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Information

m Lecture: 2h (weekly)

m Exercises: 2h (weekly)
m Credits: 6 if

Written exam (at least “ausreichend”)
Two successful projects (= Implementation+Consultation)

Mark: mark of written exam
C(ourse)MS: http://moodle.cs.uni-potsdam.de/

General Info: http://www.cs.uni-potsdam.de/wv/lehre
Contact:

Lecture& Exercises: asp@cs.uni-potsdam.de
Projects: aspl@cs.uni-potsdam.de
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m Course material

Resources

® http://www.cs.uni-potsdam.de/wv/lehre
m http://moodle.cs.uni-potsdam.de
m http://www.cs.uni-potsdam.de/~torsten/asp

m Systems

clasp
dlv
smodels

gringo
Iparse
clingo
iclingo
oclingo

asparagus

Torsten Schaub (KRRQUP)

http://potassco.sourceforge.net
http://www.dbai.tuwien.ac.at/proj/dlv
http://www.tcs.hut.fi/Software/smodels

http://potassco.sourceforge.net
http://www.tcs.hut.fi/Software/smodels

http://potassco.sourceforge.net
http://potassco.sourceforge.net
http://potassco.sourceforge.net

http://asparagus.cs.uni-potsdam.de
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Literature

Books [5], [65]
Surveys [59], [3], [47]
Articles [49], [50], [7], [71], [66], [58], [48], etc.
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Objective

Goal: Declarative problem solving

“What is the problem?”

instead of

“How to solve the problem?”

Problem

Modeling

Representation

Solution

Interpretation
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Answer Set Programming

Overview

Answer Set Programming
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Answer Set Programming

Answer Set Programming (ASP)
in a Nutshell

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with high-performance solving capacities
tailored to Knowledge Representation and Reasoning
ASP allows for solving all search problems in NP (and NPNF)
in a uniform way (being more compact than SAT)

The versatility of ASP is reflected by the ASP solver clasp,

winning first places at ASP'07/09/11, PB'09/11, and SAT'09/11
http://potassco.sourceforge.net

ASP embraces many emerging application areas, eg.

second place at RoboCup@Home 2011 by USTC, Peking
configuration by SIEMENS, Vienna
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Historic Roots

Logic Programming

m Algorithm = Logic + Control [55]
m Logic as a programming language

= Prolog (Colmerauer, Kowalski)
m Features of Prolog

m Declarative (relational) programming language

Based on SLD(NF) Resolution
Top-down query evaluation
Terms as data structures
Parameter passing by unification
Solutions are extracted from instantiations of variables
occurring in the query
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Historic Roots

Prolog: Programming in logic

Prolog is great, it's almost declarative!
To see this, consider

above (X,Y)
above (X,Y)

on(X,Y).
on(X,Z) ,above(Z,Y).

and compare it to

above (X,Y)
above (X,Y)

above(Z,Y),on(X,Z).
on(X,Y).

An interpretation in classical logic amounts to

Vxy(on(x,y) V 3z(on(x, z) A above(z,y)) — above(x,y))
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Historic Roots

Model-based Problem Solving

Traditional approach (e.g. Prolog)

Provide a specification of the problem.
A solution is given by a derivation of an appropriate

query.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 15 / 453



Historic Roots

Model-based Problem Solving

Traditional approach (e.g. Prolog)
Provide a specification of the problem.
A solution is given by a derivation of an appropriate
query.
Model-based approach (e.g. ASP and SAT)

Provide a specification of the problem.
A solution is given by a model of the specification.
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Historic Roots

Model-based Problem Solving

Traditional approach (e.g. Prolog)
Provide a specification of the problem.
A solution is given by a derivation of an appropriate
query.
Model-based approach (e.g. ASP and SAT)
Provide a specification of the problem.
A solution is given by a model of the specification.

Automated planning, Kautz and Selman [53]

Represent planning problems as propositional theories so that models
not proofs describe solutions (e.g. Satplan)
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Problem Solving

Overview

Problem Solving
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Problem Solving

Model-based Problem Solving

Specification

Associated Structures

constraint satisfaction problem
propositional horn theories
propositional theories
propositional theories
propositional theories
propositional programs
propositional programs
propositional programs
first-order theories

default theories

assignment
smallest model
models

minimal models
stable models
minimal models
supported models
stable models
models
extensions
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Problem Solving

ASP as High-level Language

m Basic ldea:

m Encode problem (class+instance) as a set of rules
m Read off solutions from answer sets of the rules

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 18 / 453



Problem Solving

ASP as High-level Language

m Basic ldea:

m Encode problem (class+instance) as a set of rules
m Read off solutions from answer sets of the rules

Problem Solution(s)
Modelling Interpretation
Logic program Answer set(s)

Computation
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Problem Solving

ASP as Low-level Language

m Basic ldea:

m Compile a problem automatically into a logic program
m Solve the original problem by solving its compilation
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m Basic ldea:

Problem Solving

ASP as Low-level Language

m Compile a problem automatically into a logic program

m Solve the original problem by solving its compilation

Special
Purpose
System

Special
Purpose
Compiler
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Applications

Overview

Applications
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Applications

What is ASP good for?

m Combinatorial search problems
(some with substantial amount of data):

m For instance, auctions, bio-informatics, computer-aided verification,
configuration, constraint satisfaction, diagnosis, information integration,
planning and scheduling, security analysis, semantic web, wire-routing,
zoology and linguistics, and many more
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Applications

What is ASP good for?

m Combinatorial search problems
(some with substantial amount of data):

m My favorite: Using ASP as a basis for a decision support system for
NASA's space shuttle (Gelfond et al., Texas Tech)
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Applications

What is ASP good for?

m Combinatorial search problems
(some with substantial amount of data):

m Our own applications:

m Automatic synthesis of multiprocessor systems
m Inconsistency detection, diagnosis, repair, and prediction
in large biological networks

m Home monitoring for risk prevention in ambient assisted living
m General game playing
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Applications

What does ASP offer?

Integration of KR, DB, and search techniques
Compact, easily maintainable problem representations
Rapid application development tool

Easy handling of dynamic, knowledge intensive applications
(including: data, frame axioms, exceptions, defaults, closures, etc.)
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What does ASP offer?

Integration of KR, DB, and search techniques
Compact, easily maintainable problem representations

Rapid application development tool

Easy handling of dynamic, knowledge intensive applications
(including: data, frame axioms, exceptions, defaults, closures, etc.)

ASP = KR + DB + Search
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A First Example

Overview

@ A First Example
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A First Example

An instance of Towers of Hanoi

a b c
) | 6 |
Init:
7 4
| 1 |2 ] [ 3 ]
peg(a;b;c). disk(1..7).
init_on(1,a).
init_on(2;7,b).
init_on(3;4;5;6,c).
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A First Example

An instance of Towers of Hanoi

Init:
|
Goal:
peg(a;b;c). disk(1..7).
init_on(1,a). goal_on(3;4,a).
init_on(2;7,b). goal on(1;2;5;6;7,c).
init_on(3;4;5;6,c). moves (70) .
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A First Example

An encoding of Towers of Hanoi
on(D,P,0) :— init_on(D,P).

1 {move(D,P,T) : disk(D) : peg(P)}1 :- moves(M), T = 1..M.
move(D,T) :— move(D,_,T).

on(D,P,T) :— move(D,P,T).
on(D,P,T+1) :- on(D,P,T), not move(D,T+1), not moves(T).

blocked(D-1,P,T+1) :- on(D,P,T), not moves(T).
blocked(D-1,P,T) :— blocked(D,P,T), disk(D).

move(D,P,T), blocked(D-1,P,T).

move(D,T), on(D,P,T-1), blocked(D,P,T).

not 1{on(D,P,T) } 1, disk(D), moves(M), T = 1..M.
:- goal on(D,P), not on(D,P,M), moves(M).
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A First Example

An encoding of Towers of Hanoi

a b C
I [6]

1 |
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A First Example

An encoding of Towers of Hanoi

a b C

| 2

:- move(D,P,T), blocked(D-1,P,T).
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A First Example

An encoding of Towers of Hanoi

:— move(D,P,T), blocked(D-1,P,T).
:— move(D,T), on(D,P,T-1), blocked(D,P,T).
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A First Example

Let it run!

torsten@raz > gringo toh_instance.lp toh_encoding.lp | clasp --stats
clasp version 1.3.5

Reading from stdin

Solving. ..

Answer: 1

peg(a) peg(c) peg(b) init_on(l,a) init_on(2,b)
move(6,a,1) move(7,a,2) move(5,b,3) move(7,c,4)
move(6,b,5) move(7,b,6) move(4,a,7) move(7,a,8)
move(2,c,63) move(7,c,64) move(6,b,65) move(7,b,66)
move(5,c,67) move(7,a,68) move(6,c,69) move(7,c,70)
move(7,70) move(6,69) move(7,68) move(5,67) move(7,66)
SATISFIABLE

Models 1+
Time : 3.280s (Solving: 3.23s 1st Model: 3.23s Unsat: 0.00s)
Choices : 130907
Conflicts : 35738
Restarts : 12
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Syntax

Overview

Syntax
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Syntax

Problem solving in ASP: Syntax

Problem Solution(s)
Modeling Interpretation
Logic Program Answer set(s)

Computation
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Syntax

Normal logic programs

m A (normal) rule, r, is an ordered pair of the form
Ao < A1, ..., Am, not Ami1,...,not Ap,

where n > m >0, and each A; (0 < i < n) is an atom.

m A (normal) logic program is a finite set of rules.
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Ao < A1, ..., Am, not Ami1,...,not Ap,

where n > m >0, and each A; (0 < i < n) is an atom.
m A (normal) logic program is a finite set of rules.
m Notation
) = Ao
) {A1,...,Am,not Amt1,...,not A,}
body™(r) = {A1,...,Am}
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Syntax

Normal logic programs

m A (normal) rule, r, is an ordered pair of the form
Ao < A1, ..., Am, not Ami1,...,not Ap,

where n > m >0, and each A; (0 < i < n) is an atom.

m A (normal) logic program is a finite set of rules.

m Notation
head(r) = Ao
body(r) = {Ai,...,Am,not Ami1,...,not Ap}
body™(r) = {A1,...,Am}
body (r) = {Am+1,...,An}

m A program is called positive if body~ (r) = ) for all its rules.
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Semantics

Overview

Bl Semantics
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Semantics

Problem solving in ASP: Semantics

Problem Solution(s)
Modeling Interpretation
Logic Program Answer set(s)

Computation
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Semantics

Answer set: Formal Definition
Positive programs

A set of atoms X is closed under a positive program [T iff
for any r € I, head(r) € X whenever body™(r) C X.

X corresponds to a model of I (seen as a formula).

The smallest set of atoms which is closed under a positive program [1
is denoted by Cn(IT).

Cn(IM) corresponds to the C-smallest model of I (ditto).

The set Cn(IM) of atoms is the answer set of a positive program I1.
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Semantics

Some “logical” remarks

m Positive rules are also referred to as definite clauses.
m Definite clauses are disjunctions with exactly one positive atom:

AgV ALV -V DA,

m A set of definite clauses has a (unique) smallest model.
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m Definite clauses are disjunctions with exactly one positive atom:

AgV ALV -V DA,

m A set of definite clauses has a (unique) smallest model.
m Horn clauses are clauses with at most one positive atom.

m Every definite clause is a Horn clause but not vice versa.

m A set of Horn clauses has a smallest model or none.
m This smallest model is the intended semantics of a set of Horn

clauses.
15" Given a positive program I1, Cn(I) corresponds to the smallest model
of the set of definite clauses corresponding to [1.
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Semantics

Answer set: Basic idea

Consider the logical formula ® and its three
(classical) models:

® g A (gh-r—p)]

{p,q}.{q,r}, and {p,q,r}

Formula ® has one stable model,
called answer set:

{p,q}

Mo

qg <
p < g, notr

Informally, a set X of atoms is an answer set of a logic program [1
if X is a (classical) model of I1 and
if all atoms in X are justified by some rule in Il

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gddel, 1932))
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Semantics

Answer set: Formal Definition

Normal programs

The reduct, MX, of a program I relative to a set X of atoms is
defined by

NX = {head(r) < body™*(r) | r € M and body~(r) N X = 0}.

A set X of atoms is an answer set of a program [ if Cn(X) = X.
Recall: Cn(NX) is the C—smallest (classical) model of NX.

X is stable under “applying rules from 1"
Every atom in X is justified by an “applying rule from 1"
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m The reduct, MX, of a program I relative to a set X of atoms is
defined by

NX = {head(r) < body™(r) | r € M and body(r) N X = (}.

m A set X of atoms is an answer set of a program I if Cn(NX) = X.
Recall: Cn(MX) is the C—smallest (classical) model of MX.

Intuition: X is stable under “applying rules from 1"

Note: Every atom in X is justified by an “applying rule from 1"
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Semantics

A closer look at MX

In other words, given a set X of atoms from I1,

MX is obtained from I by deleting

each rule having a not A in its body with A € X
and then

all negative atoms of the form not A
in the bodies of the remaining rules.
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Examples

Overview

El Examples
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Examples

A first example

N={p <+ p, g« not p}

X nx Cn(I%)
] p — p {q}
q <
{p} p — p 0
{q} p «— p {q}
q <
{p,q} p < p 0
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Examples

A second example

M= {p <+ not q, q <+ not p}

X nx Cn(NX)
) p {p,q}
q <
{p} p {p}
{q} {q}
q <
{p,q} 0

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 40 / 453



Examples

A second example

M= {p <« not q, g < not p}

X nx Cn(N%)

0 p {p.q}
q <

{p} p < {p}

ch

{a}

{p,q}

Torsten Schaub (KRRQUP)

0

Answer Set Programming January 18, 2012

40 / 453



Examples

A second example

M= {p <« not q, g < not p}

X nx Cn(N%)

0 p {p.q}
q <

{p} p < {p}

ch

{a}

{p,q}

Torsten Schaub (KRRQUP)

0

Answer Set Programming January 18, 2012

40 / 453



Examples

A second example

M= {p <« not q, g < not p}

X nx Cn(N%)
0 p {p,q}
q <
{pr} p < {pr} 4
{q} {q}
q <
{pr,q} 0

Torsten Schaub (KRRQUP)

Answer Set Programming January 18, 2012

40 / 453



Examples

A second example

M= {p <« not q, g < not p}

X nx Cn(X)
0 p {p,q}
q <
{pr} p < {pr} 4
{q} {q} 4
q <
{p,q} 0

Torsten Schaub (KRRQUP)

Answer Set Programming January 18, 2012

40 / 453



Examples

A second example

M= {p <« not q, g < not p}

X nx Cn(X)
0 p {p,q}
q <
{pr} p < {pr} 4
{q} {q} 4
q <
{p,q} 0

Torsten Schaub (KRRQUP)

Answer Set Programming January 18, 2012

40 / 453



Examples

A third example

M= {p <« not p}

X nx Cn(I%)
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Examples

Answer set: Some properties

m A logic program may have zero, one, or multiple answer sets!
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Examples

Answer set: Some properties

m A logic program may have zero, one, or multiple answer sets!
m If X is an answer set of a logic program [1,
then X is a model of I1 (seen as a formula).

m If X and Y are answer sets of a normal program TI1,
then X Z Y.
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Examples

Answer set: Alternative Definition
Let I1 be a normal program and X a set of atoms.

m The set of generating rules of X relative to I is defined by

Mx = {r € M| body*(r) € X and body (r) N X = 0}.
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Examples

Answer set: Alternative Definition
Let I1 be a normal program and X a set of atoms.
m The set of generating rules of X relative to I is defined by

Mx = {r € M| body*(r) € X and body (r) N X = 0}.

m X is an answer set of I1 iff X is a C-minimal model of M.

m Or, X is an answer set of I iff X € minc(lMx), where
minc () is the set of C-minimal models of a program T1.
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Examples

The second example revisited

M= {p <+ not q, q <+ not p}

X My “logically” ming(ﬂx)
0 p < notq pVaq {p},{q}
q < notp

{p} p < notgq pVaq {p}.{q}

{q} pVgq {p}.{q}
< not p

{p,q} T 0

Q
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Examples

The second example revisited

M= {p <« not q, g < not p}

0% Mx “logically” | minc (Mx)
0 p <« notgq pPVq {p},{q}
q < notp
{p} p <« notgq pVq {r}.{q} |V
{a} pva | {p}{a} |V
q < notp
{p.q} U 0

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 44 / 453



Examples

A closer look at Cn
Inductive characterization

Let I1 be a positive program and X a set of atoms.

m The immediate consequence operator Tp is defined as follows:
TnX = {head(r) | r € I and body(r) C X}

Iterated applications of Tp are written as Tﬁ for j >0,
where TSX = X and T\ X = Tn T X for i > 1.
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Examples

A closer look at Cn
Inductive characterization

Let I1 be a positive program and X a set of atoms.

m The immediate consequence operator Tp is defined as follows:
TnX = {head(r) | r € I and body(r) C X}

m lterated applications of T are written as Té for j >0,
where TSX = X and T\ X = Tn T X for i > 1.

Theorem
For any positive program I1, we have
m Cn(MN) = Uiso THO,
m X C Y implies TnX C TnY,
m Cn(M) is the smallest fixpoint of Tp.
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Examples

Let's iterate Tp

NM={p<+, g, r<p, s« q,t, t<r, u< v}

T30
T30
T30
T30
TA0
T30
T80

0

{p,q}
{p,q,r}
{p,q,r t}
{p,q,r t,s}
{p,q,r t, s}
{p,q,r,t,s}

= TnTQ0
= TnTi0
= TnT30
= TnT30
= TnTA0
= TpT30

ThO

Tn{p, q}
Tﬂ{P; q, r}
7—I'I{p-/ q,r, t}
TI_I{p7 q, It S}
Tn{p,q,r,t, s}

To see that Cn(M) = {p, q,r, t,s} is the smallest fixpoint of T, note that
Tn{p,q,r,t,s} ={p,q,r,t,s} and TnX # X for every X C {p, q,r, t,s}.
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Examples

Let's iterate Tp

M={p<, g, r<p, s« q,t, t<r, u< v}

TR0 = 0

T|—1|® = {p,q} = TﬂT|9|® = Tn@

T30 = {p,q,r} = TnTi0 = Tn{p,q}

T30 = {p,q,r,t} = TaTi0 = Tn{p.qr}
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Language Constructs

Problem solving in ASP: Modeling

Problem Solution(s)
Modeling Interpretation
Logic Program Answer set(s)

Computation
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Language Constructs

(Rough) notational convention

We sometimes use the following notation interchangeably in order to stress

the respective view:

negation  classical

if and or as failure negation
source code 3= , | not =
logic program | < , ; not [~ =
formula - AV ~/(7) -

Torsten Schaub (KRRQUP) Answer Set Programming

January 18, 2012
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Language Constructs

Language Constructs

Variables (over the Herbrand Universe)
p(X) :- q(X) over constants {a,b,c} stands for
pa) :- gq(a), p) :- q), plc) :- qlc)
Conditional Literals
p :- qX) : r(X) given r(a), r(b), r(c) stands for
p :- q(a, q), qlc)
Disjunction
pX) | qX) :- r(X)
Integrity Constraints

- qX), pX)
Choice
2 {p&X,Y) : qX) } 7 :- r(V)
Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7
also: #sum, #avg, #min, #max, #even, #odd
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Variables and Grounding

Programs with Variables

Let I1 be a logic program.
m Herbranduniverse U": Set of constants in

m Herbrandbase B™: Set of (variable-free) atoms constructible from U™
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Variables and Grounding

Programs with Variables

Let I1 be a logic program.
m Herbranduniverse U": Set of constants in

m Herbrandbase B™: Set of (variable-free) atoms constructible from U™
1 \We usually denote this as A, and call it alphabet.

m Ground Instances of r € I1: Set of variable-free rules obtained by
replacing all variables in r by elements from U™:

ground(r) = {r6 | 0 : var(r) — U™}

where var(r) stands for the set of all variables occurring in r;
0 is a (ground) substitution.
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Variables and Grounding

Programs with Variables

Let I1 be a logic program.
m Herbranduniverse U": Set of constants in

m Herbrandbase B™: Set of (variable-free) atoms constructible from U™
1 \We usually denote this as A, and call it alphabet.

m Ground Instances of r € I1: Set of variable-free rules obtained by
replacing all variables in r by elements from U™:

ground(r) = {r6 | 0 : var(r) — U™}

where var(r) stands for the set of all variables occurring in r;
0 is a (ground) substitution.

m Ground Instantiation of [1:
ground(IM) = |J,cnground(r)
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Variables and Grounding

An example

M={ r(a,b) +, r(b,c) <, t(X,Y)+ r(X,Y)}
U™ ={a, b,c}

BN _ r(a, a), r(a, b), r(a,c), r(b,a), r(b,b), r(b,c
B { t(a,a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c
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Variables and Grounding

An example

M={ r(a,b) +, r(b,c) <, t(X,Y)+ r(X,Y)}
U™ ={a, b,c}

BN _ r(a, a), r(a, b), r(a,c), r(b,a), r(b,b), r(b,c),r(c,a),r(c,b),r(c,c),
| t(a, ), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c)
r(a,b) « ,
r(b,c) « ,
ground () = t(a,a) < r(a,a), t(b,a) < r(b,a), t(c,a) « r(c,a),
t(a,b) « r(a,b), t(b,b) < r(b,b), t(c,b) < r(c,b),
t(a,c) « r(a,c), t(b,c) < r(b,c), t(c,c) + r(c,c)
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Variables and Grounding

An example

M={ r(a,b) +, r(b,c) <, t(X,Y)+ r(X,Y)}
U™ ={a, b,c}

BN _ { r(a,a), r(a, b), r(a, c), r(b,a), r(b, b), r(b,c), r(c,a), r(c,b), r(c,c), }
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c)
r(a, b) « ,
r(b,c) « ,
ground () = o
t(a, b) « :

t(b,c) +

1= |ntelligent Grounding aims at reducing the ground instantiation.
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Variables and Grounding

Answer sets of programs with Variables

Let 1 be a normal logic program with variables.

We define a set X of (ground) atoms as an answer set of I1
if Cn(ground(N)X) = X.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012
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Computation

Overview

Computation
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Computation

Problem solving in ASP: Computation

Problem Solution(s)
Modeling Interpretation
Logic Program Answer set(s)

Computation
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Computation

Traditional Solving Procedure

Global parameters: Logic program [1 and its set A of atoms.

solven (X, Y)
(X, Y) < propagaten(X,Y)
if (XNY)# 0 then fail
if (XU Y) = A then return(X)
select Ac A\ (XUY)
solven (X U{A},Y)
@A solven(X,Y U{A})
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Computation

Traditional Solving Procedure

Global parameters: Logic program [1 and its set A of atoms.

solven (X, Y)
(X, Y) < propagaten(X,Y)
if (XNY)# 0 then fail
if (XU Y) = A then return(X)
select Ac A\ (XUY)
solven (X U{A},Y)
@A solven(X,Y U{A})
Comments:
m (X, Y) is supposed to be a 3-valued model such that X C Zand YNZ =10
for any answer set Z of 1.
m Key operations: propagaten (X, Y) and ‘select A€ A\ (XU Y)

m Worst case complexity: O(2141)
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Reasoning Modes

Overview

Reasoning Modes
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Reasoning Modes

Reasoning Modes

Satisfiability
Enumeration'
Projection'
Intersection?
Union?

Optimization

Sampling

T without solution recording

¥ without solution enumeration
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Basic Modeling: Overview

ASP Solving Process

Problems as Logic Programs
m Graph Coloring

Methodology
m Satisfiability
m Queens
m Reviewer Assignment
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Modeling and Interpreting

Problem Solution(s)
Modeling Interpretation
Logic Program Answer sets

Computation
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Modeling

For solving a problem class P for a problem instance |,
encode
the problem instance | as a set C(l) of facts and
the problem class P as a set C(P) of rules

such that the solutions to P for | can be (polynomially) extracted
from the answer sets of C(I) U C(P).
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ASP Solving Process

Overview

ASP Solving Process

Graph Coloring

Satisfiability
Queens
Reviewer Assignment
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ASP Solving Process

Logic Answer
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Modeling
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Problems as Logic Programs

Overview

Problems as Logic Programs
m Graph Coloring

Satisfiability
Queens
Reviewer Assignment
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Problems as Logic Programs Graph Coloring

Graph Coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g) .

1 {color(X,C) : col(C)} 1 :- node(X).

:— edge(X,Y), color(X,C), color(Y,C).
Torsten Schaub (KRRQUP)

Answer Set Programming January 18, 2012
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Problems as Logic Programs Graph Coloring

Graph Coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).

Torsten Schaub (KRRQUP)

Answer Set Programming



node(1..6).

edge(1,2).
edge(2,4).
edge(3,1).
edge(4,1).
edge(5,3).
edge(6,2).

col(r).

Problems as Logic Programs

Torsten Schaub (KRRQUP)

edge(1,3). edge(1,4).

edge(2,5). edge(2,6).

edge(3,4). edge(3,5).

edge(4,2).

edge(5,4). edge(5,6).

edge(6,3). edge(6,5).
col(b). col(g).

Answer Set Programming

Graph Coloring

Graph Coloring
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Problems as Logic Programs Graph Coloring

Graph Coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).
1 {color(X,C) : col(C)} 1 :- node(X).
:— edge(X,Y), color(X,C), color(Y,C).
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Problems as Logic Programs

Graph Coloring:

$ gringo -t color.lp

Graph Coloring

node(1). node(2). node(3). mnode(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2). edge(5,3).

edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(1,r), color(1,b), color(i,g)} 1

1 {color(2,r), color(2,b), color(2,g)} 1

1 {color(3,r), color(3,b), color(3,g)} 1.

1 {color(4,r), color(4,b), color(4,g)} 1

1 {color(5,r), color(5,b), color(5,g)} 1

1 {color(6,r), color(6,b), color(6,g)} 1
:= color(1,r), color(2,r). :- color(2,g), color(5,g). := color(6,r)
- color(1,b), color(2,b). :- color(2,r), color(6,r). - color(6,b),
:= color(l,g), color(2,g). - color(2,b), color(6,b). := color(6,g)
:- color(1,r), color(3,r). - color(2,g), color(6,g). := color(6,r)
- color(1,b), color(3,b). - color(3,r), color(l,r). - color(6,b)
- color(l,g), color(3,g). :- color(3,b), color(l,b). - color(6,g)
:- color(1,r), color(4,r). - color(3,g), color(l,g). :— color(6,r)
- color(1,b), color(4,b). - color(3,r), color(4,r). - color(6,b),
- color(1l,g), color(4,g). - color(3,b), color(4,b). - color(6,g)
:— color(2,r), color(4,r). - color(3,g), color(4,g)
- color(2,b), color(4,b). - color(3,r), color(5,r)
- color(2,g), color(4,g). - color(3,b), color(5,b)

Torsten Schaub (KRRQUP)

Answer Set Programming

Grounding

color(2,r).
color(2,b).
color(2,g).
color(3,r).
color(3,b).
color(3,g) .
color(5,r).
color(5,b).
color(5,g) .
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Problems as Logic Programs

$ gringo -t color.lp

Graph

Graph Coloring

Coloring: Grounding

node(1). node(2). node(3). mnode(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2). edge(5,3).

edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(1,r), color(1,b), color(i,g)} 1

1 {color(2,r), color(2,b), color(2,g)} 1

1 {color(3,r), color(3,b), color(3,g)} 1.

1 {color(4,r), color(4,b), color(4,g)} 1.

1 {color(5,r), color(5,b), color(5,g)} 1

1 {color(6,r), color(6,b), color(6,g)} 1
:= color(1,r), color(2,r). :- color(2,g), color(5,g). - color(6,r),
- color(1,b), color(2,b). - color(2,r), color(6,r). - color(6,b),
- color(1,g), color(2,g). - color(2,b), color(6,b). - color(6,g),
:= color(1,r), color(3,r). :- color(2,g), color(6,g). := color(6,r),
- color(1,b), color(3,b). - color(3,r), color(l,r). - color(6,b),
- color(1,g), color(3,g). - color(3,b), color(1,b). - color(6,g),
:- color(1,r), color(4,r). - color(3,g), color(l,g). :- color(6,r),
- color(1,b), color(4,b). - color(3,r), color(4,r). - color(6,b),
- color(1,g), color(4,g). - color(3,b), color(4,b). - color(6,g),
:= color(2,r), color(4,r). - color(3,g), color(4,g).
- color(2,b), color(4,b). - color(3,r), color(5,r).
- color(2,g), color(4,g). - color(3,b), color(5,b).

Torsten Schaub (KRRQUP)

Answer Set Programming

color(2,r).
color(2,b).
color(2,g) .
color(3,r).
color(3,b).
color(3,g) .
color(5,r).
color(5,b).
color(5,g) .
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Problems as Logic Programs

Graph Coloring

Graph Coloring: Solving

$ gringo color.lp | clasp O

clasp version 1.2.1
Reading from stdin

Reading

: Done(0.000s)

Preprocessing: Done(0.000s)

Solving...
Answer: 1
color(1,b)
Answer: 2
color(1,g)
Answer: 3
color(1,b)
Answer: 4
color(l,g)
Answer: 5
color(1,r)
Answer: 6
color(1,r)

Models
Time

color(2,r) color(3,r)
color(2,r) color(3,r)
color(2,g) color(3,g)
color(2,b) color(3,b)
color(2,b) color(3,b)
color(2,g) color(3,g)

N6
: 0.000 (Solving: O.

Torsten Schaub (KRRQUP)

color(4,g)
color(4,b)
color(4,r)
color(4,r)
color(4,g)

color(4,b)

000)

color(5,b)
color(5,g)
color(5,b)
color(5,g)
color(5,r)

color(5,r)

color(6,g)
color(6,b)
color(6,r)
color(6,r)
color(6,g)

color(6,b)

Answer Set Programming

node (1)

node (1)

node (1)

node (1)

node (1)

node (1)

. edge(1,2)
. edge(1,2)
. edge(1,2)
. edge(1,2)
. edge(1,2)

. edge(1,2)

. col(xr)

. col(r)

col(r)

. col(r)

. col(r)

. col(r)
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Problems as Logic Programs

Graph Coloring

$ gringo color.lp | clasp O

clasp version 1.2.1
Reading from stdin

Reading : Done(0.
Preprocessing: Done(0.
Solving...
Answer: 1

color(1,b) color(2,r)
Answer: 2
color(1l,g) color(2,r)
Answer: 3
color(1,b) color(2,g)
Answer: 4
color(1,g) color(2,b)
Answer: 5
color(1l,r) color(2,b)
Answer: 6

color(1,r) color(2,g)
Models : 6
Time : 0.000

000s)

000s)

color(3,r)
color(3,r)
color(3,g)
color(3,b)
color(3,b)

color(3,g)

(Solving: 0.

Torsten Schaub (KRRQUP)

color(4,g)
color(4,b)
color(4,r)
color(4,r)
color(4,g)

color(4,b)

000)

color(5,b) color(6,g)
color(5,g) color(6,b)
color(5,b) color(6,r)
color(5,g) color(6,r)
color(5,r) color(6,g)

color(5,r) color(6,b)

Answer Set Programming

Graph Coloring

node (1)
node (1)
node (1)
node (1)
node (1)

node (1)

Solving

. edge(1,2)
. edge(1,2)
. edge(1,2)
. edge(1,2)
. edge(1,2)

. edge(1,2)

. col(r)
. col(r)
. col(r)
. col(r)
. col(r)

. col(r)

January 18, 2012
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Methodology

Overview

Graph Coloring

Methodology
m Satisfiability
m Queens
m Reviewer Assignment
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Methodology

Basic Methodology

Generate and Test (or: Guess and Check) approach

Generator Generate potential answer set candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)
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Methodology

Basic Methodology

Generate and Test (or: Guess and Check) approach

Generator Generate potential answer set candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell
Logic program = Data + Generator + Tester
(+ Optimizer)
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Methodology  Satisfiability

Satisfiability

m Problem Instance: A propositional formula ¢.

m Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula ¢ is true.
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Methodology  Satisfiability

Satisfiability

m Problem Instance: A propositional formula ¢.

m Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula ¢ is true.

m Example: Consider formula (aVV =b) A (—a V b).

m Logic Program:

Generator Tester Answer sets
{a,b} <« <+ nota,b X1 = {ab}
< a,notb Xo = {}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 72 / 453



Methodology Queens

The n-Queens Problem

)
< c
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Methodology Queens

Defining the Field

queens.lp

row(1l..n).
col(l..n).

m Create file queens.1p
m Define the field

m N rows
m n columns

Torsten Schaub (KRRQUP) Answer Set Programming
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Methodology Queens

Defining the Field
Running ...

$ clingo queens.lp -c n=5

Answer: 1

row (1) row(2) row(3) row(4) row(5) \
col (1) col(2) col(3) col(4) col(5)

SATISFIABLE

Models 1

Time 0.000
Prepare 0.000
Prepro. 0.000
Solving 0.000

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012
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Methodology Queens

Placing some Queens

queens.lp

row(1l..n).
col(l..n).

{ queen(I,J) : row(I) : col(J) }.

m Guess a solution candidate

m Place some queens on the board

Torsten Schaub (KRRQUP) Answer Set Programming

January 18, 2012

76 / 453



Running

Methodology Queens

Placing some Queens

$ clingo queens.lp -c n=5 3

Answer:

row (1)
col (1)

Answer:

row (1)
col (1)

Answer:

row (1)
col (1)

1
row (2)
col (2)
2
row (2)
col (2)
3
row (2)
col (2)

SATISFIABLE

Models

Torsten Schaub (KRRQUP)

row (3)
col (3)

row (3)
col (3)

row (3)
col (3)

3+

row (4) row(5) \
col (4) col(b)

row (4) row(5) \
col(4) col(5) queen(l,1)

row (4) row(5) \
col(4) col(5) queen(2,1)

Answer Set Programming January 18, 2012
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Methodology ~ Queens

Placing some Queens: Answer 1

Answer 1
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Placing some Queens: Answer 2

Answer 2

1 2
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Methodology Queens

Placing some Queens: Answer 3

Answer 3
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Methodology Queens

Placing n Queens

queens.lp

row(l..n).

col(l..n).

{ queen(I,J) : row(I) : col(J) 1I.
:-= not { queen(I,J) } == n.

m Place exactly n queens on the board
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Methodology Queens

Placing n Queens

Running ...

$ clingo queens.lp -c n=5 2

Answer: 1

row (1) row(2) row(3) row(4) row(b) \
col (1) col(2) col(3) col(4) col(5) \
queen(5,1) queen(4,1) queen(3,1) \
queen(2,1) queen(1,1)

Answer: 2

row (1) row(2) row(3) row(4) row(5) \
col (1) col(2) col(3) col(4) col(5) \
queen(1,2) queen(4,1) queen(3,1) \
queen(2,1) queen(1,1)
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Answer 1
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Answer 2
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Methodology Queens

Horizontal and vertical Attack

queens.lp

row(1l..n).

col(l..n).
{ queen(I,J) : row(I) : col(J) 1I.
:- not { queen(I,J) } == n.

:— queen(I,J), queen(I,JJ), J != JJ.

m Forbid horizontal attacks
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Methodology Queens

Horizontal and vertical Attack

queens.lp

row(1l..n).

col(l..n).

{ queen(I,J) : row(I) : col(J) 1I.
:- not { queen(I,J) } == n.

:- queen(I,J), queen(I,JJ), J != JJ.

:- queen(I,J), queen(II,J), I != II.

m Forbid horizontal attacks

m Forbid vertical attacks
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Methodology Queens

Horizontal and vertical Attack

Running ...

$ clingo queens.lp -c n=5

Answer: 1

row(1l) row(2) row(3) row(4) row(5) \
col (1) co0l(2) col(3) col(4) col(5) \
queen(5,5) queen(4,4) queen(3,3) \
queen(2,2) queen(1,1)
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Methodology Queens

Horizontal and vertical Attack: Answer 1

Answer 1
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Methodology Queens

Diagonal Attack
queens.lp

row(1l..n).

col(l..n).

{ queen(I,J) : row(I) : col(J) 1I.

:- not { queen(I,J) } == n.

:- queen(I,J), queen(I,JJ), J !'= JJ.

:- queen(I,J), queen(II,J), I != II.

:— queen(I,J), queen(II,JJ), (I,J) '= (IL,J0),
I-J == II-JJ.

:- queen(I,J), queen(II,JJ), (I,J) !'= (IL,J0),
I+J == II+JJ.

m Forbid diagonal attacks
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Methodology Queens

Diagonal Attack
Running . ..

$ clingo queens.lp -c n=5

Answer: 1

row (1) row(2) row(3) row(4) row(5) \
col (1) col(2) col(3) col(4) col(5) \
queen(4,5) queen(1,4) queen(3,3) \
queen(5,2) queen(2,1)

SATISFIABLE

Models : 1+

Time : 0.000
Prepare 0.000
Prepro. 0.000
Solving 0.000
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Methodology Queens

Diagonal Attack: Answer 1

Answer 1
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Methodology Queens

Optimizing
queens-opt.1lp
{ queen(I,1..n) } == 1 :- I = 1..n
{ queen(1..n,J) } == 1 :- J = 1..n
:- { queen(D-J,J) } >= 2, D = 2..2%n.
:- { queen(D+J,J) } >= 2, D = 1-n..n-1

m Encoding can be optimized

m Much faster to solve

m See Section Tweaking N-Queens
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Methodology Reviewer Assignment

Reviewer Assignment
by llkka Niemela

reviewer(rl) . paper(pl). classA(rl,pl). classB(rl,p2). coi(rl,p5).
reviewer(r2). paper(p2). classA(ril,p3). classB(ril,p4). coi(rl,p6).

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).
:— assigned(P,R), coi(R,P).
:— assigned(P,R), not classA(R,P), not classB(R,P).
:= 9 { assigned(P,R) : paper(P) } , reviewer(R).
:= { assigned(P,R) : paper(P) } 6, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).
:— 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { assignedB(P,R) : paper(P) : reviewer(R) }.
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Methodology Reviewer Assignment

Reviewer Assignment
by llkka Niemel3

reviewer(rl) . paper(pl). classA(rl,pl). classB(rl,p2). coi(rl,p5).
reviewer(r2). paper(p2). classA(rl,p3). classB(rl,p4). coi(rl,p6).

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).
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fluent (p) . fluent(q) .
action(a). pre(a,p).
action(b) . pre(b,q) .
init(p). query(r).

Torsten Schaub (KRRQUP)

Methodology Reviewer Assignment

Simplistic STRIPS Planning

fluent ().

add(a,q) . del(a,p).

add(b,r). del(b,q).
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fluent (p) .
action(a).
action(b).
init(p).

time(1..k).

Methodology Reviewer Assignment

Simplistic STRIPS Planning

fluent(q) . fluent ().

pre(a,p). add(a,q) . del(a,p).
pre(b,q) . add(b,r) . del(b,q) .
query(r).

lasttime(T) :- time(T), not time(T+1).
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Methodology Reviewer Assignment

Simplistic STRIPS Planning

fluent (p) . fluent(q) . fluent ().

action(a). pre(a,p). add(a,q) . del(a,p).
action(b) . pre(b,q) . add(b,r) . del(b,q) .
init(p). query(r).

time(1..k). lasttime(T) :- time(T), not time(T+1).

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).
:— occ(A,T), pre(A,F), not holds(F,T-1).

ocdel(F,T) :- occ(A,T), del(A,F).
holds(F,T) :- occ(A,T), add(A,F).
holds(F,T) :- holds(F,T-1), not ocdel(F,T), time(T).

:— query(F), not holds(F,T), lasttime(T).
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#base.

fluent (p) .
action(a) .
action(b).
init(p).
holds(P,0) :-
#cumulative t.
1 { occ(A,t)
:— occ(A,t),

ocdel(F,t) :-
holds(F,t) :-
holds(F,t) :-

#volatile t.

:= query(F),

Methodology Reviewer Assignment

Simplistic STRIPS Planning with iASP

fluent(q) . fluent ().

pre(a,p). add(a,q) . del(a,p).
pre(b,q) . add(b,r) . del(b,q) .
query(r) .

init (P).

action(A) } 1.
pre(A,F), not holds(F,t-1).

occ(A,t), del(A,F).

occ(A,t), add(A,F).
holds(F,t-1), not ocdel(F,t).

not holds(F,t).
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Methodology Reviewer Assignment

Simplistic STRIPS Planning with iASP

#base.

fluent (p). fluent(q) . fluent ().

action(a) . pre(a,p). add(a,q) . del(a,p).
action(b) . pre(b,q) . add(b,r) . del(b,q) .
init(p). query(r).

holds(P,0) :- init(P).
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fluent(q) . fluent ().

pre(a,p). add(a,q) . del(a,p).
pre(b,q) . add(b,r) . del(b,q) .
query(r).

init(P).

: action(A) } 1.

pre(A,F), not holds(F,t-1).

occ(A,t), del(A,F).
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ocdel(F,t) :-
holds(F,t) :-
holds(F,t) :-

#volatile t.

:— query(F),

Methodology Reviewer Assignment

Simplistic STRIPS Planning with iASP

fluent(q) . fluent ().

pre(a,p). add(a,q) . del(a,p).
pre(b,q) . add(b,r) . del(b,q) .
query(r).

init(P).

: action(A) } 1.

pre(A,F), not holds(F,t-1).
occ(A,t), del(A,F).

occ(A,t), add(A,F).
holds(F,t-1), not ocdel(F,t).

not holds(F,t).
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Disjunctive logic programs: Overview

Syntax

Semantics

Examples
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Syntax

Overview

Syntax
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Syntax

Disjunctive logic programs
m A disjunctive rule, r, is an ordered pair of the form
Al;...;An <—Am+1,...,An,not An+1,...,not Ao,

where 0 > n>m >0, and each A; (0 </ < o) is an atom.
m A disjunctive logic program is a finite set of disjunctive rules.

m (Generalized) Notation

head(r) = {A1,...,Amn}
body(r) = {Am+1,...,An,not Apii,...,not Ay}
body™(r) = {Ami1,---,An}

body™(r) = {Ant1,---,A0}
m A program is called positive if body~(r) = ) for all its rules.
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Semantics

Overview

Semantics
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Semantics

Answer sets

m Positive programs:

m A set X of atoms is closed under a positive program [T iff
for any r € I, head(r) N X # () whenever body™ (r) C X.

= X corresponds to a model of 1 (seen as a formula).

m The set of all C-minimal sets of atoms being closed under a positive
program [1 is denoted by minc (I1).

= minc (M) corresponds to the C-minimal models of I (ditto).
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for any r € I, head(r) N X # () whenever body™ (r) C X.

= X corresponds to a model of 1 (seen as a formula).

m The set of all C-minimal sets of atoms being closed under a positive
program [1 is denoted by minc (I1).

= minc (M) corresponds to the C-minimal models of I (ditto).
m Disjunctive programs:
m The reduct, MX, of a disjunctive program I relative to a set X of
atoms is defined by

NX = {head(r) + body™(r) | r € M and body™ (r)N X = }.
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Semantics

Answer sets

m Positive programs:

m A set X of atoms is closed under a positive program [T iff
for any r € I, head(r) N X # () whenever body™ (r) C X.

= X corresponds to a model of 1 (seen as a formula).

m The set of all C-minimal sets of atoms being closed under a positive
program [1 is denoted by minc (I1).

= minc (M) corresponds to the C-minimal models of I (ditto).
m Disjunctive programs:

m The reduct, MX, of a disjunctive program I relative to a set X of
atoms is defined by

NX = {head(r) + body™(r) | r € M and body™ (r)N X = }.

m A set X of atoms is an answer set of a disjunctive program [1 if
X € minc (MX).

m FYI: The alternative definition on Page 104 is applicable as well.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 99 / 453



Examples

Overview

Examples
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Examples

A “positive” example

a —
I-I_{b;c — a}

The sets {a, b}, {a,c}, and {a, b, c} are closed under I1.
We have minc (M) = { {a, b}, {a,c} }.
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Examples

A “positive” example

a —
I_I_{b;c — a}

m The sets {a, b}, {a,c}, and {a, b, c} are closed under IN.
m We have minc (M) = { {a, b}, {a,c} }.
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Examples

3-colorability revisited

node(1..6).

edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).
edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).

colored(X,r) | colored(X,b) | colored(X,g) :- node(X).

:— edge(X,Y), color(X,C), color(Y,C).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

102 / 453



Examples

3-colorability revisited

node(1..6).

edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).
edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).

col(r). col(b). col(g).
colored(X,C) : col(X) :- node(X).
:— edge(X,Y), color(X,C), color(Y,C).
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Examples

More Examples
m [, ={a;b;c<«} has answer sets {a}, {b}, and {c}.
My ={a;b;c<« , < a} has answer sets {b} and {c}.
M3 ={a;b;c«, < a, b« c, c< b} has answer set {b, c}.

My={a;b< c, b< not a,not c, a;c < not b}
has answer sets {a} and {b}.
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Examples

More Examples
My ={a;b;c <} has answer sets {a}, {b}, and {c}.
My ={a;b;c<+, < a} has answer sets {b} and {c}.
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More Examples
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Examples

Answer set: Some properties

m A disjunctive logic program may have zero, one, or multiple answer
sets.

m If X is an answer set of a disjunctive logic program I1,
then X is a model of 1 (seen as a formula).

m If X and Y are answer sets of a disjunctive logic program I1,
then X Z Y.
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Examples

Answer set: Some properties

m A disjunctive logic program may have zero, one, or multiple answer
sets.

m If X is an answer set of a disjunctive logic program I1,
then X is a model of 1 (seen as a formula).

m If X and Y are answer sets of a disjunctive logic program I1,
then X Z Y.

m If A€ X for some answer X set of a disjunctive logic program I1,
then there is a rule r € MNx such that {A} = head(r) N X.
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Examples

An example with variables

- a(1,2) —
i { B(X) :c(Y) « a(X,Y),not c(Y) }
a(1,2) +—
b(1);¢c(1) <« a(1,1),not c(1)
ground() = b(1);c(2) <+ a(1,2),not c(2)
b(2);¢c(l) <+ a(2,1),not c(1)
b(2);c(2) <+ a(2,2),not c(2)

For every answer set X of I, we have
a(1,2) € X and
{a(1,1),a(2,1),a(2,2)} N X = 0.
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ground(l) =

Torsten Schaub (KRRQUP)

Examples

An example with variables

trrrr T

Answer Set Programming

a(1,1), not c(1)
a(1,2), not ¢(2)
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Examples

An example with variables

- a(1,2) —
= { b(X):c(Y) « a(X,Y),not c(Y) }
a(1,2) —
b(1);¢c(l) <+ a(1,1),not c(1)
ground(M) = b(1);c(2) <+ a(1,2),not c(2)
b(2);¢c(l) <+ a(2,1),not c(1)
b(2);¢c(2) <« a(2,2),not c(2)

For every answer set X of I, we have
m a(1,2) € X and
m {a(1,1),a(2,1),a(2,2)} n X = 0.
Torsten Schaub (KRRQUP)
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ground(IT)

Torsten Schaub (KRRQUP)

Examples

An example with variables

1,2) —
1);¢c(1) <«
1);c(2) <«
2);c(l) <«
2);¢c(2) <+
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ground(IT)

Examples

An example with variables

1,2) —
1);¢c(1) <«
1);c(2) <«
2);c(l) <«
2);¢c(2) <+

m Consider X = {a(1,2), b(1)}.
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Examples

An example with variables

a(1,2) —
b(1);¢c(l) <+ a(1,1)
ground(M)X = b(1);c(2) <« a(1,2)
b(2);¢c(l) <+ a(2,1)
b(2);c(2) <+ a(2,2)

m Consider X = {a(1,2), b(1)}.
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Examples

An example with variables

a(1,2) —
b(1);¢c(l) <+ a(1,1)
ground(I)" = b(1);c(2) <« a(1,2)
b(2);¢c(l) <+ a(2,1)
b(2);c(2) <+ a(2,2)

m Consider X = {a(1,2), b
m We get minc(ground(M)X) = { {a(1,2), b(1)}, {a(1,2), c(2)} }.

—

—
~—
——
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Examples

An example with variables

a(1,2) —
b(1);¢c(l) <+ a(1,1)
ground(I)" = b(1);c(2) <« a(1,2)
b(2);¢c(l) <+ a(2,1)
b(2);c(2) <+ a(2,2)

m Consider X = {a(1,2), b(1)}.
m We get minc(ground(M)X) = { {a(1,2), b(1)}, {a(1,2), c(2)} }.

m X is an answer set of I1 because X € minc(ground(M)X).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 106 / 453



Examples

An example with variables

a(1,2) —

b(1);c(1) <+ a(1,1),not c(1)
ground(I)" = b(1);c(2) <+ a(1,2),not c(2)

b(2);¢c(l) <« a(2,1),not c(1)

b(2);c(2) <+ a(2,2),not c(2)
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Examples

An example with variables

a(1,2) —

b(1);¢c(l) <« a(1,1)
ground(I)" =

b(2);¢c(l) <+ a(2,1)

m Consider X = {a(1,2), c(2)}.
m We get minc(ground(M)X) = { {a(1,2)} }.

m X is no answer set of I1 because X & minc(ground(M)X).
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Nested logic programs: Overview

Syntax

Semantics

Examples
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Syntax
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Syntax

Nested logic programs

m Formulas are formed from

m propositional atoms and
m [ and L

using
m negation-as-failure (not),
m conjunction (,), and
m disjunction (;).
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m A nested rule, r, is an ordered pair of the form F < G
where F and G are formulas.

m A nested program is a finite set of rules.
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Syntax

Nested logic programs

m Formulas are formed from

m propositional atoms and
m [ and L
using
m negation-as-failure (not),
m conjunction (,), and
m disjunction (;).
m A nested rule, r, is an ordered pair of the form F < G
where F and G are formulas.
m A nested program is a finite set of rules.
m Notation: head(r) = F and body(r) = G.
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Semantics

Overview

Semantics
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Semantics

Satisfaction relation

m The satisfaction relation X |= F between a set of atoms and a
formula F is defined recursively as follows:

XEF if F € X for an atom F,
XET,

XL,

XE(F,G) ifXEFand X =G,
XE(F;G) ifXEFoXEG,
X E not Fif X £ F.
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XET,

XL,

XE(F,G) ifXEFand X =G,
XE(F;G) ifXEFoXEG,
X E not Fif X £ F.

m A set X of atoms satisfies a nested program I1, written X |= I, iff
for any r € N, X |= head(r) whenever X = body(r).

m The set of all C-minimal sets of atoms satisfying program [I1 is
denoted by minc ().
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Semantics

Reduct

m The reduct, FX, of a formula F relative to a set X of atoms is
defined recursively as follows:

m FX=F if Fisanatomor T or L,
m (F,G)X = (F%, )
m (F; G)X (F

|f XEF
m (not F { T otherwise
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defined recursively as follows:

m FX=F if Fisanatomor T or L,
m (F,G)X = (F%, )
m (F; G)X = (FX
|f XEF
m (not F { T otherwise

m The reduct, MX, of a nested program [ relative to a set X of atoms
is defined by

X = {head(r)X « body(r)* | ren}.

m A set X of atoms is an answer set of a nested program [I1 if
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Examples

Overview

Examples
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Examples

Two examples

m My = {(p:not p) < T}
For X = (), we get
N ={(p;T)+ T}
minc (M) = {0}.
For X = {p}, we get
MNP ={(p; 1) « T}
minc (N{”) = {{p}}.
My = {p < not not p}
For X = (), we get M3 = {p + L} and minc (M%) = {0}.
For X = {p}, we get I'Iép} ={p<« T} and ming(l'lép}) = {{p}}-
In general,

F < G, not not H s equivalentto F ;not H<+ G
F; not not G < H s equivalentto F < H,not G
not not not F is equivalent to not F

w |ntuitionistic Logics HT (Heyting, 1930) and G3 (Godel, 1932)
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Examples

Some more examples

M3 = {p<+(q,r);(not g,not s)}
My = {(p;not p),(q;not q),(r;not r)« T}
Ms = {(p;not p),(q;notq),(r;notr)« T, L< p,q}
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Syntax

Semantics

SEES

Relationship with Logic Programs
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Overview

Syntax
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Syntax

Propositional theories

m Formulas are formed from

m propositional atoms and
[

using
m conjunction (A),
m disjunction (V), and
m implication (—).
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Syntax

Propositional theories
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m propositional atoms and
[

using
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m disjunction (V), and
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T = (L—>1)
~F = (F— 1) (or: not F)
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Syntax

Propositional theories

m Formulas are formed from

m propositional atoms and
m L
using
m conjunction (A),
m disjunction (V), and
m implication (—).

m Notation
T = (L—>1)
~F = (F—=1) (or: not F)

m A propositional theory is a finite set of formulas.
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Semantics

Overview

Semantics
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Semantics

Reduct

m The satisfaction relation X = F between a set X of atoms and
a (set of) formula(s) F is defined as in propositional logic.

m The reduct, FX, of a formula F relative to a set X of atoms is
defined recursively as follows:
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Semantics
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defined recursively as follows:
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Semantics

Reduct

m The satisfaction relation X = F between a set X of atoms and
a (set of) formula(s) F is defined as in propositional logic.
m The reduct, FX, of a formula F relative to a set X of atoms is
defined recursively as follows:
m FX =1 if X |£F
m FX=F if FeX
B FX=(GXoHX) if X[ Fand F=(GoH)foroe{AV,—}
- |fF=~G= (G—>J_)
then FX = (L — 1) =T, if X £ G, and FX = L, otherwise.

m The reduct, FX, of a propositional theory F relative to a set X of
atoms is defined as

X={FX|F e F}.
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Semantics

Answer sets

m The set of all C-minimal sets of atoms satisfying a propositional
theory F is denoted by minc(F).
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theory F is denoted by minc(F).

m A set X of atoms is an answer set of a propositional theory F if
X € minc(FX).
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Semantics

Answer sets

m The set of all C-minimal sets of atoms satisfying a propositional
theory F is denoted by minc(F).

m A set X of atoms is an answer set of a propositional theory F if
X € minc(FX).

m If X is an answer set of F, then

s X = F and
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Semantics

Answer sets

m The set of all C-minimal sets of atoms satisfying a propositional
theory F is denoted by minc(F).

m A set X of atoms is an answer set of a propositional theory F if
X € minc(FX).
m If X is an answer set of F, then

m X =F and
= minc (FX) = {X}.
1= |n general, this does not imply X € minc (F)!
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Examples

Overview

SEES
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Examples

Two examples

. F— {pV (oo (@A)
For X ={p, q, r}, we get
FP = {pv(p—(aAr)} and minc(FP) = {0},
For X = (), we get
Fl={1Vv (L= 1)} and minc(F?) = {0}.

Fa={pV(~p—(qAr))}
For X = (), we get
]—“2@ ={1l} and ming(}}@) = .
For X = {p}, we get
FPY = {pv (L = 1)} and minc(FP) = {0},
For X = {q, r}, we get
Fi4 = {1V (T = (gAn)} and minc(F") = {{q,r}}.
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FP = {pv (L~ 1)}
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Two examples

m For X = {p,q,r}, we get

FP = {pv(p— (anr)} and ming(FP) = {0},
m For X = 0, we get

F ={LV(L— 1)} and minc(F}) = {0}. v

m Fo={pV(~p—=(qAr))}
m For X =0, we get
F) = {1} and minc(FP)=0.
m For X = {p}, we get
FiPY = {pv (L — 1)} and minc(FPY) = {0}.
m For X ={q, r}, we get
]_—{q ry_ ={LV(T = (qAr))} and mlnc(}'{q’r}) ={qr}}t. v
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Relationship with Logic Programs

Overview

Relationship with Logic Programs
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Relationship with logic programs

m The translation, 7[(F < G)], of a (nested) rule (F < G) is defined
recursively as follows:
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T[l] = 1,
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Relationship with Logic Programs

Relationship with logic programs

m The translation, 7[(F < G)], of a (nested) rule (F < G) is defined
recursively as follows:
m 7[(F + G)] = (7[G] — T[F]),
T[l] = 1,
T[T]=T,
T[F]=F if F is an atom,
T[not F| = ~T[F],
7[(F, G)] = (r[F] A 7[G]),
7[(F; 6)] = (7[F] v 7[G]).

m The translation of a logic program I is 7[[] = {7[r] | r € M}.

= Given a logic program I1 and a set X of atoms,
X is an answer set of M iff X is an answer set of 7[I].
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Relationship with Logic Programs

Logic programs as propositional theories

m The normal logic program Il = {p < not q, q < not p}
corresponds to T[] = {~qg — p, ~p — q}.
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Relationship with Logic Programs

Logic programs as propositional theories

m The normal logic program Il = {p < not q, q < not p}
corresponds to T[] = {~qg — p, ~p — q}.
= Answer sets: {p} and {q}

m The disjunctive logic program = {p;q+}
corresponds to T[] ={T — pV q}.
= Answer sets: {p} and {q}

m The nested logic program 1 = {p < not not p}
corresponds to T[] = {~~p — p}.
= Answer sets: () and {p}
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Classical Negation: Overview

Syntax

Semantics

Examples
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Overview

Syntax
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Syntax

Syntax

Status quo
m In logic programs not (or ~) denotes default negation.

We allow classical negation for atoms (only!).
Logic programs in “negation normal form.”

Given an alphabet A of atoms, let A= {-A|Ac A}.
We assume AN A = (.

The atoms A and —A are complementary.
—A is the classical negation of A, and vice versa.
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Syntax
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m In logic programs not (or ~) denotes default negation.
Generalization

m We allow classical negation for atoms (only!).
= | ogic programs in “negation normal form.”

m Given an alphabet A of atoms, let A = {-A| A c A}.
1= We assume AN A = ().

m The atoms A and —A are complementary.
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Semantics

Overview

Semantics
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Semantics

Semantics

m A set X of atoms is consistent, if X N {=A|Ae (AN X)} =1,
and inconsistent, otherwise.

A set X of atoms is an answer set of a logic program I over AU A if
X is an answer set of MU {B + A, —-A|Aec A, Be (AU A)}

The only inconsistent answer set (candidate) is X = AU A.

For a normal or disjunctive logic program I over AU A,
exactly one of the following two cases applies:

All answer sets of [1 are consistent or
X = AU A is the only answer set of .
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Examples

Overview

Examples
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Examples

To cross or not to cross. .. ?

My = {cross + not train}
Answer set: {cross}

My = {cross < —train}
Answer set: ()

M3 = {cross < —train, —train <}
Answer set: {cross, —train}

M4 = {cross < —train, —train <—, —cross <}
Answer set: {cross, —cross, train, —train}

Ms = {cross < —train, —train <— not train, —cross <}

No answer set
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Examples

Example

ml={p«, -p<, g« notr}
M =NU{A<« (B,~B), ~A« (B,—~B)| A B¢€ {p.q,r}}
Answer set: {p,—p, q,—q,r,—r}
N={p;qg«, r<p, -r<p}
MN'=NU{A+« (B,~B), ~A« (B,~B)| A B¢€ {p.q,r}}
Answer set: {q}
M={p;not p< T, =p;not g« T, q;not g« T}
N=NU{A+ (B,-B), A+ (B,-B) | A,Be{p,q}}

Answer sets: (), {p}, {-p,q}, and {p,—p, q,~q}
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Examples

Example
= {p<, -p<, g< not r}
M"=NU{A«+ (B,-B), ~A« (B,-B) | A,B<c {p,q,r}}
Answer set: {p,—p,q,—q,r,—r}
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Examples

Example

ml={p«, -p, g« notr}
N"=NU{A+ (B,-B), “A«+ (B,-B) | A,Be{p,q,r}}
Answer set: {p,—p,q,—q,r,—r}

mll={p;qg, rp, -r<p}
MN"=NU{A+ (B,-B), “A«+ (B,-B) | A,Be{p,q,r}}
Answer set: {q}

ml={p;not p< T, =p;not q< T, q,not g+« T}
MN=NU{A+ (B,-B), A+ (B,-B) | A,B<{p,q}}
Answer sets: 0, {p}, {-p,q}, and {p,—p, q,q}
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Examples

Complexity

Let A be an atom and X be a set of atoms.
m For a positive normal logic program [1:
m Deciding whether X is the answer set of [1 is P-complete.
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Let A be an atom and X be a set of atoms.
m For a positive normal logic program [1:

m Deciding whether X is the answer set of [1 is P-complete.
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Examples

Complexity (ctd)

m For a positive disjunctive logic program [1:
m Deciding whether X is an answer set of 1 is co-NP-complete.
Deciding whether A is in an answer set of I is NPNP-complete.

For a disjunctive logic program [1:

Deciding whether X is an answer set of 1 is co-NP-complete.
Deciding whether A is in an answer set of 1 is NPNP-complete.

For a nested logic program [1:

Deciding whether X is an answer set of 1 is co-NP-complete.
Deciding whether A is in an answer set of 1 is NPNP-complete.

For a propositional theory F:

Deciding whether X is an answer set of F is co-NP-complete.
Deciding whether A is in an answer set of F is NPNP-complete.
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Language Extensions: Overview

Motivation

Integrity Constraints

Choice Rules

Cardinality Constraints
Cardinality Rules

Weight Constraints (and more)

Modeling Practice
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Overview

Motivation
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Motivation

Language extensions

m The expressiveness of a language can be enhanced by introducing new
constructs.
m To this end, we must address the following issues:

m What is the syntax of the new language construct?
m What is the semantics of the new language construct?
m How to implement the new language construct?
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Motivation

Language extensions

m The expressiveness of a language can be enhanced by introducing new
constructs.
m To this end, we must address the following issues:

m What is the syntax of the new language construct?
m What is the semantics of the new language construct?
m How to implement the new language construct?

m A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation.

m This translation might also be used for implementing the language
extension. When is this feasible?
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Integrity Constraints

Overview

Integrity Constraints
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Integrity Constraints

Integrity Constraints

m Purpose Integrity constraints eliminate unwanted solution candidates

m Syntax An integrity constraint is of the form
— Ai,...,An, not Am+17 ..., not A,

where n > m > 1, and each A; (1 < < n)is a atom.
m Example :— edge(X,Y), color(X,C), color(Y,C).
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— Ai,...,An, not Am+17 ..., not A,

where n > m > 1, and each A; (1 < < n)is a atom.
m Example :— edge(X,Y), color(X,C), color(Y,C).

m Implementation For a new symbol x, map

— Al,...,Am,notAm+1,...,notA,,
— x < Ai,...,Am,not Amy1,...,not A, not x
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Integrity Constraints

Integrity Constraints

m Purpose Integrity constraints eliminate unwanted solution candidates
m Syntax An integrity constraint is of the form

— Ai,...,An, not Am+17 ..., not A,

where n > m > 1, and each A; (1 < < n)is a atom.
m Example :— edge(X,Y), color(X,C), color(Y,C).
m Implementation For a new symbol x, map
— Ai,...,An, not Am+1,...,not An
— x < Ai,...,Am,not Amy1,...,not A, not x

m Another example 1 = {p < not q, q + not p}
versus " =MU{« p} and N” =MNU{«+ not p}
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Choice Rules

Overview

Choice Rules
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Choice Rules

Choice rules

m Idea Choices over subsets.

m Syntax
{Al, ... 7Am} — Amt1,...,Anp, not An+1, ..., not Ao,

m Informal meaning If the body is satisfied in an answer set,
then any subset of {A;,...,An} can be included in the answer set.
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Choice Rules

Choice rules

Idea Choices over subsets.

Syntax
{Al, ... 7Am} — Amt1,...,Anp, not An+1, ..., not Ao,

Informal meaning If the body is satisfied in an answer set,
then any subset of {A;,...,An} can be included in the answer set.

Example 1 {color(X,C) : col(C)} 1 :- node(X).

Another Example The program N = { {a} < b, b <} has two
answer sets: {b} and {a, b}.

Implementation Iparse/gringo + smodels/cmodels/clasp
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Choice Rules

Embedding in normal logic programs
m A choice rule of form

{Al,.. . 7Am} — Am+1,...,An,not A,H_l,.. ., hot Ao

can be translated into 2m + 1 rules

A «— Amii,...,Ap,not Apia,...,not A,

A1« A, not Ay Am < A not An,

Al <« not A; ... Am <+« not Anm

by introducing new atoms A, Aq,..., A,

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 145 / 453



Cardinality Constraints

Overview
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Cardinality Constraints

Cardinality constraints

Syntax A (positive) cardinality constraint is of the form

I {A1,....,Am} u

Informal meaning A cardinality constraint is satisfied in an answer set
X, if the number of atoms from {Ai,..., Ay} satisfied in X is
between / and u (inclusive).

More formally, if / < |{A1,...,An} N X| < u.

Conditions I {A1:Bi,...,Am:Bn}t u

where Bi, ..., By are used for restricting instantiations of variables
occurring in Ay, ..., Am.

Example 2 {hd(a),...,hd(m)} 4

Implementation Iparse/gringo + smodels/cmodels/clasp
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Cardinality Rules

Overview

Cardinality Rules
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Cardinality Rules

Cardinality rules

Idea Control cardinality of subsets.

Syntax
Ao < | {Al,...,Am,not Am+1, ..., not An}

m Informal meaning If at least / elements of the “body” are true in an
answer set, then add Ag to the answer set.

= /[ is a lower bound on the “body”

Example The program N = { a < 1{b,c}, b <} has one answer set:
{a, b}.

m Implementation Iparse/gringo + smodels/cmodels/clasp

1= gringo distinguishes sets and multi-sets!
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Cardinality Rules

Embedding in normal logic programs (ctd)

m Replace each cardinality rule
Ao%/{Al,...,Am} by A()%CC(A;[,/)

where atom cc(A;, ) represents the fact that at least j of the atoms
in {A;,...,An}, that is, of the atoms that have an equal or greater
index than i/, are in a particular answer set.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 150 / 453



Cardinality Rules

Embedding in normal logic programs (ctd)

Replace each cardinality rule
Ao%/{Al,...,Am} by A()%CC(A;[,/)

where atom cc(A;, ) represents the fact that at least j of the atoms
in {A;,...,An}, that is, of the atoms that have an equal or greater
index than i/, are in a particular answer set.

The definition of cc(A;, ) is given by the rules

cc(Ai,j+1) < cc(Ait1,)), Ai
CC(Af7.j) < CC(AI'+17.j)
cc(Am+1,0)

What about space complexity?
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Cardinality Rules

and vice versa

m A normal rule
Ao < A1, ..., Am,not Ami1,...,not Ap,
can be represented by the cardinality rule

Ao < n+m {A1,...,Am,not Apmi1,...,not Ap}.
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Cardinality Rules

Cardinality rules with upper bounds
m A rule of the form
Ag </ {Al,...,Am,not Am+1,-..,not An} u

stands for
Ay < B,not C
B « [I{Ai,...,An,not Api1,...,not Ap}
C « u+tl{A1,...,Am,not Apii,...,not A}
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Cardinality Rules

Cardinality constraints as heads

m A rule of the form

/{Al,...,Am} U<+ Amii,-..,Ap,not Apy1,...,not Ao,

stands for
B « Ami1,...,An not Apt1,...,not A,
{A1,...,An} « B
C «+ I{A1,....,An} u
< B,not C
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Cardinality Rules

Full-fledged cardinality rules
m A rule of the form
/0 50 UO<—/1 51 ul,...,/,, S,-, up

stands for 0 </ < n

= S
G + u+ls5;
A < Bi,....,B,,not Cq,..., not C,
<+ A, not By
+— A G
S5NA «— A

where A is the underlying alphabet.
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Cardinality Rules

Full-fledged cardinality rules

m A rule of the form
/0 50 Uo%/l 51 U1,...,/n Sn Up

stands for 0 < j <n

B, «~ IS
Cpo= el Sy
A < Bi,...,By,not Gq,...,not C,
<~ A, not By
— A G
S5NA «— A

where A is the underlying alphabet.
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Weight Constraints (and more)

Overview

Weight Constraints (and more)
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Weight Constraints (and more)

Weight constraints

m Syntax | [A1 = wi,...,Am = Wn,
not Am+1 = Wm41,-..,n0t Ay = wp| u

m Informal meaning A weight constraint is satisfied in an answer set X,

if

| < Z w; + Z wi | <u.

1<i<m,A;eX m<i<n,A:ZX

w Generalization of cardinality constraints.
m Example 80 [hd(a)=50,...,hd(m)=100] 400

m Implementation Iparse/gringo + smodels/cmodels/clasp
1= gringo distinguishes sets and multi-sets!
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Weight Constraints (and more)

Optimization statements

m ldea Compute optimal answer sets by minimizing or maximizing a
weighted sum of given elements, respectively.
m Syntax
m #minimize [Ai=wi,..., An=wpn,
not Am+1=Wm41, ..., N0t A,=w,]
m #maximize [Ay=wy, ..., An=wWpn,
not Ami1=Wmi1, ..., N0t Ay=w,]
m Several optimization statements are interpreted lexicographically.
m Example

m #minimize [hd(a)=30,...,hd(m)=50]
B #minimize [road(X,Y) : length(X,Y,L) = L]

m Implementation Iparse/gringo + smodels/clasp
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Weight Constraints (and more)

Weak integrity constraints

m Syntax i~ A1, ..., Am,not Apmii,...,not Ay [w: ]
m Informal meaning

minimize the sum of weights of violated constraints in the highest level,

minimize the sum of weights of violated constraints in the next lower
level;

etc

m Implementation dlv
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Modeling Practice

Overview

Modeling Practice

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 159 / 453



Modeling Practice

Conditional literals in 1parse and gringo
We often want to encode the contents of a (multi-)set rather than
enumerating each of the elements.

To support this, 1parse and gringo allow for conditional literals.

Syntax

Ap:Ar:. ..t Apinot Apy1 i ... not A,

Informal meaning

List all ground instances of Ag such that corresponding instances of

Ai,...,Am, not Ami1,...,not A, are true.
Example gringo instantiates the program:

p(1). p(2). p(3). q(2). {rX) : pX) : not q(X)}.
to:

p(1). p(2). p(3). q(2). {r(1), r(3)?.
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Modeling Practice

Domain predicates in 1parse and gringo

m The predicates of literals on the right-hand side of a colon (:) must be
defined from facts without any negative recursion.

m Such domain predicates are fully evaluated by 1parse and gringo.

m Example

p(1). p(2).

qX) :- p(X), not p(X+1).
q(X) :- p(X), qX+1).
r(X) :- p(X), not r(X+1).

m p/1 and gq/1 are domain predicates because none of them negatively
depends on itself.

m r/1 is not a domain predicate because it is defined in terms
of not r(X+1).

m See gringo documentation for further details.
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Modeling Practice

Normal form in 1parse and gringo

m Consider a logic program consisting of

m normal rules

choice rules

cardinality rules

weight rules
optimization statements

m Such a format is obtained by 1parse or gringo

and directly implemented by smodels and clasp.
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Aggregates: Overview

Motivation

Syntax

Semantics
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Overview

Motivation
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Motivation

Motivation

m Aggregates provide a general way to obtain a single value from a
collection of input values given as a set, a bag, or a list.
m Popular aggregate (functions):
m Average
Count
Maximum
Minimum
Sum

m Cardinality and Weight constraints rely on Count and Sum aggregates.
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Syntax

Overview

Syntax
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Syntax

Syntax

m An aggregate has the form:
F{Ai=w1,...,Am = Wm,not Ami1 = Wmy1,...,n0t Ap = wp) < k

where
m F stands for a function mapping multi-sets of Z to Z U {+o00, —00},
< stands for a relation between Z U {400, —o0} and Z,
k an integer,
A; is an atom, and
w; are integers

forl <i<n.
m For instance, sum (hd(a) = 30, ..., hd(m) = 50) < 300
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Semantics

Overview

Semantics
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Semantics

Semantics

m A (positive) aggregate F (A1 = wa,..., A, = w,) < k can be
represented by the formula:

/\ /\ A,‘ = \/ A,‘
IC{1,....,n},F(w;|i€l) Ak \i€l iel

where [ = {1,...,n}\ I and 4 is the complement of <.

m Then, F (A1 =wi,...,Ap = wp) < kis true in X iff
the above formula is true in X.
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Semantics

An example

m Consider sum{(p=1,g=1) #1
w thatis, Ay =p, Ao=qgand wy =1, wp =1

m Calculemus!

| [ wiliel) | Swlieh|Swlich=1

0 () 0 false
{1} (1) 1 true
{2} (1) 1 true

{1,2} (1,1) 2 false
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An example

m Consider sum{(p=1,g=1) #1
w thatis, Ay =p, Ao=qgand wy =1, wp =1

m Calculemus!

| [ wiliel) | Swlieh|Swlich=1

0 () 0 false
{1} (1) 1 true
{2} (1) 1 true

{1,2} (1,1) 2 false

m We get (p — q) A (q — p)
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Semantics

An example

m Consider sum{(p=1,g=1) #1
w thatis, Ay =p, Ao=qgand wy =1, wp =1

m Calculemus!

| [ wiliel) | Swlieh|Swlich=1

0 () 0 false
{1} (1) 1 true
{2} (1) 1 true

{1,2} (1,1) 2 false

m We get (p — q) A (q — p)
m Analogously, we obtain (pV q) A =(p A q) for sum(p=1,g=1) =1.
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Semantics

Monotonicity

m Monotone aggregates
m For instance,
m body ™ (r)
B sum(p=1,g=1)>1
m We get a simpler characterization: \;c1 oy prujien 2k Viel Ai
m Anti-monotone aggregates
m For instance,
m body~(r)
B sum(p=1g=1)<1
m We get a simpler characterization: ;1 o1 powjien <k 7 Nies Ai
m Non-monotone aggregates

m For instance, sum{p =1,q = 1) # 1 is non-monotone.
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Semantics

Monotonicity

m Monotone aggregates
m For instance,
m body ™ (r)
B sum(p=1,g=1)>1 amountsto pAgq
m We get a simpler characterization: /\Ig{l,...,n},F<w,-\ie/>7<k Vici Ai
m Anti-monotone aggregates
m For instance,
m body~(r)
B sum{p=1,g=1) <1 amounts to =p A g
m We get a simpler characterization: /\Ig{l,i..,n},F(wf\iele _‘/\ie/ A;
m Non-monotone aggregates

m For instance, sum{p =1,q = 1) # 1 is non-monotone.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 171 / 453



The smodels approach: Overview

Motivation

Approximation

Partial Interpretations

Basic Algorithms
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Motivation

(Towards) the smodels approach
m Wanted:

m An efficient procedure to compute answer sets
m The smodels approach:

m Backtracking search building a binary search tree
m A node in the search tree corresponds to a 3-valued interpretation
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Motivation

(Towards) the smodels approach

m Wanted:

m An efficient procedure to compute answer sets

m The smodels approach:
m Backtracking search building a binary search tree
m A node in the search tree corresponds to a 3-valued interpretation
m The search space is pruned by
m deriving deterministic consequences and detecting conflicts (expand)
® making one choice at a time by appeal to a heuristic (select)

= Heuristic choices are made on atoms
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Approximation

Overview

Approximation
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Approximation

Approximating answer sets
First Idea Approximate an answer set X by two sets of atoms L and U

such that L C X C U.

L and U constitute lower and upper bounds on X.
L and (A\ U) describe a 3-valued model of the program.

X C Y implies MY C M implies Cn(NY) C Cn(NX)

Let X be an answer set of normal logic program [1.
If L C X, then X C Cn(N%).
If X C U, then Cn(MY) C X.
If LC X C U, then LU Cn(NY) C X C Un Cn(Nh).
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Approximation

Approximating answer sets

First Idea Approximate an answer set X by two sets of atoms L and U
such that L C X C U.

w [ and U constitute lower and upper bounds on X.
w | and (A\ U) describe a 3-valued model of the program.

Observation

X C Y implies MY € NX implies Cn(NY) C Cn(NX)
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Approximation

Approximating answer sets

First Idea Approximate an answer set X by two sets of atoms L and U
such that L C X C U.

w [ and U constitute lower and upper bounds on X.
w | and (A\ U) describe a 3-valued model of the program.

Observation

X C Y implies MY € NX implies Cn(NY) C Cn(NX)

Properties Let X be an answer set of normal logic program [1.
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Approximating answer sets

First Idea Approximate an answer set X by two sets of atoms L and U
such that L C X C U.

w [ and U constitute lower and upper bounds on X.
w | and (A\ U) describe a 3-valued model of the program.

Observation
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Approximation

Approximating answer sets

First Idea Approximate an answer set X by two sets of atoms L and U
such that L C X C U.

w [ and U constitute lower and upper bounds on X.
w | and (A\ U) describe a 3-valued model of the program.

Observation
X C Y implies MY € NX implies Cn(NY) C Cn(NX)
Properties Let X be an answer set of normal logic program [1.

mIf L C X, then X C Cn(ﬂL).
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Approximation

Approximating answer sets

First Idea Approximate an answer set X by two sets of atoms L and U
such that L C X C U.

w [ and U constitute lower and upper bounds on X.
w | and (A\ U) describe a 3-valued model of the program.

Observation

X C Y implies MY € NX implies Cn(NY) C Cn(NX)

Properties Let X be an answer set of normal logic program [1.
mIf L C X, then X C Cn(ﬂL).
m If X C U,
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Approximating answer sets

First Idea Approximate an answer set X by two sets of atoms L and U
such that L C X C U.

w [ and U constitute lower and upper bounds on X.
w | and (A\ U) describe a 3-valued model of the program.

Observation

X C Y implies MY € NX implies Cn(NY) C Cn(NX)

Properties Let X be an answer set of normal logic program [1.
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Approximation

Approximating answer sets
First Idea Approximate an answer set X by two sets of atoms L and U

such that L C X C U.

w [ and U constitute lower and upper bounds on X.
w | and (A\ U) describe a 3-valued model of the program.

Observation

X C Y implies MY € NX implies Cn(NY) C Cn(NX)

Properties Let X be an answer set of normal logic program I1.
mIf L C X, then X C Cn(ﬂL).
m If X C U, then Cn(NY) C X.
miIf LCXCU,
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Approximation

Approximating answer sets
First Idea Approximate an answer set X by two sets of atoms L and U

such that L C X C U.

w [ and U constitute lower and upper bounds on X.
w | and (A\ U) describe a 3-valued model of the program.

Observation

X C Y implies MY € NX implies Cn(NY) C Cn(NX)

Properties Let X be an answer set of normal logic program I1.
mIf L C X, then X C Cn(ﬂL).
m If X C U, then Cn(NY) C X.
miIf LC X CU, then LU Cn(FIU) cCXCUn Cn(I'IL).
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Approximation

Approximating answer sets (ctd)

Second Idea
Iterate

m Replace L by LU Cn(MY)
m Replace U by Un Cn(Nt)

until L and U do not change anymore.
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Approximation

Approximating answer sets (ctd)

Second Idea
Iterate
m Replace L by LU Cn(MY)
m Replace U by Un Cn(Nt)

until L and U do not change anymore.

Observations
m At each iteration step

m L becomes larger (or equal)
m U becomes smaller (or equal)
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Approximation

Approximating answer sets (ctd)

Second Idea
Iterate
m Replace L by LU Cn(MY)
m Replace U by Un Cn(Nt)
until L and U do not change anymore.
Observations
m At each iteration step

m L becomes larger (or equal)
m U becomes smaller (or equal)

m L C X C U is invariant for every answer set X of [l
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Approximation

Approximating answer sets (ctd)

Second Idea
Iterate
m Replace L by LU Cn(MY)
m Replace U by Un Cn(Nt)

until L and U do not change anymore.
Observations

m At each iteration step

m L becomes larger (or equal)
m U becomes smaller (or equal)

m L C X C U is invariant for every answer set X of [l
mif LZ U,
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Approximation

Approximating answer sets (ctd)

Second Idea
Iterate
m Replace L by LU Cn(MY)
m Replace U by Un Cn(Nt)

until L and U do not change anymore.
Observations

m At each iteration step

m L becomes larger (or equal)
m U becomes smaller (or equal)

m L C X C U is invariant for every answer set X of [l
m If L £ U, then I has no answer set!
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Approximation

Approximating answer sets (ctd)

Second Idea
Iterate
m Replace L by LU Cn(MY)
m Replace U by Un Cn(Nt)

until L and U do not change anymore.
Observations

m At each iteration step

m L becomes larger (or equal)
m U becomes smaller (or equal)

L € X C U is invariant for every answer set X of Il
If L Z U, then 1 has no answer set!
If L=U,
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Approximation

Approximating answer sets (ctd)

Second Idea
Iterate
m Replace L by LU Cn(MY)
m Replace U by Un Cn(Nt)

until L and U do not change anymore.
Observations

m At each iteration step

m L becomes larger (or equal)
m U becomes smaller (or equal)

L € X C U is invariant for every answer set X of Il
If L Z U, then 1 has no answer set!
If L = U, then L is an answer set of 1.
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Approximation

The simplistic expand algorithm

expand(L, V)
repeat
L'+ L
U «+u
L+ L'ucCn(nY
U<+ U'ncCn(Nt)
if L U then return
until L=1L"and U=U'

1= [] is a global parameter!
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Approximation

Let's expand!

a<+—

b < a, not ¢
d <+ b, not e
e+ notd

L’ Ccn(nY) L U cn(nty U
10 {a} {a}  {a,b,c,d,e} {a b,d,e} {a b,d, e}
2 {a} {a, b} {a,b} {a,b,d,e} {a,b,d,e} {a,b,d, e}
3 {a, b} {a b} {a,b} {a,b,d, e} {a,b,d,e} {a,b,d,e}

We have {a, b} C X and
(A\{a,b,d,e})NX={c}NnX)=10

for every answer set X of 1.
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Approximation

Let's expand!

a<+
m— b < a, not c
d < b, not e
e <+ not d
L Cn(NY") L U cn(nt) U
{a} {a} {a,b,c,d,e} {a,b,d,e} {a b,d e}

10
2 {a} {a, b} {a,b} {a,b,d, e} {a,b,d,e} {a, b,d, e}
3 {a,b} {a b} {a,b} {a,b,d,e} {a,b,d,e} {a,b,d,e}

= \We have {a, b} C X and
(A\{a,b,d,e})ﬂX:({c}mx):(/)

for every answer set X of 1.
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Approximation

The simplistic expand algorithm (ctd)

expand
m tightens the approximation on answer sets

B is answer set preserving
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Approximation

Let's expand with d !

a<

b < a, not ¢
= d <+ b, not e

e+ notd

L Ccn(nYy L U cn(nt) U

1 {d} {a} {a,d} {a,b,c,d,e} {a,b,d} {a,b,d}
2 {a,d} {a,b,d} {a,b,d} {a,b,d} {a,b,d} {a,b,d}
3 {a,b,d} {a,b,d} {a,b,d} {a, b,d} {a,b,d} {a,b,d}

{a, b,d} is an answer set X of I1.
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Approximation

Let's expand with d !

a<
m— b < a, not c

d < b, not e

e< notd

L' cn(nYy L U cn(nty U

1 {d} {a} {a,d} {a,b,c,d,e} {a,b,d} {a,b,d}
2 {ad} {a,b,d} {a,b,d} {a,b,d} {a,b,d} {a,b,d}
3 {a b, d} {a,b,d} {a b,d} {a, b,d} {a,b,d} {a,b,d}

w {a, b,d} is an answer set X of IN.

Torsten Schaub (KRRQUP)

Answer Set Programming

January 18, 2012 181 / 453



Approximation

Let's expand with “not d" !

a<+—

b < a, not ¢
d <+ b, not e
e+ notd

L cn(nYy L U cn(nty U
10 {a, e} {a,e}  {a,b,c,e} {a,b,d,e} {a, b, e}
2 {{a,e} {a,b,e} {a,b,e} {a, b, e} {a, b, e} {a, b, e}
3

a,b,e} {a,b,e} {a b,e} {a b, e} {a, b, e} {a, b, e}
{a, b, e} is an answer set X of Il.
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a<+
m— b < a, not c
d < b, not e
e< notd
L' cn(nYy L U cn(nty U
10 {a, e} {a,e}  {a,b,c,e} {a,b,d,e} {a, b, e}

2 {a e} {a,b,e} {a,b,e} {a, b, e} {a, b, e} {a, b, e}
3 {a b,e} {a b,e} {a b,e} {a b, e} {a, b, e} {a, b, e}

w {a, b, e} is an answer set X of I
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Partial Interpretations

Overview

Partial Interpretations
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Partial Interpretations

Interlude: Partial interpretations
or: 3-valued interpretations
A partial interpretation of a logic program 1 maps atoms on truth values:
{true, false, unknown}.

Representation (T, F), where

m 7T is the set of all true atoms and
m F is the set of all false atoms.
m Truth of atoms in atom(MN) \ (T U F) is unknown.

i By atom([1), we denote the set of atoms occuring in [1.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 184 / 453



Partial Interpretations

Interlude: Partial interpretations
or: 3-valued interpretations
A partial interpretation of a logic program 1 maps atoms on truth values:
{true, false, unknown}.

Representation (T, F), where
m T is the set of all true atoms and
m F is the set of all false atoms.
m Truth of atoms in atom(MN) \ (T U F) is unknown.
i By atom([1), we denote the set of atoms occuring in [1.

Properties m (T, F) is conflicting iff T N F = ().
m (T,F)is total iff TUF = atom(M) and T NF = 0.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 184 / 453



Partial Interpretations

Interlude: Partial interpretations

or: 3-valued interpretations

A partial interpretation of a logic program 1 maps atoms on truth values:
{true, false, unknown}.
Representation (T, F), where

m 7T is the set of all true atoms and
m F is the set of all false atoms.
m Truth of atoms in atom(MN) \ (T U F) is unknown.

i By atom([1), we denote the set of atoms occuring in [1.
Properties m (T, F) is conflicting iff T N F = ().
m (T,F)is total iff TUF = atom(M) and T NF = 0.
Definition For (T1, F1) and (T, F), define:
| | <T1,F1> E <T2, F2> ifF Tl g T2 and Fl g F2
] <T1, F1> L (Tg, F2> = <T1 UTy FU F2>
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Basic Algorithms

Overview

Basic Algorithms
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Basic Algorithms

The smodels (decision) algorithm

Global: Normal logic program [1

smodels((T, F))

(T,F) < expand((T, F))

if (T, F) is conflicting then return

else if (T, F) is total then exit with T

else
A < select(atom() \ (T U F))
smodels((T U {A}, F))
smodels((T, F U {A}))
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Basic Algorithms

The smodels (decision) algorithm

Global: Normal logic program [1

smodels((T, F))

(T,F) < expand((T, F))

if (T, F) is conflicting then return

else if (T, F) is total then exit with T

else
A < select(atom() \ (T U F))
smodels((T U {A}, F))
smodels((T, F U {A}))

Call: smodels((0,))
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Basic Algorithms

Deterministic consequences via expand

Global: Normal logic program [1
expand((T, F))
repeat
(T, F) < atleast({T, F))
if (T, F) is conflicting then return (T, F)
else
F'«~ F
F < F Uatmost((T, F))
until F = F'
return (T, F)
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Basic Algorithms

Deterministic consequences via expand

Global: Normal logic program [1
expand((T, F))
repeat
(T, F) < atleast({T, F))

if (T, F) is conflicting then return (T, F)
else

F'«~ F

F < F Uatmost((T, F))
until F = F/
return (T, F)

v atleast((T, F)) derives deterministic consequences from
Clark’s completion

v atmost((T, F)) derives deterministic consequences from
unfounded sets
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Basic Algorithms

A glimpse at atleast((T, F))

repeat
if (T, F) is conflicting then return (T, F)
(T',F') (T, F)
case of
r € N such that head(r) ¢ T and
body™(r) C T, body™(r) C F:
T + T U {head(r)}
A € (atom(MM) \ F) such that for all r € :
head(r) # A or (body™(r) N F) U (body (r)N T) # 0:
F < FU{A}
head(r) € F,r € I such that body™*(r) N body ™ (r) = 0 and
(body™ (1) \ T) U (body™(r) \ F) = {A}:
if A€ body™(r)then F <+ FU{A}else T < T U{A}
(A = head(r)) € T,r € I such that body™(r) Z T or body™ (r) Z F and
for all r' € M\ {r}: head(r') # A or (body™(r') N F)U (body (r')N T) # 0:
T < T Ubody™(r)
F < F U body~(r)

until (T, F) = (T, F')
return (T, F)
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Basic Algorithms

A glimpse at atleast((T, F))

repeat
if (T, F) is conflicting then return (T, F)
(T',F') (T, F)
case of

until (T, F) = (T, F’)
return (T, F)
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Basic Algorithms

A glimpse at atmost((T, F))
return Un(T, F)
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Basic Algorithms

A glimpse at atmost((T, F))

return
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Completion: Overview

Supported Models

Fitting Operator

Implementation via smodels

Tightness
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Supported Models

Overview

Supported Models
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Supported Models

Completion

Let 1 be a normal logic program.
The completion of I1 is defined as follows:

Comp(body(r)) = Aacbody*(r)A N Naebody—(r) ™A
Comp(M) = {A <V cn head(ry=a Comp(body(r)) | A € atom(I)}

Every answer set of 1 is a model of Comp(IT), but not vice versa.

Models of Comp(I) are called the supported models of IT.

In other words, every answer set of I1 is a supported model of 1.

By definition, every supported model of I is also a model of 1.
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Supported Models

A first example

a + a & T
b + a b < a

M=< ¢ « b Comp(M) =1 ¢ « (bVd)
c « d d < (cAhe)
d <« c,e e — L
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a + a & T
b + a b < a

M=< ¢ « b Comp(M) =1 ¢ « (bVd)
c « d d < (cAhe)
d <« c,e e — L

m The supported model of I is {a, b, c}.
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Supported Models

A first example

a + a & T
b + a b < a

M=< ¢ « b Comp(M) =1 ¢ « (bVd)
c « d d < (cAhe)
d <« c,e e — L

m The supported model of I is {a, b, c}.

m The answer set of I is {a, b, c}.
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Supported Models

A second example

qg < notp q & P
n= Comp(M) =< p < (—gA—x)
p < not q,not x x o L

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 194 / 453



Supported Models

A second example

qg < notp q & P
n= Comp(M) =< p < (—gA—x)
p < not q,not x x o L

m The supported models of I are {p} and {q}.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 194 / 453



Supported Models

A second example

qg < notp q & P
n= Comp(M) =< p < (—gA—x)
p < not q,not x x o L

m The supported models of I are {p} and {q}.
m The answer sets of 1 are {p} and {q}.
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Supported Models

A third example

NM={p«p} Comp(M)={p«p}
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A third example

NM={p«p} Comp(M)={p«p}

m The supported models of I are () and {p}.
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Supported Models

A third example

NM={p«p} Comp(M)={p«p}

m The supported models of I are () and {p}.

m The answer set of s () !
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Fitting Operator

Overview

Fitting Operator
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Fitting Operator

Fitting operator: Basic idea

Idea Extend Tp to normal logic programs.

Logical background Completion
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Fitting Operator

Fitting operator: Basic idea

Idea Extend Tp to normal logic programs.
Logical background Completion

m The head atom of a rule must be true
if the rule’s body is true.
m An atom must be false

if the body of each rule having it as head is false.
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Fitting Operator

Fitting operator: Definition

Let 1 be a normal logic program.
Define
Sn(T,F) =(Tn(T,F),Fn(T,F))

where
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Fitting Operator

Fitting operator: Definition
Let 1 be a normal logic program.
Define
On(T, F) =(Tn(T, F),Fn(T,F))
where

Tn(T,F) = {head(r) | r € N, body™(r) C T,body (r) C F}
Fr(T,F) = {A € atom(N) | body™(r)NF # () or body (r)N' T # 0
for each r € I such that head(r) = A}
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Fitting Operator

Fitting operator: Example

M — a<+ c < a,not d e+ b
1=\ b« not a d < not c, not e e+ e
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Fitting Operator

Fitting operator: Example

M — a<+ c < a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Let's iterate ®p, on ({a},{d}):
®n, ({a}, {d}) =
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Fitting Operator

Fitting operator: Example

M — a<+ c < a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Let's iterate ®p, on ({a},{d}):

(
®n,({a}, {d}) = ({a,c},{b})
®n,({a,c}, {b}) = ({a},{b,d})
®n, ({a}, {b,d})
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Fitting Operator

Fitting operator: Example

M — a<+ c < a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Let's iterate ®p, on ({a},{d}):

(
®n,({a}, {d}) = ({a,c},{b})
®n,({a,c}, {b}) = ({a},{b,d})
®n,({a}, {b,d}) = ({ac}, {b})

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

199 / 453



Fitting Operator

Fitting semantics

Define the iterative variant of ®n analogously to Tn:

®P(T,F) = (T,F) O T, F) = drodi(T,F)
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Fitting Operator

Fitting semantics

Define the iterative variant of ®n analogously to Tn:
o (T, F) = (T, F) O (T, F) = onop(T, F)

Define the Fitting semantics of a normal logic program [T as the
partial interpretation:

Lli=o®n(0,0)
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Fitting Operator

Fitting semantics: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e
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Fitting Operator

Fitting semantics: Example

{a(— c <+ a,not d e<—b}
M, =

b < not a d < not c, not e e+ e

®Q (0,0) = (0, 0)
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Fitting Operator

Fitting semantics: Example

{a(— c <+ a,not d e<—b}
N, =
b < not a d < not c, not e e+ e
¢0|_|1 <®7 ®> _ <®7 ®>
d>1I'I1 <®7®> - ¢ﬂ1<®7®> =
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Fitting Operator

Fitting semantics: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e

¢0|'|1< ) > = <®7®>
= ({a},0)
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Fitting Operator

Fitting semantics: Example

M4 ac c < a,not d e« b
'™\ b+ nota d<«notc,note e<«e
¢0|_|1 <®7 ®> _ <®7 Q)>
oL (0,0) = &n,(0,0) = ({a},0)
@7 (0,0) = on({a},0) = ({a},{b})
¢I§I1 <®7 ®> = ¢|_|1<{a}7 {b}> =
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Fitting Operator

Fitting semantics: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e

P (0,0) = (0,0)
op, (0,0) = n,(0,0) = ({a},0)
o3, (0,0) = on({a}.0) = ({a},{b})
o3 (0,0) = on({a},{b}) = ({a}{b})
Liso ®h,(0,0) = ({a}, {b})
Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

201 / 453



Fitting Operator

Fitting semantics: Properties

Let 1 be a normal logic program.
m O (0, 0) is monotonic.
That is, ®%(0,0) C & (0, 0).
m The Fitting semantics of [1 is

m not conflicting,
m and generally not total.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

202 / 453



Fitting Operator

Fitting fixpoints

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

Define (T, F) as a Fitting fixpoint of 1 if ®n(T,F) = (T, F).
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Fitting Operator

Fitting fixpoints

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

Define (T, F) as a Fitting fixpoint of 1 if ®n(T,F) = (T, F).
m The Fitting semantics is the C-least Fitting fixpoint of I1.
m Any other Fitting fixpoint extends the Fitting semantics.

m Total Fitting fixpoints correspond to supported models.
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Fitting Operator

Fitting fixpoints: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e
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Fitting Operator

Fitting fixpoints: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Iy has three total Fitting fixpoints:
({a,c}.{b,d,e})
({a,d},{b,c,e})

({a,c, e}, {b,d})
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Fitting Operator

Fitting fixpoints: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Iy has three total Fitting fixpoints:
({a,c}.{b,d,e})
({a,d},{b,c,e})

({a,c, e}, {b,d})

3 has three supported models, two of them are answer sets.
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Fitting Operator

Properties of Fitting operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

m Let ®n(T,F) = (T, F').
If X is an answer set of 1 such that T C X and X N F = ),
then T/ C X and X N F' = 0.

That is, ® is answer set preserving.
@ can be used for approximating answer sets and so for propagation
in ASP-solvers.

However, @ is still insufficient, because total fixpoints correspond to
supported models, not necessarily answer sets.
The problem is the same as with program completion.

The missing piece is non-circularity of derivations !
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Fitting Operator

Properties of Fitting operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

m Let ®n(T,F) = (T, F').
If X is an answer set of Nl such that T C X and X N F = 0,
then T/ C X and X N F' = 0.

m That is, ®py is answer set preserving.
= @& can be used for approximating answer sets and so for propagation

in ASP-solvers.
However, @ is still insufficient, because total fixpoints correspond to
supported models, not necessarily answer sets.
1= The problem is the same as with program completion.

The missing piece is non-circularity of derivations !

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 205 / 453



Fitting Operator
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Fitting Operator

e B S0, 0) = (0,0)
”‘{ b« } on(0.0) = (0.0)

That is, Fitting semantics cannot assign false to a and b,
although they can never become true !
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Implementation via smodels

Overview

Implementation via smodels
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Implementation via smodels

Rebuilding atleast((T, F))

repeat from Fitting operator
if (T, F) is conflicting then return (T, F)
(T' F"y « (T,F)
case of

until (T, F) = (T',F')
return (T, F)
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Implementation via smodels

Rebuilding atleast((T, F))

repeat from Fitting operator
if (T, F) is conflicting then return (T, F)
(T',F"y + (T,F)
case of
r € I such that head(r) ¢ T and
body™(r) C T, body™(r) C F:
T < T U {head(r)}
A € (atom(MM) \ F) such that for all r € I:
head(r) # A or (body™(r) N F) U (body ™ (r)N T) # 0:
F « FU{A}

until (T, F) = (T',F')
return (T, F)
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Consider:

a< b b < not ¢ c <+ not b
M=
d<+ e e < not f f < not e

m atleast(({a}, {d})) = ({a}, {d})

m The only supported model X of 1 such that a€ X and d ¢ X is
{a,b,f} !
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Implementation via smodels

Relationship with Fitting semantics
Let 1 be a normal logic program.

= atleast((0), 0)) = | |;»o®{(0.0)

What about supported models?
Consider:

a< b b < not ¢ c <+ not b
M=
d<+ e e < not f f < not e

m atleast(({a}, {d})) = ({a}, {d})

m The only supported model X of 1 such that a€ X and d ¢ X is

{a,b,f}!

We can enhance atleast((T, F)) by backward propagation !
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Implementation via smodels

Rebuilding atleast((T, F))

repeat from supported models
if (T, F) is conflicting then return (T, F)
(T',F"y + (T,F)
case of
r € I such that head(r) ¢ T and
body™(r) C T, body™(r) C F:
T < T U {head(r)}
A € (atom(MM) \ F) such that for all r € I:
head(r) # A or (body™(r) N F) U (body ™ (r)N T) # 0:
F+ FU{A}

until (T, F) = (T',F')
return (T, F)
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A € (atom(MM) \ F) such that for all r € I:
head(r) # A or (body™(r) N F) U (body ™ (r)N T) # 0:
F < FU{A}
head(r) € F,r € N such that body™(r) N body ™ (r) = () and
(body™(r)\ T) U (body™(r) \ F) = {A}:
if A€ body*(r) then F « F U {A} else T < T U{A}
(A = head(r)) € T,r € N such that body™(r) Z T or body (r) Z F and
for all r' € M\ {r}: head(r’) # A or (body™(r') N F)U (body(r')N T) # 0:
T < T U body™(r)
F < F U body(r)

until (T, F) = (T',F')
return (T, F)
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Implementation via smodels

Relationship with supported models

Let M be a normal logic program and (T, F) a total interpretation.
m atleast((T,F)) = (T,F) iff T is a supported model of
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Reconsider:
no—4 2a< c < a,not d e« b
1= b+ not a d « not c, not e e+ e
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Assuming atmost((T, F)) =0 for all (T, F),
we can apply smodels to compute supported models !

Reconsider:
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n =
b < not a d < not c, not e e+ e
Call Interpretation Result
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Implementation via smodels

Relationship with supported models
Let M be a normal logic program and (T, F) a total interpretation.
m atleast((T,F)) = (T,F) iff T is a supported model of

Assuming atmost((T, F)) =0 for all (T, F),
we can apply smodels to compute supported models !

Reconsider:
{ae c <+ a,not d e<—b}
n =
b < not a d < not c, not e e+ e
Call Interpretation Result
smodels (0,0)
expand (0, 0) ({a},{b})

select ({a}, {p}) ({a, e}, {b})
expand | ({a e}, {b}) | ({a,c e}, {b,d})
smodels <®, ®> {37 G, e}
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Tightness

Overview

Tightness
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Tightness

(Non-)cyclic derivations

m Cyclic derivations are causing the mismatch between supported
models and answer sets.

m Atoms in an answer set can be “derived” from a program in a finite
number of steps.

m Atoms in a cycle (not being “supported from outside the cycle")
cannot be “derived” from a program in a finite number of steps.
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Tightness

(Non-)cyclic derivations

m Cyclic derivations are causing the mismatch between supported
models and answer sets.

m Atoms in an answer set can be “derived” from a program in a finite
number of steps.

m Atoms in a cycle (not being “supported from outside the cycle")
cannot be “derived” from a program in a finite number of steps.

== But they do not contradict the completion of a program.
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Tightness

Non-cyclic derivations

Let X be an answer set of normal logic program 1.
m For every atom A € X, there is a finite sequence of positive rules

(M. .y rn)

such that

head(r)) = A,
body™ (r;) C {head(r;) | i <j < n}for1<i<n,

BrieclXforl1<i<n.
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such that
head(r)) = A,
body™ (r;) C {head(r;) | i <j < n}for1<i<n,
reMXforl1<i<n.

m That is, each atom of X has a non-cyclic derivation from MX.
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Tightness

Non-cyclic derivations

Let X be an answer set of normal logic program 1.

m For every atom A € X, there is a finite sequence of positive rules

(M. .y rn)

such that
head(r)) = A,
body™ (r;) C {head(r;) | i <j < n}for1<i<n,
reMXforl1<i<n.

m That is, each atom of X has a non-cyclic derivation from MX.

m Is a derivable from program {a « b, b+ a} ?
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Tightness

Positive atom dependency graph

Let 1 be a normal logic program.
The positive atom dependency graph of [1 is a directed graph
G(M) = (V, E) such that

V = atom(I) and

E=1{(p,q) | reN,pe body*(r), head(r) = q}.
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Tightness

Examples

a< notb b < not a -
My =<{ c<¢ a,notd d + a, not ¢ c/ \d

e+ c,not a e <+ d,not b b
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a< not b
My =< c<+ a,not d
e < c,not a

a< not b
M3 = C < not a
d<+ ab

Torsten Schaub (KRRQUP)

Tightness

Examples

b <+ not a
d < a, not c

e <+ d,not b Y~ b

b < not a c— =

c+d /T
d+c ; b
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Tightness

Tight programs

m A normal logic program [ is tight iff G(I) is acyclic.

m For example, Iy is tight, whereas I3 is not.
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Tightness

Tight programs

m A normal logic program [ is tight iff G(I) is acyclic.
m For example, Iy is tight, whereas I3 is not.

m If a normal logic program 1 is tight, then
X is an answer set of M iff X is a model of Comp(IN).

That is, for tight programs, answer sets and supported models
coincide.
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Tightness

Tight programs

A normal logic program [ is tight iff G(IT) is acyclic.

For example, I is tight, whereas I3 is not.

If a normal logic program I is tight, then
X is an answer set of M iff X is a model of Comp(IN).

That is, for tight programs, answer sets and supported models
coincide.

m Also, for tight programs, ®p, is sufficient for propagation.
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Tightness

(Non-)tight programs: Examples

a< not b b <+ not a
My=< c+ a,not d d < a, not c
e+ c,not a e+ d,not b

c/e\d
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(Non-)tight programs: Examples

e
a< not b b < not a
c/ \d

My=< c+ a,not d d < a, not c

e+ c,not a e+ d,not b \a/ b
Answer sets: {{a,c},{a,d, e}, {b}}
Supported models: {{a,c},{a,d, e}, {b}}
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Tightness

(Non-)tight programs: Examples

a< not b b <+ not a /e\d
My=< c+ a,not d d < a, not c g

e+ c,not a e+ d,not b

Answer sets: {{a,c}, {a.d, e}, {b}}
Supported models: {{a;c}t. {a,d, e}, {b}}
a< not b b+ not a c—______——d
M3 =< c< not a c+d /T
d<+ a,b d+ c a b
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Tightness

(Non-)tight programs: Examples

e
a< not b b <+ not a
My=1<¢ c<« a notd d < a,not c C< >d
e+ c,not a e+ d,not b = b
Answer sets: {{a,c},{a,d, e}, {b}}
Supported models: {{a,c},{a,d, e}, {b}}
a< not b b+ not a (o —
M3 =< c< not a c+d /T
d<+ a,b d+ c a b
Answer sets: {{a}, {b,c,d}}
Supported models: {{a},{b,c,d},{a,c,d}}
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Implementation via smodels
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Definitions

Overview

Definitions
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Definitions

Unfounded sets

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

A set U C atom(IN) is an unfounded set of I with respect to (T, F) if,
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Definitions

Unfounded sets

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

A set U C atom(IN) is an unfounded set of I with respect to (T, F) if,
for each rule r € T1, we have

head(r) & U,

body™t(r)N F # () or body (r)N T # (), or

bodyt(r)n U # 0.

m Intuitively, (T, F) is what we already know about I1.
m Rules satisfying Condition 1 or 2 are not usable for further derivations.

m Condition 3 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true.
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Definitions

Example
a «< b
i :{ b < a }

() is an unfounded set (by definition).

{a} is not an unfounded set of I wrt ((), ().
{a} is an unfounded set of I wrt (0, {b}).
{a} is not an unfounded set of M wrt ({b}, ).
= Analogously for {b}.

{a, b} is an unfounded set of M wrt (), 0).

{a, b} is an unfounded set of I wrt any partial interpretation.
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Definitions

Greatest unfounded sets
Observation The union of two unfounded sets is an unfounded set.

Let 1 be a normal logic program,

and let (T, F) be a partial interpretation.

The greatest unfounded set of N with respect to (T, F), denoted by
Un(T, F), is the union of all unfounded sets of M with respect to (T, F).

Alternatively, we may define
Un(T,F) = atom(N) \ Cn({r € N | body™(r)N F =0}7).

Observe that Cn({r € M| body™(r) N F =} ) contains all
non-circularly derivable atoms from M wrt (T, F).
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Well-Founded Operator

Overview

Well-Founded Operator
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Well-Founded Operator

Well-founded operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

Condition 2 (in the definition of an unfounded set)
corresponds to set Fn(T, F) of Fitting's ®n (T, F).
Extend (negative part of) Fitting's operator ®p.
That is,
keep definition of T (T, F) from ®r (T, F) and
replace Fn(T, F) from ®n(T,F) by Un(T,F).

In words, an atom must be false
if it belongs to the greatest unfounded set.

QI_I<T F> : <T|_|<T F>U|_|<T F>>
on(T,F) CQn(T, F)
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Well-Founded Operator

Well-founded operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

Observation Condition 2 (in the definition of an unfounded set)
corresponds to set Fn(T, F) of Fitting's ®n (T, F).
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Well-Founded Operator

Well-founded operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

Observation Condition 2 (in the definition of an unfounded set)
corresponds to set Fn(T, F) of Fitting's ®n (T, F).
Idea Extend (negative part of) Fitting's operator ®p.
That is,
m keep definition of Tp(T, F) from ®n(T, F) and
m replace Fn(T, F) from ®n(T, F) by Un(T, F).
In words, an atom must be false
if it belongs to the greatest unfounded set.
Definition Qn(T,F) = (Tn(T,F),Un(T,F))
Property ®n(T,F) C Qn(T,F)
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Well-Founded Operator

Well-founded operator: Example

M — a<+ c < a,not d e+ b
1=\ b« not a d < not c, not e e+ e
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Well-Founded Operator

Well-founded operator: Example

a<+ c < a,not d e+ b
M, =
b < not a d < not c, not e

e« e
Let's iterate Qp, on ({c},0):

Qn,({c},0) = {a},{d})
Qn,({a}, {d}) =

= ({ac}.{b,e})
th <{a7 C}7 {b7 e}>
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Let's iterate Qp, on ({c},0):

Qn,({c},0) = {a},{d})
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Qn,({a,c}, {be}) = ({a},{b,d,e})
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Well-Founded Operator

Well-founded operator: Example

M — a<+ c < a,not d e+ b
1=\ b« not a d < not c, not e e+ e

Let's iterate Qp, on ({c},0):

Qn, ({c},0) {a}, {d})
Qn, ({a}, {d}) ({a,c}, {b,e})
Qn,({a,c}, {be}) = ({a},{b,d,e})
Qn, ({a}, {b,d, e}) ({a;c},{be})
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Well-Founded Operator

Well-founded semantics

Define the iterative variant of n analogously to ®p:

QY(T,F) = (T,F) QLT F) = QuQL(T, F)
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Well-Founded Operator

Well-founded semantics

Define the iterative variant of n analogously to ®p:
(T, F) = (T, F) QY (T, F) = Qn@n (T, F)

Define the well-founded semantics of a normal logic program I1 as the
partial interpretation:

Lli=0%n (0, 0)
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Well-Founded Operator

Well-founded semantics: Example

{a(— c <+ a,not d e<—b}
M, =

b < not a d < not c, not e e+ e

Qg (0,0) = (0, 0)
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Well-Founded Operator

Well-founded semantics: Example

M — a<+ c <+ a,not d e+ b

1=\ b« not a d < not c, not e e+ e
Qp (0,0) = (0,0)
Qll'h <®7 ®> = Qn1<®7®> =
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Well-Founded Operator

Well-founded semantics: Example

a<+ c <+ a,not d e+ b
I_Ilz{b<—nota d < not c, not e e<—e}
Qp, (0,0) = (0,0)
Q, (0,0) = 2n,(0,0) = ({ah,0)
QF.(0,0) = Qn,({a},0) = ({a}{b,e})
QI?lll <®7®> = Qﬂ1<{a}v{bv e}> =

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 228 / 453



Well-Founded Operator

Well-founded semantics: Example

a<+ c <+ a,not d e+ b
I_Ilz{b<—nota d < not c, not e e<—e}
Q) 0,0) = (0,0)
Q, (0,0) = 2n,(0,0) = ({a},0)
QF.(0,0) = Qn,({a},0) = ({ah{be})
Q5,000 = Qn({a}.{be}) = ({a},{be})
Lliso @0, (0,0) = ({a},{b.e})
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Well-Founded Operator

Well-founded semantics: Properties

Let 1 be a normal logic program.
m Qn(0,0) is monotonic.
That is, Q4(0,0) T Q57(0,0).
m The well-founded semantics of I1 is

m not conflicting,
m and generally not total.

m We have |_|,-20 ¢in (@, @) C |_|,'20 Qir] ((Z), ®>

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

229 / 453



Well-Founded Operator

Well-founded fixpoints

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.
Define (T, F) as a well-founded fixpoint of I if Qn(T, F) = (T, F).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 230 / 453



Well-Founded Operator

Well-founded fixpoints

Let 1 be a normal logic program,

and let (T, F) be a partial interpretation.

Define (T, F) as a well-founded fixpoint of I if Qn(T, F) = (T, F).
m The well-founded semantics is the C-least well-founded fixpoint of I1.
m Any other well-founded fixpoint extends the well-founded semantics.

m Total well-founded fixpoints correspond to answer sets.
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Well-Founded Operator

Well-founded fixpoints: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e
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Well-founded fixpoints: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e

My has two total well-founded fixpoints:
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Well-founded fixpoints: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e

My has two total well-founded fixpoints:
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Well-Founded Operator

Well-founded fixpoints: Example

M — a<+ c <+ a,not d e+ b
1=\ b« not a d < not c, not e e+ e

My has two total well-founded fixpoints:
({a,c},{b,d,e})
({a,d},{b,c,e})

Both of them represent answer sets.
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Well-Founded Operator

Properties of well-founded operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.
m Let Qn(T,F) = (T, F').
If X is an answer set of Il such that 7T € X and X N F = 0,
then T/ C X and X N F' = 0.
That is, Q2 is answer set preserving.

Qp can be used for approximating answer sets and so for propagation
in ASP-solvers.

Unlike ®p, operator Q2 is sufficient for propagation because total
fixpoints correspond to answer sets.

In addition to 2, most ASP-solvers apply backward propagation (cf.
Page 488), originating from program completion (although this is
unnecessary from a formal point of view).
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Well-Founded Operator

Properties of well-founded operator

Let 1 be a normal logic program,
and let (T, F) be a partial interpretation.

m Let Qn(T,F) = (T, F').
If X is an answer set of Nl such that T C X and X N F = 0,
then T/ C X and X N F' = 0.

m That is, Qp is answer set preserving.
= Qp can be used for approximating answer sets and so for propagation

in ASP-solvers.
Unlike @, operator Qp is sufficient for propagation because total
fixpoints correspond to answer sets.
w= |n addition to p, most ASP-solvers apply backward propagation (cf.

Page 488), originating from program completion (although this is
unnecessary from a formal point of view).
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Implementation via smodels

Overview

Implementation via smodels
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Implementation via smodels

Rebuilding atmost((T, F))

from (greatest) unfounded sets

return
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Implementation via smodels

Recalling expand

Global: Normal logic program [1
expand((T, F))
repeat
(T, F) < atleast({T, F))

if (T, F) is conflicting then return (T, F)
else

F'«~ F

F < F Uatmost((T, F))
until F = F/
return (T, F)

v atleast((T, F)) derives deterministic consequences from
Clark’s completion

w= atmost((T, F)) derives deterministic consequences from
unfounded sets
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Implementation via smodels

Relationship with well-founded semantics

Let 1 be a normal logic program.

| ] expand((@, @>) = I_lizoﬂ{'l <®7 ®>
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Implementation via smodels

Relationship with well-founded semantics

Let 1 be a normal logic program.
m expand((0,0)) = | |;5,2n(0,0)

1= That is, expand is basically an implementation of well-founded
semantics !

1= Additional backward propagation in atleast prunes the search space
further !
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Implementation via smodels

Relationship with answer sets

Let M be a normal logic program and (T, F) a total interpretation.
m expand((T,F)) = (T, F) iff T is an answer set of Il
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Implementation via smodels

Relationship with answer sets

Let M be a normal logic program and (T, F) a total interpretation.
m expand((T,F)) = (T, F) iff T is an answer set of Il

Given atmost((T,F)) = Unp(T,F),

we can apply smodels to compute answer sets !
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Implementation via smodels

Relationship with answer sets

Let M be a normal logic program and (T, F) a total interpretation.
m expand((T,F)) = (T, F) iff T is an answer set of Il

Given atmost((T,F)) = Unp(T,F),
we can apply smodels to compute answer sets !

Reconsider:
Mo—4 < ¢ < a,not d e+ b
L=\ b« not a d < not c, not e e+ e
Call Interpretation Result
smodels (0, 0)
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Implementation via smodels

Relationship with answer sets

Let M be a normal logic program and (T, F) a total interpretation.
m expand((T,F)) = (T, F) iff T is an answer set of Il

Given atmost((T,F)) = Unp(T,F),
we can apply smodels to compute answer sets !

Reconsider:
a<+ c < a,not d e+ b
M =
b < not a d < not c, not e e+ e
Call Interpretation Result
smodels (0, 0)
expand (0,0)
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Implementation via smodels

Relationship with answer sets

Let M be a normal logic program and (T, F) a total interpretation.
m expand((T,F)) = (T, F) iff T is an answer set of Il

Given atmost((T,F)) = Unp(T,F),
we can apply smodels to compute answer sets !

Reconsider:
{a% c <+ a,not d e%b}
M =
b < not a d < not c, not e e+ e
Call Interpretation Result
smodels (0, 0)
expand (0,0) ({a}, {b,e})

select ({a}, {b, e})
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m expand((T,F)) = (T, F) iff T is an answer set of Il

Given atmost((T,F)) = Unp(T,F),
we can apply smodels to compute answer sets !

Reconsider:
{a% c <+ a,not d e%b}
M =
b < not a d < not c, not e e+ e
Call Interpretation Result
smodels (0, 0)
expand (0,0) ({a}, {b,e})
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we can apply smodels to compute answer sets !

Reconsider:
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M =
b < not a d < not c, not e e+ e
Call Interpretation Result
smodels (0, 0)
expand (0,0) ({a}, {b,e})
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Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

237 / 453



Implementation via smodels

Relationship with answer sets

Let M be a normal logic program and (T, F) a total interpretation.
m expand((T,F)) = (T, F) iff T is an answer set of Il

Given atmost((T,F)) = Unp(T,F),
we can apply smodels to compute answer sets !

Reconsider:
{a% c <+ a,not d e%b}
M =
b < not a d < not c, not e e+ e
Call Interpretation Result
smodels (0, 0)
expand (0,0) ({a}, {b,e})

select ({a},{b, e}) ({a,c}, {b,e})
expand | ({a,c},{b,e}) | ({a,c},{b,d,e})
smodels (0, 0) {a, c}
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Implementation via smodels

Additional remarks on smodels

The smodels implementation also features:
m Extended rules

m Cardinality constraints
m Weight constraints

Optimiziation via minimize and maximize
Efficient counter-based propagation

Lazy implementation of atmost based on “source pointers”

Failed-literal detection, also called lookahead, for stronger propagation
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Loops and Loop Formulas

Overview

Loops and Loop Formulas
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Loops and Loop Formulas

Characterizing non-cyclic derivations

An alternative approach

Question Is there a propositional formula F(I1) such that the models
of F(M) correspond to the answer sets of 1 ?
If we consider the completion of a program, Comp(I),
then the problem boils down to eliminating the circular
support of atoms that are true in the supported models
of I1.
Add formulas to Comp(IN) that prohibit circular support of
sets of atoms.
Circular support between atoms p and g is possible
if p has a path to g and g has a path to p
in a program’s positive atom dependency graph.
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of F(IM) correspond to the answer sets of 1 ?
w= |f we consider the completion of a program, Comp(I1),
then the problem boils down to eliminating the circular
support of atoms that are true in the supported models
of .
Idea Add formulas to Comp(I) that prohibit circular support of
sets of atoms.
1= Circular support between atoms p and g is possible
if p has a path to g and g has a path to p
in a program’s positive atom dependency graph.
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Loops and Loop Formulas

Loops
Let 1 be a normal logic program, and

let G(INM) = (atom(I), E) be the positive atom dependency graph of I1.

m Aset () C L C atom(N) is a loop of N
if it induces a non-trivial strongly connected subgraph of G(IN).

m That is, each pair of atoms in L is connected by a path of non-zero
length in (L, EN (L x L)).
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Loops and Loop Formulas

Loops

Let 1 be a normal logic program, and
let G(INM) = (atom(I), E) be the positive atom dependency graph of I1.

m Aset () C L C atom(N) is a loop of N
if it induces a non-trivial strongly connected subgraph of G(IN).

m That is, each pair of atoms in L is connected by a path of non-zero
length in (L, EN (L x L)).

m We denote the set of all loops of I by Loop(IN).

Observation Program I is tight iff Loop(I) = (.
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Loops and Loop Formulas

Loop formulas

Let 1 be a normal logic program.
m For L C atom(IN), define the external supports of L for 1 as

ESn(L) = { r € M| head(r) € L, body™(r)NnL=10}.
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Loop formulas

Let 1 be a normal logic program.
m For L C atom(IN), define the external supports of L for 1 as

ESn(L) = { r € M| head(r) € L, body™(r)NnL=10}.

m The (disjunctive) loop formula of L for I is
LFa(L) = (VaelA) — (\/rEESn(L) Comp(body(r)))

= (Areesyy~Comp(body(r))) — (Aaci—A)-
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Loop formulas

Let 1 be a normal logic program.
m For L C atom(IN), define the external supports of L for 1 as
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m The (disjunctive) loop formula of L for I is
LFa(L) = (VaelA) — (\/rEESn(L) Comp(body(r)))
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== The loop formula of L enforces all atoms in L to be false whenever L is
not externally supported.
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Loops and Loop Formulas

Loop formulas

Let 1 be a normal logic program.
m For L C atom(IN), define the external supports of L for 1 as

ESn(L) = { r € M| head(r) € L, body™(r)NnL=10}.

m The (disjunctive) loop formula of L for I is
LFa(L) = (VaelA) — (\/rEESn(L) Comp(body(r)))

= (Areesyy~Comp(body(r))) — (Aaci—A)-

== The loop formula of L enforces all atoms in L to be false whenever L is
not externally supported.

m Define
LF(M)={LFn(L) | L € Loop() }.
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Loops and Loop Formulas

Lin-Zhao Theorem

Theorem

Let I be a normal logic program and X C atom(I).
Then, X is an answer set of I iff X |= Comp(T) U LF(I).
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Loops and Loop Formulas

Loops and loop formulas: Examples

a< not b b <+ not a -
My=< c<« a,notd d < a,not ¢ c/ \d
e< c,not a e<d,not b \a/
Loop(M,) = ()
LF(My) =0

b
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Loops and loop formulas: Examples

a< not b b <+ not a -
My=< c<« a,notd d < a,not ¢ c/ \d
e< c,not a e<d,not b \a/ b
Loop(M,) = ()
LF(My) =0
a< not b b <+ not a =

M3 = c 4+ not a c+d T
d<+ ab d<+c 5 b

Loop(N3) = {{c, d}}
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Loops and Loop Formulas

Loops and loop formulas: Examples

a< not b b <+ not a -
M =< c<« a,notd d < a, not ¢ c/ \d

e+ c,not a e+ d,not b b

Loop(M,) = ()
LF(My) =0

a< not b b < not a =

M3={ c<nota c<+d T =
’ d<ab d«c a/L

Loop(M3) = {{c, d}}

LF(N3) ={(cVvd)— (-aV(anb))}
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Loops and Loop Formulas

Loops and loop formulas: Properties

Let X be a supported model of normal logic program I1.

Then, X is an answer set of I iff
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Loops and loop formulas: Properties

Let X be a supported model of normal logic program I1.

Then, X is an answer set of I iff
m X ={LFn(U) | UC atom(N) };
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Loops and loop formulas: Properties

Let X be a supported model of normal logic program I1.
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Then, X is an answer set of I iff
m X ={LFn(VU)| UC atom(N) };
s X E{LFn(U) | UC X };
m X ={LFn(L)| L€ Loop(N) }, thatis, X = LF(MN);
m X ={LFn(L)| L€ Loop(N),LC X }.

w |f X is not an answer set of 1,
then there is a loop L C X \ Cn(MX) such that X & LFp(L).
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Loops and Loop Formulas

Loops and loop formulas: Properties (ctd)

If P & N'CY/poly,! then there is no translation 7 from logic programs to
propositional formulas such that, for each normal logic program [1, both of
the following conditions hold:

The propositional variables in T[] are a subset of atom(IN).

The size of T[] is polynomial in the size of .

LA conjecture from the theory of complexity that is widely believed to be true.
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The propositional variables in T[] are a subset of atom(IN).

The size of T[] is polynomial in the size of .

== Every vocabulary-preserving translation from normal logic programs to
propositional formulas must be exponential
(in the worst case).

Observations
m Translation Comp(M) U LF(IM) preserves the vocabulary
of I.
m The number of loops in Loop([T) may be exponential in
|atom(I)].
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Tableau Calculi: Overview

Motivation
Tableau Methods

Tableau Calculi for ASP
m Definitions
m Tableau Rules for Clark’'s Completion
m Tableau Rules for Unfounded Sets
m Tableau Rules for Case Analysis
m Particular Tableau Calculi
m Relative Efficiency
m Example Tableaux
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Motivation

Motivation

Goal Analyze computations in ASP-solvers

A declarative and fine-grained instrument for characterizing
operations as well as strategies of ASP-solvers

View answer set computations as derivations in an

inference system

= Tableau-based proof system for analyzing ASP-solving
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Motivation

Tableau calculi

m Traditionally, tableau calculi are used for

m automated theorem proving and
m proof theoretical analysis

in classical as well as non-classical logics.

m General idea: Given an input, prove some property by
decomposition. Decomposition is done by applying deduction rules.

m For details, see [17].
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Tableau Methods

Overview

Tableau Methods

Definitions

Tableau Rules for Clark’s Completion
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Relative Efficiency
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Tableau Methods

Tableau calculi: General definitions

m A tableau is a (mostly binary) tree.
m A branch in a tableau is a path from the root to a leaf.

A branch containing 71, ...,7vm can be extended by applying
tableau rules of form:

71 » Ym 71 » Ym
a1 ,‘31 ‘ 000 ‘ 3n
G
Rules of the former format append entries aq, ..., a, to the branch.
Rules of the latter format create multiple sub-branches for 51, ...,/ 3.
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Tableau Methods

Tableau calculus: Example

A simple tableau calculus for proving unsatisfiability of propositional
formulas, composed from —, A, and V, consists of rules:

o a1 A oo B1V B
a ag B | B2
a

All rules are semantically valid, interpreting entries in a branch as
connected via “and” and distinct (sub-)branches as connected via

or .

A propositional formula ¢ (composed from —, A, and V) is
unsatisfiable iff there is a tableau with ¢ as the root node such that

all other entries can be produced by tableau rules and
every branch contains some formulas o and —a.
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Tableau Methods

Tableau calculus: Example (ctd)

(1) an((=bA(=aV b))V -mma) [+]
(2) a [1]
(3) (b A (—aV b))V -—ma [1]
(4) —-bA(maVvb) [3] 9) -—-a  [3]
(5) —b [4] (10) -a [9]
(6) —aVb [4]
(7) —a [o] (8) b [6]

All three branches of the tableau are contradictory (cf. 2, 5, 7, 8, 10).
w aA((=bA(—aV b))V ——-a) is unsatisfiable.
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Tableau Calculi for ASP

Overview

Tableau Calculi for ASP
m Definitions
m Tableau Rules for Clark’'s Completion
m Tableau Rules for Unfounded Sets
m Tableau Rules for Case Analysis
m Particular Tableau Calculi
m Relative Efficiency
m Example Tableaux
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Tableau Calculi for ASP

Tableaux and ASP: The idea
m A tableau rule captures an elementary inference scheme in an
ASP-solver.

m A branch in a tableau corresponds to a successful or unsuccessful
computation of an answer set.

m An entire tableau represents a traversal of the search space.
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Tableau Calculi for ASP Definitions

Tableaux and ASP: Specific definitions

m A (signed) tableau for a logic program I is a binary tree such that
m the root node of the tree consists of the rules in I1;
m the other nodes in the tree are entries of the form Tv or Fv, called
signed literals, where v is a variable,
m generated by extending a tableau using deduction rules (given below).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 257 / 453



Tableau Calculi for ASP Definitions

Tableaux and ASP: Specific definitions

m A (signed) tableau for a logic program I is a binary tree such that
m the root node of the tree consists of the rules in I1;
m the other nodes in the tree are entries of the form Tv or Fv, called
signed literals, where v is a variable,
m generated by extending a tableau using deduction rules (given below).
m An entry Tv (Fv) reflects that variable v is true (false) in a
corresponding variable assignment.

= A set of signed literals constitutes a partial assignment.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 257 / 453



Tableau Calculi for ASP Definitions

Tableaux and ASP: Specific definitions

m A (signed) tableau for a logic program I is a binary tree such that

m the root node of the tree consists of the rules in I1;

m the other nodes in the tree are entries of the form Tv or Fv, called
signed literals, where v is a variable,

m generated by extending a tableau using deduction rules (given below).

m An entry Tv (Fv) reflects that variable v is true (false) in a
corresponding variable assignment.

= A set of signed literals constitutes a partial assignment.
m For a normal logic program [1,

m atoms of [1 in atom(I) and
m bodies of M in body (M) = {body(r) | r € M}

can occur as variables in signed literals.
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Tableau Calculi for ASP Definitions

Tableau rules for ASP at a glance

p<hy.oishn
(FTB) th,. .. tl (BFB)
T{h,...,In}
p<h,....lh
(FTA)  Tf{h,..h} (BFA)
Tp
&= lfgaaoglhyacaglh
GiE) fl; (BTB)
F{h,....0i,.... In}
(FFA) M () (BTA)
P
(WFN) FBl’Fi’FBm 1) (WFJ)
P
FBi,...,FBn
(FL PR ) (BL)
(Cut[X]) B v v

Torsten Schaub (KRRQUP)

Answer Set Programming

[43]
F{’l:"'»’f»"w’ﬂ}
th,...,th1,thigg, ... th
fl;

p < Il:- 0o 7In
i
F{/ly- 0o g /n}
T{h,.. s i, In}

t/;

Tp
FBi,...,FBi_1,FBiy1,...,FBn
TB;

Tp

FBi,...,FBi_1,FBii1,...,FBn
i
Tp
FBi,...,FBi_1,FBi.1,...,FBny

T5;
(#1X1)
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Tableau Calculi for ASP Definitions

More concepts

m A tableau calculus is a set of tableau rules.

A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v.

A branch in a tableau is total for a program I1,
if it contains either Tv or Fv for each v € atom([T) U body().

A branch in a tableau of some calculus 7 is closed,
if no rule in 7 other than Cut can produce any new entries.

A branch in a tableau is complete,
if it is either conflicting or both total and closed.

A tableau is complete,
if all its branches are complete.

A tableau of some calculus 7 is a refutation of T for a program 1,
if every branch in the tableau is conflicting.
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Tableau Calculi for ASP Definitions

Consider the program

a <
[M=< c <« not b,not d
d + a,not ¢

having two answer sets {a, c} and {a, d}.

Torsten Schaub (KRRQUP) Answer Set Programming
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Tableau Calculi for ASP Definitions

(Previewed) Example

a <

c < not b, not d
d < a,not ¢

(FTB)
(FTA)
(FFA)
(Cut[atom()]) Tc
(BTA) T{not b, not d}
(BTB) Fd

(FFB) F{a, not c}

Recall answer sets {a, c} and {a, d}.

Torsten Schaub (KRRQUP) Answer Set Programming

TO
Ta
Fb

Fc
(BFA) F{not b, not d
(BFB) Td

(FTB) T{a, not c}
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Tableau Calculi for ASP Definitions

(Previewed) Example

a<
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Tableau Calculi for ASP Definitions

(Previewed) Example

a<
c < not b, not d
d < a,not ¢

(FTB) T0

(FTA) LIE

FFA) Fb
(Cut[atom()]) Tc Fc
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Tableau Calculi for ASP Definitions
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Tableau Calculi for ASP Definitions

(Previewed) Example
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Tableau Calculi for ASP Definitions
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(FTB) T0
(FTA) Ta
(FFA) Fb
(Cut[atom()]) Tc Fc
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Recall answer sets {a, c} and {a, d}.
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Tableau Calculi for ASP Definitions

Tableau rules: Auxiliary definitions

m The application of rules makes use of two conjugation functions
t and f.

m For a literal /, define:

= T/ if [is an atom
N Fp if | = not p for an atom p

£l — F/ if | is an atom
Tp if I = not p for an atom p

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

262 / 453



Tableau Calculi for ASP Definitions

Tableau rules: Auxiliary definitions

m The application of rules makes use of two conjugation functions,
t and f.

m For a literal /, define:

= T/ if [is an atom
N Fp if | = not p for an atom p

£l — F/ if | is an atom
a Tp if | = not p for an atom p

Examples

tp=Tp fp=Fp tnot p=Fp fnot p=Tp
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Tableau Calculi for ASP Definitions

Tableau rules: Auxiliary definitions (ctd)

m Some tableau rules require conditions for their application.
Such conditions are specified as provisos:

prerequisites

consequence (proviso) proviso: some condition(s)

i All tableau rules given in the sequel are answer set preserving.
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Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Forward True Body (FTB)

Prerequisites All of a body'’s literals are true.
Consequence The body is true.
Tableau Rule FTB
p+—h,.... 1,
th,..., th
T{h,..., I}
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Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Forward True Body (FTB)

Prerequisites All of a body'’s literals are true.
Consequence The body is true.
Tableau Rule FTB
p+—h,.... 1,
th,..., th
T{h,..., I}

Example

a< b, not c
Tb
Fc
T{b, not c}
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Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Backward False Body (BFB)

Prerequisites A body is false, and all its literals except for one are true.
Consequence The residual body literal is false.
Tableau Rule BFB

F{h,....li,.... In}

th,...,thq,thyg,... th
fl;
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Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Backward False Body (BFB)

Prerequisites A body is false, and all its literals except for one are true.
Consequence The residual body literal is false.
Tableau Rule BFB

U A
th,...,thq,thyg,... th

fl;
Examples
F{b, not c} F{b, not c}
_Ub 6
Tc Fb
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Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Forward False Body (FFB)
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Consequence The body is false.
Tableau Rule FFB
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fl;
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Forward False Body (FFB)

Prerequisites Some literal of a body is false.
Consequence The body is false.
Tableau Rule FFB
ph,... li,... 1
fl;
F{h,....0i,..., [}

Examples
a< b,not c a<+ b,not c
B . Je
F{b, not c} F{b, not c}
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Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Backward True Body (BTB)

Prerequisites A body is true.
Consequence The body's literals are true.
Tableau Rule BTB

T{h, oo by}
t/;
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Backward True Body (BTB)

Prerequisites A body is true.
Consequence The body's literals are true.
Tableau Rule BTB

T{h, oo by}
t/;

Examples

T{b, not c} T{b, not c}
Tb Fc
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Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Reviewing tableau rules for bodies
Consider rule body B = {h,...,I,}.

m Rules FTB and BFB amount to implication:
hnAN---Nl,— B
m Rules FFB and BTB amount to implication:

B—s>hA---Nly
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Reviewing tableau rules for bodies
Consider rule body B = {h,...,I,}.

m Rules FTB and BFB amount to implication:
hnAN---Nl,— B
m Rules FFB and BTB amount to implication:

B—s>hA---Nly

1= Together they yield:

B=hAN---Nly
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Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Forward True Atom (FTA)

Prerequisites Some of an atom's bodies is true.
Consequence The atom is true.
Tableau Rule FTA

p+—h,.... 1,
T{h,..., I}
Tp
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Forward True Atom (FTA)

Prerequisites Some of an atom's bodies is true.
Consequence The atom is true.
Tableau Rule FTA

p+—h,.... 1,

T{h,..., I}
Tp
Examples
a< b,not c a<+d,not e
T{b, not c} T{d, not e}
LE] LIE
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Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Backward False Atom (BFA)

Prerequisites An atom is false.

Consequence The bodies of all rules with the atom as head are false.

Tableau Rule BFA
p < /1,...,/,,
Fp
F{h,....Ih}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

270 / 453



Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Backward False Atom (BFA)

Prerequisites An atom is false.
Consequence The bodies of all rules with the atom as head are false.
Tableau Rule BFA

p+—h,.... 1,
Fp
F{h,....Ih}
Examples
a< b,not c a<+d,not e
e B
F{b, not c} F{d, not e}
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Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Forward False Atom (FFA)

Prerequisites For some atom, the bodies of all rules with the atom as head
are false.

Consequence The atom is false.
Tableau Rule FFA

FBy,...,FB,,
Fom " (body(p) = {B1, .., Bn})

1= For an atom p occurring in a logic program [1, we let
body(p) = {body(r) | r € N, head(r) = p}.
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Forward False Atom (FFA)

Prerequisites For some atom, the bodies of all rules with the atom as head
are false.

Consequence The atom is false.
Tableau Rule FFA

FBy,...,FB,,
Fom " (body(p) = {B1, .., Bn})

1= For an atom p occurring in a logic program [1, we let
body(p) = {body(r) | r € N, head(r) = p}.
Example

F{b, not c}

F{d’+§te} (body(a) = {{b, not c},{d, not e}})
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Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Backward True Atom (BTA)

Prerequisites An atom is true, and the bodies of all rules with the atom as
head except for one are false.

Consequence The residual body is true.

Tableau Rule BTA

Tp

FBi,....FB;_1,FBi,1,....,FB,,
T8 (body(p) = {B1,- -, Bm})
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Backward True Atom (BTA)

Prerequisites An atom is true, and the bodies of all rules with the atom as

head except for one are false.
Consequence The residual body is true.
Tableau Rule BTA

Tp
FBi,...,FB; 1,FBj.1,...,FBy,
T8 (body(p) = {B, ...
Examples
LE] LE]
F{b, not c} F{d, not e}
T{d, not e} Q) T{b, not c} Q)

(¥):  body(a) = {{b, not c},{d, not e}}

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012
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Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Reviewing tableau rules for atoms

Consider an atom p such that body(p) = {Bi, ..., Bm}.

m Rules FTA and BFA amount to implication:
Biv---VB,—p
m Rules FFA and BTA amount to implication:

p—BiV--V Bnm
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Consider an atom p such that body(p) = {Bi, ..., Bm}.

m Rules FTA and BFA amount to implication:
Biv---VB,—p
m Rules FFA and BTA amount to implication:

p—BiV--V Bnm

1= Together they yield:

p=B1V---V B,
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Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Relationship with Clark's completion

Let 1 be a normal logic program.
The eight tableau rules introduced so far essentially provide:
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Relationship with Clark's completion
Let 1 be a normal logic program.
The eight tableau rules introduced so far essentially provide:
m (straightforward) inferences from Comp(IN) (cf. Page 430)
m inferences via atleast (cf. Page 488)
Given the same partial assignment (of atoms),
m any literal derived by atleast is also derived by tableau rules,

m while the converse does not hold in general.
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Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Preliminaries for unfounded sets

Let 1 be a normal logic program.

m For " C I, define the greatest unfounded set, denoted by GUS(IT"),
of M with respect to N’ as:

GUS(I") = atom(M) \ Cn((M")")
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Preliminaries for unfounded sets

Let 1 be a normal logic program.

m For " C I, define the greatest unfounded set, denoted by GUS(IT"),
of M with respect to N’ as:

GUS(I") = atom(M) \ Cn((M")")

m For a loop L € Loop(I), define
EB(L) = {body(r) | r € N, head(r) € L, body™*(r)N L= 0}

as the external bodies of L.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 275 / 453



Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Well-Founded Negation (WFN)

Prerequisites An atom is in the greatest unfounded set with respect to
rules whose bodies are false.

Consequence The atom is false.
Tableau Rule WEN

Wﬂ (p€ GUS({r € N | body(r) & {Bi,...,Bm}}))
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Well-Founded Negation (WFN)

Prerequisites An atom is in the greatest unfounded set with respect to
rules whose bodies are false.

Consequence The atom is false.
Tableau Rule WEN

FBi,...,FBy,
—Fp (P GUS({r € N | body(r) ¢ {B1..... Bn}}))
Examples
a<— a
a<+ not b a<+ notb
F{not b} F{not b}
T Fa ™ T Fa ™

(x): a€ GUS(N\ {a < not b})
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Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Well-Founded Justification (WFJ)

Prerequisites A true atom is in the greatest unfounded set with respect to
rules whose bodies are false if a particular body is made false.
Consequence The respective body is true.
Tableau Rule WFJ
Tp
FBi,...,FBi_1,FBii1,...,FBn

TB (p e GUS({r e N | body(r) & {Bx1,...,Bm}}))
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Well-Founded Justification (WFJ)

Prerequisites A true atom is in the greatest unfounded set with respect to
rules whose bodies are false if a particular body is made false.

Consequence The respective body is true.

Tableau Rule WFJ

Tp
FBi,...,FBi_1,FBi.1,...,FB,
TB (p € GUS({r e N | body(r) & {B1,.-.,Bm}}))
Examples
a<a
a<+ not b a< notb
__Ta __Ta
T{not b} Q) T{not b} Q)

(¥): ae GUS(N\ {a < not b})
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Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Reviewing well-founded tableau rules

Tableau rules WEN and WFJ ensure non-circular support for true atoms.
Note that
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Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Reviewing well-founded tableau rules
Tableau rules WEN and WFJ ensure non-circular support for true atoms.
Note that
WEN subsumes falsifying atoms via FFA,
WEFJ can be viewed as “backward propagation” for unfounded sets,

WFJ subsumes backward propagation of true atoms via BTA.
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Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Relationship with well-founded operator

Let M be a normal logic program, (T, F) a partial interpretation, and
N ={ren|bodyt(r)NF =0, body (r)N T = 0}.
Then the following conditions are equivalent:
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Relationship with well-founded operator
Let M be a normal logic program, (T, F) a partial interpretation, and
N ={ren|bodyt(r)NF =0, body (r)N T = 0}.
Then the following conditions are equivalent:
p € Un(T,F); (cf. Page 530)
p € atmost((T, F)); (cf. Page 568)
p € GUS(IM).
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Relationship with well-founded operator

Let M be a normal logic program, (T, F) a partial interpretation, and
N ={ren|bodyt(r)NF =0, body (r)N T = 0}.
Then the following conditions are equivalent:
p € Un(T,F); (cf. Page 530)
p € atmost((T, F)); (cf. Page 568)
p € GUS(IM).
= \Well-founded operator, atmost, and WFN coincide.

1= |n contrast to the former, WFN does not necessarily require a rule
body to contain a false literal for the rule being inapplicable.
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Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Forward Loop (FL)

Prerequisites The external bodies of a loop are false.
Consequence The atoms in the loop are false.
Tableau Rule FL

FBi,...,FBn
Fp
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Forward Loop (FL)

Prerequisites The external bodies of a loop are false.
Consequence The atoms in the loop are false.
Tableau Rule FL

FBi,...,FB,,
IT (peL,Le Loop(M), EB(L) = {By,...
Example
a<— a
a< not b
F{not b}

— Fa (EB({a}) = {{not b}})
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Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Backward Loop (BL)

Prerequisites An atom of a loop is true, and all external bodies except for
one are false.

Consequence The residual external body is true.

Tableau Rule BL
Tp

FBi,...,FBi_1,FBi1,...,FB,
TB;

(peL,Le Loop(M),EB(L) = {Bi,...,Bm})
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Backward Loop (BL)

Prerequisites An atom of a loop is true, and all external bodies except for
one are false.

Consequence The residual external body is true.
Tableau Rule BL

Tp
FBi,...,FB;_1,FBi.1,...,FB
: TE ™ (pe L, Le Loop(N),EB(L) = {B,..., Bn})
Example
a<+ a
a< not b

o5 (EBUa)) = {{not b))
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Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Reviewing tableau rules for loops

Tableau rules FL and BL ensure non-circular support for true atoms.

For a loop L such that EB(L) = {Bs,...,Bn},
they amount to implication:

Vperp = BLV -V B
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Reviewing tableau rules for loops

Tableau rules FL and BL ensure non-circular support for true atoms.
For a loop L such that EB(L) = {Bs,...,Bn},
they amount to implication:

Vperp = BLV -V B

Comparison to well-founded tableau rules yields:
m FL (plus FFA and FFB) is equivalent to WFN (plus FFB),
m BL cannot simulate inferences via WFJ.
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Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Relationship with loop formulas

Tableau rules FL and BL essentially provide:

(straightforward) inferences from loop formulas (cf. Page 589)
But impractical to precompute exponentially many loop formulas !
an application of the Lin-Zhao Theorem (cf. Page 593)

In practice, ASP-solvers such as smodels:
exploit strongly connected components of positive atom dependency
graphs
Can be viewed as an interpolation of FL.
do not directly implement BL (and neither WFJ)
Probably difficult to do efficiently.

could simulate BL via FL/WFN by means of failed-literal detection
(lookahead)

What about the computational cost?
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Tableau rules FL and BL essentially provide:
m (straightforward) inferences from loop formulas (cf. Page 589)

= But impractical to precompute exponentially many loop formulas !

m an application of the Lin-Zhao Theorem (cf. Page 593)

In practice, ASP-solvers such as smodels:

m exploit strongly connected components of positive atom dependency
graphs
= Can be viewed as an interpolation of FL.
m do not directly implement BL (and neither WFJ)
= Probably difficult to do efficiently.

m could simulate BL via FL/WFN by means of failed-literal detection
(lookahead)

= \Nhat about the computational cost?
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Tableau Calculi for ASP Tableau Rules for Case Analysis

Case analysis by Cut

Up to now, all tableau rules are deterministic.
That is, rules extend a single branch but cannot create sub-branches.

1= |n general, closing a branch leads to a partial assignment.
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Case analysis by Cut

Up to now, all tableau rules are deterministic.
That is, rules extend a single branch but cannot create sub-branches.

1= |n general, closing a branch leads to a partial assignment.
Case analysis is done by Cut[C] where C C atom(I1) U body(IN).

Tableau Rule Cut[C]

TR VEQ)
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Tableau Calculi for ASP Tableau Rules for Case Analysis

Case analysis by Cut

Up to now, all tableau rules are deterministic.
That is, rules extend a single branch but cannot create sub-branches.

1= |n general, closing a branch leads to a partial assignment.
Case analysis is done by Cut[C] where C C atom(I1) U body(IN).

Tableau Rule Cut[C]

TR VEQ)

Examples Cut[C]

a< not b a< not b
b + not a c_ . b <+ not a C — bodv(T]
Ta | Fa U= ciau1l)) T{not b} F{not b} (U= Lody 1))
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Tableau Calculi for ASP Particular Tableau Calculi

Well-known tableau calculi

Fitting's operator ® applies forward propagation without sophisticated
unfounded set checks. We have:

Te = {FTB, FTA, FFB, FFA}
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Tableau Calculi for ASP Particular Tableau Calculi

Well-known tableau calculi

Fitting's operator ® applies forward propagation without sophisticated
unfounded set checks. We have:

Te = {FTB, FTA, FFB, FFA}

Well-founded operator €2 replaces negation of single atoms with negation
of unfounded sets. We have:

Ta = {FTB, FTA, FFB, WFN}

“Local” propagation via a program’s completion can be determined by
elementary inferences on atoms and rule bodies. We have:

Tcompletion = {FTB, FTA, FFB, FFA, BTB, BTA, BFB, BFA}
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Tableau Calculi for ASP Particular Tableau Calculi

Tableau calculi characterizing ASP-solvers

ASP-solvers combine propagation with case analysis.
We obtain the following tableau calculi characterizing
[4, 63, 51, 77, 57, 54, 2]:

7::models—1
7;ssat
7;models
7710M0Re

7770more++

Torsten Schaub (KRRQUP)

Tcompletion U { Cut{atom(IM) U body ()]}
Tcompletion U { FL} U { Cut[atom(IT) U body(M)]}
Tcompletion I { WFN} U { Cut[atom(IT)] }

Tcompletion U { WFN} U { Cut[body (TT)] }

Tcompletion I { WFN} U { Cut[atom(IT) U body ()]}
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Tableau Calculi for ASP Particular Tableau Calculi

Tableau calculi characterizing ASP-solvers

ASP-solvers combine propagation with case analysis.
We obtain the following tableau calculi characterizing
[4, 63, 51, 77, 57, 54, 2]:

Temodels-1 = Teompletion U { Cut{atom(IM) U body (M)]}
Tassat = Tcompletion U { FL} U { Cut{atom(IT) U body ()]}
Tsmodels = Teompletion Y { WFN} U { Cut[atom(I)]}
TnoMore = Tcompletion U { WFN} U { Cut[body ()] }
Tnomoret+ = Tecompletion U { WFN} U { Cut{atom(IT) U body(IM)]}

m SAT-based ASP-solvers, assat and cmodels,
incrementally add loop formulas to a program’s completion.

m Genuine ASP-solvers, smodels, d1v, noMoRe, and nomore++,
essentially differ only in their Cut rules.
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Tableau Calculi for ASP Relative Efficiency

Proof complexity

The notion of proof complexity is used for describing the relative efficiency
of different proof systems.
It compares proof systems based on minimal refutations.

= Proof complexity does not depend on heuristics.

A proof system T polynomially simulates a proof system 7" if every
refutation of 7 can be polynomially mapped to a refutation of 7.
Otherwise, 7 does not polynomially simulate 7.

For showing that proof system 7 does not polynomially simulate 77,
we have to provide an infinite witnessing family of programs such that
minimal refutations of 7 asymptotically are exponentially larger than
minimal refutations of 7.

The size of tableaux is simply the number of their entries.

We do not need to know the precise number of entries:
Counting required Cut applications is sufficient !
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Otherwise, T does not polynomially simulate 7.

For showing that proof system 7 does not polynomially simulate 77,
we have to provide an infinite witnessing family of programs such that
minimal refutations of 7 asymptotically are exponentially larger than
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Tableau Calculi for ASP Relative Efficiency

7:‘models VEersus 7710M0Re

Recall that Tgmoders restricts Cut to atom(I) and Thopore to body(IM).
Are both approaches similar or is one of them superior to the other?
Let {M2}, {N7}, and {M2} be infinite families of programs as follows:

a1 < not |

X <— not x X < C1,...,Cp, N0t X
’ b1 < not :

X<—31.b1 Cl < a1 C1<—b1

n __ n __ n __
Ha* : rlb* : : rlcf .

’ ’ ’ an < not |

X < an, b Ch < a ch < b
ns n n n n n bn%notg

In minimal refutations for M7 U T17, the number of applications of
Cut{body (N2 UN2)| with Thomore is linear in n, whereas Tgmodess requires
exponentially many applications of Cut[atom(I] U M2)].

Vice versa, minimal refutations for I} U T17 require linearly many
applications of Cut[atom([} U M7)] with Tsmodeis and exponentially many
applications of Cut[body (M} U MNZ)] with TronoRe.-
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Tableau Calculi for ASP Relative Efficiency

7;mode/s VErsus 7710/\//0Re

Recall that Tgmoders restricts Cut to atom(IN) and Tpopore to body(MM).
Are both approaches similar or is one of them superior to the other?

Let {M7}, {NZ}, and {7} be infinite families of programs as follows:

a1 < not |
X < not x X < C1,...,Cp, NOt X
b1 < not
x<—al,b1 n C1 < a1 Cl<—b1 n
n __ _ _
na_ : I_Ib_ I_Ic_ .
X<-—a b c‘ea c.%b i &= 025
n» On n n n n bn < not :
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a1 < not |
X < not x X < C1,...,Cp, NOt X
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x<—al7b1 n C1 < a1 Cl<—b1 n
n __ _ _
na_ : I_Ib_ I_Ic_ .
X<-—a b c‘ea c.%b i &= 025
n» On n n n n bn < not :

In minimal refutations for 17 U7, the number of applications of
Cut[body (M2 U N2)] with Thomore is linear in n, whereas Tepmodels requires
exponentially many applications of Cut[atom(N7 U NZ2)].

Vice versa, minimal refutations for 1} U T require linearly many
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Tableau Calculi for ASP Relative Efficiency

Relative efficiency

As witnessed by {7 U M7} and {1} UTIZ}, respectively,
Tsmodels and Thomore do not polynomially simulate one another.

Any refutation of Tgmodels OF TroMoRe 1S @ refutation of 7T,omoret—+
(but not vice versa).

It follows that
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It follows that

B both Temodels and Tromore are polynomially simulated by 7,omoret+
and

B T, omoret+ is polynomially simulated by neither Temodeis NOr ThoMoRe-

= The proof system obtained with Cut[atom(I1) U body()] is
exponentially stronger than the ones with either
Cut[atom(IT)] or Cut[body(I)] !
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Tableau Calculi for ASP Relative Efficiency

Relative efficiency

As witnessed by {7 U M7} and {1} UTIZ}, respectively,
Tsmodels and Thomore do not polynomially simulate one another.
Any refutation of Tgmodels OF TroMoRe 1S @ refutation of 7T,omoret—+
(but not vice versa).

It follows that

B both Temodels and Tromore are polynomially simulated by 7,omoret+
and

B T, omoret+ is polynomially simulated by neither Temodeis NOr ThoMoRe-
= The proof system obtained with Cut[atom(I1) U body()] is

exponentially stronger than the ones with either
Cut[atom(IT)] or Cut[body(I)] !

r= Case analyses (at least) on atoms and bodies are mandatory in
powerful ASP-solvers.
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(rn) a< not b
(n) c<g
(r7) e+« f,notc

(1) Ta

) T{not b}
3) Fb

(4) F{d, not a}
(5) F{not a, not f}
(6) Fg

(7) T{not g}
( T

(9) F{b, d}
(10 F{g}
(11) Fc
(12) F{c}
(13) Fd

(14) T{f, not c}
Te

Torsten Schaub (KRRQUP)

Tableau Calculi for ASP Example Tableaux

Cut]

BTA:
BTB:

BFA:
FFB:
FFA:

FTB:

FTA:
FFB:
FFB:
FFA:
FFB:
FFA:

FTB:

FTA:

Tsmodels: Example tableau

() b+ d,not a () c<+ b,d

(r5) d<+c (re) d<+g

(rg) f < notg (r0) g < not a,not f

(¢)) Fa [Cut]
n,1] 7) F{not b} [BFA: r1, 16]
2] (18) Tb [BFB: 17]
r, 3] (19) T{d,nota} [BTA: r, 18]
r,1] (20) Td [BTB: 19]
r9,5] (21)  T{b,d} [FTB: rs, 18, 20]
rg, 6] (22) Tc [FTA: r3, 21]
rg, 7] (23) F{f,not c} [FFB: r7,22]
r3, 3] (24) Fe [FFA: r7, 23]
ra, re, 6] (25) T{c} [FTB: rs5, 22]
e ’141’]9’ 08 (9 TF [Cut (29) Ff [Cut
r5’r 10, 12] (27) F{not a, not f} [FFB: r9,26] (30) T{not a, not f} [FTB: rg,
57’ 86'11]’ 28) Fc [WFN: 27] (31) Tg [FTA: rg, :
i ’ 121] (32) T{g} [FTB: rq, |
! (33) F{notg} [FFB:rs,:
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(6) Fg
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(13) Fd
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Tableau Calculi for ASP

Example Tableaux

TroMore: Example tableau

() b+ d,not a () c<+ b,d
(r5) d+c (re) d+«g
(rs) f<notg (r0) g < not a,not f
Cut] (¢19)] F{not b} [Cut]
FTA: i, 1] (17) Fa [FFA: r1, 16]
BTB: 1] (18) Tb [BFB: 16]
BFA: rp, 3] (19) T{d,nota} [BTA: r, 18]
FFB: rg, 2] (20) Td [BTB: 19]
FFA: rg, 5] (21) T{b,d} [FTB: r3, 18, 20]
FTB: rg, 6] (22) Tc [FTA: 3, 21]
FTA: rg, 7] (23) F{f, not c} [FFB: r7,22]
FFB: r3, 3] (24) Fe [FFA: 7, 23]
FFB: 14, 15, 6] (25) T{c} [FTB: 5,22
FFA:
FFB: i’,rf{]g’ = (26) T{not g} [Cuf] (30) F{notg} [Cuf]
FFA: 1o, 16, 10, 12] (27) Fg  [BTB: 26| (31) Tg [BFB: 30]
FTB: r7,8,11] (28) F{g} [FFBir,r6,27] (32) T{g} [FTB: ra,.
FTA v, 14] (29)  Fc  [WFN: 28] (33) Ff [FFA: rg, 3
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Cut]
BTA:

BTB:

BFA:
FFB:
FFA:

FTB:
FTA:
FFB:
FFB:
FFA:

FFB:
FFA:

FTB:
FTA:

Example Tableaux

Tromore++: Example tableau

() b<+d,not a () c<+ b,d

(r5) d<+c (re) d<+g

(rg) f < notg (r0) g < not a,not f

(¢)) Fa [Cut]

n,1] 7) F{not b} [BFA: r1, 16]
2] (18) Tb [BFB: 17]
r, 3] (19) T{d,nota} [BTA: r, 18]
r,1] (20) Td [BTB: 19]
rg, 5] (21) T{b,d} [FTB: r3, 18, 20]
rg, 6] (22) Tc [FTA: r3, 21]
rg, 7] (23) F{f,not c} [FFB: r7,22]
r3, 3] (24) Fe [FFA: r7, 23]
ra, re, 6] (25) T{c} [FTB: rs5, 22]
’,35:’141’]9’ O (26) T{notg} [Cuf (30) F{notg} [Cut]
w012 (2)  Fe [BTB:26] (31) Te [BFB: 30]
r, 8, 11] (28) F{g} [FFB: 14, 15,27] (32) T{g} [FTB: rq,
v (29)  Fc  [WFN: 28] (33) Ff [FFA: rg, 2

(34) T{not a, not f} [FTB: rg, :
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Conflict-Driven Answer Set Solving:

Motivation
Boolean Constraints

Nogoods from Logic Programs
m Nogoods from Clark’s Completion
m Nogoods from Loop Formulas

Conflict-Driven Nogood Learning
m CDNL-ASP Algorithm
m Nogood Propagation
m Conflict Analysis

Implementation via clasp

Torsten Schaub (KRRQUP) Answer Set Programming
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January 18, 2012

203 / 453



Motivation

Overview

Motivation

Nogoods from Clark’'s Completion

Nogoods from Loop Formulas

CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 294 / 453



Motivation

Motivation

Goal New approach to computing answer sets of logic programs,
based on concepts from

m Constraint Processing (CSP) and
m Satisfiability Checking (SAT)

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 295 / 453



Motivation

Motivation

Goal New approach to computing answer sets of logic programs,
based on concepts from
m Constraint Processing (CSP) and
m Satisfiability Checking (SAT)
Idea View inferences in Answer Set Programming (ASP) as unit
propagation on nogoods.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 295 / 453



Motivation

Motivation

Goal New approach to computing answer sets of logic programs,
based on concepts from

m Constraint Processing (CSP) and
m Satisfiability Checking (SAT)
Idea View inferences in Answer Set Programming (ASP) as unit
propagation on nogoods.
Benefits

m A uniform constraint-based framework for different

kinds of inferences in ASP
m Advanced techniques from the areas of CSP and SAT
m Highly competitive implementation
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Boolean Constraints

Overview

Boolean Constraints

Nogoods from Clark’'s Completion
Nogoods from Loop Formulas

CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis
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Boolean Constraints

Assignments
m An assignment A over dom(A) = atom(I) U body(IN) is a sequence
(01,...,0n)

of signed literals o; of form Tp or Fp for p € dom(A) and 1 < < n.
1 Tp expresses that p is true and Fp that it is false.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 297 / 453



Boolean Constraints

Assignments

m An assignment A over dom(A) = atom(I) U body(IN) is a sequence

(01,...,0n)

of signed literals o; of form Tp or Fp for p € dom(A) and 1 < < n.
1 Tp expresses that p is true and Fp that it is false.

m The complement, &, of a literal o is defined as Tp = Fp and
Fp=Tp.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 297 / 453



Boolean Constraints

Assignments

m An assignment A over dom(A) = atom(I) U body(IN) is a sequence

(01,...,0n)
of signed literals o; of form Tp or Fp for p € dom(A) and 1 < < n.
1 Tp expresses that p is true and Fp that it is false.

m The complement, &, of a literal o is defined as Tp = Fp and
Fp=Tp.

m Ao B denotes the concatenation of assignments A and B.

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 297 / 453



Boolean Constraints

Assignments

m An assignment A over dom(A) = atom(I) U body(IN) is a sequence

(01,...,0n)
of signed literals o; of form Tp or Fp for p € dom(A) and 1 < < n.
1 Tp expresses that p is true and Fp that it is false.

m The complement, &, of a literal o is defined as Tp = Fp and
Fp=Tp.

m Ao B denotes the concatenation of assignments A and B.

m Given A = ((71,...,0’k,1,(7k,... ,Jn), we let A[O’k] = ((71,...,0';(,1).

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 297 / 453



Boolean Constraints

Assignments
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1 Tp expresses that p is true and Fp that it is false.
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Boolean Constraints

Assignments

m An assignment A over dom(A) = atom(I) U body(IN) is a sequence

(01,...,0n)
of signed literals o; of form Tp or Fp for p € dom(A) and 1 < < n.

1 Tp expresses that p is true and Fp that it is false.
m The complement, &, of a literal o is defined as Tp = Fp and
Fp=Tp.
m Ao B denotes the concatenation of assignments A and B.
m Given A = ((71, 5009 @ k=1l @k oo o ,(Tn), we let A[O’k] = ((71, 560 70’;(,]_).
m We sometimes identify an assignment with the set of its literals.
Given this, we access true and false propositions in A via

AT = {p e dom(A) | Tp € A} and AF = {p c dom(A) | Fp c A} .
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Boolean Constraints

Nogoods, Solutions, and Unit Propagation

m A nogood is a set {o1,...,0,} of signed literals,
expressing a constraint violated by any assignment
containing o1,...,0p.

An assignment A such that AT U AF = dom(A) and AT N AF = ()
is a solution for a set A of nogoods, if § £ A for all § € A.
For a nogood ¢, a literal o € §, and an assignment A, we say that
7 is unit-resulting for § wrt A, if
0\A={o} and
g & A.
For a set A of nogoods and an assignment A, unit propagation is the
iterated process of extending A with unit-resulting literals until no
further literal is unit-resulting for any nogood in A.
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Nogoods, Solutions, and Unit Propagation

m A nogood is a set {01, ...,0,} of signed literals,
expressing a constraint violated by any assignment
containing o1, ...,0p.

m An assignment A such that AT U AF = dom(A) and AT N AF =0
is a solution for a set A of nogoods, if § Z A for all § € A.
m For a nogood ¢, a literal o € §, and an assignment A, we say that
7 is unit-resulting for 0 wrt A, if
0\A={o} and
T ¢ A.
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Boolean Constraints

Nogoods, Solutions, and Unit Propagation

m A nogood is a set {01, ...,0,} of signed literals,

expressing a constraint violated by any assignment
containing o1, ...,0p.
An assignment A such that AT U AF = dom(A) and AT N AF = ()
is a solution for a set A of nogoods, if § Z A for all § € A.
For a nogood 4, a literal o € 4, and an assignment A, we say that
@ is unit-resulting for § wrt A, if

0\A={o} and

T & A.
For a set A of nogoods and an assignment A, unit propagation is the
iterated process of extending A with unit-resulting literals until no
further literal is unit-resulting for any nogood in A.
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Nogoods from Logic Programs

Overview

Nogoods from Logic Programs
m Nogoods from Clark’s Completion
m Nogoods from Loop Formulas

CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012 299 / 453



Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs

via Clark's completion

The completion of a logic program [ can be defined as follows:

{ps < PL A APmA=Pmy1 A A=py |
/8 S bOdy(n)’/BZ {pla"'apm)nOt Pm+1a--~7n0t Pn}}

U {pHpﬂl\/'”\/ka ‘
p € atom(MN), body(p) = {f1,---,Bk}} »

where body(p) = {body(r) | r € N, head(r) = p}.
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Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs (ctd)

via Clark's completion

Let 8 ={p1,---,Pm, N0t Pmi1,-..,Nn0t p,} be a body.
The equivalence

pPg <> pL N\ APm /A Pmy1 A=A =pp
can be decomposed into two implications.
We get

Ps— PLA - APmA=Pmy1t A A=pn

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

301 / 453



Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs (ctd)

via Clark's completion

Let 8 ={p1,---,Pm, N0t Pmi1,-..,Nn0t p,} be a body.
The equivalence

pPg <> pL N\ APm /A Pmy1 A=A =pp
can be decomposed into two implications.
We get

Pg — P1 A APpm /A =Pmy1 N AN=pn,
which is equivalent to the conjunction of

—pgVp1, .-y 7PV Pm; 7PN TPm+1; ---5 7PV 7Pn -
This set of clauses expresses the following set of nogoods:

AB) ={{TB,Fpi},....{TB,Fpm}, {TB, Tpms1}, ... .{TB, Tpa} } .
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Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs (ctd)

via Clark's completion

Let 8 ={p1,---,Pm, N0t Pmi1,-..,Nn0t p,} be a body.
The equivalence

Ps < PLA -+ APm A=Pmii A+ A=py

can be decomposed into two implications.

The converse of the previous implication, viz.

PLA - APm A Pmi1 A A=Pn = Pg ,

gives rise to the nogood

0B)={FB,Tp1,..., Tpm, Fpmyt1,...,Fpn} .
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Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs (ctd)

via Clark's completion

Let 8 ={p1,---,Pm, N0t Pmi1,-..,Nn0t p,} be a body.
The equivalence

P <> PL A APm A TPmy1r Ao A=y
can be decomposed into two implications.
The converse of the previous implication, viz.
PLA = APmA=Pmi1 A A=pn — pg
gives rise to the nogood
6(B) ={FB,Tp1,.... Tpm, Fpmys1,....Fpn} .

Intuitively, 6(3) is a constraint enforcing the truth of body 3, or the
falsity of a contained literal.
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Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs (ctd)

via Clark's completion

Proceeding analogously with the atom-based equivalences, viz.

P <> pg VoV Pgy

we obtain for an atom p € atom([1) along with its bodies
body(p) = {51, -, Bk} the nogoods

A(p) = {{Fp) Tﬁl}a R {FP, Tﬁk}} and
5(p) = {Tp7 Fﬁl, 0009 F,Bk} 3
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Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs

atom-oriented nogoods

For an atom p where body(p) = {S1, ..., Bk}, recall that

6(p) = {Tp,Fp1,...,FBi}
A(p) = {{FP7Tﬁl}av{FP7Tﬁk}} :
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Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs

atom-oriented nogoods
For an atom p where body(p) = {S1, ..., Bk}, recall that

6(p) = {Tp,Fp1,...,FBi}
A(p) = {{FP7T51}77{FPvT6k}} :

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

X <y
X < notz

Torsten Schaub (KRRQUP) Answer Set Programming January 18, 2012

304 / 453



Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs

atom-oriented nogoods
For an atom p where body(p) = {S1, ..., Bk}, recall that

5(p) = {Tp,Fp,...,FB}
A(p) = {{Fp,Tp},....{Fp, TB}} .

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

X 4y (x) = {Tx,F{y},F{not z}}
X ¢ notz A(x) {{Fx, T{y}}, {Fx, T{not z}} }
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Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs

atom-oriented nogoods

For an atom p where body(p) = {S1, ..., Bk}, recall that

5(p) = {Tp,Fp,...,FB}
A(p) = {{Fp,Tp},....{Fp, TB}} .

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

X 4y (x) = {Tx,F{y},F{not z}}
X 4 notz A(x)

For nogood d(x) = {Tx,F{y},F{not z}}, the signed literal
m Fx is unit-resulting wrt assignment (F{y}, F{not z})

{{Fx, T{y}},{Fx, T{not z}} }
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Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs

atom-oriented nogoods

For an atom p where body(p) = {S1, ..., Bk}, recall that

5(p) = {Tp,Fp,...,FB}
A(p) = {{Fp,Tp},....{Fp, TB}} .

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

X 4y (x) = {Tx,F{y},F{not z}}
X 4 notz A(x)

For nogood d(x) = {Tx,F{y},F{not z}}, the signed literal
m Fx is unit-resulting wrt assignment (F{y}, F{not z}) and
m T{not z} is unit-resulting wrt assignment (Tx, F{y}).

{{Fx, T{y}},{Fx, T{not z}} }
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A({x,not y}) = {{T{x,not y},Fx},{T{x, not y}, T

... 4 Xx,not y

For nogood d({x, not y}) = {F{x, not y}, Tx,Fy}, the signed literal
m T{x, not y} is unit-resulting wrt assignment (Tx,Fy) and
m Ty is unit-resulting wrt assignment (F{x, not y}, Tx).
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Nogoods from Logic Programs Nogoods from Clark’s Completion

Characterization of answer sets
for tight logic programs

Let I1 be a logic program and

An = {3(p) | p e atom(M)} U {5 € A(p) | p € atom(M)}

U {d(B) | B € body(M)} U {6 € A(B) | B € body (M)} .
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Theorem

Let 1 be a tight logic program. Then,
X C atom(I) is an answer set of M iff
X = AT natom(N) for a (unique) solution A for Ap.
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Characterization of answer sets
for tight logic programs

Let I1 be a logic program and

An = {3(p) | p e atom(M)} U {5 € A(p) | p € atom(M)}

U {d(B) | B € body(M)} U {6 € A(B) | B € body (M)} .

Theorem

Let 1 be a tight logic program. Then,
X C atom(I) is an answer set of M iff
X = AT natom(N) for a (unique) solution A for Ap.

1= The set Ap of nogoods captures inferences from
(program I and) Clark's completion.
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Nogoods from Logic Programs Nogoods from Clark’'s Completion

Atom-oriented nogoods and tableau rules

m Tableau rules FTA, BFA, FFA, and BTA are atom-oriented.
For an atom p such that body(p) = {51, -, Bk},
consider the equivalence: p<rpg V-V pg,

Inferences from nogoods A(p) = {{Fp, T51},...,{Fp, TBk}}

correspond to those from tableau rules FTA and BFA:

p<+< p<+— B
TS Fp
Tp F5

Inferences from nogood d(p) = {Tp,Fp,...,FBk}
correspond to those from tableau rules FFA and BTA:

Tp
FGi,..., FGy FBi,...,FBi_1,FBii1,. .., F5)
Fp T3;
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m For an atom p such that body(p) = {51, .., Bk},
consider the equivalence: p < pg V-V pg,

m Inferences from nogoods A(p) = {{Fp, T/51},...,{Fp, TSk} }
correspond to those from tableau rules FTA and BFA:

p< B p< B
T6 Fp
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consider the equivalence: p < pg V-V pg,

m Inferences from nogoods A(p) = {{Fp, T/51},...,{Fp, TSk} }
correspond to those from tableau rules FTA and BFA:

p< B p< B
T6 Fp
— — ——

m Inferences from nogood d(p) = {Tp,Fp1,...,FBk}
correspond to those from tableau rules FFA and BTA:
Tp
F5i,...,FBk F5i,...,FBi—1,FBit1,...,FBk
Fp TB5i
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Nogoods from Logic Programs Nogoods from Clark’'s Completion

Body-oriented nogoods and tableau rules

m Tableau rules FTB, BFB, FFB, and BTB are body-oriented.

For a bOdy [3 - {plv <5 Pm, not Pm+1;-- -, not Pn} - {/13 try /n}'
consider the equivalence:  pg <> p1 A+ Apm A =Ppmr1 A--- A —pp

Inferences from nogood 4&(8) = {FB,Tp1,..., Tpm,Fpm+1,--.,Fpn}
correspond to those from tableau rules FTB and BFB:

p%/l ..... /n F{/lln}
th,...,tl, th,...,th1,thy1,... th
T{h, .. I} f;

AB) ={{TB,Fp1},... . {TB,Fpm}, {T5, Toms1},- -, {TB, Tpn}}
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Body-oriented nogoods and tableau rules
m Tableau rules FTB, BFB, FFB, and BTB are body-oriented.
m For a body 5 ={p1,..., pm, N0t pmi1,...,not pp} = {h,

m Inferences from nogood (5) = {F53,Tp1,..., TpPm, Fpm+1,
correspond to those from tableau rules FTB and BFB:

pet,. Flh,... I}
th,..., tl, th,...,thq,thyq,... th
T{h, ) i

Torsten Schaub (KRRQUP)

NAY

consider the equivalence:  pg <> p1 A+ A pm A =Pmy1 N~

/\—\pn

. Fp}

Answer Set Programming January 18, 2012 308 / 453



Nogoods from Logic Programs Nogoods from Clark’s Completion

Body-oriented nogoods and tableau rules

m Tableau rules FTB, BFB, FFB, and BTB are body-oriented.

m For a body 5= {p1,...,Pm, N0t pm+1,...,n0t pp} ={h,..., I},
consider the equivalence:  pg <> p1 A Apm A =Pmy1 A+ A=pp

m Inferences from nogood (5) = {F53,Tp1,..., TpPm, Fpm+1,...,Fpn}
correspond to those from tableau rules FTB and BFB:

pet,. Flh,... I}
th,..., tl, th,...,thq,thyq,... th
T{h, ) i

m Inferences from nogoods

A(ﬁ) = { {Tﬁa Fpl}a 000y {Tﬁv Fpm}a {Tﬁa Tpm+1}> 000y {Tﬂv Tpn} }
correspond to those from tableau rules FFB and BTB:
p—h,. ... ...,
fl; T{h, ..., liy...,In}
F{h,....li,..., In} t/;
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Nogoods from Logic Programs Nogoods from Loop Formulas

Nogoods from logic programs
via loop formulas (cf. Page 589)

Let 1 be a normal logic program and recall that:
m For L C atom(I), the external supports of L for I are
ESn(L) = {ren| head(r) € L, body™(r)NnL=0}.
m The (disjunctive) loop formula of L for I is
LFr(L) = (\/AGLA) — (VreESn(L) Comp(body(r)))
= (Aregsny~Comp(body(r))) = (AncL™A)-

1 The loop formula of L enforces all atoms in L to be false whenever L is
not externally supported.

m The external bodies of L for I are
EB(L) = {body(r)|r €N, head(r) € L, body™(r)n L= 0}
= {body(r) | r € ESn(L)}.
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Nogoods from Logic Programs Nogoods from Loop Formulas

Nogoods from logic programs

loop nogoods

For a logic program I and some () C U C atom(IN),
define the loop nogood of an atom p € U as

Ap,U) = {Tp,Fpr, ..., Fi}
where EB(U) = {f1,..., Bk}
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Nogoods from logic programs

loop nogoods

For a logic program I and some () C U C atom(IN),
define the loop nogood of an atom p € U as

/\(p7 U) = {Tp7 FBI: SO Fﬁk}
where EB(U) = {p1, ..., Bk}-
In all, we get the following set of loop nogoods for [1:

An = U@CUgatom(ﬂ){)‘(p7 U) | p € U}
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Nogoods from Logic Programs Nogoods from Loop Formulas

Nogoods from logic programs

loop nogoods

For a logic program I and some () C U C atom(IN),
define the loop nogood of an atom p € U as

/\(p7 U) = {Tp7 FBl:"'7F5k}
where EB(U) = {p1, ..., Bk}-
In all, we get the following set of loop nogoods for [1:

An = U@CUgatom(ﬂ){)‘(p7 U) | p € U}

1= The set A of loop nogoods denies cyclic support among true atoms.
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Nogoods from Logic Programs Nogoods from Loop Formulas

Example
Consider
X < not uex
1= Y U<+ v
Y < not x
V& uy

For u in the set {u, v}, we obtain the loop nogood:
Mu,{u,v}) = {Tu,F{x}}
Similarly for v in {u, v}, we get:

Av,{u,v}) = {Tv,F{x}}
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Nogoods from Logic Programs Nogoods from Loop Formulas

Example
Consider
< not v X
n=¢ ~ Y uev
y ¢ not x
Ve uy

For u in the set {u, v}, we obtain the loop nogood:

A {u,v}) = {Tu,F{x}}
Similarly for v in {u, v}, we get:

Av, {u,v}) = {Tv,F{x}}
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Nogoods from Logic Programs Nogoods from Loop Formulas

Characterization of answer sets

For a logic program T1,
let An and Ap as defined on Page 755 and Page 767, respectively.

Let 1 be a logic program. Then,
X C atom(I) is an answer set of 1 iff
X = AT N atom(N) for a (unique) solution A for Ap U Ap.

Nogoods in Ap augment Ap with conditions checking
for unfounded sets, in particular, those being loops.
While |Ap| is linear in the size of 1, A may contain
exponentially many (non-redundant) loop nogoods !
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Conflict-Driven Nogood Learning

Overview

Nogoods from Clark’s Completion
Nogoods from Loop Formulas

Conflict-Driven Nogood Learning
m CDNL-ASP Algorithm
m Nogood Propagation
m Conflict Analysis
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Conflict-Driven Nogood Learning

Conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:
Traditional approach

m (Unit) propagation

m Exhaustive (chronological) backtracking

= DPLL [20, 19]
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Conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:
Traditional approach

m (Unit) propagation

m Exhaustive (chronological) backtracking

= DPLL [20, 19]
State of the art

m (Unit) propagation

m Conflict analysis (via resolution)

m Learning + Backjumping + Assertion
= CDCL [83, 67]
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Conflict-Driven Nogood Learning

Conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:
Traditional approach

m (Unit) propagation

m Exhaustive (chronological) backtracking

= DPLL [20, 19]
State of the art

m (Unit) propagation

m Conflict analysis (via resolution)

m Learning + Backjumping + Assertion

= CDCL [83, 67]

Idea
= Apply CDCL-style search in ASP solving !
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Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Outline of CDNL-ASP algorithm

[38]
m Keep track of deterministic consequences by unit propagation on:
m Clark’s completion [An]
m Loop nogoods, determined and recorded on demand [An]
1 Dedicated unfounded set detection !
m Dynamic nogoods, derived from conflicts and unfounded sets V]
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Outline of CDNL-ASP algorithm

[38]
m Keep track of deterministic consequences by unit propagation on:
m Clark’s completion [An]
m Loop nogoods, determined and recorded on demand [An]
1 Dedicated unfounded set detection !
m Dynamic nogoods, derived from conflicts and unfounded sets V]

m When a nogood in Ap UV becomes violated:

m Analyze the conflict by resolution until reaching the First Unique
Implication Point (First-UIP) [68]

m Learn the derived conflict nogood

m Backjump to the earliest (heuristic) choice such that the complement
of the First-UIP is unit-resulting for &

m Assert the complement of the First-UIP and proceed
(by unit propagation)
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Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Outline of CDNL-ASP algorithm

[38]
m Keep track of deterministic consequences by unit propagation on:
m Clark’s completion [An]
m Loop nogoods, determined and recorded on demand [An]
1 Dedicated unfounded set detection !
m Dynamic nogoods, derived from conflicts and unfounded sets V]

m When a nogood in Ap UV becomes violated:
m Analyze the conflict by resolution until reaching the First Unique
Implication Point (First-UIP) [68]
m Learn the derived conflict nogood
m Backjump to the earliest (heuristic) choice such that the complement
of the First-UIP is unit-resulting for &
m Assert the complement of the First-UIP and proceed
(by unit propagation)
m Terminate when either:
m Finding an answer set (a solution for Ap U Ap)
m Deriving a conflict independently of (heuristic) choices
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Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Algorithm 1: CDNL-ASP

© ® N oA W N =

N e I e <
N o O A W N = O

Input : A logic program I1.
Output : An answer set of 1 or “no answer set”.

A+ // assignment over atom([) U body (I)
V<0 // set of (dynamic) nogoods
dl <0 // decision level
loop
(A, V) + NOoGOODPROPAGATION(I, V, A)
if ¢ C A for some ¢ € AUV then
if d/ = 0 then return no answer set
(6, k) + CONFLICTANALYSIS(g, M, V, A)
VvV« VU{é} // learning
A+ (A\{oc e A|k<dl(o)}) // backjumping
dl + k
else if AT U A" = atom(I) U body () then
‘ return AT N atom() // answer set
else
04 + SELECT(M, V, A) // heuristic choice of o4 ¢ A
dl + dl+1
A<+ Ao (oq) // dl(oq) = dl
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Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Observations
m Decision level d/, initially set to 0, is used to count the number of
heuristically chosen literals in assignment A.

m For a heuristically chosen literal oy = Tp or o4 = Fp, respectively, we
require p € (atom(M) U body(M)) \ (AT U AF).

m For any literal o € A, dl(o) denotes the decision level of o, viz. the
value d/ had when o was assigned.
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Observations

Decision level d/, initially set to 0, is used to count the number of
heuristically chosen literals in assignment A.

For a heuristically chosen literal oy = Tp or oy = Fp, respectively, we
require p € (atom(M) U body(M)) \ (AT U AF).

For any literal o € A, dl(o) denotes the decision level of o, viz. the
value d/ had when o was assigned.

A conflict is detected from violation of a nogood ¢ C AR U V.

A conflict at decision level 0 (where A contains no heuristically
chosen literals) indicates non-existence of answer sets.

A nogood § derived by conflict analysis is asserting, that is,
some literal is unit-resulting for ¢ at a decision level k < dl.
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Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Observations

m Decision level d/, initially set to 0, is used to count the number of
heuristically chosen literals in assignment A.

m For a heuristically chosen literal oy = Tp or o4 = Fp, respectively, we
require p € (atom(M) U body(M)) \ (AT U AF).

m For any literal o € A, dl(o) denotes the decision level of o, viz. the
value d/ had when o was assigned.

m A conflict is detected from violation of a nogood ¢ C A U V.

m A conflict at decision level 0 (where A contains no heuristically
chosen literals) indicates non-existence of answer sets.

m A nogood ¢ derived by conflict analysis is asserting, that is,
some literal is unit-resulting for ¢ at a decision level k < dl.

= After learning § and backjumping to decision level k,
at least one literal is newly derivable by unit propagation.
== No explicit flipping of heuristically chosen literals !
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Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider
n - X< noty U<+ X,y V4 X W < not x,not y |
N y < not x u<+v Vi uy
[dl [ oy o [0
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Example: CDNL-ASP

Consider
n - X < not y U< X,y V4 X W < not x,not y |
N y < not x u<+v Vi uy
[dl [ oy o [0
1| Tu

F{not x, not y}
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Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider
n - X < not y U< X,y V4 X W < not x,not y |
N y < not x u<+v Vi uy
[dl [ oy o [0 |
1| Tu

F{not x, not y}
Fw {Tw,F{not x,not y}} = d(w)
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Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider
0o {x<—noty U< X,y VX w < not x,not y
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Conflict-Driven Nogood Learning Nogood Propagation

Outline of NOGOODPROPAGATION

m Derive deterministic consequences via:

m Unit propagation on Ap and V;
m Unfounded sets U C atom(IN).

m Note that U is unfounded if EB(U) C AF.
= For any p € U, we have (A(p, U) \ {Tp}) C A.
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Outline of NOGOODPROPAGATION

Derive deterministic consequences via:
m Unit propagation on Ap and V;
m Unfounded sets U C atom(I).
m Note that U is unfounded if EB(U) C AF.
= For any p € U, we have (A(p, U) \ {Tp}) C A.

m An ‘“interesting” unfounded set U satisfies:
f C UC (atom(N)\ AF) .

m Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of [1.
= Tight programs do not yield “interesting” unfounded sets !
m Given an unfounded set U and some p € U, adding A(p, U) to V
triggers a conflict or further derivations by unit propagation.
= Add loop nogoods atom by atom to eventually falsify all p € U.
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Conflict-Driven Nogood Learning Nogood Propagation

Algorithm 2: NOGOODPROPAGATION

Input : A logic program 1, a set V of nogoods, and an assignment A.
Output : An extended assignment and set of nogoods.

1 U+ 0 // set of unfounded atoms

2 loop

3 repeat

4 if § C A for some § € Ap UV then return (A, V) // conflict

5 Y+ {6e€AnuV |(0\A)={c},5¢ A} // unit-resulting nogoods

6 if X # 0 then

7 let o € (6 \ A) for some § € ¥ in

8 L | A< Ao(o) // di(@) = max({di(p) | p € (6 \ {o})} U{0})
9 until ¥ =0

10 if I is tight then return (A, V) // no unfounded set § C U C (atom(M) \ A7)
1 else

12 U<+ (U\ AF)

13 if U= (0 then U < UNFOUNDEDSET([T, A)

14 if U =0 then return (A,V)// no unfounded set ) C U C (atom(IT) \ AF)
15 let pe Uin

16 L V « VU{A(p,U)} // record unit-resulting or violated loop nogood
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Conflict-Driven Nogood Learning Nogood Propagation

Requirements for UNFOUNDEDSET

m Implementations of UNFOUNDEDSET must guarantee the following
for a result U:
U C (atom() \ AF);
EB(U) C AF;
U = 0 iff there is no nonempty unfounded subset of (atom(I) \ AF).
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Requirements for UNFOUNDEDSET

m Implementations of UNFOUNDEDSET must guarantee the following
for a result U:
U C (atom() \ AF);
EB(U) C AF;
U = () iff there is no nonempty unfounded subset of (atom(I) \ AF).
m Beyond that, there are various alternatives, such as:
m Calculating the greatest unfounded set.
m Calculating unfounded sets within strongly connected components of
the positive atom dependency graph of I1.
1= Usually, the latter option is implemented in ASP solvers !
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Conflict-Driven Nogood Learning Nogood Propagation

Example: NOGOODPROPAGATION

Consider
n - X4 noty U+ X,y VX W < not x,not y |
y < not x U< v V< uy
[di[oa & [ 6 |
1| Tu
2 | F{not x, not y}
Fw {Tw, F{not x,not y}} = 6(w)
3 | F{not y}
Fx {Tx,F{not y}} = 0(x)

F{x} {T{x},Fx} € A({x})

Fix,y} | {T{x,y},Fx} € A({x,y})
T{not x} | {F{not x},Fx} = 6({not x})
Ty {F{not y},Fy} = 6({not y})
T{v} {Tu, F{x,y},F{v}} = d(v)
T{u,y} {F{uvy}’Tuva}:(s({uvy})
Tv {Fv,T{u,y}} € A(v)

{Tu, F{X}’ F{X7Y}} = )‘(u7 {u, V}) X
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Conflict-Driven Nogood Learning Conflict Analysis

Outline of CONFLICTANALYSIS

m Conflict analysis is triggered whenever some nogood § € A UV
becomes violated, viz. § C A, at a decision level d/ > 0.

1= Note that all but the first literal assigned at d/ have been
unit-resulting for nogoods ¢ € A U V.

= |f o € 0 has been unit-resulting for £, we obtain a new violated nogood
by resolving ¢ and ¢ as follows:

CARCHISICARCH I
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by resolving ¢ and ¢ as follows:

CARCHISICARCH I

m Resolution is directed by resolving first over the literal o € § derived
last, viz. (0 \ Alo]) = {o}.

1= |terated resolution progresses in inverse order of assignment.
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Conflict-Driven Nogood Learning Conflict Analysis

Outline of CONFLICTANALYSIS

Conflict analysis is triggered whenever some nogood § € Ap UV
becomes violated, viz. § C A, at a decision level d/ > 0.

Note that all but the first literal assigned at d/ have been
unit-resulting for nogoods ¢ € A U V.

= |f o € 0 has been unit-resulting for £, we obtain a new violated nogood
by resolving ¢ and ¢ as follows:

(6\{eh)U(e\{a}) -
Resolution is directed by resolving first over the literal o € § derived
last, viz. (0 \ Alo]) = {o}.
1= |terated resolution progresses in inverse order of assignment.
Iterated resolution stops as soon as it generates a nogood §
containing exactly one literal o assigned at decision level dI.

m This literal o is called First Unique Implication Point (First-UIP).
v All literals in (0 \ {o'}) are assigned at decision levels smaller than d/.
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Conflict-Driven Nogood Learning Conflict Analysis

Algorithm 3: CONFLICTANALYSIS

Input : A violated nogood §, a logic program I1, a set V of nogoods, and
an assignment A.
Output : A derived nogood and a decision level.

1 loop

2 let o € § such that (6 \ A[o]) = {o} in

3 k< max({di(p) | p € 6\ {o}} U{0})

4 if k = di(c) then

5 let e € An UV such that (¢ \ Alo]) = {7} in

6 L d+ (6\{ohHu(e\{a}) // resolution

else return (4, k)
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Conflict-Driven Nogood Learning Conflict Analysis

Example: CONFLICTANALYSIS

Consider
n - X < not y U< X,y V4 X
y < not x u<v V<uy
dl| oy o )
1|Tu
2 |F{not x, not y}
Fw {Tw, F{not x, not y}} = o(w)
3 [F{not y}
Fx {Tx,F{not y}} = d(x)
Fix} = {T{x}Fx} e A({x})
Fix,y} {T{xy},Fx} € A({x y})
T{not x}|{F{not x},Fx} = §({not x})
Ty {F{not y},Fy} = 6({not y})
T{vi  [{Tu,F{x,y},F{v}} = d(u)
T{u,y} {F{u,y} Tu, Ty} =0({u,y})
Tv {Fv,T{u,y}} € A(v)

{Tu, F{X}7 F{X,y}} = )‘(uv {Ll, V})
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Conflict-Driven Nogood Learning Conflict Analysis

Remarks

m There always is a First-UIP at which conflict analysis terminates.

1= |n the worst, resolution stops at the heuristically chosen literal
assigned at decision level dI.
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m The nogood § containing First-UIP ¢ is violated by A, viz. § C A.
m We have k = max({dl(p) | p€ 0\ {o}}U{0}) < dl.
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Conflict-Driven Nogood Learning Conflict Analysis

Remarks

m There always is a First-UIP at which conflict analysis terminates.

1= |n the worst, resolution stops at the heuristically chosen literal
assigned at decision level dI.

m The nogood § containing First-UIP ¢ is violated by A, viz. § C A.

m We have k = max({dl(p) | p€ 0\ {o}}U{0}) < dl.
= After recording 0 in V and backjumping to decision level k,
7 is unit-resulting for ¢ !
1= Such a nogood § is called asserting.
1= Asserting nogoods direct conflict-driven search into a different region
of the search space than traversed before,
without explicitly flipping any heuristically chosen literal !
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Implementation via clasp

Overview

Nogoods from Clark’'s Completion
Nogoods from Loop Formulas

CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

Implementation via clasp
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Implementation via clasp

The clasp system
[40]

m Native ASP solver combining conflict-driven search with sophisticated
reasoning techniques:

m Advanced preprocessing including, e.g., equivalence reasoning
Lookback-based decision heuristics

Restart policies

Nogood deletion

Progress saving

Dedicated data structures for binary and ternary nogoods

Lazy data structures (watched literals) for long nogoods
Dedicated data structures for cardinality and weight constraints
Lazy unfounded set checking based on “source pointers”

Tight integration of unit propagation and unfounded set checking
Reasoning modes
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The clasp system
[40]

m Native ASP solver combining conflict-driven search with sophisticated
reasoning techniques:

Advanced preprocessing including, e.g., equivalence reasoning
Lookback-based decision heuristics

Restart policies

Nogood deletion

Progress saving

Dedicated data structures for binary and ternary nogoods

Lazy data structures (watched literals) for long nogoods
Dedicated data structures for cardinality and weight constraints
Lazy unfounded set checking based on “source pointers”

Tight integration of unit propagation and unfounded set checking
Reasoning modes

1= Many of these techniques are configurable !
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Implementation via clasp

Reasoning modes of clasp

Beyond deciding answer set existence, clasp allows for:
m Optimization

m Enumeration [without solution recording]
m Projective Enumeration [without solution recording]
m Brave and Cautious Reasoning determining the

®m union or
m intersection

of all answer sets by computing only linearly many of them

1= Reasoning applicable wrt answer sets as well as supported models
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Implementation via clasp

Reasoning modes of clasp

Beyond deciding answer set existence, clasp allows for:

m Optimization

m Enumeration [without solution recording]
m Projective Enumeration [without solution recording]
m Brave and Cautious Reasoning determining the

® union or

m intersection
of all answer sets by computing only linearly many of them
1= Reasoning applicable wrt answer sets as well as supported models
Front-ends also admit clasp to solve:
m Propositional CNF formulas

m Pseudo-Boolean formulas
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Implementation via clasp

Reasoning modes of clasp

Beyond deciding answer set existence, clasp allows for:

m Optimization

m Enumeration [without solution recording]
m Projective Enumeration [without solution recording]
m Brave and Cautious Reasoning determining the

® union or

m intersection
of all answer sets by computing only linearly many of them
1= Reasoning applicable wrt answer sets as well as supported models
Front-ends also admit clasp to solve:
m Propositional CNF formulas
m Pseudo-Boolean formulas

Find clasp at: http://potassco.sourceforge.net
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Grounding: Overview

@y Motivation

Program Classes

Program Instantiation

Program Dependencies

Rule Instantiation
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Motivation

Overview

@y Motivation
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p(b,
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p(b,
p(b,

E]
a
b
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Non-Ground

(2, b).

q(b,a).

q(a, o).

(X Y) <+ q(X,Y),q(Y,2).
Ground

q(a, b). q(b,a). q(a,c).
p(a,a) < aq(a, a), q(a, a).
p(a, a) < q(a, a), q(a, b).
p(a,a) < q(a, a),q(a, c).
p(a7 b) <~ q(a, b)7 q(b’ a)'
p(a, b) < q(a, b), q(b, b).
p(a, b) — q(a, b)v q(b7 C)'
p(a,c) < q(a, c),q(c, a).
p(a, c) < q(a,c),q(c, b).
p(a, c) < q(a,c), q(c,c).
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p(b,
p(b,
p(b,

a) < q(b, a), q(a, a).
) < q(b, a), g(a, b).

+ q(b, a), q(a, c).
) <= q(b, b), q(b, a).
) <= q(b, b),q(b, b).
b) < q(b, b), q(b, c).
) <= a(b,c), q(c, a).
) <= q(b, ), q(c, b).
c) < q(b,c),q(c, c).

Answer Set Programming

p(c, a) < q(c, a), q(
p(c,a) < q(c, a), q(
p(c; a) < q(c, a), q
p(c; b)
p(c, b) + q(c b
p(c; b)
(c c) « q(c c
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Motivation

Non-Ground
q(a, b).

q(b, a).

q(a, c).

p(X,Y) < q(X,Y),q(Y, Z).
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Non-Ground

q(a).
q(f(a)).
p(X) « q(X).

Ground
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Motivation

Non-Ground
q(a).

q(f(a)).

p(X) + q(X).

Ground

iz With functions of non-zero arity, the grounding is infinite !
= Given a logic program I1, we are interested in a subset 1" of
ground (M) s.t. the answer sets of I’ and ground(I) coincide.
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Motivation

Non-Ground

q(f(a))-
p(X) < not q(X).

Ground

q(f(a)).

p(a) < not q(a).

p(f(a)) < not q(f(a)).

p( (f(a))) < not q(f(f(a))).
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Motivation

Non-Ground

q(f(a))-
p(X) < not q(X).

Ground
q(f(a)).

p(a) < not q(a).

p(f(f(a))) < not q(f(f(a))).

i All (but one) rules are relevant !

15 The answer set is infinite !

1 For practical reasons, such programs should be rejected.
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Motivation

Goals

m First Part: What classes of programs yield finite equivalent ground
programs?

m Second Part: How to efficiently instantiate a program?
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Motivation

Terminology |

m Variables: X,Y,Z, ...

m Functions: a/0,f/1,g/2,... (associated with arities)

m Predicates: p/0,q/1,r/2,... (associated with arities)

m Terms: variables or f(t1,...,t,) s.t. each t; is a term and f/n is a
function

m Atoms: p(ti,...,t,) s.t. each t; is a term and p/n is a predicate

m An atom binds all variables that occur in it.
m Literals: an atom or an atom preceded by not

m Ground terms (atoms, literals): terms (atoms, literals) without
variables
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Motivation

Terminology Il
m Signature o: a pair of functions and predicates
m Herbrand universe U,: the set of all ground terms over functions in o

m Herbrand base B,: the set of all ground atoms over predicates and
functions in o

Example
Given the signature o = ({a/0,f/1},{p/1}):
m U, ={a,f(a), f(f(a)),f(f(f(a))),...}
m B, = {p(a), p(f(a)), p(f(f(a))), p(f(f((a))))... .}

In the following, signature o is often implicitly given by functions and
predicates occurring in a logic program.
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Motivation

Terminology Il
Let I1 be a logic program with signature o.

m Ground instances of r € 1: Set of variable-free rules obtained by
replacing all variables in r by elements from U,:

ground(r) = {rf | 0 : vars(r) — U,}

where

m vars(r) stands for the set of all variables occurring in r and
m 0 is a (ground) substitution.

m Ground instantiation of I1:

ground(M) = U, cnground(r)

m A set X C B, is an answer set of I if Cn(ground(M)X) = X.
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Program Classes

Overview

Program Classes
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Program Classes

w-Restricted Programs

Definition
Given a logic program TI1:
A predicate p/n is a domain predicate if there is a level mapping from
predicates to integers s.t., for each rule where p/n occurs in the head,

all predicates in the body are domain predicates s.t. their levels are
strictly smaller than that of p/n.

I is w-restricted if, for each rule, every variable occurring in the rule

is bound by some atom p(t1,..., t,) in the positive body s.t. p/n is a
domain predicate.
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Program Classes

w-Restricted Programs

Definition
Given a logic program TI1:

A predicate p/n is a domain predicate if there is a level mapping from
predicates to integers s.t., for each rule where p/n occurs in the head,
all predicates in the body are domain predicates s.t. their levels are
strictly smaller than that of p/n.

I is w-restricted if, for each rule, every variable occurring in the rule
is bound by some atom p(t1,..., t,) in the positive body s.t. p/n is a
domain predicate.

1= Every w-restricted program has a finite equivalent ground program.

m Implementation Iparse
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Program Classes

Example

d(a). d'(b). g (b).
r (X) < d (X), not g (X).

(X);
p (X) < q (X),d"(X).
q (X) < p (X), r (X).
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Example

d°(a). d°(b).

Program Classes

g°(b).

r(X) < d°(X), not g°(X).

(X);
PH(X) + ¢*(X),
(%)

a*(X) < p'(X),

Torsten Schaub (KRRQUP)

d°(X).

rl(X).

Answer Set Programming

Example

Level mapping

d/1—0
g/1—0
r/l—1
p/l1—1
q/l1—2
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Program Classes

Example

d°(a). d°(b). g°(b).

r(X) < d°(X), not g°(X).

(X);
PH(X)  ¢*(X), d°(X).
¢*(X) + pH(X),

rl(X).

w= Domain predicates: d/1,g/1,r/1.

Torsten Schaub (KRRQUP)

Answer Set Programming

Example

Level mapping
d/1—0
g/1—0
r/l—1
p/l1—1
q/l1—2
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Program Classes

Example

d°(a). d°(b). &°(b).

r(X) < d°(X), not g°(X).

(X);
PH(X)  ¢*(X), d°(X).
¢*(X) « p!(X), r'(X).

w= Domain predicates: d/1,g/1,r/1.

1= The program is w-restricted.

Torsten Schaub (KRRQUP)

Answer Set Programming

Example

Level mapping
d/1—0
g/1—0
r/l—1
p/l1—1
q/l1—2
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Program Classes

A-Restricted Programs

Definition

A logic program is A-restricted if there is a level mapping from predicates
to integers s.t., for each rule, every variable occurring in the rule is bound
by some atom in the positive body whose predicate has a strictly smaller
level than the head predicate(s).
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Program Classes

A-Restricted Programs

Definition

A logic program is A-restricted if there is a level mapping from predicates
to integers s.t., for each rule, every variable occurring in the rule is bound
by some atom in the positive body whose predicate has a strictly smaller
level than the head predicate(s).

1= Every A-restricted program has a finite equivalent ground program.

1= Every w-restricted program is also A-restricted.

m Implementation gringo (below version 3.0.0)
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Program Classes

Example
d(a). d(b). g (b)
P (X) ¢ (X), d(X)
g (X) < p (X).
r’ < q (X),not g (X), not r.
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Program Classes

Example
d°(a). d°(b). &°(b).
pH(X)  ¢*(X), d°(X).

q(
g*(X ) & pH(X).
— g*(X), not g%(X), not r.
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Example

Level mapping
d/1—0
g/1—0
p/l1—1
q/1—2
r/0—3
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Program Classes

Example
d°(a). d°(b). &°(b).
pH(X)  ¢*(X), d°(X).

q(
g*(X ) & pH(X).
— g*(X), not g°(X), not r.

1= The program is A-restricted.
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Example

Level mapping
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Program Classes

Example
d°(a). d°(b). &°(b).
pH(X)  ¢*(X), d°(X).

q(
g*(X ) & pH(X).
— g*(X), not g%(X), not r.

1= The program is A-restricted.

1= The program is not w-restricted.

Torsten Schaub (KRRQUP) Answer Set Programming

Example

Level mapping
d/1—0
g/1—0
p/l1—1
q/1—2
r/0—3
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Program Classes

Safe Programs
Definition

A logic program is safe if, for each rule, every variable occurring in the rule
is bound by some atom in the positive body.
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Program Classes

Safe Programs
Definition

A logic program is safe if, for each rule, every variable occurring in the rule
is bound by some atom in the positive body.

i Every safe program (without functions of non-zero arity) has a finite
equivalent ground program.
1= Every A-restricted program is also safe.

m Implementation dlv & gringo (from version 3.0.0)
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Program Classes

Example |

d(a). d(b). g(b).
p(X X

) < q(X).
q(X) « p(X).
r < q(X), not g(X), not r.
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Program Classes

Example |

d(a). d(b). g(b).
p(X) < a(X

q(X).
q(X) « p(X).
r < q(X), not g(X), not r.

1= The program is safe.

1= The program is not A-restricted.
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Program Classes

Example |

d(a). d(b).
p(X) < q(X).
q(X) < p(X).

r < q(X), not g(X), not r.

g(b).

Torsten Schaub (KRRQUP)

Answer Set Programming

Example

Example Il
p(a).
p(f(X)) < p(X).

m The grounding is infinite !
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Program Classes

Encoding a 3-State Busy Beaver Machine

-[oJoJo]o]o]o]o]- - $ cat beaver.lp
start(a).
blank(0) .

Stin 01r LLr tape(n,0,n).

trans(a,0,1,b,r).
trans(a,1,1,c,1).
trans(b,0,1,a,1).
trans(b,1,1,b,r).
trans(c,0,1,b,1).
trans(c,1,1,h,r).
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