unfounded set with respect to
rules whose bodies are false if a particular body is made false.

Consequence The respective body is true.

Tableau Rule WFJ

Tp
FBi,...,FBi_1,FBi.1,...,FB,
TB (p € GUS({r e N | body(r) & {B1,.-.,Bm}}))
Examples
a<a
a<+ not b a< notb
__Ta __Ta
T{not b} Q) T{not b} Q)

(¥): ae GUS(N\ {a < not b})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 277 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Reviewing well-founded tableau rules

Tableau rules WEN and WFJ ensure non-circular support for true atoms.
Note that

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 278 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Reviewing well-founded tableau rules
Tableau rules WEN and WFJ ensure non-circular support for true atoms.
Note that
WEN subsumes falsifying atoms via FFA,
WEFJ can be viewed as “backward propagation” for unfounded sets,

WFJ subsumes backward propagation of true atoms via BTA.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 278 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Relationship with well-founded operator

Let M be a normal logic program, (T, F) a partial interpretation, and
N ={ren|bodyt(r)NF =0, body (r)N T = 0}.
Then the following conditions are equivalent:

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 279 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Relationship with well-founded operator
Let M be a normal logic program, (T, F) a partial interpretation, and
N ={ren|bodyt(r)NF =0, body (r)N T = 0}.
Then the following conditions are equivalent:
p € Un(T,F); (cf. Page 530)
p € atmost((T, F)); (cf. Page 568)
p € GUS(IM).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 279 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Relationship with well-founded operator

Let M be a normal logic program, (T, F) a partial interpretation, and
N ={ren|bodyt(r)NF =0, body (r)N T = 0}.
Then the following conditions are equivalent:
p € Un(T,F); (cf. Page 530)
p € atmost((T, F)); (cf. Page 568)
p € GUS(IM).
= \Well-founded operator, atmost, and WFN coincide.

1= |n contrast to the former, WFN does not necessarily require a rule
body to contain a false literal for the rule being inapplicable.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 279 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Forward Loop (FL)

Prerequisites The external bodies of a loop are false.
Consequence The atoms in the loop are false.
Tableau Rule FL

FBi,...,FBn
Fp

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

(pe L, Le Loop(N),EB(L) = {Bi,...,Bm})

280 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Forward Loop (FL)

Prerequisites The external bodies of a loop are false.
Consequence The atoms in the loop are false.
Tableau Rule FL

FBi,...,FB,,
IT (peL,Le Loop(M), EB(L) = {By,...
Example
a<— a
a< not b
F{not b}

— Fa (EB({a}) = {{not b}})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

, Bm})

280 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Backward Loop (BL)

Prerequisites An atom of a loop is true, and all external bodies except for
one are false.

Consequence The residual external body is true.

Tableau Rule BL
Tp

FBi,...,FBi_1,FBi1,...,FB,
TB;

(peL,Le Loop(M),EB(L) = {Bi,...,Bm})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 281 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Backward Loop (BL)

Prerequisites An atom of a loop is true, and all external bodies except for
one are false.

Consequence The residual external body is true.
Tableau Rule BL

Tp
FBi,...,FB;_1,FBi.1,...,FB
: TE ™ (pe L, Le Loop(N),EB(L) = {B,..., Bn})
Example
a<+ a
a< not b

o5 (EBUa)) = {{not b))

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 281 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Reviewing tableau rules for loops

Tableau rules FL and BL ensure non-circular support for true atoms.

For a loop L such that EB(L) = {Bs,...,Bn},
they amount to implication:

Vperp = BLV -V B

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

282 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Reviewing tableau rules for loops

Tableau rules FL and BL ensure non-circular support for true atoms.
For a loop L such that EB(L) = {Bs,...,Bn},
they amount to implication:

Vperp = BLV -V B

Comparison to well-founded tableau rules yields:
m FL (plus FFA and FFB) is equivalent to WFN (plus FFB),
m BL cannot simulate inferences via WFJ.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 282 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Relationship with loop formulas

Tableau rules FL and BL essentially provide:

(straightforward) inferences from loop formulas (cf. Page 589)
But impractical to precompute exponentially many loop formulas !
an application of the Lin-Zhao Theorem (cf. Page 593)

In practice, ASP-solvers such as smodels:
exploit strongly connected components of positive atom dependency
graphs
Can be viewed as an interpolation of FL.
do not directly implement BL (and neither WFJ)
Probably difficult to do efficiently.

could simulate BL via FL/WFN by means of failed-literal detection
(lookahead)

What about the computational cost?

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 283 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Relationship with loop formulas

Tableau rules FL and BL essentially provide:
m (straightforward) inferences from loop formulas (cf. Page 589)
= But impractical to precompute exponentially many loop formulas !

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 283 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Relationship with loop formulas

Tableau rules FL and BL essentially provide:
m (straightforward) inferences from loop formulas (cf. Page 589)
= But impractical to precompute exponentially many loop formulas !

m an application of the Lin-Zhao Theorem (cf. Page 593)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 283 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Relationship with loop formulas

Tableau rules FL and BL essentially provide:
m (straightforward) inferences from loop formulas (cf. Page 589)

= But impractical to precompute exponentially many loop formulas !

m an application of the Lin-Zhao Theorem (cf. Page 593)

In practice, ASP-solvers such as smodels:

m exploit strongly connected components of positive atom dependency
graphs
= (Can be viewed as an interpolation of FL.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 283 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Relationship with loop formulas

Tableau rules FL and BL essentially provide:
m (straightforward) inferences from loop formulas (cf. Page 589)

= But impractical to precompute exponentially many loop formulas !

m an application of the Lin-Zhao Theorem (cf. Page 593)

In practice, ASP-solvers such as smodels:

m exploit strongly connected components of positive atom dependency
graphs
= Can be viewed as an interpolation of FL.
m do not directly implement BL (and neither WFJ)
= Probably difficult to do efficiently.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 283 / 453

Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Relationship with loop formulas

Tableau rules FL and BL essentially provide:
m (straightforward) inferences from loop formulas (cf. Page 589)

= But impractical to precompute exponentially many loop formulas !

m an application of the Lin-Zhao Theorem (cf. Page 593)

In practice, ASP-solvers such as smodels:

m exploit strongly connected components of positive atom dependency
graphs
= Can be viewed as an interpolation of FL.
m do not directly implement BL (and neither WFJ)
= Probably difficult to do efficiently.

m could simulate BL via FL/WFN by means of failed-literal detection
(lookahead)

= \Nhat about the computational cost?

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 283 / 453

Tableau Calculi for ASP Tableau Rules for Case Analysis

Case analysis by Cut

Up to now, all tableau rules are deterministic.
That is, rules extend a single branch but cannot create sub-branches.

1= |n general, closing a branch leads to a partial assignment.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 284 / 453

Tableau Calculi for ASP Tableau Rules for Case Analysis

Case analysis by Cut

Up to now, all tableau rules are deterministic.
That is, rules extend a single branch but cannot create sub-branches.

1= |n general, closing a branch leads to a partial assignment.
Case analysis is done by Cut[C] where C C atom(I1) U body(IN).

Tableau Rule Cut[C]

TR VEQ)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 284 / 453

Tableau Calculi for ASP Tableau Rules for Case Analysis

Case analysis by Cut

Up to now, all tableau rules are deterministic.
That is, rules extend a single branch but cannot create sub-branches.

1= |n general, closing a branch leads to a partial assignment.
Case analysis is done by Cut[C] where C C atom(I1) U body(IN).

Tableau Rule Cut[C]

TR VEQ)

Examples Cut[C]

a< not b a< not b
b + not a c_ . b <+ not a C — bodv(T]
Ta | Fa U= ciau1l)) T{not b} F{not b} (U= Lody 1))

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 284 / 453

Tableau Calculi for ASP Particular Tableau Calculi

Well-known tableau calculi

Fitting's operator ® applies forward propagation without sophisticated
unfounded set checks. We have:

Te = {FTB, FTA, FFB, FFA}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 285 / 453

Tableau Calculi for ASP Particular Tableau Calculi

Well-known tableau calculi

Fitting's operator ® applies forward propagation without sophisticated
unfounded set checks. We have:

Te = {FTB, FTA, FFB, FFA}

Well-founded operator €2 replaces negation of single atoms with negation
of unfounded sets. We have:

Ta = {FTB, FTA, FFB, WFN}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 285 / 453

Tableau Calculi for ASP Particular Tableau Calculi

Well-known tableau calculi

Fitting's operator ® applies forward propagation without sophisticated
unfounded set checks. We have:

Te = {FTB, FTA, FFB, FFA}

Well-founded operator €2 replaces negation of single atoms with negation
of unfounded sets. We have:

Ta = {FTB, FTA, FFB, WFN}

“Local” propagation via a program’s completion can be determined by
elementary inferences on atoms and rule bodies. We have:

Tcompletion = {FTB, FTA, FFB, FFA, BTB, BTA, BFB, BFA}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 285 / 453

Tableau Calculi for ASP Particular Tableau Calculi

Tableau calculi characterizing ASP-solvers

ASP-solvers combine propagation with case analysis.
We obtain the following tableau calculi characterizing
[4, 63, 51, 77, 57, 54, 2]:

7::models—1
7;ssat
7;models
7710M0Re

7770more++

Torsten Schaub (KRRQUP)

Tcompletion U { Cut{atom(IM) U body ()]}
Tcompletion U { FL} U { Cut[atom(IT) U body(M)]}
Tcompletion I { WFN} U { Cut[atom(IT)] }

Tcompletion U { WFN} U { Cut[body (TT)] }

Tcompletion I { WFN} U { Cut[atom(IT) U body ()]}

Answer Set Programming January 18, 2012 286 / 453

Tableau Calculi for ASP Particular Tableau Calculi

Tableau calculi characterizing ASP-solvers

ASP-solvers combine propagation with case analysis.
We obtain the following tableau calculi characterizing
[4, 63, 51, 77, 57, 54, 2]:

Temodels-1 = Teompletion U { Cut{atom(IM) U body (M)]}
Tassat = Tcompletion U { FL} U { Cut{atom(IT) U body ()]}
Tsmodels = Teompletion Y { WFN} U { Cut[atom(I)]}
TnoMore = Tcompletion U { WFN} U { Cut[body ()] }
Tnomoret+ = Tecompletion U { WFN} U { Cut{atom(IT) U body(IM)]}

m SAT-based ASP-solvers, assat and cmodels,
incrementally add loop formulas to a program’s completion.

m Genuine ASP-solvers, smodels, d1v, noMoRe, and nomore++,
essentially differ only in their Cut rules.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 286 / 453

Tableau Calculi for ASP Relative Efficiency

Proof complexity

The notion of proof complexity is used for describing the relative efficiency
of different proof systems.
It compares proof systems based on minimal refutations.

= Proof complexity does not depend on heuristics.

A proof system T polynomially simulates a proof system 7" if every
refutation of 7 can be polynomially mapped to a refutation of 7.
Otherwise, 7 does not polynomially simulate 7.

For showing that proof system 7 does not polynomially simulate 77,
we have to provide an infinite witnessing family of programs such that
minimal refutations of 7 asymptotically are exponentially larger than
minimal refutations of 7.

The size of tableaux is simply the number of their entries.

We do not need to know the precise number of entries:
Counting required Cut applications is sufficient !

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 287 / 453

Tableau Calculi for ASP Relative Efficiency

Proof complexity

The notion of proof complexity is used for describing the relative efficiency
of different proof systems.
It compares proof systems based on minimal refutations.

= Proof complexity does not depend on heuristics.

A proof system T polynomially simulates a proof system 77 if every
refutation of 7" can be polynomially mapped to a refutation of 7.
Otherwise, T does not polynomially simulate 7.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 287 / 453

Tableau Calculi for ASP Relative Efficiency

Proof complexity

The notion of proof complexity is used for describing the relative efficiency
of different proof systems.
It compares proof systems based on minimal refutations.

= Proof complexity does not depend on heuristics.

A proof system T polynomially simulates a proof system 77 if every
refutation of 7" can be polynomially mapped to a refutation of 7.
Otherwise, T does not polynomially simulate 7.

For showing that proof system 7 does not polynomially simulate 77,
we have to provide an infinite witnessing family of programs such that
minimal refutations of 7 asymptotically are exponentially larger than
minimal refutations of 77,

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 287 / 453

Tableau Calculi for ASP Relative Efficiency

Proof complexity

The notion of proof complexity is used for describing the relative efficiency
of different proof systems.
It compares proof systems based on minimal refutations.

= Proof complexity does not depend on heuristics.

A proof system T polynomially simulates a proof system 77 if every
refutation of 7" can be polynomially mapped to a refutation of 7.
Otherwise, T does not polynomially simulate 7.

For showing that proof system 7 does not polynomially simulate 77,
we have to provide an infinite witnessing family of programs such that
minimal refutations of 7 asymptotically are exponentially larger than
minimal refutations of 77,

The size of tableaux is simply the number of their entries.

1= \We do not need to know the precise number of entries:
Counting required Cut applications is sufficient !

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 287 / 453

Tableau Calculi for ASP Relative Efficiency

7:‘models VEersus 7710M0Re

Recall that Tgmoders restricts Cut to atom(I) and Thopore to body(IM).
Are both approaches similar or is one of them superior to the other?
Let {M2}, {N7}, and {M2} be infinite families of programs as follows:

a1 < not |

X <— not x X < C1,...,Cp, N0t X
’ b1 < not :

X<—31.b1 Cl < a1 C1<—b1

n __ n __ n __
Ha* : rlb* : : rlcf .

’ ’ ’ an < not |

X < an, b Ch < a ch < b
ns n n n n n bn%notg

In minimal refutations for M7 U T17, the number of applications of
Cut{body (N2 UN2)| with Thomore is linear in n, whereas Tgmodess requires
exponentially many applications of Cut[atom(I] U M2)].

Vice versa, minimal refutations for I} U T17 require linearly many
applications of Cut[atom([} U M7)] with Tsmodeis and exponentially many
applications of Cut[body (M} U MNZ)] with TronoRe.-

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 288 / 453

Tableau Calculi for ASP Relative Efficiency

7;mode/s VErsus 7710/\//0Re

Recall that Tgmoders restricts Cut to atom(IN) and Tpopore to body(MM).
Are both approaches similar or is one of them superior to the other?

Let {M7}, {NZ}, and {7} be infinite families of programs as follows:

a1 < not |
X < not x X < C1,...,Cp, NOt X
b1 < not
x<—al,b1 n C1 < a1 Cl<—b1 n
n __ _ _
na_ : I_Ib_ I_Ic_ .
X<-—a b c‘ea c.%b i &= 025
n» On n n n n bn < not :

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 288 / 453

Tableau Calculi for ASP Relative Efficiency

7;mode/s VErsus 7710/\//0Re

Recall that Tgmoders restricts Cut to atom(IN) and Tpopore to body(MM).
Are both approaches similar or is one of them superior to the other?

Let {M7}, {NZ}, and {7} be infinite families of programs as follows:

a1 < not |
X < not x X < C1,...,Cp, NOt X
b1 < not
x<—al7b1 n C1 < a1 Cl<—b1 n
n __ _ _
na_ : I_Ib_ I_Ic_ .
X<-—a b c‘ea c.%b i &= 025
n» On n n n n bn < not :

In minimal refutations for 17 U7, the number of applications of
Cut[body (M2 U N2)] with Thomore is linear in n, whereas Tepmodels requires
exponentially many applications of Cut[atom(N7 U NZ2)].

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 288 / 453

Tableau Calculi for ASP Relative Efficiency

7;mode/s VErsus 7710/\//0Re

Recall that Tgmoders restricts Cut to atom(IN) and Tpopore to body(MM).
Are both approaches similar or is one of them superior to the other?

Let {M7}, {NZ}, and {7} be infinite families of programs as follows:

a1 < not |
X < not x X < C1,...,Cp, NOt X
b1 < not
x<—al7b1 n C1 < a1 Cl<—b1 n
n __ _ _
na_ : I_Ib_ I_Ic_ .
X<-—a b c‘ea c.%b i &= 025
n» On n n n n bn < not :

In minimal refutations for 17 U7, the number of applications of
Cut[body (M2 U N2)] with Thomore is linear in n, whereas Tepmodels requires
exponentially many applications of Cut[atom(N7 U NZ2)].

Vice versa, minimal refutations for 1} U T require linearly many
applications of Cut[atom(M] U MN7)] with Tsmodeis and exponentially many
applications of Cut[body (M U NZ)] with Tronore.-

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 288 / 453

Tableau Calculi for ASP Relative Efficiency

Relative efficiency

As witnessed by {7 U M7} and {1} UTIZ}, respectively,
Tsmodels and Thomore do not polynomially simulate one another.

Any refutation of Tgmodels OF TroMoRe 1S @ refutation of 7T,omoret—+
(but not vice versa).

It follows that

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

289 / 453

Tableau Calculi for ASP Relative Efficiency

Relative efficiency

As witnessed by {7 U M7} and {1} UTIZ}, respectively,
Tsmodels and Thomore do not polynomially simulate one another.
Any refutation of Tgmodels OF TroMoRe 1S @ refutation of 7T,omoret—+

(but not vice versa).
It follows that

B both Temodels and Tromore are polynomially simulated by 7,omoret+
and

B T, omoret+ is polynomially simulated by neither Temodeis NOr ThoMoRe-

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 289 / 453

Tableau Calculi for ASP Relative Efficiency

Relative efficiency

As witnessed by {7 U M7} and {1} UTIZ}, respectively,
Tsmodels and Thomore do not polynomially simulate one another.
Any refutation of Tgmodels OF TroMoRe 1S @ refutation of 7T,omoret—+
(but not vice versa).

It follows that

B both Temodels and Tromore are polynomially simulated by 7,omoret+
and

B T, omoret+ is polynomially simulated by neither Temodeis NOr ThoMoRe-

= The proof system obtained with Cut[atom(I1) U body()] is
exponentially stronger than the ones with either
Cut[atom(IT)] or Cut[body(I)] !

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 289 / 453

Tableau Calculi for ASP Relative Efficiency

Relative efficiency

As witnessed by {7 U M7} and {1} UTIZ}, respectively,
Tsmodels and Thomore do not polynomially simulate one another.
Any refutation of Tgmodels OF TroMoRe 1S @ refutation of 7T,omoret—+
(but not vice versa).

It follows that

B both Temodels and Tromore are polynomially simulated by 7,omoret+
and

B T, omoret+ is polynomially simulated by neither Temodeis NOr ThoMoRe-
= The proof system obtained with Cut[atom(I1) U body()] is

exponentially stronger than the ones with either
Cut[atom(IT)] or Cut[body(I)] !

r= Case analyses (at least) on atoms and bodies are mandatory in
powerful ASP-solvers.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 289 / 453

(rn) a< not b
(n) c<g
(r7) e+« f,notc

(1) Ta

) T{not b}
3) Fb

(4) F{d, not a}
(5) F{not a, not f}
(6) Fg

(7) T{not g}
(T

(9) F{b, d}
(10 F{g}
(11) Fc
(12) F{c}
(13) Fd

(14) T{f, not c}
Te

Torsten Schaub (KRRQUP)

Tableau Calculi for ASP Example Tableaux

Cut]

BTA:
BTB:

BFA:
FFB:
FFA:

FTB:

FTA:
FFB:
FFB:
FFA:
FFB:
FFA:

FTB:

FTA:

Tsmodels: Example tableau

() b+ d,not a () c<+ b,d

(r5) d<+c (re) d<+g

(rg) f < notg (r0) g < not a,not f

(¢)) Fa [Cut]
n,1] 7) F{not b} [BFA: r1, 16]
2] (18) Tb [BFB: 17]
r, 3] (19) T{d,nota} [BTA: r, 18]
r,1] (20) Td [BTB: 19]
r9,5] (21) T{b,d} [FTB: rs, 18, 20]
rg, 6] (22) Tc [FTA: r3, 21]
rg, 7] (23) F{f,not c} [FFB: r7,22]
r3, 3] (24) Fe [FFA: r7, 23]
ra, re, 6] (25) T{c} [FTB: rs5, 22]
e ’141’]9’ 08 (9 TF [Cut (29) Ff [Cut
r5’r 10, 12] (27) F{not a, not f} [FFB: r9,26] (30) T{not a, not f} [FTB: rg,
57’ 86'11]’ 28) Fc [WFN: 27] (31) Tg [FTA: rg, :
i ’ 121] (32) T{g} [FTB: rq, |
! (33) F{notg} [FFB:rs,:
Answer Set Programming January 18, 2012 290 / 453

(rn) a< not b
(n) c<g
(r7) e+« f,notc
(1) T{not b}
(2) Ta
3) Fb
(4) F{d, not a}
(5) F{not a, not f}
(6) Fg
(7) T{not g}
(8) Tf
(9 F{b, d}
(10) F{e}
(11) Fc
(12) F{c}
(13) Fd
(14) T{f, not c}
(15) Te

Torsten Schaub (KRRQUP)

Tableau Calculi for ASP

Example Tableaux

TroMore: Example tableau

() b+ d,not a () c<+ b,d
(r5) d+c (re) d+«g
(rs) f<notg (r0) g < not a,not f
Cut] (¢19)] F{not b} [Cut]
FTA: i, 1] (17) Fa [FFA: r1, 16]
BTB: 1] (18) Tb [BFB: 16]
BFA: rp, 3] (19) T{d,nota} [BTA: r, 18]
FFB: rg, 2] (20) Td [BTB: 19]
FFA: rg, 5] (21) T{b,d} [FTB: r3, 18, 20]
FTB: rg, 6] (22) Tc [FTA: 3, 21]
FTA: rg, 7] (23) F{f, not c} [FFB: r7,22]
FFB: r3, 3] (24) Fe [FFA: 7, 23]
FFB: 14, 15, 6] (25) T{c} [FTB: 5,22
FFA:
FFB: i’,rf{]g’ = (26) T{not g} [Cuf] (30) F{notg} [Cuf]
FFA: 1o, 16, 10, 12] (27) Fg [BTB: 26| (31) Tg [BFB: 30]
FTB: r7,8,11] (28) F{g} [FFBir,r6,27] (32) T{g} [FTB: ra,.
FTA v, 14] (29) Fc [WFN: 28] (33) Ff [FFA: rg, 3

Answer Set Programming

(38) T{not a, not f} [FTB: rg, :

January 18, 2012 201 / 453

(rn) a< not b
(n) c<g
(r7) e+« f,notc
(1) Ta
) T{not b}
3) Fb
(4) F{d, not a}
(5) F{not a, not f}
(6) Fg
(7) T{not g}
8) Tf
(9) F{b, d}
(10 F{g}
(11) Fc
(12) F{c}
(13) Fd
(14) T{f, not c}
(15) Te

Torsten Schaub (KRRQUP)

Tableau Calculi for ASP

Cut]
BTA:

BTB:

BFA:
FFB:
FFA:

FTB:
FTA:
FFB:
FFB:
FFA:

FFB:
FFA:

FTB:
FTA:

Example Tableaux

Tromore++: Example tableau

() b<+d,not a () c<+ b,d

(r5) d<+c (re) d<+g

(rg) f < notg (r0) g < not a,not f

(¢)) Fa [Cut]

n,1] 7) F{not b} [BFA: r1, 16]
2] (18) Tb [BFB: 17]
r, 3] (19) T{d,nota} [BTA: r, 18]
r,1] (20) Td [BTB: 19]
rg, 5] (21) T{b,d} [FTB: r3, 18, 20]
rg, 6] (22) Tc [FTA: r3, 21]
rg, 7] (23) F{f,not c} [FFB: r7,22]
r3, 3] (24) Fe [FFA: r7, 23]
ra, re, 6] (25) T{c} [FTB: rs5, 22]
’,35:’141’]9’ O (26) T{notg} [Cuf (30) F{notg} [Cut]
w012 (2) Fe [BTB:26] (31) Te [BFB: 30]
r, 8, 11] (28) F{g} [FFB: 14, 15,27] (32) T{g} [FTB: rq,
v (29) Fc [WFN: 28] (33) Ff [FFA: rg, 2

(34) T{not a, not f} [FTB: rg, :

Answer Set Programming January 18, 2012 292 / 453

Conflict-Driven Answer Set Solving:

Motivation
Boolean Constraints

Nogoods from Logic Programs
m Nogoods from Clark’s Completion
m Nogoods from Loop Formulas

Conflict-Driven Nogood Learning
m CDNL-ASP Algorithm
m Nogood Propagation
m Conflict Analysis

Implementation via clasp

Torsten Schaub (KRRQUP) Answer Set Programming

Overview

January 18, 2012

203 / 453

Motivation

Overview

Motivation

Nogoods from Clark’'s Completion

Nogoods from Loop Formulas

CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 294 / 453

Motivation

Motivation

Goal New approach to computing answer sets of logic programs,
based on concepts from

m Constraint Processing (CSP) and
m Satisfiability Checking (SAT)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 295 / 453

Motivation

Motivation

Goal New approach to computing answer sets of logic programs,
based on concepts from
m Constraint Processing (CSP) and
m Satisfiability Checking (SAT)
Idea View inferences in Answer Set Programming (ASP) as unit
propagation on nogoods.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 295 / 453

Motivation

Motivation

Goal New approach to computing answer sets of logic programs,
based on concepts from

m Constraint Processing (CSP) and
m Satisfiability Checking (SAT)
Idea View inferences in Answer Set Programming (ASP) as unit
propagation on nogoods.
Benefits

m A uniform constraint-based framework for different

kinds of inferences in ASP
m Advanced techniques from the areas of CSP and SAT
m Highly competitive implementation

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 295 / 453

Boolean Constraints

Overview

Boolean Constraints

Nogoods from Clark’'s Completion
Nogoods from Loop Formulas

CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 296 / 453

Boolean Constraints

Assignments
m An assignment A over dom(A) = atom(I) U body(IN) is a sequence
(01,...,0n)

of signed literals o; of form Tp or Fp for p € dom(A) and 1 < < n.
1 Tp expresses that p is true and Fp that it is false.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 297 / 453

Boolean Constraints

Assignments

m An assignment A over dom(A) = atom(I) U body(IN) is a sequence

(01,...,0n)

of signed literals o; of form Tp or Fp for p € dom(A) and 1 < < n.
1 Tp expresses that p is true and Fp that it is false.

m The complement, &, of a literal o is defined as Tp = Fp and
Fp=Tp.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 297 / 453

Boolean Constraints

Assignments

m An assignment A over dom(A) = atom(I) U body(IN) is a sequence

(01,...,0n)
of signed literals o; of form Tp or Fp for p € dom(A) and 1 < < n.
1 Tp expresses that p is true and Fp that it is false.

m The complement, &, of a literal o is defined as Tp = Fp and
Fp=Tp.

m Ao B denotes the concatenation of assignments A and B.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 297 / 453

Boolean Constraints

Assignments

m An assignment A over dom(A) = atom(I) U body(IN) is a sequence

(01,...,0n)
of signed literals o; of form Tp or Fp for p € dom(A) and 1 < < n.
1 Tp expresses that p is true and Fp that it is false.

m The complement, &, of a literal o is defined as Tp = Fp and
Fp=Tp.

m Ao B denotes the concatenation of assignments A and B.

m Given A = ((71,...,0’k,1,(7k,... ,Jn), we let A[O’k] = ((71,...,0';(,1).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 297 / 453

Boolean Constraints

Assignments

m An assignment A over dom(A) = atom(I) U body(IN) is a sequence

(01,...,0n)
of signed literals o; of form Tp or Fp for p € dom(A) and 1 < < n.
1 Tp expresses that p is true and Fp that it is false.

m The complement, &, of a literal o is defined as Tp = Fp and
Fp=Tp.

Ao B denotes the concatenation of assignments A and B.

Given A = ((71, 5009 @ k=1l @k oo o ,(Tn), we let A[O’k] = ((71, 560 70’;(,]_).
m We sometimes identify an assignment with the set of its literals.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 297 / 453

Boolean Constraints

Assignments

m An assignment A over dom(A) = atom(I) U body(IN) is a sequence

(01,...,0n)
of signed literals o; of form Tp or Fp for p € dom(A) and 1 < < n.

1 Tp expresses that p is true and Fp that it is false.
m The complement, &, of a literal o is defined as Tp = Fp and
Fp=Tp.
m Ao B denotes the concatenation of assignments A and B.
m Given A = ((71, 5009 @ k=1l @k oo o ,(Tn), we let A[O’k] = ((71, 560 70’;(,]_).
m We sometimes identify an assignment with the set of its literals.
Given this, we access true and false propositions in A via

AT = {p e dom(A) | Tp € A} and AF = {p c dom(A) | Fp c A} .

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 297 / 453

Boolean Constraints

Nogoods, Solutions, and Unit Propagation

m A nogood is a set {o1,...,0,} of signed literals,
expressing a constraint violated by any assignment
containing o1,...,0p.

An assignment A such that AT U AF = dom(A) and AT N AF = ()
is a solution for a set A of nogoods, if § £ A for all § € A.
For a nogood ¢, a literal o € §, and an assignment A, we say that
7 is unit-resulting for § wrt A, if
0\A={o} and
g & A.
For a set A of nogoods and an assignment A, unit propagation is the
iterated process of extending A with unit-resulting literals until no
further literal is unit-resulting for any nogood in A.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 298 / 453

Boolean Constraints

Nogoods, Solutions, and Unit Propagation

m A nogood is a set {01, ...,0,} of signed literals,
expressing a constraint violated by any assignment
containing o1, ...,0p.

m An assignment A such that AT U AF = dom(A) and AT N AF = ()
is a solution for a set A of nogoods, if § Z A for all § € A.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 298 / 453

Boolean Constraints

Nogoods, Solutions, and Unit Propagation

m A nogood is a set {01, ...,0,} of signed literals,
expressing a constraint violated by any assignment
containing o1, ...,0p.

m An assignment A such that AT U AF = dom(A) and AT N AF =0
is a solution for a set A of nogoods, if § Z A for all § € A.
m For a nogood ¢, a literal o € §, and an assignment A, we say that
7 is unit-resulting for 0 wrt A, if
0\A={o} and
T ¢ A.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 298 / 453

Boolean Constraints

Nogoods, Solutions, and Unit Propagation

m A nogood is a set {01, ...,0,} of signed literals,

expressing a constraint violated by any assignment
containing o1, ...,0p.
An assignment A such that AT U AF = dom(A) and AT N AF = ()
is a solution for a set A of nogoods, if § Z A for all § € A.
For a nogood 4, a literal o € 4, and an assignment A, we say that
@ is unit-resulting for § wrt A, if

0\A={o} and

T & A.
For a set A of nogoods and an assignment A, unit propagation is the
iterated process of extending A with unit-resulting literals until no
further literal is unit-resulting for any nogood in A.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 298 / 453

Nogoods from Logic Programs

Overview

Nogoods from Logic Programs
m Nogoods from Clark’s Completion
m Nogoods from Loop Formulas

CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 299 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs

via Clark's completion

The completion of a logic program [can be defined as follows:

{ps < PL A APmA=Pmy1 A A=py |
/8 S bOdy(n)’/BZ {pla"'apm)nOt Pm+1a--~7n0t Pn}}

U {pHpﬂl\/'”\/ka ‘
p € atom(MN), body(p) = {f1,---,Bk}} »

where body(p) = {body(r) | r € N, head(r) = p}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 300 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs (ctd)

via Clark's completion

Let 8 ={p1,---,Pm, N0t Pmi1,-..,Nn0t p,} be a body.
The equivalence

pPg <> pL N\ APm /A Pmy1 A=A =pp
can be decomposed into two implications.
We get

Ps— PLA - APmA=Pmy1t A A=pn

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

301 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs (ctd)

via Clark's completion

Let 8 ={p1,---,Pm, N0t Pmi1,-..,Nn0t p,} be a body.
The equivalence

pPg <> pL N\ APm /A Pmy1 A=A =pp
can be decomposed into two implications.
We get

Pg — P1 A APpm /A =Pmy1 N AN=pn,
which is equivalent to the conjunction of

—pgVp1, .-y 7PV Pm; 7PN TPm+1; ---5 7PV 7Pn -
This set of clauses expresses the following set of nogoods:

AB) ={{TB,Fpi},....{TB,Fpm}, {TB, Tpms1},{TB, Tpa} } .

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 301 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs (ctd)

via Clark's completion

Let 8 ={p1,---,Pm, N0t Pmi1,-..,Nn0t p,} be a body.
The equivalence

Ps < PLA -+ APm A=Pmii A+ A=py

can be decomposed into two implications.

The converse of the previous implication, viz.

PLA - APm A Pmi1 A A=Pn = Pg ,

gives rise to the nogood

0B)={FB,Tp1,..., Tpm, Fpmyt1,...,Fpn} .

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

302 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs (ctd)

via Clark's completion

Let 8 ={p1,---,Pm, N0t Pmi1,-..,Nn0t p,} be a body.
The equivalence

P <> PL A APm A TPmy1r Ao A=y
can be decomposed into two implications.
The converse of the previous implication, viz.
PLA = APmA=Pmi1 A A=pn — pg
gives rise to the nogood
6(B) ={FB,Tp1,.... Tpm, Fpmys1,....Fpn} .

Intuitively, 6(3) is a constraint enforcing the truth of body 3, or the
falsity of a contained literal.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 302 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs (ctd)

via Clark's completion

Proceeding analogously with the atom-based equivalences, viz.

P <> pg VoV Pgy

we obtain for an atom p € atom([1) along with its bodies
body(p) = {51, -, Bk} the nogoods

A(p) = {{Fp) Tﬁl}a R {FP, Tﬁk}} and
5(p) = {Tp7 Fﬁl, 0009 F,Bk} 3

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

303 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs

atom-oriented nogoods

For an atom p where body(p) = {S1, ..., Bk}, recall that

6(p) = {Tp,Fp1,...,FBi}
A(p) = {{FP7Tﬁl}av{FP7Tﬁk}} :

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

304 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs

atom-oriented nogoods
For an atom p where body(p) = {S1, ..., Bk}, recall that

6(p) = {Tp,Fp1,...,FBi}
A(p) = {{FP7T51}77{FPvT6k}} :

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

X <y
X < notz

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

304 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs

atom-oriented nogoods
For an atom p where body(p) = {S1, ..., Bk}, recall that

5(p) = {Tp,Fp,...,FB}
A(p) = {{Fp,Tp},....{Fp, TB}} .

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

X 4y (x) = {Tx,F{y},F{not z}}
X ¢ notz A(x) {{Fx, T{y}}, {Fx, T{not z}} }

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 304 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs

atom-oriented nogoods

For an atom p where body(p) = {S1, ..., Bk}, recall that

5(p) = {Tp,Fp,...,FB}
A(p) = {{Fp,Tp},....{Fp, TB}} .

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

X 4y (x) = {Tx,F{y},F{not z}}
X 4 notz A(x)

For nogood d(x) = {Tx,F{y},F{not z}}, the signed literal
m Fx is unit-resulting wrt assignment (F{y}, F{not z})

{{Fx, T{y}},{Fx, T{not z}} }

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs

atom-oriented nogoods

For an atom p where body(p) = {S1, ..., Bk}, recall that

5(p) = {Tp,Fp,...,FB}
A(p) = {{Fp,Tp},....{Fp, TB}} .

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

X 4y (x) = {Tx,F{y},F{not z}}
X 4 notz A(x)

For nogood d(x) = {Tx,F{y},F{not z}}, the signed literal
m Fx is unit-resulting wrt assignment (F{y}, F{not z}) and
m T{not z} is unit-resulting wrt assignment (Tx, F{y}).

{{Fx, T{y}},{Fx, T{not z}} }

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs

body-oriented nogoods

For a body 8 ={p1,...,Pm, N0t pmi1,...,not p,}, recall that

6(/8) = {Fﬁvalw'-7TpmaFPm+1a-~~aFPn}
AB) = {{TB8,Fpi},... {TB,Fpm} {TB, Tpms1},. .. {TB, Tpn}}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 305 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs

body-oriented nogoods

For a body 8 ={p1,...,Pm, N0t pmi1,...,not p,}, recall that

6(/8) = {Fﬁvalw'-7TpmaFPm+1a-~~aFPn}
AB) = {{TB8,Fpi},... {TB,Fpm} {TB, Tpms1},. .. {TB, Tpn}}

For example, for body {x, not y}, we obtain

... 4 Xx,not y

... 4 Xx,not y

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 305 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs

body-oriented nogoods

For a body 8 ={p1,...,Pm, N0t pmi1,...,not p,}, recall that

6(/8) = {Fﬁvalw'-7TpmaFPm+1a-~~aFPn}
AB) = {{TB8,Fpi},... {TB,Fpm} {TB, Tpms1},. .. {TB, Tpn}}

For example, for body {x, not y}, we obtain

e EXNOLY St ot y)) = {F{x, not y}, Tx, Fy}

A({x,not y}) = {{T{x,not y},Fx},{T{x, not y}, T

... 4 Xx,not y

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 305 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs

body-oriented nogoods

For a body 8 ={p1,...,Pm, N0t pmi1,...,not p,}, recall that

6(/8) = {Fﬁvalw'-7TpmaFPm+1a-~~aFPn}
AB) = {{TB8,Fpi},... {TB,Fpm} {TB, Tpms1},. .. {TB, Tpn}}

For example, for body {x, not y}, we obtain

e EXNOLY St ot y)) = {F{x, not y}, Tx, Fy}

A({x,not y}) = {{T{x,not y},Fx},{T{x, not y}, T

... 4 Xx,not y

For nogood d({x, not y}) = {F{x, not y}, Tx,Fy}, the signed literal
m T{x, not y} is unit-resulting wrt assignment (Tx, Fy)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 305 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs

body-oriented nogoods

For a body 8 ={p1,...,Pm, N0t pmi1,...,not p,}, recall that

6(/8) = {Fﬁvalw'-7TpmaFPm+1a-~~aFPn}
AB) = {{TB8,Fpi},... {TB,Fpm} {TB, Tpms1},. .. {TB, Tpn}}

For example, for body {x, not y}, we obtain

e EXNOLY St ot y)) = {F{x, not y}, Tx, Fy}

A({x,not y}) = {{T{x,not y},Fx},{T{x, not y}, T

... 4 Xx,not y

For nogood d({x, not y}) = {F{x, not y}, Tx,Fy}, the signed literal
m T{x, not y} is unit-resulting wrt assignment (Tx,Fy) and
m Ty is unit-resulting wrt assignment (F{x, not y}, Tx).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 305 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Characterization of answer sets
for tight logic programs

Let I1 be a logic program and

An = {3(p) | p e atom(M)} U {5 € A(p) | p € atom(M)}

U {d(B) | B € body(M)} U {6 € A(B) | B € body (M)} .

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

306 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Characterization of answer sets
for tight logic programs

Let I1 be a logic program and

An = {3(p) | p e atom(M)} U {5 € A(p) | p € atom(M)}

U {d(B) | B € body(M)} U {6 € A(B) | B € body (M)} .

Theorem

Let 1 be a tight logic program. Then,
X C atom(I) is an answer set of M iff
X = AT natom(N) for a (unique) solution A for Ap.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

306 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Characterization of answer sets
for tight logic programs

Let I1 be a logic program and

An = {3(p) | p e atom(M)} U {5 € A(p) | p € atom(M)}

U {d(B) | B € body(M)} U {6 € A(B) | B € body (M)} .

Theorem

Let 1 be a tight logic program. Then,
X C atom(I) is an answer set of M iff
X = AT natom(N) for a (unique) solution A for Ap.

1= The set Ap of nogoods captures inferences from
(program I and) Clark's completion.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

306 / 453

Nogoods from Logic Programs Nogoods from Clark’'s Completion

Atom-oriented nogoods and tableau rules

m Tableau rules FTA, BFA, FFA, and BTA are atom-oriented.
For an atom p such that body(p) = {51, -, Bk},
consider the equivalence: p<rpg V-V pg,

Inferences from nogoods A(p) = {{Fp, T51},...,{Fp, TBk}}

correspond to those from tableau rules FTA and BFA:

p<+< p<+— B
TS Fp
Tp F5

Inferences from nogood d(p) = {Tp,Fp,...,FBk}
correspond to those from tableau rules FFA and BTA:

Tp
FGi,..., FGy FBi,...,FBi_1,FBii1,. .., F5)
Fp T3;
Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

307 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Atom-oriented nogoods and tableau rules

m Tableau rules FTA, BFA, FFA, and BTA are atom-oriented.
m For an atom p such that body(p) = {51, .., Bk},
consider the equivalence: p < pg V-V pg,

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

307 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Atom-oriented nogoods and tableau rules

m Tableau rules FTA, BFA, FFA, and BTA are atom-oriented.
m For an atom p such that body(p) = {51, .., Bk},
consider the equivalence: p < pg V-V pg,

m Inferences from nogoods A(p) = {{Fp, T/51},...,{Fp, TSk} }
correspond to those from tableau rules FTA and BFA:

p< B p< B
T6 Fp
— — ——

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 307 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Atom-oriented nogoods and tableau rules

m Tableau rules FTA, BFA, FFA, and BTA are atom-oriented.
m For an atom p such that body(p) = {51, .., Bk},
consider the equivalence: p < pg V-V pg,

m Inferences from nogoods A(p) = {{Fp, T/51},...,{Fp, TSk} }
correspond to those from tableau rules FTA and BFA:

p< B p< B
T6 Fp
— — ——

m Inferences from nogood d(p) = {Tp,Fp1,...,FBk}
correspond to those from tableau rules FFA and BTA:
Tp
F5i,...,FBk F5i,...,FBi—1,FBit1,...,FBk
Fp TB5i

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 307 / 453

Nogoods from Logic Programs Nogoods from Clark’'s Completion

Body-oriented nogoods and tableau rules

m Tableau rules FTB, BFB, FFB, and BTB are body-oriented.

For a bOdy [3 - {plv <5 Pm, not Pm+1;-- -, not Pn} - {/13 try /n}'
consider the equivalence: pg <> p1 A+ Apm A =Ppmr1 A--- A —pp

Inferences from nogood 4&(8) = {FB,Tp1,..., Tpm,Fpm+1,--.,Fpn}
correspond to those from tableau rules FTB and BFB:

p%/l /n F{/lln}
th,...,tl, th,...,th1,thy1,... th
T{h, .. I} f;

AB) ={{TB,Fp1},... . {TB,Fpm}, {T5, Toms1},- -, {TB, Tpn}}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 308 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Body-oriented nogoods and tableau rules

m Tableau rules FTB, BFB, FFB, and BTB are body-oriented.

m For a body 5= {p1,...,Pm, N0t pm+1,...,n0t pp} ={h,..., I},
consider the equivalence: pg <> p1 A Apm A =Pmy1 A+ A=pp

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 308 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Body-oriented nogoods and tableau rules
m Tableau rules FTB, BFB, FFB, and BTB are body-oriented.
m For a body 5 ={p1,..., pm, N0t pmi1,...,not pp} = {h,

m Inferences from nogood (5) = {F53,Tp1,..., TpPm, Fpm+1,
correspond to those from tableau rules FTB and BFB:

pet,. Flh,... I}
th,..., tl, th,...,thq,thyq,... th
T{h,) i

Torsten Schaub (KRRQUP)

NAY

consider the equivalence: pg <> p1 A+ A pm A =Pmy1 N~

/\—\pn

. Fp}

Answer Set Programming January 18, 2012 308 / 453

Nogoods from Logic Programs Nogoods from Clark’s Completion

Body-oriented nogoods and tableau rules

m Tableau rules FTB, BFB, FFB, and BTB are body-oriented.

m For a body 5= {p1,...,Pm, N0t pm+1,...,n0t pp} ={h,..., I},
consider the equivalence: pg <> p1 A Apm A =Pmy1 A+ A=pp

m Inferences from nogood (5) = {F53,Tp1,..., TpPm, Fpm+1,...,Fpn}
correspond to those from tableau rules FTB and BFB:

pet,. Flh,... I}
th,..., tl, th,...,thq,thyq,... th
T{h,) i

m Inferences from nogoods

A(ﬁ) = { {Tﬁa Fpl}a 000y {Tﬁv Fpm}a {Tﬁa Tpm+1}> 000y {Tﬂv Tpn} }
correspond to those from tableau rules FFB and BTB:
p—h,.,
fl; T{h, ..., liy...,In}
F{h,....li,..., In} t/;

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 308 / 453

Nogoods from Logic Programs Nogoods from Loop Formulas

Nogoods from logic programs
via loop formulas (cf. Page 589)

Let 1 be a normal logic program and recall that:
m For L C atom(I), the external supports of L for I are
ESn(L) = {ren| head(r) € L, body™(r)NnL=0}.
m The (disjunctive) loop formula of L for I is
LFr(L) = (\/AGLA) — (VreESn(L) Comp(body(r)))
= (Aregsny~Comp(body(r))) = (AncL™A)-

1 The loop formula of L enforces all atoms in L to be false whenever L is
not externally supported.

m The external bodies of L for I are
EB(L) = {body(r)|r €N, head(r) € L, body™(r)n L= 0}
= {body(r) | r € ESn(L)}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 309 / 453

Nogoods from Logic Programs Nogoods from Loop Formulas

Nogoods from logic programs

loop nogoods

For a logic program I and some () C U C atom(IN),
define the loop nogood of an atom p € U as

Ap,U) = {Tp,Fpr, ..., Fi}
where EB(U) = {f1,..., Bk}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

310 / 453

Nogoods from Logic Programs Nogoods from Loop Formulas

Nogoods from logic programs

loop nogoods

For a logic program I and some () C U C atom(IN),
define the loop nogood of an atom p € U as

/\(p7 U) = {Tp7 FBI: SO Fﬁk}
where EB(U) = {p1, ..., Bk}-
In all, we get the following set of loop nogoods for [1:

An = U@CUgatom(ﬂ){)‘(p7 U) | p € U}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

310 / 453

Nogoods from Logic Programs Nogoods from Loop Formulas

Nogoods from logic programs

loop nogoods

For a logic program I and some () C U C atom(IN),
define the loop nogood of an atom p € U as

/\(p7 U) = {Tp7 FBl:"'7F5k}
where EB(U) = {p1, ..., Bk}-
In all, we get the following set of loop nogoods for [1:

An = U@CUgatom(ﬂ){)‘(p7 U) | p € U}

1= The set A of loop nogoods denies cyclic support among true atoms.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 310 / 453

Nogoods from Logic Programs Nogoods from Loop Formulas

Example
Consider
X < not uex
1= Y U<+ v
Y < not x
V& uy

For u in the set {u, v}, we obtain the loop nogood:
Mu,{u,v}) = {Tu,F{x}}
Similarly for v in {u, v}, we get:

Av,{u,v}) = {Tv,F{x}}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

311 / 453

Nogoods from Logic Programs Nogoods from Loop Formulas

Example
Consider
X < not U x
1= y U<+ v
y ¢ not x
V& uy

For u in the set {u, v}, we obtain the loop nogood:

Mu,{u,v}) = {Tu,F{x}}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

311 / 453

Nogoods from Logic Programs Nogoods from Loop Formulas

Example
Consider
< not v X
n=¢ ~ Y uev
y ¢ not x
Ve uy

For u in the set {u, v}, we obtain the loop nogood:

A {u,v}) = {Tu,F{x}}
Similarly for v in {u, v}, we get:

Av, {u,v}) = {Tv,F{x}}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

311 / 453

Nogoods from Logic Programs Nogoods from Loop Formulas

Characterization of answer sets

For a logic program T1,
let An and Ap as defined on Page 755 and Page 767, respectively.

Let 1 be a logic program. Then,
X C atom(I) is an answer set of 1 iff
X = AT N atom(N) for a (unique) solution A for Ap U Ap.

Nogoods in Ap augment Ap with conditions checking
for unfounded sets, in particular, those being loops.
While |Ap| is linear in the size of 1, A may contain
exponentially many (non-redundant) loop nogoods !

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 312 / 453

Nogoods from Logic Programs Nogoods from Loop Formulas

Characterization of answer sets

For a logic program [1,
let An and Ap as defined on Page 755 and Page 767, respectively.
Theorem

Let 1 be a logic program. Then,
X C atom([N) is an answer set of I iff
X = AT N atom(N) for a (unique) solution A for Ap U Ap.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

312 / 453

Nogoods from Logic Programs Nogoods from Loop Formulas

Characterization of answer sets

For a logic program [1,
let An and Ap as defined on Page 755 and Page 767, respectively.

Theorem

Let 1 be a logic program. Then,
X C atom([N) is an answer set of I iff
X = AT N atom(N) for a (unique) solution A for Ap U Ap.

Some remarks
m Nogoods in A augment Ap with conditions checking
for unfounded sets,

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 312 / 453

Nogoods from Logic Programs Nogoods from Loop Formulas

Characterization of answer sets

For a logic program [1,
let An and Ap as defined on Page 755 and Page 767, respectively.

Theorem

Let 1 be a logic program. Then,
X C atom(I) is an answer set of M iff
X = AT N atom(N) for a (unique) solution A for Ap U Ap.

Some remarks
m Nogoods in A augment Ap with conditions checking
for unfounded sets, in particular, those being loops.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 312 / 453

Nogoods from Logic Programs Nogoods from Loop Formulas

Characterization of answer sets

For a logic program [1,
let An and Ap as defined on Page 755 and Page 767, respectively.

Theorem

Let 1 be a logic program. Then,
X C atom(I) is an answer set of M iff
X = AT N atom(N) for a (unique) solution A for Ap U Ap.

Some remarks
m Nogoods in A augment Ap with conditions checking
for unfounded sets, in particular, those being loops.
m While |Ap| is linear in the size of I,

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 312 / 453

Nogoods from Logic Programs Nogoods from Loop Formulas

Characterization of answer sets

For a logic program [1,
let An and Ap as defined on Page 755 and Page 767, respectively.

Theorem
Let 1 be a logic program. Then,

X C atom(I) is an answer set of M iff
X = AT N atom(N) for a (unique) solution A for Ap U Ap.

Some remarks
m Nogoods in A augment Ap with conditions checking
for unfounded sets, in particular, those being loops.
m While |Ap| is linear in the size of 1, Ap may contain
exponentially many (non-redundant) loop nogoods !

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 312 / 453

Conflict-Driven Nogood Learning

Overview

Nogoods from Clark’s Completion
Nogoods from Loop Formulas

Conflict-Driven Nogood Learning
m CDNL-ASP Algorithm
m Nogood Propagation
m Conflict Analysis

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 313 / 453

Conflict-Driven Nogood Learning

Conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:
Traditional approach

m (Unit) propagation

m Exhaustive (chronological) backtracking

= DPLL [20, 19]

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

314 / 453

Conflict-Driven Nogood Learning

Conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:
Traditional approach

m (Unit) propagation

m Exhaustive (chronological) backtracking

= DPLL [20, 19]
State of the art

m (Unit) propagation

m Conflict analysis (via resolution)

m Learning + Backjumping + Assertion
= CDCL [83, 67]

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

314 / 453

Conflict-Driven Nogood Learning

Conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:
Traditional approach

m (Unit) propagation

m Exhaustive (chronological) backtracking

= DPLL [20, 19]
State of the art

m (Unit) propagation

m Conflict analysis (via resolution)

m Learning + Backjumping + Assertion

= CDCL [83, 67]

Idea
= Apply CDCL-style search in ASP solving !

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

314 / 453

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Outline of CDNL-ASP algorithm

[38]
m Keep track of deterministic consequences by unit propagation on:
m Clark’s completion [An]
m Loop nogoods, determined and recorded on demand [An]
1 Dedicated unfounded set detection !
m Dynamic nogoods, derived from conflicts and unfounded sets V]

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 315 / 453

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Outline of CDNL-ASP algorithm

[38]
m Keep track of deterministic consequences by unit propagation on:
m Clark’s completion [An]
m Loop nogoods, determined and recorded on demand [An]
1 Dedicated unfounded set detection !
m Dynamic nogoods, derived from conflicts and unfounded sets V]

m When a nogood in Ap UV becomes violated:

m Analyze the conflict by resolution until reaching the First Unique
Implication Point (First-UIP) [68]

m Learn the derived conflict nogood

m Backjump to the earliest (heuristic) choice such that the complement
of the First-UIP is unit-resulting for &

m Assert the complement of the First-UIP and proceed
(by unit propagation)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 315 / 453

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Outline of CDNL-ASP algorithm

[38]
m Keep track of deterministic consequences by unit propagation on:
m Clark’s completion [An]
m Loop nogoods, determined and recorded on demand [An]
1 Dedicated unfounded set detection !
m Dynamic nogoods, derived from conflicts and unfounded sets V]

m When a nogood in Ap UV becomes violated:
m Analyze the conflict by resolution until reaching the First Unique
Implication Point (First-UIP) [68]
m Learn the derived conflict nogood
m Backjump to the earliest (heuristic) choice such that the complement
of the First-UIP is unit-resulting for &
m Assert the complement of the First-UIP and proceed
(by unit propagation)
m Terminate when either:
m Finding an answer set (a solution for Ap U Ap)
m Deriving a conflict independently of (heuristic) choices

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 315 / 453

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Algorithm 1: CDNL-ASP

© ® N oA W N =

N e I e <
N o O A W N = O

Input : A logic program I1.
Output : An answer set of 1 or “no answer set”.

A+ // assignment over atom([) U body (I)
V<0 // set of (dynamic) nogoods
dl <0 // decision level
loop
(A, V) + NOoGOODPROPAGATION(I, V, A)
if ¢ C A for some ¢ € AUV then
if d/ = 0 then return no answer set
(6, k) + CONFLICTANALYSIS(g, M, V, A)
VvV« VU{é} // learning
A+ (A\{oc e A|k<dl(o)}) // backjumping
dl + k
else if AT U A" = atom(I) U body () then
‘ return AT N atom() // answer set
else
04 + SELECT(M, V, A) // heuristic choice of o4 ¢ A
dl + dl+1
A<+ Ao (oq) // dl(oq) = dl

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 316 / 453

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Observations
m Decision level d/, initially set to 0, is used to count the number of
heuristically chosen literals in assignment A.

m For a heuristically chosen literal oy = Tp or o4 = Fp, respectively, we
require p € (atom(M) U body(M)) \ (AT U AF).

m For any literal o € A, dl(o) denotes the decision level of o, viz. the
value d/ had when o was assigned.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 317 / 453

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Observations

Decision level d/, initially set to 0, is used to count the number of
heuristically chosen literals in assignment A.

For a heuristically chosen literal oy = Tp or oy = Fp, respectively, we
require p € (atom(M) U body(M)) \ (AT U AF).

For any literal o € A, dl(o) denotes the decision level of o, viz. the
value d/ had when o was assigned.

A conflict is detected from violation of a nogood ¢ C AR U V.

A conflict at decision level 0 (where A contains no heuristically
chosen literals) indicates non-existence of answer sets.

A nogood § derived by conflict analysis is asserting, that is,
some literal is unit-resulting for ¢ at a decision level k < dl.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 317 / 453

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Observations

m Decision level d/, initially set to 0, is used to count the number of
heuristically chosen literals in assignment A.

m For a heuristically chosen literal oy = Tp or o4 = Fp, respectively, we
require p € (atom(M) U body(M)) \ (AT U AF).

m For any literal o € A, dl(o) denotes the decision level of o, viz. the
value d/ had when o was assigned.

m A conflict is detected from violation of a nogood ¢ C A U V.

m A conflict at decision level 0 (where A contains no heuristically
chosen literals) indicates non-existence of answer sets.

m A nogood ¢ derived by conflict analysis is asserting, that is,
some literal is unit-resulting for ¢ at a decision level k < dl.

= After learning § and backjumping to decision level k,
at least one literal is newly derivable by unit propagation.
== No explicit flipping of heuristically chosen literals !

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 317 / 453

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider
n - X< noty U<+ X,y V4 X W < not x,not y |
N y < not x u<+v Vi uy
[dl [oy o [0

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 318 / 453

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider
n - X < not y U< X,y V4 X W < not x,not y |
N y < not x u<+v Vi uy
[dl [oy o [0
1| Tu

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 318 / 453

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider
n - X < not y U< X,y V4 X W < not x,not y |
N y < not x u<+v Vi uy
[dl [oy o [0
1| Tu

F{not x, not y}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 318 / 453

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider
n - X < not y U< X,y V4 X W < not x,not y |
N y < not x u<+v Vi uy
[dl [oy o [0 |
1| Tu

F{not x, not y}
Fw {Tw,F{not x,not y}} = d(w)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 318 / 453

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider
0o {x<—noty U< X,y VX w < not x,not y
y < not x u<v V<uy

[dl [oy o [0 |

1 |Tu

F{not x, not y}
Fw {Tw,F{not x,not y}} = d(w)
3 | F{not y}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 318 / 453

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider
n - X < not y U< X,y V4 X W < not x,not y |
N y < not x u<+v Vi uy
[dl [oy o [0 |
1| Tu

F{not x, not y}
Fw {Tw,F{not x,not y}} = d(w)

3 | F{not y}
Fx {Tx,F{not y}} = (x)
F{x} | {T{x},Fx} € A({x})
Fioyd | Ty} Fxp e A({x,v})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 318 / 453

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider
0o {x<—noty U< X,y VX w < not x,not y
y < not x u<v V<uy

[dl | o4 o [0 |

1 |Tu

F{not x, not y}
Fw {Tw,F{not x,not y}} = d(w)
3 | F{not y}

Fx {Tx,F{not y}} = (x)
F{x} | {T{x} Fx} € A({x})
FOovt | {T{x v} Fxt € A({x,x})

{Tu, F{x}, Flx 3} = Au, {u,v}) | x

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 318 / 453

Conflict-Driven Nogood Learning

CDNL-ASP Algorithm

Consider
n — X < not y u<Xx,y V< X
_ y ¢ not x U+ v Viuy
(doa & |0
1| Tu

Torsten Schaub (KRRQUP)

Answer Set Programming

Example (ctd): CDNL-ASP

W < not x,not y |

January 18, 2012

319 / 453

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example (ctd): CDNL-ASP

Consider
n — X < not y u<Xx,y V< X W<—notx,noty'
_ y ¢ not x U+ v Viuy
(diTos & [0
1| Tu

Tx | {Tu,Fx} eV

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 319 / 453

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example (ctd): CDNL-ASP

Consider
n — X < not y u<Xx,y V< X W<—notx,noty'
_ y ¢ not x U+ v Viuy
(diTos & [0
1| Tu

Tx | {Tu,Fx} eV

.Tv .{Fv,T{x}} € A(v)
Fy | {Ty,F{not x}} = d(y)
Fw | {Tw,F{not x, not y}} = d(w)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 319 / 453

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example (ctd): CDNL-ASP

Consider
n — X < not y u<Xx,y V< X W<—notx,noty'
_ y ¢ not x U+ v Viuy
(diTos & [0
1| Tu

Tx | {Tu,Fx} eV

.Tv .{Fv,T{x}} € A(v)
Fy | {Ty,F{not x}} = d(y)
Fw | {Tw,F{not x, not y}} = d(w)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 319 / 453

Conflict-Driven Nogood Learning Nogood Propagation

Outline of NOGOODPROPAGATION

m Derive deterministic consequences via:

m Unit propagation on Ap and V;
m Unfounded sets U C atom(IN).

m Note that U is unfounded if EB(U) C AF.
= For any p € U, we have (A(p, U) \ {Tp}) C A.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 320 / 453

Conflict-Driven Nogood Learning Nogood Propagation

Outline of NOGOODPROPAGATION

m Derive deterministic consequences via:

m Unit propagation on Ap and V;
m Unfounded sets U C atom(IN).

m Note that U is unfounded if EB(U) C AF.
= For any p € U, we have (A(p, U) \ {Tp}) C A.

m An ‘“interesting” unfounded set U satisfies:
f C UC (atom(N)\ AF) .

m Wrt a fixpoint of unit propagation,

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

320 / 453

Conflict-Driven Nogood Learning Nogood Propagation

Outline of NOGOODPROPAGATION

m Derive deterministic consequences via:

m Unit propagation on Ap and V;
m Unfounded sets U C atom(IN).

m Note that U is unfounded if EB(U) C AF.
= For any p € U, we have (A(p, U) \ {Tp}) C A.

m An ‘“interesting” unfounded set U satisfies:
f C UC (atom(N)\ AF) .
m Wrt a fixpoint of unit propagation,

such an unfounded set contains some loop of I1.
= Tight programs do not yield “interesting” unfounded sets !

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

320 / 453

Conflict-Driven Nogood Learning Nogood Propagation

Outline of NOGOODPROPAGATION

Derive deterministic consequences via:
m Unit propagation on Ap and V;
m Unfounded sets U C atom(I).
m Note that U is unfounded if EB(U) C AF.
= For any p € U, we have (A(p, U) \ {Tp}) C A.

m An ‘“interesting” unfounded set U satisfies:
f C UC (atom(N)\ AF) .

m Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of [1.
= Tight programs do not yield “interesting” unfounded sets !
m Given an unfounded set U and some p € U, adding A(p, U) to V
triggers a conflict or further derivations by unit propagation.
= Add loop nogoods atom by atom to eventually falsify all p € U.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 320 / 453

Conflict-Driven Nogood Learning Nogood Propagation

Algorithm 2: NOGOODPROPAGATION

Input : A logic program 1, a set V of nogoods, and an assignment A.
Output : An extended assignment and set of nogoods.

1 U+ 0 // set of unfounded atoms

2 loop

3 repeat

4 if § C A for some § € Ap UV then return (A, V) // conflict

5 Y+ {6e€AnuV |(0\A)={c},5¢ A} // unit-resulting nogoods

6 if X # 0 then

7 let o € (6 \ A) for some § € ¥ in

8 L | A< Ao(o) // di(@) = max({di(p) | p € (6 \ {o})} U{0})
9 until ¥ =0

10 if I is tight then return (A, V) // no unfounded set § C U C (atom(M) \ A7)
1 else

12 U<+ (U\ AF)

13 if U= (0 then U < UNFOUNDEDSET([T, A)

14 if U =0 then return (A,V)// no unfounded set) C U C (atom(IT) \ AF)
15 let pe Uin

16 L V « VU{A(p,U)} // record unit-resulting or violated loop nogood

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 321 / 453

Conflict-Driven Nogood Learning Nogood Propagation

Requirements for UNFOUNDEDSET

m Implementations of UNFOUNDEDSET must guarantee the following
for a result U:
U C (atom() \ AF);
EB(U) C AF;
U = 0 iff there is no nonempty unfounded subset of (atom(I) \ AF).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 322 / 453

Conflict-Driven Nogood Learning Nogood Propagation

Requirements for UNFOUNDEDSET

m Implementations of UNFOUNDEDSET must guarantee the following
for a result U:

U C (atom() \ AF);

EB(U) C AF;

U = () iff there is no nonempty unfounded subset of (atom(I) \ AF).
m Beyond that, there are various alternatives, such as:

m Calculating the greatest unfounded set.

m Calculating unfounded sets within strongly connected components of

the positive atom dependency graph of I1.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 322 / 453

Conflict-Driven Nogood Learning Nogood Propagation

Requirements for UNFOUNDEDSET

m Implementations of UNFOUNDEDSET must guarantee the following
for a result U:
U C (atom() \ AF);
EB(U) C AF;
U = () iff there is no nonempty unfounded subset of (atom(I) \ AF).
m Beyond that, there are various alternatives, such as:
m Calculating the greatest unfounded set.
m Calculating unfounded sets within strongly connected components of
the positive atom dependency graph of I1.
1= Usually, the latter option is implemented in ASP solvers !

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 322 / 453

Conflict-Driven Nogood Learning Nogood Propagation

Example: NOGOODPROPAGATION

Consider
n - X4 noty U+ X,y VX W < not x,not y |
y < not x U< v V< uy
[di[oa & [6 |
1| Tu
2 | F{not x, not y}
Fw {Tw, F{not x,not y}} = 6(w)
3 | F{not y}
Fx {Tx,F{not y}} = 0(x)

F{x} {T{x},Fx} € A({x})

Fix,y} | {T{x,y},Fx} € A({x,y})
T{not x} | {F{not x},Fx} = 6({not x})
Ty {F{not y},Fy} = 6({not y})
T{v} {Tu, F{x,y},F{v}} = d(v)
T{u,y} {F{uvy}’Tuva}:(s({uvy})
Tv {Fv,T{u,y}} € A(v)

{Tu, F{X}’ F{X7Y}} =)‘(u7 {u, V}) X

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 323 / 453

Conflict-Driven Nogood Learning Conflict Analysis

Outline of CONFLICTANALYSIS

m Conflict analysis is triggered whenever some nogood § € A UV
becomes violated, viz. § C A, at a decision level d/ > 0.

1= Note that all but the first literal assigned at d/ have been
unit-resulting for nogoods ¢ € A U V.

= |f o € 0 has been unit-resulting for £, we obtain a new violated nogood
by resolving ¢ and ¢ as follows:

CARCHISICARCH I

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 324 / 453

Conflict-Driven Nogood Learning Conflict Analysis

Outline of CONFLICTANALYSIS

m Conflict analysis is triggered whenever some nogood § € A UV
becomes violated, viz. § C A, at a decision level d/ > 0.

1= Note that all but the first literal assigned at d/ have been
unit-resulting for nogoods ¢ € A U V.

= |f o € 0 has been unit-resulting for £, we obtain a new violated nogood
by resolving ¢ and ¢ as follows:

CARCHISICARCH I

m Resolution is directed by resolving first over the literal o € § derived
last, viz. (0 \ Alo]) = {o}.

1= |terated resolution progresses in inverse order of assignment.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 324 / 453

Conflict-Driven Nogood Learning Conflict Analysis

Outline of CONFLICTANALYSIS

Conflict analysis is triggered whenever some nogood § € Ap UV
becomes violated, viz. § C A, at a decision level d/ > 0.

Note that all but the first literal assigned at d/ have been
unit-resulting for nogoods ¢ € A U V.

= |f o € 0 has been unit-resulting for £, we obtain a new violated nogood
by resolving ¢ and ¢ as follows:

(6\{eh)U(e\{a}) -
Resolution is directed by resolving first over the literal o € § derived
last, viz. (0 \ Alo]) = {o}.
1= |terated resolution progresses in inverse order of assignment.
Iterated resolution stops as soon as it generates a nogood §
containing exactly one literal o assigned at decision level dI.

m This literal o is called First Unique Implication Point (First-UIP).
v All literals in (0 \ {o'}) are assigned at decision levels smaller than d/.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 324 / 453

Conflict-Driven Nogood Learning Conflict Analysis

Algorithm 3: CONFLICTANALYSIS

Input : A violated nogood §, a logic program I1, a set V of nogoods, and
an assignment A.
Output : A derived nogood and a decision level.

1 loop

2 let o € § such that (6 \ A[o]) = {o} in

3 k< max({di(p) | p € 6\ {o}} U{0})

4 if k = di(c) then

5 let e € An UV such that (¢ \ Alo]) = {7} in

6 L d+ (6\{ohHu(e\{a}) // resolution

else return (4, k)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 325 / 453

Conflict-Driven Nogood Learning Conflict Analysis

Example: CONFLICTANALYSIS

Consider
n - X < not y U< X,y V4 X
y < not x u<v V<uy
dl| oy o)
1|Tu
2 |F{not x, not y}
Fw {Tw, F{not x, not y}} = o(w)
3 [F{not y}
Fx {Tx,F{not y}} = d(x)
Fix} = {T{x}Fx} e A({x})
Fix,y} {T{xy},Fx} € A({x y})
T{not x}|{F{not x},Fx} = §({not x})
Ty {F{not y},Fy} = 6({not y})
T{vi [{Tu,F{x,y},F{v}} = d(u)
T{u,y} {F{u,y} Tu, Ty} =0({u,y})
Tv {Fv,T{u,y}} € A(v)

{Tu, F{X}7 F{X,y}} =)‘(uv {Ll, V})

Torsten Schaub (KRRQUP)

Answer Set Programming

W < not x,not y |

b 4

January 18, 2012 326 / 453

Conflict-Driven Nogood Learning Conflict Analysis

Example: CONFLICTANALYSIS

Consider
n - X < not y U< X,y V4 X
y < not x u<v V<uy

dl| oy o)

1|Tu

2 |F{not x, not y}
Fw {Tw, F{not x, not y}} = o(w)

3 [F{not y}
Fx {Tx,F{not y}} = d(x)
Fix} = {T{x}Fx} e A({x})
Fix,y} {T{xy},Fx} € A({x y})
T{not x}|{F{not x},Fx} = §({not x})
Ty {F{not y},Fy} = 6({not y})
T{vi [{Tu,F{x,y},F{v}} = d(u)
T{u,y} {F{u,y} Tu, Ty} =0({u,y})
Tv {Fv,T{u,y}} € A(v)

{Tu, F{X}7 F{X,y}} = A(uv {u7 V})

Torsten Schaub (KRRQUP)

Answer Set Programming

W < not x,not y |

b 4

January 18, 2012 326 / 453

Conflict-Driven Nogood Learning Conflict Analysis

Example: CONFLICTANALYSIS

Consider
n - X < not y U< X,y V4 X
y < not x u<v V<uy

dl| oy o)

1|Tu

2 |F{not x, not y}
Fw {Tw, F{not x, not y}} = o(w)

3 [F{not y}
Fx {Tx,F{not y}} = d(x)
Fix} = {T{x}Fx} e A({x})
Fix,y} {T{xy},Fx} € A({x y})
T{not x}|{F{not x},Fx} = §({not x})
Ty {F{not y},Fy} = 6({not y})
T{vi [{Tu,F{x,y},F{v}} = d(u)
T{u,y} {F{u,y} Tu, Ty} =0({u,y})
Tv {Fv,T{u,y}} € A(v)

{Tu, F{X}v F{X,y}} = A(uv {u7 V})

Torsten Schaub (KRRQUP)

Answer Set Programming

W < not x,not y |

b 4

January 18, 2012 326 / 453

Conflict-Driven Nogood Learning Conflict Analysis

Example: CONFLICTANALYSIS

Consider
n - X < not y U< X,y V4 X
y < not x u<v V<uy
dl| oy o)
1|Tu
2 |F{not x, not y}
Fw {Tw, F{not x, not y}} = o(w)
3 [F{not y}
Fx {Tx,F{not y}} = d(x)
Fix} = {T{x}Fx} e A({x})
Fix,y} {T{xy},Fx} € A({x y})
T{not x}|{F{not x},Fx} = §({not x})
Ty {F{not y},Fy} = 6({not y})
T{vi [{Tu,F{x,y},F{v}} = d(u)
T{u,y} {F{u,y} Tu, Ty} =0({u,y})
Tv {Fv,T{u,y}} € A(v)

{Tu, F{X}7 F{X,y}} =)‘(uv {Ll, V})

Torsten Schaub (KRRQUP)

Answer Set Programming

W < not x,not y |

b 4

January 18, 2012 326 / 453

Conflict-Driven Nogood Learning Conflict Analysis

Example: CONFLICTANALYSIS

Consider
n - X < not y U< X,y V4 X
y < not x u<v V<uy

dl| oy o)

1|Tu

2 |F{not x, not y}
Fw {Tw, F{not x, not y}} = o(w)

3 [F{not y}
Fx {Tx,F{not y}} = d(x)
Fix} = {T{x},Fx} e A({x})
Fix,y} {T{xy},Fx} € A({x y})
T{not x}|{F{not x},Fx} = §({not x})
Ty {F{not y},Fy} = 6({not y})
T{vi [{Tu,F{x,y},F{v}} = d(u)
T{u,y} {Fu,y} Tu, Ty} =0({u,y})
Tv {Fv,T{u,y}} € A(v)

{Tu, F{X}v F{X,y}} = A(uv {u7 V})

Torsten Schaub (KRRQUP)

Answer Set Programming

W < not x,not y |

{Tu,Fx,F{x}}

b 4

January 18, 2012 326 / 453

Conflict-Driven Nogood Learning Conflict Analysis

Example: CONFLICTANALYSIS

Consider
n - X < not y U< X,y V4 X
y < not x u<v V<uy

dl| oy o)

1|Tu

2 |F{not x, not y}
Fw {Tw, F{not x, not y}} = o(w)

3 [F{not y}
Fx {Tx,F{not y}} = d(x)
Fix} = {T{x}Fx} e A({x})
Fix,y} {T{xy},Fx} € A({xy})
T{not x}|{F{not x},Fx} = §({not x})
Ty {F{not y},Fy} = 6({not y})
T{vi [{Tu,F{x,y},F{v}} = d(u)
T{u,y} {Fu,y} Tu, Ty} =0({u,y})
Tv {Fv,T{u,y}} € A(v)

{Tu, F{X}v F{X,y}} = A(uv {u7 V})

Torsten Schaub (KRRQUP)

Answer Set Programming

W < not x,not y |

{Tu,Fx,F{x}}

b 4

January 18, 2012 326 / 453

Conflict-Driven Nogood Learning Conflict Analysis

Example: CONFLICTANALYSIS

Consider
n - X < not y U< X,y V4 X
y < not x u<v V<uy
dl| oy o)
1|Tu
2 |F{not x, not y}
Fw {Tw, F{not x, not y}} = o(w)
3 [F{not y}
Fx {Tx,F{not y}} = d(x)
Fix} = {T{x}Fxp e A({x})
Fix,y} {T{xy},Fx} € A({xy})
T{not x}|{F{not x},Fx} = §({not x})
Ty {F{not y},Fy} = 6({not y})
T{vi [{Tu,F{x,y},F{v}} = d(u)
T{u,y} {Fu,y} Tu, Ty} =0({u,y})
Tv {Fv,T{u,y}} € A(v)

{Tu, F{X}7 F{X,y}} =)‘(uv {Ll, V})

Torsten Schaub (KRRQUP)

Answer Set Programming

W < not x,not y |

{Tu,Fx,F{x}}

b 4

January 18, 2012 326 / 453

Conflict-Driven Nogood Learning Conflict Analysis

Example: CONFLICTANALYSIS

Consider
n - X < not y U< X,y V4 X
y < not x u<v V<uy

dl| oy o)

1|Tu

2 |F{not x, not y}
Fw {Tw, F{not x, not y}} = o(w)

3 [F{not y}
Fx {Tx,F{not y}} = d(x)
Fix} = {T{x}Fx} e A({x})
Fix,y} {T{xy},Fx} € A({x y})
T{not x}|{F{not x},Fx} = §({not x})
Ty {F{not y},Fy} = 6({not y})
T{vi [{Tu,F{x,y},F{v}} = d(u)
T{u,y} {Fu,y} Tu, Ty} =0({u,y})
Tv {Fv,T{u,y}} € A(v)

{Tu, F{X}v F{X,y}} = A(uv {u7 V})

Torsten Schaub (KRRQUP)

Answer Set Programming

W < not x,not y |

{Tu,Fx}
{Tu,Fx,F{x}}

b 4

January 18, 2012 326 / 453

Conflict-Driven Nogood Learning Conflict Analysis

Example: CONFLICTANALYSIS

Consider
n - X < not y U< X,y V4 X
y < not x u<v V<uy
dl| oy o)
1|Tu
2 |F{not x, not y}
Fw {Tw, F{not x, not y}} = o(w)
3 [F{not y}
Fx {Tx,F{not y}} = d(x)
Fix} = {T{x}Fx} e A({x})
Fix,y} {T{xy},Fx} € A({x y})
T{not x}|{F{not x},Fx} = §({not x})
Ty {F{not y},Fy} = 6({not y})
T{vi [{Tu,F{x,y},F{v}} = d(u)
T{u,y} {Fu,y} Tu, Ty} =0({u,y})
Tv {Fv,T{u,y}} € A(v)

{Tu, F{X}7 F{X,y}} =)‘(uv {Ll, V})

Torsten Schaub (KRRQUP)

Answer Set Programming

W < not x,not y |

{Tu,Fx}
{Tu,Fx,F{x}}

b 4

January 18, 2012 326 / 453

Conflict-Driven Nogood Learning Conflict Analysis

Example: CONFLICTANALYSIS

Consider
n - X < not y U< X,y V4 X
y < not x u<v V<uy
dl| oy o)
1|Tu
2 |F{not x, not y}
Fw {Tw, F{not x, not y}} = o(w)
3 [F{not y}
Fx {Tx,F{not y}} = d(x)
Fix} = {T{x}Fx} e A({x})
Fix,y} {T{xy},Fx} € A({x y})
T{not x}|{F{not x},Fx} = §({not x})
Ty {F{not y},Fy} = 6({not y})
T{vi [{Tu,F{x,y},F{v}} = d(u)
T{u,y} {Fu,y} Tu, Ty} =0({u,y})
Tv {Fv,T{u,y}} € A(v)

{Tu, F{X}7 F{X,y}} =)‘(uv {Ll, V})

Torsten Schaub (KRRQUP)

Answer Set Programming

W < not x,not y |

{Tu,Fx}
{Tu,Fx,F{x}}

b 4

January 18, 2012 326 / 453

Conflict-Driven Nogood Learning Conflict Analysis

Remarks

m There always is a First-UIP at which conflict analysis terminates.

1= |n the worst, resolution stops at the heuristically chosen literal
assigned at decision level dI.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 327 / 453

Conflict-Driven Nogood Learning Conflict Analysis

Remarks

m There always is a First-UIP at which conflict analysis terminates.

1= |n the worst, resolution stops at the heuristically chosen literal
assigned at decision level dI.

m The nogood § containing First-UIP ¢ is violated by A, viz. § C A.
m We have k = max({dl(p) | p€ 0\ {o}}U{0}) < dl.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 327 / 453

Conflict-Driven Nogood Learning Conflict Analysis

Remarks

m There always is a First-UIP at which conflict analysis terminates.

1= |n the worst, resolution stops at the heuristically chosen literal
assigned at decision level dI.

m The nogood § containing First-UIP ¢ is violated by A, viz. § C A.
m We have k = max({dl(p) | p€ 0\ {o}}U{0}) < dl.

= After recording 0 in V and backjumping to decision level k,
7 is unit-resulting for ¢ !
1= Such a nogood § is called asserting.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 327 / 453

Conflict-Driven Nogood Learning Conflict Analysis

Remarks

m There always is a First-UIP at which conflict analysis terminates.

1= |n the worst, resolution stops at the heuristically chosen literal
assigned at decision level dI.

m The nogood § containing First-UIP ¢ is violated by A, viz. § C A.

m We have k = max({dl(p) | p€ 0\ {o}}U{0}) < dl.
= After recording 0 in V and backjumping to decision level k,
7 is unit-resulting for ¢ !
1= Such a nogood § is called asserting.
1= Asserting nogoods direct conflict-driven search into a different region
of the search space than traversed before,
without explicitly flipping any heuristically chosen literal !

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 327 / 453

Implementation via clasp

Overview

Nogoods from Clark’'s Completion
Nogoods from Loop Formulas

CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

Implementation via clasp

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 328 / 453

Implementation via clasp

The clasp system
[40]

m Native ASP solver combining conflict-driven search with sophisticated
reasoning techniques:

m Advanced preprocessing including, e.g., equivalence reasoning
Lookback-based decision heuristics

Restart policies

Nogood deletion

Progress saving

Dedicated data structures for binary and ternary nogoods

Lazy data structures (watched literals) for long nogoods
Dedicated data structures for cardinality and weight constraints
Lazy unfounded set checking based on “source pointers”

Tight integration of unit propagation and unfounded set checking
Reasoning modes

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 329 / 453

Implementation via clasp

The clasp system
[40]

m Native ASP solver combining conflict-driven search with sophisticated
reasoning techniques:

Advanced preprocessing including, e.g., equivalence reasoning
Lookback-based decision heuristics

Restart policies

Nogood deletion

Progress saving

Dedicated data structures for binary and ternary nogoods

Lazy data structures (watched literals) for long nogoods
Dedicated data structures for cardinality and weight constraints
Lazy unfounded set checking based on “source pointers”

Tight integration of unit propagation and unfounded set checking
Reasoning modes

1= Many of these techniques are configurable !

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 329 / 453

Implementation via clasp

Reasoning modes of clasp

Beyond deciding answer set existence, clasp allows for:
m Optimization

m Enumeration [without solution recording]
m Projective Enumeration [without solution recording]
m Brave and Cautious Reasoning determining the

®m union or
m intersection

of all answer sets by computing only linearly many of them

1= Reasoning applicable wrt answer sets as well as supported models

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 330 / 453

http://potassco.sourceforge.net

Implementation via clasp

Reasoning modes of clasp

Beyond deciding answer set existence, clasp allows for:

m Optimization

m Enumeration [without solution recording]
m Projective Enumeration [without solution recording]
m Brave and Cautious Reasoning determining the

® union or

m intersection
of all answer sets by computing only linearly many of them
1= Reasoning applicable wrt answer sets as well as supported models
Front-ends also admit clasp to solve:
m Propositional CNF formulas

m Pseudo-Boolean formulas

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 330 / 453

http://potassco.sourceforge.net

Implementation via clasp

Reasoning modes of clasp

Beyond deciding answer set existence, clasp allows for:

m Optimization

m Enumeration [without solution recording]
m Projective Enumeration [without solution recording]
m Brave and Cautious Reasoning determining the

® union or

m intersection
of all answer sets by computing only linearly many of them
1= Reasoning applicable wrt answer sets as well as supported models
Front-ends also admit clasp to solve:
m Propositional CNF formulas
m Pseudo-Boolean formulas

Find clasp at: http://potassco.sourceforge.net

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 330 / 453

http://potassco.sourceforge.net

Grounding: Overview

@y Motivation

Program Classes

Program Instantiation

Program Dependencies

Rule Instantiation

Torsten Schaub (KRRQUP) Answer Set Programming

January 18, 2012

331/ 453

Motivation

Overview

@y Motivation

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 332 / 453

p(b,
p(b,
p(b,
p(b,
p(b,
p(b,

E]
a
b
b

)
G
(o

Non-Ground

(2, b).

q(b,a).

q(a, o).

(X Y) <+ q(X,Y),q(Y,2).
Ground

q(a, b). q(b,a). q(a,c).
p(a,a) < aq(a, a), q(a, a).
p(a, a) < q(a, a), q(a, b).
p(a,a) < q(a, a),q(a, c).
p(a7 b) <~ q(a, b)7 q(b’ a)'
p(a, b) < q(a, b), q(b, b).
p(a, b) — q(a, b)v q(b7 C)'
p(a,c) < q(a, c),q(c, a).
p(a, c) < q(a,c),q(c, b).
p(a, c) < q(a,c), q(c,c).

Torsten Schaub (KRRQUP)

p(b,
p(b,
p(b,

a) < q(b, a), q(a, a).
) < q(b, a), g(a, b).

+ q(b, a), q(a, c).
) <= q(b, b), q(b, a).
) <= q(b, b),q(b, b).
b) < q(b, b), q(b, c).
) <= a(b,c), q(c, a).
) <= q(b,), q(c, b).
c) < q(b,c),q(c, c).

Answer Set Programming

p(c, a) < q(c, a), q(
p(c,a) < q(c, a), q(
p(c; a) < q(c, a), q
p(c; b)
p(c, b) + q(c b
p(c; b)
(c c) « q(c c
,€)
,€)

January 18, 2012

333 / 453

Motivation

Non-Ground
q(a, b).

q(b, a).

q(a, c).

p(X,Y) < q(X,Y),q(Y, Z).

—~

~—

—~

~—

L~ NN S N~ o~

— — N N e

— — N N —

P~~~ N N N~~~

R

o~ N N~ —~

TQ U TR 0'aaQ O
6 Q99 U U U
—_ Y N N
T o o T T oo o
IO
S o899 Q9999

— e e N N N

NN AN NN NN

w @ @ Q0 0 U o
Q9990999499
S
2 QaqQ Q9 9 9 9 Q
TR T ®ICTRT
6 Q99 U U U
S8 B8EESEEEE
ST oo T T oo
2,2 85823 2 =
© ®©Q Q000
o © T © © @
NN OO

P~~~ N N N~~~

— N N N N N N

333 / 453

January 18, 2012

Answer Set Programming

Torsten Schaub (KRRQUP)

Non-Ground

q(a).
q(f(a)).
p(X) « q(X).

Ground

Torsten Schaub (KRRQUP) Answer Set Programming

Januar: y 18, 2012

334 / 453

Motivation

Non-Ground
q(a).

q(f(a)).

p(X) + q(X).

Ground

iz With functions of non-zero arity, the grounding is infinite !
= Given a logic program I1, we are interested in a subset 1" of
ground (M) s.t. the answer sets of I’ and ground(I) coincide.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

334 / 453

Motivation

Non-Ground

q(f(a))-
p(X) < not q(X).

Ground

q(f(a)).

p(a) < not q(a).

p(f(a)) < not q(f(a)).

p((f(a))) < not q(f(f(a))).

Torsten Schaub (KRRQUP) Answer Set Programming

January 18, 2012

335 / 453

Motivation

Non-Ground

q(f(a))-
p(X) < not q(X).

Ground
q(f(a)).

p(a) < not q(a).

p(f(f(a))) < not q(f(f(a))).

i All (but one) rules are relevant !

15 The answer set is infinite !

1 For practical reasons, such programs should be rejected.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

335 / 453

Motivation

Goals

m First Part: What classes of programs yield finite equivalent ground
programs?

m Second Part: How to efficiently instantiate a program?

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 336 / 453

Motivation

Terminology |

m Variables: X,Y,Z, ...

m Functions: a/0,f/1,g/2,... (associated with arities)

m Predicates: p/0,q/1,r/2,... (associated with arities)

m Terms: variables or f(t1,...,t,) s.t. each t; is a term and f/n is a
function

m Atoms: p(ti,...,t,) s.t. each t; is a term and p/n is a predicate

m An atom binds all variables that occur in it.
m Literals: an atom or an atom preceded by not

m Ground terms (atoms, literals): terms (atoms, literals) without
variables

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 337 / 453

Motivation

Terminology Il
m Signature o: a pair of functions and predicates
m Herbrand universe U,: the set of all ground terms over functions in o

m Herbrand base B,: the set of all ground atoms over predicates and
functions in o

Example
Given the signature o = ({a/0,f/1},{p/1}):
m U, ={a,f(a), f(f(a)),f(f(f(a))),...}
m B, = {p(a), p(f(a)), p(f(f(a))), p(f(f((a))))... .}

In the following, signature o is often implicitly given by functions and
predicates occurring in a logic program.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 338 / 453

Motivation

Terminology Il
Let I1 be a logic program with signature o.

m Ground instances of r € 1: Set of variable-free rules obtained by
replacing all variables in r by elements from U,:

ground(r) = {rf | 0 : vars(r) — U,}

where

m vars(r) stands for the set of all variables occurring in r and
m 0 is a (ground) substitution.

m Ground instantiation of I1:

ground(M) = U, cnground(r)

m A set X C B, is an answer set of I if Cn(ground(M)X) = X.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

339 / 453

Program Classes

Overview

Program Classes

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 340 / 453

Program Classes

w-Restricted Programs

Definition
Given a logic program TI1:
A predicate p/n is a domain predicate if there is a level mapping from
predicates to integers s.t., for each rule where p/n occurs in the head,

all predicates in the body are domain predicates s.t. their levels are
strictly smaller than that of p/n.

I is w-restricted if, for each rule, every variable occurring in the rule

is bound by some atom p(t1,..., t,) in the positive body s.t. p/n is a
domain predicate.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 341 / 453

Program Classes

w-Restricted Programs

Definition
Given a logic program TI1:

A predicate p/n is a domain predicate if there is a level mapping from
predicates to integers s.t., for each rule where p/n occurs in the head,
all predicates in the body are domain predicates s.t. their levels are
strictly smaller than that of p/n.

I is w-restricted if, for each rule, every variable occurring in the rule
is bound by some atom p(t1,..., t,) in the positive body s.t. p/n is a
domain predicate.

1= Every w-restricted program has a finite equivalent ground program.

m Implementation Iparse

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 341 / 453

Program Classes

Example

d(a). d'(b). g (b).
r (X) < d (X), not g (X).

(X);
p (X) < q (X),d"(X).
q (X) < p (X), r (X).

Torsten Schaub (KRRQUP) Answer Set Programming

Example

January 18, 2012

342 / 453

Example

d°(a). d°(b).

Program Classes

g°(b).

r(X) < d°(X), not g°(X).

(X);
PH(X) + ¢*(X),
(%)

a*(X) < p'(X),

Torsten Schaub (KRRQUP)

d°(X).

rl(X).

Answer Set Programming

Example

Level mapping

d/1—0
g/1—0
r/l—1
p/l1—1
q/l1—2

January 18, 2012

342 / 453

Program Classes

Example

d°(a). d°(b). g°(b).

r(X) < d°(X), not g°(X).

(X);
PH(X) ¢*(X), d°(X).
¢*(X) + pH(X),

rl(X).

w= Domain predicates: d/1,g/1,r/1.

Torsten Schaub (KRRQUP)

Answer Set Programming

Example

Level mapping
d/1—0
g/1—0
r/l—1
p/l1—1
q/l1—2

January 18, 2012

342 / 453

Program Classes

Example

d°(a). d°(b). &°(b).

r(X) < d°(X), not g°(X).

(X);
PH(X) ¢*(X), d°(X).
¢*(X) « p!(X), r'(X).

w= Domain predicates: d/1,g/1,r/1.

1= The program is w-restricted.

Torsten Schaub (KRRQUP)

Answer Set Programming

Example

Level mapping
d/1—0
g/1—0
r/l—1
p/l1—1
q/l1—2

January 18, 2012

342 / 453

Program Classes

A-Restricted Programs

Definition

A logic program is A-restricted if there is a level mapping from predicates
to integers s.t., for each rule, every variable occurring in the rule is bound
by some atom in the positive body whose predicate has a strictly smaller
level than the head predicate(s).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 343 / 453

Program Classes

A-Restricted Programs

Definition

A logic program is A-restricted if there is a level mapping from predicates
to integers s.t., for each rule, every variable occurring in the rule is bound
by some atom in the positive body whose predicate has a strictly smaller
level than the head predicate(s).

1= Every A-restricted program has a finite equivalent ground program.

1= Every w-restricted program is also A-restricted.

m Implementation gringo (below version 3.0.0)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 343 / 453

Program Classes

Example
d(a). d(b). g (b)
P (X) ¢ (X), d(X)
g (X) < p (X).
r’ < q (X),not g (X), not r.

Torsten Schaub (KRRQUP) Answer Set Programming

Example

January 18, 2012

344 / 453

Program Classes

Example
d°(a). d°(b). &°(b).
pH(X) ¢*(X), d°(X).

q(
g*(X) & pH(X).
— g*(X), not g%(X), not r.

Torsten Schaub (KRRQUP) Answer Set Programming

Example

Level mapping
d/1—0
g/1—0
p/l1—1
q/1—2
r/0—3

January 18, 2012

344 / 453

Program Classes

Example
d°(a). d°(b). &°(b).
pH(X) ¢*(X), d°(X).

q(
g*(X) & pH(X).
— g*(X), not g°(X), not r.

1= The program is A-restricted.

Torsten Schaub (KRRQUP) Answer Set Programming

Example

Level mapping
d/1—0
g/1—0
p/l1—1
q/1—2
r/0—3

January 18, 2012

344 / 453

Program Classes

Example
d°(a). d°(b). &°(b).
pH(X) ¢*(X), d°(X).

q(
g*(X) & pH(X).
— g*(X), not g%(X), not r.

1= The program is A-restricted.

1= The program is not w-restricted.

Torsten Schaub (KRRQUP) Answer Set Programming

Example

Level mapping
d/1—0
g/1—0
p/l1—1
q/1—2
r/0—3

January 18, 2012

344 / 453

Program Classes

Safe Programs
Definition

A logic program is safe if, for each rule, every variable occurring in the rule
is bound by some atom in the positive body.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 345 / 453

Program Classes

Safe Programs
Definition

A logic program is safe if, for each rule, every variable occurring in the rule
is bound by some atom in the positive body.

i Every safe program (without functions of non-zero arity) has a finite
equivalent ground program.
1= Every A-restricted program is also safe.

m Implementation dlv & gringo (from version 3.0.0)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 345 / 453

Program Classes

Example |

d(a). d(b). g(b).
p(X X

) < q(X).
q(X) « p(X).
r < q(X), not g(X), not r.

Torsten Schaub (KRRQUP) Answer Set Programming

Example

January 18, 2012

346 / 453

Program Classes

Example |

d(a). d(b). g(b).
p(X) < a(X

q(X).
q(X) « p(X).
r < q(X), not g(X), not r.

1= The program is safe.

1= The program is not A-restricted.

Torsten Schaub (KRRQUP) Answer Set Programming

Example

January 18, 2012

346 / 453

Program Classes

Example |

d(a). d(b).
p(X) < q(X).
q(X) < p(X).

r < q(X), not g(X), not r.

g(b).

Torsten Schaub (KRRQUP)

Answer Set Programming

Example

Example Il
p(a).
p(f(X)) < p(X).

m The grounding is infinite !

January 18, 2012

346 / 453

Program Classes

Encoding a 3-State Busy Beaver Machine

-[oJoJo]o]o]o]o]- - $ cat beaver.lp
start(a).
blank(0) .

Stin 01r LLr tape(n,0,n).

trans(a,0,1,b,r).
trans(a,1,1,c,1).
trans(b,0,1,a,1).
trans(b,1,1,b,r).
trans(c,0,1,b,1).
trans(c,1,1,h,r).

Torsten Schaub (KRRQUP) Answer Se