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Information

Lecture: 2h (weekly)

Exercises: 2h (weekly)

Credits: 6 if
1 Written exam (at least “ausreichend”)
2 Two successful projects (= Implementation+Consultation)

Mark: mark of written exam

C(ourse)MS: http://moodle.cs.uni-potsdam.de/

General Info: http://www.cs.uni-potsdam.de/wv/lehre

Contact:

Lecture&Exercises: asp@cs.uni-potsdam.de

Projects: asp1@cs.uni-potsdam.de
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Roadmap

Introduction

Modeling

Language Extensions

Operators, Algorithms, and Systems

Applications
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Resources

Course material

http://www.cs.uni-potsdam.de/wv/lehre

http://moodle.cs.uni-potsdam.de

http://www.cs.uni-potsdam.de/~torsten/asp

Systems

clasp http://potassco.sourceforge.net

dlv http://www.dbai.tuwien.ac.at/proj/dlv

smodels http://www.tcs.hut.fi/Software/smodels

gringo http://potassco.sourceforge.net

lparse http://www.tcs.hut.fi/Software/smodels

clingo http://potassco.sourceforge.net

iclingo http://potassco.sourceforge.net

oclingo http://potassco.sourceforge.net

asparagus http://asparagus.cs.uni-potsdam.de
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Objective

Goal: Declarative problem solving

“What is the problem?”

instead of

“How to solve the problem?”

Problem

Representation

Solution

Output
?

-

6

Modeling Interpretation

Computation
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Answer Set Programming

Answer Set Programming (ASP)
in a Nutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way (being more compact than SAT)

The versatility of ASP is reflected by the ASP solver clasp,
winning first places at ASP’07/09/11, PB’09/11, and SAT’09/11

http://potassco.sourceforge.net

ASP embraces many emerging application areas, eg.

second place at RoboCup@Home 2011 by USTC, Peking
configuration by SIEMENS, Vienna
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Historic Roots

Logic Programming

Algorithm = Logic + Control [55]

Logic as a programming language

å Prolog (Colmerauer, Kowalski)

Features of Prolog

Declarative (relational) programming language
Based on SLD(NF) Resolution
Top-down query evaluation
Terms as data structures
Parameter passing by unification
Solutions are extracted from instantiations of variables
occurring in the query

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 13 / 453



Historic Roots

Prolog: Programming in logic

Prolog is great, it’s almost declarative!
To see this, consider

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z),above(Z,Y).

and compare it to

above(X,Y) :- above(Z,Y),on(X,Z).

above(X,Y) :- on(X,Y).

An interpretation in classical logic amounts to

∀xy(on(x , y) ∨ ∃z(on(x , z) ∧ above(z , y))→ above(x , y))
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Historic Roots

Model-based Problem Solving

Traditional approach (e.g. Prolog)

1 Provide a specification of the problem.
2 A solution is given by a derivation of an appropriate

query.

Model-based approach (e.g. ASP and SAT)

1 Provide a specification of the problem.
2 A solution is given by a model of the specification.

Automated planning, Kautz and Selman [53]

Represent planning problems as propositional theories so that models
not proofs describe solutions (e.g. Satplan)
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Problem Solving

Overview

1 Objective

2 Answer Set Programming
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5 Applications

6 A First Example
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Problem Solving

Model-based Problem Solving

Specification Associated Structures

constraint satisfaction problem assignment
propositional horn theories smallest model
propositional theories models
propositional theories minimal models
propositional theories stable models
propositional programs minimal models
propositional programs supported models
propositional programs stable models
first-order theories models
default theories extensions
. . .
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Problem Solving

ASP as High-level Language

Basic Idea:

Encode problem (class+instance) as a set of rules
Read off solutions from answer sets of the rules

Problem

Logic program

Solution(s)

Answer set(s)
?

-

6

Modelling Interpretation

Computation
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Problem Solving

ASP as Low-level Language

Basic Idea:

Compile a problem automatically into a logic program
Solve the original problem by solving its compilation

Special
Purpose
System

Special
Purpose
Compiler

ASP Solver
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Applications

Overview

1 Objective

2 Answer Set Programming

3 Historic Roots

4 Problem Solving

5 Applications

6 A First Example
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Applications

What is ASP good for?

Combinatorial search problems
(some with substantial amount of data):

For instance, auctions, bio-informatics, computer-aided verification,
configuration, constraint satisfaction, diagnosis, information integration,
planning and scheduling, security analysis, semantic web, wire-routing,
zoology and linguistics, and many more

My favorite: Using ASP as a basis for a decision support system for
NASA’s space shuttle (Gelfond et al., Texas Tech)

Our own applications:

Automatic synthesis of multiprocessor systems
Inconsistency detection, diagnosis, repair, and prediction
in large biological networks
Home monitoring for risk prevention in ambient assisted living
General game playing
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Applications

What does ASP offer?

Integration of KR, DB, and search techniques

Compact, easily maintainable problem representations

Rapid application development tool

Easy handling of dynamic, knowledge intensive applications
(including: data, frame axioms, exceptions, defaults, closures, etc.)

ASP = KR + DB + Search
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A First Example

An instance of Towers of Hanoi

Init:

1

a

2
7

b

3
4
5
6

c

Goal:

3
4

a b

1
2
5
6
7

c

peg(a;b;c).

init on(1,a).

init on(2;7,b).

init on(3;4;5;6,c).

disk(1..7).

goal on(3;4,a).

goal on(1;2;5;6;7,c).

moves(70).
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A First Example

An encoding of Towers of Hanoi

on(D,P,0) :- init on(D,P).

1 { move(D,P,T) : disk(D) : peg(P) } 1 :- moves(M), T = 1..M.

move(D,T) :- move(D, ,T).

on(D,P,T) :- move(D,P,T).

on(D,P,T+1) :- on(D,P,T), not move(D,T+1), not moves(T).

blocked(D-1,P,T+1) :- on(D,P,T), not moves(T).

blocked(D-1,P,T) :- blocked(D,P,T), disk(D).

:- move(D,P,T), blocked(D-1,P,T).

:- move(D,T), on(D,P,T-1), blocked(D,P,T).

:- not 1 { on(D,P,T) } 1, disk(D), moves(M), T = 1..M.

:- goal on(D,P), not on(D,P,M), moves(M).
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A First Example

Let it run!

torsten@raz > gringo toh instance.lp toh encoding.lp | clasp --stats

clasp version 1.3.5

Reading from stdin

Solving...

Answer: 1

peg(a) peg(c) peg(b) init on(1,a) init on(2,b) ...

move(6,a,1) move(7,a,2) move(5,b,3) move(7,c,4)

move(6,b,5) move(7,b,6) move(4,a,7) move(7,a,8) ...

move(2,c,63) move(7,c,64) move(6,b,65) move(7,b,66)

move(5,c,67) move(7,a,68) move(6,c,69) move(7,c,70)

move(7,70) move(6,69) move(7,68) move(5,67) move(7,66) ...

SATISFIABLE

Models : 1+

Time : 3.280s (Solving: 3.23s 1st Model: 3.23s Unsat: 0.00s)

Choices : 130907

Conflicts : 35738

Restarts : 12
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Syntax

Problem solving in ASP: Syntax

Problem

Logic Program

Solution(s)

Answer set(s)
?

-

6

Modeling Interpretation

Computation
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Syntax

Normal logic programs

A (normal) rule, r , is an ordered pair of the form

A0 ← A1, . . . ,Am, not Am+1, . . . , not An,

where n ≥ m ≥ 0, and each Ai (0 ≤ i ≤ n) is an atom.

A (normal) logic program is a finite set of rules.

Notation

head(r) = A0

body(r) = {A1, . . . ,Am, not Am+1, . . . , not An}
body +(r) = {A1, . . . ,Am}
body−(r) = {Am+1, . . . ,An}

A program is called positive if body−(r) = ∅ for all its rules.
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Semantics

Problem solving in ASP: Semantics

Problem

Logic Program

Solution(s)

Answer set(s)
?

-

6

Modeling Interpretation

Computation

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 32 / 453



Semantics

Answer set: Formal Definition
Positive programs

A set of atoms X is closed under a positive program Π iff
for any r ∈ Π, head(r) ∈ X whenever body +(r) ⊆ X .

å X corresponds to a model of Π (seen as a formula).

The smallest set of atoms which is closed under a positive program Π
is denoted by Cn(Π).

å Cn(Π) corresponds to the ⊆-smallest model of Π (ditto).

The set Cn(Π) of atoms is the answer set of a positive program Π.
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Semantics

Some “logical” remarks

Positive rules are also referred to as definite clauses.

Definite clauses are disjunctions with exactly one positive atom:

A0 ∨ ¬A1 ∨ · · · ∨ ¬Am

A set of definite clauses has a (unique) smallest model.

Horn clauses are clauses with at most one positive atom.

Every definite clause is a Horn clause but not vice versa.
A set of Horn clauses has a smallest model or none.

This smallest model is the intended semantics of a set of Horn
clauses.

+ Given a positive program Π, Cn(Π) corresponds to the smallest model
of the set of definite clauses corresponding to Π.
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Semantics

Answer set: Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHj p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
called answer set:

{p, q}

ΠΦ q ←
p ← q, not r

Informally, a set X of atoms is an answer set of a logic program Π

if X is a (classical) model of Π and

if all atoms in X are justified by some rule in Π

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))
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Semantics

Answer set: Formal Definition
Normal programs

The reduct, ΠX , of a program Π relative to a set X of atoms is
defined by

ΠX = {head(r)← body +(r) | r ∈ Π and body−(r) ∩ X = ∅}.

A set X of atoms is an answer set of a program Π if Cn(ΠX ) = X .
Recall: Cn(ΠX ) is the ⊆–smallest (classical) model of ΠX .

Intuition: X is stable under “applying rules from Π”

Note: Every atom in X is justified by an “applying rule from Π”
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Semantics

A closer look at ΠX

In other words, given a set X of atoms from Π,

ΠX is obtained from Π by deleting

1 each rule having a not A in its body with A ∈ X
and then

2 all negative atoms of the form not A
in the bodies of the remaining rules.
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Examples

A first example

Π = {p ← p, q ← not p}

X ΠX Cn(ΠX )

∅ p ← p
q ←

{q} 8

{p} p ← p ∅ 8

{q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 39 / 453



Examples

A first example

Π = {p ← p, q ← not p}

X ΠX Cn(ΠX )

∅ p ← p
q ←

{q} 8

{p} p ← p ∅ 8

{q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 39 / 453



Examples

A first example

Π = {p ← p, q ← not p}

X ΠX Cn(ΠX )

∅ p ← p
q ←

{q} 8

{p} p ← p ∅ 8

{q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 39 / 453



Examples

A first example

Π = {p ← p, q ← not p}

X ΠX Cn(ΠX )

∅ p ← p
q ←

{q} 8

{p} p ← p ∅ 8

{q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 39 / 453



Examples

A first example

Π = {p ← p, q ← not p}

X ΠX Cn(ΠX )

∅ p ← p
q ←

{q} 8

{p} p ← p ∅ 8

{q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 39 / 453



Examples

A first example

Π = {p ← p, q ← not p}

X ΠX Cn(ΠX )

∅ p ← p
q ←

{q} 8

{p} p ← p ∅ 8

{q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 39 / 453



Examples

A second example

Π = {p ← not q, q ← not p}

X ΠX Cn(ΠX )
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{q}
q ←

{q} 4

{p, q} ∅ 8
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Examples

A third example

Π = {p ← not p}
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Examples

Answer set: Some properties

A logic program may have zero, one, or multiple answer sets!

If X is an answer set of a logic program Π,
then X is a model of Π (seen as a formula).

If X and Y are answer sets of a normal program Π,
then X 6⊂ Y .
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Examples

Answer set: Alternative Definition

Let Π be a normal program and X a set of atoms.

The set of generating rules of X relative to Π is defined by

ΠX = {r ∈ Π | body +(r) ⊆ X and body−(r) ∩ X = ∅}.

X is an answer set of Π iff X is a ⊆-minimal model of ΠX .

Or, X is an answer set of Π iff X ∈ min⊆(ΠX ), where
min⊆(Π) is the set of ⊆-minimal models of a program Π.
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Examples

The second example revisited

Π = {p ← not q, q ← not p}

X ΠX “logically” min⊆(ΠX )

∅ p ← not q
q ← not p

p ∨ q {p}, {q} 8

{p} p ← not q p ∨ q {p}, {q} 4

{q}
q ← not p

p ∨ q {p}, {q} 4

{p, q} > ∅ 8
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Examples

A closer look at Cn
Inductive characterization

Let Π be a positive program and X a set of atoms.

The immediate consequence operator TΠ is defined as follows:

TΠX = {head(r) | r ∈ Π and body(r) ⊆ X}

Iterated applications of TΠ are written as T j
Π for j ≥ 0,

where T 0
ΠX = X and T i

ΠX = TΠT i−1
Π X for i ≥ 1.

Theorem

For any positive program Π, we have

Cn(Π) =
⋃

i≥0 T i
Π∅,

X ⊆ Y implies TΠX ⊆ TΠY ,

Cn(Π) is the smallest fixpoint of TΠ.
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Examples

Let’s iterate TΠ

Π = {p ←, q ←, r ← p, s ← q, t, t ← r , u ← v}

T 0
Π∅ = ∅

T 1
Π∅ = {p, q} = TΠT 0

Π∅ = TΠ∅
T 2

Π∅ = {p, q, r} = TΠT 1
Π∅ = TΠ{p, q}

T 3
Π∅ = {p, q, r , t} = TΠT 2

Π∅ = TΠ{p, q, r}
T 4

Π∅ = {p, q, r , t, s} = TΠT 3
Π∅ = TΠ{p, q, r , t}

T 5
Π∅ = {p, q, r , t, s} = TΠT 4

Π∅ = TΠ{p, q, r , t, s}
T 6

Π∅ = {p, q, r , t, s} = TΠT 5
Π∅ = TΠ{p, q, r , t, s}

To see that Cn(Π) = {p, q, r , t, s} is the smallest fixpoint of TΠ, note that
TΠ{p, q, r , t, s} = {p, q, r , t, s} and TΠX 6= X for every X ⊆ {p, q, r , t, s}.
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Language Constructs

Problem solving in ASP: Modeling

Problem

Logic Program

Solution(s)

Answer set(s)
?

-

6

Modeling Interpretation

Computation
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Language Constructs

(Rough) notational convention

We sometimes use the following notation interchangeably in order to stress
the respective view:

negation classical
if and or as failure negation

source code :- , | not -

logic program ← , ; not/∼ ¬
formula → ∧ ∨ ∼/(¬) ¬
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Language Constructs

Language Constructs

Variables (over the Herbrand Universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) | q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

also: #sum, #avg, #min, #max, #even, #odd
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Variables and Grounding

Overview

7 Syntax

8 Semantics

9 Examples

10 Language Constructs

11 Variables and Grounding

12 Computation
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Variables and Grounding

Programs with Variables

Let Π be a logic program.

Herbranduniverse UΠ: Set of constants in Π

Herbrandbase BΠ: Set of (variable-free) atoms constructible from UΠ

+ We usually denote this as A, and call it alphabet.

Ground Instances of r ∈ Π: Set of variable-free rules obtained by
replacing all variables in r by elements from UΠ:

ground(r) = {rθ | θ : var(r)→ UΠ}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution.

Ground Instantiation of Π:

ground(Π) =
⋃

r∈Πground(r)
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Variables and Grounding

An example

Π = { r(a, b)←, r(b, c)←, t(X ,Y )← r(X ,Y ) }
UΠ = {a, b, c}

BΠ =

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(Π) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


+ Intelligent Grounding aims at reducing the ground instantiation.
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Variables and Grounding

Answer sets of programs with Variables

Let Π be a normal logic program with variables.

We define a set X of (ground) atoms as an answer set of Π
if Cn(ground(Π)X ) = X .
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Computation

Overview
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8 Semantics
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Computation

Problem solving in ASP: Computation

Problem

Logic Program

Solution(s)

Answer set(s)
?

-

6

Modeling Interpretation

Computation
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Computation

ASP Solving Process
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Computation

Traditional Solving Procedure

Global parameters: Logic program Π and its set A of atoms.

solveΠ(X ,Y )

1 (X ,Y )← propagateΠ(X ,Y )
2 if (X ∩ Y ) 6= ∅ then fail
3 if (X ∪ Y ) = A then return(X )
4 select A ∈ A \ (X ∪ Y )
5 solveΠ(X ∪ {A},Y )
6 solveΠ(X ,Y ∪ {A})

Comments:

(X ,Y ) is supposed to be a 3-valued model such that X ⊆ Z and Y ∩ Z = ∅
for any answer set Z of Π.

Key operations: propagateΠ(X ,Y ) and ‘select A ∈ A \ (X ∪ Y )’

Worst case complexity: O(2|A|)
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Computation
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3 if (X ∪ Y ) = A then return(X )
4 select A ∈ A \ (X ∪ Y )
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Overview

7 Syntax

8 Semantics

9 Examples
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12 Computation
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Reasoning Modes

Reasoning Modes

Satisfiability

Enumeration†

Projection†

Intersection‡

Union‡

Optimization

Sampling

† without solution recording
‡ without solution enumeration
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Modeling and Interpreting

Problem

Logic Program

Solution(s)

Answer sets
?

-

6

Modeling Interpretation

Computation
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Modeling

For solving a problem class P for a problem instance I,
encode

1 the problem instance I as a set C(I) of facts and

2 the problem class P as a set C(P) of rules

such that the solutions to P for I can be (polynomially) extracted
from the answer sets of C(I) ∪ C(P).
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ASP Solving Process

ASP Solving Process

Logic
Program Grounder Solver

Answer
Set(s)

- - -
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Problems as Logic Programs Graph Coloring

Graph Coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(X,C) : col(C)} 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 67 / 453



Problems as Logic Programs Graph Coloring

Graph Coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(X,C) : col(C)} 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 67 / 453



Problems as Logic Programs Graph Coloring

Graph Coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(X,C) : col(C)} 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 67 / 453



Problems as Logic Programs Graph Coloring

Graph Coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(X,C) : col(C)} 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 67 / 453



Problems as Logic Programs Graph Coloring

Graph Coloring: Grounding

$ gringo -t color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2). edge(5,3).

edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(1,r), color(1,b), color(1,g)} 1.

1 {color(2,r), color(2,b), color(2,g)} 1.

1 {color(3,r), color(3,b), color(3,g)} 1.

1 {color(4,r), color(4,b), color(4,g)} 1.

1 {color(5,r), color(5,b), color(5,g)} 1.

1 {color(6,r), color(6,b), color(6,g)} 1.

:- color(1,r), color(2,r). :- color(2,g), color(5,g). ... :- color(6,r), color(2,r).

:- color(1,b), color(2,b). :- color(2,r), color(6,r). :- color(6,b), color(2,b).

:- color(1,g), color(2,g). :- color(2,b), color(6,b). :- color(6,g), color(2,g).

:- color(1,r), color(3,r). :- color(2,g), color(6,g). :- color(6,r), color(3,r).

:- color(1,b), color(3,b). :- color(3,r), color(1,r). :- color(6,b), color(3,b).

:- color(1,g), color(3,g). :- color(3,b), color(1,b). :- color(6,g), color(3,g).

:- color(1,r), color(4,r). :- color(3,g), color(1,g). :- color(6,r), color(5,r).

:- color(1,b), color(4,b). :- color(3,r), color(4,r). :- color(6,b), color(5,b).

:- color(1,g), color(4,g). :- color(3,b), color(4,b). :- color(6,g), color(5,g).

:- color(2,r), color(4,r). :- color(3,g), color(4,g).

:- color(2,b), color(4,b). :- color(3,r), color(5,r).

:- color(2,g), color(4,g). :- color(3,b), color(5,b).

:- color(2,r), color(5,r). :- color(3,g), color(5,g).

:- color(2,b), color(5,b). :- color(4,r), color(1,r).
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Problems as Logic Programs Graph Coloring

Graph Coloring: Grounding

$ gringo -t color.lp
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1 {color(1,r), color(1,b), color(1,g)} 1.

1 {color(2,r), color(2,b), color(2,g)} 1.

1 {color(3,r), color(3,b), color(3,g)} 1.

1 {color(4,r), color(4,b), color(4,g)} 1.

1 {color(5,r), color(5,b), color(5,g)} 1.

1 {color(6,r), color(6,b), color(6,g)} 1.

:- color(1,r), color(2,r). :- color(2,g), color(5,g). ... :- color(6,r), color(2,r).

:- color(1,b), color(2,b). :- color(2,r), color(6,r). :- color(6,b), color(2,b).

:- color(1,g), color(2,g). :- color(2,b), color(6,b). :- color(6,g), color(2,g).

:- color(1,r), color(3,r). :- color(2,g), color(6,g). :- color(6,r), color(3,r).

:- color(1,b), color(3,b). :- color(3,r), color(1,r). :- color(6,b), color(3,b).

:- color(1,g), color(3,g). :- color(3,b), color(1,b). :- color(6,g), color(3,g).

:- color(1,r), color(4,r). :- color(3,g), color(1,g). :- color(6,r), color(5,r).

:- color(1,b), color(4,b). :- color(3,r), color(4,r). :- color(6,b), color(5,b).

:- color(1,g), color(4,g). :- color(3,b), color(4,b). :- color(6,g), color(5,g).

:- color(2,r), color(4,r). :- color(3,g), color(4,g).

:- color(2,b), color(4,b). :- color(3,r), color(5,r).

:- color(2,g), color(4,g). :- color(3,b), color(5,b).

:- color(2,r), color(5,r). :- color(3,g), color(5,g).

:- color(2,b), color(5,b). :- color(4,r), color(1,r).
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Problems as Logic Programs Graph Coloring

Graph Coloring: Solving

$ gringo color.lp | clasp 0

clasp version 1.2.1

Reading from stdin

Reading : Done(0.000s)

Preprocessing: Done(0.000s)

Solving...

Answer: 1

color(1,b) color(2,r) color(3,r) color(4,g) color(5,b) color(6,g) node(1) ... edge(1,2) ... col(r) ...

Answer: 2

color(1,g) color(2,r) color(3,r) color(4,b) color(5,g) color(6,b) node(1) ... edge(1,2) ... col(r) ...

Answer: 3

color(1,b) color(2,g) color(3,g) color(4,r) color(5,b) color(6,r) node(1) ... edge(1,2) ... col(r) ...

Answer: 4

color(1,g) color(2,b) color(3,b) color(4,r) color(5,g) color(6,r) node(1) ... edge(1,2) ... col(r) ...

Answer: 5

color(1,r) color(2,b) color(3,b) color(4,g) color(5,r) color(6,g) node(1) ... edge(1,2) ... col(r) ...

Answer: 6

color(1,r) color(2,g) color(3,g) color(4,b) color(5,r) color(6,b) node(1) ... edge(1,2) ... col(r) ...

Models : 6

Time : 0.000 (Solving: 0.000)

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 69 / 453



Problems as Logic Programs Graph Coloring

Graph Coloring: Solving

$ gringo color.lp | clasp 0

clasp version 1.2.1

Reading from stdin

Reading : Done(0.000s)

Preprocessing: Done(0.000s)

Solving...

Answer: 1

color(1,b) color(2,r) color(3,r) color(4,g) color(5,b) color(6,g) node(1) ... edge(1,2) ... col(r) ...

Answer: 2

color(1,g) color(2,r) color(3,r) color(4,b) color(5,g) color(6,b) node(1) ... edge(1,2) ... col(r) ...

Answer: 3

color(1,b) color(2,g) color(3,g) color(4,r) color(5,b) color(6,r) node(1) ... edge(1,2) ... col(r) ...

Answer: 4

color(1,g) color(2,b) color(3,b) color(4,r) color(5,g) color(6,r) node(1) ... edge(1,2) ... col(r) ...

Answer: 5

color(1,r) color(2,b) color(3,b) color(4,g) color(5,r) color(6,g) node(1) ... edge(1,2) ... col(r) ...

Answer: 6

color(1,r) color(2,g) color(3,g) color(4,b) color(5,r) color(6,b) node(1) ... edge(1,2) ... col(r) ...

Models : 6

Time : 0.000 (Solving: 0.000)

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 69 / 453



Methodology

Overview

14 ASP Solving Process

15 Problems as Logic Programs
Graph Coloring

16 Methodology
Satisfiability
Queens
Reviewer Assignment

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 70 / 453



Methodology

Basic Methodology

Generate and Test (or: Guess and Check) approach

Generator Generate potential answer set candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell

Logic program = Data + Generator + Tester
(+ Optimizer)
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Methodology Satisfiability

Satisfiability

Problem Instance: A propositional formula φ.

Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula φ is true.

Example: Consider formula (a ∨ ¬b) ∧ (¬a ∨ b).

Logic Program:

Generator Tester Answer sets
{a,b} ← ← not a, b

← a, not b
X1 = {a,b}
X2 = {}
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Methodology Queens

The n-Queens Problem

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5

Place n queens on an n × n
chess board

Queens must not attack one
another

Q Q Q

Q Q
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Methodology Queens

Defining the Field

queens.lp

row (1..n).

col (1..n).

Create file queens.lp

Define the field

n rows
n columns
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Methodology Queens

Defining the Field

Running . . .

$ clingo queens.lp -c n=5

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5)

SATISFIABLE

Models : 1

Time : 0.000

Prepare : 0.000

Prepro. : 0.000

Solving : 0.000
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Methodology Queens

Placing some Queens

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I) : col(J) }.

Guess a solution candidate

Place some queens on the board

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 76 / 453



Methodology Queens

Placing some Queens

Running . . .

$ clingo queens.lp -c n=5 3

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5)

Answer: 2

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) queen(1,1)

Answer: 3

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) queen(2,1)

SATISFIABLE

Models : 3+

...
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Methodology Queens

Placing some Queens: Answer 1

Answer 1

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5
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Methodology Queens

Placing some Queens: Answer 2

Answer 2

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 L0Z0Z

1 2 3 4 5
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Methodology Queens

Placing some Queens: Answer 3

Answer 3

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 QZ0Z0
1 Z0Z0Z

1 2 3 4 5
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Methodology Queens

Placing n Queens

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I) : col(J) }.

:- not { queen(I,J) } == n.

Place exactly n queens on the board
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Methodology Queens

Placing n Queens

Running . . .

$ clingo queens.lp -c n=5 2

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(5,1) queen(4,1) queen(3,1) \

queen(2,1) queen(1,1)

Answer: 2

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(1,2) queen(4,1) queen(3,1) \

queen(2,1) queen(1,1)

...
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Methodology Queens

Placing n Queens: Answer 1

Answer 1

5 L0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 L0Z0Z

1 2 3 4 5
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Methodology Queens

Placing n Queens: Answer 2

Answer 2

5 Z0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 LQZ0Z

1 2 3 4 5
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Methodology Queens

Horizontal and vertical Attack

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I) : col(J) }.

:- not { queen(I,J) } == n.

:- queen(I,J), queen(I,JJ), J != JJ.

:- queen(I,J), queen(II,J), I != II.

Forbid horizontal attacks

Forbid vertical attacks
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Methodology Queens

Horizontal and vertical Attack

Running . . .

$ clingo queens.lp -c n=5

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(5,5) queen(4,4) queen(3,3) \

queen(2,2) queen(1,1)

...
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Methodology Queens

Horizontal and vertical Attack: Answer 1

Answer 1

5 Z0Z0L
4 0Z0L0
3 Z0L0Z
2 0L0Z0
1 L0Z0Z

1 2 3 4 5
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Methodology Queens

Diagonal Attack

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I) : col(J) }.

:- not { queen(I,J) } == n.

:- queen(I,J), queen(I,JJ), J != JJ.

:- queen(I,J), queen(II,J), I != II.

:- queen(I,J), queen(II,JJ), (I,J) != (II,JJ),

I-J == II-JJ.

:- queen(I,J), queen(II,JJ), (I,J) != (II,JJ),

I+J == II+JJ.

Forbid diagonal attacks

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 88 / 453



Methodology Queens

Diagonal Attack

Running . . .

$ clingo queens.lp -c n=5

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(4,5) queen(1,4) queen(3,3) \

queen(5,2) queen(2,1)

SATISFIABLE

Models : 1+

Time : 0.000

Prepare : 0.000

Prepro. : 0.000

Solving : 0.000
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Methodology Queens

Diagonal Attack: Answer 1

Answer 1

5 ZQZ0Z
4 0Z0ZQ
3 Z0L0Z
2 QZ0Z0
1 Z0ZQZ

1 2 3 4 5
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Methodology Queens

Optimizing

queens-opt.lp

{ queen(I,1..n) } == 1 :- I = 1..n.

{ queen (1..n,J) } == 1 :- J = 1..n.

:- { queen(D-J,J) } >= 2, D = 2..2*n.

:- { queen(D+J,J) } >= 2, D = 1-n..n-1.

Encoding can be optimized

Much faster to solve

See Section Tweaking N-Queens
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Methodology Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p5).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- 9 { assigned(P,R) : paper(P) } , reviewer(R).

:- { assigned(P,R) : paper(P) } 6, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { assignedB(P,R) : paper(P) : reviewer(R) }.
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Methodology Reviewer Assignment

Simplistic STRIPS Planning

fluent(p). fluent(q). fluent(r).

action(a). pre(a,p). add(a,q). del(a,p).

action(b). pre(b,q). add(b,r). del(b,q).

init(p). query(r).

time(1..k). lasttime(T) :- time(T), not time(T+1).

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

ocdel(F,T) :- occ(A,T), del(A,F).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), not ocdel(F,T), time(T).

:- query(F), not holds(F,T), lasttime(T).
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Methodology Reviewer Assignment

Simplistic STRIPS Planning with iASP

#base.

fluent(p). fluent(q). fluent(r).

action(a). pre(a,p). add(a,q). del(a,p).

action(b). pre(b,q). add(b,r). del(b,q).

init(p). query(r).

holds(P,0) :- init(P).

#cumulative t.

1 { occ(A,t) : action(A) } 1.

:- occ(A,t), pre(A,F), not holds(F,t-1).

ocdel(F,t) :- occ(A,t), del(A,F).

holds(F,t) :- occ(A,t), add(A,F).

holds(F,t) :- holds(F,t-1), not ocdel(F,t).

#volatile t.

:- query(F), not holds(F,t).

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 94 / 453



Methodology Reviewer Assignment

Simplistic STRIPS Planning with iASP

#base.

fluent(p). fluent(q). fluent(r).

action(a). pre(a,p). add(a,q). del(a,p).

action(b). pre(b,q). add(b,r). del(b,q).

init(p). query(r).

holds(P,0) :- init(P).

#cumulative t.

1 { occ(A,t) : action(A) } 1.

:- occ(A,t), pre(A,F), not holds(F,t-1).

ocdel(F,t) :- occ(A,t), del(A,F).

holds(F,t) :- occ(A,t), add(A,F).

holds(F,t) :- holds(F,t-1), not ocdel(F,t).

#volatile t.

:- query(F), not holds(F,t).

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 94 / 453



Methodology Reviewer Assignment

Simplistic STRIPS Planning with iASP

#base.

fluent(p). fluent(q). fluent(r).

action(a). pre(a,p). add(a,q). del(a,p).

action(b). pre(b,q). add(b,r). del(b,q).

init(p). query(r).

holds(P,0) :- init(P).

#cumulative t.

1 { occ(A,t) : action(A) } 1.

:- occ(A,t), pre(A,F), not holds(F,t-1).

ocdel(F,t) :- occ(A,t), del(A,F).

holds(F,t) :- occ(A,t), add(A,F).

holds(F,t) :- holds(F,t-1), not ocdel(F,t).

#volatile t.

:- query(F), not holds(F,t).

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 94 / 453



Methodology Reviewer Assignment

Simplistic STRIPS Planning with iASP

#base.

fluent(p). fluent(q). fluent(r).

action(a). pre(a,p). add(a,q). del(a,p).

action(b). pre(b,q). add(b,r). del(b,q).

init(p). query(r).

holds(P,0) :- init(P).

#cumulative t.

1 { occ(A,t) : action(A) } 1.

:- occ(A,t), pre(A,F), not holds(F,t-1).

ocdel(F,t) :- occ(A,t), del(A,F).

holds(F,t) :- occ(A,t), add(A,F).

holds(F,t) :- holds(F,t-1), not ocdel(F,t).

#volatile t.

:- query(F), not holds(F,t).

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 94 / 453



Disjunctive logic programs: Overview

17 Syntax

18 Semantics

19 Examples

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 95 / 453



Syntax

Overview

17 Syntax

18 Semantics

19 Examples

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 96 / 453



Syntax

Disjunctive logic programs

A disjunctive rule, r , is an ordered pair of the form

A1 ; . . . ; Am ← Am+1, . . . ,An, not An+1, . . . , not Ao ,

where o ≥ n ≥ m ≥ 0, and each Ai (0 ≤ i ≤ o) is an atom.

A disjunctive logic program is a finite set of disjunctive rules.

(Generalized) Notation

head(r) = {A1, . . . ,Am}
body(r) = {Am+1, . . . ,An, not An+1, . . . , not Ao}

body +(r) = {Am+1, . . . ,An}
body−(r) = {An+1, . . . ,Ao}

A program is called positive if body−(r) = ∅ for all its rules.
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Semantics

Answer sets

Positive programs:

A set X of atoms is closed under a positive program Π iff
for any r ∈ Π, head(r) ∩ X 6= ∅ whenever body +(r) ⊆ X .

å X corresponds to a model of Π (seen as a formula).

The set of all ⊆-minimal sets of atoms being closed under a positive
program Π is denoted by min⊆(Π).

å min⊆(Π) corresponds to the ⊆-minimal models of Π (ditto).

Disjunctive programs:

The reduct, ΠX , of a disjunctive program Π relative to a set X of
atoms is defined by

ΠX = {head(r)← body +(r) | r ∈ Π and body−(r) ∩ X = ∅}.

A set X of atoms is an answer set of a disjunctive program Π if
X ∈ min⊆(ΠX ).

FYI: The alternative definition on Page 104 is applicable as well.
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Examples

A “positive” example

Π =

{
a ←
b ; c ← a

}

The sets {a, b}, {a, c}, and {a, b, c} are closed under Π.

We have min⊆(Π) = { {a, b}, {a, c} }.
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Examples

3-colorability revisited

node(1..6).

edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).

edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).

colored(X,r) | colored(X,b) | colored(X,g) :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).
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Examples

3-colorability revisited

node(1..6).

edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).

edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).

col(r). col(b). col(g).

colored(X,C) : col(X) :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).
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Examples

More Examples

Π1 = {a ; b ; c ←} has answer sets {a}, {b}, and {c}.
Π2 = {a ; b ; c ← , ← a} has answer sets {b} and {c}.
Π3 = {a ; b ; c ← , ← a , b ← c , c ← b} has answer set {b, c}.
Π4 = {a ; b ← c , b ← not a, not c , a ; c ← not b}
has answer sets {a} and {b}.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 103 / 453



Examples

More Examples

Π1 = {a ; b ; c ←} has answer sets {a}, {b}, and {c}.
Π2 = {a ; b ; c ← , ← a} has answer sets {b} and {c}.
Π3 = {a ; b ; c ← , ← a , b ← c , c ← b} has answer set {b, c}.
Π4 = {a ; b ← c , b ← not a, not c , a ; c ← not b}
has answer sets {a} and {b}.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 103 / 453



Examples

More Examples

Π1 = {a ; b ; c ←} has answer sets {a}, {b}, and {c}.
Π2 = {a ; b ; c ← , ← a} has answer sets {b} and {c}.
Π3 = {a ; b ; c ← , ← a , b ← c , c ← b} has answer set {b, c}.
Π4 = {a ; b ← c , b ← not a, not c , a ; c ← not b}
has answer sets {a} and {b}.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 103 / 453



Examples

More Examples

Π1 = {a ; b ; c ←} has answer sets {a}, {b}, and {c}.
Π2 = {a ; b ; c ← , ← a} has answer sets {b} and {c}.
Π3 = {a ; b ; c ← , ← a , b ← c , c ← b} has answer set {b, c}.
Π4 = {a ; b ← c , b ← not a, not c , a ; c ← not b}
has answer sets {a} and {b}.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 103 / 453



Examples

More Examples

Π1 = {a ; b ; c ←} has answer sets {a}, {b}, and {c}.
Π2 = {a ; b ; c ← , ← a} has answer sets {b} and {c}.
Π3 = {a ; b ; c ← , ← a , b ← c , c ← b} has answer set {b, c}.
Π4 = {a ; b ← c , b ← not a, not c , a ; c ← not b}
has answer sets {a} and {b}.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 103 / 453



Examples

Answer set: Some properties

A disjunctive logic program may have zero, one, or multiple answer
sets.

If X is an answer set of a disjunctive logic program Π,
then X is a model of Π (seen as a formula).

If X and Y are answer sets of a disjunctive logic program Π,
then X 6⊂ Y .

If A ∈ X for some answer X set of a disjunctive logic program Π,
then there is a rule r ∈ ΠX such that {A} = head(r) ∩ X .
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Examples

An example with variables

Π =

{
a(1, 2) ←
b(X ) ; c(Y ) ← a(X ,Y ), not c(Y )

}

ground(Π) =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1), not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)
b(2) ; c(1) ← a(2, 1), not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)


For every answer set X of Π, we have

a(1, 2) ∈ X and

{a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅.
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Examples

An example with variables

ground(Π)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1), not c(1)
b(1) ; c(2) ← a(1, 2), not c(2)
b(2) ; c(1) ← a(2, 1), not c(1)
b(2) ; c(2) ← a(2, 2), not c(2)


Consider X = {a(1, 2), b(1)}.
We get min⊆(ground(Π)X ) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }.
X is an answer set of Π because X ∈ min⊆(ground(Π)X ).
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Syntax

Nested logic programs

Formulas are formed from

propositional atoms and
> and ⊥

using

negation-as-failure (not),
conjunction (,), and
disjunction (;).

A nested rule, r , is an ordered pair of the form F ← G
where F and G are formulas.

A nested program is a finite set of rules.

Notation: head(r) = F and body(r) = G .
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Semantics

Satisfaction relation

The satisfaction relation X |= F between a set of atoms and a
formula F is defined recursively as follows:

X |= F if F ∈ X for an atom F ,
X |= >,
X 6|= ⊥,
X |= (F ,G ) if X |= F and X |= G ,
X |= (F ; G ) if X |= F or X |= G ,
X |= not F if X 6|= F .

A set X of atoms satisfies a nested program Π, written X |= Π, iff
for any r ∈ Π, X |= head(r) whenever X |= body(r).

The set of all ⊆-minimal sets of atoms satisfying program Π is
denoted by min⊆(Π).
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Semantics

Reduct

The reduct, FX , of a formula F relative to a set X of atoms is
defined recursively as follows:

FX = F if F is an atom or > or ⊥,
(F ,G )X = (FX ,GX ),
(F ; G )X = (FX ; GX ),

(not F )X =

{
⊥ if X |= F
> otherwise

The reduct, ΠX , of a nested program Π relative to a set X of atoms
is defined by

ΠX = {head(r)X ← body(r)X | r ∈ Π}.

A set X of atoms is an answer set of a nested program Π if
X ∈ min⊆(ΠX ).
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Examples

Two examples

Π1 = {(p ; not p)← >}
For X = ∅, we get

Π∅1 = {(p ;>)← >}
min⊆(Π∅1 ) = {∅}. 4

For X = {p}, we get

Π
{p}
1 = {(p ;⊥)← >}

min⊆(Π
{p}
1 ) = {{p}}. 4

Π2 = {p ← not not p}
For X = ∅, we get Π∅2 = {p ← ⊥} and min⊆(Π∅2) = {∅}. 4

For X = {p}, we get Π
{p}
2 = {p ← >} and min⊆(Π

{p}
2 ) = {{p}}. 4

In general,

F ← G , not not H is equivalent to F ; not H ← G
F ; not not G ← H is equivalent to F ← H, not G
not not not F is equivalent to not F

å Intuitionistic Logics HT (Heyting, 1930) and G3 (Gödel, 1932)
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Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 115 / 453



Examples

Two examples

Π1 = {(p ; not p)← >}
For X = ∅, we get

Π∅1 = {(p ;>)← >}
min⊆(Π∅1 ) = {∅}. 4

For X = {p}, we get

Π
{p}
1 = {(p ;⊥)← >}

min⊆(Π
{p}
1 ) = {{p}}. 4

Π2 = {p ← not not p}
For X = ∅, we get Π∅2 = {p ← ⊥} and min⊆(Π∅2) = {∅}. 4

For X = {p}, we get Π
{p}
2 = {p ← >} and min⊆(Π

{p}
2 ) = {{p}}. 4

In general,

F ← G , not not H is equivalent to F ; not H ← G
F ; not not G ← H is equivalent to F ← H, not G
not not not F is equivalent to not F

å Intuitionistic Logics HT (Heyting, 1930) and G3 (Gödel, 1932)
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Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 115 / 453



Examples

Two examples

Π1 = {(p ; not p)← >}
For X = ∅, we get

Π∅1 = {(p ;>)← >}
min⊆(Π∅1 ) = {∅}. 4

For X = {p}, we get

Π
{p}
1 = {(p ;⊥)← >}

min⊆(Π
{p}
1 ) = {{p}}. 4

Π2 = {p ← not not p}
For X = ∅, we get Π∅2 = {p ← ⊥} and min⊆(Π∅2) = {∅}. 4

For X = {p}, we get Π
{p}
2 = {p ← >} and min⊆(Π

{p}
2 ) = {{p}}. 4

In general,

F ← G , not not H is equivalent to F ; not H ← G
F ; not not G ← H is equivalent to F ← H, not G
not not not F is equivalent to not F

å Intuitionistic Logics HT (Heyting, 1930) and G3 (Gödel, 1932)
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Examples

Some more examples

Π3 = {p ← (q, r) ; (not q, not s)}
Π4 = {(p ; not p), (q ; not q), (r ; not r)← >}
Π5 = {(p ; not p), (q ; not q), (r ; not r)← >, ⊥ ← p, q}
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Syntax

Propositional theories

Formulas are formed from

propositional atoms and
⊥

using

conjunction (∧),
disjunction (∨), and
implication (→).

Notation

> = (⊥ → ⊥)

∼F = (F → ⊥) (or: not F )

A propositional theory is a finite set of formulas.
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Semantics

Reduct

The satisfaction relation X |= F between a set X of atoms and
a (set of) formula(s) F is defined as in propositional logic.

The reduct, FX , of a formula F relative to a set X of atoms is
defined recursively as follows:

FX = ⊥ if X 6|= F
FX = F if F ∈ X
FX = (GX ◦ HX ) if X |= F and F = (G ◦ H) for ◦ ∈ {∧,∨,→}

å If F = ∼G = (G → ⊥),
then FX = (⊥ → ⊥) = >, if X 6|= G , and FX = ⊥, otherwise.

The reduct, FX , of a propositional theory F relative to a set X of
atoms is defined as

FX = {FX | F ∈ F}.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 121 / 453



Semantics

Reduct

The satisfaction relation X |= F between a set X of atoms and
a (set of) formula(s) F is defined as in propositional logic.

The reduct, FX , of a formula F relative to a set X of atoms is
defined recursively as follows:

FX = ⊥ if X 6|= F
FX = F if F ∈ X
FX = (GX ◦ HX ) if X |= F and F = (G ◦ H) for ◦ ∈ {∧,∨,→}

å If F = ∼G = (G → ⊥),
then FX = (⊥ → ⊥) = >, if X 6|= G , and FX = ⊥, otherwise.

The reduct, FX , of a propositional theory F relative to a set X of
atoms is defined as

FX = {FX | F ∈ F}.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 121 / 453



Semantics

Reduct

The satisfaction relation X |= F between a set X of atoms and
a (set of) formula(s) F is defined as in propositional logic.

The reduct, FX , of a formula F relative to a set X of atoms is
defined recursively as follows:

FX = ⊥ if X 6|= F
FX = F if F ∈ X
FX = (GX ◦ HX ) if X |= F and F = (G ◦ H) for ◦ ∈ {∧,∨,→}

å If F = ∼G = (G → ⊥),
then FX = (⊥ → ⊥) = >, if X 6|= G , and FX = ⊥, otherwise.

The reduct, FX , of a propositional theory F relative to a set X of
atoms is defined as

FX = {FX | F ∈ F}.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 121 / 453



Semantics

Reduct

The satisfaction relation X |= F between a set X of atoms and
a (set of) formula(s) F is defined as in propositional logic.

The reduct, FX , of a formula F relative to a set X of atoms is
defined recursively as follows:

FX = ⊥ if X 6|= F
FX = F if F ∈ X
FX = (GX ◦ HX ) if X |= F and F = (G ◦ H) for ◦ ∈ {∧,∨,→}

å If F = ∼G = (G → ⊥),
then FX = (⊥ → ⊥) = >, if X 6|= G , and FX = ⊥, otherwise.

The reduct, FX , of a propositional theory F relative to a set X of
atoms is defined as

FX = {FX | F ∈ F}.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 121 / 453



Semantics

Reduct

The satisfaction relation X |= F between a set X of atoms and
a (set of) formula(s) F is defined as in propositional logic.

The reduct, FX , of a formula F relative to a set X of atoms is
defined recursively as follows:

FX = ⊥ if X 6|= F
FX = F if F ∈ X
FX = (GX ◦ HX ) if X |= F and F = (G ◦ H) for ◦ ∈ {∧,∨,→}

å If F = ∼G = (G → ⊥),
then FX = (⊥ → ⊥) = >, if X 6|= G , and FX = ⊥, otherwise.

The reduct, FX , of a propositional theory F relative to a set X of
atoms is defined as

FX = {FX | F ∈ F}.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 121 / 453



Semantics

Reduct

The satisfaction relation X |= F between a set X of atoms and
a (set of) formula(s) F is defined as in propositional logic.

The reduct, FX , of a formula F relative to a set X of atoms is
defined recursively as follows:

FX = ⊥ if X 6|= F
FX = F if F ∈ X
FX = (GX ◦ HX ) if X |= F and F = (G ◦ H) for ◦ ∈ {∧,∨,→}

å If F = ∼G = (G → ⊥),
then FX = (⊥ → ⊥) = >, if X 6|= G , and FX = ⊥, otherwise.

The reduct, FX , of a propositional theory F relative to a set X of
atoms is defined as

FX = {FX | F ∈ F}.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 121 / 453



Semantics

Answer sets

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory F is denoted by min⊆(F).

A set X of atoms is an answer set of a propositional theory F if
X ∈ min⊆(FX ).

If X is an answer set of F , then

X |= F and
min⊆(FX ) = {X}.

+ In general, this does not imply X ∈ min⊆(F)!
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Examples

Two examples

F1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

F{p,q,r}1 = {p ∨ (p → (q ∧ r))} and min⊆(F{p,q,r}1 ) = {∅}. 8
For X = ∅, we get
F∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(F∅1 ) = {∅}. 4

F2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
F∅2 = {⊥} and min⊆(F∅2 ) = ∅. 8
For X = {p}, we get

F{p}2 = {p ∨ (⊥ → ⊥)} and min⊆(F{p}2 ) = {∅}. 8
For X = {q, r}, we get

F{q,r}2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(F{q,r}2 ) = {{q, r}}. 4
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Relationship with Logic Programs

Relationship with logic programs

The translation, τ [(F ← G )], of a (nested) rule (F ← G ) is defined
recursively as follows:

τ [(F ← G )] = (τ [G ]→ τ [F ]),
τ [⊥] = ⊥,
τ [>] = >,
τ [F ] = F if F is an atom,
τ [not F ] = ∼τ [F ],
τ [(F ,G )] = (τ [F ] ∧ τ [G ]),
τ [(F ; G )] = (τ [F ] ∨ τ [G ]).

The translation of a logic program Π is τ [Π] = {τ [r ] | r ∈ Π}.
å Given a logic program Π and a set X of atoms,

X is an answer set of Π iff X is an answer set of τ [Π].

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 126 / 453



Relationship with Logic Programs

Relationship with logic programs

The translation, τ [(F ← G )], of a (nested) rule (F ← G ) is defined
recursively as follows:

τ [(F ← G )] = (τ [G ]→ τ [F ]),
τ [⊥] = ⊥,
τ [>] = >,
τ [F ] = F if F is an atom,
τ [not F ] = ∼τ [F ],
τ [(F ,G )] = (τ [F ] ∧ τ [G ]),
τ [(F ; G )] = (τ [F ] ∨ τ [G ]).

The translation of a logic program Π is τ [Π] = {τ [r ] | r ∈ Π}.
å Given a logic program Π and a set X of atoms,

X is an answer set of Π iff X is an answer set of τ [Π].

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 126 / 453



Relationship with Logic Programs

Relationship with logic programs

The translation, τ [(F ← G )], of a (nested) rule (F ← G ) is defined
recursively as follows:

τ [(F ← G )] = (τ [G ]→ τ [F ]),
τ [⊥] = ⊥,
τ [>] = >,
τ [F ] = F if F is an atom,
τ [not F ] = ∼τ [F ],
τ [(F ,G )] = (τ [F ] ∧ τ [G ]),
τ [(F ; G )] = (τ [F ] ∨ τ [G ]).

The translation of a logic program Π is τ [Π] = {τ [r ] | r ∈ Π}.
å Given a logic program Π and a set X of atoms,

X is an answer set of Π iff X is an answer set of τ [Π].

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 126 / 453



Relationship with Logic Programs

Relationship with logic programs

The translation, τ [(F ← G )], of a (nested) rule (F ← G ) is defined
recursively as follows:

τ [(F ← G )] = (τ [G ]→ τ [F ]),
τ [⊥] = ⊥,
τ [>] = >,
τ [F ] = F if F is an atom,
τ [not F ] = ∼τ [F ],
τ [(F ,G )] = (τ [F ] ∧ τ [G ]),
τ [(F ; G )] = (τ [F ] ∨ τ [G ]).

The translation of a logic program Π is τ [Π] = {τ [r ] | r ∈ Π}.
å Given a logic program Π and a set X of atoms,

X is an answer set of Π iff X is an answer set of τ [Π].

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 126 / 453



Relationship with Logic Programs

Logic programs as propositional theories

The normal logic program Π = {p ← not q, q ← not p}
corresponds to τ [Π] = {∼q → p, ∼p → q}.

å Answer sets: {p} and {q}

The disjunctive logic program Π = {p ; q ←}
corresponds to τ [Π] = {> → p ∨ q}.

å Answer sets: {p} and {q}

The nested logic program Π = {p ← not not p}
corresponds to τ [Π] = {∼∼p → p}.

å Answer sets: ∅ and {p}

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 127 / 453



Relationship with Logic Programs

Logic programs as propositional theories

The normal logic program Π = {p ← not q, q ← not p}
corresponds to τ [Π] = {∼q → p, ∼p → q}.

å Answer sets: {p} and {q}

The disjunctive logic program Π = {p ; q ←}
corresponds to τ [Π] = {> → p ∨ q}.

å Answer sets: {p} and {q}

The nested logic program Π = {p ← not not p}
corresponds to τ [Π] = {∼∼p → p}.

å Answer sets: ∅ and {p}

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 127 / 453



Relationship with Logic Programs

Logic programs as propositional theories

The normal logic program Π = {p ← not q, q ← not p}
corresponds to τ [Π] = {∼q → p, ∼p → q}.

å Answer sets: {p} and {q}

The disjunctive logic program Π = {p ; q ←}
corresponds to τ [Π] = {> → p ∨ q}.

å Answer sets: {p} and {q}

The nested logic program Π = {p ← not not p}
corresponds to τ [Π] = {∼∼p → p}.

å Answer sets: ∅ and {p}

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 127 / 453



Relationship with Logic Programs

Logic programs as propositional theories

The normal logic program Π = {p ← not q, q ← not p}
corresponds to τ [Π] = {∼q → p, ∼p → q}.

å Answer sets: {p} and {q}

The disjunctive logic program Π = {p ; q ←}
corresponds to τ [Π] = {> → p ∨ q}.

å Answer sets: {p} and {q}

The nested logic program Π = {p ← not not p}
corresponds to τ [Π] = {∼∼p → p}.

å Answer sets: ∅ and {p}

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 127 / 453



Relationship with Logic Programs

Logic programs as propositional theories

The normal logic program Π = {p ← not q, q ← not p}
corresponds to τ [Π] = {∼q → p, ∼p → q}.

å Answer sets: {p} and {q}

The disjunctive logic program Π = {p ; q ←}
corresponds to τ [Π] = {> → p ∨ q}.

å Answer sets: {p} and {q}

The nested logic program Π = {p ← not not p}
corresponds to τ [Π] = {∼∼p → p}.

å Answer sets: ∅ and {p}

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 127 / 453



Relationship with Logic Programs

Logic programs as propositional theories

The normal logic program Π = {p ← not q, q ← not p}
corresponds to τ [Π] = {∼q → p, ∼p → q}.

å Answer sets: {p} and {q}

The disjunctive logic program Π = {p ; q ←}
corresponds to τ [Π] = {> → p ∨ q}.

å Answer sets: {p} and {q}

The nested logic program Π = {p ← not not p}
corresponds to τ [Π] = {∼∼p → p}.

å Answer sets: ∅ and {p}

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 127 / 453



Classical Negation: Overview

27 Syntax

28 Semantics

29 Examples

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 128 / 453



Syntax

Overview

27 Syntax

28 Semantics

29 Examples

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 129 / 453



Syntax

Syntax

Status quo

In logic programs not (or ∼) denotes default negation.

Generalization

We allow classical negation for atoms (only!).

å Logic programs in “negation normal form.”

Given an alphabet A of atoms, let A = {¬A | A ∈ A}.
+ We assume A ∩A = ∅.

The atoms A and ¬A are complementary.

å ¬A is the classical negation of A, and vice versa.
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Semantics

Semantics

A set X of atoms is consistent, if X ∩ {¬A | A ∈ (A ∩ X )} = ∅,
and inconsistent, otherwise.

A set X of atoms is an answer set of a logic program Π over A∪A if
X is an answer set of Π ∪ {B ← A,¬A | A ∈ A,B ∈ (A ∪A)}

å The only inconsistent answer set (candidate) is X = A ∪A.

For a normal or disjunctive logic program Π over A ∪A,
exactly one of the following two cases applies:

1 All answer sets of Π are consistent or
2 X = A ∪A is the only answer set of Π.
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Examples

To cross or not to cross. . . ?

Π1 = {cross ← not train}
Answer set: {cross}

Π2 = {cross ← ¬train}
Answer set: ∅

Π3 = {cross ← ¬train, ¬train←}
Answer set: {cross,¬train}

Π4 = {cross ← ¬train, ¬train←, ¬cross ←}
Answer set: {cross,¬cross, train,¬train}

Π5 = {cross ← ¬train, ¬train← not train, ¬cross ←}
No answer set
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Examples

Example

Π = {p ←, ¬p ←, q ← not r}
Π′ = Π ∪ {A← (B,¬B), ¬A← (B,¬B) | A,B ∈ {p, q, r}}
Answer set: {p,¬p, q,¬q, r ,¬r}
Π = {p ; q ←, r ← p, ¬r ← p }
Π′ = Π ∪ {A← (B,¬B), ¬A← (B,¬B) | A,B ∈ {p, q, r}}
Answer set: {q}
Π = {p ; not p ← >, ¬p ; not q ← >, q ; not q ← >}
Π′ = Π ∪ {A← (B,¬B), ¬A← (B,¬B) | A,B ∈ {p, q}}
Answer sets: ∅, {p}, {¬p, q}, and {p,¬p, q,¬q}
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Examples

Complexity

Let A be an atom and X be a set of atoms.

For a positive normal logic program Π:

Deciding whether X is the answer set of Π is P-complete.
Deciding whether A is in the answer set of Π is P-complete.

For a normal logic program Π:

Deciding whether X is an answer set of Π is P-complete.
Deciding whether A is in an answer set of Π is NP-complete.
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Motivation

Language extensions

The expressiveness of a language can be enhanced by introducing new
constructs.

To this end, we must address the following issues:

What is the syntax of the new language construct?
What is the semantics of the new language construct?
How to implement the new language construct?

A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation.

This translation might also be used for implementing the language
extension. When is this feasible?
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Integrity Constraints

Integrity Constraints

Purpose Integrity constraints eliminate unwanted solution candidates

Syntax An integrity constraint is of the form

← A1, . . . ,Am, not Am+1, . . . , not An,

where n ≥ m ≥ 1, and each Ai (1 ≤ i ≤ n) is a atom.

Example :- edge(X,Y), color(X,C), color(Y,C).

Implementation For a new symbol x , map

← A1, . . . ,Am, not Am+1, . . . , not An

7→ x ← A1, . . . ,Am, not Am+1, . . . , not An, not x

Another example Π = {p ← not q, q ← not p}
versus Π′ = Π ∪ {← p} and Π′′ = Π ∪ {← not p}
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Choice Rules

Choice rules

Idea Choices over subsets.

Syntax

{A1, . . . ,Am} ← Am+1, . . . ,An, not An+1, . . . , not Ao ,

Informal meaning If the body is satisfied in an answer set,
then any subset of {A1, . . . ,Am} can be included in the answer set.

Example 1 {color(X,C) : col(C)} 1 :- node(X).

Another Example The program Π = { {a} ← b, b ←} has two
answer sets: {b} and {a, b}.
Implementation lparse/gringo + smodels/cmodels/clasp
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Choice Rules

Embedding in normal logic programs

A choice rule of form

{A1, . . . ,Am} ← Am+1, . . . ,An, not An+1, . . . , not Ao

can be translated into 2m + 1 rules

A ← Am+1, . . . ,An, not An+1, . . . , not Ao

A1 ← A, not A1 . . . Am ← A, not Am

A1 ← not A1 . . . Am ← not Am

by introducing new atoms A,A1, . . . ,Am.
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Cardinality Constraints

Cardinality constraints

Syntax A (positive) cardinality constraint is of the form
l {A1, . . . ,Am} u

Informal meaning A cardinality constraint is satisfied in an answer set
X , if the number of atoms from {A1, . . . ,Am} satisfied in X is
between l and u (inclusive).
More formally, if l ≤ |{A1, . . . ,Am} ∩ X | ≤ u.

Conditions l {A1 : B1, . . . ,Am : Bm} u
where B1, . . . ,Bm are used for restricting instantiations of variables
occurring in A1, . . . ,Am.

Example 2 {hd(a),. . . ,hd(m)} 4

Implementation lparse/gringo + smodels/cmodels/clasp

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 147 / 453



Cardinality Rules

Overview

30 Motivation

31 Integrity Constraints

32 Choice Rules

33 Cardinality Constraints

34 Cardinality Rules

35 Weight Constraints (and more)

36 Modeling Practice

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 148 / 453



Cardinality Rules

Cardinality rules

Idea Control cardinality of subsets.

Syntax

A0 ← l {A1, . . . ,Am, not Am+1, . . . , not An}

Informal meaning If at least l elements of the “body” are true in an
answer set, then add A0 to the answer set.

å l is a lower bound on the “body”

Example The program Π = { a← 1{b, c}, b ←} has one answer set:
{a, b}.
Implementation lparse/gringo + smodels/cmodels/clasp
+ gringo distinguishes sets and multi-sets!
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Cardinality Rules

Embedding in normal logic programs (ctd)

Replace each cardinality rule

A0 ← l {A1, . . . ,Am} by A0 ← cc(A1, l)

where atom cc(Ai , j) represents the fact that at least j of the atoms
in {Ai , . . . ,Am}, that is, of the atoms that have an equal or greater
index than i , are in a particular answer set.

The definition of cc(Ai , j) is given by the rules

cc(Ai , j+1) ← cc(Ai+1, j),Ai

cc(Ai , j) ← cc(Ai+1, j)
cc(Am+1, 0) ←

What about space complexity?
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Cardinality Rules

. . . and vice versa

A normal rule

A0 ← A1, . . . ,Am, not Am+1, . . . , not An,

can be represented by the cardinality rule

A0 ← n+m {A1, . . . ,Am, not Am+1, . . . , not An}.
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Cardinality Rules

Cardinality rules with upper bounds

A rule of the form

A0 ← l {A1, . . . ,Am, not Am+1, . . . , not An} u

stands for

A0 ← B, not C

B ← l {A1, . . . ,Am, not Am+1, . . . , not An}
C ← u+1 {A1, . . . ,Am, not Am+1, . . . , not An}
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Cardinality Rules

Cardinality constraints as heads

A rule of the form

l {A1, . . . ,Am} u ← Am+1, . . . ,An, not An+1, . . . , not Ao ,

stands for

B ← Am+1, . . . ,An, not An+1, . . . , not Ao

{A1, . . . ,Am} ← B

C ← l {A1, . . . ,Am} u

← B, not C
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Cardinality Rules

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

stands for 0 ≤ i ≤ n

Bi ← li Si

Ci ← ui+1 Si

A ← B1, . . . ,Bn, not C1, . . . , not Cn

← A, not B0

← A,C0

S0 ∩ A ← A

where A is the underlying alphabet.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 154 / 453



Cardinality Rules

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

stands for 0 ≤ i ≤ n

Bi ← li Si

Ci ← ui+1 Si

A ← B1, . . . ,Bn, not C1, . . . , not Cn

← A, not B0

← A,C0

S0 ∩ A ← A

where A is the underlying alphabet.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 154 / 453



Weight Constraints (and more)

Overview

30 Motivation

31 Integrity Constraints

32 Choice Rules

33 Cardinality Constraints

34 Cardinality Rules

35 Weight Constraints (and more)

36 Modeling Practice

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 155 / 453



Weight Constraints (and more)

Weight constraints

Syntax l [A1 = w1, . . . ,Am = wm,
not Am+1 = wm+1, . . . , not An = wn] u

Informal meaning A weight constraint is satisfied in an answer set X ,
if

l ≤

 ∑
1≤i≤m,Ai∈X

wi +
∑

m<i≤n,Ai 6∈X
wi

 ≤ u .

å Generalization of cardinality constraints.

Example 80 [hd(a)=50,. . . ,hd(m)=100] 400

Implementation lparse/gringo + smodels/cmodels/clasp
+ gringo distinguishes sets and multi-sets!
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Weight Constraints (and more)

Optimization statements

Idea Compute optimal answer sets by minimizing or maximizing a
weighted sum of given elements, respectively.

Syntax

#minimize [A1 =w1, . . . ,Am =wm,
not Am+1 =wm+1, . . . , not An =wn]

#maximize [A1 =w1, . . . ,Am =wm,
not Am+1 =wm+1, . . . , not An =wn]

Several optimization statements are interpreted lexicographically.

Example

#minimize [hd(a)=30,. . . ,hd(m)=50]
#minimize [road(X,Y) : length(X,Y,L) = L]

Implementation lparse/gringo + smodels/clasp
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Weight Constraints (and more)

Weak integrity constraints

Syntax :∼ A1, . . . ,Am, not Am+1, . . . , not An [w : l ]

Informal meaning

1 minimize the sum of weights of violated constraints in the highest level;
2 minimize the sum of weights of violated constraints in the next lower

level;
3 etc

Implementation dlv
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Modeling Practice

Conditional literals in lparse and gringo

We often want to encode the contents of a (multi-)set rather than
enumerating each of the elements.

To support this, lparse and gringo allow for conditional literals.

Syntax
A0 : A1 : . . . : Am : not Am+1 : . . . : not An

Informal meaning
List all ground instances of A0 such that corresponding instances of
A1, . . . ,Am, not Am+1, . . . , not An are true.

Example gringo instantiates the program:

p(1). p(2). p(3). q(2). {r(X) : p(X) : not q(X)}.

to:

p(1). p(2). p(3). q(2). {r(1), r(3)}.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 160 / 453



Modeling Practice

Domain predicates in lparse and gringo

The predicates of literals on the right-hand side of a colon (:) must be
defined from facts without any negative recursion.

Such domain predicates are fully evaluated by lparse and gringo.

Example

p(1). p(2).

q(X) :- p(X), not p(X+1).

q(X) :- p(X), q(X+1).

r(X) :- p(X), not r(X+1).

p/1 and q/1 are domain predicates because none of them negatively
depends on itself.
r/1 is not a domain predicate because it is defined in terms
of not r(X+1).

See gringo documentation for further details.
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Modeling Practice

Normal form in lparse and gringo

Consider a logic program consisting of

normal rules
choice rules
cardinality rules
weight rules
optimization statements

Such a format is obtained by lparse or gringo

and directly implemented by smodels and clasp.
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Motivation

Motivation

Aggregates provide a general way to obtain a single value from a
collection of input values given as a set, a bag, or a list.

Popular aggregate (functions):

Average
Count
Maximum
Minimum
Sum

Cardinality and Weight constraints rely on Count and Sum aggregates.
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Syntax

Syntax

An aggregate has the form:

F 〈A1 = w1, . . . ,Am = wm, not Am+1 = wm+1, . . . , not An = wn〉 ≺ k

where

F stands for a function mapping multi-sets of Z to Z ∪ {+∞,−∞},
≺ stands for a relation between Z ∪ {+∞,−∞} and Z,
k an integer,
Ai is an atom, and
wi are integers

for 1 ≤ i ≤ n.

For instance, sum 〈hd(a) = 30, . . . , hd(m) = 50〉 ≤ 300
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Semantics

Semantics

A (positive) aggregate F 〈A1 = w1, . . . ,An = wn〉 ≺ k can be
represented by the formula:

∧
I⊆{1,...,n},F 〈wi |i∈I 〉6≺k

∧
i∈I

Ai →
∨
i∈I

Ai


where I = {1, . . . , n} \ I and 6≺ is the complement of ≺.

Then, F 〈A1 = w1, . . . ,An = wn〉 ≺ k is true in X iff
the above formula is true in X .
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Semantics

An example

Consider sum〈p = 1, q = 1〉 6= 1
å that is, A1 = p, A2 = q and w1 = 1, w2 = 1

Calculemus!

I 〈wi | i ∈ I 〉
∑
〈wi | i ∈ I 〉

∑
〈wi | i ∈ I 〉 = 1

∅ 〈〉 0 false
{1} 〈1〉 1 true
{2} 〈1〉 1 true
{1, 2} 〈1, 1〉 2 false

We get (p → q) ∧ (q → p)

Analogously, we obtain (p ∨ q) ∧ ¬(p ∧ q) for sum〈p = 1, q = 1〉 = 1.
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Semantics

Monotonicity

Monotone aggregates
For instance,

body +(r)
sum〈p = 1, q = 1〉 > 1 amounts to p ∧ q

We get a simpler characterization:
∧

I⊆{1,...,n},F〈wi |i∈I〉6≺k
∨

i∈I Ai

Anti-monotone aggregates
For instance,

body−(r)
sum〈p = 1, q = 1〉 < 1 amounts to ¬p ∧ ¬q

We get a simpler characterization:
∧

I⊆{1,...,n},F〈wi |i∈I〉6≺k ¬
∧

i∈I Ai

Non-monotone aggregates

For instance, sum〈p = 1, q = 1〉 6= 1 is non-monotone.
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Motivation

(Towards) the smodels approach

Wanted:

An efficient procedure to compute answer sets

The smodels approach:

Backtracking search building a binary search tree
A node in the search tree corresponds to a 3-valued interpretation
The search space is pruned by

deriving deterministic consequences and detecting conflicts (expand)
making one choice at a time by appeal to a heuristic (select)

+ Heuristic choices are made on atoms
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Approximation

Approximating answer sets

First Idea Approximate an answer set X by two sets of atoms L and U
such that L ⊆ X ⊆ U.

å L and U constitute lower and upper bounds on X .
å L and (A\U) describe a 3-valued model of the program.

Observation

X ⊆ Y implies ΠY ⊆ ΠX implies Cn(ΠY ) ⊆ Cn(ΠX )

Properties Let X be an answer set of normal logic program Π.

If L ⊆ X , then X ⊆ Cn(ΠL).
If X ⊆ U, then Cn(ΠU) ⊆ X .
If L ⊆ X ⊆ U, then L ∪ Cn(ΠU) ⊆ X ⊆ U ∩ Cn(ΠL).
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Approximation

Approximating answer sets (ctd)

Second Idea
Iterate

Replace L by L ∪ Cn(ΠU)
Replace U by U ∩ Cn(ΠL)

until L and U do not change anymore.

Observations

At each iteration step

L becomes larger (or equal)
U becomes smaller (or equal)

L ⊆ X ⊆ U is invariant for every answer set X of Π
If L 6⊆ U, then Π has no answer set!
If L = U, then L is an answer set of Π.
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Approximation

The simplistic expand algorithm

expand(L,U)

repeat

L′ ← L
U ′ ← U
L← L′ ∪ Cn(ΠU′

)
U ← U ′ ∩ Cn(ΠL′

)
if L 6⊆ U then return

until L = L′ and U = U ′

+ Π is a global parameter!
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Approximation

Let’s expand!

Π =


a←
b ← a, not c
d ← b, not e
e ← not d


L′ Cn(ΠU′) L U ′ Cn(ΠL′) U

1 ∅ {a} {a} {a, b, c , d , e} {a, b, d , e} {a, b, d , e}
2 {a} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}
3 {a, b} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}

å We have {a, b} ⊆ X and
(A \ {a, b, d , e}) ∩ X = ({c} ∩ X ) = ∅
for every answer set X of Π.
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Approximation

The simplistic expand algorithm (ctd)

expand

tightens the approximation on answer sets

is answer set preserving
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Approximation

Let’s expand with d !

Π =


a←
b ← a, not c
d ← b, not e
e ← not d


L′ Cn(ΠU′) L U ′ Cn(ΠL′) U

1 {d} {a} {a, d} {a, b, c , d , e} {a, b, d} {a, b, d}
2 {a, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}
3 {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}

å {a, b, d} is an answer set X of Π.
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Approximation

Let’s expand with “not d” !

Π =
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d ← b, not e
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å {a, b, e} is an answer set X of Π.
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Partial Interpretations

Interlude: Partial interpretations
or: 3-valued interpretations

A partial interpretation of a logic program Π maps atoms on truth values:
{true, false, unknown}.
Representation 〈T ,F 〉, where

T is the set of all true atoms and
F is the set of all false atoms.
Truth of atoms in atom(Π) \ (T ∪ F ) is unknown.

+ By atom(Π), we denote the set of atoms occuring in Π.

Properties 〈T ,F 〉 is conflicting iff T ∩ F 6= ∅.
〈T ,F 〉 is total iff T ∪ F = atom(Π) and T ∩ F = ∅.

Definition For 〈T1,F1〉 and 〈T2,F2〉, define:

〈T1,F1〉 v 〈T2,F2〉 iff T1 ⊆ T2 and F1 ⊆ F2

〈T1,F1〉 t 〈T2,F2〉 = 〈T1 ∪ T2,F1 ∪ F2〉
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Basic Algorithms

The smodels (decision) algorithm

Global: Normal logic program Π

smodels(〈T ,F 〉)
〈T ,F 〉 ← expand(〈T ,F 〉)
if 〈T ,F 〉 is conflicting then return
else if 〈T ,F 〉 is total then exit with T
else

A← select(atom(Π) \ (T ∪ F ))
smodels(〈T ∪ {A},F 〉)
smodels(〈T ,F ∪ {A}〉)

Call: smodels(〈∅, ∅〉)
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Basic Algorithms

Deterministic consequences via expand

Global: Normal logic program Π

expand(〈T ,F 〉)
repeat

〈T ,F 〉 ← atleast(〈T ,F 〉)
if 〈T ,F 〉 is conflicting then return 〈T ,F 〉
else

F ′ ← F
F ← F ∪ atmost(〈T ,F 〉)

until F = F ′

return 〈T ,F 〉

+ atleast(〈T ,F 〉) derives deterministic consequences from
Clark’s completion

+ atmost(〈T ,F 〉) derives deterministic consequences from
unfounded sets
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Basic Algorithms

A glimpse at atleast(〈T ,F 〉)
repeat

if 〈T ,F 〉 is conflicting then return 〈T ,F 〉
〈T ′,F ′〉 ← 〈T ,F 〉
case of
r ∈ Π such that head(r) /∈ T and
body +(r) ⊆ T , body−(r) ⊆ F :

T ← T ∪ {head(r)}
A ∈ (atom(Π) \ F ) such that for all r ∈ Π:
head(r) 6= A or (body +(r) ∩ F ) ∪ (body−(r) ∩ T ) 6= ∅:

F ← F ∪ {A}
head(r) ∈ F , r ∈ Π such that body +(r) ∩ body−(r) = ∅ and
(body +(r) \ T ) ∪ (body−(r) \ F ) = {A}:

if A ∈ body +(r) then F ← F ∪ {A} else T ← T ∪ {A}
(A = head(r)) ∈ T , r ∈ Π such that body +(r) 6⊆ T or body−(r) 6⊆ F and
for all r ′ ∈ Π \ {r}: head(r ′) 6= A or (body +(r ′) ∩ F ) ∪ (body−(r ′) ∩ T ) 6= ∅:

T ← T ∪ body +(r)
F ← F ∪ body−(r)

until 〈T ,F 〉 = 〈T ′,F ′〉
return 〈T ,F 〉
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(body +(r) \ T ) ∪ (body−(r) \ F ) = {A}:

if A ∈ body +(r) then F ← F ∪ {A} else T ← T ∪ {A}
(A = head(r)) ∈ T , r ∈ Π such that body +(r) 6⊆ T or body−(r) 6⊆ F and
for all r ′ ∈ Π \ {r}: head(r ′) 6= A or (body +(r ′) ∩ F ) ∪ (body−(r ′) ∩ T ) 6= ∅:

T ← T ∪ body +(r)
F ← F ∪ body−(r)

until 〈T ,F 〉 = 〈T ′,F ′〉
return 〈T ,F 〉

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 188 / 453



Basic Algorithms
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Supported Models

Completion

Let Π be a normal logic program.
The completion of Π is defined as follows:

Comp(body(r)) =
∧

A∈body+(r)A ∧
∧

A∈body−(r)¬A

Comp(Π) = {A↔
∨

r∈Π,head(r)=AComp(body(r)) | A ∈ atom(Π)}

Every answer set of Π is a model of Comp(Π), but not vice versa.

Models of Comp(Π) are called the supported models of Π.

In other words, every answer set of Π is a supported model of Π.

By definition, every supported model of Π is also a model of Π.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 192 / 453



Supported Models

Completion

Let Π be a normal logic program.
The completion of Π is defined as follows:

Comp(body(r)) =
∧

A∈body+(r)A ∧
∧

A∈body−(r)¬A

Comp(Π) = {A↔
∨

r∈Π,head(r)=AComp(body(r)) | A ∈ atom(Π)}

Every answer set of Π is a model of Comp(Π), but not vice versa.

Models of Comp(Π) are called the supported models of Π.

In other words, every answer set of Π is a supported model of Π.

By definition, every supported model of Π is also a model of Π.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 192 / 453



Supported Models

Completion

Let Π be a normal logic program.
The completion of Π is defined as follows:

Comp(body(r)) =
∧

A∈body+(r)A ∧
∧

A∈body−(r)¬A

Comp(Π) = {A↔
∨

r∈Π,head(r)=AComp(body(r)) | A ∈ atom(Π)}

Every answer set of Π is a model of Comp(Π), but not vice versa.

Models of Comp(Π) are called the supported models of Π.

In other words, every answer set of Π is a supported model of Π.

By definition, every supported model of Π is also a model of Π.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 192 / 453



Supported Models

Completion

Let Π be a normal logic program.
The completion of Π is defined as follows:

Comp(body(r)) =
∧

A∈body+(r)A ∧
∧

A∈body−(r)¬A

Comp(Π) = {A↔
∨

r∈Π,head(r)=AComp(body(r)) | A ∈ atom(Π)}

Every answer set of Π is a model of Comp(Π), but not vice versa.

Models of Comp(Π) are called the supported models of Π.

In other words, every answer set of Π is a supported model of Π.

By definition, every supported model of Π is also a model of Π.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 192 / 453



Supported Models

Completion

Let Π be a normal logic program.
The completion of Π is defined as follows:

Comp(body(r)) =
∧

A∈body+(r)A ∧
∧

A∈body−(r)¬A

Comp(Π) = {A↔
∨

r∈Π,head(r)=AComp(body(r)) | A ∈ atom(Π)}

Every answer set of Π is a model of Comp(Π), but not vice versa.

Models of Comp(Π) are called the supported models of Π.

In other words, every answer set of Π is a supported model of Π.

By definition, every supported model of Π is also a model of Π.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 192 / 453



Supported Models

Completion

Let Π be a normal logic program.
The completion of Π is defined as follows:

Comp(body(r)) =
∧

A∈body+(r)A ∧
∧

A∈body−(r)¬A

Comp(Π) = {A↔
∨

r∈Π,head(r)=AComp(body(r)) | A ∈ atom(Π)}

Every answer set of Π is a model of Comp(Π), but not vice versa.

Models of Comp(Π) are called the supported models of Π.

In other words, every answer set of Π is a supported model of Π.

By definition, every supported model of Π is also a model of Π.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 192 / 453



Supported Models

A first example

Π =


a ←
b ← a
c ← b
c ← d
d ← c, e

 Comp(Π) =


a ↔ >
b ↔ a
c ↔ (b ∨ d)
d ↔ (c ∧ e)
e ↔ ⊥



The supported model of Π is {a, b, c}.
The answer set of Π is {a, b, c}.
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Supported Models

A second example

Π =

{
q ← not p
p ← not q, not x

}
Comp(Π) =


q ↔ ¬p
p ↔ (¬q ∧ ¬x)
x ↔ ⊥



The supported models of Π are {p} and {q}.
The answer sets of Π are {p} and {q}.
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Supported Models

A third example

Π = { p ← p } Comp(Π) = { p ↔ p }

The supported models of Π are ∅ and {p}.
The answer set of Π is ∅ !
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Fitting Operator

Fitting operator: Basic idea

Idea Extend TΠ to normal logic programs.

Logical background Completion

The head atom of a rule must be true
if the rule’s body is true.
An atom must be false
if the body of each rule having it as head is false.
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Fitting Operator

Fitting operator: Definition

Let Π be a normal logic program.

Define

ΦΠ〈T ,F 〉 = 〈TΠ〈T ,F 〉,FΠ〈T ,F 〉〉

where

TΠ〈T ,F 〉 = {head(r) | r ∈ Π, body +(r) ⊆ T , body−(r) ⊆ F}
FΠ〈T ,F 〉 = {A ∈ atom(Π) | body +(r) ∩ F 6= ∅ or body−(r) ∩ T 6= ∅

for each r ∈ Π such that head(r) = A}
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Fitting Operator

Fitting operator: Example

Π1 =

{
a← c ← a, not d e ← b
b ← not a d ← not c, not e e ← e

}

Let’s iterate ΦΠ1 on 〈{a}, {d}〉:

ΦΠ1〈{a}, {d}〉 = 〈{a, c}, {b}〉
ΦΠ1〈{a, c}, {b}〉 = 〈{a}, {b, d}〉
ΦΠ1〈{a}, {b, d}〉 = 〈{a, c}, {b}〉

...
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Fitting Operator

Fitting semantics

Define the iterative variant of ΦΠ analogously to TΠ:

Φ0
Π〈T ,F 〉 = 〈T ,F 〉 Φi+1

Π 〈T ,F 〉 = ΦΠΦi
Π〈T ,F 〉

Define the Fitting semantics of a normal logic program Π as the
partial interpretation:⊔

i≥0Φi
Π〈∅, ∅〉
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Fitting Operator

Fitting semantics: Example

Π1 =

{
a← c ← a, not d e ← b
b ← not a d ← not c, not e e ← e

}

Φ0
Π1
〈∅, ∅〉 = 〈∅, ∅〉

Φ1
Π1
〈∅, ∅〉 = ΦΠ1〈∅, ∅〉 = 〈{a}, ∅〉

Φ2
Π1
〈∅, ∅〉 = ΦΠ1〈{a}, ∅〉 = 〈{a}, {b}〉

Φ3
Π1
〈∅, ∅〉 = ΦΠ1〈{a}, {b}〉 = 〈{a}, {b}〉⊔

i≥0 Φi
Π1
〈∅, ∅〉 = 〈{a}, {b}〉
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Fitting Operator

Fitting semantics: Properties

Let Π be a normal logic program.

ΦΠ〈∅, ∅〉 is monotonic.
That is, Φi

Π〈∅, ∅〉 v Φi+1
Π 〈∅, ∅〉.

The Fitting semantics of Π is

not conflicting,
and generally not total.
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Fitting Operator

Fitting fixpoints

Let Π be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation.

Define 〈T ,F 〉 as a Fitting fixpoint of Π if ΦΠ〈T ,F 〉 = 〈T ,F 〉.

The Fitting semantics is the v-least Fitting fixpoint of Π.

Any other Fitting fixpoint extends the Fitting semantics.

Total Fitting fixpoints correspond to supported models.
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Fitting Operator

Fitting fixpoints: Example

Π1 =

{
a← c ← a, not d e ← b
b ← not a d ← not c, not e e ← e

}
Π1 has three total Fitting fixpoints:

1 〈{a, c}, {b, d , e}〉
2 〈{a, d}, {b, c , e}〉
3 〈{a, c , e}, {b, d}〉

Π1 has three supported models, two of them are answer sets.
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Fitting Operator

Properties of Fitting operator

Let Π be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation.

Let ΦΠ〈T ,F 〉 = 〈T ′,F ′〉.
If X is an answer set of Π such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅.
That is, ΦΠ is answer set preserving.

å ΦΠ can be used for approximating answer sets and so for propagation
in ASP-solvers.

However, ΦΠ is still insufficient, because total fixpoints correspond to
supported models, not necessarily answer sets.

+ The problem is the same as with program completion.

The missing piece is non-circularity of derivations !
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Fitting Operator

Example

Π =

{
a ← b
b ← a

}
Φ0

Π〈∅, ∅〉 = 〈∅, ∅〉
Φ1

Π〈∅, ∅〉 = 〈∅, ∅〉

That is, Fitting semantics cannot assign false to a and b,
although they can never become true !

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 206 / 453



Fitting Operator

Example

Π =

{
a ← b
b ← a

}
Φ0

Π〈∅, ∅〉 = 〈∅, ∅〉
Φ1

Π〈∅, ∅〉 = 〈∅, ∅〉

That is, Fitting semantics cannot assign false to a and b,
although they can never become true !

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 206 / 453



Implementation via smodels

Overview

44 Supported Models

45 Fitting Operator

46 Implementation via smodels

47 Tightness

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 207 / 453



Implementation via smodels

Rebuilding atleast(〈T ,F 〉)
from Fitting operatorrepeat

if 〈T ,F 〉 is conflicting then return 〈T ,F 〉
〈T ′,F ′〉 ← 〈T ,F 〉
case of
r ∈ Π such that head(r) /∈ T and
body +(r) ⊆ T , body−(r) ⊆ F :

T ← T ∪ {head(r)}
A ∈ (atom(Π) \ F ) such that for all r ∈ Π:
head(r) 6= A or (body +(r) ∩ F ) ∪ (body−(r) ∩ T ) 6= ∅:

F ← F ∪ {A}

head(r) ∈ F , r ∈ Π such that body +(r) ∩ body−(r) = ∅ and
(body +(r) \ T ) ∪ (body−(r) \ F ) = {A}:

if A ∈ body +(r) then F ← F ∪ {A} else T ← T ∪ {A}
(A = head(r)) ∈ T , r ∈ Π such that body +(r) 6⊆ T or body−(r) 6⊆ F and
for all r ′ ∈ Π \ {r}: head(r ′) 6= A or (body +(r ′) ∩ F ) ∪ (body−(r ′) ∩ T ) 6= ∅:

T ← T ∪ body +(r)
F ← F ∪ body−(r)

until 〈T ,F 〉 = 〈T ′,F ′〉
return 〈T ,F 〉
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Implementation via smodels

Relationship with Fitting semantics

Let Π be a normal logic program.

atleast(〈∅, ∅〉) =
⊔

i≥0Φi
Π〈∅, ∅〉

What about supported models?
Consider:

Π =

{
a← b b ← not c c ← not b
d ← e e ← not f f ← not e

}

atleast(〈{a}, {d}〉) = 〈{a}, {d}〉
The only supported model X of Π such that a ∈ X and d /∈ X is
{a, b, f } !

We can enhance atleast(〈T ,F 〉) by backward propagation !
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Implementation via smodels

Relationship with supported models

Let Π be a normal logic program and 〈T ,F 〉 a total interpretation.

atleast(〈T ,F 〉) = 〈T ,F 〉 iff T is a supported model of Π

Assuming atmost(〈T ,F 〉) = ∅ for all 〈T ,F 〉,
we can apply smodels to compute supported models !

Reconsider:

Π1 =

{
a← c ← a, not d e ← b
b ← not a d ← not c, not e e ← e

}
Call Interpretation Result

smodels 〈∅, ∅〉
expand 〈∅, ∅〉 〈{a}, {b}〉
select 〈{a}, {b}〉 〈{a, e}, {b}〉
expand 〈{a, e}, {b}〉 〈{a, c , e}, {b, d}〉
smodels 〈∅, ∅〉 {a, c , e}
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Tightness

Overview
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47 Tightness
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Tightness

(Non-)cyclic derivations

Cyclic derivations are causing the mismatch between supported
models and answer sets.

Atoms in an answer set can be “derived” from a program in a finite
number of steps.

Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps.

+ But they do not contradict the completion of a program.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 213 / 453



Tightness

(Non-)cyclic derivations

Cyclic derivations are causing the mismatch between supported
models and answer sets.

Atoms in an answer set can be “derived” from a program in a finite
number of steps.

Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps.

+ But they do not contradict the completion of a program.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 213 / 453



Tightness

Non-cyclic derivations

Let X be an answer set of normal logic program Π.

For every atom A ∈ X , there is a finite sequence of positive rules

〈r1, . . . , rn〉

such that

1 head(r1) = A,
2 body +(ri ) ⊆ {head(rj) | i < j ≤ n} for 1 ≤ i ≤ n,
3 ri ∈ ΠX for 1 ≤ i ≤ n.

That is, each atom of X has a non-cyclic derivation from ΠX .

Is a derivable from program {a← b, b ← a} ?
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Tightness

Positive atom dependency graph

Let Π be a normal logic program.
The positive atom dependency graph of Π is a directed graph
G (Π) = (V ,E ) such that

1 V = atom(Π) and

2 E = {(p, q) | r ∈ Π, p ∈ body +(r), head(r) = q}.
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Tightness

Examples

Π2 =


a← not b b ← not a
c ← a, not d d ← a, not c
e ← c , not a e ← d , not b

 c

e
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Π3 =


a← not b b ← not a
c ← not a c ← d
d ← a, b d ← c

 c d

a b��
��

��*
6

y z
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Tightness

Tight programs

A normal logic program Π is tight iff G (Π) is acyclic.

For example, Π2 is tight, whereas Π3 is not.

If a normal logic program Π is tight, then

X is an answer set of Π iff X is a model of Comp(Π).

That is, for tight programs, answer sets and supported models
coincide.

Also, for tight programs, ΦΠ is sufficient for propagation.
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Tightness

(Non-)tight programs: Examples

Π2 =


a← not b b ← not a
c ← a, not d d ← a, not c
e ← c , not a e ← d , not b

 c

e

d

a b
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��1
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PPi

PP
PPi
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��1

Answer sets: {{a, c}, {a, d , e}, {b}}
Supported models: {{a, c}, {a, d , e}, {b}}

Π3 =


a← not b b ← not a
c ← not a c ← d
d ← a, b d ← c


c d

a b��
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��*
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y z

Answer sets: {{a}, {b, c , d}}
Supported models: {{a}, {b, c , d}, {a, c , d}}
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Definitions

Unfounded sets

Let Π be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation.

A set U ⊆ atom(Π) is an unfounded set of Π with respect to 〈T ,F 〉 if,
for each rule r ∈ Π, we have

1 head(r) 6∈ U,

2 body +(r) ∩ F 6= ∅ or body−(r) ∩ T 6= ∅, or

3 body +(r) ∩ U 6= ∅.

Intuitively, 〈T ,F 〉 is what we already know about Π.

Rules satisfying Condition 1 or 2 are not usable for further derivations.

Condition 3 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true.
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Definitions

Example

Π =

{
a ← b
b ← a

}

∅ is an unfounded set (by definition).

{a} is not an unfounded set of Π wrt 〈∅, ∅〉.
{a} is an unfounded set of Π wrt 〈∅, {b}〉.
{a} is not an unfounded set of Π wrt 〈{b}, ∅〉.
å Analogously for {b}.
{a, b} is an unfounded set of Π wrt 〈∅, ∅〉.
{a, b} is an unfounded set of Π wrt any partial interpretation.
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Definitions

Greatest unfounded sets

Observation The union of two unfounded sets is an unfounded set.

Let Π be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation.
The greatest unfounded set of Π with respect to 〈T ,F 〉, denoted by
UΠ〈T ,F 〉, is the union of all unfounded sets of Π with respect to 〈T ,F 〉.

Alternatively, we may define

UΠ〈T ,F 〉 = atom(Π) \ Cn({r ∈ Π | body +(r) ∩ F = ∅}T ).

Observe that Cn({r ∈ Π | body +(r) ∩ F = ∅}T ) contains all
non-circularly derivable atoms from Π wrt 〈T ,F 〉.
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Well-Founded Operator

Well-founded operator

Let Π be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation.

Observation Condition 2 (in the definition of an unfounded set)
corresponds to set FΠ〈T ,F 〉 of Fitting’s ΦΠ〈T ,F 〉.

Idea Extend (negative part of) Fitting’s operator ΦΠ.
That is,

keep definition of TΠ〈T ,F 〉 from ΦΠ〈T ,F 〉 and
replace FΠ〈T ,F 〉 from ΦΠ〈T ,F 〉 by UΠ〈T ,F 〉.

In words, an atom must be false
if it belongs to the greatest unfounded set.

Definition ΩΠ〈T ,F 〉 = 〈TΠ〈T ,F 〉,UΠ〈T ,F 〉〉
Property ΦΠ〈T ,F 〉 v ΩΠ〈T ,F 〉
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Property ΦΠ〈T ,F 〉 v ΩΠ〈T ,F 〉
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Well-Founded Operator

Well-founded operator: Example

Π1 =

{
a← c ← a, not d e ← b
b ← not a d ← not c, not e e ← e

}
Let’s iterate ΩΠ1 on 〈{c}, ∅〉:

ΩΠ1〈{c}, ∅〉 = 〈{a}, {d}〉
ΩΠ1〈{a}, {d}〉 = 〈{a, c}, {b, e}〉

ΩΠ1〈{a, c}, {b, e}〉 = 〈{a}, {b, d , e}〉
ΩΠ1〈{a}, {b, d , e}〉 = 〈{a, c}, {b, e}〉

...
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Well-Founded Operator

Well-founded semantics

Define the iterative variant of ΩΠ analogously to ΦΠ:

Ω0
Π〈T ,F 〉 = 〈T ,F 〉 Ωi+1

Π 〈T ,F 〉 = ΩΠΩi
Π〈T ,F 〉

Define the well-founded semantics of a normal logic program Π as the
partial interpretation:⊔

i≥0Ωi
Π〈∅, ∅〉
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Well-Founded Operator

Well-founded semantics: Properties

Let Π be a normal logic program.

ΩΠ〈∅, ∅〉 is monotonic.
That is, Ωi

Π〈∅, ∅〉 v Ωi+1
Π 〈∅, ∅〉.

The well-founded semantics of Π is

not conflicting,
and generally not total.

We have
⊔

i≥0 Φi
Π〈∅, ∅〉 v

⊔
i≥0 Ωi

Π〈∅, ∅〉.
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Well-Founded Operator

Well-founded fixpoints

Let Π be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation.
Define 〈T ,F 〉 as a well-founded fixpoint of Π if ΩΠ〈T ,F 〉 = 〈T ,F 〉.

The well-founded semantics is the v-least well-founded fixpoint of Π.

Any other well-founded fixpoint extends the well-founded semantics.

Total well-founded fixpoints correspond to answer sets.
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Well-Founded Operator

Well-founded fixpoints: Example

Π1 =

{
a← c ← a, not d e ← b
b ← not a d ← not c, not e e ← e

}
Π1 has two total well-founded fixpoints:

1 〈{a, c}, {b, d , e}〉
2 〈{a, d}, {b, c , e}〉

Both of them represent answer sets.
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Well-Founded Operator

Properties of well-founded operator

Let Π be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation.

Let ΩΠ〈T ,F 〉 = 〈T ′,F ′〉.
If X is an answer set of Π such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅.
That is, ΩΠ is answer set preserving.

å ΩΠ can be used for approximating answer sets and so for propagation
in ASP-solvers.

Unlike ΦΠ, operator ΩΠ is sufficient for propagation because total
fixpoints correspond to answer sets.

+ In addition to ΩΠ, most ASP-solvers apply backward propagation (cf.
Page 488), originating from program completion (although this is
unnecessary from a formal point of view).
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Implementation via smodels
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48 Definitions

49 Well-Founded Operator

50 Implementation via smodels

51 Loops and Loop Formulas

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 233 / 453



Implementation via smodels

Rebuilding atmost(〈T ,F 〉)
from (greatest) unfounded sets

return UΠ〈T ,F 〉
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Implementation via smodels

Recalling expand

Global: Normal logic program Π

expand(〈T ,F 〉)
repeat

〈T ,F 〉 ← atleast(〈T ,F 〉)
if 〈T ,F 〉 is conflicting then return 〈T ,F 〉
else

F ′ ← F
F ← F ∪ atmost(〈T ,F 〉)

until F = F ′

return 〈T ,F 〉

+ atleast(〈T ,F 〉) derives deterministic consequences from
Clark’s completion

+ atmost(〈T ,F 〉) derives deterministic consequences from
unfounded sets
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Implementation via smodels

Relationship with well-founded semantics

Let Π be a normal logic program.

expand(〈∅, ∅〉) =
⊔

i≥0Ωi
Π〈∅, ∅〉

+ That is, expand is basically an implementation of well-founded
semantics !

+ Additional backward propagation in atleast prunes the search space
further !
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Implementation via smodels

Relationship with answer sets

Let Π be a normal logic program and 〈T ,F 〉 a total interpretation.

expand(〈T ,F 〉) = 〈T ,F 〉 iff T is an answer set of Π

Given atmost(〈T ,F 〉) = UΠ〈T ,F 〉,
we can apply smodels to compute answer sets !
Reconsider:

Π1 =

{
a← c ← a, not d e ← b
b ← not a d ← not c, not e e ← e

}
Call Interpretation Result

smodels 〈∅, ∅〉
expand 〈∅, ∅〉 〈{a}, {b, e}〉
select 〈{a}, {b, e}〉 〈{a, c}, {b, e}〉
expand 〈{a, c}, {b, e}〉 〈{a, c}, {b, d , e}〉
smodels 〈∅, ∅〉 {a, c}
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Implementation via smodels

Additional remarks on smodels

The smodels implementation also features:

Extended rules

Cardinality constraints
Weight constraints

Optimiziation via minimize and maximize

Efficient counter-based propagation

Lazy implementation of atmost based on “source pointers”

Failed-literal detection, also called lookahead, for stronger propagation
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Loops and Loop Formulas

Characterizing non-cyclic derivations
An alternative approach

Question Is there a propositional formula F (Π) such that the models
of F (Π) correspond to the answer sets of Π ?

+ If we consider the completion of a program, Comp(Π),
then the problem boils down to eliminating the circular
support of atoms that are true in the supported models
of Π.

Idea Add formulas to Comp(Π) that prohibit circular support of
sets of atoms.

+ Circular support between atoms p and q is possible
if p has a path to q and q has a path to p
in a program’s positive atom dependency graph.
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Loops and Loop Formulas

Loops

Let Π be a normal logic program, and
let G (Π) = (atom(Π),E ) be the positive atom dependency graph of Π.

A set ∅ ⊂ L ⊆ atom(Π) is a loop of Π
if it induces a non-trivial strongly connected subgraph of G (Π).

That is, each pair of atoms in L is connected by a path of non-zero
length in (L,E ∩ (L× L)).

We denote the set of all loops of Π by Loop(Π).

Observation Program Π is tight iff Loop(Π) = ∅.
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Loops and Loop Formulas

Loop formulas

Let Π be a normal logic program.

For L ⊆ atom(Π), define the external supports of L for Π as

ESΠ(L) = { r ∈ Π | head(r) ∈ L, body +(r) ∩ L = ∅ }.

The (disjunctive) loop formula of L for Π is

LF Π(L) =
(∨

A∈LA
)
→
(∨

r∈ESΠ(L)Comp(body(r))
)

≡
(∧

r∈ESΠ(L)¬Comp(body(r))
)
→
(∧

A∈L¬A
)
.

+ The loop formula of L enforces all atoms in L to be false whenever L is
not externally supported.

Define

LF (Π) = { LF Π(L) | L ∈ Loop(Π) }.
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Loops and Loop Formulas

Lin-Zhao Theorem

Theorem

Let Π be a normal logic program and X ⊆ atom(Π).
Then, X is an answer set of Π iff X |= Comp(Π) ∪ LF (Π).
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Loops and Loop Formulas

Loops and loop formulas: Examples

Π2 =


a← not b b ← not a
c ← a, not d d ← a, not c
e ← c , not a e ← d , not b

 c

e

d

a b

��
��1

PP
PPi

PP
PPi

��
��1

Loop(Π2) = ∅
LF (Π2) = ∅

Π3 =


a← not b b ← not a
c ← not a c ← d
d ← a, b d ← c

 c d

a b�
��

�
��*
6

y z

Loop(Π3) = {{c, d}}
LF (Π3) = {(c ∨ d)→ (¬a ∨ (a ∧ b))}
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Loops and Loop Formulas

Loops and loop formulas: Properties

Let X be a supported model of normal logic program Π.

Then, X is an answer set of Π iff

X |= { LF Π(U) | U ⊆ atom(Π) };
X |= { LF Π(U) | U ⊆ X };
X |= { LF Π(L) | L ∈ Loop(Π) }, that is, X |= LF (Π);

X |= { LF Π(L) | L ∈ Loop(Π), L ⊆ X }.
å If X is not an answer set of Π,

then there is a loop L ⊆ X \ Cn(ΠX ) such that X 6|= LF Π(L).
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Loops and Loop Formulas

Loops and loop formulas: Properties (ctd)

If P 6⊆ NC1/poly ,1 then there is no translation T from logic programs to
propositional formulas such that, for each normal logic program Π, both of
the following conditions hold:

1 The propositional variables in T [Π] are a subset of atom(Π).

2 The size of T [Π] is polynomial in the size of Π.

+ Every vocabulary-preserving translation from normal logic programs to
propositional formulas must be exponential
(in the worst case).

Observations

Translation Comp(Π) ∪ LF (Π) preserves the vocabulary
of Π.
The number of loops in Loop(Π) may be exponential in
|atom(Π)|.

1A conjecture from the theory of complexity that is widely believed to be true.
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Motivation

Motivation

Goal Analyze computations in ASP-solvers

Wanted A declarative and fine-grained instrument for characterizing
operations as well as strategies of ASP-solvers

Idea View answer set computations as derivations in an
inference system

å Tableau-based proof system for analyzing ASP-solving
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Motivation

Tableau calculi

Traditionally, tableau calculi are used for

automated theorem proving and
proof theoretical analysis

in classical as well as non-classical logics.

General idea: Given an input, prove some property by
decomposition. Decomposition is done by applying deduction rules.

For details, see [17].
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Tableau Methods

Tableau calculi: General definitions

A tableau is a (mostly binary) tree.

A branch in a tableau is a path from the root to a leaf.

A branch containing γ1, . . . , γm can be extended by applying
tableau rules of form:

γ1, . . . , γm
α1
...
αn

γ1, . . . , γm
β1 | . . . | βn

Rules of the former format append entries α1, . . . , αn to the branch.

Rules of the latter format create multiple sub-branches for β1, . . . , βn.
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Tableau Methods

Tableau calculus: Example

A simple tableau calculus for proving unsatisfiability of propositional
formulas, composed from ¬, ∧, and ∨, consists of rules:

¬¬α
α

α1 ∧ α2

α1
α2

β1 ∨ β2

β1 | β2

All rules are semantically valid, interpreting entries in a branch as
connected via “and” and distinct (sub-)branches as connected via
“or”.

A propositional formula ϕ (composed from ¬, ∧, and ∨) is
unsatisfiable iff there is a tableau with ϕ as the root node such that

1 all other entries can be produced by tableau rules and
2 every branch contains some formulas α and ¬α.
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¬¬α
α

α1 ∧ α2

α1
α2

β1 ∨ β2

β1 | β2

All rules are semantically valid, interpreting entries in a branch as
connected via “and” and distinct (sub-)branches as connected via
“or”.
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Tableau Methods

Tableau calculus: Example (ctd)

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf. 2, 5, 7, 8, 10).
å a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable.
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Tableau Calculi for ASP

Tableaux and ASP: The idea

A tableau rule captures an elementary inference scheme in an
ASP-solver.

A branch in a tableau corresponds to a successful or unsuccessful
computation of an answer set.

An entire tableau represents a traversal of the search space.
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Tableau Calculi for ASP Definitions

Tableaux and ASP: Specific definitions

A (signed) tableau for a logic program Π is a binary tree such that

the root node of the tree consists of the rules in Π;
the other nodes in the tree are entries of the form Tv or Fv , called
signed literals, where v is a variable,
generated by extending a tableau using deduction rules (given below).

An entry Tv (Fv) reflects that variable v is true (false) in a
corresponding variable assignment.

å A set of signed literals constitutes a partial assignment.

For a normal logic program Π,

atoms of Π in atom(Π) and
bodies of Π in body(Π) = {body(r) | r ∈ Π}

can occur as variables in signed literals.
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Tableau Calculi for ASP Definitions

Tableau rules for ASP at a glance
[43]

(FTB)
p ← l1, . . . , ln

tl1, . . . , tln
T{l1, . . . , ln}

(BFB)
F{l1, . . . , li , . . . , ln}

tl1, . . . , tli−1, tli+1, . . . , tln
f li

(FTA)
p ← l1, . . . , ln
T{l1, . . . , ln}

Tp
(BFA)

p ← l1, . . . , ln
Fp

F{l1, . . . , ln}

(FFB)
p ← l1, . . . , li , . . . , ln

f li
F{l1, . . . , li , . . . , ln}

(BTB)
T{l1, . . . , li , . . . , ln}

tli

(FFA)
FB1, . . . ,FBm

Fp
(§) (BTA)

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

TBi

(§)

(WFN)
FB1, . . . ,FBm

Fp
(†) (WFJ)

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

TBi

(†)

(FL)
FB1, . . . ,FBm

Fp
(‡) (BL)

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

TBi

(‡)

(Cut[X ])
Tv | Fv

(][X ])
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Tableau Calculi for ASP Definitions

More concepts

A tableau calculus is a set of tableau rules.

A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v .

A branch in a tableau is total for a program Π,
if it contains either Tv or Fv for each v ∈ atom(Π) ∪ body(Π).

A branch in a tableau of some calculus T is closed,
if no rule in T other than Cut can produce any new entries.

A branch in a tableau is complete,
if it is either conflicting or both total and closed.

A tableau is complete,
if all its branches are complete.

A tableau of some calculus T is a refutation of T for a program Π,
if every branch in the tableau is conflicting.
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Tableau Calculi for ASP Definitions

Example

Consider the program

Π =


a←
c ← not b, not d
d ← a, not c


having two answer sets {a, c} and {a, d}.
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Tableau Calculi for ASP Definitions

(Previewed) Example

a←
c ← not b, not d

d ← a, not c
(FTB) T∅
(FTA) Ta
(FFA) Fb

(Cut[atom(Π)]) Tc Fc
(BTA) T{not b, not d} (BFA) F{not b, not d}
(BTB) Fd (BFB) Td
(FFB) F{a, not c} (FTB) T{a, not c}

Recall answer sets {a, c} and {a, d}.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 261 / 453



Tableau Calculi for ASP Definitions

(Previewed) Example

a←
c ← not b, not d

d ← a, not c
(FTB) T∅
(FTA) Ta
(FFA) Fb

(Cut[atom(Π)]) Tc Fc
(BTA) T{not b, not d} (BFA) F{not b, not d}
(BTB) Fd (BFB) Td
(FFB) F{a, not c} (FTB) T{a, not c}

Recall answer sets {a, c} and {a, d}.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 261 / 453



Tableau Calculi for ASP Definitions

(Previewed) Example

a←
c ← not b, not d

d ← a, not c
(FTB) T∅
(FTA) Ta
(FFA) Fb

(Cut[atom(Π)]) Tc Fc
(BTA) T{not b, not d} (BFA) F{not b, not d}
(BTB) Fd (BFB) Td
(FFB) F{a, not c} (FTB) T{a, not c}

Recall answer sets {a, c} and {a, d}.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 261 / 453



Tableau Calculi for ASP Definitions

(Previewed) Example

a←
c ← not b, not d

d ← a, not c
(FTB) T∅
(FTA) Ta
(FFA) Fb

(Cut[atom(Π)]) Tc Fc
(BTA) T{not b, not d} (BFA) F{not b, not d}
(BTB) Fd (BFB) Td
(FFB) F{a, not c} (FTB) T{a, not c}

Recall answer sets {a, c} and {a, d}.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 261 / 453



Tableau Calculi for ASP Definitions

(Previewed) Example

a←
c ← not b, not d

d ← a, not c
(FTB) T∅
(FTA) Ta
(FFA) Fb

(Cut[atom(Π)]) Tc Fc
(BTA) T{not b, not d} (BFA) F{not b, not d}
(BTB) Fd (BFB) Td
(FFB) F{a, not c} (FTB) T{a, not c}

Recall answer sets {a, c} and {a, d}.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 261 / 453



Tableau Calculi for ASP Definitions

(Previewed) Example

a←
c ← not b, not d

d ← a, not c
(FTB) T∅
(FTA) Ta
(FFA) Fb

(Cut[atom(Π)]) Tc Fc
(BTA) T{not b, not d} (BFA) F{not b, not d}
(BTB) Fd (BFB) Td
(FFB) F{a, not c} (FTB) T{a, not c}

Recall answer sets {a, c} and {a, d}.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 261 / 453



Tableau Calculi for ASP Definitions

Tableau rules: Auxiliary definitions

The application of rules makes use of two conjugation functions,
t and f.

For a literal l , define:

tl =

{
Tl if l is an atom
Fp if l = not p for an atom p

f l =

{
Fl if l is an atom
Tp if l = not p for an atom p

Examples
tp = Tp fp = Fp tnot p = Fp fnot p = Tp
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Tableau Calculi for ASP Definitions

Tableau rules: Auxiliary definitions (ctd)

Some tableau rules require conditions for their application.
Such conditions are specified as provisos:

prerequisites
(proviso)

consequence
proviso: some condition(s)

+ All tableau rules given in the sequel are answer set preserving.
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Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Forward True Body (FTB)

Prerequisites All of a body’s literals are true.

Consequence The body is true.

Tableau Rule FTB

p ← l1, . . . , ln
tl1, . . . , tln

T{l1, . . . , ln}

Example

a← b, not c
Tb
Fc

T{b, not c}
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Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Backward False Body (BFB)

Prerequisites A body is false, and all its literals except for one are true.

Consequence The residual body literal is false.

Tableau Rule BFB

F{l1, . . . , li , . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li

Examples

F{b, not c}
Tb

Tc

F{b, not c}
Fc

Fb
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Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Forward False Body (FFB)

Prerequisites Some literal of a body is false.

Consequence The body is false.

Tableau Rule FFB

p ← l1, . . . , li , . . . , ln
f li

F{l1, . . . , li , . . . , ln}

Examples

a← b, not c
Fb

F{b, not c}

a← b, not c
Tc

F{b, not c}
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Forward False Body (FFB)
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Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Backward True Body (BTB)

Prerequisites A body is true.

Consequence The body’s literals are true.

Tableau Rule BTB

T{l1, . . . , li , . . . , ln}
tli

Examples

T{b, not c}
Tb

T{b, not c}
Fc
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Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Reviewing tableau rules for bodies

Consider rule body B = {l1, . . . , ln}.

Rules FTB and BFB amount to implication:

l1 ∧ · · · ∧ ln → B

Rules FFB and BTB amount to implication:

B → l1 ∧ · · · ∧ ln

+ Together they yield:

B ≡ l1 ∧ · · · ∧ ln
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Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Forward True Atom (FTA)

Prerequisites Some of an atom’s bodies is true.

Consequence The atom is true.

Tableau Rule FTA

p ← l1, . . . , ln
T{l1, . . . , ln}

Tp

Examples

a← b, not c
T{b, not c}

Ta

a← d , not e
T{d , not e}

Ta
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Backward False Atom (BFA)

Prerequisites An atom is false.

Consequence The bodies of all rules with the atom as head are false.

Tableau Rule BFA

p ← l1, . . . , ln
Fp

F{l1, . . . , ln}

Examples

a← b, not c
Fa

F{b, not c}

a← d , not e
Fa

F{d , not e}
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Forward False Atom (FFA)

Prerequisites For some atom, the bodies of all rules with the atom as head
are false.

Consequence The atom is false.

Tableau Rule FFA

FB1, . . . ,FBm
(body(p) = {B1, . . . ,Bm})Fp

+ For an atom p occurring in a logic program Π, we let
body(p) = {body(r) | r ∈ Π, head(r) = p}.

Example

F{b, not c}
F{d , not e}

(body(a) = {{b, not c}, {d , not e}})Fa
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Forward False Atom (FFA)

Prerequisites For some atom, the bodies of all rules with the atom as head
are false.

Consequence The atom is false.

Tableau Rule FFA

FB1, . . . ,FBm
(body(p) = {B1, . . . ,Bm})Fp

+ For an atom p occurring in a logic program Π, we let
body(p) = {body(r) | r ∈ Π, head(r) = p}.

Example

F{b, not c}
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(body(a) = {{b, not c}, {d , not e}})Fa
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Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Backward True Atom (BTA)

Prerequisites An atom is true, and the bodies of all rules with the atom as
head except for one are false.

Consequence The residual body is true.

Tableau Rule BTA

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(body(p) = {B1, . . . ,Bm})TBi

Examples

Ta
F{b, not c}

(∗)T{d , not e}

Ta
F{d , not e}

(∗)T{b, not c}

(∗): body(a) = {{b, not c}, {d , not e}}
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Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Reviewing tableau rules for atoms

Consider an atom p such that body(p) = {B1, . . . ,Bm}.

Rules FTA and BFA amount to implication:

B1 ∨ · · · ∨ Bm → p

Rules FFA and BTA amount to implication:

p → B1 ∨ · · · ∨ Bm

+ Together they yield:

p ≡ B1 ∨ · · · ∨ Bm
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Tableau Calculi for ASP Tableau Rules for Clark’s Completion

Relationship with Clark’s completion

Let Π be a normal logic program.
The eight tableau rules introduced so far essentially provide:

(straightforward) inferences from Comp(Π) (cf. Page 430)

inferences via atleast (cf. Page 488)

Given the same partial assignment (of atoms),

any literal derived by atleast is also derived by tableau rules,

while the converse does not hold in general.
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Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Preliminaries for unfounded sets

Let Π be a normal logic program.

For Π′ ⊆ Π, define the greatest unfounded set, denoted by GUS(Π′),
of Π with respect to Π′ as:

GUS(Π′) = atom(Π) \ Cn((Π′)∅)

For a loop L ∈ Loop(Π), define

EB(L) = {body(r) | r ∈ Π, head(r) ∈ L, body +(r) ∩ L = ∅}

as the external bodies of L.
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Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Well-Founded Negation (WFN)

Prerequisites An atom is in the greatest unfounded set with respect to
rules whose bodies are false.

Consequence The atom is false.

Tableau Rule WFN

FB1, . . . ,FBm
(p ∈ GUS({r ∈ Π | body(r) 6∈ {B1, . . . ,Bm}}))Fp

Examples

a← not b
F{not b}

(∗)Fa

a← a
a← not b
F{not b}

(∗)Fa

(∗): a ∈ GUS(Π \ {a← not b})
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Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Well-Founded Justification (WFJ)

Prerequisites A true atom is in the greatest unfounded set with respect to
rules whose bodies are false if a particular body is made false.

Consequence The respective body is true.

Tableau Rule WFJ

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(p ∈ GUS({r ∈ Π | body(r) 6∈ {B1, . . . ,Bm}}))TBi

Examples

a← not b
Ta

(∗)T{not b}

a← a
a← not b

Ta
(∗)T{not b}

(∗): a ∈ GUS(Π \ {a← not b})
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Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Reviewing well-founded tableau rules

Tableau rules WFN and WFJ ensure non-circular support for true atoms.
Note that

1 WFN subsumes falsifying atoms via FFA,

2 WFJ can be viewed as “backward propagation” for unfounded sets,

3 WFJ subsumes backward propagation of true atoms via BTA.
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Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Relationship with well-founded operator

Let Π be a normal logic program, 〈T ,F 〉 a partial interpretation, and
Π′ = {r ∈ Π | body +(r) ∩ F = ∅, body−(r) ∩ T = ∅}.
Then the following conditions are equivalent:

1 p ∈ UΠ〈T ,F 〉; (cf. Page 530)

2 p ∈ atmost(〈T ,F 〉); (cf. Page 568)

3 p ∈ GUS(Π′).

å Well-founded operator, atmost, and WFN coincide.

+ In contrast to the former, WFN does not necessarily require a rule
body to contain a false literal for the rule being inapplicable.
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Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Forward Loop (FL)

Prerequisites The external bodies of a loop are false.

Consequence The atoms in the loop are false.

Tableau Rule FL

FB1, . . . ,FBm
(p ∈ L, L ∈ Loop(Π),EB(L) = {B1, . . . ,Bm})Fp

Example

a← a
a← not b
F{not b}

(EB({a}) = {{not b}})Fa
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Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Backward Loop (BL)

Prerequisites An atom of a loop is true, and all external bodies except for
one are false.

Consequence The residual external body is true.

Tableau Rule BL

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(p ∈ L, L ∈ Loop(Π),EB(L) = {B1, . . . ,Bm})TBi

Example

a← a
a← not b

Ta
(EB({a}) = {{not b}})T{not b}
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Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Reviewing tableau rules for loops

Tableau rules FL and BL ensure non-circular support for true atoms.
For a loop L such that EB(L) = {B1, . . . ,Bm},
they amount to implication:∨

p∈Lp → B1 ∨ · · · ∨ Bm

Comparison to well-founded tableau rules yields:

FL (plus FFA and FFB) is equivalent to WFN (plus FFB),

BL cannot simulate inferences via WFJ.
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Tableau Calculi for ASP Tableau Rules for Unfounded Sets

Relationship with loop formulas

Tableau rules FL and BL essentially provide:

(straightforward) inferences from loop formulas (cf. Page 589)

+ But impractical to precompute exponentially many loop formulas !

an application of the Lin-Zhao Theorem (cf. Page 593)

In practice, ASP-solvers such as smodels:

exploit strongly connected components of positive atom dependency
graphs

å Can be viewed as an interpolation of FL.

do not directly implement BL (and neither WFJ)

å Probably difficult to do efficiently.

could simulate BL via FL/WFN by means of failed-literal detection
(lookahead)

å What about the computational cost?
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Tableau Calculi for ASP Tableau Rules for Case Analysis

Case analysis by Cut

Up to now, all tableau rules are deterministic.
That is, rules extend a single branch but cannot create sub-branches.

+ In general, closing a branch leads to a partial assignment.

Case analysis is done by Cut[C] where C ⊆ atom(Π) ∪ body(Π).

Tableau Rule Cut[C]

(v ∈ C)Tv | Fv

Examples Cut[C]

a← not b
b ← not a

(C = atom(Π))Ta | Fa

a← not b
b ← not a

(C = body(Π))T{not b} | F{not b}
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Tableau Calculi for ASP Particular Tableau Calculi

Well-known tableau calculi

Fitting’s operator Φ applies forward propagation without sophisticated
unfounded set checks. We have:

TΦ = {FTB,FTA,FFB,FFA}

Well-founded operator Ω replaces negation of single atoms with negation
of unfounded sets. We have:

TΩ = {FTB,FTA,FFB,WFN}

“Local” propagation via a program’s completion can be determined by
elementary inferences on atoms and rule bodies. We have:

Tcompletion = {FTB,FTA,FFB,FFA,BTB,BTA,BFB,BFA}
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Tableau Calculi for ASP Particular Tableau Calculi

Tableau calculi characterizing ASP-solvers

ASP-solvers combine propagation with case analysis.
We obtain the following tableau calculi characterizing
[4, 63, 51, 77, 57, 54, 2]:

Tcmodels-1 = Tcompletion ∪ {Cut[atom(Π) ∪ body(Π)]}
Tassat = Tcompletion ∪ {FL} ∪ {Cut[atom(Π) ∪ body(Π)]}
Tsmodels = Tcompletion ∪ {WFN} ∪ {Cut[atom(Π)]}
TnoMoRe = Tcompletion ∪ {WFN} ∪ {Cut[body(Π)]}
Tnomore++ = Tcompletion ∪ {WFN} ∪ {Cut[atom(Π) ∪ body(Π)]}

SAT-based ASP-solvers, assat and cmodels,
incrementally add loop formulas to a program’s completion.

Genuine ASP-solvers, smodels, dlv, noMoRe, and nomore++,
essentially differ only in their Cut rules.
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Tableau Calculi for ASP Relative Efficiency

Proof complexity

The notion of proof complexity is used for describing the relative efficiency
of different proof systems.
It compares proof systems based on minimal refutations.

å Proof complexity does not depend on heuristics.

A proof system T polynomially simulates a proof system T ′ if every
refutation of T ′ can be polynomially mapped to a refutation of T .
Otherwise, T does not polynomially simulate T ′.
For showing that proof system T does not polynomially simulate T ′,
we have to provide an infinite witnessing family of programs such that
minimal refutations of T asymptotically are exponentially larger than
minimal refutations of T ′.
The size of tableaux is simply the number of their entries.

+ We do not need to know the precise number of entries:
Counting required Cut applications is sufficient !
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Tableau Calculi for ASP Relative Efficiency

Tsmodels versus TnoMoRe

Recall that Tsmodels restricts Cut to atom(Π) and TnoMoRe to body(Π).
Are both approaches similar or is one of them superior to the other?

Let {Πn
a}, {Πn

b}, and {Πn
c} be infinite families of programs as follows:

Πn
a =


x ← not x
x ← a1, b1

...
x ← an, bn

 Πn
b =


x ← c1, . . . , cn, not x
c1 ← a1 c1 ← b1

...
...

cn ← an cn ← bn

 Πn
c =


a1 ← not b1

b1 ← not a1

...
an ← not bn
bn ← not an


In minimal refutations for Πn

a ∪ Πn
c , the number of applications of

Cut[body(Πn
a ∪ Πn

c)] with TnoMoRe is linear in n, whereas Tsmodels requires
exponentially many applications of Cut[atom(Πn

a ∪ Πn
c)].

Vice versa, minimal refutations for Πn
b ∪ Πn

c require linearly many
applications of Cut[atom(Πn

b ∪ Πn
c)] with Tsmodels and exponentially many

applications of Cut[body(Πn
b ∪ Πn

c)] with TnoMoRe.
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Tableau Calculi for ASP Relative Efficiency

Relative efficiency

As witnessed by {Πn
a ∪ Πn

c} and {Πn
b ∪ Πn

c}, respectively,
Tsmodels and TnoMoRe do not polynomially simulate one another.
Any refutation of Tsmodels or TnoMoRe is a refutation of Tnomore++

(but not vice versa).

It follows that

both Tsmodels and TnoMoRe are polynomially simulated by Tnomore++

and

Tnomore++ is polynomially simulated by neither Tsmodels nor TnoMoRe.

å The proof system obtained with Cut[atom(Π) ∪ body(Π)] is
exponentially stronger than the ones with either
Cut[atom(Π)] or Cut[body(Π)] !

+ Case analyses (at least) on atoms and bodies are mandatory in
powerful ASP-solvers.
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Tableau Calculi for ASP Example Tableaux

Tsmodels: Example tableau

(r1) a← not b (r2) b ← d , not a (r3) c ← b, d
(r4) c ← g (r5) d ← c (r6) d ← g
(r7) e ← f , not c (r8) f ← not g (r9) g ← not a, not f

(1) Ta [Cut]
(2) T{not b} [BTA: r1, 1]
(3) Fb [BTB: 2]
(4) F{d, not a} [BFA: r2, 3]
(5) F{not a, not f } [FFB: r9, 1]
(6) Fg [FFA: r9, 5]
(7) T{not g} [FTB: r8, 6]
(8) Tf [FTA: r8, 7]
(9) F{b, d} [FFB: r3, 3]
(10) F{g} [FFB: r4, r6, 6]
(11) Fc [FFA: r3, r4, 9, 10]
(12) F{c} [FFB: r5, 11]
(13) Fd [FFA: r5, r6, 10, 12]
(14) T{f , not c} [FTB: r7, 8, 11]
(15) Te [FTA: r7, 14]

(16) Fa [Cut]
(17) F{not b} [BFA: r1, 16]
(18) Tb [BFB: 17]
(19) T{d, not a} [BTA: r2, 18]
(20) Td [BTB: 19]
(21) T{b, d} [FTB: r3, 18, 20]
(22) Tc [FTA: r3, 21]
(23) F{f , not c} [FFB: r7, 22]
(24) Fe [FFA: r7, 23]
(25) T{c} [FTB: r5, 22]

(26) Tf [Cut]
(27) F{not a, not f } [FFB: r9, 26]
(28) Fc [WFN: 27]

(29) Ff [Cut]
(30) T{not a, not f } [FTB: r9, 16, 29]
(31) Tg [FTA: r9, 30]
(32) T{g} [FTB: r4, r6, 31]
(33) F{not g} [FFB: r8, 31]
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Tableau Calculi for ASP Example Tableaux

TnoMoRe: Example tableau

(r1) a← not b (r2) b ← d , not a (r3) c ← b, d
(r4) c ← g (r5) d ← c (r6) d ← g
(r7) e ← f , not c (r8) f ← not g (r9) g ← not a, not f

(1) T{not b} [Cut]
(2) Ta [FTA: r1, 1]
(3) Fb [BTB: 1]
(4) F{d, not a} [BFA: r2, 3]
(5) F{not a, not f } [FFB: r9, 2]
(6) Fg [FFA: r9, 5]
(7) T{not g} [FTB: r8, 6]
(8) Tf [FTA: r8, 7]
(9) F{b, d} [FFB: r3, 3]
(10) F{g} [FFB: r4, r6, 6]
(11) Fc [FFA: r3, r4, 9, 10]
(12) F{c} [FFB: r5, 11]
(13) Fd [FFA: r5, r6, 10, 12]
(14) T{f , not c} [FTB: r7, 8, 11]
(15) Te [FTA: r7, 14]

(16) F{not b} [Cut]
(17) Fa [FFA: r1, 16]
(18) Tb [BFB: 16]
(19) T{d, not a} [BTA: r2, 18]
(20) Td [BTB: 19]
(21) T{b, d} [FTB: r3, 18, 20]
(22) Tc [FTA: r3, 21]
(23) F{f , not c} [FFB: r7, 22]
(24) Fe [FFA: r7, 23]
(25) T{c} [FTB: r5, 22]

(26) T{not g} [Cut]
(27) Fg [BTB: 26]
(28) F{g} [FFB: r4, r6, 27]
(29) Fc [WFN: 28]

(30) F{not g} [Cut]
(31) Tg [BFB: 30]
(32) T{g} [FTB: r4, r6, 31]
(33) Ff [FFA: r8, 30]
(34) T{not a, not f } [FTB: r9, 17, 33]
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Tableau Calculi for ASP Example Tableaux

Tnomore++: Example tableau

(r1) a← not b (r2) b ← d , not a (r3) c ← b, d
(r4) c ← g (r5) d ← c (r6) d ← g
(r7) e ← f , not c (r8) f ← not g (r9) g ← not a, not f

(1) Ta [Cut]
(2) T{not b} [BTA: r1, 1]
(3) Fb [BTB: 2]
(4) F{d, not a} [BFA: r2, 3]
(5) F{not a, not f } [FFB: r9, 1]
(6) Fg [FFA: r9, 5]
(7) T{not g} [FTB: r8, 6]
(8) Tf [FTA: r8, 7]
(9) F{b, d} [FFB: r3, 3]
(10) F{g} [FFB: r4, r6, 6]
(11) Fc [FFA: r3, r4, 9, 10]
(12) F{c} [FFB: r5, 11]
(13) Fd [FFA: r5, r6, 10, 12]
(14) T{f , not c} [FTB: r7, 8, 11]
(15) Te [FTA: r7, 14]

(16) Fa [Cut]
(17) F{not b} [BFA: r1, 16]
(18) Tb [BFB: 17]
(19) T{d, not a} [BTA: r2, 18]
(20) Td [BTB: 19]
(21) T{b, d} [FTB: r3, 18, 20]
(22) Tc [FTA: r3, 21]
(23) F{f , not c} [FFB: r7, 22]
(24) Fe [FFA: r7, 23]
(25) T{c} [FTB: r5, 22]

(26) T{not g} [Cut]
(27) Fg [BTB: 26]
(28) F{g} [FFB: r4, r6, 27]
(29) Fc [WFN: 28]

(30) F{not g} [Cut]
(31) Tg [BFB: 30]
(32) T{g} [FTB: r4, r6, 31]
(33) Ff [FFA: r8, 30]
(34) T{not a, not f } [FTB: r9, 16, 33]
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Motivation

Motivation

Goal New approach to computing answer sets of logic programs,
based on concepts from

Constraint Processing (CSP) and
Satisfiability Checking (SAT)

Idea View inferences in Answer Set Programming (ASP) as unit
propagation on nogoods.

Benefits

A uniform constraint-based framework for different
kinds of inferences in ASP
Advanced techniques from the areas of CSP and SAT
Highly competitive implementation
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Boolean Constraints

Assignments

An assignment A over dom(A) = atom(Π) ∪ body(Π) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tp or Fp for p ∈ dom(A) and 1 ≤ i ≤ n.

+ Tp expresses that p is true and Fp that it is false.

The complement, σ, of a literal σ is defined as Tp = Fp and
Fp = Tp.

A ◦ B denotes the concatenation of assignments A and B.

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk ] = (σ1, . . . , σk−1).

We sometimes identify an assignment with the set of its literals.
Given this, we access true and false propositions in A via

AT = {p ∈ dom(A) | Tp ∈ A} and AF = {p ∈ dom(A) | Fp ∈ A} .
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Boolean Constraints

Nogoods, Solutions, and Unit Propagation

A nogood is a set {σ1, . . . , σn} of signed literals,
expressing a constraint violated by any assignment
containing σ1, . . . , σn.

An assignment A such that AT ∪ AF = dom(A) and AT ∩ AF = ∅
is a solution for a set ∆ of nogoods, if δ 6⊆ A for all δ ∈ ∆.

For a nogood δ, a literal σ ∈ δ, and an assignment A, we say that
σ is unit-resulting for δ wrt A, if

1 δ \ A = {σ} and
2 σ 6∈ A.

For a set ∆ of nogoods and an assignment A, unit propagation is the
iterated process of extending A with unit-resulting literals until no
further literal is unit-resulting for any nogood in ∆.
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Nogoods from Logic Programs Nogoods from Clark’s Completion

Nogoods from logic programs
via Clark’s completion

The completion of a logic program Π can be defined as follows:

{pβ ↔ p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn |
β ∈ body(Π), β = {p1, . . . , pm, not pm+1, . . . , not pn}}

∪ {p ↔ pβ1 ∨ · · · ∨ pβk |
p ∈ atom(Π), body(p) = {β1, . . . , βk}} ,

where body(p) = {body(r) | r ∈ Π, head(r) = p}.
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Nogoods from logic programs (ctd)
via Clark’s completion

Let β = {p1, . . . , pm, not pm+1, . . . , not pn} be a body.
The equivalence

pβ ↔ p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn

can be decomposed into two implications.

1 We get

pβ → p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn ,

which is equivalent to the conjunction of

¬pβ ∨ p1, . . . , ¬pβ ∨ pm, ¬pβ ∨ ¬pm+1, . . . , ¬pβ ∨ ¬pn .

This set of clauses expresses the following set of nogoods:

∆(β) = { {Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,Tpm+1}, . . . , {Tβ,Tpn} } .
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The equivalence

pβ ↔ p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn

can be decomposed into two implications.

2 The converse of the previous implication, viz.

p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn → pβ ,

gives rise to the nogood

δ(β) = {Fβ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn} .

Intuitively, δ(β) is a constraint enforcing the truth of body β, or the
falsity of a contained literal.
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Nogoods from logic programs (ctd)
via Clark’s completion

Proceeding analogously with the atom-based equivalences, viz.

p ↔ pβ1 ∨ · · · ∨ pβk

we obtain for an atom p ∈ atom(Π) along with its bodies
body(p) = {β1, . . . , βk} the nogoods

∆(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} } and

δ(p) = {Tp,Fβ1, . . . ,Fβk} .
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Nogoods from logic programs
atom-oriented nogoods

For an atom p where body(p) = {β1, . . . , βk}, recall that

δ(p) = {Tp,Fβ1, . . . ,Fβk}
∆(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} } .

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

x ← y
x ← not z

δ(x) = {Tx ,F{y},F{not z}}
∆(x) = { {Fx ,T{y}}, {Fx ,T{not z}} }

For nogood δ(x) = {Tx ,F{y},F{not z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{not z}) and

T{not z} is unit-resulting wrt assignment (Tx ,F{y}).
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∆(β) = { {Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,Tpm+1}, . . . , {Tβ,Tpn} } .

For example, for body {x , not y}, we obtain

. . .← x , not y...

. . .← x , not y

δ({x , not y}) = {F{x , not y},Tx ,Fy}
∆({x , not y}) = { {T{x , not y},Fx}, {T{x , not y},Ty} }

For nogood δ({x , not y}) = {F{x , not y},Tx ,Fy}, the signed literal

T{x , not y} is unit-resulting wrt assignment (Tx ,Fy) and

Ty is unit-resulting wrt assignment (F{x , not y},Tx).
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Characterization of answer sets
for tight logic programs

Let Π be a logic program and

∆Π = {δ(p) | p ∈ atom(Π)} ∪ {δ ∈ ∆(p) | p ∈ atom(Π)}
∪ {δ(β) | β ∈ body(Π)} ∪ {δ ∈ ∆(β) | β ∈ body(Π)} .

Theorem

Let Π be a tight logic program. Then,
X ⊆ atom(Π) is an answer set of Π iff
X = AT ∩ atom(Π) for a (unique) solution A for ∆Π.

+ The set ∆Π of nogoods captures inferences from
(program Π and) Clark’s completion.
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Nogoods from Logic Programs Nogoods from Clark’s Completion

Atom-oriented nogoods and tableau rules

Tableau rules FTA, BFA, FFA, and BTA are atom-oriented.
For an atom p such that body(p) = {β1, . . . , βk},
consider the equivalence: p ↔ pβ1 ∨ · · · ∨ pβk

Inferences from nogoods ∆(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} }
correspond to those from tableau rules FTA and BFA:

p ← β
Tβ
Tp

p ← β
Fp

Fβ

Inferences from nogood δ(p) = {Tp,Fβ1, . . . ,Fβk}
correspond to those from tableau rules FFA and BTA:

Fβ1, . . . ,Fβk
Fp

Tp
Fβ1, . . . ,Fβi−1,Fβi+1, . . . ,Fβk

Tβi
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Body-oriented nogoods and tableau rules

Tableau rules FTB, BFB, FFB, and BTB are body-oriented.

For a body β = {p1, . . . , pm, not pm+1, . . . , not pn} = {l1, . . . , ln},
consider the equivalence: pβ ↔ p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn

Inferences from nogood δ(β) = {Fβ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn}
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p ← l1, . . . , ln
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F{l1, . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li

Inferences from nogoods
∆(β) = { {Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,Tpm+1}, . . . , {Tβ,Tpn} }
correspond to those from tableau rules FFB and BTB:
p ← l1, . . . , li , . . . , ln

f li
F{l1, . . . , li , . . . , ln}

T{l1, . . . , li , . . . , ln}
tli

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 308 / 453



Nogoods from Logic Programs Nogoods from Clark’s Completion

Body-oriented nogoods and tableau rules

Tableau rules FTB, BFB, FFB, and BTB are body-oriented.

For a body β = {p1, . . . , pm, not pm+1, . . . , not pn} = {l1, . . . , ln},
consider the equivalence: pβ ↔ p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn

Inferences from nogood δ(β) = {Fβ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn}
correspond to those from tableau rules FTB and BFB:

p ← l1, . . . , ln
tl1, . . . , tln

T{l1, . . . , ln}

F{l1, . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li

Inferences from nogoods
∆(β) = { {Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,Tpm+1}, . . . , {Tβ,Tpn} }
correspond to those from tableau rules FFB and BTB:
p ← l1, . . . , li , . . . , ln

f li
F{l1, . . . , li , . . . , ln}

T{l1, . . . , li , . . . , ln}
tli

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 308 / 453



Nogoods from Logic Programs Nogoods from Clark’s Completion

Body-oriented nogoods and tableau rules

Tableau rules FTB, BFB, FFB, and BTB are body-oriented.

For a body β = {p1, . . . , pm, not pm+1, . . . , not pn} = {l1, . . . , ln},
consider the equivalence: pβ ↔ p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn

Inferences from nogood δ(β) = {Fβ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn}
correspond to those from tableau rules FTB and BFB:

p ← l1, . . . , ln
tl1, . . . , tln

T{l1, . . . , ln}

F{l1, . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li

Inferences from nogoods
∆(β) = { {Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,Tpm+1}, . . . , {Tβ,Tpn} }
correspond to those from tableau rules FFB and BTB:
p ← l1, . . . , li , . . . , ln

f li
F{l1, . . . , li , . . . , ln}

T{l1, . . . , li , . . . , ln}
tli

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 308 / 453



Nogoods from Logic Programs Nogoods from Clark’s Completion

Body-oriented nogoods and tableau rules

Tableau rules FTB, BFB, FFB, and BTB are body-oriented.

For a body β = {p1, . . . , pm, not pm+1, . . . , not pn} = {l1, . . . , ln},
consider the equivalence: pβ ↔ p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn

Inferences from nogood δ(β) = {Fβ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn}
correspond to those from tableau rules FTB and BFB:

p ← l1, . . . , ln
tl1, . . . , tln

T{l1, . . . , ln}

F{l1, . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li

Inferences from nogoods
∆(β) = { {Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,Tpm+1}, . . . , {Tβ,Tpn} }
correspond to those from tableau rules FFB and BTB:
p ← l1, . . . , li , . . . , ln

f li
F{l1, . . . , li , . . . , ln}

T{l1, . . . , li , . . . , ln}
tli

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 308 / 453



Nogoods from Logic Programs Nogoods from Loop Formulas

Nogoods from logic programs
via loop formulas (cf. Page 589)

Let Π be a normal logic program and recall that:

For L ⊆ atom(Π), the external supports of L for Π are

ESΠ(L) = {r ∈ Π | head(r) ∈ L, body +(r) ∩ L = ∅}.
The (disjunctive) loop formula of L for Π is

LF Π(L) =
(∨

A∈LA
)
→
(∨

r∈ESΠ(L)Comp(body(r))
)

≡
(∧

r∈ESΠ(L)¬Comp(body(r))
)
→
(∧

A∈L¬A
)
.

+ The loop formula of L enforces all atoms in L to be false whenever L is
not externally supported.

The external bodies of L for Π are

EB(L) = {body(r) | r ∈ Π, head(r) ∈ L, body +(r) ∩ L = ∅}
= {body(r) | r ∈ ESΠ(L)}.
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Nogoods from Logic Programs Nogoods from Loop Formulas

Nogoods from logic programs
loop nogoods

For a logic program Π and some ∅ ⊂ U ⊆ atom(Π),
define the loop nogood of an atom p ∈ U as

λ(p,U) = {Tp,Fβ1, . . . ,Fβk}

where EB(U) = {β1, . . . , βk}.

In all, we get the following set of loop nogoods for Π:

ΛΠ =
⋃
∅⊂U⊆atom(Π){λ(p,U) | p ∈ U}

+ The set ΛΠ of loop nogoods denies cyclic support among true atoms.
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Nogoods from Logic Programs Nogoods from Loop Formulas

Example

Consider

Π =

 x ← not y
y ← not x

u ← x
u ← v
v ← u, y


For u in the set {u, v}, we obtain the loop nogood:

λ(u, {u, v}) = {Tu,F{x}}

Similarly for v in {u, v}, we get:

λ(v , {u, v}) = {Tv ,F{x}}
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Nogoods from Logic Programs Nogoods from Loop Formulas

Characterization of answer sets

For a logic program Π,
let ∆Π and ΛΠ as defined on Page 755 and Page 767, respectively.

Theorem

Let Π be a logic program. Then,
X ⊆ atom(Π) is an answer set of Π iff
X = AT ∩ atom(Π) for a (unique) solution A for ∆Π ∪ ΛΠ.

Some remarks

Nogoods in ΛΠ augment ∆Π with conditions checking
for unfounded sets, in particular, those being loops.
While |∆Π| is linear in the size of Π, ΛΠ may contain
exponentially many (non-redundant) loop nogoods !
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Conflict-Driven Nogood Learning

Conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:

Traditional approach

(Unit) propagation
Exhaustive (chronological) backtracking

+ DPLL [20, 19]

State of the art

(Unit) propagation
Conflict analysis (via resolution)
Learning + Backjumping + Assertion

+ CDCL [83, 67]

Idea

å Apply CDCL-style search in ASP solving !
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Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Outline of CDNL-ASP algorithm
[38]

Keep track of deterministic consequences by unit propagation on:
Clark’s completion [∆Π]
Loop nogoods, determined and recorded on demand [ΛΠ]

+ Dedicated unfounded set detection !

Dynamic nogoods, derived from conflicts and unfounded sets [∇]
When a nogood in ∆Π ∪∇ becomes violated:

Analyze the conflict by resolution until reaching the First Unique
Implication Point (First-UIP) [68]
Learn the derived conflict nogood δ
Backjump to the earliest (heuristic) choice such that the complement
of the First-UIP is unit-resulting for δ
Assert the complement of the First-UIP and proceed
(by unit propagation)

Terminate when either:
Finding an answer set (a solution for ∆Π ∪ ΛΠ)
Deriving a conflict independently of (heuristic) choices
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Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Algorithm 1: CDNL-ASP
Input : A logic program Π.
Output : An answer set of Π or “no answer set”.

1 A← ∅ // assignment over atom(Π) ∪ body(Π)
2 ∇ ← ∅ // set of (dynamic) nogoods
3 dl ← 0 // decision level
4 loop
5 (A,∇)← NogoodPropagation(Π,∇,A)
6 if ε ⊆ A for some ε ∈ ∆Π ∪∇ then
7 if dl = 0 then return no answer set
8 (δ, k)← ConflictAnalysis(ε,Π,∇,A)
9 ∇ ← ∇∪ {δ} // learning

10 A← (A \ {σ ∈ A | k < dl(σ)}) // backjumping
11 dl ← k

12 else if AT ∪ AF = atom(Π) ∪ body(Π) then
13 return AT ∩ atom(Π) // answer set
14 else
15 σd ← Select(Π,∇,A) // heuristic choice of σd /∈ A
16 dl ← dl + 1
17 A← A ◦ (σd) // dl(σd) = dl
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Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Observations

Decision level dl , initially set to 0, is used to count the number of
heuristically chosen literals in assignment A.

For a heuristically chosen literal σd = Tp or σd = Fp, respectively, we
require p ∈ (atom(Π) ∪ body(Π)) \ (AT ∪ AF).

For any literal σ ∈ A, dl(σ) denotes the decision level of σ, viz. the
value dl had when σ was assigned.

A conflict is detected from violation of a nogood ε ⊆ ∆Π ∪∇.

A conflict at decision level 0 (where A contains no heuristically
chosen literals) indicates non-existence of answer sets.

A nogood δ derived by conflict analysis is asserting, that is,
some literal is unit-resulting for δ at a decision level k < dl .

å After learning δ and backjumping to decision level k,
at least one literal is newly derivable by unit propagation.

+ No explicit flipping of heuristically chosen literals !
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Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ

1 Tu

2 F{not x , not y}
Fw {Tw ,F{not x , not y}} = δ(w)

3 F{not y}
Fx {Tx ,F{not y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
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Conflict-Driven Nogood Learning Nogood Propagation

Outline of NogoodPropagation

Derive deterministic consequences via:

Unit propagation on ∆Π and ∇;
Unfounded sets U ⊆ atom(Π).

Note that U is unfounded if EB(U) ⊆ AF.

+ For any p ∈ U, we have (λ(p,U) \ {Tp}) ⊆ A.

An “interesting” unfounded set U satisfies:

∅ ⊂ U ⊆ (atom(Π) \ AF) .

Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of Π.

å Tight programs do not yield “interesting” unfounded sets !

Given an unfounded set U and some p ∈ U, adding λ(p,U) to ∇
triggers a conflict or further derivations by unit propagation.

+ Add loop nogoods atom by atom to eventually falsify all p ∈ U.
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Conflict-Driven Nogood Learning Nogood Propagation

Algorithm 2: NogoodPropagation
Input : A logic program Π, a set ∇ of nogoods, and an assignment A.
Output : An extended assignment and set of nogoods.

1 U ← ∅ // set of unfounded atoms
2 loop

3 repeat
4 if δ ⊆ A for some δ ∈ ∆Π ∪∇ then return (A,∇) // conflict
5 Σ← {δ ∈ ∆Π ∪∇ | (δ \ A) = {σ}, σ /∈ A} // unit-resulting nogoods
6 if Σ 6= ∅ then
7 let σ ∈ (δ \ A) for some δ ∈ Σ in
8 A← A ◦ (σ) // dl(σ) = max({dl(ρ) | ρ ∈ (δ \ {σ})} ∪ {0})
9 until Σ = ∅

10 if Π is tight then return (A,∇) // no unfounded set ∅ ⊂ U ⊆ (atom(Π) \ AF)
11 else
12 U ← (U \ AF)
13 if U = ∅ then U ← UnfoundedSet(Π,A)

14 if U = ∅ then return (A,∇)// no unfounded set ∅ ⊂ U ⊆ (atom(Π) \ AF)
15 let p ∈ U in
16 ∇ ← ∇∪ {λ(p,U)} // record unit-resulting or violated loop nogood
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Conflict-Driven Nogood Learning Nogood Propagation

Requirements for UnfoundedSet

Implementations of UnfoundedSet must guarantee the following
for a result U:

1 U ⊆ (atom(Π) \ AF);
2 EB(U) ⊆ AF;
3 U = ∅ iff there is no nonempty unfounded subset of (atom(Π) \ AF).

Beyond that, there are various alternatives, such as:

Calculating the greatest unfounded set.
Calculating unfounded sets within strongly connected components of
the positive atom dependency graph of Π.

+ Usually, the latter option is implemented in ASP solvers !
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Conflict-Driven Nogood Learning Nogood Propagation

Example: NogoodPropagation

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ

1 Tu

2 F{not x , not y}
Fw {Tw ,F{not x , not y}} = δ(w)

3 F{not y}
Fx {Tx ,F{not y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
T{not x} {F{not x},Fx} = δ({not x})
Ty {F{not y},Fy} = δ({not y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8
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Conflict-Driven Nogood Learning Conflict Analysis

Outline of ConflictAnalysis

Conflict analysis is triggered whenever some nogood δ ∈ ∆Π ∪∇
becomes violated, viz. δ ⊆ A, at a decision level dl > 0.

+ Note that all but the first literal assigned at dl have been
unit-resulting for nogoods ε ∈ ∆Π ∪∇.

å If σ ∈ δ has been unit-resulting for ε, we obtain a new violated nogood
by resolving δ and ε as follows:

(δ \ {σ}) ∪ (ε \ {σ}) .

Resolution is directed by resolving first over the literal σ ∈ δ derived
last, viz. (δ \ A[σ]) = {σ}.

+ Iterated resolution progresses in inverse order of assignment.

Iterated resolution stops as soon as it generates a nogood δ
containing exactly one literal σ assigned at decision level dl .

This literal σ is called First Unique Implication Point (First-UIP).
+ All literals in (δ \ {σ}) are assigned at decision levels smaller than dl .
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Conflict-Driven Nogood Learning Conflict Analysis

Algorithm 3: ConflictAnalysis
Input : A violated nogood δ, a logic program Π, a set ∇ of nogoods, and

an assignment A.
Output : A derived nogood and a decision level.

1 loop
2 let σ ∈ δ such that (δ \ A[σ]) = {σ} in
3 k ← max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0})
4 if k = dl(σ) then
5 let ε ∈ ∆Π ∪∇ such that (ε \ A[σ]) = {σ} in
6 δ ← (δ \ {σ}) ∪ (ε \ {σ}) // resolution

7 else return (δ, k)
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Conflict-Driven Nogood Learning Conflict Analysis

Example: ConflictAnalysis

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ
1 Tu
2 F{not x , not y}

Fw {Tw ,F{not x , not y}} = δ(w)
3 F{not y}

Fx {Tx ,F{not y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{not x} {F{not x},Fx} = δ({not x})
Ty {F{not y},Fy} = δ({not y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8
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Conflict-Driven Nogood Learning Conflict Analysis

Remarks

There always is a First-UIP at which conflict analysis terminates.

+ In the worst, resolution stops at the heuristically chosen literal
assigned at decision level dl .

The nogood δ containing First-UIP σ is violated by A, viz. δ ⊆ A.

We have k = max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) < dl .

å After recording δ in ∇ and backjumping to decision level k,
σ is unit-resulting for δ !

+ Such a nogood δ is called asserting.

+ Asserting nogoods direct conflict-driven search into a different region
of the search space than traversed before,
without explicitly flipping any heuristically chosen literal !
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Implementation via clasp

The clasp system
[40]

Native ASP solver combining conflict-driven search with sophisticated
reasoning techniques:

Advanced preprocessing including, e.g., equivalence reasoning
Lookback-based decision heuristics
Restart policies
Nogood deletion
Progress saving
Dedicated data structures for binary and ternary nogoods
Lazy data structures (watched literals) for long nogoods
Dedicated data structures for cardinality and weight constraints
Lazy unfounded set checking based on “source pointers”
Tight integration of unit propagation and unfounded set checking
Reasoning modes
. . .

+ Many of these techniques are configurable !
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Implementation via clasp

Reasoning modes of clasp

Beyond deciding answer set existence, clasp allows for:

Optimization

Enumeration [without solution recording]

Projective Enumeration [without solution recording]

Brave and Cautious Reasoning determining the

union or
intersection

of all answer sets by computing only linearly many of them

+ Reasoning applicable wrt answer sets as well as supported models

Front-ends also admit clasp to solve:

Propositional CNF formulas

Pseudo-Boolean formulas

Find clasp at: http://potassco.sourceforge.net
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Motivation

Non-Ground
q(a, b).
q(b, a).
q(a, c).
p(X ,Y )← q(X ,Y ), q(Y ,Z ).

Ground
q(a, b). q(b, a). q(a, c).
p(a, a)← q(a, a), q(a, a). p(b, a)← q(b, a), q(a, a). p(c, a)← q(c, a), q(a, a).
p(a, a)← q(a, a), q(a, b). p(b, a)← q(b, a), q(a, b). p(c, a)← q(c, a), q(a, b).
p(a, a)← q(a, a), q(a, c). p(b, a)← q(b, a), q(a, c). p(c, a)← q(c, a), q(a, c).
p(a, b)← q(a, b), q(b, a). p(b, b)← q(b, b), q(b, a). p(c, b)← q(c, b), q(b, a).
p(a, b)← q(a, b), q(b, b). p(b, b)← q(b, b), q(b, b). p(c, b)← q(c, b), q(b, b).
p(a, b)← q(a, b), q(b, c). p(b, b)← q(b, b), q(b, c). p(c, b)← q(c, b), q(b, c).
p(a, c)← q(a, c), q(c, a). p(b, c)← q(b, c), q(c, a). p(c, c)← q(c, c), q(c, a).
p(a, c)← q(a, c), q(c, b). p(b, c)← q(b, c), q(c, b). p(c, c)← q(c, c), q(c, b).
p(a, c)← q(a, c), q(c, c). p(b, c)← q(b, c), q(c, c). p(c, c)← q(c, c), q(c, c).

+ Only a small part of the program is relevant !
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Motivation

Non-Ground
q(a).
q(f (a)).
p(X )← q(X ).

Ground
q(a).
q(f (a)).
p(a)← q(a).
p(f (a))← q(f (a)).
p(f (f (a)))← q(f (f (a))).
p(f (f (f (a))))← q(f (f (f (a)))).
. . .

+ With functions of non-zero arity, the grounding is infinite !

+ Given a logic program Π, we are interested in a subset Π′ of
ground(Π) s.t. the answer sets of Π′ and ground(Π) coincide.
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Motivation

Non-Ground
q(f (a)).
p(X )← not q(X ).

Ground
q(f (a)).
p(a)← not q(a).
p(f (a))← not q(f (a)).
p(f (f (a)))← not q(f (f (a))).
. . .

+ All (but one) rules are relevant !

+ The answer set is infinite !

+ For practical reasons, such programs should be rejected.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 335 / 453



Motivation

Non-Ground
q(f (a)).
p(X )← not q(X ).

Ground
q(f (a)).
p(a)← not q(a).
p(f (a))← not q(f (a)).
p(f (f (a)))← not q(f (f (a))).
. . .

+ All (but one) rules are relevant !

+ The answer set is infinite !

+ For practical reasons, such programs should be rejected.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 335 / 453



Motivation

Goals

First Part: What classes of programs yield finite equivalent ground
programs?

Second Part: How to efficiently instantiate a program?
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Motivation

Terminology I

Variables: X ,Y ,Z , . . .

Functions: a/0, f /1, g/2, . . . (associated with arities)

Predicates: p/0, q/1, r/2, . . . (associated with arities)

Terms: variables or f (t1, . . . , tn) s.t. each ti is a term and f /n is a
function

Atoms: p(t1, . . . , tn) s.t. each ti is a term and p/n is a predicate

An atom binds all variables that occur in it.

Literals: an atom or an atom preceded by not

Ground terms (atoms, literals): terms (atoms, literals) without
variables
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Motivation

Terminology II
Signature σ: a pair of functions and predicates

Herbrand universe Uσ: the set of all ground terms over functions in σ

Herbrand base Bσ: the set of all ground atoms over predicates and
functions in σ

Example

Given the signature σ = ({a/0, f /1}, {p/1}):

Uσ = {a, f (a), f (f (a)), f (f (f (a))), . . . }
Bσ = {p(a), p(f (a)), p(f (f (a))), p(f (f (f (a)))), . . . }

In the following, signature σ is often implicitly given by functions and
predicates occurring in a logic program.
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Motivation

Terminology III
Let Π be a logic program with signature σ.

Ground instances of r ∈ Π: Set of variable-free rules obtained by
replacing all variables in r by elements from Uσ:

ground(r) = {rθ | θ : vars(r)→ Uσ}

where

vars(r) stands for the set of all variables occurring in r and
θ is a (ground) substitution.

Ground instantiation of Π:

ground(Π) =
⋃

r∈Πground(r)

A set X ⊆ Bσ is an answer set of Π if Cn(ground(Π)X ) = X .
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Program Classes

Overview

60 Motivation

61 Program Classes

62 Program Instantiation

63 Program Dependencies

64 Rule Instantiation
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Program Classes

ω-Restricted Programs

Definition

Given a logic program Π:

1 A predicate p/n is a domain predicate if there is a level mapping from
predicates to integers s.t., for each rule where p/n occurs in the head,
all predicates in the body are domain predicates s.t. their levels are
strictly smaller than that of p/n.

2 Π is ω-restricted if, for each rule, every variable occurring in the rule
is bound by some atom p(t1, . . . , tn) in the positive body s.t. p/n is a
domain predicate.

+ Every ω-restricted program has a finite equivalent ground program.

Implementation lparse
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Program Classes

Example

Example

d0(a). d0(b). g 0(b).

r 1(X )← d0(X ), not g 0(X ).

p1(X )← q2(X ), d0(X ).

q2(X )← p1(X ), r 1(X ).

Level mapping

d/1→ 0

g/1→ 0

r/1→ 1

p/1→ 1

q/1→ 2

+ Domain predicates: d/1, g/1, r/1.

+ The program is ω-restricted.
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Program Classes

λ-Restricted Programs

Definition

A logic program is λ-restricted if there is a level mapping from predicates
to integers s.t., for each rule, every variable occurring in the rule is bound
by some atom in the positive body whose predicate has a strictly smaller
level than the head predicate(s).

+ Every λ-restricted program has a finite equivalent ground program.

+ Every ω-restricted program is also λ-restricted.

Implementation gringo (below version 3.0.0)
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Program Classes

Safe Programs

Definition

A logic program is safe if, for each rule, every variable occurring in the rule
is bound by some atom in the positive body.

+ Every safe program (without functions of non-zero arity) has a finite
equivalent ground program.

+ Every λ-restricted program is also safe.

Implementation dlv & gringo (from version 3.0.0)
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Program Classes

Example

Example I

d(a). d(b). g(b).

p(X )← q(X ).

q(X )← p(X ).

r ← q(X ), not g(X ), not r .

+ The program is safe.

+ The program is not λ-restricted.

Example II

p(a).

p(f (X ))← p(X ).

The grounding is infinite !
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Program Classes

Encoding a 3-State Busy Beaver Machine

a

start

b

c h

0,1,r

0,1,l

1,1,l

1,1,r

0,1,l

1,1,r

0000. . . 0 0 0 . . . $ cat beaver.lp

start(a).

blank(0).

tape(n,0,n).

trans(a,0,1,b,r).

trans(a,1,1,c,l).

trans(b,0,1,a,l).

trans(b,1,1,b,r).

trans(c,0,1,b,l).

trans(c,1,1,h,r).
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Program Classes

Encoding a Universal Turing Machine

$ cat turing.lp

conf(S,L,A,R) :- start(S), tape(L,A,R).

conf(SN,l(L,AN),AR,R) :- conf(S,L,A,r(AR,R)),

trans(S,A,AN,SN,r).

conf(SN,l(L,AN),AR,n) :- conf(S,L,A,n), blank(AR),

trans(S,A,AN,SN,r).

conf(SN,L,AL,r(AN,R)) :- conf(S,l(L,AL),A,R),

trans(S,A,AN,SN,l).

conf(SN,n,AL,r(AN,R)) :- conf(S,n,A,R), blank(AL),

trans(S,A,AN,SN,l).
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Program Classes

Running the Turing Machine

$ gringo -t beaver.lp turing.lp

...

conf(a,n,0,n).

conf(b,l(n,1),0,n).

conf(a,n,1,r(1,n)).

...

conf(a,l(l(l(l(n,1),1),1),1),1,r(1,n)).

conf(c,l(l(l(n,1),1),1),1,r(1,r(1,n))).

conf(h,l(l(l(l(n,1),1),1),1),1,r(1,n)).

Halts if Turing machine halts

Finiteness check for safe programs is undecidable
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Program Instantiation
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Program Instantiation

Definition

Given a set P of atoms, a signature σ, and a domain D ⊆ Bσ:

inst(P,D) = {θ : vars(P)→ Uσ | Aθ ∈ D for all A ∈ P}

Algorithm: instantiateω(Π)
Input : An ω-restricted program Π with level mapping λ
Output : A ground program G

1 X ← set of predicates occurring in Π
2 D ← ∅
3 G ← ∅
4 while X 6= ∅ do
5 remove a predicate p/n with smallest level λ(p/n) from X
6 foreach rule r ∈ Π with p/n in the head do
7 P ← {A ∈ body+(r) | the predicate of A is a domain predicate}
8 foreach θ ∈ inst(P,D) do
9 D ← D ∪ {head(r)θ}

10 G ← G ∪ {rθ}
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Program Instantiation

Instantiating λ-Restricted Programs

Algorithm: instantiateλ(Π)
Input : A λ-restricted program Π with level mapping λ
Output : A ground program G

1 X ← set of predicates occurring in Π
2 D ← ∅
3 G ← ∅
4 while X 6= ∅ do
5 remove a predicate p/n with smallest level λ(p/n) from X
6 foreach rule r ∈ Π with p/n in the head do
7 P ← {A ∈ body+(r) | λ(p/n) is greater than the level of the predicate of A}
8 foreach θ ∈ inst(P,D) do
9 D ← D ∪ {head(r)θ}

10 G ← G ∪ {rθ}

+ More predicates to instantiate with !

+ Possibly smaller grounding.
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Program Instantiation

Example

d0(a). d0(b). g 0(b). p1(X )← q2(X ), d0(X ).

q2(X )← p1(X ). r 3 ← q2(X ), not g 0(X ), not r 3.

p P inst(P,D) D G

d/1 ∅ {∅} ∪ {d(a)} ∪ {d(a).}
∅ {∅} ∪ {d(b)} ∪ {d(b).}

g/1 ∅ {∅} ∪ {g(b)} ∪ {g(b).}
p/1 {d(X )} {{X → a}, ∪ {p(a)} ∪ {p(a)← q(a), d(a).}

{X → b}} ∪ {p(b)} ∪ {p(b)← q(b), d(b).}
q/1 {p(X )} {{X → a}, ∪ {q(a)} ∪ {q(a)← p(a).}

{X → b}} ∪ {q(b)} ∪ {q(b)← p(b).}
r/0 {q(X )} {{X → a}, ∪ {r} ∪ {r ← q(a), not g(a), not r .}

{X → b}} ∪ {r} ∪ {r ← q(b), not g(b), not r .}
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Program Instantiation

Instantiating Safe Programs

Algorithm: instantiatesafe(Π)
Input : A safe program Π
Output : A ground program G

1 D ← ∅
2 G ← ∅
3 repeat
4 D ′ ← D
5 foreach r ∈ Π do
6 P ← body+(r)
7 foreach θ ∈ inst(P,D) do
8 D ← D ∪ {head(r)θ}
9 G ← G ∪ {rθ}

10 until D = D ′

+ Possibly generates fewer rules than instantiateω and instantiateλ.

+ Real implementations have to carefully avoid regrounding rules
(semi-naive evaluation).
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Program Instantiation

Example

p(a, b).

p(b, c).

p(c , d).

p(X ,Z )← p(X ,Y ), p(Y ,Z ).

inst(P,D) D G

{∅} ∪ {p(a, b)} ∪ {p(a, b).}
{∅} ∪ {p(b, c)} ∪ {p(b, c).}
{∅} ∪ {p(c , d)} ∪ {p(c , d).}
{{X → a,Y → b,Z → c}, ∪ {p(a, c)} ∪ {p(a, c)← p(a, b), p(b, c).}
{X → b,Y → c ,Z → d}} ∪ {p(b, d)} ∪ {p(b, d)← p(b, c), p(c , d).}
{{X → a,Y → c ,Z → d}, ∪ {p(a, d)} ∪ {p(a, d)← p(a, c), p(c , d).}
{X → a,Y → b,Z → d}} ∪ {p(a, d)} ∪ {p(a, d)← p(a, b), p(b, d).}

Fixpoint
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Program Instantiation

Optimizations

Remove facts from rule bodies:

1 r(c). has already been found
2 p(a)← q(b), r(c). is found

+ Simplify ground rule to p(a)← q(b).

Skip rules that contain false literals:

1 r(c). has already been found
2 p(a)← q(b), not r(c). is found

+ Skip the ground rule.

+ Allows for finitely grounding larger class of programs:

Consider Π = { p(a). q(f (f (a))). p(f (X ))← p(X ), not q(X ).}
+ instantiatesafe(Π) will terminate !
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Program Dependencies

Predicate-Rule Dependency Graph

Definition

Let Π be a logic program.

1 The predicate-rule dependency graph GΠ = (V ,E ) of Π is a directed
graph s.t.:

V is the set of predicates and rules of Π
(p/n, r) ∈ E if predicate p/n occurs in the body of rule r
(r , p/n) ∈ E if predicate p/n occurs in the head of rule r

2 (p/n, r) ∈ E is negative if predicate p/n occurs in the negative body
of rule r

+ More fine-grained static program analysis.
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Program Dependencies

Example

d(a). d(b). g(b). p(X )← q(X ), d(X ).

q(X )← p(X ). r ← q(X ), not g(X ), not r .

d(a). d(b). g(b).

d/1 g/1

p(X )← q(X ), d(X ). r ← q(X ), not g(X ), not r .

p/1 q/1

q(X )← p(X ).

r/0
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Program Dependencies

Strongly Connected Components I

A graph is strongly connected if all vertices pairwisely reach each other via
some path.

Definition

Let G = (V ,E ) be a graph.

1 A set C ⊆ V of vertices belonging to a maximal strongly connected
subgraph of G is called a strongly connected component (SCC) of G .

2 An SCC A depends on an SCC B if (B × A) ∩ E 6= ∅.

+ Dependencies among SCCs are acyclic.

+ The SCCs of a predicate-rule dependency graph can be used to
partition a logic program.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 360 / 453



Program Dependencies

Strongly Connected Components II

Definition

Given a logic program Π, an SCC of GΠ is

normal if it contains a negative edge or depends on a normal SCC,

basic if it is not normal and contains at least one edge,

fact otherwise.

+ A program is λ-restricted if its components are λ-restricted.

+ Basic and fact components do not involve “choices”.

+ SCCs can be grounded in topological order.
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Program Dependencies

d(a). d(b). g(b).

d/1 g/1

p(X )← q(X ), d(X ). r ← q(X ), not g(X ), not r .

p/1 q/1

q(X )← p(X ).

r/0

1 2

3

4

5

6

7

fact {d(a).} , {d(b).} , {g(b).} , {d/1} , {g/1}
basic {p(X )← q(X ), d(X ). , q(X )← p(X ). , p/1 , q/1}

normal {r ← q(X ), not g(X ), not r . , r/0}
A topological order
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Rule Instantiation

The Backtracking Instantiator

Definition

Given a signature σ, a substitution θ, an atom A, and a domain D:

match(θ,A,D) = {θ ∪ θ′ | θ′ : vars(Aθ)→ Uσ, (Aθ)θ′ ∈ D}

Algorithm: instantiatebt(θ,P)
Input : A substitution θ and a list P of atoms
Output : Set of (ground) substitutions
Global : Domain D

1 if P = [] then return {θ}
2 else
3 S ← ∅
4 foreach θ′ ∈ match(θ, first(P),D) do
5 S ← S ∪ instantiatebt(θ

′, tail(P))

6 return S
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Rule Instantiation

Example

Example

P = [p(X ,Y ), q(Y ,Z ), r(Z )]

p(a,b) q(b,c) r(c)

p(b,a) q(b,a)

q(a,c)

θ = {X → a,Y → b}
S = ∅
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Rule Instantiation

The Backjumping Instantiator

Algorithm: instantiatebj(θ,P)

Input : A substitution θ and a list P of atoms
Output : Set of (ground) substitutions and variables to bind
Global : Output variables O and domain D

1 if P = [] then return ({θ},O)
2 else
3 A← first(P)
4 M ← match(θ,A,D)
5 if M = ∅ then
6 return (∅, vars(A))
7 else
8 S ← ∅
9 B ← ∅

10 foreach θ′ ∈ M do
11 (S ,B)← (S ,B) t instantiatebj(θ

′, tail(P))
12 if vars(Aθ) ∩ B = ∅ then return (S ,B)

13 return (S ,B ∪ vars(A))
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Introduction

Motivation

Many problems can nicely be encoded using ASP

There are often many degrees of freedom to encode a problem
Even worse, different encodings may lead to drastically different solving
times

+ We will try to find some hints on how to efficiently encode problems
using ASP

Some problems can, due to increased complexity, no longer be
(polynomially) represented using normal logic programs

+ We will take a look on how disjunctive rules can be used to overcome
this situation
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Introduction

Solving a Problem Using ASP

My (Roland) steps to solve a problem using ASP

1 Create a small test instance
2 Come up with a quick solution
3 Debug this solution using the test instance

Use ASPViz or write some small scripts

4 Switch to larger instances
5 Analyze the flaws of the quick solution

Size of the grounding
Time needed to solve the problem

6 Incrementally refine the solution

The quick solution serves as cross-check

7 Throw away everything and try something different

+ Basically it is a Trial and Error process
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Tweaking N-Queens

Overview

65 Introduction

66 Tweaking N-Queens

67 Do’s and Dont’s

68 Hitori Puzzle

69 Ramsey Numbers
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Tweaking N-Queens

N-Queens Problem

Problem Specification

Given an N×N chessboard,
place N queens such that they do not attack each other.

N = 4

Chessboard

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

Placement

4 0ZQZ
3 L0Z0
2 0Z0L
1 ZQZ0

1 2 3 4
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Tweaking N-Queens

A First Encoding

1 Each square may host a queen.
2 No row, column, or diagonal hosts two queens.
3 A placement is given by instances of queen in an answer set.

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.

% DISPLAY

#hide. #show queen/2.

Anything missing?
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.
:- queen(X1,Y1), queen(X2,Y1), X1 < X2.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
:- not n #count{ queen(X,Y) }.

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A First Encoding

1 Each square may host a queen.
2 No row, column, or diagonal hosts two queens.
3 A placement is given by instances of queen in an answer set.

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.

% DISPLAY

#hide. #show queen/2.

Anything missing?
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.
:- queen(X1,Y1), queen(X2,Y1), X1 < X2.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
:- not n #count{ queen(X,Y) }.

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A First Encoding

1 Each square may host a queen.
2 No row, column, or diagonal hosts two queens.
3 A placement is given by instances of queen in an answer set.

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- queen(X1,Y1), queen(X2,Y1), X1 < X2.

% DISPLAY

#hide. #show queen/2.

Anything missing?
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.
:- queen(X1,Y1), queen(X2,Y1), X1 < X2.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
:- not n #count{ queen(X,Y) }.

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A First Encoding

1 Each square may host a queen.
2 No row, column, or diagonal hosts two queens.
3 A placement is given by instances of queen in an answer set.

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.

% DISPLAY

#hide. #show queen/2.

Anything missing?
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.
:- queen(X1,Y1), queen(X2,Y1), X1 < X2.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
:- not n #count{ queen(X,Y) }.

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A First Encoding

1 Each square may host a queen.
2 No row, column, or diagonal hosts two queens.
3 A placement is given by instances of queen in an answer set.

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

[...]

% DISPLAY

#hide. #show queen/2.

Anything missing?
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.
:- queen(X1,Y1), queen(X2,Y1), X1 < X2.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
:- not n #count{ queen(X,Y) }.

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A First Encoding

1 Each square may host a queen.
2 No row, column, or diagonal hosts two queens.
3 A placement is given by instances of queen in an answer set.

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

[...]

% DISPLAY

#hide. #show queen/2.

Anything missing?
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.
:- queen(X1,Y1), queen(X2,Y1), X1 < X2.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
:- not n #count{ queen(X,Y) }.

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A First Encoding

1 Each square may host a queen.
2 No row, column, or diagonal hosts two queens.
3 A placement is given by instances of queen in an answer set.
4 We have to place (at least) N queens.

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

[...]

:- not n #count{ queen(X,Y) }.

% DISPLAY

#hide. #show queen/2.

Anything missing?
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.
:- queen(X1,Y1), queen(X2,Y1), X1 < X2.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
:- not n #count{ queen(X,Y) }.

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A First Encoding
Let’s Place 8 Queens!

gringo -c n=8 | clasp --stats

Answer: 1

queen(1,6) queen(2,3) queen(3,1) queen(4,7)

queen(5,5) queen(6,8) queen(7,2) queen(8,4)

SATISFIABLE

Models : 1+

Time : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 18

Conflicts : 13

Restarts : 0

Variables : 793

Constraints : 729

8 0Z0L0Z0Z
7 ZQZ0Z0Z0
6 0Z0Z0Z0L
5 Z0Z0L0Z0
4 0Z0Z0ZQZ
3 L0Z0Z0Z0
2 0ZQZ0Z0Z
1 Z0Z0ZQZ0

1 2 3 4 5 6 7 8
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.
:- queen(X1,Y1), queen(X2,Y1), X1 < X2.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
:- not n #count{ queen(X,Y) }.

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A First Encoding
Let’s Place 8 Queens!

gringo -c n=8 | clasp --stats

Answer: 1

queen(1,6) queen(2,3) queen(3,1) queen(4,7)

queen(5,5) queen(6,8) queen(7,2) queen(8,4)

SATISFIABLE

Models : 1+

Time : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 18

Conflicts : 13

Restarts : 0

Variables : 793

Constraints : 729

8 0Z0L0Z0Z
7 ZQZ0Z0Z0
6 0Z0Z0Z0L
5 Z0Z0L0Z0
4 0Z0Z0ZQZ
3 L0Z0Z0Z0
2 0ZQZ0Z0Z
1 Z0Z0ZQZ0

1 2 3 4 5 6 7 8
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.
:- queen(X1,Y1), queen(X2,Y1), X1 < X2.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
:- not n #count{ queen(X,Y) }.

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A First Encoding
Let’s Place 8 Queens!

gringo -c n=8 | clasp --stats

Answer: 1

queen(1,6) queen(2,3) queen(3,1) queen(4,7)

queen(5,5) queen(6,8) queen(7,2) queen(8,4)

SATISFIABLE

Models : 1+

Time : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 18

Conflicts : 13

Restarts : 0

Variables : 793

Constraints : 729

8 0Z0L0Z0Z
7 ZQZ0Z0Z0
6 0Z0Z0Z0L
5 Z0Z0L0Z0
4 0Z0Z0ZQZ
3 L0Z0Z0Z0
2 0ZQZ0Z0Z
1 Z0Z0ZQZ0

1 2 3 4 5 6 7 8
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.
:- queen(X1,Y1), queen(X2,Y1), X1 < X2.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
:- not n #count{ queen(X,Y) }.

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A First Encoding
Let’s Place 8 Queens!

gringo -c n=8 | clasp --stats

Answer: 1

queen(1,6) queen(2,3) queen(3,1) queen(4,7)

queen(5,5) queen(6,8) queen(7,2) queen(8,4)

SATISFIABLE

Models : 1+

Time : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 18

Conflicts : 13

Restarts : 0

Variables : 793

Constraints : 729

8 0Z0L0Z0Z
7 ZQZ0Z0Z0
6 0Z0Z0Z0L
5 Z0Z0L0Z0
4 0Z0Z0ZQZ
3 L0Z0Z0Z0
2 0ZQZ0Z0Z
1 Z0Z0ZQZ0

1 2 3 4 5 6 7 8
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.
:- queen(X1,Y1), queen(X2,Y1), X1 < X2.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
:- not n #count{ queen(X,Y) }.

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A First Encoding
Let’s Place 22 Queens!

gringo -c n=22 | clasp --stats

Answer: 1

queen(1,10) queen(2,6) queen(3,16) queen(4,14) queen(5,8) ...

SATISFIABLE

Models : 1+

Time : 150.531s (Solving: 150.37s 1st Model: 150.34s Unsat: 0.00s)

CPU Time : 147.480s

Choices : 594960

Conflicts : 574565

Restarts : 19

Variables : 17271

Constraints : 16787
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.
:- queen(X1,Y1), queen(X2,Y1), X1 < X2.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
:- not n #count{ queen(X,Y) }.

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A First Encoding
Let’s Place 22 Queens!

gringo -c n=22 | clasp --stats

Answer: 1

queen(1,10) queen(2,6) queen(3,16) queen(4,14) queen(5,8) ...

SATISFIABLE

Models : 1+

Time : 150.531s (Solving: 150.37s 1st Model: 150.34s Unsat: 0.00s)

CPU Time : 147.480s

Choices : 594960

Conflicts : 574565

Restarts : 19

Variables : 17271

Constraints : 16787
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.
:- queen(X1,Y1), queen(X2,Y1), X1 < X2.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
:- not n #count{ queen(X,Y) }.

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A First Refinement

At least N queens? Exactly one queen per row and column!

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.

:- queen(X1,Y1), queen(X2,Y1), X1 < X2.

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.

:- not n #count{ queen(X,Y) }.

% DISPLAY

#hide. #show queen/2.
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.
:- queen(X1,Y1), queen(X2,Y1), X1 < X2.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
:- not n #count{ queen(X,Y) }.

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A First Refinement

At least N queens? Exactly one queen per row and column!

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- queen(X1,Y1), queen(X2,Y1), X1 < X2.

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.

:- not n #count{ queen(X,Y) }.

% DISPLAY

#hide. #show queen/2.
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.
:- queen(X1,Y1), queen(X2,Y1), X1 < X2.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
:- not n #count{ queen(X,Y) }.

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A First Refinement

At least N queens? Exactly one queen per row and column!

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.

:- not n #count{ queen(X,Y) }.

% DISPLAY

#hide. #show queen/2.
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.
:- queen(X1,Y1), queen(X2,Y1), X1 < X2.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
:- not n #count{ queen(X,Y) }.

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A First Refinement

At least N queens? Exactly one queen per row and column!

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.

% DISPLAY

#hide. #show queen/2.
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.


% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A First Refinement
Let’s Place 22 Queens!

gringo -c n=22 | clasp --stats

Answer: 1

queen(1,18) queen(2,10) queen(3,21) queen(4,3) queen(5,5) ...

SATISFIABLE

Models : 1+

Time : 0.113s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.020s

Choices : 132

Conflicts : 105

Restarts : 1

Variables : 7238

Constraints : 6710
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.


% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A First Refinement
Let’s Place 22 Queens!

gringo -c n=22 | clasp --stats

Answer: 1

queen(1,18) queen(2,10) queen(3,21) queen(4,3) queen(5,5) ...

SATISFIABLE

Models : 1+

Time : 0.113s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.020s

Choices : 132

Conflicts : 105

Restarts : 1

Variables : 7238

Constraints : 6710
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.


% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A First Refinement
Let’s Place 122 Queens!

gringo -c n=122 | clasp --stats

Answer: 1

queen(1,24) queen(2,52) queen(3,37) queen(4,60) queen(5,76) ...

SATISFIABLE

Models : 1+

Time : 79.475s (Solving: 1.06s 1st Model: 1.06s Unsat: 0.00s)

CPU Time : 6.930s

Choices : 1373

Conflicts : 845

Restarts : 4

Variables : 1211338

Constraints : 1196210
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.


% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A First Refinement
Let’s Place 122 Queens!

gringo -c n=122 | clasp --stats

Answer: 1

queen(1,24) queen(2,52) queen(3,37) queen(4,60) queen(5,76) ...

SATISFIABLE

Models : 1+

Time : 79.475s (Solving: 1.06s 1st Model: 1.06s Unsat: 0.00s)

CPU Time : 6.930s

Choices : 1373

Conflicts : 845

Restarts : 4

Variables : 1211338

Constraints : 1196210
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.


% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A First Refinement
Let’s Place 122 Queens!

gringo -c n=122 | clasp --stats

Answer: 1

queen(1,24) queen(2,52) queen(3,37) queen(4,60) queen(5,76) ...

SATISFIABLE

Models : 1+

Time : 79.475s (Solving: 1.06s 1st Model: 1.06s Unsat: 0.00s)

CPU Time : 6.930s

Choices : 1373

Conflicts : 845

Restarts : 4

Variables : 1211338

Constraints : 1196210
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.


% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A First Refinement
Where Time Has Gone

time(gringo -c n=122 | clasp --stats

1241358 7402724 24950848

real 1m15.468s

user 1m15.980s

sys 0m0.090s

+ Grounding makes the problem!

Just kidding :-)
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Tweaking N-Queens

A Nomenclature for Diagonals

N = 4

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

#diagonal1 =
(#row + #column)− 1

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

#diagonal2 =
(#row−#column) + N

+ #diagonal1/2 can be determined in this way for arbitrary N.
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Let’s go for Diagonals!
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:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.

% DISPLAY

#hide. #show queen/2.
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% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A Second Refinement
Let’s Place 122 Queens!

gringo -c n=122 | clasp --stats

Answer: 1

queen(1,98) queen(2,54) queen(3,89) queen(4,83) queen(5,59) ...

SATISFIABLE

Models : 1+

Time : 2.211s (Solving: 0.13s 1st Model: 0.13s Unsat: 0.00s)

CPU Time : 0.210s

Choices : 11036

Conflicts : 499

Restarts : 3

Variables : 16098

Constraints : 970
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2

% DISPLAY
#hide. #show queen/2.
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queen(1,98) queen(2,54) queen(3,89) queen(4,83) queen(5,59) ...

SATISFIABLE

Models : 1+

Time : 2.211s (Solving: 0.13s 1st Model: 0.13s Unsat: 0.00s)

CPU Time : 0.210s
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Conflicts : 499
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2

% DISPLAY
#hide. #show queen/2.
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Let’s Place 122 Queens!

gringo -c n=122 | clasp --stats

Answer: 1

queen(1,98) queen(2,54) queen(3,89) queen(4,83) queen(5,59) ...

SATISFIABLE

Models : 1+

Time : 2.211s (Solving: 0.13s 1st Model: 0.13s Unsat: 0.00s)

CPU Time : 0.210s

Choices : 11036

Conflicts : 499

Restarts : 3

Variables : 16098

Constraints : 970
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A Second Refinement
Let’s Place 300 Queens!

gringo -c n=300 | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 35.450s (Solving: 6.69s 1st Model: 6.68s Unsat: 0.00s)

CPU Time : 7.250s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A Second Refinement
Let’s Place 300 Queens!

gringo -c n=300 | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 35.450s (Solving: 6.69s 1st Model: 6.68s Unsat: 0.00s)

CPU Time : 7.250s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A Second Refinement
Let’s Place 300 Queens!

gringo -c n=300 | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 35.450s (Solving: 6.69s 1st Model: 6.68s Unsat: 0.00s)

CPU Time : 7.250s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A Third Refinement
Let’s Precompute Diagonals!

% DOMAIN

#const n=4. square(1..n,1..n).

diag1(X,Y,(X+Y)-1) :- square(X,Y). diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2

% DISPLAY

#hide. #show queen/2.
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A Third Refinement
Let’s Precompute Diagonals!

% DOMAIN

#const n=4. square(1..n,1..n).

diag1(X,Y,(X+Y)-1) :- square(X,Y). diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2

% DISPLAY

#hide. #show queen/2.
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A Third Refinement
Let’s Precompute Diagonals!

% DOMAIN

#const n=4. square(1..n,1..n).

diag1(X,Y,(X+Y)-1) :- square(X,Y). diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag1(X,Y,D) }. % Diagonal 1

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag2(X,Y,D) }. % Diagonal 2
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#hide. #show queen/2.
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% DOMAIN
#const n=4. square(1..n,1..n).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A Third Refinement
Let’s Precompute Diagonals!

% DOMAIN

#const n=4. square(1..n,1..n).

diag1(X,Y,(X+Y)-1) :- square(X,Y). diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag1(X,Y,D) }. % Diagonal 1

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag2(X,Y,D) }. % Diagonal 2

% DISPLAY

#hide. #show queen/2.
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% DOMAIN
#const n=4. square(1..n,1..n).
diag1(X,Y,(X+Y)-1) :- square(X,Y).  diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag1(X,Y,D) }. % Diagonal 1
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag2(X,Y,D) }. % Diagonal 2

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A Third Refinement
Let’s Place 300 Queens!

gringo -c n=300 | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 8.889s (Solving: 6.61s 1st Model: 6.60s Unsat: 0.00s)
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Choices : 141445

Conflicts : 7488
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% DOMAIN
#const n=4. square(1..n,1..n).
diag1(X,Y,(X+Y)-1) :- square(X,Y).  diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag1(X,Y,D) }. % Diagonal 1
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag2(X,Y,D) }. % Diagonal 2

% DISPLAY
#hide. #show queen/2.
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Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 8.889s (Solving: 6.61s 1st Model: 6.60s Unsat: 0.00s)
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% DOMAIN
#const n=4. square(1..n,1..n).
diag1(X,Y,(X+Y)-1) :- square(X,Y).  diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag1(X,Y,D) }. % Diagonal 1
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag2(X,Y,D) }. % Diagonal 2

% DISPLAY
#hide. #show queen/2.
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Let’s Place 300 Queens!

gringo -c n=300 | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 8.889s (Solving: 6.61s 1st Model: 6.60s Unsat: 0.00s)

CPU Time : 7.320s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394
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% DOMAIN
#const n=4. square(1..n,1..n).
diag1(X,Y,(X+Y)-1) :- square(X,Y).  diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag1(X,Y,D) }. % Diagonal 1
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag2(X,Y,D) }. % Diagonal 2

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A Third Refinement
Let’s Place 600 Queens!

gringo -c n=600 | clasp --stats

Answer: 1

queen(1,477) queen(2,365) queen(3,455) queen(4,470) queen(5,237) ...

SATISFIABLE

Models : 1+

Time : 76.798s (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s)

CPU Time : 68.620s

Choices : 869379

Conflicts : 25746

Restarts : 12
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Constraints : 4794
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% DOMAIN
#const n=4. square(1..n,1..n).
diag1(X,Y,(X+Y)-1) :- square(X,Y).  diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag1(X,Y,D) }. % Diagonal 1
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag2(X,Y,D) }. % Diagonal 2

% DISPLAY
#hide. #show queen/2.
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gringo -c n=600 | clasp --stats

Answer: 1

queen(1,477) queen(2,365) queen(3,455) queen(4,470) queen(5,237) ...

SATISFIABLE

Models : 1+

Time : 76.798s (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s)

CPU Time : 68.620s

Choices : 869379

Conflicts : 25746

Restarts : 12
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% DOMAIN
#const n=4. square(1..n,1..n).
diag1(X,Y,(X+Y)-1) :- square(X,Y).  diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag1(X,Y,D) }. % Diagonal 1
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag2(X,Y,D) }. % Diagonal 2

% DISPLAY
#hide. #show queen/2.
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A Case for Oracles
Let’s Place 600 Queens!

gringo -c n=600 | clasp --stats

--heuristic=vsids --trans-ext=dynamic

Answer: 1

queen(1,477) queen(2,365) queen(3,455) queen(4,470) queen(5,237) ...

SATISFIABLE

Models : 1+

Time : 76.798s (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s)

CPU Time : 68.620s

Choices : 869379

Conflicts : 25746

Restarts : 12
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% DOMAIN
#const n=4. square(1..n,1..n).
diag1(X,Y,(X+Y)-1) :- square(X,Y).  diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag1(X,Y,D) }. % Diagonal 1
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag2(X,Y,D) }. % Diagonal 2

% DISPLAY
#hide. #show queen/2.
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A Case for Oracles
Let’s Place 600 Queens!

gringo -c n=600 | clasp --stats

--heuristic=vsids --trans-ext=dynamic

Answer: 1

queen(1,477) queen(2,365) queen(3,455) queen(4,470) queen(5,237) ...

SATISFIABLE

Models : 1+

Time : 76.798s (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s)
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% DOMAIN
#const n=4. square(1..n,1..n).
diag1(X,Y,(X+Y)-1) :- square(X,Y).  diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag1(X,Y,D) }. % Diagonal 1
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag2(X,Y,D) }. % Diagonal 2

% DISPLAY
#hide. #show queen/2.
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% DOMAIN
#const n=4. square(1..n,1..n).
diag1(X,Y,(X+Y)-1) :- square(X,Y).  diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag1(X,Y,D) }. % Diagonal 1
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag2(X,Y,D) }. % Diagonal 2

% DISPLAY
#hide. #show queen/2.
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A Case for Oracles
Let’s Place 600 Queens!

gringo -c n=600 | clasp --stats

--heuristic=vsids --trans-ext=dynamic

Answer: 1

queen(1,422) queen(2,458) queen(3,224) queen(4,408) queen(5,405) ...

SATISFIABLE

Models : 1+

Time : 37.454s (Solving: 26.38s 1st Model: 26.26s Unsat: 0.00s)

CPU Time : 29.580s

Choices : 961315

Conflicts : 3222

Restarts : 7

Variables : 365994

Constraints : 4794
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% DOMAIN
#const n=4. square(1..n,1..n).
diag1(X,Y,(X+Y)-1) :- square(X,Y).  diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag1(X,Y,D) }. % Diagonal 1
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag2(X,Y,D) }. % Diagonal 2

% DISPLAY
#hide. #show queen/2.




Tweaking N-Queens

A Case for Oracles
Let’s Place 600 Queens!

gringo -c n=600 | clasp --stats

--heuristic=vsids --trans-ext=dynamic

Answer: 1

queen(1,90) queen(2,452) queen(3,494) queen(4,145) queen(5,84) ...

SATISFIABLE

Models : 1+

Time : 22.654s (Solving: 10.53s 1st Model: 10.47s Unsat: 0.00s)

CPU Time : 15.750s

Choices : 1058729

Conflicts : 2128

Restarts : 6

Variables : 403123

Constraints : 49636
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% DOMAIN
#const n=4. square(1..n,1..n).
diag1(X,Y,(X+Y)-1) :- square(X,Y).  diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE
0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST
:- X = 1..n, not 1 #count{ queen(X,Y) } 1.
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag1(X,Y,D) }. % Diagonal 1
:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag2(X,Y,D) }. % Diagonal 2

% DISPLAY
#hide. #show queen/2.
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Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap).

pro(asparagus,fresh). pro(cucumber,fresh).

pro(asparagus,tasty). pro(cucumber,tasty).
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Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap).

pro(asparagus,fresh). pro(cucumber,fresh).

pro(asparagus,tasty). pro(cucumber,tasty).

buy(X) :- veg(X), pro(X,cheap), pro(X,fresh), pro(X,tasty).
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Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap).

pro(asparagus,fresh). pro(cucumber,fresh).

pro(asparagus,tasty). pro(cucumber,tasty).
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buy(X) :- veg(X), pro(X,cheap), pro(X,fresh), pro(X,tasty), pro(X,clean).
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Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).

pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).

pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).

pro(asparagus,clean).

buy(X) :- veg(X), pro(X,P) : pre(P).
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Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).

pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).

pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).

pro(asparagus,clean).

buy(X) :- veg(X), not bye(X). bye(X) :- veg(X), pre(P), not pro(X,P).
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Do’s and Dont’s

Running Example
Latin Square

Problem Specification

Fill an N×N grid with numbers 1 to N such that
each number occurs in every row and column.

N = 4

Grid

1
2
3
4

1 2 3 4

Placement

1 2 3 4 1
4 1 2 3 2
3 4 1 2 3
2 3 4 1 4
1 2 3 4
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Do’s and Dont’s

Projecting Irrelevant Details Out

A Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- square(X1,Y1), N = 1..n, not num(X1,Y2,N) : square(X1,Y2).

:- square(X1,Y1), N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

+ unreused “singleton variables”

gringo | wc

105480 2558984 14005258

gringo | wc

42056 273672 1690522
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- square(X1,Y1), N = 1..n, not num(X1,Y2,N) : square(X1,Y2).
:- square(X1,Y1), N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

% DISPLAY
#hide. #show num/3.



% DOMAIN
#const n=32. square(1..n,1..n).
squareX(X) :- square(X,Y).
squareY(Y) :- square(X,Y).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- squareX(X1), N = 1..n, not num(X1,Y2,N) : square(X1,Y2).
:- squareY(Y1), N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

% DISPLAY
#hide. #show num/3.
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#const n=32. square(1..n,1..n).

% GENERATE
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:- square(X1,Y1), N = 1..n, not num(X1,Y2,N) : square(X1,Y2).

:- square(X1,Y1), N = 1..n, not num(X2,Y1,N) : square(X2,Y1).
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- square(X1,Y1), N = 1..n, not num(X1,Y2,N) : square(X1,Y2).
:- square(X1,Y1), N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

% DISPLAY
#hide. #show num/3.



% DOMAIN
#const n=32. square(1..n,1..n).
squareX(X) :- square(X,Y).
squareY(Y) :- square(X,Y).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- squareX(X1), N = 1..n, not num(X1,Y2,N) : square(X1,Y2).
:- squareY(Y1), N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

% DISPLAY
#hide. #show num/3.
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% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).
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:- square(X1,Y1), N = 1..n, not num(X1,Y2,N) : square(X1,Y2).

:- square(X1,Y1), N = 1..n, not num(X2,Y1,N) : square(X2,Y1).
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- square(X1,Y1), N = 1..n, not num(X1,Y2,N) : square(X1,Y2).
:- square(X1,Y1), N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

% DISPLAY
#hide. #show num/3.



% DOMAIN
#const n=32. square(1..n,1..n).
squareX(X) :- square(X,Y).
squareY(Y) :- square(X,Y).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- squareX(X1), N = 1..n, not num(X1,Y2,N) : square(X1,Y2).
:- squareY(Y1), N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

% DISPLAY
#hide. #show num/3.




Do’s and Dont’s

Projecting Irrelevant Details Out

A Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

squareX(X) :- square(X,Y). squareY(Y) :- square(X,Y).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- squareX(X1) , N = 1..n, not num(X1,Y2,N) : square(X1,Y2).

:- squareY(Y1) , N = 1..n, not num(X2,Y1,N) : square(X2,Y1).
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- square(X1,Y1), N = 1..n, not num(X1,Y2,N) : square(X1,Y2).
:- square(X1,Y1), N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

% DISPLAY
#hide. #show num/3.



% DOMAIN
#const n=32. square(1..n,1..n).
squareX(X) :- square(X,Y).
squareY(Y) :- square(X,Y).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- squareX(X1), N = 1..n, not num(X1,Y2,N) : square(X1,Y2).
:- squareY(Y1), N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

% DISPLAY
#hide. #show num/3.




Do’s and Dont’s

Projecting Irrelevant Details Out

A Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

squareX(X) :- square(X,Y). squareY(Y) :- square(X,Y).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- squareX(X1) , N = 1..n, not num(X1,Y2,N) : square(X1,Y2).

:- squareY(Y1) , N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

+ unreused “singleton variables”
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- square(X1,Y1), N = 1..n, not num(X1,Y2,N) : square(X1,Y2).
:- square(X1,Y1), N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

% DISPLAY
#hide. #show num/3.



% DOMAIN
#const n=32. square(1..n,1..n).
squareX(X) :- square(X,Y).
squareY(Y) :- square(X,Y).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- squareX(X1), N = 1..n, not num(X1,Y2,N) : square(X1,Y2).
:- squareY(Y1), N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

% DISPLAY
#hide. #show num/3.




Do’s and Dont’s

Unraveling Symmetric Inequalities

Another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 != Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 != X2.

+ duplicate ground rules (swapping Y1/Y2 and X1/X2 gives the “same”)

gringo | wc

2071560 12389384 40906946

gringo | wc

1055752 6294536 21099558
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- num(X1,Y1,N), num(X1,Y2,N), Y1 != Y2.
:- num(X1,Y1,N), num(X2,Y1,N), X1 != X2.

% DISPLAY
#hide. #show num/3.



% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.
:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

% DISPLAY
#hide. #show num/3.




Do’s and Dont’s

Unraveling Symmetric Inequalities

Another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 != Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 != X2.

+ duplicate ground rules (swapping Y1/Y2 and X1/X2 gives the “same”)
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- num(X1,Y1,N), num(X1,Y2,N), Y1 != Y2.
:- num(X1,Y1,N), num(X2,Y1,N), X1 != X2.

% DISPLAY
#hide. #show num/3.



% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
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% TEST
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% DISPLAY
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- num(X1,Y1,N), num(X1,Y2,N), Y1 != Y2.
:- num(X1,Y1,N), num(X2,Y1,N), X1 != X2.

% DISPLAY
#hide. #show num/3.
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- num(X1,Y1,N), num(X1,Y2,N), Y1 != Y2.
:- num(X1,Y1,N), num(X2,Y1,N), X1 != X2.

% DISPLAY
#hide. #show num/3.



% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.
:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

% DISPLAY
#hide. #show num/3.




Do’s and Dont’s

Unraveling Symmetric Inequalities

Another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

+ duplicate ground rules (swapping Y1/Y2 and X1/X2 gives the “same”)
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- num(X1,Y1,N), num(X1,Y2,N), Y1 != Y2.
:- num(X1,Y1,N), num(X2,Y1,N), X1 != X2.

% DISPLAY
#hide. #show num/3.



% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.
:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

% DISPLAY
#hide. #show num/3.




Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

+ uniqueness of N in a row/column checked by ENUMERATING PAIRS!
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.
:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

% DISPLAY
#hide. #show num/3.



% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE
gtX(X-1,Y,N) :- num(X,Y,N), 1 < X.     gtY(X,Y-1,N) :- num(X,Y,N), 1 < Y.
gtX(X-1,Y,N) :- gtX(X,Y,N), 1 < X.     gtY(X,Y-1,N) :- gtY(X,Y,N), 1 < Y.

% TEST
:- num(X,Y,N), gtX(X,Y,N).
:- num(X,Y,N), gtY(X,Y,N).

% DISPLAY
#hide. #show num/3.




Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

+ uniqueness of N in a row/column checked by ENUMERATING PAIRS!
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.
:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

% DISPLAY
#hide. #show num/3.



% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE
gtX(X-1,Y,N) :- num(X,Y,N), 1 < X.     gtY(X,Y-1,N) :- num(X,Y,N), 1 < Y.
gtX(X-1,Y,N) :- gtX(X,Y,N), 1 < X.     gtY(X,Y-1,N) :- gtY(X,Y,N), 1 < Y.

% TEST
:- num(X,Y,N), gtX(X,Y,N).
:- num(X,Y,N), gtY(X,Y,N).

% DISPLAY
#hide. #show num/3.




Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

+ uniqueness of N in a row/column checked by ENUMERATING PAIRS!
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.
:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

% DISPLAY
#hide. #show num/3.



% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE
gtX(X-1,Y,N) :- num(X,Y,N), 1 < X.     gtY(X,Y-1,N) :- num(X,Y,N), 1 < Y.
gtX(X-1,Y,N) :- gtX(X,Y,N), 1 < X.     gtY(X,Y-1,N) :- gtY(X,Y,N), 1 < Y.

% TEST
:- num(X,Y,N), gtX(X,Y,N).
:- num(X,Y,N), gtY(X,Y,N).

% DISPLAY
#hide. #show num/3.




Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

gtX(X-1,Y,N) :- num(X,Y,N), 1 < X. gtY(X,Y-1,N) :- num(X,Y,N), 1 < Y.

gtX(X-1,Y,N) :- gtX(X,Y,N), 1 < X. gtY(X,Y-1,N) :- gtY(X,Y,N), 1 < Y.

:- num(X,Y,N), gtX(X,Y,N). :- num(X,Y,N), gtY(X,Y,N).

+ uniqueness of N in a row/column checked by ENUMERATING PAIRS!
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.
:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

% DISPLAY
#hide. #show num/3.



% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE
gtX(X-1,Y,N) :- num(X,Y,N), 1 < X.     gtY(X,Y-1,N) :- num(X,Y,N), 1 < Y.
gtX(X-1,Y,N) :- gtX(X,Y,N), 1 < X.     gtY(X,Y-1,N) :- gtY(X,Y,N), 1 < Y.

% TEST
:- num(X,Y,N), gtX(X,Y,N).
:- num(X,Y,N), gtY(X,Y,N).

% DISPLAY
#hide. #show num/3.




Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

gtX(X-1,Y,N) :- num(X,Y,N), 1 < X. gtY(X,Y-1,N) :- num(X,Y,N), 1 < Y.

gtX(X-1,Y,N) :- gtX(X,Y,N), 1 < X. gtY(X,Y-1,N) :- gtY(X,Y,N), 1 < Y.

:- num(X,Y,N), gtX(X,Y,N). :- num(X,Y,N), gtY(X,Y,N).

+ uniqueness of N in a row/column checked by ENUMERATING PAIRS!
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.
:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

% DISPLAY
#hide. #show num/3.



% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE
gtX(X-1,Y,N) :- num(X,Y,N), 1 < X.     gtY(X,Y-1,N) :- num(X,Y,N), 1 < Y.
gtX(X-1,Y,N) :- gtX(X,Y,N), 1 < X.     gtY(X,Y-1,N) :- gtY(X,Y,N), 1 < Y.

% TEST
:- num(X,Y,N), gtX(X,Y,N).
:- num(X,Y,N), gtY(X,Y,N).

% DISPLAY
#hide. #show num/3.




Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

gtX(X-1,Y,N) :- num(X,Y,N), 1 < X. gtY(X,Y-1,N) :- num(X,Y,N), 1 < Y.

gtX(X-1,Y,N) :- gtX(X,Y,N), 1 < X. gtY(X,Y-1,N) :- gtY(X,Y,N), 1 < Y.

:- num(X,Y,N), gtX(X,Y,N). :- num(X,Y,N), gtY(X,Y,N).

+ uniqueness of N in a row/column checked by ENUMERATING PAIRS!
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.
:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

% DISPLAY
#hide. #show num/3.



% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE
gtX(X-1,Y,N) :- num(X,Y,N), 1 < X.     gtY(X,Y-1,N) :- num(X,Y,N), 1 < Y.
gtX(X-1,Y,N) :- gtX(X,Y,N), 1 < X.     gtY(X,Y-1,N) :- gtY(X,Y,N), 1 < Y.

% TEST
:- num(X,Y,N), gtX(X,Y,N).
:- num(X,Y,N), gtY(X,Y,N).

% DISPLAY
#hide. #show num/3.




Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum[ square(X,n) = X ].

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3. #show sigma/1.
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE
occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.
occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

% TEST
:- occX(X,N,C), C != 1.
:- occY(Y,N,C), C != 1.

% DISPLAY
#hide. #show num/3.



% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.
:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY
#hide. #show num/3.




Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum[ square(X,n) = X ].

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3. #show sigma/1.
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE
occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.
occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

% TEST
:- occX(X,N,C), C != 1.
:- occY(Y,N,C), C != 1.

% DISPLAY
#hide. #show num/3.



% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.
:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY
#hide. #show num/3.




Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum[ square(X,n) = X ]. 4

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3. #show sigma/1.
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE
occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.
occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

% TEST
:- occX(X,N,C), C != 1.
:- occY(Y,N,C), C != 1.

% DISPLAY
#hide. #show num/3.



% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.
:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY
#hide. #show num/3.




Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum[ square(X,n) = X ].

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3. #show sigma/1.
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE
occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.
occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

% TEST
:- occX(X,N,C), C != 1.
:- occY(Y,N,C), C != 1.

% DISPLAY
#hide. #show num/3.



% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.
:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY
#hide. #show num/3.




Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum[ square(X,n) = X ].

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C #count{ num(X,Y,N) } C, C = 0..n.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C #count{ num(X,Y,N) } C, C = 0..n.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3. #show sigma/1.

+ internal transformation by gringo
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Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum[ square(X,n) = X ].

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }. 7

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }. 7

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3. #show sigma/1.

gringo | wc
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE
occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.
occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

% TEST
:- occX(X,N,C), C != 1.
:- occY(Y,N,C), C != 1.

% DISPLAY
#hide. #show num/3.



% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.
:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY
#hide. #show num/3.




Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3.
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE
occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.
occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

% TEST
:- occX(X,N,C), C != 1.
:- occY(Y,N,C), C != 1.

% DISPLAY
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.
:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY
#hide. #show num/3.
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Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3.
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE
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occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

% TEST
:- occX(X,N,C), C != 1.
:- occY(Y,N,C), C != 1.

% DISPLAY
#hide. #show num/3.
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#const n=32. square(1..n,1..n).
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1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.
:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY
#hide. #show num/3.
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE
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occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

% TEST
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:- occY(Y,N,C), C != 1.

% DISPLAY
#hide. #show num/3.
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:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY
#hide. #show num/3.
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE
occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.
occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

% TEST
:- occX(X,N,C), C != 1.
:- occY(Y,N,C), C != 1.

% DISPLAY
#hide. #show num/3.



% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.
:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY
#hide. #show num/3.




Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY

#hide. #show num/3.
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The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY

#hide. #show num/3.

+ many symmetric solutions (mirroring, rotation, value permutation)
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The ultimate Latin square encoding?
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#const n=32. square(1..n,1..n).
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% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.
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Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking

% DISPLAY

#hide. #show num/3.

+ Let’s compare enumeration speed!
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Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY

#hide. #show num/3.

gringo -c n=5 | clasp -q 0

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 396 / 453


% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.
:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY
#hide. #show num/3.
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Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.
:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY
#hide. #show num/3.




Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking

% DISPLAY

#hide. #show num/3.
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Models : 161280 Time : 2.078s
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.
:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.
:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking

% DISPLAY
#hide. #show num/3.




Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking

% DISPLAY

#hide. #show num/3.

gringo -c n=5 | clasp -q 0

Models : 1344 Time : 0.024s
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% DOMAIN
#const n=32. square(1..n,1..n).

% GENERATE
1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST
:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.
:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.
:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking

% DISPLAY
#hide. #show num/3.




Do’s and Dont’s

Encode With Care!

1 Create a working encoding

Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce

grounding and/or solving efforts?

2 Revise until no “Yes” answer!

+ If the format of facts makes encoding painful (for instance, abusing
grounding for “scientific calculations”), revise the fact format as well.
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Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
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Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce
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Do’s and Dont’s

Encode With Care!

1 Create a working encoding

Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce

grounding and/or solving efforts?

2 Revise until no “Yes” answer!

+ If the format of facts makes encoding painful (for instance, abusing
grounding for “scientific calculations”), revise the fact format as well.
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Do’s and Dont’s

Some Hints on (Preventing) Debugging

Kinds of errors

syntactic . . . follow error messages by the grounder

semantic . . . (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)

1 develop and test incrementally

prepare toy instances with “interesting features”
build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

check whether the grounding fits (use gringo -t)
if answer sets are unintended, investigate conditions that fail to hold
if answer sets are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)
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Do’s and Dont’s

Overcoming Performance Bottlenecks

Grounding

monitor time spent by and output size of gringo

1 system tools (eg. time(gringo [. . . ] | wc))
2 profiling info (eg. gringo --gstats --verbose=3 [. . . ] > /dev/null)

+ once identified, reformulate “critical” logic program parts

Solving

check solving statistics (use clasp --stats)

+ if great search efforts (Conflicts/Choices/Restarts), then

1 try auto-configuration (offered by claspfolio)
2 try manual fine-tuning (requires expert knowledge!)
3 if possible, reformulate the problem or add domain knowledge

(“redundant” constraints) to help the solver
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Hitori Puzzle

Hitori
A Japanese Grid Puzzle (Beyond Sudoku)

The Puzzle
Given: an N×N board of numbered squares

Wanted: a set of black squares such that

1 no black squares are horizontally or vertically
adjacent

2 numbers of white squares are unique for each row
and column

3 every pair of white squares is connected via a path
(not passing black squares)
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Hitori Puzzle

Fact and Solution Format

Facts provide instances of state(X,Y,N) to express that the square in
column X and row Y contains number N.

Example Instance
state(1,1,4). state(2,1,8). . . . state(8,1,7).
state(1,2,3). state(2,2,6). . . . state(8,2,4).
state(1,3,2). state(2,3,3). . . . state(8,3,1).
state(1,4,4). state(2,4,1). . . . state(8,4,5).
state(1,5,7). state(2,5,2). . . . state(8,5,2).
state(1,6,3). state(2,6,5). . . . state(8,6,4).
state(1,7,6). state(2,7,4). . . . state(8,7,8).
state(1,8,8). state(2,8,7). . . . state(8,8,6).

Example Solution
Black squares given by instances of blackOut(X,Y):
blackOut(1,1) blackOut(2,5) . . .
blackOut(1,3) . . . blackOut(8,4)
blackOut(1,6) . . . blackOut(8,6)
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Hitori Puzzle

A Working Encoding I
Found on the WWW (and Adapted to gringo Syntax)

(under GNU GPL: )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (A) Adjacent grid locations %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)

adjacent(X,Y,X+1,Y) :- state(X,Y,_), state(X+1,Y,_).

adjacent(X,Y,X,Y+1) :- state(X,Y,_), state(X,Y+1,_).

adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (B) Generate solution candidate %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal

1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



		    GNU GENERAL PUBLIC LICENSE
		       Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

			    Preamble

  The licenses for most software are designed to take away your
freedom to share and change it.  By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users.  This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it.  (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.)  You can apply it to
your programs, too.

  When we speak of free software, we are referring to freedom, not
price.  Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

  To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

  For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have.  You must make sure that they, too, receive or can get the
source code.  And you must show them these terms so they know their
rights.

  We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

  Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software.  If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

  Finally, any free program is threatened constantly by software
patents.  We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary.  To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

  The precise terms and conditions for copying, distribution and
modification follow.

		    GNU GENERAL PUBLIC LICENSE
   TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

  0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License.  The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language.  (Hereinafter, translation is included without limitation in
the term "modification".)  Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope.  The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

  1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

  2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

    a) You must cause the modified files to carry prominent notices
    stating that you changed the files and the date of any change.

    b) You must cause any work that you distribute or publish, that in
    whole or in part contains or is derived from the Program or any
    part thereof, to be licensed as a whole at no charge to all third
    parties under the terms of this License.

    c) If the modified program normally reads commands interactively
    when run, you must cause it, when started running for such
    interactive use in the most ordinary way, to print or display an
    announcement including an appropriate copyright notice and a
    notice that there is no warranty (or else, saying that you provide
    a warranty) and that users may redistribute the program under
    these conditions, and telling the user how to view a copy of this
    License.  (Exception: if the Program itself is interactive but
    does not normally print such an announcement, your work based on
    the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole.  If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works.  But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

  3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

    a) Accompany it with the complete corresponding machine-readable
    source code, which must be distributed under the terms of Sections
    1 and 2 above on a medium customarily used for software interchange; or,

    b) Accompany it with a written offer, valid for at least three
    years, to give any third party, for a charge no more than your
    cost of physically performing source distribution, a complete
    machine-readable copy of the corresponding source code, to be
    distributed under the terms of Sections 1 and 2 above on a medium
    customarily used for software interchange; or,

    c) Accompany it with the information you received as to the offer
    to distribute corresponding source code.  (This alternative is
    allowed only for noncommercial distribution and only if you
    received the program in object code or executable form with such
    an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it.  For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable.  However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

  4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License.  Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

  5. You are not required to accept this License, since you have not
signed it.  However, nothing else grants you permission to modify or
distribute the Program or its derivative works.  These actions are
prohibited by law if you do not accept this License.  Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

  6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions.  You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

  7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License.  If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all.  For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices.  Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

  8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded.  In such case, this License incorporates
the limitation as if written in the body of this License.

  9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time.  Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number.  If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation.  If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

  10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission.  For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this.  Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

			    NO WARRANTY

  11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.  EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.  SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

  12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

		     END OF TERMS AND CONDITIONS

	    How to Apply These Terms to Your New Programs

  If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

  To do so, attach the following notices to the program.  It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

    <one line to give the program's name and a brief idea of what it does.>
    Copyright (C) <year>  <name of author>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License along
    with this program; if not, write to the Free Software Foundation, Inc.,
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

    Gnomovision version 69, Copyright (C) year name of author
    Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
    This is free software, and you are welcome to redistribute it
    under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License.  Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary.  Here is a sample; alter the names:

  Yoyodyne, Inc., hereby disclaims all copyright interest in the program
  `Gnomovision' (which makes passes at compilers) written by James Hacker.

  <signature of Ty Coon>, 1 April 1989
  Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs.  If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library.  If this is what you want to do, use the GNU Lesser General
Public License instead of this License.




Hitori Puzzle

A Working Encoding I
Found on the WWW (and Adapted to gringo Syntax)

(under GNU GPL: )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (A) Adjacent grid locations %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)

adjacent(X,Y,X+1,Y) :- state(X,Y,_), state(X+1,Y,_).

adjacent(X,Y,X,Y+1) :- state(X,Y,_), state(X,Y+1,_).

adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (B) Generate solution candidate %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal

1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



		    GNU GENERAL PUBLIC LICENSE
		       Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

			    Preamble

  The licenses for most software are designed to take away your
freedom to share and change it.  By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users.  This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it.  (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.)  You can apply it to
your programs, too.

  When we speak of free software, we are referring to freedom, not
price.  Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

  To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

  For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have.  You must make sure that they, too, receive or can get the
source code.  And you must show them these terms so they know their
rights.

  We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

  Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software.  If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

  Finally, any free program is threatened constantly by software
patents.  We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary.  To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

  The precise terms and conditions for copying, distribution and
modification follow.

		    GNU GENERAL PUBLIC LICENSE
   TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

  0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License.  The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language.  (Hereinafter, translation is included without limitation in
the term "modification".)  Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope.  The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

  1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

  2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

    a) You must cause the modified files to carry prominent notices
    stating that you changed the files and the date of any change.

    b) You must cause any work that you distribute or publish, that in
    whole or in part contains or is derived from the Program or any
    part thereof, to be licensed as a whole at no charge to all third
    parties under the terms of this License.

    c) If the modified program normally reads commands interactively
    when run, you must cause it, when started running for such
    interactive use in the most ordinary way, to print or display an
    announcement including an appropriate copyright notice and a
    notice that there is no warranty (or else, saying that you provide
    a warranty) and that users may redistribute the program under
    these conditions, and telling the user how to view a copy of this
    License.  (Exception: if the Program itself is interactive but
    does not normally print such an announcement, your work based on
    the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole.  If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works.  But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

  3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

    a) Accompany it with the complete corresponding machine-readable
    source code, which must be distributed under the terms of Sections
    1 and 2 above on a medium customarily used for software interchange; or,

    b) Accompany it with a written offer, valid for at least three
    years, to give any third party, for a charge no more than your
    cost of physically performing source distribution, a complete
    machine-readable copy of the corresponding source code, to be
    distributed under the terms of Sections 1 and 2 above on a medium
    customarily used for software interchange; or,

    c) Accompany it with the information you received as to the offer
    to distribute corresponding source code.  (This alternative is
    allowed only for noncommercial distribution and only if you
    received the program in object code or executable form with such
    an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it.  For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable.  However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

  4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License.  Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

  5. You are not required to accept this License, since you have not
signed it.  However, nothing else grants you permission to modify or
distribute the Program or its derivative works.  These actions are
prohibited by law if you do not accept this License.  Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

  6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions.  You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

  7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License.  If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all.  For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices.  Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

  8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded.  In such case, this License incorporates
the limitation as if written in the body of this License.

  9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time.  Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number.  If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation.  If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

  10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission.  For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this.  Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

			    NO WARRANTY

  11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.  EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.  SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

  12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

		     END OF TERMS AND CONDITIONS

	    How to Apply These Terms to Your New Programs

  If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

  To do so, attach the following notices to the program.  It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

    <one line to give the program's name and a brief idea of what it does.>
    Copyright (C) <year>  <name of author>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License along
    with this program; if not, write to the Free Software Foundation, Inc.,
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

    Gnomovision version 69, Copyright (C) year name of author
    Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
    This is free software, and you are welcome to redistribute it
    under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License.  Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary.  Here is a sample; alter the names:

  Yoyodyne, Inc., hereby disclaims all copyright interest in the program
  `Gnomovision' (which makes passes at compilers) written by James Hacker.

  <signature of Ty Coon>, 1 April 1989
  Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs.  If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library.  If this is what you want to do, use the GNU Lesser General
Public License instead of this License.




Hitori Puzzle

A Working Encoding I
Found on the WWW (and Adapted to gringo Syntax)

(under GNU GPL: )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (A) Adjacent grid locations %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)

adjacent(X,Y,X+1,Y) :- state(X,Y,_), state(X+1,Y,_).

adjacent(X,Y,X,Y+1) :- state(X,Y,_), state(X,Y+1,_).

adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (B) Generate solution candidate %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal

1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



		    GNU GENERAL PUBLIC LICENSE
		       Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

			    Preamble

  The licenses for most software are designed to take away your
freedom to share and change it.  By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users.  This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it.  (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.)  You can apply it to
your programs, too.

  When we speak of free software, we are referring to freedom, not
price.  Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

  To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

  For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have.  You must make sure that they, too, receive or can get the
source code.  And you must show them these terms so they know their
rights.

  We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

  Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software.  If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

  Finally, any free program is threatened constantly by software
patents.  We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary.  To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

  The precise terms and conditions for copying, distribution and
modification follow.

		    GNU GENERAL PUBLIC LICENSE
   TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

  0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License.  The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language.  (Hereinafter, translation is included without limitation in
the term "modification".)  Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope.  The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

  1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

  2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

    a) You must cause the modified files to carry prominent notices
    stating that you changed the files and the date of any change.

    b) You must cause any work that you distribute or publish, that in
    whole or in part contains or is derived from the Program or any
    part thereof, to be licensed as a whole at no charge to all third
    parties under the terms of this License.

    c) If the modified program normally reads commands interactively
    when run, you must cause it, when started running for such
    interactive use in the most ordinary way, to print or display an
    announcement including an appropriate copyright notice and a
    notice that there is no warranty (or else, saying that you provide
    a warranty) and that users may redistribute the program under
    these conditions, and telling the user how to view a copy of this
    License.  (Exception: if the Program itself is interactive but
    does not normally print such an announcement, your work based on
    the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole.  If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works.  But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

  3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

    a) Accompany it with the complete corresponding machine-readable
    source code, which must be distributed under the terms of Sections
    1 and 2 above on a medium customarily used for software interchange; or,

    b) Accompany it with a written offer, valid for at least three
    years, to give any third party, for a charge no more than your
    cost of physically performing source distribution, a complete
    machine-readable copy of the corresponding source code, to be
    distributed under the terms of Sections 1 and 2 above on a medium
    customarily used for software interchange; or,

    c) Accompany it with the information you received as to the offer
    to distribute corresponding source code.  (This alternative is
    allowed only for noncommercial distribution and only if you
    received the program in object code or executable form with such
    an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it.  For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable.  However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

  4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License.  Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

  5. You are not required to accept this License, since you have not
signed it.  However, nothing else grants you permission to modify or
distribute the Program or its derivative works.  These actions are
prohibited by law if you do not accept this License.  Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

  6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions.  You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

  7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License.  If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all.  For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices.  Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

  8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded.  In such case, this License incorporates
the limitation as if written in the body of this License.

  9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time.  Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number.  If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation.  If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

  10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission.  For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this.  Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

			    NO WARRANTY

  11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.  EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.  SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

  12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

		     END OF TERMS AND CONDITIONS

	    How to Apply These Terms to Your New Programs

  If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

  To do so, attach the following notices to the program.  It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

    <one line to give the program's name and a brief idea of what it does.>
    Copyright (C) <year>  <name of author>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License along
    with this program; if not, write to the Free Software Foundation, Inc.,
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

    Gnomovision version 69, Copyright (C) year name of author
    Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
    This is free software, and you are welcome to redistribute it
    under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License.  Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary.  Here is a sample; alter the names:

  Yoyodyne, Inc., hereby disclaims all copyright interest in the program
  `Gnomovision' (which makes passes at compilers) written by James Hacker.

  <signature of Ty Coon>, 1 April 1989
  Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs.  If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library.  If this is what you want to do, use the GNU Lesser General
Public License instead of this License.




Hitori Puzzle

A Working Encoding I
Found on the WWW (and Adapted to gringo Syntax)

(under GNU GPL: )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (A) Adjacent grid locations %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)

adjacent(X,Y,X+1,Y) :- state(X,Y,_), state(X+1,Y,_).

adjacent(X,Y,X,Y+1) :- state(X,Y,_), state(X,Y+1,_).

adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (B) Generate solution candidate %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal

1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



		    GNU GENERAL PUBLIC LICENSE
		       Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

			    Preamble

  The licenses for most software are designed to take away your
freedom to share and change it.  By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users.  This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it.  (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.)  You can apply it to
your programs, too.

  When we speak of free software, we are referring to freedom, not
price.  Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

  To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

  For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have.  You must make sure that they, too, receive or can get the
source code.  And you must show them these terms so they know their
rights.

  We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

  Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software.  If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

  Finally, any free program is threatened constantly by software
patents.  We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary.  To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

  The precise terms and conditions for copying, distribution and
modification follow.

		    GNU GENERAL PUBLIC LICENSE
   TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

  0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License.  The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language.  (Hereinafter, translation is included without limitation in
the term "modification".)  Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope.  The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

  1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

  2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

    a) You must cause the modified files to carry prominent notices
    stating that you changed the files and the date of any change.

    b) You must cause any work that you distribute or publish, that in
    whole or in part contains or is derived from the Program or any
    part thereof, to be licensed as a whole at no charge to all third
    parties under the terms of this License.

    c) If the modified program normally reads commands interactively
    when run, you must cause it, when started running for such
    interactive use in the most ordinary way, to print or display an
    announcement including an appropriate copyright notice and a
    notice that there is no warranty (or else, saying that you provide
    a warranty) and that users may redistribute the program under
    these conditions, and telling the user how to view a copy of this
    License.  (Exception: if the Program itself is interactive but
    does not normally print such an announcement, your work based on
    the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole.  If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works.  But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

  3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

    a) Accompany it with the complete corresponding machine-readable
    source code, which must be distributed under the terms of Sections
    1 and 2 above on a medium customarily used for software interchange; or,

    b) Accompany it with a written offer, valid for at least three
    years, to give any third party, for a charge no more than your
    cost of physically performing source distribution, a complete
    machine-readable copy of the corresponding source code, to be
    distributed under the terms of Sections 1 and 2 above on a medium
    customarily used for software interchange; or,

    c) Accompany it with the information you received as to the offer
    to distribute corresponding source code.  (This alternative is
    allowed only for noncommercial distribution and only if you
    received the program in object code or executable form with such
    an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it.  For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable.  However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

  4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License.  Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

  5. You are not required to accept this License, since you have not
signed it.  However, nothing else grants you permission to modify or
distribute the Program or its derivative works.  These actions are
prohibited by law if you do not accept this License.  Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

  6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions.  You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

  7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License.  If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all.  For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices.  Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

  8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded.  In such case, this License incorporates
the limitation as if written in the body of this License.

  9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time.  Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number.  If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation.  If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

  10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission.  For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this.  Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

			    NO WARRANTY

  11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.  EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.  SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

  12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

		     END OF TERMS AND CONDITIONS

	    How to Apply These Terms to Your New Programs

  If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

  To do so, attach the following notices to the program.  It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

    <one line to give the program's name and a brief idea of what it does.>
    Copyright (C) <year>  <name of author>

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License along
    with this program; if not, write to the Free Software Foundation, Inc.,
    51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

    Gnomovision version 69, Copyright (C) year name of author
    Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
    This is free software, and you are welcome to redistribute it
    under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License.  Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary.  Here is a sample; alter the names:

  Yoyodyne, Inc., hereby disclaims all copyright interest in the program
  `Gnomovision' (which makes passes at compilers) written by James Hacker.

  <signature of Ty Coon>, 1 April 1989
  Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs.  If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library.  If this is what you want to do, use the GNU Lesser General
Public License instead of this License.




Hitori Puzzle

A Working Encoding II
Found on the WWW (and Adapted to gringo Syntax)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (C.1) Test eliminating adjacent blanks %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can’t have adjacent black squares

:- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (C.2) Tests eliminating number recurrences %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can’t have the same number twice in the same row

:- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can’t have the same number twice in the same column

:- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

Already spot something?
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (C.1) Test eliminating adjacent blanks %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can’t have adjacent black squares

:- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (C.2) Tests eliminating number recurrences %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can’t have the same number twice in the same row

:- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can’t have the same number twice in the same column

:- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

Already spot something?
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (C.1) Test eliminating adjacent blanks %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can’t have adjacent black squares

:- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (C.2) Tests eliminating number recurrences %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can’t have the same number twice in the same row

:- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can’t have the same number twice in the same column

:- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

Already spot something?
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (C.3) Test eliminating disconnected numbers %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability

reachable(X1,Y1,X2,Y2) :- adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1),

-blackOut(X2,Y2).

reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can’t have mutually unreachable non-black squares

:- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2),

(X1,Y1) != (X2,Y2).
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (C.3) Test eliminating disconnected numbers %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability

reachable(X1,Y1,X2,Y2) :- adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1),

-blackOut(X2,Y2).

reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can’t have mutually unreachable non-black squares

:- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2),

(X1,Y1) != (X2,Y2).

+ Answer sets (of plus instance) match Hitori solutions. 4
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

A Working Encoding
Let’s Run it!

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 13.485s (Solving: 11.77s 1st Model: 11.77s Unsat: 0.00s)

CPU Time : 13.290s

Choices : 458

Conflicts : 323

Restarts : 2

Variables : 260625

Constraints : 1018953
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

A Working Encoding
Let’s Run it!

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 13.485s (Solving: 11.77s 1st Model: 11.77s Unsat: 0.00s)

CPU Time : 13.290s

Choices : 458

Conflicts : 323

Restarts : 2

Variables : 260625

Constraints : 1018953
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

A Working Encoding
Let’s Run it!

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 13.485s (Solving: 11.77s 1st Model: 11.77s Unsat: 0.00s)

CPU Time : 13.290s

Choices : 458

Conflicts : 323

Restarts : 2

Variables : 260625

Constraints : 1018953
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

Why Classical Negation?

% Every square is blacked out or normal

1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

:- blackOut(X,Y), -blackOut(X,Y).

+ no internal transformation by gringo

gringo | wc

267534 1608172 5535208

gringo | wc

267470 1607788 5534184

+ no noticeable effect on grounding/solving performance
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).



%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_1.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
% BEFORE
% 1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).
% AFTER
1 { blackOut(X,Y), negBlackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), negBlackOut(X1,Y), negBlackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), negBlackOut(X,Y1), negBlackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), negBlackOut(X1,Y1), negBlackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- negBlackOut(X1,Y1), negBlackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_1.lp instance.lp -t | wc
% 267017  271051 15736966

% Solving statistics
%
% $ gringo-3.0.3 hitori_1.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.101s (Solving: 13.13s 1st Model: 11.60s Unsat: 1.53s)
% CPU Time    : 14.850s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259206 (1: 259078 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 1152   (Atom=Atom: 351 Body=Body: 64 Other: 737)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

Why Classical Negation?

% Every square is blacked out or normal

1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

:- blackOut(X,Y), -blackOut(X,Y).

+ internal transformation by gringo

gringo | wc

267534 1608172 5535208

gringo | wc

267470 1607788 5534184

+ no noticeable effect on grounding/solving performance

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 407 / 453


%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).



%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_1.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
% BEFORE
% 1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).
% AFTER
1 { blackOut(X,Y), negBlackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), negBlackOut(X1,Y), negBlackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), negBlackOut(X,Y1), negBlackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), negBlackOut(X1,Y1), negBlackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- negBlackOut(X1,Y1), negBlackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_1.lp instance.lp -t | wc
% 267017  271051 15736966

% Solving statistics
%
% $ gringo-3.0.3 hitori_1.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.101s (Solving: 13.13s 1st Model: 11.60s Unsat: 1.53s)
% CPU Time    : 14.850s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259206 (1: 259078 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 1152   (Atom=Atom: 351 Body=Body: 64 Other: 737)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

Why Classical Negation?

% Every square is blacked out or normal

1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

:- blackOut(X,Y), -blackOut(X,Y).

+ blackOut(X,Y) and -blackOut(X,Y) exclusive in view of upper bound!

gringo | wc

267534 1608172 5535208

gringo | wc

267470 1607788 5534184

+ no noticeable effect on grounding/solving performance
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).



%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_1.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
% BEFORE
% 1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).
% AFTER
1 { blackOut(X,Y), negBlackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), negBlackOut(X1,Y), negBlackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), negBlackOut(X,Y1), negBlackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), negBlackOut(X1,Y1), negBlackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- negBlackOut(X1,Y1), negBlackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_1.lp instance.lp -t | wc
% 267017  271051 15736966

% Solving statistics
%
% $ gringo-3.0.3 hitori_1.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.101s (Solving: 13.13s 1st Model: 11.60s Unsat: 1.53s)
% CPU Time    : 14.850s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259206 (1: 259078 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 1152   (Atom=Atom: 351 Body=Body: 64 Other: 737)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

Why Classical Negation?

% Every square is blacked out or normal

1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

:- blackOut(X,Y), -blackOut(X,Y).

+ blackOut(X,Y) and -blackOut(X,Y) exclusive in view of upper bound!

gringo | wc

267534 1608172 5535208

gringo | wc

267470 1607788 5534184

+ no noticeable effect on grounding/solving performance
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).



%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_1.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
% BEFORE
% 1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).
% AFTER
1 { blackOut(X,Y), negBlackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), negBlackOut(X1,Y), negBlackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), negBlackOut(X,Y1), negBlackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), negBlackOut(X1,Y1), negBlackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- negBlackOut(X1,Y1), negBlackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_1.lp instance.lp -t | wc
% 267017  271051 15736966

% Solving statistics
%
% $ gringo-3.0.3 hitori_1.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.101s (Solving: 13.13s 1st Model: 11.60s Unsat: 1.53s)
% CPU Time    : 14.850s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259206 (1: 259078 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 1152   (Atom=Atom: 351 Body=Body: 64 Other: 737)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

Why Classical Negation?

% Every square is blacked out or normal

1 { blackOut(X,Y), negBlackOut(X,Y) } 1 :- state(X,Y,_).

:- blackOut(X,Y), -blackOut(X,Y).

+ no internal transformation by gringo

gringo | wc

267534 1608172 5535208

gringo | wc

267470 1607788 5534184

+ no noticeable effect on grounding/solving performance
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_1.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
% BEFORE
% 1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).
% AFTER
1 { blackOut(X,Y), negBlackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), negBlackOut(X1,Y), negBlackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), negBlackOut(X,Y1), negBlackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), negBlackOut(X1,Y1), negBlackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- negBlackOut(X1,Y1), negBlackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_1.lp instance.lp -t | wc
% 267017  271051 15736966

% Solving statistics
%
% $ gringo-3.0.3 hitori_1.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.101s (Solving: 13.13s 1st Model: 11.60s Unsat: 1.53s)
% CPU Time    : 14.850s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259206 (1: 259078 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 1152   (Atom=Atom: 351 Body=Body: 64 Other: 737)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).



%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_1.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
% BEFORE
% 1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).
% AFTER
1 { blackOut(X,Y), negBlackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), negBlackOut(X1,Y), negBlackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), negBlackOut(X,Y1), negBlackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), negBlackOut(X1,Y1), negBlackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- negBlackOut(X1,Y1), negBlackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_1.lp instance.lp -t | wc
% 267017  271051 15736966

% Solving statistics
%
% $ gringo-3.0.3 hitori_1.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.101s (Solving: 13.13s 1st Model: 11.60s Unsat: 1.53s)
% CPU Time    : 14.850s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259206 (1: 259078 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 1152   (Atom=Atom: 351 Body=Body: 64 Other: 737)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

Why Classical Negation?

% Every square is blacked out or normal

1 { blackOut(X,Y), negBlackOut(X,Y) } 1 :- state(X,Y,_).

:- blackOut(X,Y), -blackOut(X,Y).

+ no internal transformation by gringo

gringo | wc

267534 1608172 5535208

gringo | wc

267470 1607788 5534184

+ no noticeable effect on grounding/solving performance
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_1.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
% BEFORE
% 1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).
% AFTER
1 { blackOut(X,Y), negBlackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), negBlackOut(X1,Y), negBlackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), negBlackOut(X,Y1), negBlackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), negBlackOut(X1,Y1), negBlackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- negBlackOut(X1,Y1), negBlackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_1.lp instance.lp -t | wc
% 267017  271051 15736966

% Solving statistics
%
% $ gringo-3.0.3 hitori_1.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.101s (Solving: 13.13s 1st Model: 11.60s Unsat: 1.53s)
% CPU Time    : 14.850s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259206 (1: 259078 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 1152   (Atom=Atom: 351 Body=Body: 64 Other: 737)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).



%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_1.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
% BEFORE
% 1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).
% AFTER
1 { blackOut(X,Y), negBlackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), negBlackOut(X1,Y), negBlackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), negBlackOut(X,Y1), negBlackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), negBlackOut(X1,Y1), negBlackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- negBlackOut(X1,Y1), negBlackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_1.lp instance.lp -t | wc
% 267017  271051 15736966

% Solving statistics
%
% $ gringo-3.0.3 hitori_1.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.101s (Solving: 13.13s 1st Model: 11.60s Unsat: 1.53s)
% CPU Time    : 14.850s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259206 (1: 259078 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 1152   (Atom=Atom: 351 Body=Body: 64 Other: 737)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

Why Classical Negation?

% Every square is blacked out or normal

1 { blackOut(X,Y), negBlackOut(X,Y) } 1 :- state(X,Y,_).

:- blackOut(X,Y), -blackOut(X,Y).

+ no internal transformation by gringo

gringo | wc

267534 1608172 5535208

gringo | wc

267470 1607788 5534184

+ no noticeable effect on grounding/solving performance

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 407 / 453


%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_1.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
% BEFORE
% 1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).
% AFTER
1 { blackOut(X,Y), negBlackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), negBlackOut(X1,Y), negBlackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), negBlackOut(X,Y1), negBlackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), negBlackOut(X1,Y1), negBlackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- negBlackOut(X1,Y1), negBlackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_1.lp instance.lp -t | wc
% 267017  271051 15736966

% Solving statistics
%
% $ gringo-3.0.3 hitori_1.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.101s (Solving: 13.13s 1st Model: 11.60s Unsat: 1.53s)
% CPU Time    : 14.850s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259206 (1: 259078 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 1152   (Atom=Atom: 351 Body=Body: 64 Other: 737)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).



%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_1.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
% BEFORE
% 1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).
% AFTER
1 { blackOut(X,Y), negBlackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), negBlackOut(X1,Y), negBlackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), negBlackOut(X,Y1), negBlackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), negBlackOut(X1,Y1), negBlackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- negBlackOut(X1,Y1), negBlackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_1.lp instance.lp -t | wc
% 267017  271051 15736966

% Solving statistics
%
% $ gringo-3.0.3 hitori_1.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.101s (Solving: 13.13s 1st Model: 11.60s Unsat: 1.53s)
% CPU Time    : 14.850s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259206 (1: 259078 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 1152   (Atom=Atom: 351 Body=Body: 64 Other: 737)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

Why Not Default Negation?

% Every square is blacked out or normal

1 { blackOut(X,Y), negBlackOut(X,Y) } 1 :- state(X,Y,_).

% Can’t have the same number twice in the same row

:- state(X1,Y,N), state(X2,Y,N), negBlackOut(X1,Y), negBlackOut(X2,Y), X1 != X2.

. . .

+ blackOut(X,Y) and negBlackOut(X,Y) are two sides of the same coin
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_1.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
% BEFORE
% 1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).
% AFTER
1 { blackOut(X,Y), negBlackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), negBlackOut(X1,Y), negBlackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), negBlackOut(X,Y1), negBlackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), negBlackOut(X1,Y1), negBlackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- negBlackOut(X1,Y1), negBlackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_1.lp instance.lp -t | wc
% 267017  271051 15736966

% Solving statistics
%
% $ gringo-3.0.3 hitori_1.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.101s (Solving: 13.13s 1st Model: 11.60s Unsat: 1.53s)
% CPU Time    : 14.850s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259206 (1: 259078 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 1152   (Atom=Atom: 351 Body=Body: 64 Other: 737)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

Why Not Default Negation?

% Every square is blacked out or normal

1 { blackOut(X,Y), negBlackOut(X,Y) } 1 :- state(X,Y,_).

% Can’t have the same number twice in the same row

:- state(X1,Y,N), state(X2,Y,N), negBlackOut(X1,Y), negBlackOut(X2,Y), X1 != X2.

. . .

+ blackOut(X,Y) and negBlackOut(X,Y) are two sides of the same coin

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 408 / 453


%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_1.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
% BEFORE
% 1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).
% AFTER
1 { blackOut(X,Y), negBlackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), negBlackOut(X1,Y), negBlackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), negBlackOut(X,Y1), negBlackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), negBlackOut(X1,Y1), negBlackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- negBlackOut(X1,Y1), negBlackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_1.lp instance.lp -t | wc
% 267017  271051 15736966

% Solving statistics
%
% $ gringo-3.0.3 hitori_1.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.101s (Solving: 13.13s 1st Model: 11.60s Unsat: 1.53s)
% CPU Time    : 14.850s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259206 (1: 259078 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 1152   (Atom=Atom: 351 Body=Body: 64 Other: 737)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

Why Not Default Negation?

% Every square is blacked out or normal

{ blackOut(X,Y) } :- state(X,Y,_).

% Can’t have the same number twice in the same row

:- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 != X2.

. . .

+ replace negBlackOut(X,Y) by “not blackOut(X,Y)”

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 408 / 453


%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_2.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
% BEFORE
% 1 { blackOut(X,Y), negBlackOut(X,Y) } 1 :- state(X,Y,_).
% AFTER
 { blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
% BEFORE
%  :- state(X1,Y,N), state(X2,Y,N), negBlackOut(X1,Y), negBlackOut(X2,Y), X1 != X2.
% AFTER
 :- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
% BEFORE
%  :- state(X,Y1,N), state(X,Y2,N), negBlackOut(X,Y1), negBlackOut(X,Y2), Y1 != Y2.
% AFTER
 :- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
% BEFORE
% reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), negBlackOut(X1,Y1), negBlackOut(X2,Y2).
% AFTER
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
% BEFORE
%  :- negBlackOut(X1,Y1), negBlackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).
% AFTER
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_2.lp instance.lp -t | wc
% 267017  279639 15744338

% Solving statistics
%
% $ gringo-3.0.3 hitori_2.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 10.492s (Solving: 8.64s 1st Model: 8.31s Unsat: 0.33s)
% CPU Time    : 10.250s
% Choices     : 359
% Conflicts   : 282
% Restarts    : 2
%
% Atoms       : 4449
% Rules       : 258886 (1: 258822 3: 64)
% Bodies      : 256274
% Equivalences: 575    (Atom=Atom: 287 Body=Body: 0 Other: 288)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260433 (Eliminated:    0 Frozen: 254126)
% Constraints : 1018825 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 7144   (Binary:  1.8% Ternary:  8.9% Other: 89.2%)
%   Conflict  : 275    (Average Length: 3394.6)
%   Loop      : 6869   (Average Length: 6.6)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

A First Improvement

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 13.485s (Solving: 11.77s 1st Model: 11.77s Unsat: 0.00s)

CPU Time : 13.290s

Choices : 458

Conflicts : 323

Restarts : 2

Variables : 260625

Constraints : 1018953
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_1.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
% BEFORE
% 1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).
% AFTER
1 { blackOut(X,Y), negBlackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), negBlackOut(X1,Y), negBlackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), negBlackOut(X,Y1), negBlackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), negBlackOut(X1,Y1), negBlackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- negBlackOut(X1,Y1), negBlackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_1.lp instance.lp -t | wc
% 267017  271051 15736966

% Solving statistics
%
% $ gringo-3.0.3 hitori_1.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.101s (Solving: 13.13s 1st Model: 11.60s Unsat: 1.53s)
% CPU Time    : 14.850s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259206 (1: 259078 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 1152   (Atom=Atom: 351 Body=Body: 64 Other: 737)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

A First Improvement

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 13.485s (Solving: 11.77s 1st Model: 11.77s Unsat: 0.00s)

CPU Time : 13.290s

Choices : 458

Conflicts : 323

Restarts : 2

Variables : 260625

Constraints : 1018953
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_2.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
% BEFORE
% 1 { blackOut(X,Y), negBlackOut(X,Y) } 1 :- state(X,Y,_).
% AFTER
 { blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
% BEFORE
%  :- state(X1,Y,N), state(X2,Y,N), negBlackOut(X1,Y), negBlackOut(X2,Y), X1 != X2.
% AFTER
 :- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
% BEFORE
%  :- state(X,Y1,N), state(X,Y2,N), negBlackOut(X,Y1), negBlackOut(X,Y2), Y1 != Y2.
% AFTER
 :- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
% BEFORE
% reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), negBlackOut(X1,Y1), negBlackOut(X2,Y2).
% AFTER
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
% BEFORE
%  :- negBlackOut(X1,Y1), negBlackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).
% AFTER
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_2.lp instance.lp -t | wc
% 267017  279639 15744338

% Solving statistics
%
% $ gringo-3.0.3 hitori_2.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 10.492s (Solving: 8.64s 1st Model: 8.31s Unsat: 0.33s)
% CPU Time    : 10.250s
% Choices     : 359
% Conflicts   : 282
% Restarts    : 2
%
% Atoms       : 4449
% Rules       : 258886 (1: 258822 3: 64)
% Bodies      : 256274
% Equivalences: 575    (Atom=Atom: 287 Body=Body: 0 Other: 288)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260433 (Eliminated:    0 Frozen: 254126)
% Constraints : 1018825 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 7144   (Binary:  1.8% Ternary:  8.9% Other: 89.2%)
%   Conflict  : 275    (Average Length: 3394.6)
%   Loop      : 6869   (Average Length: 6.6)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

A First Improvement

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 10.177s (Solving: 8.42s 1st Model: 8.41s Unsat: 0.00s)

CPU Time : 9.990s

Choices : 344

Conflicts : 264

Restarts : 2

Variables : 260433

Constraints : 1018825
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_2.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
% BEFORE
% 1 { blackOut(X,Y), negBlackOut(X,Y) } 1 :- state(X,Y,_).
% AFTER
 { blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
% BEFORE
%  :- state(X1,Y,N), state(X2,Y,N), negBlackOut(X1,Y), negBlackOut(X2,Y), X1 != X2.
% AFTER
 :- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
% BEFORE
%  :- state(X,Y1,N), state(X,Y2,N), negBlackOut(X,Y1), negBlackOut(X,Y2), Y1 != Y2.
% AFTER
 :- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
% BEFORE
% reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), negBlackOut(X1,Y1), negBlackOut(X2,Y2).
% AFTER
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
% BEFORE
%  :- negBlackOut(X1,Y1), negBlackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).
% AFTER
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_2.lp instance.lp -t | wc
% 267017  279639 15744338

% Solving statistics
%
% $ gringo-3.0.3 hitori_2.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 10.492s (Solving: 8.64s 1st Model: 8.31s Unsat: 0.33s)
% CPU Time    : 10.250s
% Choices     : 359
% Conflicts   : 282
% Restarts    : 2
%
% Atoms       : 4449
% Rules       : 258886 (1: 258822 3: 64)
% Bodies      : 256274
% Equivalences: 575    (Atom=Atom: 287 Body=Body: 0 Other: 288)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260433 (Eliminated:    0 Frozen: 254126)
% Constraints : 1018825 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 7144   (Binary:  1.8% Ternary:  8.9% Other: 89.2%)
%   Conflict  : 275    (Average Length: 3394.6)
%   Loop      : 6869   (Average Length: 6.6)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

Remember Symmetric Inequalities

% Can’t have the same number twice in the same row

:- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 != X2.

% Can’t have the same number twice in the same column

:- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 != Y2.

+ no noticeable effect on grounding/solving performance
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_2.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
% BEFORE
% 1 { blackOut(X,Y), negBlackOut(X,Y) } 1 :- state(X,Y,_).
% AFTER
 { blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
% BEFORE
%  :- state(X1,Y,N), state(X2,Y,N), negBlackOut(X1,Y), negBlackOut(X2,Y), X1 != X2.
% AFTER
 :- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
% BEFORE
%  :- state(X,Y1,N), state(X,Y2,N), negBlackOut(X,Y1), negBlackOut(X,Y2), Y1 != Y2.
% AFTER
 :- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
% BEFORE
% reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), negBlackOut(X1,Y1), negBlackOut(X2,Y2).
% AFTER
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
% BEFORE
%  :- negBlackOut(X1,Y1), negBlackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).
% AFTER
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_2.lp instance.lp -t | wc
% 267017  279639 15744338

% Solving statistics
%
% $ gringo-3.0.3 hitori_2.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 10.492s (Solving: 8.64s 1st Model: 8.31s Unsat: 0.33s)
% CPU Time    : 10.250s
% Choices     : 359
% Conflicts   : 282
% Restarts    : 2
%
% Atoms       : 4449
% Rules       : 258886 (1: 258822 3: 64)
% Bodies      : 256274
% Equivalences: 575    (Atom=Atom: 287 Body=Body: 0 Other: 288)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260433 (Eliminated:    0 Frozen: 254126)
% Constraints : 1018825 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 7144   (Binary:  1.8% Ternary:  8.9% Other: 89.2%)
%   Conflict  : 275    (Average Length: 3394.6)
%   Loop      : 6869   (Average Length: 6.6)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

Remember Symmetric Inequalities

% Can’t have the same number twice in the same row

:- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 < X2.

% Can’t have the same number twice in the same column

:- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 < Y2.

+ no noticeable effect on grounding/solving performance
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_3.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
% BEFORE
%  :- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 != X2.
% AFTER
 :- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 < X2.

% Can't have the same number twice in the same column
% BEFORE
%  :- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 != Y2.
% AFTER
 :- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 < Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_3.lp instance.lp -t | wc
% 266998  279582 15743597

% Solving statistics
%
% $ gringo-3.0.3 hitori_3.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 10.539s (Solving: 8.70s 1st Model: 8.37s Unsat: 0.33s)
% CPU Time    : 10.310s
% Choices     : 359
% Conflicts   : 282
% Restarts    : 2
%
% Atoms       : 4449
% Rules       : 258867 (1: 258803 3: 64)
% Bodies      : 256274
% Equivalences: 575    (Atom=Atom: 287 Body=Body: 0 Other: 288)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260433 (Eliminated:    0 Frozen: 254126)
% Constraints : 1018825 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 7144   (Binary:  1.8% Ternary:  8.9% Other: 89.2%)
%   Conflict  : 275    (Average Length: 3394.6)
%   Loop      : 6869   (Average Length: 6.6)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

Remember Symmetric Inequalities

% Can’t have the same number twice in the same row

:- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 < X2.

% Can’t have the same number twice in the same column

:- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 < Y2.

+ no noticeable effect on grounding/solving performance
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_3.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
% BEFORE
%  :- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 != X2.
% AFTER
 :- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 < X2.

% Can't have the same number twice in the same column
% BEFORE
%  :- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 != Y2.
% AFTER
 :- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 < Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_3.lp instance.lp -t | wc
% 266998  279582 15743597

% Solving statistics
%
% $ gringo-3.0.3 hitori_3.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 10.539s (Solving: 8.70s 1st Model: 8.37s Unsat: 0.33s)
% CPU Time    : 10.310s
% Choices     : 359
% Conflicts   : 282
% Restarts    : 2
%
% Atoms       : 4449
% Rules       : 258867 (1: 258803 3: 64)
% Bodies      : 256274
% Equivalences: 575    (Atom=Atom: 287 Body=Body: 0 Other: 288)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260433 (Eliminated:    0 Frozen: 254126)
% Constraints : 1018825 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 7144   (Binary:  1.8% Ternary:  8.9% Other: 89.2%)
%   Conflict  : 275    (Average Length: 3394.6)
%   Loop      : 6869   (Average Length: 6.6)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

Let’s Use Counting

% Can’t have the same number twice in the same row

:- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 < X2.

% Can’t have the same number twice in the same column

:- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 < Y2.
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_3.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
% BEFORE
%  :- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 != X2.
% AFTER
 :- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 < X2.

% Can't have the same number twice in the same column
% BEFORE
%  :- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 != Y2.
% AFTER
 :- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 < Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_3.lp instance.lp -t | wc
% 266998  279582 15743597

% Solving statistics
%
% $ gringo-3.0.3 hitori_3.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 10.539s (Solving: 8.70s 1st Model: 8.37s Unsat: 0.33s)
% CPU Time    : 10.310s
% Choices     : 359
% Conflicts   : 282
% Restarts    : 2
%
% Atoms       : 4449
% Rules       : 258867 (1: 258803 3: 64)
% Bodies      : 256274
% Equivalences: 575    (Atom=Atom: 287 Body=Body: 0 Other: 288)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260433 (Eliminated:    0 Frozen: 254126)
% Constraints : 1018825 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 7144   (Binary:  1.8% Ternary:  8.9% Other: 89.2%)
%   Conflict  : 275    (Average Length: 3394.6)
%   Loop      : 6869   (Average Length: 6.6)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

Let’s Use Counting

% Can’t have the same number twice in the same row or column

:- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.

:- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_4.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
% BEFORE
%  :- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 < X2.
%  :- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 < Y2.
% AFTER
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_4.lp instance.lp -t | wc
% 267014  279633 15744590

% Solving statistics
%
% $ gringo-3.0.3 hitori_4.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 11.553s (Solving: 9.60s 1st Model: 7.88s Unsat: 1.72s)
% CPU Time    : 11.310s
% Choices     : 377
% Conflicts   : 318
% Restarts    : 1
%
% Atoms       : 4484
% Rules       : 258918 (1: 258851 2: 3 3: 64)
% Bodies      : 256308
% Equivalences: 664    (Atom=Atom: 305 Body=Body: 18 Other: 341)
% Tight       : No     (SCCs: 1 Nodes: 254127)
%
% Variables   : 260432 (Eliminated:    0 Frozen: 254131)
% Constraints : 1018828 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 7240   (Binary:  0.9% Ternary:  4.7% Other: 94.4%)
%   Conflict  : 309    (Average Length: 3324.0)
%   Loop      : 6931   (Average Length: 6.8)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

A Second Improvement?

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 10.182s (Solving: 8.47s 1st Model: 8.47s Unsat: 0.00s)

CPU Time : 10.010s

Choices : 344

Conflicts : 264

Restarts : 2

Variables : 260433

Constraints : 1018825
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_3.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
% BEFORE
%  :- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 != X2.
% AFTER
 :- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 < X2.

% Can't have the same number twice in the same column
% BEFORE
%  :- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 != Y2.
% AFTER
 :- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 < Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_3.lp instance.lp -t | wc
% 266998  279582 15743597

% Solving statistics
%
% $ gringo-3.0.3 hitori_3.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 10.539s (Solving: 8.70s 1st Model: 8.37s Unsat: 0.33s)
% CPU Time    : 10.310s
% Choices     : 359
% Conflicts   : 282
% Restarts    : 2
%
% Atoms       : 4449
% Rules       : 258867 (1: 258803 3: 64)
% Bodies      : 256274
% Equivalences: 575    (Atom=Atom: 287 Body=Body: 0 Other: 288)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260433 (Eliminated:    0 Frozen: 254126)
% Constraints : 1018825 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 7144   (Binary:  1.8% Ternary:  8.9% Other: 89.2%)
%   Conflict  : 275    (Average Length: 3394.6)
%   Loop      : 6869   (Average Length: 6.6)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

A Second Improvement?

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 10.182s (Solving: 8.47s 1st Model: 8.47s Unsat: 0.00s)

CPU Time : 10.010s

Choices : 344

Conflicts : 264

Restarts : 2

Variables : 260433

Constraints : 1018825

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 412 / 453


%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_4.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
% BEFORE
%  :- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 < X2.
%  :- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 < Y2.
% AFTER
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_4.lp instance.lp -t | wc
% 267014  279633 15744590

% Solving statistics
%
% $ gringo-3.0.3 hitori_4.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 11.553s (Solving: 9.60s 1st Model: 7.88s Unsat: 1.72s)
% CPU Time    : 11.310s
% Choices     : 377
% Conflicts   : 318
% Restarts    : 1
%
% Atoms       : 4484
% Rules       : 258918 (1: 258851 2: 3 3: 64)
% Bodies      : 256308
% Equivalences: 664    (Atom=Atom: 305 Body=Body: 18 Other: 341)
% Tight       : No     (SCCs: 1 Nodes: 254127)
%
% Variables   : 260432 (Eliminated:    0 Frozen: 254131)
% Constraints : 1018828 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 7240   (Binary:  0.9% Ternary:  4.7% Other: 94.4%)
%   Conflict  : 309    (Average Length: 3324.0)
%   Loop      : 6931   (Average Length: 6.8)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

A Second Improvement?

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 9.781s (Solving: 7.99s 1st Model: 7.99s Unsat: 0.00s)

CPU Time : 9.610s

Choices : 278

Conflicts : 227

Restarts : 1

Variables : 260432

Constraints : 1018828
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_4.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
% BEFORE
%  :- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 < X2.
%  :- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 < Y2.
% AFTER
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_4.lp instance.lp -t | wc
% 267014  279633 15744590

% Solving statistics
%
% $ gringo-3.0.3 hitori_4.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 11.553s (Solving: 9.60s 1st Model: 7.88s Unsat: 1.72s)
% CPU Time    : 11.310s
% Choices     : 377
% Conflicts   : 318
% Restarts    : 1
%
% Atoms       : 4484
% Rules       : 258918 (1: 258851 2: 3 3: 64)
% Bodies      : 256308
% Equivalences: 664    (Atom=Atom: 305 Body=Body: 18 Other: 341)
% Tight       : No     (SCCs: 1 Nodes: 254127)
%
% Variables   : 260432 (Eliminated:    0 Frozen: 254131)
% Constraints : 1018828 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 7240   (Binary:  0.9% Ternary:  4.7% Other: 94.4%)
%   Conflict  : 309    (Average Length: 3324.0)
%   Loop      : 6931   (Average Length: 6.8)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

Why Double-Check Reachability?

% Define mutual reachability

reachable(X1,Y1,X2,Y2) :- adjacent(X1,Y1,X2,Y2),

not blackOut(X1,Y1), not blackOut(X2,Y2).

reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can’t have mutually unreachable non-black squares

:- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2),

(X1,Y1) != (X2,Y2), state(X1,Y1,_), state(X2,Y2,_).

+ reachable(X1,Y1,X2,Y2) and reachable(X2,Y2,X1,Y1) hold jointly
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_4.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
% BEFORE
%  :- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 < X2.
%  :- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 < Y2.
% AFTER
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_4.lp instance.lp -t | wc
% 267014  279633 15744590

% Solving statistics
%
% $ gringo-3.0.3 hitori_4.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 11.553s (Solving: 9.60s 1st Model: 7.88s Unsat: 1.72s)
% CPU Time    : 11.310s
% Choices     : 377
% Conflicts   : 318
% Restarts    : 1
%
% Atoms       : 4484
% Rules       : 258918 (1: 258851 2: 3 3: 64)
% Bodies      : 256308
% Equivalences: 664    (Atom=Atom: 305 Body=Body: 18 Other: 341)
% Tight       : No     (SCCs: 1 Nodes: 254127)
%
% Variables   : 260432 (Eliminated:    0 Frozen: 254131)
% Constraints : 1018828 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 7240   (Binary:  0.9% Ternary:  4.7% Other: 94.4%)
%   Conflict  : 309    (Average Length: 3324.0)
%   Loop      : 6931   (Average Length: 6.8)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

Why Double-Check Reachability?

% Define mutual reachability

reachable(X1,Y1,X2,Y2) :- adjacent(X1,Y1,X2,Y2),

not blackOut(X1,Y1), not blackOut(X2,Y2).

reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can’t have mutually unreachable non-black squares

:- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2),

(X1,Y1) != (X2,Y2), state(X1,Y1,_), state(X2,Y2,_).

+ reachable(X1,Y1,X2,Y2) and reachable(X2,Y2,X1,Y1) hold jointly
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_4.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
% BEFORE
%  :- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 < X2.
%  :- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 < Y2.
% AFTER
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_4.lp instance.lp -t | wc
% 267014  279633 15744590

% Solving statistics
%
% $ gringo-3.0.3 hitori_4.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 11.553s (Solving: 9.60s 1st Model: 7.88s Unsat: 1.72s)
% CPU Time    : 11.310s
% Choices     : 377
% Conflicts   : 318
% Restarts    : 1
%
% Atoms       : 4484
% Rules       : 258918 (1: 258851 2: 3 3: 64)
% Bodies      : 256308
% Equivalences: 664    (Atom=Atom: 305 Body=Body: 18 Other: 341)
% Tight       : No     (SCCs: 1 Nodes: 254127)
%
% Variables   : 260432 (Eliminated:    0 Frozen: 254131)
% Constraints : 1018828 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 7240   (Binary:  0.9% Ternary:  4.7% Other: 94.4%)
%   Conflict  : 309    (Average Length: 3324.0)
%   Loop      : 6931   (Average Length: 6.8)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

Why Double-Check Reachability?

% Define mutual reachability

reachable(X1,Y1,X2,Y2) :- adjacent(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),

not blackOut(X1,Y1), not blackOut(X2,Y2).

reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X3,Y3,X2,Y2),

(X1,Y1) < (X3,Y3).

reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X1,Y1,X3,Y3),

(X2,Y2) < (X3,Y3).

% Can’t have mutually unreachable non-black squares

:- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2),

(X1,Y1) != (X2,Y2), state(X1,Y1,_), state(X2,Y2,_).

+ enforce (X1,Y1) < (X2,Y2) for instances of reachable(X1,Y1,X2,Y2)
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_4.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
% BEFORE
%  :- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 < X2.
%  :- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 < Y2.
% AFTER
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_4.lp instance.lp -t | wc
% 267014  279633 15744590

% Solving statistics
%
% $ gringo-3.0.3 hitori_4.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 11.553s (Solving: 9.60s 1st Model: 7.88s Unsat: 1.72s)
% CPU Time    : 11.310s
% Choices     : 377
% Conflicts   : 318
% Restarts    : 1
%
% Atoms       : 4484
% Rules       : 258918 (1: 258851 2: 3 3: 64)
% Bodies      : 256308
% Equivalences: 664    (Atom=Atom: 305 Body=Body: 18 Other: 341)
% Tight       : No     (SCCs: 1 Nodes: 254127)
%
% Variables   : 260432 (Eliminated:    0 Frozen: 254131)
% Constraints : 1018828 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 7240   (Binary:  0.9% Ternary:  4.7% Other: 94.4%)
%   Conflict  : 309    (Average Length: 3324.0)
%   Loop      : 6931   (Average Length: 6.8)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

Why Double-Check Reachability?

% Define mutual reachability

reachable(X1,Y1,X2,Y2) :- adjacent(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),

not blackOut(X1,Y1), not blackOut(X2,Y2).

reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X3,Y3,X2,Y2),

(X1,Y1) < (X3,Y3).

reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X1,Y1,X3,Y3),

(X2,Y2) < (X3,Y3).

% Can’t have mutually unreachable non-black squares

:- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2),

(X1,Y1) != (X2,Y2), state(X1,Y1,_), state(X2,Y2,_).

+ enforce (X1,Y1) < (X2,Y2) for instances of reachable(X1,Y1,X2,Y2)
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_4.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
% BEFORE
%  :- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 < X2.
%  :- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 < Y2.
% AFTER
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_4.lp instance.lp -t | wc
% 267014  279633 15744590

% Solving statistics
%
% $ gringo-3.0.3 hitori_4.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 11.553s (Solving: 9.60s 1st Model: 7.88s Unsat: 1.72s)
% CPU Time    : 11.310s
% Choices     : 377
% Conflicts   : 318
% Restarts    : 1
%
% Atoms       : 4484
% Rules       : 258918 (1: 258851 2: 3 3: 64)
% Bodies      : 256308
% Equivalences: 664    (Atom=Atom: 305 Body=Body: 18 Other: 341)
% Tight       : No     (SCCs: 1 Nodes: 254127)
%
% Variables   : 260432 (Eliminated:    0 Frozen: 254131)
% Constraints : 1018828 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 7240   (Binary:  0.9% Ternary:  4.7% Other: 94.4%)
%   Conflict  : 309    (Average Length: 3324.0)
%   Loop      : 6931   (Average Length: 6.8)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

Why Double-Check Reachability?

% Define mutual reachability

reachable(X1,Y1,X2,Y2) :- adjacent(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),

not blackOut(X1,Y1), not blackOut(X2,Y2).

reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X3,Y3,X2,Y2),

(X1,Y1) < (X3,Y3).

reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X1,Y1,X3,Y3),

(X2,Y2) < (X3,Y3).

% Can’t have mutually unreachable non-black squares

:- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2),

(X1,Y1) < (X2,Y2), state(X1,Y1,_), state(X2,Y2,_).

+ enforce (X1,Y1) < (X2,Y2) for instances of reachable(X1,Y1,X2,Y2)
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_5.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
% BEFORE
% reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2).
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).
% AFTER
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2),
                           (X1,Y1) < (X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X3,Y3,X2,Y2), (X1,Y1) < (X3,Y3).
reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X1,Y1,X3,Y3), (X2,Y2) < (X3,Y3).

% Can't have mutually unreachable non-black squares
% BEFORE
%  :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2),
%     state(X1,Y1,_), state(X2,Y2,_).
% AFTER
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_5.lp instance.lp -t | wc
% 127734  134081 7521246

% Solving statistics
%
% $ gringo-3.0.3 hitori_5.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 4.221s (Solving: 3.18s 1st Model: 3.02s Unsat: 0.16s)
% CPU Time    : 3.930s
% Choices     : 453
% Conflicts   : 336
% Restarts    : 2
%
% Atoms       : 2404
% Rules       : 127766 (1: 127699 2: 3 3: 64)
% Bodies      : 127284
% Equivalences: 664    (Atom=Atom: 305 Body=Body: 18 Other: 341)
% Tight       : No     (SCCs: 1 Nodes: 127119)
%
% Variables   : 129328 (Eliminated:    0 Frozen: 127123)
% Constraints : 504573 (Binary: 74.4% Ternary: 25.2% Other:  0.4%)
% Lemmas      : 2402   (Binary:  3.5% Ternary: 13.1% Other: 83.5%)
%   Conflict  : 336    (Average Length: 1201.5)
%   Loop      : 2066   (Average Length: 7.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

A Real Breakthrough?

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 9.781s (Solving: 7.99s 1st Model: 7.99s Unsat: 0.00s)

CPU Time : 9.610s

Choices : 278

Conflicts : 227

Restarts : 1

Variables : 260432

Constraints : 1018828
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_4.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
% BEFORE
%  :- state(X1,Y,N), state(X2,Y,N), not blackOut(X1,Y), not blackOut(X2,Y), X1 < X2.
%  :- state(X,Y1,N), state(X,Y2,N), not blackOut(X,Y1), not blackOut(X,Y2), Y1 < Y2.
% AFTER
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_4.lp instance.lp -t | wc
% 267014  279633 15744590

% Solving statistics
%
% $ gringo-3.0.3 hitori_4.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 11.553s (Solving: 9.60s 1st Model: 7.88s Unsat: 1.72s)
% CPU Time    : 11.310s
% Choices     : 377
% Conflicts   : 318
% Restarts    : 1
%
% Atoms       : 4484
% Rules       : 258918 (1: 258851 2: 3 3: 64)
% Bodies      : 256308
% Equivalences: 664    (Atom=Atom: 305 Body=Body: 18 Other: 341)
% Tight       : No     (SCCs: 1 Nodes: 254127)
%
% Variables   : 260432 (Eliminated:    0 Frozen: 254131)
% Constraints : 1018828 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 7240   (Binary:  0.9% Ternary:  4.7% Other: 94.4%)
%   Conflict  : 309    (Average Length: 3324.0)
%   Loop      : 6931   (Average Length: 6.8)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

A Real Breakthrough?

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 9.781s (Solving: 7.99s 1st Model: 7.99s Unsat: 0.00s)

CPU Time : 9.610s

Choices : 278

Conflicts : 227

Restarts : 1

Variables : 260432

Constraints : 1018828
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_5.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
% BEFORE
% reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2).
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).
% AFTER
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2),
                           (X1,Y1) < (X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X3,Y3,X2,Y2), (X1,Y1) < (X3,Y3).
reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X1,Y1,X3,Y3), (X2,Y2) < (X3,Y3).

% Can't have mutually unreachable non-black squares
% BEFORE
%  :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2),
%     state(X1,Y1,_), state(X2,Y2,_).
% AFTER
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_5.lp instance.lp -t | wc
% 127734  134081 7521246

% Solving statistics
%
% $ gringo-3.0.3 hitori_5.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 4.221s (Solving: 3.18s 1st Model: 3.02s Unsat: 0.16s)
% CPU Time    : 3.930s
% Choices     : 453
% Conflicts   : 336
% Restarts    : 2
%
% Atoms       : 2404
% Rules       : 127766 (1: 127699 2: 3 3: 64)
% Bodies      : 127284
% Equivalences: 664    (Atom=Atom: 305 Body=Body: 18 Other: 341)
% Tight       : No     (SCCs: 1 Nodes: 127119)
%
% Variables   : 129328 (Eliminated:    0 Frozen: 127123)
% Constraints : 504573 (Binary: 74.4% Ternary: 25.2% Other:  0.4%)
% Lemmas      : 2402   (Binary:  3.5% Ternary: 13.1% Other: 83.5%)
%   Conflict  : 336    (Average Length: 1201.5)
%   Loop      : 2066   (Average Length: 7.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

A Real Breakthrough?

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 4.054s (Solving: 3.07s 1st Model: 3.07s Unsat: 0.00s)

CPU Time : 3.810s

Choices : 438

Conflicts : 318

Restarts : 2

Variables : 129328

Constraints : 504573
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_5.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
% BEFORE
% reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2).
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).
% AFTER
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2),
                           (X1,Y1) < (X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X3,Y3,X2,Y2), (X1,Y1) < (X3,Y3).
reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X1,Y1,X3,Y3), (X2,Y2) < (X3,Y3).

% Can't have mutually unreachable non-black squares
% BEFORE
%  :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2),
%     state(X1,Y1,_), state(X2,Y2,_).
% AFTER
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_5.lp instance.lp -t | wc
% 127734  134081 7521246

% Solving statistics
%
% $ gringo-3.0.3 hitori_5.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 4.221s (Solving: 3.18s 1st Model: 3.02s Unsat: 0.16s)
% CPU Time    : 3.930s
% Choices     : 453
% Conflicts   : 336
% Restarts    : 2
%
% Atoms       : 2404
% Rules       : 127766 (1: 127699 2: 3 3: 64)
% Bodies      : 127284
% Equivalences: 664    (Atom=Atom: 305 Body=Body: 18 Other: 341)
% Tight       : No     (SCCs: 1 Nodes: 127119)
%
% Variables   : 129328 (Eliminated:    0 Frozen: 127123)
% Constraints : 504573 (Binary: 74.4% Ternary: 25.2% Other:  0.4%)
% Lemmas      : 2402   (Binary:  3.5% Ternary: 13.1% Other: 83.5%)
%   Conflict  : 336    (Average Length: 1201.5)
%   Loop      : 2066   (Average Length: 7.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

Two Orders of Magnitude!

% Define mutual reachability

reachable(X1,Y1,X2,Y2) :- adjacent(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),

not blackOut(X1,Y1), not blackOut(X2,Y2).

reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X3,Y3,X2,Y2),

(X1,Y1) < (X3,Y3).

reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X1,Y1,X3,Y3),

(X2,Y2) < (X3,Y3).

+ grounding size: O(86)
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_5.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
% BEFORE
% reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2).
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).
% AFTER
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2),
                           (X1,Y1) < (X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X3,Y3,X2,Y2), (X1,Y1) < (X3,Y3).
reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X1,Y1,X3,Y3), (X2,Y2) < (X3,Y3).

% Can't have mutually unreachable non-black squares
% BEFORE
%  :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2),
%     state(X1,Y1,_), state(X2,Y2,_).
% AFTER
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_5.lp instance.lp -t | wc
% 127734  134081 7521246

% Solving statistics
%
% $ gringo-3.0.3 hitori_5.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 4.221s (Solving: 3.18s 1st Model: 3.02s Unsat: 0.16s)
% CPU Time    : 3.930s
% Choices     : 453
% Conflicts   : 336
% Restarts    : 2
%
% Atoms       : 2404
% Rules       : 127766 (1: 127699 2: 3 3: 64)
% Bodies      : 127284
% Equivalences: 664    (Atom=Atom: 305 Body=Body: 18 Other: 341)
% Tight       : No     (SCCs: 1 Nodes: 127119)
%
% Variables   : 129328 (Eliminated:    0 Frozen: 127123)
% Constraints : 504573 (Binary: 74.4% Ternary: 25.2% Other:  0.4%)
% Lemmas      : 2402   (Binary:  3.5% Ternary: 13.1% Other: 83.5%)
%   Conflict  : 336    (Average Length: 1201.5)
%   Loop      : 2066   (Average Length: 7.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

Two Orders of Magnitude!

% Define mutual reachability

reachable(X1,Y1,X2,Y2) :- adjacent(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),

not blackOut(X1,Y1), not blackOut(X2,Y2).

reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X3,Y3,X2,Y2),

(X1,Y1) < (X3,Y3).

reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X1,Y1,X3,Y3),

(X2,Y2) < (X3,Y3).

+ grounding size: O(86)
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_5.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
% BEFORE
% reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2).
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).
% AFTER
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2),
                           (X1,Y1) < (X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X3,Y3,X2,Y2), (X1,Y1) < (X3,Y3).
reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X1,Y1,X3,Y3), (X2,Y2) < (X3,Y3).

% Can't have mutually unreachable non-black squares
% BEFORE
%  :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2),
%     state(X1,Y1,_), state(X2,Y2,_).
% AFTER
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_5.lp instance.lp -t | wc
% 127734  134081 7521246

% Solving statistics
%
% $ gringo-3.0.3 hitori_5.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 4.221s (Solving: 3.18s 1st Model: 3.02s Unsat: 0.16s)
% CPU Time    : 3.930s
% Choices     : 453
% Conflicts   : 336
% Restarts    : 2
%
% Atoms       : 2404
% Rules       : 127766 (1: 127699 2: 3 3: 64)
% Bodies      : 127284
% Equivalences: 664    (Atom=Atom: 305 Body=Body: 18 Other: 341)
% Tight       : No     (SCCs: 1 Nodes: 127119)
%
% Variables   : 129328 (Eliminated:    0 Frozen: 127123)
% Constraints : 504573 (Binary: 74.4% Ternary: 25.2% Other:  0.4%)
% Lemmas      : 2402   (Binary:  3.5% Ternary: 13.1% Other: 83.5%)
%   Conflict  : 336    (Average Length: 1201.5)
%   Loop      : 2066   (Average Length: 7.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

Two Orders of Magnitude!

% Define mutual reachability

reachable(X1,Y1,X2,Y2) :- adjacent(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),

not blackOut(X1,Y1), not blackOut(X2,Y2).

reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X2,Y2,X3,Y3),

(X1,Y1) < (X3,Y3), not blackOut(X3,Y3).

reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X1,Y1,X3,Y3),

(X2,Y2) < (X3,Y3), not blackOut(X3,Y3).

+ grounding size: O(86)
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_6.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2),
                           (X1,Y1) < (X2,Y2).
% BEFORE
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X3,Y3,X2,Y2), (X1,Y1) < (X3,Y3).
% reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X1,Y1,X3,Y3), (X2,Y2) < (X3,Y3).
% AFTER
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X2,Y2,X3,Y3), not blackOut(X3,Y3),
                          (X1,Y1) < (X3,Y3).
reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X1,Y1,X3,Y3), not blackOut(X3,Y3),
                          (X2,Y2) < (X3,Y3).

% Can't have mutually unreachable non-black squares
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_6.lp instance.lp -t | wc
% 9686   22977  549470

% Solving statistics
%
% $ gringo-3.0.3 hitori_6.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 0.093s (Solving: 0.02s 1st Model: 0.01s Unsat: 0.00s)
% CPU Time    : 0.040s
% Choices     : 72
% Conflicts   : 38
% Restarts    : 0
%
% Atoms       : 2404
% Rules       : 9718   (1: 9651 2: 3 3: 64)
% Bodies      : 9187
% Equivalences: 664    (Atom=Atom: 305 Body=Body: 18 Other: 341)
% Tight       : No     (SCCs: 62 Nodes: 9020)
%
% Variables   : 11231  (Eliminated:    0 Frozen: 9024)
% Constraints : 32234  (Binary: 65.8% Ternary: 28.4% Other:  5.9%)
% Lemmas      : 472    (Binary:  3.0% Ternary:  0.4% Other: 96.6%)
%   Conflict  : 28     (Average Length: 1.9)
%   Loop      : 444    (Average Length: 7.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

Two Orders of Magnitude!

% Define mutual reachability

reachable(X1,Y1,X2,Y2) :- adjacent(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),

not blackOut(X1,Y1), not blackOut(X2,Y2).

reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X2,Y2,X3,Y3),

(X1,Y1) < (X3,Y3), not blackOut(X3,Y3).

reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X1,Y1,X3,Y3),

(X2,Y2) < (X3,Y3), not blackOut(X3,Y3).

+ grounding size: O(84)
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_6.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2),
                           (X1,Y1) < (X2,Y2).
% BEFORE
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X3,Y3,X2,Y2), (X1,Y1) < (X3,Y3).
% reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X1,Y1,X3,Y3), (X2,Y2) < (X3,Y3).
% AFTER
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X2,Y2,X3,Y3), not blackOut(X3,Y3),
                          (X1,Y1) < (X3,Y3).
reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X1,Y1,X3,Y3), not blackOut(X3,Y3),
                          (X2,Y2) < (X3,Y3).

% Can't have mutually unreachable non-black squares
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_6.lp instance.lp -t | wc
% 9686   22977  549470

% Solving statistics
%
% $ gringo-3.0.3 hitori_6.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 0.093s (Solving: 0.02s 1st Model: 0.01s Unsat: 0.00s)
% CPU Time    : 0.040s
% Choices     : 72
% Conflicts   : 38
% Restarts    : 0
%
% Atoms       : 2404
% Rules       : 9718   (1: 9651 2: 3 3: 64)
% Bodies      : 9187
% Equivalences: 664    (Atom=Atom: 305 Body=Body: 18 Other: 341)
% Tight       : No     (SCCs: 62 Nodes: 9020)
%
% Variables   : 11231  (Eliminated:    0 Frozen: 9024)
% Constraints : 32234  (Binary: 65.8% Ternary: 28.4% Other:  5.9%)
% Lemmas      : 472    (Binary:  3.0% Ternary:  0.4% Other: 96.6%)
%   Conflict  : 28     (Average Length: 1.9)
%   Loop      : 444    (Average Length: 7.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

A First Breakthrough

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 4.054s (Solving: 3.07s 1st Model: 3.07s Unsat: 0.00s)

CPU Time : 3.810s

Choices : 438

Conflicts : 318

Restarts : 2

Variables : 129328

Constraints : 504573
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_5.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
% BEFORE
% reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2).
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).
% AFTER
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2),
                           (X1,Y1) < (X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X3,Y3,X2,Y2), (X1,Y1) < (X3,Y3).
reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X1,Y1,X3,Y3), (X2,Y2) < (X3,Y3).

% Can't have mutually unreachable non-black squares
% BEFORE
%  :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2),
%     state(X1,Y1,_), state(X2,Y2,_).
% AFTER
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_5.lp instance.lp -t | wc
% 127734  134081 7521246

% Solving statistics
%
% $ gringo-3.0.3 hitori_5.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 4.221s (Solving: 3.18s 1st Model: 3.02s Unsat: 0.16s)
% CPU Time    : 3.930s
% Choices     : 453
% Conflicts   : 336
% Restarts    : 2
%
% Atoms       : 2404
% Rules       : 127766 (1: 127699 2: 3 3: 64)
% Bodies      : 127284
% Equivalences: 664    (Atom=Atom: 305 Body=Body: 18 Other: 341)
% Tight       : No     (SCCs: 1 Nodes: 127119)
%
% Variables   : 129328 (Eliminated:    0 Frozen: 127123)
% Constraints : 504573 (Binary: 74.4% Ternary: 25.2% Other:  0.4%)
% Lemmas      : 2402   (Binary:  3.5% Ternary: 13.1% Other: 83.5%)
%   Conflict  : 336    (Average Length: 1201.5)
%   Loop      : 2066   (Average Length: 7.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

A First Breakthrough

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 4.054s (Solving: 3.07s 1st Model: 3.07s Unsat: 0.00s)

CPU Time : 3.810s

Choices : 438

Conflicts : 318

Restarts : 2

Variables : 129328

Constraints : 504573
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_6.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2),
                           (X1,Y1) < (X2,Y2).
% BEFORE
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X3,Y3,X2,Y2), (X1,Y1) < (X3,Y3).
% reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X1,Y1,X3,Y3), (X2,Y2) < (X3,Y3).
% AFTER
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X2,Y2,X3,Y3), not blackOut(X3,Y3),
                          (X1,Y1) < (X3,Y3).
reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X1,Y1,X3,Y3), not blackOut(X3,Y3),
                          (X2,Y2) < (X3,Y3).

% Can't have mutually unreachable non-black squares
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_6.lp instance.lp -t | wc
% 9686   22977  549470

% Solving statistics
%
% $ gringo-3.0.3 hitori_6.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 0.093s (Solving: 0.02s 1st Model: 0.01s Unsat: 0.00s)
% CPU Time    : 0.040s
% Choices     : 72
% Conflicts   : 38
% Restarts    : 0
%
% Atoms       : 2404
% Rules       : 9718   (1: 9651 2: 3 3: 64)
% Bodies      : 9187
% Equivalences: 664    (Atom=Atom: 305 Body=Body: 18 Other: 341)
% Tight       : No     (SCCs: 62 Nodes: 9020)
%
% Variables   : 11231  (Eliminated:    0 Frozen: 9024)
% Constraints : 32234  (Binary: 65.8% Ternary: 28.4% Other:  5.9%)
% Lemmas      : 472    (Binary:  3.0% Ternary:  0.4% Other: 96.6%)
%   Conflict  : 28     (Average Length: 1.9)
%   Loop      : 444    (Average Length: 7.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

A First Breakthrough

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 0.093s (Solving: 0.01s 1st Model: 0.01s Unsat: 0.00s)

CPU Time : 0.040s

Choices : 64

Conflicts : 23

Restarts : 0

Variables : 11231

Constraints : 32234
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_6.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2),
                           (X1,Y1) < (X2,Y2).
% BEFORE
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X3,Y3,X2,Y2), (X1,Y1) < (X3,Y3).
% reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X1,Y1,X3,Y3), (X2,Y2) < (X3,Y3).
% AFTER
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X2,Y2,X3,Y3), not blackOut(X3,Y3),
                          (X1,Y1) < (X3,Y3).
reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X1,Y1,X3,Y3), not blackOut(X3,Y3),
                          (X2,Y2) < (X3,Y3).

% Can't have mutually unreachable non-black squares
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_6.lp instance.lp -t | wc
% 9686   22977  549470

% Solving statistics
%
% $ gringo-3.0.3 hitori_6.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 0.093s (Solving: 0.02s 1st Model: 0.01s Unsat: 0.00s)
% CPU Time    : 0.040s
% Choices     : 72
% Conflicts   : 38
% Restarts    : 0
%
% Atoms       : 2404
% Rules       : 9718   (1: 9651 2: 3 3: 64)
% Bodies      : 9187
% Equivalences: 664    (Atom=Atom: 305 Body=Body: 18 Other: 341)
% Tight       : No     (SCCs: 62 Nodes: 9020)
%
% Variables   : 11231  (Eliminated:    0 Frozen: 9024)
% Constraints : 32234  (Binary: 65.8% Ternary: 28.4% Other:  5.9%)
% Lemmas      : 472    (Binary:  3.0% Ternary:  0.4% Other: 96.6%)
%   Conflict  : 28     (Average Length: 1.9)
%   Loop      : 444    (Average Length: 7.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

Let’s Think a Bit More

reachable(X1,Y1,X2,Y2) :- adjacent(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),

not blackOut(X1,Y1), not blackOut(X2,Y2).

reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X2,Y2,X3,Y3),

(X1,Y1) < (X3,Y3), not blackOut(X3,Y3).

reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X1,Y1,X3,Y3),

(X2,Y2) < (X3,Y3), not blackOut(X3,Y3).

% Can’t have unreachable non-black square

:- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2),

(X1,Y1) < (X2,Y2), state(X1,Y1,_), state(X2,Y2,_).

Q: How many squares adjacent to (1,1)

can possibly be black?

A:
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_6.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2),
                           (X1,Y1) < (X2,Y2).
% BEFORE
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X3,Y3,X2,Y2), (X1,Y1) < (X3,Y3).
% reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X1,Y1,X3,Y3), (X2,Y2) < (X3,Y3).
% AFTER
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X2,Y2,X3,Y3), not blackOut(X3,Y3),
                          (X1,Y1) < (X3,Y3).
reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X1,Y1,X3,Y3), not blackOut(X3,Y3),
                          (X2,Y2) < (X3,Y3).

% Can't have mutually unreachable non-black squares
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_6.lp instance.lp -t | wc
% 9686   22977  549470

% Solving statistics
%
% $ gringo-3.0.3 hitori_6.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 0.093s (Solving: 0.02s 1st Model: 0.01s Unsat: 0.00s)
% CPU Time    : 0.040s
% Choices     : 72
% Conflicts   : 38
% Restarts    : 0
%
% Atoms       : 2404
% Rules       : 9718   (1: 9651 2: 3 3: 64)
% Bodies      : 9187
% Equivalences: 664    (Atom=Atom: 305 Body=Body: 18 Other: 341)
% Tight       : No     (SCCs: 62 Nodes: 9020)
%
% Variables   : 11231  (Eliminated:    0 Frozen: 9024)
% Constraints : 32234  (Binary: 65.8% Ternary: 28.4% Other:  5.9%)
% Lemmas      : 472    (Binary:  3.0% Ternary:  0.4% Other: 96.6%)
%   Conflict  : 28     (Average Length: 1.9)
%   Loop      : 444    (Average Length: 7.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

Let’s Think a Bit More

reachable(X1,Y1,X2,Y2) :- adjacent(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),

not blackOut(X1,Y1), not blackOut(X2,Y2).

reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X2,Y2,X3,Y3),

(X1,Y1) < (X3,Y3), not blackOut(X3,Y3).

reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X1,Y1,X3,Y3),

(X2,Y2) < (X3,Y3), not blackOut(X3,Y3).

% Can’t have unreachable non-black square

:- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2),

(X1,Y1) < (X2,Y2), state(X1,Y1,_), state(X2,Y2,_).

Q: How many squares adjacent to (1,1)

can possibly be black?

A: At most one!
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_6.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2),
                           (X1,Y1) < (X2,Y2).
% BEFORE
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X3,Y3,X2,Y2), (X1,Y1) < (X3,Y3).
% reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X1,Y1,X3,Y3), (X2,Y2) < (X3,Y3).
% AFTER
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X2,Y2,X3,Y3), not blackOut(X3,Y3),
                          (X1,Y1) < (X3,Y3).
reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X1,Y1,X3,Y3), not blackOut(X3,Y3),
                          (X2,Y2) < (X3,Y3).

% Can't have mutually unreachable non-black squares
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_6.lp instance.lp -t | wc
% 9686   22977  549470

% Solving statistics
%
% $ gringo-3.0.3 hitori_6.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 0.093s (Solving: 0.02s 1st Model: 0.01s Unsat: 0.00s)
% CPU Time    : 0.040s
% Choices     : 72
% Conflicts   : 38
% Restarts    : 0
%
% Atoms       : 2404
% Rules       : 9718   (1: 9651 2: 3 3: 64)
% Bodies      : 9187
% Equivalences: 664    (Atom=Atom: 305 Body=Body: 18 Other: 341)
% Tight       : No     (SCCs: 62 Nodes: 9020)
%
% Variables   : 11231  (Eliminated:    0 Frozen: 9024)
% Constraints : 32234  (Binary: 65.8% Ternary: 28.4% Other:  5.9%)
% Lemmas      : 472    (Binary:  3.0% Ternary:  0.4% Other: 96.6%)
%   Conflict  : 28     (Average Length: 1.9)
%   Loop      : 444    (Average Length: 7.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

Let’s Think a Bit More

reachable(1,1).

reachable(X2,Y2) :- reachable(X1,Y1), adjacent(X1,Y1,X2,Y2), not blackOut(X2,Y2).

% Can’t have unreachable non-black square

:- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2),

(X1,Y1) < (X2,Y2), state(X1,Y1,_), state(X2,Y2,_).

Q: How many squares adjacent to (1,1)

can possibly be black?

A: At most one!
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_6.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2),
                           (X1,Y1) < (X2,Y2).
% BEFORE
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X3,Y3,X2,Y2), (X1,Y1) < (X3,Y3).
% reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X1,Y1,X3,Y3), (X2,Y2) < (X3,Y3).
% AFTER
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X2,Y2,X3,Y3), not blackOut(X3,Y3),
                          (X1,Y1) < (X3,Y3).
reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X1,Y1,X3,Y3), not blackOut(X3,Y3),
                          (X2,Y2) < (X3,Y3).

% Can't have mutually unreachable non-black squares
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_6.lp instance.lp -t | wc
% 9686   22977  549470

% Solving statistics
%
% $ gringo-3.0.3 hitori_6.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 0.093s (Solving: 0.02s 1st Model: 0.01s Unsat: 0.00s)
% CPU Time    : 0.040s
% Choices     : 72
% Conflicts   : 38
% Restarts    : 0
%
% Atoms       : 2404
% Rules       : 9718   (1: 9651 2: 3 3: 64)
% Bodies      : 9187
% Equivalences: 664    (Atom=Atom: 305 Body=Body: 18 Other: 341)
% Tight       : No     (SCCs: 62 Nodes: 9020)
%
% Variables   : 11231  (Eliminated:    0 Frozen: 9024)
% Constraints : 32234  (Binary: 65.8% Ternary: 28.4% Other:  5.9%)
% Lemmas      : 472    (Binary:  3.0% Ternary:  0.4% Other: 96.6%)
%   Conflict  : 28     (Average Length: 1.9)
%   Loop      : 444    (Average Length: 7.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

Let’s Think a Bit More

reachable(1,1).

reachable(X2,Y2) :- reachable(X1,Y1), adjacent(X1,Y1,X2,Y2), not blackOut(X2,Y2).

% Can’t have unreachable non-black square

:- state(X,Y,_), not blackOut(X,Y), not reachable(X,Y).

Q: How many squares adjacent to (1,1)

can possibly be black?

A: At most one!
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_7.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% BEFORE
% Define mutual reachability
% reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2),
%                            (X1,Y1) < (X2,Y2).
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X2,Y2,X3,Y3), not blackOut(X3,Y3),
%                           (X1,Y1) < (X3,Y3).
% reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X1,Y1,X3,Y3), not blackOut(X3,Y3),
%                           (X2,Y2) < (X3,Y3).
% AFTER
% Define reachability
reachable(1,1).
reachable(X2,Y2) :- reachable(X1,Y1), adjacent(X1,Y1,X2,Y2), not blackOut(X2,Y2).

% BEFORE
% Can't have mutually unreachable non-black squares
%  :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),
%     state(X1,Y1,_), state(X2,Y2,_).
% AFTER
% Can't have unreachable non-black square
 :- state(X,Y,_), not blackOut(X,Y), not reachable(X,Y).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_7.lp instance.lp -t | wc
% 900    1323   28948

% Solving statistics
%
% $ gringo-3.0.3 hitori_7.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
% CPU Time    : 0.000s
% Choices     : 79
% Conflicts   : 32
% Restarts    : 0
%
% Atoms       : 452
% Rules       : 932    (1: 865 2: 3 3: 64)
% Bodies      : 450
% Equivalences: 670    (Atom=Atom: 306 Body=Body: 18 Other: 346)
% Tight       : No     (SCCs: 1 Nodes: 285)
%
% Variables   : 539    (Eliminated:    0 Frozen:  289)
% Constraints : 1137   (Binary: 75.0% Ternary: 19.6% Other:  5.4%)
% Lemmas      : 27     (Binary: 44.4% Ternary:  3.7% Other: 51.9%)
%   Conflict  : 27     (Average Length: 8.7)
%   Loop      : 0      (Average Length: 0.0)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

Not That Much Left to Save

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 0.093s (Solving: 0.01s 1st Model: 0.01s Unsat: 0.00s)

CPU Time : 0.040s

Choices : 64

Conflicts : 23

Restarts : 0

Variables : 11231

Constraints : 32234
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_6.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2),
                           (X1,Y1) < (X2,Y2).
% BEFORE
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X3,Y3,X2,Y2), (X1,Y1) < (X3,Y3).
% reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X1,Y1,X3,Y3), (X2,Y2) < (X3,Y3).
% AFTER
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X2,Y2,X3,Y3), not blackOut(X3,Y3),
                          (X1,Y1) < (X3,Y3).
reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X1,Y1,X3,Y3), not blackOut(X3,Y3),
                          (X2,Y2) < (X3,Y3).

% Can't have mutually unreachable non-black squares
 :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),
    state(X1,Y1,_), state(X2,Y2,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_6.lp instance.lp -t | wc
% 9686   22977  549470

% Solving statistics
%
% $ gringo-3.0.3 hitori_6.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 0.093s (Solving: 0.02s 1st Model: 0.01s Unsat: 0.00s)
% CPU Time    : 0.040s
% Choices     : 72
% Conflicts   : 38
% Restarts    : 0
%
% Atoms       : 2404
% Rules       : 9718   (1: 9651 2: 3 3: 64)
% Bodies      : 9187
% Equivalences: 664    (Atom=Atom: 305 Body=Body: 18 Other: 341)
% Tight       : No     (SCCs: 62 Nodes: 9020)
%
% Variables   : 11231  (Eliminated:    0 Frozen: 9024)
% Constraints : 32234  (Binary: 65.8% Ternary: 28.4% Other:  5.9%)
% Lemmas      : 472    (Binary:  3.0% Ternary:  0.4% Other: 96.6%)
%   Conflict  : 28     (Average Length: 1.9)
%   Loop      : 444    (Average Length: 7.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

Not That Much Left to Save

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 0.093s (Solving: 0.01s 1st Model: 0.01s Unsat: 0.00s)

CPU Time : 0.040s

Choices : 64

Conflicts : 23

Restarts : 0

Variables : 11231

Constraints : 32234
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_7.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% BEFORE
% Define mutual reachability
% reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2),
%                            (X1,Y1) < (X2,Y2).
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X2,Y2,X3,Y3), not blackOut(X3,Y3),
%                           (X1,Y1) < (X3,Y3).
% reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X1,Y1,X3,Y3), not blackOut(X3,Y3),
%                           (X2,Y2) < (X3,Y3).
% AFTER
% Define reachability
reachable(1,1).
reachable(X2,Y2) :- reachable(X1,Y1), adjacent(X1,Y1,X2,Y2), not blackOut(X2,Y2).

% BEFORE
% Can't have mutually unreachable non-black squares
%  :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),
%     state(X1,Y1,_), state(X2,Y2,_).
% AFTER
% Can't have unreachable non-black square
 :- state(X,Y,_), not blackOut(X,Y), not reachable(X,Y).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_7.lp instance.lp -t | wc
% 900    1323   28948

% Solving statistics
%
% $ gringo-3.0.3 hitori_7.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
% CPU Time    : 0.000s
% Choices     : 79
% Conflicts   : 32
% Restarts    : 0
%
% Atoms       : 452
% Rules       : 932    (1: 865 2: 3 3: 64)
% Bodies      : 450
% Equivalences: 670    (Atom=Atom: 306 Body=Body: 18 Other: 346)
% Tight       : No     (SCCs: 1 Nodes: 285)
%
% Variables   : 539    (Eliminated:    0 Frozen:  289)
% Constraints : 1137   (Binary: 75.0% Ternary: 19.6% Other:  5.4%)
% Lemmas      : 27     (Binary: 44.4% Ternary:  3.7% Other: 51.9%)
%   Conflict  : 27     (Average Length: 8.7)
%   Loop      : 0      (Average Length: 0.0)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

Not That Much Left to Save

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 77

Conflicts : 25

Restarts : 0

Variables : 539

Constraints : 1137
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_7.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% BEFORE
% Define mutual reachability
% reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2),
%                            (X1,Y1) < (X2,Y2).
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X2,Y2,X3,Y3), not blackOut(X3,Y3),
%                           (X1,Y1) < (X3,Y3).
% reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X1,Y1,X3,Y3), not blackOut(X3,Y3),
%                           (X2,Y2) < (X3,Y3).
% AFTER
% Define reachability
reachable(1,1).
reachable(X2,Y2) :- reachable(X1,Y1), adjacent(X1,Y1,X2,Y2), not blackOut(X2,Y2).

% BEFORE
% Can't have mutually unreachable non-black squares
%  :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),
%     state(X1,Y1,_), state(X2,Y2,_).
% AFTER
% Can't have unreachable non-black square
 :- state(X,Y,_), not blackOut(X,Y), not reachable(X,Y).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_7.lp instance.lp -t | wc
% 900    1323   28948

% Solving statistics
%
% $ gringo-3.0.3 hitori_7.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
% CPU Time    : 0.000s
% Choices     : 79
% Conflicts   : 32
% Restarts    : 0
%
% Atoms       : 452
% Rules       : 932    (1: 865 2: 3 3: 64)
% Bodies      : 450
% Equivalences: 670    (Atom=Atom: 306 Body=Body: 18 Other: 346)
% Tight       : No     (SCCs: 1 Nodes: 285)
%
% Variables   : 539    (Eliminated:    0 Frozen:  289)
% Constraints : 1137   (Binary: 75.0% Ternary: 19.6% Other:  5.4%)
% Lemmas      : 27     (Binary: 44.4% Ternary:  3.7% Other: 51.9%)
%   Conflict  : 27     (Average Length: 8.7)
%   Loop      : 0      (Average Length: 0.0)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

Let’s Reach All Squares (Anyway)

% Define reachability

reachable(1,1).

reachable(X2,Y2) :- reachable(X1,Y1), adjacent(X1,Y1,X2,Y2), not blackOut(X2,Y2).

% Can’t have unreachable non-black square

:- state(X,Y,_), not blackOut(X,Y), not reachable(X,Y).

+ require all white squares to be reached
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_7.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% BEFORE
% Define mutual reachability
% reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2),
%                            (X1,Y1) < (X2,Y2).
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X2,Y2,X3,Y3), not blackOut(X3,Y3),
%                           (X1,Y1) < (X3,Y3).
% reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X1,Y1,X3,Y3), not blackOut(X3,Y3),
%                           (X2,Y2) < (X3,Y3).
% AFTER
% Define reachability
reachable(1,1).
reachable(X2,Y2) :- reachable(X1,Y1), adjacent(X1,Y1,X2,Y2), not blackOut(X2,Y2).

% BEFORE
% Can't have mutually unreachable non-black squares
%  :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),
%     state(X1,Y1,_), state(X2,Y2,_).
% AFTER
% Can't have unreachable non-black square
 :- state(X,Y,_), not blackOut(X,Y), not reachable(X,Y).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_7.lp instance.lp -t | wc
% 900    1323   28948

% Solving statistics
%
% $ gringo-3.0.3 hitori_7.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
% CPU Time    : 0.000s
% Choices     : 79
% Conflicts   : 32
% Restarts    : 0
%
% Atoms       : 452
% Rules       : 932    (1: 865 2: 3 3: 64)
% Bodies      : 450
% Equivalences: 670    (Atom=Atom: 306 Body=Body: 18 Other: 346)
% Tight       : No     (SCCs: 1 Nodes: 285)
%
% Variables   : 539    (Eliminated:    0 Frozen:  289)
% Constraints : 1137   (Binary: 75.0% Ternary: 19.6% Other:  5.4%)
% Lemmas      : 27     (Binary: 44.4% Ternary:  3.7% Other: 51.9%)
%   Conflict  : 27     (Average Length: 8.7)
%   Loop      : 0      (Average Length: 0.0)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

Let’s Reach All Squares (Anyway)

% Define reachability

reachable(1,1). reachable(1,2).

reachable(X2,Y2) :- reachable(X1,Y1), adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1).

% Can’t have unreachable non-black square

:- state(X,Y,_), not blackOut(X,Y), not reachable(X,Y).

+ require all white squares to be reached
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_7.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% BEFORE
% Define mutual reachability
% reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2),
%                            (X1,Y1) < (X2,Y2).
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X2,Y2,X3,Y3), not blackOut(X3,Y3),
%                           (X1,Y1) < (X3,Y3).
% reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X1,Y1,X3,Y3), not blackOut(X3,Y3),
%                           (X2,Y2) < (X3,Y3).
% AFTER
% Define reachability
reachable(1,1).
reachable(X2,Y2) :- reachable(X1,Y1), adjacent(X1,Y1,X2,Y2), not blackOut(X2,Y2).

% BEFORE
% Can't have mutually unreachable non-black squares
%  :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),
%     state(X1,Y1,_), state(X2,Y2,_).
% AFTER
% Can't have unreachable non-black square
 :- state(X,Y,_), not blackOut(X,Y), not reachable(X,Y).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_7.lp instance.lp -t | wc
% 900    1323   28948

% Solving statistics
%
% $ gringo-3.0.3 hitori_7.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
% CPU Time    : 0.000s
% Choices     : 79
% Conflicts   : 32
% Restarts    : 0
%
% Atoms       : 452
% Rules       : 932    (1: 865 2: 3 3: 64)
% Bodies      : 450
% Equivalences: 670    (Atom=Atom: 306 Body=Body: 18 Other: 346)
% Tight       : No     (SCCs: 1 Nodes: 285)
%
% Variables   : 539    (Eliminated:    0 Frozen:  289)
% Constraints : 1137   (Binary: 75.0% Ternary: 19.6% Other:  5.4%)
% Lemmas      : 27     (Binary: 44.4% Ternary:  3.7% Other: 51.9%)
%   Conflict  : 27     (Average Length: 8.7)
%   Loop      : 0      (Average Length: 0.0)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

Let’s Reach All Squares (Anyway)

% Define reachability

reachable(1,1). reachable(1,2).

reachable(X2,Y2) :- reachable(X1,Y1), adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1).

% Can’t have unreachable square

:- state(X,Y,_), not reachable(X,Y).

+ require all white squares to be reached
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_8.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define reachability
reachable(1,1).
% BEFORE
% reachable(X2,Y2) :- reachable(X1,Y1), adjacent(X1,Y1,X2,Y2), not blackOut(X2,Y2).
% AFTER
reachable(1,2).
reachable(X2,Y2) :- reachable(X1,Y1), adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1).

% BEFORE
% Can't have unreachable non-black square
%  :- state(X,Y,_), not blackOut(X,Y), not reachable(X,Y).
% AFTER
% Can't have unreachable square
 :- state(X,Y,_), not reachable(X,Y).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_8.lp instance.lp -t | wc
% 897    1253   27643

% Solving statistics
%
% $ gringo-3.0.3 hitori_8.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 0.003s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
% CPU Time    : 0.000s
% Choices     : 16
% Conflicts   : 9
% Restarts    : 0
%
% Atoms       : 452
% Rules       : 929    (1: 862 2: 3 3: 64)
% Bodies      : 291
% Equivalences: 796    (Atom=Atom: 307 Body=Body: 18 Other: 471)
% Tight       : No     (SCCs: 1 Nodes: 126)
%
% Variables   : 317    (Eliminated:    0 Frozen:  130)
% Constraints : 315    (Binary: 81.0% Ternary:  7.3% Other: 11.7%)
% Lemmas      : 6      (Binary:  0.0% Ternary: 16.7% Other: 83.3%)
%   Conflict  : 6      (Average Length: 4.7)
%   Loop      : 0      (Average Length: 0.0)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

The Final Result

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 77

Conflicts : 25

Restarts : 0

Variables : 539

Constraints : 1137
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_7.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% BEFORE
% Define mutual reachability
% reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1), not blackOut(X2,Y2),
%                            (X1,Y1) < (X2,Y2).
% reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X2,Y2,X3,Y3), not blackOut(X3,Y3),
%                           (X1,Y1) < (X3,Y3).
% reachable(X2,Y2,X3,Y3) :- reachable(X1,Y1,X2,Y2), adjacent(X1,Y1,X3,Y3), not blackOut(X3,Y3),
%                           (X2,Y2) < (X3,Y3).
% AFTER
% Define reachability
reachable(1,1).
reachable(X2,Y2) :- reachable(X1,Y1), adjacent(X1,Y1,X2,Y2), not blackOut(X2,Y2).

% BEFORE
% Can't have mutually unreachable non-black squares
%  :- not blackOut(X1,Y1), not blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) < (X2,Y2),
%     state(X1,Y1,_), state(X2,Y2,_).
% AFTER
% Can't have unreachable non-black square
 :- state(X,Y,_), not blackOut(X,Y), not reachable(X,Y).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_7.lp instance.lp -t | wc
% 900    1323   28948

% Solving statistics
%
% $ gringo-3.0.3 hitori_7.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
% CPU Time    : 0.000s
% Choices     : 79
% Conflicts   : 32
% Restarts    : 0
%
% Atoms       : 452
% Rules       : 932    (1: 865 2: 3 3: 64)
% Bodies      : 450
% Equivalences: 670    (Atom=Atom: 306 Body=Body: 18 Other: 346)
% Tight       : No     (SCCs: 1 Nodes: 285)
%
% Variables   : 539    (Eliminated:    0 Frozen:  289)
% Constraints : 1137   (Binary: 75.0% Ternary: 19.6% Other:  5.4%)
% Lemmas      : 27     (Binary: 44.4% Ternary:  3.7% Other: 51.9%)
%   Conflict  : 27     (Average Length: 8.7)
%   Loop      : 0      (Average Length: 0.0)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

The Final Result

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 77

Conflicts : 25

Restarts : 0

Variables : 539

Constraints : 1137

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 420 / 453


%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_8.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define reachability
reachable(1,1).
% BEFORE
% reachable(X2,Y2) :- reachable(X1,Y1), adjacent(X1,Y1,X2,Y2), not blackOut(X2,Y2).
% AFTER
reachable(1,2).
reachable(X2,Y2) :- reachable(X1,Y1), adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1).

% BEFORE
% Can't have unreachable non-black square
%  :- state(X,Y,_), not blackOut(X,Y), not reachable(X,Y).
% AFTER
% Can't have unreachable square
 :- state(X,Y,_), not reachable(X,Y).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_8.lp instance.lp -t | wc
% 897    1253   27643

% Solving statistics
%
% $ gringo-3.0.3 hitori_8.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 0.003s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
% CPU Time    : 0.000s
% Choices     : 16
% Conflicts   : 9
% Restarts    : 0
%
% Atoms       : 452
% Rules       : 929    (1: 862 2: 3 3: 64)
% Bodies      : 291
% Equivalences: 796    (Atom=Atom: 307 Body=Body: 18 Other: 471)
% Tight       : No     (SCCs: 1 Nodes: 126)
%
% Variables   : 317    (Eliminated:    0 Frozen:  130)
% Constraints : 315    (Binary: 81.0% Ternary:  7.3% Other: 11.7%)
% Lemmas      : 6      (Binary:  0.0% Ternary: 16.7% Other: 83.3%)
%   Conflict  : 6      (Average Length: 4.7)
%   Loop      : 0      (Average Length: 0.0)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

The Final Result

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 16

Conflicts : 5

Restarts : 0

Variables : 317

Constraints : 315
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_8.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define reachability
reachable(1,1).
% BEFORE
% reachable(X2,Y2) :- reachable(X1,Y1), adjacent(X1,Y1,X2,Y2), not blackOut(X2,Y2).
% AFTER
reachable(1,2).
reachable(X2,Y2) :- reachable(X1,Y1), adjacent(X1,Y1,X2,Y2), not blackOut(X1,Y1).

% BEFORE
% Can't have unreachable non-black square
%  :- state(X,Y,_), not blackOut(X,Y), not reachable(X,Y).
% AFTER
% Can't have unreachable square
 :- state(X,Y,_), not reachable(X,Y).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_8.lp instance.lp -t | wc
% 897    1253   27643

% Solving statistics
%
% $ gringo-3.0.3 hitori_8.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 0.003s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
% CPU Time    : 0.000s
% Choices     : 16
% Conflicts   : 9
% Restarts    : 0
%
% Atoms       : 452
% Rules       : 929    (1: 862 2: 3 3: 64)
% Bodies      : 291
% Equivalences: 796    (Atom=Atom: 307 Body=Body: 18 Other: 471)
% Tight       : No     (SCCs: 1 Nodes: 126)
%
% Variables   : 317    (Eliminated:    0 Frozen:  130)
% Constraints : 315    (Binary: 81.0% Ternary:  7.3% Other: 11.7%)
% Lemmas      : 6      (Binary:  0.0% Ternary: 16.7% Other: 83.3%)
%   Conflict  : 6      (Average Length: 4.7)
%   Loop      : 0      (Average Length: 0.0)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

The Final Encoding (Pretty-Printed) I

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (A) Adjacent grid locations %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)

adjacent(X,Y,X+1,Y) :- state(X,Y,_;;X+1,Y,_).

adjacent(X,Y,X,Y+1) :- state(X,Y,_;;X,Y+1,_).

adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (B) Generate solution candidate %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal

{ blackOut(X,Y) } :- state(X,Y,_).
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_9.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_;;X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_;;X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1;;X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define reachability
reachable(1,1).
reachable(1,2).
reachable(X2,Y2) :- reachable(X1,Y1), adjacent(X1,Y1,X2,Y2),
                    not blackOut(X1,Y1).

% Can't have unreachable square
 :- state(X,Y,_), not reachable(X,Y).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_9.lp instance.lp -t | wc
% 897    1253   27643

% Solving statistics
%
% $ gringo-3.0.3 hitori_9.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 0.003s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
% CPU Time    : 0.000s
% Choices     : 16
% Conflicts   : 9
% Restarts    : 0
%
% Atoms       : 452
% Rules       : 929    (1: 862 2: 3 3: 64)
% Bodies      : 291
% Equivalences: 796    (Atom=Atom: 307 Body=Body: 18 Other: 471)
% Tight       : No     (SCCs: 1 Nodes: 126)
%
% Variables   : 317    (Eliminated:    0 Frozen:  130)
% Constraints : 315    (Binary: 81.0% Ternary:  7.3% Other: 11.7%)
% Lemmas      : 6      (Binary:  0.0% Ternary: 16.7% Other: 83.3%)
%   Conflict  : 6      (Average Length: 4.7)
%   Loop      : 0      (Average Length: 0.0)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

The Final Encoding (Pretty-Printed) II

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (C.1) Test eliminating adjacent blanks %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can’t have adjacent black squares

:- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1;;X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (C.2) Tests eliminating number recurrences %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can’t have the same number twice in the same row or column

:- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.

:- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_9.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_;;X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_;;X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1;;X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define reachability
reachable(1,1).
reachable(1,2).
reachable(X2,Y2) :- reachable(X1,Y1), adjacent(X1,Y1,X2,Y2),
                    not blackOut(X1,Y1).

% Can't have unreachable square
 :- state(X,Y,_), not reachable(X,Y).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_9.lp instance.lp -t | wc
% 897    1253   27643

% Solving statistics
%
% $ gringo-3.0.3 hitori_9.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 0.003s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
% CPU Time    : 0.000s
% Choices     : 16
% Conflicts   : 9
% Restarts    : 0
%
% Atoms       : 452
% Rules       : 929    (1: 862 2: 3 3: 64)
% Bodies      : 291
% Equivalences: 796    (Atom=Atom: 307 Body=Body: 18 Other: 471)
% Tight       : No     (SCCs: 1 Nodes: 126)
%
% Variables   : 317    (Eliminated:    0 Frozen:  130)
% Constraints : 315    (Binary: 81.0% Ternary:  7.3% Other: 11.7%)
% Lemmas      : 6      (Binary:  0.0% Ternary: 16.7% Other: 83.3%)
%   Conflict  : 6      (Average Length: 4.7)
%   Loop      : 0      (Average Length: 0.0)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

The Final Encoding (Pretty-Printed) III

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (C.3) Test eliminating disconnected numbers %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define reachability

reachable(1,1).

reachable(1,2).

reachable(X2,Y2) :- reachable(X1,Y1), adjacent(X1,Y1,X2,Y2),

not blackOut(X1,Y1).

% Can’t have unreachable square

:- state(X,Y,_), not reachable(X,Y).
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_9.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_;;X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_;;X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1;;X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define reachability
reachable(1,1).
reachable(1,2).
reachable(X2,Y2) :- reachable(X1,Y1), adjacent(X1,Y1,X2,Y2),
                    not blackOut(X1,Y1).

% Can't have unreachable square
 :- state(X,Y,_), not reachable(X,Y).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_9.lp instance.lp -t | wc
% 897    1253   27643

% Solving statistics
%
% $ gringo-3.0.3 hitori_9.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 0.003s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
% CPU Time    : 0.000s
% Choices     : 16
% Conflicts   : 9
% Restarts    : 0
%
% Atoms       : 452
% Rules       : 929    (1: 862 2: 3 3: 64)
% Bodies      : 291
% Equivalences: 796    (Atom=Atom: 307 Body=Body: 18 Other: 471)
% Tight       : No     (SCCs: 1 Nodes: 126)
%
% Variables   : 317    (Eliminated:    0 Frozen:  130)
% Constraints : 315    (Binary: 81.0% Ternary:  7.3% Other: 11.7%)
% Lemmas      : 6      (Binary:  0.0% Ternary: 16.7% Other: 83.3%)
%   Conflict  : 6      (Average Length: 4.7)
%   Loop      : 0      (Average Length: 0.0)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0




Hitori Puzzle

Recall Where We Started

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 13.485s (Solving: 11.77s 1st Model: 11.77s Unsat: 0.00s)

CPU Time : 13.290s

Choices : 458

Conflicts : 323

Restarts : 2

Variables : 260625

Constraints : 1018953
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_0.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_), state(X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_), state(X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
1 { blackOut(X,Y), -blackOut(X,Y) } 1 :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1), blackOut(X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row
 :- state(X1,Y,N), state(X2,Y,N), -blackOut(X1,Y), -blackOut(X2,Y), X1 != X2.

% Can't have the same number twice in the same column
 :- state(X,Y1,N), state(X,Y2,N), -blackOut(X,Y1), -blackOut(X,Y2), Y1 != Y2.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define mutual reachability
reachable(X1,Y1,X2,Y2) :-  adjacent(X1,Y1,X2,Y2), -blackOut(X1,Y1), -blackOut(X2,Y2).
reachable(X1,Y1,X3,Y3) :- reachable(X1,Y1,X2,Y2), reachable(X2,Y2,X3,Y3).

% Can't have mutually unreachable non-black squares
 :- -blackOut(X1,Y1), -blackOut(X2,Y2), not reachable(X1,Y1,X2,Y2), (X1,Y1) != (X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_0.lp instance.lp -t | wc
% 267081  271115 15721710

% Solving statistics
%
% $ gringo-3.0.3 hitori_0.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 15.033s (Solving: 13.19s 1st Model: 11.66s Unsat: 1.52s)
% CPU Time    : 14.780s
% Choices     : 554
% Conflicts   : 408
% Restarts    : 2
%
% Atoms       : 4705
% Rules       : 259270 (1: 259142 2: 64 3: 64)
% Bodies      : 256594
% Equivalences: 895    (Atom=Atom: 351 Body=Body: 64 Other: 480)
% Tight       : No     (SCCs: 1 Nodes: 254126)
%
% Variables   : 260625 (Eliminated:    0 Frozen: 254318)
% Constraints : 1018953 (Binary: 74.5% Ternary: 25.1% Other:  0.4%)
% Lemmas      : 9367   (Binary:  3.8% Ternary: 15.0% Other: 81.3%)
%   Conflict  : 404    (Average Length: 2263.3)
%   Loop      : 8963   (Average Length: 6.2)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).




Hitori Puzzle

And Where We Came

gringo | clasp --stats

Answer: 1

blackOut(1,1) blackOut(1,3) blackOut(1,6) blackOut(2,5)

blackOut(2,7) ... blackOut(8,4) blackOut(8,6)

SATISFIABLE

Models : 1+

Time : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 16

Conflicts : 5

Restarts : 0

Variables : 317

Constraints : 315

The encoding matters!
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%%%%%%%%%%%%
% Preamble %
%%%%%%%%%%%%

% hitori_9.lp
%
% Modified by Martin Gebser on 16 July 2011
% - See COPYING for license


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (A) Adjacent grid locations %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Domain predicate (evaluated upon grounding)
adjacent(X,Y,X+1,Y)   :- state(X,Y,_;;X+1,Y,_).
adjacent(X,Y,X,Y+1)   :- state(X,Y,_;;X,Y+1,_).
adjacent(X2,Y2,X1,Y1) :- adjacent(X1,Y1,X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have adjacent black squares
 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1;;X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Can't have the same number twice in the same row or column
 :- state(X1,Y1,N), 2 { not blackOut(X1,Y2) : state(X1,Y2,N) }.
 :- state(X1,Y1,N), 2 { not blackOut(X2,Y1) : state(X2,Y1,N) }.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.3) Test eliminating disconnected numbers %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define reachability
reachable(1,1).
reachable(1,2).
reachable(X2,Y2) :- reachable(X1,Y1), adjacent(X1,Y1,X2,Y2),
                    not blackOut(X1,Y1).

% Can't have unreachable square
 :- state(X,Y,_), not reachable(X,Y).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_9.lp instance.lp -t | wc
% 897    1253   27643

% Solving statistics
%
% $ gringo-3.0.3 hitori_9.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 0.003s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
% CPU Time    : 0.000s
% Choices     : 16
% Conflicts   : 9
% Restarts    : 0
%
% Atoms       : 452
% Rules       : 929    (1: 862 2: 3 3: 64)
% Bodies      : 291
% Equivalences: 796    (Atom=Atom: 307 Body=Body: 18 Other: 471)
% Tight       : No     (SCCs: 1 Nodes: 126)
%
% Variables   : 317    (Eliminated:    0 Frozen:  130)
% Constraints : 315    (Binary: 81.0% Ternary:  7.3% Other: 11.7%)
% Lemmas      : 6      (Binary:  0.0% Ternary: 16.7% Other: 83.3%)
%   Conflict  : 6      (Average Length: 4.7)
%   Loop      : 0      (Average Length: 0.0)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).
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%%%%%%%%%%%%
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% Modified by Martin Gebser on 16 July 2011
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (B) Generate solution candidate %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Every square is blacked out or normal
{ blackOut(X,Y) } :- state(X,Y,_).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.1) Test eliminating adjacent blanks %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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 :- adjacent(X1,Y1,X2,Y2), blackOut(X1,Y1;;X2,Y2).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (C.2) Tests eliminating number recurrences %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define reachability
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 :- state(X,Y,_), not reachable(X,Y).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (D) Display only atoms characterizing solution %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

#hide.
#show state/3.
#show blackOut/2.


%%%%%%%%%%%%%%%%%%%%%%%%
% Calls and statistics %
%%%%%%%%%%%%%%%%%%%%%%%%

% Grounding size
%
% $ gringo-3.0.3 hitori_9.lp instance.lp -t | wc
% 897    1253   27643

% Solving statistics
%
% $ gringo-3.0.3 hitori_9.lp instance.lp | clasp-2.0.2 0 -q --stats
% clasp version 2.0.2
% Reading from stdin
% Solving...
% SATISFIABLE
%
% Models      : 1
% Time        : 0.003s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
% CPU Time    : 0.000s
% Choices     : 16
% Conflicts   : 9
% Restarts    : 0
%
% Atoms       : 452
% Rules       : 929    (1: 862 2: 3 3: 64)
% Bodies      : 291
% Equivalences: 796    (Atom=Atom: 307 Body=Body: 18 Other: 471)
% Tight       : No     (SCCs: 1 Nodes: 126)
%
% Variables   : 317    (Eliminated:    0 Frozen:  130)
% Constraints : 315    (Binary: 81.0% Ternary:  7.3% Other: 11.7%)
% Lemmas      : 6      (Binary:  0.0% Ternary: 16.7% Other: 83.3%)
%   Conflict  : 6      (Average Length: 4.7)
%   Loop      : 0      (Average Length: 0.0)
%   Other     : 0      (Average Length: 0.0)
%   Deleted   : 0



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Facts of form state(X,Y,N) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

state(1,1,4).
state(1,2,3).
state(1,3,2).
state(1,4,4).
state(1,5,7).
state(1,6,3).
state(1,7,6).
state(1,8,8).

state(2,1,8).
state(2,2,6).
state(2,3,3).
state(2,4,1).
state(2,5,2).
state(2,6,5).
state(2,7,4).
state(2,8,7).

state(3,1,1).
state(3,2,7).
state(3,3,4).
state(3,4,6).
state(3,5,3).
state(3,6,6).
state(3,7,2).
state(3,8,1).

state(4,1,6).
state(4,2,2).
state(4,3,8).
state(4,4,5).
state(4,5,1).
state(4,6,7).
state(4,7,3).
state(4,8,4).

state(5,1,3).
state(5,2,1).
state(5,3,2).
state(5,4,7).
state(5,5,8).
state(5,6,3).
state(5,7,5).
state(5,8,2).

state(6,1,2).
state(6,2,6).
state(6,3,8).
state(6,4,7).
state(6,5,5).
state(6,6,1).
state(6,7,4).
state(6,8,3).

state(7,1,5).
state(7,2,5).
state(7,3,6).
state(7,4,3).
state(7,5,1).
state(7,6,8).
state(7,7,7).
state(7,8,5).

state(8,1,7).
state(8,2,4).
state(8,3,1).
state(8,4,5).
state(8,5,2).
state(8,6,4).
state(8,7,8).
state(8,8,6).
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Ramsey Numbers

The Polynomial Time Hierarchy

PSPACE
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Ramsey Numbers

The NPNP Class

What is an NPNP problem?

+ A problem decidable in non-deterministic polynomial time using a
(second) NP oracle

How does this relate to disjunctive logic programs?

1 Guess an answer set candidate for a given disjunctive program
2 Query the NP oracle to verify the guess
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Ramsey Numbers

The Ramsey Problem

Theorem

For two numbers r and b, there exists a least number R(r , b) = n s.t.
every complete graph with n vertices and edges colored either red or blue
contains a complete subgraph (clique) on r vertices whose edges are all
red, or a complete subgraph on b vertices whose edges are all blue.

Contains neither a red nor a blue clique of size 3

+ Shows that R(3, 3) > 5

We will model the problem accordingly

1 Guess a total edge labeling (ASP as usual)
2 Verify that the labeling does not admit a clique of size 3

(disjunctive co-NP tests)
+ Satisfiability if n < R(r , b) is not yet a Ramsey number
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Ramsey Numbers

The Plan

1 Choose some total edge labeling for a complete graph of size n

2 Disjunctive tests to verify that the labeling does not admit a clique

1 Guess subgraphs supposed to form (mono-colored) cliques
2 For each color, derive a special atom if the subgraph is not a clique
3 Derive everything if such a special atom holds
4 Since any answer set is a minimal model of its reduct, some subgraph

that is a clique will be chosen whenever possible

+ A special atom will only be derived if there is no clique

5 We may not use default negation/anti-monotone aggregates in the
disjunctive part

+ Default negation/anti-monotone aggregates are removed in the reduct

3 Fail whenever some special atom could not be derived

+ In case there was a clique
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Ramsey Numbers

Modeling

Helper predicates
col(red,3). col(blue,3).

col(C) :- col(C,N).

Choose a total edge labeling (usual ASP)
1 { col(U,V,C) : col(C) } 1 :- U = 1..n, V = (U+1)..n.

Disjunctively guess a clique per color
in(U,C) | out(U,C) :- U = 1..n, col(C).

Derive a special bot atom if the guess is invalid or not a clique
bot(C) :- col(C,N), (n-N)+1 { out(1..n,C) }.
bot(C) :- col(C,N), N+1 { in(1..n,C) }.
bot(C) :- in(U,C), in(V,C), U < V, not col(U,V,C).

Derive everything if bot holds for a color
in(1..n,C) :- bot(C).

out(1..n,C) :- bot(C).

Fail if some clique has been found
:- col(C), not bot(C).
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Ramsey Numbers

Summary

Disjunctive programs can be used to solve problems beyond NP
We use claspD for some biological application problems

Disjunctive program parts are suitable for modeling an additional
co-NP test per answer set candidate

It requires some practice to write such programs

No default negation/anti-monotone aggregates may be used in the
disjunctive part

+ Instead provide “direct derivations” for conditions that do not hold

Debugging disjunctive programs is even harder than debugging
normal programs

+ Answer sets usually include all atoms from the disjunctive part
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Motivation

Motivation

Questions

How to optimize logic programs?
How to remove redundancies in
automatically generated logic programs?

Difficulty Given that ASP is nonmonotonic,
it is difficult to attribute meaning to

program parts or
incomplete programs

because the addition of further rules generally
changes the overall semantics.
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Motivation

Notions of Equivalence

Two logic programs Π1 and Π2 are

equivalent (Π1 ≡ Π2) if AS(Π1) = AS(Π2).

strongly equivalent (Π1 ≡s Π2) if AS(Π1 ∪ Π′) = AS(Π2 ∪ Π′)
for any logic program Π′.

uniformly equivalent (Π1 ≡u Π2) if AS(Π1 ∪ F ) = AS(Π2 ∪ F )
for any set F of facts.

Example Π1 = {a ∨ b ← } and Π2 = {a← not b , b ← not a }
Π1 ≡ Π2 since AS(Π1) = {{a}, {b}} = AS(Π2)
Π1 6≡s Π2, e.g. Π′ = {a← b , b ← a }
Π1 ≡u Π2

Implications

strong equivalence implies uniform equivalence and
uniform equivalence implies (ordinary) equivalence.
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Ordinary Equivalence

Ordinary Equivalence

Consider Π1 = {a← b} and Π2 = {a← c}.

Π1 ≡ Π2 but (Π1 ∪ {b ←}) 6≡ (Π2 ∪ {b ←}).

Consider Π1 = {a← not b} and Π2 = {a←}.

Π1 ≡ Π2 but (Π1 ∪ {b ←}) 6≡ (Π2 ∪ {b ←}).

Ordinary equivalence in ASP does not allow for
substitution of equivalents:

Π1 ≡ Π2 not implies Π ≡ Π[Π1/Π2],

for any logic programs Π1, Π2, and Π.

å The non-monotonicity of ASP makes equivalence of programs a much
weaker concept than equivalence in (monotonic) classical logic.
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Strong Equivalence

Strong Equivalence

Two logic programs Π1 and Π2 are strongly equivalent if

(Π1 ∪ Π′) ≡ (Π2 ∪ Π′) for any logic programs Π .

Strong Equivalence (SE) guarantees substitution of equivalents.

How to test strong equivalence?

å How to avoid testing AS(Π1 ∪ Π′) = AS(Π2 ∪ Π′)
for any logic program Π′?
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Strong Equivalence

SE-models

Model-theoretic characterization of Strong Equivalence.
Let Π be a logic program over alphabet A.

An SE-interpretation over A is a pair (X ,Y ) such that X ⊆ Y ⊆ A
An SE-interpretation (X ,Y ) is an SE-model of Π if

1 Y |= Π
2 X |= ΠY

SE (Π) denotes the set of all SE-models of Π

Theorem Π1 ≡s Π2 iff SE (Π1) = SE (Π2)

Observation If (X ,X ) is the unique SE-model of Π whose second
component is X , then X is an answer set of Π.
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Strong Equivalence

Example: SE-models

Π1 = {a ∨ b ← } and Π2 = {a← not b , b ← not a }
We get the following SE-models over {a, b}:

SE (Π1) = {({a}, {a}), ({b}, {b}),
({a}, {a, b}), ({b}, {a, b}), ({a, b}, {a, b})}

SE (Π2) = SE (Π1) ∪ {(∅, {a, b})}

We have

SE (Π1) 6= SE (Π2) implies Π1 6≡s Π2

Counterexample Take Π′ = {a← b , b ← a }
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Strong Equivalence

Example: SE-models

Π1 = {a← } and Π2 = {a← , a← b , a← not c }
We get the following SE-models over {a, b, c}:

SE (Π1) = {({a}, {a}), ({a}, {a, b}), ({a}, {a, c}),
({a}, {a, b, c}), ({a, b}, {a, b}), ({a, b}, {a, b, c}),
({a, c}, {a, c}), ({a, c}, {a, b, c}), ({a, b, c}, {a, b, c}) }

SE (Π2) = SE (Π1)

Observation For rules r1 and r2, we have {r1} ≡s {r1, r2}
whenever SE ({r1}) ⊆ SE ({r2})

Example
SE ({r1}) ⊆ SE ({r2}) holds for any rules where
head(r1) = head(r2) and body(r1) ⊆ body(r2)

å In any program, delete a rule r2 if there is some rule r1

such that head(r1) = head(r2) and body(r1) ⊆ body(r2).
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Strong Equivalence

Strong Equivalence
Normal versus Disjunctive logic programs

Reduct-Intersection Let Π be a normal logic program.
If (U,Y ) ∈ SE (Π) and (V ,Y ) ∈ SE (Π), then
(U ∩ V ,Y ) ∈ SE (Π).

(+ Since for any X , ΠX is a Horn program.)

Reduct-Intersection is not satisfied by disjunctive logic programs.

If the SE-models of a disjunctive program do not satisfy
reduct-intersection, then no strongly equivalent normal programs
exists.
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Strong Equivalence

Example

Recall program Π1 = {a ∨ b ←} along with

SE (Π1) = {({a}, {a}), ({b}, {b}),
({a}, {a, b}), ({b}, {a, b}), ({a, b}, {a, b})}

SE (Π1) is not closed under reduct-intersection, since ({a}, {a, b})
and ({b}, {a, b}) call for (∅, {a, b}).

å No normal logic program is strongly equivalent to {a ∨ b ←}.
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Strong Equivalence

From SE-models to counterexamples

Let Π1,Π2 be (disjunctive) logic programs and (X ,Y ) ∈ SE (Π1) \ SE (Π2).

1 If (Y ,Y ) ∈ SE (Π2),
let Π′ = {A← | A ∈ X} ∪ {A← B | A,B ∈ Y \ X}.
We get X ⊂ Y and

X |= (Π1 ∪ Π′)Y ,
Y |= (Π2 ∪ Π′)Y but Z 6|= (Π2 ∪ Π′)Y for any Z ⊂ Y .

å That is, Y ∈ AS(Π2 ∪ Π′) \ AS(Π1 ∪ Π′).

2 If (Y ,Y ) /∈ SE (Π2),
let Π′ = {A← | A ∈ Y }.
We get

Y |= (Π1 ∪ Π′)Y but Z 6|= (Π1 ∪ Π′)Y for any Z ⊂ Y ,
Y 6|= (Π2 ∪ Π′)Y .

å That is, Y ∈ AS(Π1 ∪ Π′) \ AS(Π2 ∪ Π′).
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Uniform Equivalence

UE-models

Model-theoretic characterization of Uniform Equivalence.
Let Π be a logic program over alphabet A.

An SE-interpretation (X ,Y ) is a UE-model of Π if

1 (X ,Y ) ∈ SE (Π) and
2 for each Z with X ⊂ Z ⊂ Y , we have (Z ,Y ) 6∈ SE (Π).

UE (Π) denotes the set of all UE-models of Π.

Theorem Π1 ≡u Π2 iff UE (Π1) = UE (Π2)

Observation UE-models of a program Π are

all SE-models (X ,X ) of Π,
all further SE-models (X ,Y ) of Π, where X ⊂ Y is
maximal in being a model of ΠY .
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Uniform Equivalence

Example: UE-models

Π1 = {a ∨ b ← } and Π2 = {a← not b , b ← not a }

UE (Π1) = SE (Π1)

= {({a}, {a}), ({b}, {b}),
({a}, {a, b}), ({b}, {a, b}), ({a, b}, {a, b})}

UE (Π2) = SE (Π2) \ {(∅, {a, b})}
= SE (Π1)

We have

UE (Π1) = UE (Π2) implies Π1 ≡u Π2 and Π1 ≡ Π2

although SE (Π1) 6= SE (Π2).

Note that the SE-model (∅, {a, b}) is no UE-model of Π2, since
({a}, {a, b}) is an UE-model of Π2.
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Uniform Equivalence

From UE-models to counterexamples

Let Π1,Π2 be (disjunctive) logic programs and (X ,Y ) ∈ UE (Π1) \UE (Π2).

1 If (Y ,Y ) ∈ UE (Π2) and (X ′,Y ) ∈ UE (Π2) such that X ⊂ X ′ ⊂ Y ,
let Π′ = {A← | A ∈ X ′}.
We get

Y |= (Π1 ∪ Π′)Y but Z 6|= (Π1 ∪ Π′)Y for any Z ⊂ Y ,
X ′ |= (Π2 ∪ Π′)Y .

å That is, Y ∈ AS(Π1 ∪ Π′) \ AS(Π2 ∪ Π′).

2 If (Y ,Y ) ∈ UE (Π2) and (X ′,Y ) /∈ UE (Π2) for any X ⊂ X ′ ⊂ Y ,
let Π′ = {A← | A ∈ X}.
We get X ⊂ Y and

X |= (Π1 ∪ Π′)Y ,
Y |= (Π2 ∪ Π′)Y but Z 6|= (Π2 ∪ Π′)Y for any Z ⊂ Y .

å That is, Y ∈ AS(Π2 ∪ Π′) \ AS(Π1 ∪ Π′).

3 If (Y ,Y ) /∈ UE (Π2),
let Π′ = {A← | A ∈ Y }.
As with SE-models, we get Y ∈ AS(Π1 ∪ Π′) \ AS(Π2 ∪ Π′).
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1 If (Y ,Y ) ∈ UE (Π2) and (X ′,Y ) ∈ UE (Π2) such that X ⊂ X ′ ⊂ Y ,
let Π′ = {A← | A ∈ X ′}.
We get

Y |= (Π1 ∪ Π′)Y but Z 6|= (Π1 ∪ Π′)Y for any Z ⊂ Y ,
X ′ |= (Π2 ∪ Π′)Y .
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Program Transformations

Program Transformations

Let be Π a (disjunctive) logic program.

TAUT if head(r) ∩ body +(r) 6= ∅ then Π ≡s Π \ {r} and
Π ≡u Π \ {r},
e.g. {a← , a← a} ≡s {a←}

RED− r1, r2 ∈ Π, body(r2) = ∅, head(r2) ⊆ body−(r1), then
Π ≡s Π \ {r1} and Π ≡u Π \ {r1},
e.g. {a← , b ← not a} ≡s {a←}

NONMIN r1, r2 ∈ Π, head(r2) ⊆ head(r1), body(r2) ⊆ body(r1), then
Π ≡s Π \ {r1} and Π ≡u Π \ {r1},
e.g. {a← , a← b} ≡s {a←}

CONTRA body +(r) ∩ body−(r) 6= ∅, then Π ≡s Π \ {r} and
Π ≡u Π \ {r},
e.g. {b ← a, not a} ≡s ∅
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Program Transformations

Program Transformations (ctd)

WGPPE r1 ∈ Π, a ∈ body +(r1),
Ga = {r2 ∈ Π | head(r2) = a},Ga 6= ∅,
then Π ≡s Π∪G ′a and Π ≡u Π∪G ′a where G ′a = {head(r1)←
(body +(r1) \ {a}) ∪ not body−(r1) ∪ body(r2) | r2 ∈ Ga}
e.g. {a← b, c, not d , c ← e, not f } ≡s

{a← b, c , not d , c ← e, not f , a← b, e, not f , not d}
S-IMP r1, r2 ∈ Π such that there exists an A ⊆ body−(r1) such that

head(r2) ⊆ head(r1) ∪ A, body−(r2) ⊆ body−(r1) \ A and
body +(r2) ⊆ body +(r1),
then Π ≡s Π \ {r1} and Π ≡u Π \ {r1}
e.g. {a← b, not c , not d , a ∨ d ← b, not c} ≡s

{a ∨ d ← b, not c}
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In H. Kleine Büning and X. Zhao, editors, Proceedings of the Eleventh
International Conference on Theory and Applications of Satisfiability

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 453 / 453



Testing (SAT’08), volume 4996 of Lecture Notes in Computer
Science, pages 28–33. Springer-Verlag, 2008.

A. Biere.
PicoSAT essentials.
Journal on Satisfiability, Boolean Modeling and Computation,
4:75–97, 2008.

A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications.
IOS Press, 2009.

M. Brain, O. Cliffe, and M. de Vos.
A pragmatic programmer’s guide to answer set programming.
In M. de Vos and T. Schaub, editors, Proceedings of the Second
Workshop on Software Engineering for Answer Set Programming
(SEA’09), Department of Computer Science, University of Bath,
Technical Report Series, pages 49–63, 2009.

Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 453 / 453



M. Brain, M. Gebser, J. Pührer, T. Schaub, H. Tompits, and
S. Woltran.
Debugging ASP programs by means of ASP.
In Baral et al. [6], pages 31–43.

M. Brain, M. Gebser, J. Pührer, T. Schaub, H. Tompits, and
S. Woltran.
That is illogical captain! — the debugging support tool spock for
answer-set programs: System description.
In M. de Vos and T. Schaub, editors, Proceedings of the Workshop on
Software Engineering for Answer Set Programming (SEA’07), number
CSBU-2007-05 in Department of Computer Science, University of
Bath, Technical Report Series, pages 71–85, 2007.
ISSN 1740-9497.

S. Brass and J. Dix.
Semantics of (disjunctive) logic programs based on partial evaluation.
Journal of Logic Programming, 40(1):1–46, 1999.

K. Clark.
Torsten Schaub (KRR@UP) Answer Set Programming January 18, 2012 453 / 453



Negation as failure.
In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages
293–322. Plenum Press, 1978.

O. Cliffe, M. de Vos, M. Brain, and J. Padget.
ASPVIZ: Declarative visualisation and animation using answer set
programming.
In M. Garcia de la Banda and E. Pontelli, editors, Proceedings of the
Twenty-fourth International Conference on Logic Programming
(ICLP’08), volume 5366 of Lecture Notes in Computer Science, pages
724–728. Springer-Verlag, 2008.

M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors.
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