Answer Set Solving in Practice

Torsten Schaub
University of Potsdam
torsten@cs.uni-potsdam.de

Clitotassco

©

Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0 Unported License.

Rough Roadmap

1 Motivation
2 Introduction
3 Modeling
4 Language
5 Grounding
6 Foundations
7 Solving
8 Multi-shot solving
9 Theory solving
10 Heuristic programming
11 Systems
12 Advanced modeling
13 Preferences and Optimization
14 Applications
15 Summary
Bibliography
Torsten Schaub (KRR@UP)

Resources

■ Course material
■ http://potassco.org/teaching
■ Systems

- clasp
- clingo
- dlv
- smodels
- wasp
- gringo
- Iparse
- asparagus
http://potassco.org
http://potassco.org
http://www.dlvsystem.com http://www.tcs.hut.fi/Software/smodels https://www.mat.unical.it/ricca/wasp
http://potassco.org http://www.tcs.hut.fi/Software/smodels
http://asparagus.cs.uni-potsdam.de

The Potassco Book

1. Motivation
2. Introduction
3. Basic modeling
4. Grounding
5. Characterizations
6. Solving
7. Systems
8. Advanced modeling
9. Conclusions

- http://potassco.org/book
- http://potassco.org/teaching

The Potassco Book and Guide

1. Motivation
2. Introduction
3. Basic modeling
4. Grounding
5. Characterizations
6. Solving
7. Systems
8. Advanced modeling
9. Conclusions

- http://potassco.org/book
- http://potassco.org/teaching

The Potassco Book and Guide

1. Motivation
2. Introduction
3. Basic modeling
4. Grounding
5. Characterizations
6. Solving
7. Systems
8. Advanced modeling
9. Conclusions

Resources
■ http://potassco.org/book

- http://potassco.org/teaching

Literature

Books [?], [?], [?], [?]
 Surveys [?], [?], [?], [?]
 Articles [?], [?], [?], [?], [?], [?], [?], [?], etc.

Motivation: Overview

1 Motivation
2 Nutshell
3 Evolution
4 Foundation
5 Workflow
6 Engine
7 Usage
8 Summary

Outline

1 Motivation 2 Nutshell 3 Evolution 4 Foundation 5 Workflow 6 Engine 7 Usage 8 Summary

Informatics

"What is the problem?"

"How to solve the problem?"

Informatics

"What is the problem?" versus "How to solve the problem?"

Traditional programming

"What is the problem?" versus "How to solve the problem?"

Traditional programming

"What is the problem?" versus "How to solve the problem?"

Declarative problem solving

"What is the problem?" versus "How to solve the problem?"

Declarative problem solving

"What is the problem?" versus "How to solve the problem?"

Declarative problem solving

"What is the problem?"

"How to solve the problem?"

Traditional Software

Knowledge-driven Software

Knowledge-driven Software

Knowledge-driven Software

Knowledge-driven Software

Computer

Knowledge-driven Software

How!

Knowledge-driven Software

What is the benefit?

> + Transparency
> + Flexibility
> + Maintainability
> + Reliability
> + Generality
> + Efficiency
> + Optimality
> + Availability

What is the benefit?

> + Transparency
> + Flexibility
> + Maintainability
> + Reliability
> + Generality
> + Efficiency
> + Optimality
> + Availability

Expert

What is the benefit?

+ Transparency
+ Flexibility
+ Maintainability
+ Reliability
+ Generality
+ Efficiency
+ Optimality
+ Availability

Expert

What is the benefit?

+ Transparency
+ Flexibility
+ Maintainability
+ Reliability
+ Generality
+ Efficiency
+ Optimality
+ Availability

Expert

What is the benefit?

+ Transparency
+ Flexibility
+ Maintainability
+ Reliability
+ Generality
+ Efficiency
+ Optimality
+ Availability

Expert

Outline

1 Motivation

2 Nutshell

3 Evolution

4 Foundation
5 Workflow
6 Engine
7 Usage
8 Summary

Answer Set Programming (ASP)

- What is ASP?

ASP is an approach for declarative problem solving

Torsten Schaub (KRR@UP)

Answer Set Programming (ASP)

- What is ASP?

ASP is an approach for declarative problem solving
■ Where is ASP from?

- Databases
- Logic programming
- Knowledge representation and reasoning
- Satisfiability solving

Torsten Schaub (KRR@UP)

Answer Set Programming (ASP)

- What is ASP?

$$
\mathrm{ASP}=\mathrm{DB}+\mathrm{LP}+\mathrm{KR}+\mathrm{SAT}!
$$

ASP is an approach for declarative problem solving
■ Where is ASP from?

- Databases
- Logic programming
- Knowledge representation and reasoning
- Satisfiability solving

Answer Set Programming (ASP)

- What is ASP?

ASP is an approach for declarative problem solving

- What is ASP good for?

Solving knowledge-intense combinatorial (optimization) problems

Answer Set Programming (ASP)

- What is ASP?

ASP is an approach for declarative problem solving

- What is ASP good for?

Solving knowledge-intense combinatorial (optimization) problems

- What problems are this?

Problems consisting of (many) decisions and constraints

Answer Set Programming (ASP)

- What is ASP?

ASP is an approach for declarative problem solving

- What is ASP good for?

Solving knowledge-intense combinatorial (optimization) problems

- What problems are this?

Problems consisting of (many) decisions and constraints
Examples Sudoku, Configuration, Diagnosis, Music composition, Planning, System design, Time tabling, etc.

Answer Set Programming (ASP)

- What is ASP?

ASP is an approach for declarative problem solving

- What is ASP good for?

Solving knowledge-intense combinatorial (optimization) problems

- What problems are this? - And industrial ones?

Problems consisting of (many) decisions and constraints
Examples Sudoku, Configuration, Diagnosis, Music composition, Planning, System design, Time tabling, etc.

Answer Set Programming (ASP)

- What is ASP?

ASP is an approach for declarative problem solving

- What is ASP good for?

Solving knowledge-intense combinatorial (optimization) problems
■ What problems are this? - And industrial ones ?

- Debian, Ubuntu: Linux package configuration
- Exeura: Call routing
- Fcc: Radio frequency auction
- Gioia Tauro: Workforce management
- Nasa: Decision support for Space Shuttle
- Siemens: Partner units configuration
- Variantum: Product configuration

Answer Set Programming (ASP)

- What is ASP?

ASP is an approach for declarative problem solving
■ What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

- What problems are this? - And industrial ones ?
- Debian, Ubuntu: Linux package configuration
- Exeura: Call routing
- Fcc: Radio frequency auction
- Gioia Tauro: Workforce management
- Nasa: Decision support for Space Shuttle
- Siemens: Partner units configuration
- Variantum: Product configuration

Answer Set Programming (ASP)

- What is ASP?

ASP is an approach for declarative pr

- What is ASP good for?

Solving knowledge-intense combinato
Over 13 months in 2016-17 the US Federal Communications
Commission conducted an "incentive auction" to repurpose radio spectrum from broadcast television to wireless internet. In the end, the auction yielded $\$ 19.8$ billion, $\$ 10.05$ billion of which was paid to 175 broadcasters for voluntarily relinquishing their licenses across 14 UHF channels. Stations that continued broadcasting were assigned potentially new channels to fit as densely as possible into the channels
that remained. The government netted more than $\$ 7$ billion
(used to pay down the national debt) after covering costs.
A crucial element of the auction design was the construc-
tion of a solver, dubbed SATFC, that determined whether
sets of stations could be "repacked" in this way; it needed
to run every time a station was given a price quote. This

- Exeura: Call routing
- Fcc: Radio frequency auction
- Gioia Tauro: Workforce management
- Nasa: Decision support for Space Shuttle
- Siemens: Partner units configuration
- Variantum: Product configuration

Answer Set Programming (ASP)

- What is ASP?

ASP is an approach for declarative problem solving

- What is ASP good for?

Solving knowledge-intense combinatorial (optimization) problems

- What problems are this?

Problems consisting of (many) decisions and constraints

- What are ASP's distinguishing features?
- High level, versatile modeling language
- High performance solvers
- Qualitative and quantitative optimization

Answer Set Programming (ASP)

- What is ASP?

ASP is an approach for declarative problem solving

- What is ASP good for?

Solving knowledge-intense combinatorial (optimization) problems

- What problems are this?

Problems consisting of (many) decisions and constraints

- What are ASP's distinguishing features?
- High level, versatile modeling language
- High performance solvers
- Qualitative and quantitative optimization
- Any industrial impact?

■ ASP Tech companies: DLV Systems and Potassco Solutions

- Increasing interest in (large) companies

Outline

1 Motivation
2 Nutshell
3 Evolution
4 Foundation
5 Workflow
6 Engine
7 Usage
8 Summary

Some biased moments in time

- '70/'80 Capturing incomplete information

Some biased moments in time

- '70/'80 Capturing incomplete information
- Databases Closed world assumption
- Logic programming Negation as failure
- Non-monotonic reasoning Auto-epistemic and Default logics, Circumscription

Some biased moments in time

- '70/'80 Capturing incomplete information
- Databases Closed world assumption
- Axiomatic characterization
- Logic programming Negation as failure
- Non-monotonic reasoning

Auto-epistemic and Default logics, Circumscription

Some biased moments in time

- '70/'80 Capturing incomplete information
- Databases Closed world assumption
- Axiomatic characterization
- Logic programming Negation as failure
- Herbrand interpretations
- Fix-point characterizations
- Non-monotonic reasoning Auto-epistemic and Default logics, Circumscription

Some biased moments in time

- '70/'80 Capturing incomplete information
- Databases Closed world assumption
- Axiomatic characterization
- Logic programming Negation as failure
- Herbrand interpretations
- Fix-point characterizations
- Non-monotonic reasoning Auto-epistemic and Default logics, Circumscription
- Extensions of first-order logic
- Modalities, fix-points, second-order logic

Some biased moments in time

- '70/'80 Capturing incomplete information
- Databases Closed world assumption
- Logic programming Negation as failure
- Non-monotonic reasoning Auto-epistemic and Default logics, Circumscription
- '90 Amalgamation and computation

Some biased moments in time

- '70/'80 Capturing incomplete information
- Databases Closed world assumption
- Logic programming Negation as failure
- Non-monotonic reasoning

Auto-epistemic and Default logics, Circumscription

- '90 Amalgamation and computation
- Logic programming semantics

Well-founded and stable models semantics

- ASP solving
"Stable models $=$ Well-founded semantics + Branch"

Some biased moments in time

- '70/'80 Capturing incomplete information
- Databases Closed world assumption
- Logic programming Negation as failure
- Non-monotonic reasoning

Auto-epistemic and Default logics, Circumscription

- '90 Amalgamation and computation
- Logic programming semantics

Well-founded and stable models semantics

- Stable models semantics derived from non-monotonic logics
- Alternating fix-point theory
- ASP solving
"Stable models $=$ Well-founded semantics + Branch"

Some biased moments in time

- '70/'80 Capturing incomplete information
- Databases Closed world assumption
- Logic programming Negation as failure
- Non-monotonic reasoning

Auto-epistemic and Default logics, Circumscription

- '90 Amalgamation and computation
- Logic programming semantics

Well-founded and stable models semantics

- Stable models semantics derived from non-monotonic logics
- Alternating fix-point theory
- ASP solving
"Stable models $=$ Well-founded semantics + Branch"
- Modeling - Grounding - Solving
- Icebreakers: lparse and smodels

Some biased moments in time

- '70/'80 Capturing incomplete information
- Databases Closed world assumption
- Logic programming Negation as failure
- Non-monotonic reasoning

Auto-epistemic and Default logics, Circumscription

- '90 Amalgamation and computation
- Logic programming semantics

Well-founded and stable models semantics

- ASP solving
"Stable models = Well-founded semantics + Branch"
- '00 Applications and semantic rediscoveries

Some biased moments in time

- '70/'80 Capturing incomplete information
- Databases Closed world assumption
- Logic programming Negation as failure
- Non-monotonic reasoning

Auto-epistemic and Default logics, Circumscription

- '90 Amalgamation and computation
- Logic programming semantics

Well-founded and stable models semantics

- ASP solving
"Stable models $=$ Well-founded semantics + Branch"
- '00 Applications and semantic rediscoveries
- Growing dissemination Decision Support for Space Shuttle
- Constructive logics Equilibrium Logic

Some biased moments in time

■ '70/'80 Capturing incomplete information

- Databases Closed world assumption
- Logic programming Negation as failure
- Non-monotonic reasoning

Auto-epistemic and Default logics, Circumscription

- '90 Amalgamation and computation
- Logic programming semantics

Well-founded and stable models semantics

- ASP solving
"Stable models $=$ Well-founded semantics + Branch"
■ '00 Applications and semantic rediscoveries
- Growing dissemination Decision Support for Space Shuttle
- Bio-informatics, Linux Package Configuration, Music composition, Robotics, System Design, etc
- Constructive logics Equilibrium Logic

Some biased moments in time

- '70/'80 Capturing incomplete information
- Databases Closed world assumption
- Logic programming Negation as failure
- Non-monotonic reasoning

Auto-epistemic and Default logics, Circumscription

- '90 Amalgamation and computation
- Logic programming semantics

Well-founded and stable models semantics

- ASP solving
"Stable models $=$ Well-founded semantics + Branch"
- '00 Applications and semantic rediscoveries
- Growing dissemination Decision Support for Space Shuttle
- Constructive logics Equilibrium Logic

■ Roots: Logic of Here-and-There, G3

Some biased moments in time

- '70/'80 Capturing incomplete information
- Databases Closed world assumption
- Logic programming Negation as failure
- Non-monotonic reasoning

Auto-epistemic and Default logics, Circumscription

- '90 Amalgamation and computation
- Logic programming semantics

Well-founded and stable models semantics

- ASP solving
"Stable models $=$ Well-founded semantics + Branch"
- '00 Applications and semantic rediscoveries
- Growing dissemination Decision Support for Space Shuttle
- Constructive logics Equilibrium Logic
- '10 Integration

Some biased moments in time

- '70/'80 Capturing incomplete information
- Databases Closed world assumption
- Logic programming Negation as failure
- Non-monotonic reasoning

Auto-epistemic and Default logics, Circumscription

- '90 Amalgamation and computation
- Logic programming semantics

Well-founded and stable models semantics

- ASP solving
"Stable models $=$ Well-founded semantics + Branch"
■ '00 Applications and semantic rediscoveries
- Growing dissemination Decision Support for Space Shuttle
- Constructive logics Equilibrium Logic
- '10 Integration - let's see ...

Some biased moments in time

- '70/'80 Capturing incomplete information
- Databases Closed world assumption
- Logic programming Negation as failure
- Non-monotonic reasoning

Auto-epistemic and Default logics, Circumscription

- '90 Amalgamation and computation
- Logic programming semantics

Well-founded and stable models semantics

- ASP solving
"Stable models $=$ Well-founded semantics + Branch"
- '00 Applications and semantic rediscoveries
- Growing dissemination Decision Support for Space Shuttle
- Constructive logics Equilibrium Logic
- '10 Integration

Paradigm shift

```
Theorem Proving based approach (eg. Prolog)
    1 Provide a representation of the problem
2. A solution is given by a derivation of a query
Model Generation based approach (eg. SATisfiability testing)
1 Provide a representation of the problem
2. A solution is given by a model of the representation
```


Represent planning problems as propositional theories so that models not proofs describe solutions
\# Potassco

Paradigm shift

Theorem Proving based approach (eg. Prolog)
1 Provide a representation of the problem
2 A solution is given by a derivation of a query

```
Model Generation based approach (eg. SATisfiability testing)
1 Provide a representation of the problem
2. A solution is given by a model of the representation
```

Automated planning, Kautz and Selman (ECAl'92)
Represent planning problems as propositional theories so that models not proofs describe solutions
(1)Potassco

Paradigm shift

Theorem Proving based approach (eg. Prolog)
1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)
1 Provide a representation of the problem
2 A solution is given by a model of the representation

Represent planning problems as propositional theories so that
models not proofs describe solutions

Paradigm shift

Theorem Proving based approach (eg. Prolog)
1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)
1 Provide a representation of the problem
2 A solution is given by a model of the representation

Automated planning, Kautz and Selman (ECAl'92)
Represent planning problems as propositional theories so that models not proofs describe solutions

Model Generation based Problem Solving

Representation	Solution
constraint satisfaction problem	assignment
propositional horn theories	smallest model
propositional theories	models
propositional theories	minimal models
propositional theories	stable models
propositional programs	minimal models
propositional programs	supported models
propositional programs	stable models
first-order theories	models
first-order theories	minimal models
first-order theories	stable models
first-order theories	Herbrand models
auto-epistemic theories	expansions
default theories	extensions
\vdots	

Model Generation based Problem Solving

Representation	Solution
constraint satisfaction problem	assignment
propositional horn theories	smallest model
propositional theories	models
propositional theories	minimal models
propositional theories	stable models
propositional programs	minimal models
propositional programs	supported models
propositional programs	stable models
first-order theories	models
first-order theories	minimal models
first-order theories	
first-order theories	stable models
auto-epistemic theories	Herbrand models
default theories	expansions
\vdots	extensions

Model Generation based Problem Solving

Representation	Solution
constraint satisfaction problem	assignment
propositional horn theories	smallest model
propositional theories	models
propositional theories	minimal models
propositional theories	stable models
propositional programs	minimal models
propositional programs	supported models
propositional programs	stable models
first-order theories	models
first-order theories	minimal models
first-order theories	stable models
first-order theories	Herbrand models
auto-epistemic theories	expansions
default theories	extensions

Paradigm shift

Theorem Proving based approach (eg. Prolog)
1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)
1 Provide a representation of the problem
2 A solution is given by a model of the representation

Paradigm shift

Theorem Proving based approach (eg. Prolog)
1 Provide a representation of the problem
2 A solution is given by a derivation of a query

```
Generation based approach (eg. SATisfiability testing)
    1 Provide a representation of the problem
    2. A solution is given by a model of the representation
```


LP-style playing with blocks

```
Prolog program
on(a,b).
on(b,c).
above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).
```

Prolog queries
?- above (a, c).
true.
?- above(c,a).

LP-style playing with blocks

```
Prolog program
on(a,b).
on(b, c).
above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).
```

Prolog queries
?- above(a,c).
true.
?- above(c,a).

LP-style playing with blocks

```
Prolog program
on(a,b).
on(b,c).
above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).
```

Prolog queries
?- above(a,c).
true.
?- above(c,a).
no.

LP-style playing with blocks

```
Prolog program
on(a,b).
on(b, c).
above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).
Prolog queries (testing entailment)
?- above(a,c).
true.
?- above(c,a).
no.
```


LP-style playing with blocks

```
Shuffled Prolog program
on(a,b).
on(b, c).
above(X,Y) :- above(X,Z), on(Z,Y).
above(X,Y) :- on(X,Y).
Prolog queries
?- above(a,c).
Fatal Error: local stack overflow.
```


LP-style playing with blocks

```
Shuffled Prolog program
on(a,b).
on(b,c).
above(X,Y) :- above(X,Z), on(Z,Y).
above(X,Y) :- on(X,Y).
Prolog queries
?- above(a,c).
Fatal Error: local stack overflow.
```


LP-style playing with blocks

```
Shuffled Prolog program
on(a,b).
on(b,c).
above(X,Y) :- above(X,Z), on(Z,Y).
above(X,Y) :- on(X,Y).
Prolog queries (answered via fixed execution)
?- above(a,c).
Fatal Error: local stack overflow.
```


Paradigm shift

Theorem Proving based approach (eg. Prolog)
1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)
1 Provide a representation of the problem
2 A solution is given by a model of the representation

Paradigm shift

(eg. Prolog)
 [1. Provide a representation of the problem 2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)
1 Provide a representation of the problem
2 A solution is given by a model of the representation

SAT-style playing with blocks

Formula

```
        on \((a, b)\)
\(\wedge\) on \((b, c)\)
\(\wedge \quad(o n(X, Y) \rightarrow \operatorname{above}(X, Y))\)
\(\wedge(o n(X, Z) \wedge \operatorname{above}(Z, Y) \rightarrow \operatorname{above}(X, Y))\)
```

$\left\{\begin{array}{rrrr}\operatorname{on}(a, b), & \quad \text { on }(b, c), & \quad \operatorname{on}(a, c), & \quad \text { on }(b, b), \\ \operatorname{above}(a, b), & \operatorname{above}(b, c), & \operatorname{above}(a, c), & \operatorname{above}(b, b),\end{array} \quad \operatorname{above}(c, b)\right\}$

SAT-style playing with blocks

Formula

```
        on \((a, b)\)
\(\wedge\) on \((b, c)\)
\(\wedge(o n(X, Y) \rightarrow \operatorname{above}(X, Y))\)
\(\wedge(o n(X, Z) \wedge \operatorname{above}(Z, Y) \rightarrow \operatorname{above}(X, Y))\)
```

Herbrand model
$\left\{\begin{array}{rrr}\operatorname{on}(a, b), & \quad \operatorname{on}(b, c), & \quad \operatorname{on}(a, c), \\ \operatorname{above}(a, b), & \operatorname{above}(b, b), & \operatorname{above}(a, c),\end{array} \quad \operatorname{above}(b, b), \quad \operatorname{above}(c, b)\right\}$

SAT-style playing with blocks

Formula

```
        on \((a, b)\)
\(\wedge\) on \((b, c)\)
\(\wedge(o n(X, Y) \rightarrow \operatorname{above}(X, Y))\)
\(\wedge(o n(X, Z) \wedge \operatorname{above}(Z, Y) \rightarrow \operatorname{above}(X, Y))\)
```

Herbrand model
$\left\{\begin{array}{rrr}\operatorname{on}(a, b), & \quad \operatorname{on}(b, c), & \quad \operatorname{on}(a, c), \\ \operatorname{above}(a, b), & \operatorname{above}(b, b), & \\ \text { above }(a, c), & \operatorname{above}(b, b), & \operatorname{above}(c, b)\end{array}\right\}$

SAT-style playing with blocks

Formula

```
        on \((a, b)\)
\(\wedge\) on \((b, c)\)
\(\wedge(o n(X, Y) \rightarrow \operatorname{above}(X, Y))\)
\(\wedge(o n(X, Z) \wedge \operatorname{above}(Z, Y) \rightarrow \operatorname{above}(X, Y))\)
```

Herbrand model
$\left\{\begin{array}{rrr}\operatorname{on}(a, b), & \quad \text { on }(b, c), & \quad \operatorname{on}(a, c), \\ \operatorname{above}(a, b), & \operatorname{above}(b, b), & \operatorname{above}(a, c),\end{array} \quad \operatorname{above}(b, b), \quad \operatorname{above}(c, b)\right\}$

SAT-style playing with blocks

Formula

```
        on \((a, b)\)
\(\wedge\) on \((b, c)\)
\(\wedge(o n(X, Y) \rightarrow \operatorname{above}(X, Y))\)
\(\wedge(o n(X, Z) \wedge \operatorname{above}(Z, Y) \rightarrow \operatorname{above}(X, Y))\)
```

Herbrand model (among 426!)
$\left\{\begin{array}{rrr}\operatorname{on}(a, b), & \quad \text { on }(b, c), & \quad \operatorname{on}(a, c), \\ \operatorname{above}(a, b), & \operatorname{above}(b, b), & \text { above }(a, c),\end{array} \quad \operatorname{above}(b, b), \quad \operatorname{above}(c, b)\right\}$

Paradigm shift

Theorem Proving based approach (eg. Prolog)
1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)
1 Provide a representation of the problem
2 A solution is given by a model of the representation

Paradigm shift

(eg. Prolog)
 [1. Provide a representation of the problem 2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)
1 Provide a representation of the problem
2 A solution is given by a model of the representation
\Rightarrow Answer Set Programming (ASP)

Model Generation based Problem Solving

Representation	Solution
constraint satisfaction problem	assignment
propositional horn theories	smallest model
propositional theories	models
propositional theories	minimal models
propositional theories	stable models
propositional programs	minimal models
propositional programs	supported models
propositional programs	stable models
first-order theories	models
first-order theories	minimal models
first-order theories	stable models
first-order theories	Herbrand models
auto-epistemic theories	expansions
default theories	extensions

Answer Set Programming at large

Representation	Solution
constraint satisfaction problem	assigment
propositional horn theories	smallest model
propositional theories	models
propositional theories	minimal models
propositional theories	stable models
propositional programs	minimal models
propositional programs	supported models
propositional programs	stable models
first-order theories	models
first-order theories	minimal models
first-order theories	stable models
firstorder theoories	Herband models
auto-epistemic theories	expansions
default theories	extensions

Answer Set Programming commonly

Representation	Solution
constraint satisfaction problem	assignment
propositional horn theories	smallest model
propositional theories	models
propositional theories	minimal models
propositional theories	stable models
propositional programs	minimal models
propositional programs	supported models
propositional programs	stable models
first-order theories	models
first-order theories	minimal models
first-order theories	
first-order theories	stable models
auto-epistemic theories	Herbrand models
default theories	expansions
:	extensions

Answer Set Programming in practice

Representation	Solution
constraint satisfaction problem	assignment
propositional horn theories	smallest model
propositional theories	models
propositional theories	minimal models
propositional theories	stable models
propositional programs	minimal models
propositional programs	supported models
propositional programs	stable models
first-order theories	models
first-order theories	minimal models
first-order theories	stable models
first-order theories	Herbrand models
auto-epistemic theories	expansions
default theories	extensions
:	

Answer Set Programming in practice

Representation	Solution
constraint satisfaction problem	assignment
propositional horn theories	smallest model
propositional theories	models
propositional theories	minimal models
propositional theories	stable models
propositional programs	minimal models
propositional programs	supported models
propositional programs	stable models
first-order theories	models
first-order theories	minimal models
first-order theories	stable models
first-order theories	Herbrand models
auto-epistemic theories	expansions
default theories	extensions
first-order programs	stable Herbrand models © Potassco

ASP-style playing with blocks

```
Logic program
on(a,b).
on(b,c).
above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).
```

Stable Herbrand model
$\{$ on (a, b), on $(\mathrm{b}, \mathrm{c}), \operatorname{above}(\mathrm{b}, \mathrm{c})$, above $(\mathrm{a}, \mathrm{b}), \operatorname{above}(\mathrm{a}, \mathrm{c})\}$

ASP-style playing with blocks

```
Logic program
on(a,b).
on(b,c).
above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).
```


Stable Herbrand model

$\{$ on (a, b), on(b, c$)$, above(b, c), above(a, b), above(a, c) \}

ASP-style playing with blocks

```
Logic program
on(a,b).
on(b,c).
above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).
```

Stable Herbrand model (and no others)
$\{$ on (a, b), on(b, c$)$, above(b, c), above(a, b), above(a, c) \}

ASP-style playing with blocks

```
Logic program
on(a,b).
on(b, c).
above(X,Y) :- above(Z,Y), on(X,Z).
above(X,Y) :- on(X,Y).
```

Stable Herbrand model (and no others)
$\{$ on (a, b), on(b, c$)$, above(b, c), above(a, b), above(a, c) \}

ASP versus LP

ASP	Prolog
Model generation	Query orientation
Bottom-up	Top-down
Modeling language	Programming language

Rule-based format

Instantiation Flat terms	Unification Nested terms
(Turing +) $N P\left({ }^{N P}\right)$	Turing

ASP versus SAT

ASP	SAT
Model generation	
Constructive Logic	Classical Logic
Closed (and open) world reasoning	Open world reasoning
Modeling language	-
Complex reasoning modes	Satisfiability testing
Satisfiability Enumeration/Projection Intersection/Union Optimization	Satisfiability
(Turing +) $N P\left({ }^{N P}\right)$	-

Outline

1 Motivation
2 Nutshell
3 Evolution
4 Foundation
5 Workflow
6 Engine
7 Usage
8 Summary

Propositional Normal Logic Programs

A logic program P is a set of rules of the form

- a and all b_{i}, c_{j} are atoms (propositional variables)
- $\leftarrow,,, \neg$ denote if, and, and negation
- intuitive reading: head must be true if body hoids
\square Semantics given by stable models, informally, models of P justifying each true atom by some rule in P

Logic Programs

- A logic program P is a set of rules of the form

- a and all b_{i}, c_{j} are atoms (propositional variables)
- $\leftarrow,$, , \neg denote if, and, and negation
- intuitive reading: head must be true if body holds

Semantics given by stable models, informally, models of P justifying each true atom by some rule in P

Logic Programs

- A logic program P is a set of rules of the form

- a and all b_{i}, c_{j} are atoms (propositional variables)
- $\leftarrow,,, \neg$ denote if, and, and negation
- intuitive reading: head must be true if body holds
- Semantics given by stable models, informally, models of P justifying each true atom by some rule in P

Normal Logic Programs

- A logic program P is a set of rules of the form

- a and all b_{i}, c_{j} are atoms (propositional variables)
- $\leftarrow,,, \neg$ denote if, and, and negation
- intuitive reading: head must be true if body holds
- Semantics given by stable models, informally, models of P justifying each true atom by some rule in P
- Disclaimer The following formalities apply to normal logic programs

Some truth tabling, back to SAT

a	b	c	$(\neg b \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{F}	\mathbf{F}	
\mathbf{F}	\mathbf{F}	\mathbf{T}	
\mathbf{F}	\mathbf{T}	\mathbf{F}	
\mathbf{F}	\mathbf{T}	\mathbf{T}	
\mathbf{T}	\mathbf{F}	\mathbf{F}	
\mathbf{T}	\mathbf{F}	\mathbf{T}	
\mathbf{T}	\mathbf{T}	\mathbf{F}	
\mathbf{T}	\mathbf{T}	\mathbf{T}	

Some truth tabling, back to SAT

a	b	c	$(\neg b \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{F}	\mathbf{F}	$(\neg \mathbf{F} \rightarrow \mathbf{F}) \wedge(\mathbf{F} \rightarrow \mathbf{F})$
\mathbf{F}	\mathbf{F}	\mathbf{T}	$(\neg \mathbf{F} \rightarrow \mathbf{F}) \wedge(\mathbf{F} \rightarrow \mathbf{T})$
\mathbf{F}	\mathbf{T}	\mathbf{F}	$(\neg \mathbf{T} \rightarrow \mathbf{F}) \wedge(\mathbf{T} \rightarrow \mathbf{F})$
\mathbf{F}	\mathbf{T}	\mathbf{T}	$(\neg \mathbf{T} \rightarrow \mathbf{F}) \wedge(\mathbf{T} \rightarrow \mathbf{T})$
\mathbf{T}	\mathbf{F}	\mathbf{F}	$(\neg \mathbf{F} \rightarrow \mathbf{T}) \wedge(\mathbf{F} \rightarrow \mathbf{F})$
\mathbf{T}	\mathbf{F}	\mathbf{T}	$(\neg \mathbf{F} \rightarrow \mathbf{T}) \wedge(\mathbf{F} \rightarrow \mathbf{T})$
\mathbf{T}	\mathbf{T}	\mathbf{F}	$(\neg \mathbf{T} \rightarrow \mathbf{T}) \wedge(\mathbf{T} \rightarrow \mathbf{F})$
\mathbf{T}	\mathbf{T}	\mathbf{T}	$(\neg \mathbf{T} \rightarrow \mathbf{T}) \wedge(\mathbf{T} \rightarrow \mathbf{T})$

Some truth tabling, back to SAT

a	b	c	$(\neg b \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{F}	\mathbf{F}	$(\mathbf{T} \rightarrow \mathbf{F}) \wedge(\mathbf{F} \rightarrow \mathbf{F})$
\mathbf{F}	\mathbf{F}	\mathbf{T}	$(\mathbf{T} \rightarrow \mathbf{F}) \wedge(\mathbf{F} \rightarrow \mathbf{T})$
\mathbf{F}	\mathbf{T}	\mathbf{F}	$(\mathbf{F} \rightarrow \mathbf{F}) \wedge(\mathbf{T} \rightarrow \mathbf{F})$
\mathbf{F}	\mathbf{T}	\mathbf{T}	$(\mathbf{F} \rightarrow \mathbf{F}) \wedge(\mathbf{T} \rightarrow \mathbf{T})$
\mathbf{T}	\mathbf{F}	\mathbf{F}	$(\mathbf{T} \rightarrow \mathbf{T}) \wedge(\mathbf{F} \rightarrow \mathbf{F})$
\mathbf{T}	\mathbf{F}	\mathbf{T}	$(\mathbf{T} \rightarrow \mathbf{T}) \wedge(\mathbf{F} \rightarrow \mathbf{T})$
\mathbf{T}	\mathbf{T}	\mathbf{F}	$(\mathbf{F} \rightarrow \mathbf{T}) \wedge(\mathbf{T} \rightarrow \mathbf{F})$
\mathbf{T}	\mathbf{T}	\mathbf{T}	$(\mathbf{F} \rightarrow \mathbf{T}) \wedge(\mathbf{T} \rightarrow \mathbf{T})$

Some truth tabling, back to SAT

a	b	c	$(\neg b \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{F}	\mathbf{F}	$(\mathbf{T} \rightarrow \mathbf{F}) \wedge(\mathbf{F} \rightarrow \mathbf{F})$
\mathbf{F}	\mathbf{F}	\mathbf{T}	$(\mathbf{T} \rightarrow \mathbf{F}) \wedge(\mathbf{F} \rightarrow \mathbf{T})$
\mathbf{F}	\mathbf{T}	\mathbf{F}	$(\mathbf{F} \rightarrow \mathbf{F}) \wedge(\mathbf{T} \rightarrow \mathbf{F})$
\mathbf{F}	\mathbf{T}	\mathbf{T}	$(\mathbf{F} \rightarrow \mathbf{F}) \wedge(\mathbf{T} \rightarrow \mathbf{T})$
\mathbf{T}	\mathbf{F}	\mathbf{F}	$(\mathbf{T} \rightarrow \mathbf{T}) \wedge(\mathbf{F} \rightarrow \mathbf{F})$
\mathbf{T}	\mathbf{F}	\mathbf{T}	$(\mathbf{T} \rightarrow \mathbf{T}) \wedge(\mathbf{F} \rightarrow \mathbf{T})$
\mathbf{T}	\mathbf{T}	\mathbf{F}	$(\mathbf{F} \rightarrow \mathbf{T}) \wedge(\mathbf{T} \rightarrow \mathbf{F})$
\mathbf{T}	\mathbf{T}	\mathbf{T}	$(\mathbf{F} \rightarrow \mathbf{T}) \wedge(\mathbf{T} \rightarrow \mathbf{T})$

Some truth tabling, back to SAT

a	b	c	$(\neg b \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{F}	\mathbf{F}	$\mathbf{F} \wedge(\mathbf{F} \rightarrow \mathbf{F})$
\mathbf{F}	\mathbf{F}	\mathbf{T}	$\mathbf{F} \wedge(\mathbf{F} \rightarrow \mathbf{T})$
\mathbf{F}	\mathbf{T}	\mathbf{F}	$(\mathbf{F} \rightarrow \mathbf{F}) \wedge \mathbf{F}$
\mathbf{F}	\mathbf{T}	\mathbf{T}	$(\mathbf{F} \rightarrow \mathbf{F}) \wedge(\mathbf{T} \rightarrow \mathbf{T})$
\mathbf{T}	\mathbf{F}	\mathbf{F}	$(\mathbf{T} \rightarrow \mathbf{T}) \wedge(\mathbf{F} \rightarrow \mathbf{F})$
\mathbf{T}	\mathbf{F}	\mathbf{T}	$(\mathbf{T} \rightarrow \mathbf{T}) \wedge(\mathbf{F} \rightarrow \mathbf{T})$
\mathbf{T}	\mathbf{T}	\mathbf{F}	$(\mathbf{F} \rightarrow \mathbf{T}) \wedge \mathbf{F}$
\mathbf{T}	\mathbf{T}	\mathbf{T}	$(\mathbf{F} \rightarrow \mathbf{T}) \wedge(\mathbf{T} \rightarrow \mathbf{T})$

Some truth tabling, back to SAT

a	b	c	$(\neg b \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{F}	\mathbf{F}	$\mathbf{F} \wedge(\mathbf{F} \rightarrow \mathbf{F})$
\mathbf{F}	\mathbf{F}	\mathbf{T}	$\mathbf{F} \wedge(\mathbf{F} \rightarrow \mathbf{T})$
\mathbf{F}	\mathbf{T}	\mathbf{F}	$(\mathbf{F} \rightarrow \mathbf{F}) \wedge \mathbf{F}$
\mathbf{F}	\mathbf{T}	\mathbf{T}	$(\mathbf{F} \rightarrow \mathbf{F}) \wedge(\mathbf{T} \rightarrow \mathbf{T})$
\mathbf{T}	\mathbf{F}	\mathbf{F}	$(\mathbf{T} \rightarrow \mathbf{T}) \wedge(\mathbf{F} \rightarrow \mathbf{F})$
\mathbf{T}	\mathbf{F}	\mathbf{T}	$(\mathbf{T} \rightarrow \mathbf{T}) \wedge(\mathbf{F} \rightarrow \mathbf{T})$
\mathbf{T}	\mathbf{T}	\mathbf{F}	$(\mathbf{F} \rightarrow \mathbf{T}) \wedge \mathbf{F}$
\mathbf{T}	\mathbf{T}	\mathbf{T}	$(\mathbf{F} \rightarrow \mathbf{T}) \wedge(\mathbf{T} \rightarrow \mathbf{T})$

Some truth tabling, back to SAT

a	b	c	$(\neg b \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{F}	\mathbf{F}	$\mathbf{F} \wedge \mathbf{T}$
\mathbf{F}	\mathbf{F}	\mathbf{T}	$\mathbf{F} \wedge \mathbf{T}$
\mathbf{F}	\mathbf{T}	\mathbf{F}	$\mathbf{T} \wedge \mathbf{F}$
\mathbf{F}	\mathbf{T}	\mathbf{T}	$\mathbf{T} \wedge \mathbf{T}$
\mathbf{T}	\mathbf{F}	\mathbf{F}	$\mathbf{T} \wedge \mathbf{T}$
\mathbf{T}	\mathbf{F}	\mathbf{T}	$\mathbf{T} \wedge \mathbf{T}$
\mathbf{T}	\mathbf{T}	\mathbf{F}	$\mathbf{T} \wedge \mathbf{F}$
\mathbf{T}	\mathbf{T}	\mathbf{T}	$\mathbf{T} \wedge \mathbf{T}$

Some truth tabling, back to SAT

a	b	c	$(\neg b \rightarrow a) \wedge(b \rightarrow c)$
F	F	F	F
F	F	T	F
F	T	F	F
F	T	T	T
T	F	F	T
T	F	T	T
T	T	F	F
T		T	T

Some truth tabling, back to SAT

a	b	c	$(\neg b \rightarrow a) \wedge(b \rightarrow c)$
F	F	F	F
F	F	T	F
F	T	F	F
F	T	T	T
T	F	F	T
T	F	T	T
T	T	F	F
T		T	T

- We get four models: $\{b, c\},\{a\},\{a, c\}$, and $\{a, b, c\}$

Some truth tabling, and now ASP

a	b	c	$(\neg b \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{F}	\mathbf{F}	
\mathbf{F}	\mathbf{F}	\mathbf{T}	
\mathbf{F}	\mathbf{T}	\mathbf{F}	
\mathbf{F}	\mathbf{T}	\mathbf{T}	
\mathbf{T}	\mathbf{F}	\mathbf{F}	
\mathbf{T}	\mathbf{F}	\mathbf{T}	
\mathbf{T}	\mathbf{T}	\mathbf{F}	
\mathbf{T}	\mathbf{T}	\mathbf{T}	

Some truth tabling, and now ASP

a	b	c	$(\neg b \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{F}	\mathbf{F}	$(\neg \mathbf{F} \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{F}	\mathbf{T}	$(\neg \mathbf{F} \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{T}	\mathbf{F}	$(\neg \mathbf{T} \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{T}	\mathbf{T}	$(\neg \mathbf{T} \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{T}	\mathbf{F}	\mathbf{F}	$(\neg \mathbf{F} \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{T}	\mathbf{F}	\mathbf{T}	$(\neg \mathbf{F} \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{T}	\mathbf{T}	\mathbf{F}	$(\neg \mathbf{T} \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{T}	\mathbf{T}	\mathbf{T}	$(\neg \mathbf{T} \rightarrow a) \wedge(b \rightarrow c)$

Some truth tabling, and now ASP

a	b	c	$(\neg b \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{F}	\mathbf{F}	$(\mathbf{T} \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{F}	\mathbf{T}	$(\mathbf{T} \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{T}	\mathbf{F}	$(\mathbf{F} \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{T}	\mathbf{T}	$(\mathbf{F} \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{T}	\mathbf{F}	\mathbf{F}	$(\mathbf{T} \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{T}	\mathbf{F}	\mathbf{T}	$(\mathbf{T} \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{T}	\mathbf{T}	\mathbf{F}	$(\mathbf{F} \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{T}	\mathbf{T}	\mathbf{T}	$(\mathbf{F} \rightarrow a) \wedge(b \rightarrow c)$

Some truth tabling, and now ASP

a	b	c	$(\neg b \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{F}	\mathbf{F}	$a \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{F}	\mathbf{T}	$a \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{T}	\mathbf{F}	$(\mathbf{F} \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{T}	\mathbf{T}	$(\mathbf{F} \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{T}	\mathbf{F}	\mathbf{F}	$a \wedge(b \rightarrow c)$
\mathbf{T}	\mathbf{F}	\mathbf{T}	$a \wedge(b \rightarrow c)$
\mathbf{T}	\mathbf{T}	\mathbf{F}	$(\mathbf{F} \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{T}	\mathbf{T}	\mathbf{T}	$(\mathbf{F} \rightarrow a) \wedge(b \rightarrow c)$

Some truth tabling, and now ASP

a	b	c	$(\neg b \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{F}	\mathbf{F}	$a \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{F}	\mathbf{T}	$a \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{T}	\mathbf{F}	$(\mathbf{F} \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{T}	\mathbf{T}	$(\mathbf{F} \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{T}	\mathbf{F}	\mathbf{F}	$a \wedge(b \rightarrow c)$
\mathbf{T}	\mathbf{F}	\mathbf{T}	$a \wedge(b \rightarrow c)$
\mathbf{T}	\mathbf{T}	\mathbf{F}	$(\mathbf{F} \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{T}	\mathbf{T}	\mathbf{T}	$(\mathbf{F} \rightarrow a) \wedge(b \rightarrow c)$

Some truth tabling, and now ASP

a	b	c	$(\neg b \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{F}	\mathbf{F}	$a \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{F}	\mathbf{T}	$a \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{T}	\mathbf{F}	$\mathbf{T} \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{T}	\mathbf{T}	$\mathbf{T} \wedge(b \rightarrow c)$
\mathbf{T}	\mathbf{F}	\mathbf{F}	$a \wedge(b \rightarrow c)$
\mathbf{T}	\mathbf{F}	\mathbf{T}	$a \wedge(b \rightarrow c)$
\mathbf{T}	\mathbf{T}	\mathbf{F}	$\mathbf{T} \wedge(b \rightarrow c)$
\mathbf{T}	\mathbf{T}	\mathbf{T}	$\mathbf{T} \wedge(b \rightarrow c)$

Some truth tabling, and now ASP

a	b	c	$(\neg b \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{F}	\mathbf{F}	$a \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{F}	\mathbf{T}	$a \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{T}	\mathbf{F}	$(b \rightarrow c)$
\mathbf{F}	\mathbf{T}	\mathbf{T}	$(b \rightarrow c)$
\mathbf{T}	\mathbf{F}	\mathbf{F}	$a \wedge(b \rightarrow c)$
\mathbf{T}	\mathbf{F}	\mathbf{T}	$a \wedge(b \rightarrow c)$
\mathbf{T}	\mathbf{T}	\mathbf{F}	$(b \rightarrow c)$
\mathbf{T}	\mathbf{T}	\mathbf{T}	$(b \rightarrow c)$

Reduct

Some truth tabling, and now ASP

a	b	c	$(\neg b \rightarrow a) \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{F}	\mathbf{F}	$a \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{F}	\mathbf{T}	$a \wedge(b \rightarrow c)$
\mathbf{F}	\mathbf{T}	\mathbf{F}	$(b \rightarrow c)$
\mathbf{F}	\mathbf{T}	\mathbf{T}	$(b \rightarrow c)$
T	\mathbf{F}	\mathbf{F}	$a \wedge(b \rightarrow c)$
T	F	T	$a \wedge(b \rightarrow c)$
T	\mathbf{T}	\mathbf{F}	$(b \rightarrow c)$
T	T	T	$(b \rightarrow c)$

Reduct

Some truth tabling, and now ASP

Reduct

Some truth tabling, and now ASP

Reduct

Some truth tabling, and now ASP

a	b	c	$(\neg b \rightarrow a) \wedge(b \rightarrow c)$	
F	F	F	$a \wedge(b \rightarrow c)$	$=a$
F	F	T	$a \wedge(b \rightarrow c)$	$=a$
F	T	F	$(b \rightarrow c)$	$=$
F	T	T	$(b \rightarrow c)$	$=$
T	F	F	$a \wedge(b \rightarrow c)$	$=a$
T	F	T	$a \wedge(b \rightarrow c)$	$=a$
T	T	F	$(b \rightarrow c)$	$=a$
T	T	T	$(b \rightarrow c)$	$=$

Reduct

Some truth tabling, and now ASP

$$
\begin{array}{ccc|c}
a & b & c & (\neg b \rightarrow a) \wedge(b \rightarrow c) \\
\hline \mathbf{F} & \mathbf{F} & \mathbf{F} & a \wedge(b \rightarrow c) \\
\mathbf{F} & \mathbf{F} & \mathbf{T} & a \wedge(b \rightarrow c) \\
\mathbf{F} & \mathbf{T} & \mathbf{F} & (b \rightarrow c) \\
\mathbf{F} & \mathbf{T} & \mathbf{T} & (b \rightarrow c) \\
\mathbf{T} & \mathbf{F} & \mathbf{F} & a \wedge(b \rightarrow c) \models a \\
\mathbf{T} & \mathbf{F} & \mathbf{T} & a \wedge(b \rightarrow c) \\
\mathbf{T} & \mathbf{T} & \mathbf{F} & (b \rightarrow c) \\
\mathbf{T} & \mathbf{T} & \mathbf{T} & (b \rightarrow c)
\end{array}
$$

Reduct

- We get one stable model: $\{a\}$

Some truth tabling, and now ASP

$$
\begin{array}{ccc|c}
a & b & c & (\neg b \rightarrow a) \wedge(b \rightarrow c) \\
\hline \mathbf{F} & \mathbf{F} & \mathbf{F} & a \wedge(b \rightarrow c) \\
\mathbf{F} & \mathbf{F} & \mathbf{T} & a \wedge(b \rightarrow c) \\
\mathbf{F} & \mathbf{T} & \mathbf{F} & (b \rightarrow c) \\
\mathbf{F} & \mathbf{T} & \mathbf{T} & (b \rightarrow c) \\
\mathbf{T} & \mathbf{F} & \mathbf{F} & a \wedge(b \rightarrow c) \models a \\
\mathbf{T} & \mathbf{F} & \mathbf{T} & a \wedge(b \rightarrow c) \\
\mathbf{T} & \mathbf{T} & \mathbf{F} & (b \rightarrow c) \\
\mathbf{T} & \mathbf{T} & \mathbf{T} & (b \rightarrow c)
\end{array}
$$

Reduct

- We get one stable model: $\{a\}$
- Stable models $=$ Smallest models of (respective) reducts

Outline

1 Motivation
2 Nutshell
3 Evolution
4 Foundation
5 Workflow
6 Engine
7 Usage
8 Summary

ASP modeling, grounding, and solving

SAT solving

Rooting ASP solving

Rooting ASP solving

Outline

1 Motivation
2 Nutshell
3 Evolution
4 Foundation
5 Workflow
6 Engine
7 Usage
8 Summary

Multi-threaded architecture of clasp

Outline

1 Motivation
2 Nutshell
3 Evolution
4 Foundation
5 Workflow
6 Engine
7 Usage
8 Summary

Two sides of a coin

- ASP as High-level Language
- Express problem instance as sets of facts
- Encode problem class as a set of rules
- Read off solutions from stable models of facts and rules
- ASP as Low-level Language
- Compile a problem into a set of facts and rules
- Solve the original problem by solving its compilation

Control continuously changing logic programs

Two sides of a coin

■ ASP as High-level Language

- Express problem instance as sets of facts
- Encode problem class as a set of rules
- Read off solutions from stable models of facts and rules

■ ASP as Low-level Language

- Compile a problem into a set of facts and rules
- Solve the original problem by solving its compilation

Control continuously changing logic programs

Two sides of a coin

- ASP as High-level Language
- Express problem instance as sets of facts
- Encode problem class as a set of rules
- Read off solutions from stable models of facts and rules

■ ASP as Low-level Language

- Compile a problem into a set of facts and rules
- Solve the original problem by solving its compilation

Control continuously changing logic programs

Two sides of a coin

- ASP as High-level Language
- Express problem instance as sets of facts
- Encode problem class as a set of rules
- Read off solutions from stable models of facts and rules
- ASP as "Low-level" Language
- Compile a problem instance into a set of facts
- Encode problem class as a set of rules
- Solve the original problem by solving its compilation

Control continuously changing logic programs

Two and a half sides of a coin

- ASP as High-level Language
- Express problem instance as sets of facts
- Encode problem class as a set of rules
- Read off solutions from stable models of facts and rules
- ASP as "Low-level" Language
- Compile a problem instance into a set of facts
- Encode problem class as a set of rules
- Solve the original problem by solving its compilation
- ASP and Imperative language
- Control continuously changing logic programs

Outline

1 Motivation
2 Nutshell
3 Evolution
4 Foundation
5 Workflow
6 Engine7 Usage
8 Summary

Upcoming experience

- ASP is a viable tool for Knowledge Representation and Reasoning
- Integration of DB, LP, KR, and SAT techniques
- Combinatorial search problems in the realm of $N P$ and $N P^{N P}$
- Succinct, elaboration-tolerant problem representations
- rapid application development tool
- Easy handling of knowledge-intensive applications
- data, defaults, exceptions, frame axioms, reachability etc
- ASP offers efficient and versatile off-the-shelf solving technology
- http://potassco.org
- winning ASP, CASC, MISC, PB, and SAT competitions
- ASP has a growing range of applications, and its's good fun!

Upcoming experience

- ASP is a viable tool for Knowledge Representation and Reasoning
- Integration of DB, LP, KR, and SAT techniques
- Combinatorial search problems in the realm of $N P$ and $N P^{N P}$
- Succinct, elaboration-tolerant problem representations
- rapid application development tool
- Easy handling of knowledge-intensive applications
- data, defaults, exceptions, frame axioms, reachability etc
- ASP offers efficient and versatile off-the-shelf solving technology
- http://potassco.org
- winning ASP, CASC, MISC, PB, and SAT competitions
- ASP has a growing range of applications, and its's good fun!

$$
\text { ASP }=\mathrm{DB}+\mathrm{LP}+\mathrm{KR}+\mathrm{SAT}
$$

Upcoming experience

- ASP is a viable tool for Knowledge Representation and Reasoning
- Integration of DB, LP, KR, and SAT techniques
- Combinatorial search problems in the realm of $N P$ and $N P^{N P}$
- Succinct, elaboration-tolerant problem representations
- rapid application development tool
- Easy handling of knowledge-intensive applications
- data, defaults, exceptions, frame axioms, reachability etc
- ASP offers efficient and versatile off-the-shelf solving technology
- http://potassco.org
- winning ASP, CASC, MISC, PB, and SAT competitions
- ASP has a growing range of applications, and its's good fun!

$$
A S P=D B+L P+K R+S M T^{n}
$$

Introduction: Overview

9 Syntax
10 Semantics
11 Examples
12 Reasoning
13 Language
14 Variables

Outline

9 Syntax

10 Semantics
11 Examples
12 Reasoning
13 Language
14 Variables

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

Syntax

Normal logic programs

- A logic program, P, over a set \mathcal{A} of atoms is a finite set of rules
- A (normal) rule, r, is of the form

$$
a_{0} \leftarrow a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}
$$

where $0 \leq m \leq n$ and each $a_{i} \in \mathcal{A}$ is an atom for $0 \leq i \leq n$

$$
\begin{aligned}
h(r) & =a_{0} \\
B(r) & =\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\} \\
B(r)^{+} & =\left\{a_{1}, \ldots, a_{m}\right\} \\
B(r)^{-} & =\left\{a_{m+1}, \ldots, a_{n}\right\}
\end{aligned}
$$

A literal is an atom or a negated atom
A program P is positive if $B(r)^{-}=\emptyset$ for all $r \in P$

Normal logic programs

- A logic program, P, over a set \mathcal{A} of atoms is a finite set of rules
- A (normal) rule, r, is of the form

$$
a_{0}:-a_{1}, \ldots, a_{m}, \text { not } a_{m+1}, \ldots, \text { not } a_{n}
$$

where $0 \leq m \leq n$ and each $a_{i} \in \mathcal{A}$ is an atom for $0 \leq i \leq n$

$$
\begin{aligned}
h(r) & =a_{0} \\
B(r) & =\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\} \\
B(r)^{+} & =\left\{a_{1}, \ldots, a_{m}\right\} \\
B(r)^{-} & =\left\{a_{m+1}, \ldots, a_{n}\right\}
\end{aligned}
$$

A literal is an atom or a negated atom
A program P is positive if $B(r)^{-}=\emptyset$ for all $r \in P$

Normal logic programs

- A logic program, P, over a set \mathcal{A} of atoms is a finite set of rules
- A (normal) rule, r, is of the form

$$
a_{0} \leftarrow a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}
$$

where $0 \leq m \leq n$ and each $a_{i} \in \mathcal{A}$ is an atom for $0 \leq i \leq n$

- Notation

$$
\begin{aligned}
h(r) & =a_{0} \\
B(r) & =\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\} \\
B(r)^{+} & =\left\{a_{1}, \ldots, a_{m}\right\} \\
B(r)^{-} & =\left\{a_{m+1}, \ldots, a_{n}\right\}
\end{aligned}
$$

- A literal is an atom or a negated atom

A program P is positive if $B(r)^{-}=\emptyset$ for all $r \in P$

Normal logic programs

- A logic program, P, over a set \mathcal{A} of atoms is a finite set of rules
- A (normal) rule, r, is of the form

$$
a_{0} \leftarrow a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}
$$

where $0 \leq m \leq n$ and each $a_{i} \in \mathcal{A}$ is an atom for $0 \leq i \leq n$

- Notation

$$
\begin{aligned}
h(r) & =a_{0} \\
B(r) & =\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\} \\
B(r)^{+} & =\left\{a_{1}, \ldots, a_{m}\right\} \\
B(r)^{-} & =\left\{a_{m+1}, \ldots, a_{n}\right\} \\
A(P) & =\bigcup_{r \in P}\left(\{h(r)\} \cup B(r)^{+} \cup B(r)^{-}\right) \\
B(P) & =\{B(r) \mid r \in P\} \\
h(P) & =\{h(r) \mid r \in P\}
\end{aligned}
$$

Normal logic programs

- A logic program, P, over a set \mathcal{A} of atoms is a finite set of rules
- A (normal) rule, r, is of the form

$$
a_{0} \leftarrow a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}
$$

where $0 \leq m \leq n$ and each $a_{i} \in \mathcal{A}$ is an atom for $0 \leq i \leq n$

- Notation

$$
\begin{aligned}
h(r) & =a_{0} \\
B(r) & =\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\} \\
B(r)^{+} & =\left\{a_{1}, \ldots, a_{m}\right\} \\
B(r)^{-} & =\left\{a_{m+1}, \ldots, a_{n}\right\}
\end{aligned}
$$

- A literal is an atom or a negated atom
- A program P is positive if $B(r)^{-}=\emptyset$ for all $r \in P$

Normal logic programs

- A logic program, P, over a set \mathcal{A} of atoms is a finite set of rules
- A (normal) rule, r, is of the form

$$
a_{0} \leftarrow a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}
$$

where $0 \leq m \leq n$ and each $a_{i} \in \mathcal{A}$ is an atom for $0 \leq i \leq n$

- Notation

$$
\begin{aligned}
h(r) & =a_{0} \\
B(r) & =\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\} \\
B(r)^{+} & =\left\{a_{1}, \ldots, a_{m}\right\} \\
B(r)^{-} & =\left\{a_{m+1}, \ldots, a_{n}\right\}
\end{aligned}
$$

- A literal is an atom or a negated atom
- A program P is positive if $B(r)^{-}=\emptyset$ for all $r \in P$

Examples

- Example rules
- $a \leftarrow b, \sim c$
- $a \leftarrow \sim c, b$

```
a
a\leftarrowb
a<~C
bachelor(joe) \leftarrow male(joe), ~married(joe)
a, b, c, bachelor(joe), male(joe), married(joe)
~c, ~married(joe)
```


Examples

- Example rules
- $a \leftarrow b, \sim c$
- $a \leftarrow \sim c, b$
$\square a \leftarrow$
$\square a \leftarrow b$
$\square a \leftarrow \sim C$
bachelor $($ joe $) \leftarrow \operatorname{male}(j o e), \sim \operatorname{married}(j o e)$
a, b, c, bachelor(joe), male(joe), married (joe)
$\sim C, \sim \operatorname{married}(j o e)$

Examples

- Example rules
- $a \leftarrow b, \sim c$
- $a \leftarrow \sim c, b$
$\square a \leftarrow$
$\square a \leftarrow b$
$\square a \leftarrow \sim c$
- bachelor $(j o e) \leftarrow$ male(joe), \sim married $(j o e)$
a, b, c, bachelor(joe), male(joe), married(joe)
$\sim c, \sim$ married (joe)

Examples

- Example rules
- $a \leftarrow b, \sim c$
- $a \leftarrow \sim c, b$
$\square a \leftarrow$
$\square a \leftarrow b$
$\square a \leftarrow \sim C$
- bachelor $(j o e) \leftarrow$ male(joe), \sim married $(j o e)$
- Example literals
- a, b, c, bachelor(joe), male(joe), married(joe)
- ~c, ~married(joe)

Notational convention

We sometimes use the following notation interchangeably in order to stress the respective view:

						default	classical
	true, false	if	and	or	iff	negation	negation

Outline

9 Syntax

10 Semantics

11 Examples
12 Reasoning
13 Language
14 Variables

Semantics

Formal Definition

Stable models of positive programs

- A set of atoms X is closed under a positive program P iff for any $r \in P, h(r) \in X$ whenever $B(r)^{+} \subseteq X$
- X corresponds to a model of P (seen as a formula)
- The smallest set of atoms which is closed under a positive program P is denoted by $\mathrm{Cn}(P)$
- $\operatorname{Cn}(P)$ corresponds to the \subseteq-smallest model of P (ditto)
- The set $C n(P)$ of atoms is the stable model of a positive program P

Formal Definition

Stable models of positive programs

- A set of atoms X is closed under a positive program P iff for any $r \in P, h(r) \in X$ whenever $B(r)^{+} \subseteq X$
- X corresponds to a model of P (seen as a formula)
- The smallest set of atoms which is closed under a positive program P is denoted by $\mathrm{Cn}(P)$

Cn (P) corresponds to the \subseteq-smallest model of P (ditto)

- The set $C n(P)$ of atoms is the stable model of a positive program P

Formal Definition

Stable models of positive programs

- A set of atoms X is closed under a positive program P iff for any $r \in P, h(r) \in X$ whenever $B(r)^{+} \subseteq X$
- X corresponds to a model of P (seen as a formula)
- The smallest set of atoms which is closed under a positive program P is denoted by $C n(P)$
- $\operatorname{Cn}(P)$ corresponds to the \subseteq-smallest model of P (ditto)
- The set $C n(P)$ of atoms is the stable model of a positive program P

Formal Definition

Stable models of positive programs

- A set of atoms X is closed under a positive program P iff for any $r \in P, h(r) \in X$ whenever $B(r)^{+} \subseteq X$
- X corresponds to a model of P (seen as a formula)
- The smallest set of atoms which is closed under a positive program P is denoted by $C n(P)$
- $\operatorname{Cn}(P)$ corresponds to the \subseteq-smallest model of P (ditto)
- The set $C n(P)$ of atoms is the stable model of a positive program P

Some "logical" remarks

- Positive rules are also referred to as definite clauses
- Definite clauses are disjunctions with exactly one positive atom:

$$
a_{0} \vee \neg a_{1} \vee \cdots \vee \neg a_{m}
$$

- A set of definite clauses has a (unique) smallest model
- Horn clauses are clauses with at most one positive atom
- Every definite clause is a Horn clause but not vice versa
- Non-definite Horn clauses can be regarded as integrity constraints
- A set of Horn clauses has a smallest model or none
- This smallest model is the intended semantics of such sets of clauses
- Given a positive program $P, C n(P)$ corresponds to the smallest model of the set of definite clauses corresponding to P

Some "logical" remarks

- Positive rules are also referred to as definite clauses
- Definite clauses are disjunctions with exactly one positive atom:

$$
a_{0} \vee \neg a_{1} \vee \cdots \vee \neg a_{m}
$$

- A set of definite clauses has a (unique) smallest model
- Horn clauses are clauses with at most one positive atom
- Every definite clause is a Horn clause but not vice versa
- Non-definite Horn clauses can be regarded as integrity constraints
- A set of Horn clauses has a smallest model or none
- This smallest model is the intended semantics of such sets of clauses
- Given a positive program $P, \operatorname{Cn}(P)$ corresponds to the smallest model of the set of definite clauses corresponding to P

Some "logical" remarks

- Positive rules are also referred to as definite clauses
- Definite clauses are disjunctions with exactly one positive atom:

$$
a_{0} \vee \neg a_{1} \vee \cdots \vee \neg a_{m}
$$

- A set of definite clauses has a (unique) smallest model
- Horn clauses are clauses with at most one positive atom
- Every definite clause is a Horn clause but not vice versa
- Non-definite Horn clauses can be regarded as integrity constraints
- A set of Horn clauses has a smallest model or none
- This smallest model is the intended semantics of such sets of clauses
- Given a positive program $P, C n(P)$ corresponds to the smallest model of the set of definite clauses corresponding to P

Basic idea

Consider the logical formula Φ and its three (classical) models:

$$
\{p, q\},\{q, r\}, \text { and }\{p, q, r\}
$$

Formula Φ has one stable model, often called answer set:

$\{p, q\}$

Informally, a set X of atoms is a stable model of a logic program P if X is a (classical) model of P and if all atoms in X are justified by some rule in P

Basic idea

Consider the logical formula Φ and its three (classical) models:

$$
\phi \quad q \wedge(q \wedge \neg r \rightarrow p)
$$

$\{p, q\},\{q, r\}$, and $\{p, q, r\}$
Formula Φ has one stable model, often called answer set:

$\{p, q\}$

Informally, a set X of atoms is a stable model of a logic program P
if X is a (classical) model of P and
if all atoms in X are justified by some rule in P

Basic idea

Consider the logical formula Φ and its three (classical) models:

$\{p, q\},\{q, r\}$, and $\{p, q, r\}$
Formula Φ has pne stable model,

Informally, a set X of atoms is a stable model of a logic program P
if X is a (classical) model of P and
if all atoms in X are justified by some rule in P

Basic idea

Consider the logical formula Φ and its three (classical) models:

$$
\phi \quad q \wedge(q \wedge \neg r \rightarrow p)
$$

$\{p, q\},\{q, r\}$, and $\{p, q, r\}$
Formula Φ has one stable model, often called answer set:

$\{p, q\}$

Informally, a set X of atoms is a stable model of a logic program P
if X is a (classical) model of P and
if all atoms in X are justified by some rule in P

Basic idea

Consider the logical formula Φ and its three (classical) models:

$$
\{p, q\},\{q, r\}, \text { and }\{p, q, r\}
$$

Formula Φ has one stable model, often called answer set:

$\{p, q\}$

Informally, a set X of atoms is a stable model of a logic program P
\square if X is a (classical) model of P and

- if all atoms in X are justified by some rule in P

Torsten Schaub (KRR@UP)

Basic idea

Consider the logical formula Φ and its three (classical) models:

$$
\{p, q\},\{q, r\}, \text { and }\{p, q, r\}
$$

Formula Φ has one stable model, often called answer set:

$\{p, q\}$

Informally, a set X of atoms is a stable model of a logic program P
\square if X is a (classical) model of P and

- if all atoms in X are justified by some rule in P

Basic idea

Consider the logical formula Φ and its three (classical) models:

$$
\{p, q\},\{q, r\}, \text { and }\{p, q, r\}
$$

Formula Φ has one stable model, often called answer set:

$$
\{p, q\}
$$

Informally, a set X of atoms is a stable model of a logic program P

- if X is a (classical) model of P and
- if all atoms in X are justified by some rule in P

Basic idea

Consider the logical formula Φ and its three (classical) models:

$$
\{p, q\},\{q, r\}, \text { and }\{p, q, r\}
$$

Formula Φ has one stable model, often called answer set:

$$
P_{\Phi} \left\lvert\, \begin{array}{llll}
q & \leftarrow & & \\
p & \leftarrow & q, & \sim r
\end{array}\right.
$$

$$
\{p, q\}
$$

Informally, a set X of atoms is a stable model of a logic program P

- if X is a (classical) model of P and
- if all atoms in X are justified by some rule in P

Formal definition

Stable models of normal programs

- The reduct, P^{X}, of a program P relative to a set X of atoms is defined by

$$
P^{X}=\left\{h(r) \leftarrow B(r)^{+} \mid r \in P \text { and } B(r)^{-} \cap X=\emptyset\right\}
$$

- A set X of atoms is a stable model of a program P, if $\operatorname{Cn}\left(P^{X}\right)=X$
> $\operatorname{Cn}\left(P^{X}\right)$ is the \subseteq-smallest (classical) model of P^{X}
> Each atom in X is justified by an "applying rule from P " Set X is stable under "applying rules from P "

Formal definition

Stable models of normal programs

- The reduct, P^{X}, of a program P relative to a set X of atoms is defined by

$$
P^{X}=\left\{h(r) \leftarrow B(r)^{+} \mid r \in P \text { and } B(r)^{-} \cap X=\emptyset\right\}
$$

- A set X of atoms is a stable model of a program P, if $\operatorname{Cn}\left(P^{X}\right)=X$
$\operatorname{Cn}\left(P^{X}\right)$ is the \subseteq-smallest (classical) model of P^{X}
Each atom in X is justified by an "applying rule from P " Set X is stable under "applying rules from P "

Formal definition

Stable models of normal programs

- The reduct, P^{X}, of a program P relative to a set X of atoms is defined by

$$
P^{X}=\left\{h(r) \leftarrow B(r)^{+} \mid r \in P \text { and } B(r)^{-} \cap X=\emptyset\right\}
$$

- A set X of atoms is a stable model of a program P, if $\operatorname{Cn}\left(P^{X}\right)=X$
- Remarks
- $\operatorname{Cn}\left(P^{X}\right)$ is the \subseteq-smallest (classical) model of P^{X}
- Each atom in X is justified by an "applying rule from P"
- Set X is stable under "applying rules from P"

Formal definition

Stable models of normal programs

- The reduct, P^{X}, of a program P relative to a set X of atoms is defined by

$$
P^{X}=\left\{h(r) \leftarrow B(r)^{+} \mid r \in P \text { and } B(r)^{-} \cap X=\emptyset\right\}
$$

- A set X of atoms is a stable model of a program P, if $\operatorname{Cn}\left(P^{X}\right)=X$
- Remarks
- $\operatorname{Cn}\left(P^{X}\right)$ is the \subseteq-smallest (classical) model of P^{X}
- Each atom in X is justified by an "applying rule from P"
- Set X is stable under "applying rules from P "

A closer look at P^{X}

- Alternatively, given a set X of atoms from P,
P^{X} is obtained from P by deleting
1 each rule having $\sim a$ in its body with $a \in X$ and then

2 all negative atoms of the form $\sim a$
in the bodies of the remaining rules

Only negative body literals are evaluated

A closer look at P^{X}

- Alternatively, given a set X of atoms from P,
P^{X} is obtained from P by deleting
1 each rule having $\sim a$ in its body with $a \in X$ and then

2 all negative atoms of the form $\sim a$ in the bodies of the remaining rules

■ Note Only negative body literals are evaluated

Outline

9 Syntax
 10 Semantics

11 Examples

12 Reasoning
13 Language
14 V/ariables

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

Example one

$$
P=\{p \leftarrow p, q \leftarrow \sim p\}
$$

Example one

$$
P=\{p \leftarrow p, q \leftarrow \sim p\}
$$

Example one

$$
P=\{p \leftarrow p, q \leftarrow \sim p\}
$$

X	p^{X}	$C n\left(P^{X}\right)$
\{ \}	$p \leftarrow p$	$\{q\}$
$\{p$ \}	$p \leftarrow p$	\emptyset
\{ q\}	$\begin{aligned} & p \leftarrow p \\ & q \leftarrow \end{aligned}$	\{q\}
$\{p, q\}$	$p \leftarrow p$	\emptyset

Example one

$$
P=\{p \leftarrow p, q \leftarrow \sim p\}
$$

X	p^{X}	$\operatorname{Cn}\left(p^{X}\right)$
$\left\{\begin{array}{c}\text { P }\end{array}\right.$	$p \leftarrow p$	$\{q\}$
	$q \leftarrow$	
$\{p\}$	$p \leftarrow p$	\emptyset
$\{q\}$	$p \leftarrow p$	$\{q\}$
$\{p, q\}$	$p \leftarrow p$	\emptyset

Example one

$$
P=\{p \leftarrow p, q \leftarrow \sim p\}
$$

X	p^{X}	$\operatorname{Cn}\left(p^{X}\right)$	
$\left\{\begin{array}{c}\text { P }\end{array}\right.$	$p \leftarrow p$	$\{q\}$	X
	$q \leftarrow \sim$		
$\{p\}$	$p \leftarrow p$	\emptyset	X
$\{q\}$	$p \leftarrow p$	$\{q\}$	
$\{p, q\}$	$p \leftarrow p$	\emptyset	

Example one

$$
P=\{p \leftarrow p, q \leftarrow \sim p\}
$$

Example one

$$
P=\{p \leftarrow p, q \leftarrow \sim p\}
$$

Example one

$$
P=\{p \leftarrow p, q \leftarrow \sim p\}
$$

Example one

$$
P=\{p \leftarrow p, q \leftarrow \neg p\}
$$

Example two

$$
P=\{p \leftarrow \sim q, q \leftarrow \sim p\}
$$

Example two

$$
P=\{p \leftarrow \sim q, q \leftarrow \sim p\}
$$

Example two

$$
P=\{p \leftarrow \sim q, q \leftarrow \sim p\}
$$

Example two

$$
P=\{p \leftarrow \sim q, q \leftarrow \sim p\}
$$

Example two

$$
P=\{p \leftarrow \sim q, q \leftarrow \sim p\}
$$

Example two

$$
P=\{p \leftarrow \sim q, q \leftarrow \sim p\}
$$

Example two

$$
P=\{p \leftarrow \sim q, q \leftarrow \sim p\}
$$

Example two

$$
P=\{p \leftarrow \sim q, q \leftarrow \sim p\}
$$

Example two

$$
P=\{p \leftarrow \neg q, q \leftarrow \neg p\}
$$

Example three

$$
P=\{p \leftarrow \sim p\}
$$

Example three

$$
P=\{p \leftarrow \sim p\}
$$

Example three

$$
P=\{p \leftarrow \sim p\}
$$

Example three

$$
P=\{p \leftarrow \sim p\}
$$

X	P^{X}	$\operatorname{Cn}\left(P^{X}\right)$
$\}$	$p \leftarrow$	$\{p\} \quad X$
$\{p\}$		\emptyset

Example three

$$
P=\{p \leftarrow \sim p\}
$$

X	P^{X}	$\operatorname{Cn}\left(P^{X}\right)$	
$\}$	$p \leftarrow$	$\{p\}$	X
$\{p\}$		\emptyset	X

Example three

$$
P=\{p \leftarrow \sim p\}
$$

Example three

$$
P=\{p \leftarrow \neg p\}
$$

Some properties

- A logic program may have zero, one, or multiple stable models
\square If X is a stable model of a logic program P, then $X \subseteq h(P)$

If X is a stable model of a logic program P, then X is a (classical) model of P

If X and Y are stable mode's of a normal program P, then $X \not \subset Y$

Some properties

- A logic program may have zero, one, or multiple stable models
\square If X is a stable model of a logic program P, then $X \subseteq h(P)$

If X is a stable model of a logic program P, then X is a (classical) model of P

If X and Y are stable models of a normal program P, then $X \not \subset Y$

Torsten Schaub (KRR@UP)

Some properties

- A logic program may have zero, one, or multiple stable models
- If X is a stable model of a logic program P, then $X \subseteq h(P)$
- If X is a stable model of a logic program P, then X is a (classical) model of P
- If X and Y are stable models of a normal program P, then $X \not \subset Y$

Some properties

- A logic program may have zero, one, or multiple stable models
- If X is a stable model of a logic program P, then $X \subseteq h(P)$
- If X is a stable model of a logic program P, then X is a (classical) model of P
- If X and Y are stable models of a normal program P, then $X \not \subset Y$

Exemplars

Logic program	Answer sets
a.	\{a\}
$\mathrm{a}:-\mathrm{b}$.	\{\}
$\mathrm{a}:-\mathrm{b}$. b.	\{a,b\}
$\mathrm{a}:-\mathrm{b}$. b :- a.	\{\}
a :- not c.	\{a\}
a : - not c. c.	\{c\}
a :- not c. c :- not a.	\{a\}, \{c\}
a :- not a.	

Outline

9 Syntax
 10 Semantics
 11 Examples
 12 Reasoning
 13 Language
 14 Variables

Reasoning modes

Reasoning modes

- Satisfiability
- Enumeration ${ }^{\dagger}$
- Projection ${ }^{\dagger}$
- Intersection ${ }^{\ddagger}$
- Union ${ }^{\ddagger}$

■ Optimization

- and combinations of them
\dagger without solution recording
\ddagger without solution enumeration

Outline

9 Syntax
10 Semanties
11 Examples
12 Reasoning
13 Language
14 Variables

Extended syntax

Language constructs

$$
\begin{aligned}
& \mathrm{p}(\mathrm{X}):-\mathrm{q}(\mathrm{X}) \\
& \mathrm{p}:-\mathrm{q}(\mathrm{X}) \text { : } \mathrm{r}(\mathrm{X}) \\
& p(X) \text {; } q(X):-r(X) \\
& \text { :- } q(X), p(X) \\
& 2\{\mathrm{p}(\mathrm{X}, \mathrm{Y}): \mathrm{q}(\mathrm{X})\} 7:-\mathrm{r}(\mathrm{Y}) \\
& \mathrm{s}(\mathrm{Y}):-\mathrm{r}(\mathrm{Y}), 2 \text { \#sum }\{\mathrm{X}: \mathrm{p}(\mathrm{X}, \mathrm{Y}), \mathrm{q}(\mathrm{X}) \text { \} } 7 \\
& \begin{aligned}
&: \sim \\
& \text { \#minimize }\{\mathrm{C}(\mathrm{X}), \mathrm{p}(\mathrm{X}, \mathrm{C}) \quad[\mathrm{C}] \\
&\mathrm{q}(\mathrm{X}), \mathrm{p}(\mathrm{X}, \mathrm{C})\}
\end{aligned}
\end{aligned}
$$

Language constructs

- Variables

$$
\begin{aligned}
& \mathrm{p}(\mathrm{X}) \text { :- } \mathrm{q}(\mathrm{X}) \\
& \text { p :- q(X) : r(X) } \\
& p(X) \text {; } q(X) \text { :- r(X) } \\
& \text { :- } q(X), p(X) \\
& 2\{p(X, Y): q(X)\} 7:-r(Y) \\
& \text { s(Y) :- r(Y), } 2 \text { \#sum\{ } \mathrm{X}: \mathrm{p}(\mathrm{X}, \mathrm{Y}), \mathrm{q}(\mathrm{X})\} 7 \\
& \text { \#minimize }\{\mathrm{C}: \mathrm{q}(\mathrm{X}), \mathrm{p}(\mathrm{X}, \mathrm{C})\}
\end{aligned}
$$

Language constructs

- Variables
- Conditional literals

$$
\begin{aligned}
& \mathrm{p}(\mathrm{X}) \text { :- } \mathrm{q}(\mathrm{X}) \\
& \mathrm{p}:-\mathrm{q}(\mathrm{X}): r(\mathrm{X}) \\
& p(X) \quad ; \quad q(X) \quad:-r(X) \\
& \text { :- } q(X), p(X) \\
& 2\{p(X, Y): q(X)\} 7:-r(Y) \\
& s(Y):-r(Y), 2 \text { \#sum }\{X: p(X, Y), q(X)\} 7 \\
& \left.\begin{array}{rl}
: \sim q(X), p(X, C)
\end{array}\right]
\end{aligned}
$$

Language constructs

- Variables
- Conditional literals
- Disjunction

$$
\begin{aligned}
& \mathrm{p}(\mathrm{X}) \text { :- } \mathrm{q}(\mathrm{X}) \\
& \mathrm{p}:-\mathrm{q}(\mathrm{X}) \text { : } \mathrm{r}(\mathrm{X}) \\
& \mathrm{p}(\mathrm{X}) \text {; } q(\mathrm{X}) \text { :- } r(X) \\
& \text { :- q(X), pX) } \\
& 2\{\mathrm{p}(\mathrm{X}, \mathrm{Y}): \mathrm{q}(\mathrm{X})\} 7:-\mathrm{r}(\mathrm{Y}) \\
& \mathrm{s}(\mathrm{Y}):-\mathrm{r}(\mathrm{Y}), 2 \text { \#sum\{ } \mathrm{X}: \mathrm{p}(\mathrm{X}, \mathrm{Y}), \mathrm{q}(\mathrm{X})\} 7
\end{aligned}
$$

\# Potassco

Language constructs

- Variables
- Conditional literals
- Disjunction

■ Integrity constraints

$$
\begin{aligned}
p(X) & :-q(X) \\
p & :-q(X): r(X) \\
p(X) & ; q(X):-r(X) \\
& :-q(X), p(X)
\end{aligned}
$$

Language constructs

- Variables
- Conditional literals
- Disjunction

■ Integrity constraints

- Choice

$$
\begin{aligned}
p(X) & :-q(X) \\
p & :-q(X): r(X) \\
p(X) & ; q(X):-r(X) \\
& :-q(X), p(X)
\end{aligned}
$$

$$
2\{p(X, Y): q(X)\} 7:-r(Y)
$$

$$
s(Y):-r(Y), 2 \text { \#sum }\{X: p(X, Y), q(X)\} 7
$$

\# Potassco

Language constructs

- Variables
- Conditional literals
- Disjunction

■ Integrity constraints

- Choice
- Aggregates

Language constructs

- Variables
- Conditional literals
- Disjunction

■ Integrity constraints

- Choice
- Aggregates
- Optimization
$: \sim q(X), p(X, C) \quad[C]$
\#minimize $\{C: q(X), p(X, C)\}$
\# Potassco

Language constructs

- Variables
- Conditional literals
- Disjunction
- Integrity constraints
- Choice
- Aggregates
s(Y) :- r(Y), 2 \#sum\{ X : p(X,Y), q(X) \} 7
- Optimization
- Weak constraints

Language constructs

- Variables
- Conditional literals
- Disjunction
- Integrity constraints
- Choice
- Aggregates

$$
s(Y):-r(Y), 2 \text { \#sum }\{X: p(X, Y), q(X)\} 7
$$

- Optimization
- Weak constraints
- Statements

$$
\begin{array}{r}
p(X):-q(X) \\
p:-q(X): r(X) \\
p(X): q(X):-r(X) \\
:-q(X), p(X) \\
2\{p(X, Y): q(X)\} 7:-r(Y)
\end{array}
$$

Language constructs

- Variables
- Conditional literals
- Disjunction
- Integrity constraints
- Choice
- Aggregates
- Multi-objective optimization
- Weak constraints
- Statements

Outline

9 Syntax

10 Semantics
11 Examples
12 Reasoning
13 Language
14 Variables

Example

$$
\begin{aligned}
& d(a) \\
& d(c) \\
& d(d) \\
& p(a, b) \\
& p(b, c) \\
& p(c, d) \\
& p(X, Z) \leftarrow p(X, Y), p(Y, Z) \\
& q(a) \\
& q(b) \\
& q(X) \leftarrow \sim r(X), d(X) \\
& r(X) \leftarrow \sim q(X), d(X) \\
& s(X) \leftarrow \sim r(X), p(X, Y), q(Y)
\end{aligned}
$$

Example

$$
\begin{aligned}
& d(a) \\
& d(c) \\
& d(d) \\
& p(a, b) \\
& p(b, c) \\
& p(c, d) \\
& p(X, Z) \leftarrow p(X, Y), p(Y, Z) \\
& q(a) \\
& q(b) \\
& q(X) \leftarrow \sim r(X), d(X) \\
& r(X) \leftarrow \sim q(X), d(X) \\
& s(X) \leftarrow \sim r(X), p(X, Y), q(Y)
\end{aligned}
$$

Grounding instantiation

Let P be a logic program

- Let \mathcal{T} be a set of (variable-free) terms
- Let \mathcal{A} be a set of (variable-free) atoms constructible from \mathcal{T}
- A variable-free atom is also called ground

Ground instances of $r \in P$: Set of variable-free rules obtained by replacing all variables in r by elements from \mathcal{T} :

$$
\operatorname{ground}(r)=\{r \theta \mid \theta: \operatorname{var}(r) \rightarrow \mathcal{T} \text { and } \operatorname{var}(r \theta)=\emptyset\}
$$

where $\operatorname{var}(r)$ stands for the set of all variables occurring in r; θ is a (ground) substitution

Ground instantiation of P : ground $(P)=\bigcup_{r \in P} \operatorname{ground}(r)$
\# Potassco

Grounding instantiation

Let P be a logic program

- Let \mathcal{T} be a set of variable-free terms (also called Herbrand universe)
- Let \mathcal{A} be a set of (variable-free) atoms constructible from \mathcal{T} (also called alphabet or Herbrand base)
- A variable-free atom is also called ground
- Ground instances of $r \in P$: Set of variable-free rules obtained by replacing all variables in r by elements from \mathcal{T} :

$$
\operatorname{ground}(r)=\{r \theta \mid \theta: \operatorname{var}(r) \rightarrow \mathcal{T} \text { and } \operatorname{var}(r \theta)=\emptyset\}
$$

where $\operatorname{var}(r)$ stands for the set of all variables occurring in r; θ is a (ground) substitution

Ground instantiation of P : ground $(P)=\bigcup_{r \in P}$ ground (r)
\# Potassco

Grounding instantiation

Let P be a logic program

- Let \mathcal{T} be a set of (variable-free) terms
- Let \mathcal{A} be a set of (variable-free) atoms constructible from \mathcal{T}
- A variable-free atom is also called ground
- Ground instances of $r \in P$: Set of variable-free rules obtained by replacing all variables in r by elements from \mathcal{T} :

$$
\operatorname{ground}(r)=\{r \theta \mid \theta: \operatorname{var}(r) \rightarrow \mathcal{T} \text { and } \operatorname{var}(r \theta)=\emptyset\}
$$

where $\operatorname{var}(r)$ stands for the set of all variables occurring in r; θ is a (ground) substitution

- Ground instantiation of P : ground $(P)=\bigcup_{r \in P}$ ground (r)
\# Potassco

Grounding instantiation

Let P be a logic program

- Let \mathcal{T} be a set of (variable-free) terms
- Let \mathcal{A} be a set of (variable-free) atoms constructible from \mathcal{T}
- A variable-free atom is also called ground
- Ground instances of $r \in P$: Set of variable-free rules obtained by replacing all variables in r by elements from \mathcal{T} :

$$
\operatorname{ground}(r)=\{r \theta \mid \theta: \operatorname{var}(r) \rightarrow \mathcal{T} \text { and } \operatorname{var}(r \theta)=\emptyset\}
$$

where $\operatorname{var}(r)$ stands for the set of all variables occurring in r; θ is a (ground) substitution

- Ground instantiation of P : ground $(P)=\bigcup_{r \in P}$ ground (r)

Grounding instantiation

Let P be a logic program

- Let \mathcal{T} be a set of (variable-free) terms
- Let \mathcal{A} be a set of (variable-free) atoms constructible from \mathcal{T}
- A variable-free atom is also called ground
- Ground instances of $r \in P$: Set of variable-free rules obtained by replacing all variables in r by elements from \mathcal{T} :

$$
\operatorname{ground}(r)=\{r \theta \mid \theta: \operatorname{var}(r) \rightarrow \mathcal{T} \text { and } \operatorname{var}(r \theta)=\emptyset\}
$$

where $\operatorname{var}(r)$ stands for the set of all variables occurring in r; θ is a (ground) substitution

- Ground instantiation of P : $\operatorname{ground}(P)=\bigcup_{r \in P} \operatorname{ground}(r)$

An example

$$
\begin{aligned}
& P=\{r(a, b) \leftarrow, r(b, c) \leftarrow, t(X, Y) \leftarrow r(X, Y)\} \\
& \mathcal{T}=\{a, b, c\} \\
& \mathcal{A}=\left\{\begin{array}{l}
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c, a), r(c, b), r(c, c), \\
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c)
\end{array}\right\} \\
& \operatorname{ground}(P)=\left\{\begin{array}{l}
r(a, b) \leftarrow, \\
r(b, c) \leftarrow, \\
t(a, a) \leftarrow r(a, a), t(b, a) \leftarrow r(b, a), t(c, a) \leftarrow r(c, a), \\
t(a, b) \leftarrow r(a, b), t(b), b) \leftarrow r(b, b), t c, b) \leftarrow r(c, b), \\
t(a, c) \leftarrow r(a, c), t(b, c) \leftarrow r(b, c), t(c, c) \leftarrow r(c, c)
\end{array}\right\}
\end{aligned}
$$

Grounding aims at reducing the ground instantiation

An example

$$
\begin{aligned}
& P=\{r(a, b) \leftarrow, r(b, c) \leftarrow, t(X, Y) \leftarrow r(X, Y)\} \\
& \mathcal{T}=\{a, b, c\} \\
& \mathcal{A}=\left\{\begin{array}{l}
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c, a), r(c, b), r(c, c), \\
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c)
\end{array}\right\} \\
& \operatorname{ground}(P)=\left\{\begin{array}{l}
r(a, b) \leftarrow, \\
r(b, c) \leftarrow, \\
t(a, a) \leftarrow r(a, a), t(b, a) \leftarrow r(b, a), t(c, a) \leftarrow r(c, a), \\
t(a, b) \leftarrow r(a, b), t(b, b) \leftarrow r(b, b), t(c, b) \leftarrow r(c, b), \\
t(a, c) \leftarrow r(a, c), t(b, c) \leftarrow r(b, c), t(c, c) \leftarrow r(c, c)
\end{array}\right\}
\end{aligned}
$$

Grounding aims at reducing the ground instantiation

An example

$$
\begin{aligned}
& P=\{r(a, b) \leftarrow, r(b, c) \leftarrow, t(X, Y) \leftarrow r(X, Y)\} \\
& \mathcal{T}=\{a, b, c\} \\
& \mathcal{A}=\left\{\begin{array}{l}
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c, a), r(c, b), r(c, c), \\
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c)
\end{array}\right\} \\
& \operatorname{ground}(P)=\left\{\begin{array}{l}
r(a, b) \leftarrow, \\
r(b, c) \leftarrow, \\
t(a, a) \leftarrow r(a, a), t(b, a) \leftarrow r(b, a), t(c, a) \leftarrow r(c, a), \\
t(a, b) \leftarrow r(a, b), t(b, b) \leftarrow r(b, b), t(c, b) \leftarrow r(c, b), \\
t(a, c) \leftarrow r(a, c), t(b, c) \leftarrow r(b, c), t(c, c) \leftarrow r(c, c)
\end{array}\right\}
\end{aligned}
$$

- Grounding aims at reducing the ground instantiation

An example

$$
\begin{aligned}
& P=\{r(a, b) \leftarrow, r(b, c) \leftarrow, t(X, Y) \leftarrow r(X, Y)\} \\
& \mathcal{T}=\{a, b, c\} \\
& \mathcal{A}=\left\{\begin{array}{l}
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c, a), r(c, b), r(c, c), \\
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c)
\end{array}\right\} \\
& \operatorname{ground}(P)=\left\{\begin{array}{l}
r(a, b) \leftarrow, \\
r(b, c) \leftarrow, \\
t(a, a) \leftarrow r(a, a), t(b, a) \leftarrow r(b, a), t(c, a) \leftarrow r(c, a), \\
t(a, b) \leftarrow, \\
t(a, c) \leftarrow r(a, c), t(b, b) \leftarrow r(b, b) \leftarrow r(b, c), t(c, b) \leftarrow r(c, c) \leftarrow r(c, b),
\end{array}\right\}
\end{aligned}
$$

- Grounding aims at reducing the ground instantiation

An example

$$
\begin{aligned}
& P=\{r(a, b) \leftarrow, r(b, c) \leftarrow, t(X, Y) \leftarrow r(X, Y)\} \\
& \mathcal{T}=\{a, b, c\} \\
& \mathcal{A}=\left\{\begin{array}{l}
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c, a), r(c, b), r(c, c), \\
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c, a), t(c, b), t(c, c)
\end{array}\right\} \\
& \operatorname{ground}(P)=\left\{\begin{array}{l}
r(a, b) \leftarrow, \\
r(b, c) \leftarrow, \\
t(a, a) \leftarrow r(a, a), t(b, a) \leftarrow r(b, a), t(c, a) \leftarrow r(c, a), \\
t(a, b) \leftarrow, \\
t(a, c) \leftarrow r(a, c), t(b, b) \leftarrow r(b, b) \leftarrow r(b, c), t(c, b) \leftarrow r(c, c) \leftarrow r(c, b),
\end{array}\right\}
\end{aligned}
$$

- Grounding aims at reducing the ground instantiation

Safety

- A normal rule is safe, if each of its variables also occurs in some positive body literal
- A normal program is safe, if all of its rules are safe

Example

$$
\begin{aligned}
& d(a) \\
& d(c) \\
& d(d) \\
& p(a, b) \\
& p(b, c) \\
& p(c, d) \\
& p(X, Z) \leftarrow p(X, Y), p(Y, Z) \\
& q(a) \\
& q(b) \\
& q(X) \leftarrow \sim r(X) \\
& r(X) \leftarrow \sim q(X), d(X) \\
& s(X) \leftarrow \sim r(X), p(X, Y), q(Y)
\end{aligned}
$$

Example

Safe ?

$$
\begin{aligned}
& d(a) \\
& d(c) \\
& d(d) \\
& p(a, b) \\
& p(b, c) \\
& p(c, d) \\
& p(X, Z) \leftarrow p(X, Y), p(Y, Z) \\
& q(a) \\
& q(b) \\
& q(X) \leftarrow \sim r(X) \\
& r(X) \leftarrow \sim q(X), d(X) \\
& s(X) \leftarrow \sim r(X), p(X, Y), q(Y)
\end{aligned}
$$

Example

Safe ?

$$
\begin{aligned}
& d(a) \\
& d(c) \\
& d(d) \\
& p(a, b) \\
& p(b, c) \\
& p(c, d) \\
& p(X, Z) \leftarrow p(X, Y), p(Y, Z) \\
& q(a) \\
& q(b) \\
& q(X) \leftarrow \sim r(X) \\
& r(X) \leftarrow \sim q(X), d(X) \\
& s(X) \leftarrow \sim r(X), p(X, Y), q(Y)
\end{aligned}
$$

Example

Safe ?

$$
\begin{aligned}
& d(a) \\
& d(c) \\
& d(d) \\
& p(a, b) \\
& p(b, c) \\
& p(c, d) \\
& p(X, Z) \leftarrow p(X, Y), p(Y, Z) \\
& q(a) \\
& q(b) \\
& q(X) \leftarrow \sim r(X) \\
& r(X) \leftarrow \sim q(X), d(X) \\
& s(X) \leftarrow \sim r(X), p(X, Y), q(Y)
\end{aligned}
$$

Example

Safe ?

$$
\begin{aligned}
& d(a) \\
& d(c) \\
& d(d) \\
& p(a, b) \\
& p(b, c) \\
& p(c, d) \\
& p(X, Z) \leftarrow p(X, Y), p(Y, Z) \\
& q(a) \\
& q(b) \\
& q(X) \leftarrow \sim r(X) \\
& r(X) \leftarrow \sim q(X), d(X) \\
& s(X) \leftarrow \sim r(X), p(X, Y), q(Y)
\end{aligned}
$$

Example

Safe ?

$$
\begin{aligned}
& d(a) \\
& d(c) \\
& d(d) \\
& p(a, b) \\
& p(b, c) \\
& p(c, d) \\
& p(X, Z) \leftarrow p(X, Y), p(Y, Z) \\
& q(a) \\
& q(b) \\
& q(X) \leftarrow \sim r(X) \\
& r(X) \leftarrow \sim q(X), d(X) \\
& s(X) \leftarrow \sim r(X), p(X, Y), q(Y)
\end{aligned}
$$

Example

Safe ?

$$
\begin{aligned}
& d(a) \\
& d(c) \\
& d(d) \\
& p(a, b) \\
& p(b, c) \\
& p(c, d) \\
& p(X, Z) \leftarrow p(X, Y), p(Y, Z) \\
& q(a) \\
& q(b) \\
& q(X) \leftarrow \sim r(X), d(X) \\
& r(X) \leftarrow \sim q(X), d(X) \\
& s(X) \leftarrow \sim r(X), p(X, Y), q(Y)
\end{aligned}
$$

Example

Safe ?

$$
\begin{aligned}
& d(a) \\
& d(c) \\
& d(d) \\
& p(a, b) \\
& p(b, c) \\
& p(c, d) \\
& p(X, Z) \leftarrow p(X, Y), p(Y, Z) \\
& q(a) \\
& q(b) \\
& q(X) \leftarrow \sim r(X), d(X) \\
& r(X) \leftarrow \sim q(X), d(X) \\
& s(X) \leftarrow \sim r(X), p(X, Y), q(Y)
\end{aligned}
$$

Example

Safe ?

$$
\begin{aligned}
& d(a) \\
& d(c) \\
& d(d) \\
& p(a, b) \\
& p(b, c) \\
& p(c, d) \\
& p(X, Z) \leftarrow p(X, Y), p(Y, Z) \\
& q(a) \\
& q(b) \\
& q(X) \leftarrow \sim r(X), d(X) \\
& r(X) \leftarrow \sim q(X), d(X) \\
& s(X) \leftarrow \sim r(X), p(X, Y), q(Y)
\end{aligned}
$$

Example

Safe ?

$$
\begin{aligned}
& d(a) \\
& d(c) \\
& d(d) \\
& p(a, b) \\
& p(b, c) \\
& p(c, d) \\
& p(X, Z) \leftarrow p(X, Y), p(Y, Z) \\
& q(a) \\
& q(b) \\
& q(X) \leftarrow \sim r(X), d(X) \\
& r(X) \leftarrow \sim q(X), d(X) \\
& s(X) \leftarrow \sim r(X), p(X, Y), q(Y)
\end{aligned}
$$

Example

Safe ?

$$
\begin{aligned}
& d(a) \\
& d(c) \\
& d(d) \\
& p(a, b) \\
& p(b, c) \\
& p(c, d) \\
& p(X, Z) \leftarrow p(X, Y), p(Y, Z) \\
& q(a) \\
& q(b) \\
& q(X) \leftarrow \sim r(X), d(X) \\
& r(X) \leftarrow \sim q(X), d(X) \\
& s(X) \leftarrow \sim r(X), p(X, Y), q(Y)
\end{aligned}
$$

Stable models of programs with Variables

Let P be a normal logic program with variables

$$
\begin{aligned}
& \text { A set } X \text { of }(\text { ground }) \text { atoms is a stable model of } P, \\
& \text { if } \operatorname{Cn}\left(\operatorname{ground}(P)^{X}\right)=X
\end{aligned}
$$

Stable models of programs with Variables

Let P be a normal logic program with variables

- A set X of (ground) atoms is a stable model of P, if $\operatorname{Cn}\left(\operatorname{ground}(P)^{X}\right)=X$

Basic Modeling: Overview

15 Elaboration tolerance
16 ASP solving process
17 Methodology
18 Case studies

Modeling and Interpreting

Outline

15 Elaboration tolerance

16 ASP solving process

17 Methodology

18 Case studies

Guiding principle

- Elaboration Tolerance (McCarthy, 1998)
"A formalism is elaboration tolerant [if] it is convenient to modify a set of facts expressed in the formalism to take into account new phenomena or changed circumstances."

For solving a problem instance I of a problem class C,

- I is represented as a set of facts P_{1},
- C is represented as a set of rules P_{C}, and
- P_{C} can be used to solve all problem instances in \mathbf{C}

Guiding principle

- Elaboration Tolerance (McCarthy, 1998)
"A formalism is elaboration tolerant [if] it is convenient to modify a set of facts expressed in the formalism to take into account new phenomena or changed circumstances."

■ Uniform problem representation
For solving a problem instance \mathbf{I} of a problem class \mathbf{C},

- I is represented as a set of facts $P_{\mathbf{1}}$,
- C is represented as a set of rules P_{C}, and
- P_{C} can be used to solve all problem instances in \mathbf{C}

Outline

15 Elaboration tolerance

16 ASP solving process
17 Methodology

18 Case studies

ASP solving process

Elaborating

A case-study: Graph coloring

Graph coloring

- Problem instance A graph consisting of nodes and edges

Graph coloring

- Problem instance A graph consisting of nodes and edges

Graph coloring

- Problem instance A graph consisting of nodes and edges

Graph coloring

- Problem instance A graph consisting of nodes and edges
- facts formed by predicates node/1 and edge/2

Graph coloring

- Problem instance A graph consisting of nodes and edges
- facts formed by predicates node/1 and edge/2
- facts formed by predicate color/1

Graph coloring

- Problem instance A graph consisting of nodes and edges
- facts formed by predicates node/1 and edge/2
- facts formed by predicate color/1
- Problem class Assign each node one color such that no two nodes connected by an edge have the same color

Graph coloring

- Problem instance A graph consisting of nodes and edges
- facts formed by predicates node/1 and edge/2
- facts formed by predicate color/1

■ Problem class Assign each node one color such that no two nodes connected by an edge have the same color In other words,
1 Each node has one color
2 Two connected nodes must not have the same color

ASP solving process

Graph coloring

```
```

node(1. . 6).

```
```

node(1. . 6).
edge(1,2). edge(1,3). edge(1,4).
edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(3,1). edge(3,4). edge(3,5).
edge (4, 1). edge (4,2).
edge (4, 1). edge (4,2).
edge(5,3). edge(5,4). edge (5,6).
edge(5,3). edge(5,4). edge (5,6).
edge(6,2). edge(6,3). edge(6,5).
edge(6,2). edge(6,3). edge(6,5).
color(r). color(b). color(g).
color(r). color(b). color(g).
{ assign(N,C) : color(C) } = 1 :- node(N).
{ assign(N,C) : color(C) } = 1 :- node(N).
:- edge(N,M), assign(N,C), assign(M,C).

```
```

:- edge(N,M), assign(N,C), assign(M,C).

```
```


Graph coloring

```
node(1..6).
```

```
edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge (3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).
color(r).
color(b).
color(g).
color (r).
color (b).
color (g).
```

\{ assign(N,C) : color(C) \} $=1$:- node(N).
:- edge(N,M), assign(N,C), assign(M,C).

Problem instance
\{ assign(N,C) : color(C) \} = 1 :- node(N).
:- edge(N,M), assign(N,C), assign(M,C).

Graph coloring

Problem instance

```
node(1..6).
```

```
node(1..6).
```

```
edge(1,2). edge(1,3). edge(1,4).
```

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).
edge(6,2). edge(6,3). edge(6,5).
color(r). color(b). color(g).
{ assign(N,C) : color(C) } = 1 :- node(N).
:- edge(N,M), assign(N,C), assign(M,C).

```

\section*{Graph coloring}

Problem instance
```

node(1..6).

```
```

node(1..6).

```
```

edge(1,2). edge(1,3). edge(1,4).

```
edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).
edge(6,2). edge(6,3). edge(6,5).
color(r). color(b). color(g).
color(r). color(b). color(g).
{ assign(N,C) : color(C) } = 1 :- node(N).
:- edge(N,M), assign(N,C), assign(M,C).
```


Graph coloring

```
```

node(1..6).

```
```

node(1..6).
edge(1,2). edge(1,3). edge(1,4).
edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).
edge(6,2). edge(6,3). edge(6,5).
color(r). color(b). color(g).
color(r). color(b). color(g).
{ assign(N,C) : color(C) } = 1 :- node(N).
{ assign(N,C) : color(C) } = 1 :- node(N).
:- edge(N,M), assign(N,C), assign(M,C).

```
```

:- edge(N,M), assign(N,C), assign(M,C).

```
```

Problem instance

Graph coloring

```
node(1..6).
```

```
node(1..6).
```

```
edge(1,2). edge(1,3). edge(1,4).
```

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).
edge(6,2). edge(6,3). edge(6,5).
color(r). color(b). color(g).
color(r). color(b). color(g).
{ assign(N,C) : color(C) } = 1 :- node(N).
:- edge(N,M), assign(N,C), assign(M,C).

```

Problem instance

\section*{Graph coloring}
\{ assign(N,C) : color(C) \} = 1 :- node(N).
:- edge( \(\mathrm{N}, \mathrm{M}\) ), \(\operatorname{assign}(\mathrm{N}, \mathrm{C}), \operatorname{assign}(\mathrm{M}, \mathrm{C})\).

Problem instance
```

node(1..6).

```
```

node(1..6).

```
```

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).
color(r). color(b). color(g).

```
:- edge( \(\mathrm{N}, \mathrm{M}\) ), \(\operatorname{assign}(\mathrm{N}, \mathrm{C}), \operatorname{assign}(\mathrm{M}, \mathrm{C})\).

\section*{Graph coloring}
```

```
node(1..6).
```

```
```

```
node(1..6).
```

```
\{ assign(N,C) : color(C) \} = 1 :- node(N).
:- edge( \(\mathrm{N}, \mathrm{M}\) ), \(\operatorname{assign}(\mathrm{N}, \mathrm{C}), \operatorname{assign}(\mathrm{M}, \mathrm{C})\).

Problem instance
```

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).
color(r). color(b). color(g).

```
:- edge( \(\mathrm{N}, \mathrm{M}\) ), \(\operatorname{assign}(\mathrm{N}, \mathrm{C})\), assign(M,C).

Problem encoding
(1)Potassco

\section*{Graph coloring}
edge(1,2). edge (1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).
color(r). color(b). color(g).
{ assign(N,C) : color(C) } = 1 :- node(N).
:- edge(N,M), assign(N,C), assign(M,C).
```

```
```

node(1..6).

```
```

```
node(1..6).
```

```
:- edge(N,M), assign(N,C), assign(M,C).
```

Problem instance

Problem encoding
© Potassco

Graph coloring

```
node(1..6).
edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).
color(r). color(b). color(g).
{ assign(N,C) : color(C) } = 1 :- node(N).
:- edge(N,M), assign(N,C), assign(M,C).
```


ASP solving process

Graph coloring: Grounding

\$ gringo --text graph.lp color.lp

```
node(1). node(2). node(3). node(4). node(5). node(6).
```

```
edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge (5,3). edge(6, 2).
```

edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge (5,3). edge(6, 2).
edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge (5,4). edge(6,3).
edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge (5,4). edge(6,3).
edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge (6,5).
edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge (6,5).
color(r). color(b). color(g).
color(r). color(b). color(g).
{\operatorname{assign}(1,r),\operatorname{assign}(1,b),\operatorname{assign}(1,g)}=1. {\operatorname{assign}(4,r),\operatorname{assign}(4,b),\operatorname{assign}(4,g)}=1.
{\operatorname{assign}(1,r),\operatorname{assign}(1,b),\operatorname{assign}(1,g)}=1. {\operatorname{assign}(4,r),\operatorname{assign}(4,b),\operatorname{assign}(4,g)}=1.
{\operatorname{assign}(2,r),\operatorname{assign}(2,b),\operatorname{assign}(2,g)}=1.{\operatorname{assign}(5,r),\operatorname{assign}(5,b),\operatorname{assign}(5,g)}=1.
{\operatorname{assign}(2,r),\operatorname{assign}(2,b),\operatorname{assign}(2,g)}=1.{\operatorname{assign}(5,r),\operatorname{assign}(5,b),\operatorname{assign}(5,g)}=1.
{assign(3,r), assign(3,b), assign(3,g)} = 1. {assign(6,r), assign(6,b), assign(6,g)}=1.

```
{assign(3,r), assign(3,b), assign(3,g)} = 1. {assign(6,r), assign(6,b), assign(6,g)}=1.
```

$:-\operatorname{assign}(1, r), \operatorname{assign}(2, r)$.
:- assign $(1, b)$, $\operatorname{assign}(2, b)$.
:- assign $(1, g)$, assign $(2, g)$.
:- assign $(1, r)$, assign $(3, r)$.
:- assign $(1, b)$, assign $(3, b)$.
:- assign $(1, g)$, assign $(3, g)$.
:- assign $(1, r)$, assign $(4, r)$.
$:-\operatorname{assign}(1, b)$, $\operatorname{assign}(4, b)$.
:- assign $(1, g)$, assign $(4, g)$.

```
```

:- assign(2,r), assign}(4,r)

```
```

:- assign(2,r), assign}(4,r)
:- assign(2,b), assign(4,b).
:- assign(2,b), assign(4,b).
:- assign (2,g), assign (4,g).
:- assign (2,g), assign (4,g).
:- assign(2,r), assign(5,r).
:- assign(2,r), assign(5,r).
:- assign(2,b), assign(5,b).
:- assign(2,b), assign(5,b).
:- assign (2,g), assign(5,g).
:- assign (2,g), assign(5,g).
:- assign(2,r), assign(6,r).
:- assign(2,r), assign(6,r).
:- assign(2,b), assign(6,b).
:- assign(2,b), assign(6,b).
:- assign(2,g), assign(6,g).

```
```

 :- assign(2,g), assign(6,g).
    ```
```

$[\ldots]:-\operatorname{assign}(6, r), \operatorname{assign}(2, r)$
:- assign $(6, b)$, assign $(2, b)$
:- $\operatorname{assign}(6, g), \operatorname{assign}(2, g)$.
$:-\operatorname{assign}(6, r), \operatorname{assign}(3, r)$
:- assign $(6, b)$, $\operatorname{assign}(3, b)$
:- assign $(6, g), \operatorname{assign}(3, g)$
$:-\operatorname{assign}(6, r), \operatorname{assign}(5, r)$.
$:-\operatorname{assign}(6, b), \operatorname{assign}(5, b)$
:- assign $(6, g)$ pisign $(5, g)$.
git Potassco

Graph coloring: Grounding

```
$ gringo --text graph.lp color.lp
```

```
node(1). node(2). node(3). node(4). node(5). node(6).
edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge(5,3). edge(6,2).
edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge(5,4). edge(6,3).
edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge(6,5).
color(r). color(b). color(g).
{\operatorname{assign}(1,r),\operatorname{assign}(1,b),\operatorname{assign}(1,g)}=1. {\operatorname{assign}(4,r),\operatorname{assign}(4,b),\operatorname{assign}(4,g)}=1.
{\operatorname{assign}(2,r),\operatorname{assign}(2,b),\operatorname{assign}(2,g)}=1. {\operatorname{assign}(5,r),\operatorname{assign}(5,b),\operatorname{assign}(5,g)}=1.
{\operatorname{assign}(3,r),\operatorname{assign}(3,b),\operatorname{assign}(3,g)}=1.{\operatorname{assign}(6,r),\operatorname{assign}(6,b),\operatorname{assign}(6,g)}=1.
```

$:-\operatorname{assign}(1, r), \operatorname{assign}(2, r) . \quad:-\operatorname{assign}(2, r), \operatorname{assign}(4, r) .[\ldots]:-\operatorname{assign}(6, r), \operatorname{assign}(2, r)$.
$:-\operatorname{assign}(1, b), \operatorname{assign}(2, b)$. :- $\operatorname{assign}(2, b), \operatorname{assign}(4, b)$.
:- assign(1,g), assign(2,g). :- assign(2,g), assign(4,g).
$:-\operatorname{assign}(1, r), \operatorname{assign}(3, r)$. :- $\operatorname{assign}(2, r), \operatorname{assign}(5, r)$.
$:-\operatorname{assign}(1, b), \operatorname{assign}(3, b)$. $:-\operatorname{assign}(2, b), \operatorname{assign}(5, b)$.
:- $\operatorname{assign}(1, g), \operatorname{assign}(3, g)$. :- $\operatorname{assign}(2, g), \operatorname{assign}(5, g)$.
:- $\operatorname{assign}(1, r)$, $\operatorname{assign}(4, r)$. :- $\operatorname{assign}(2, r), \operatorname{assign}(6, r)$.
$:-\operatorname{assign}(1, b)$, $\operatorname{assign}(4, b)$. :- $\operatorname{assign}(2, b), \operatorname{assign}(6, b)$.
:- $\operatorname{assign}(1, g), \operatorname{assign}(4, g)$. :- $\operatorname{assign}(2, g), \operatorname{assign}(6, g)$.
:- $\operatorname{assign}(6, b)$, $\operatorname{assign}(2, b)$
:- $\operatorname{assign}(6, g)$, assign $(2, g)$.
:- assign($6, r$), assign $(3, r)$.
:- $\operatorname{assign}(6, b)$, assign $(3, b)$.
:- $\operatorname{assign}(6, g)$, assign $(3, g)$
:- $\operatorname{assign}(6, r)$, assign($5, r$)
:- $\operatorname{assign}(6, b)$, $\operatorname{assign}(5, b)$
:- $\operatorname{assign}(6, g)$ PotaSSCo

Graph coloring: Grounding

```
$ gringo --text graph.lp color.lp
```

```
node(1). node(2). node(3). node(4). node(5). node(6).
edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge(5,3). edge(6,2).
edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge(5,4). edge(6,3).
edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge(6,5).
color(r). color(b). color(g).
{\operatorname{assign}(1,r),\operatorname{assign}(1,b),\operatorname{assign}(1,g)}=1. {\operatorname{assign}(4,r),\operatorname{assign}(4,b),\operatorname{assign}(4,g)}=1.
{\operatorname{assign}(2,r),\operatorname{assign}(2,b),\operatorname{assign}(2,g)} = 1. {assign(5,r),\operatorname{assign}(5,b),\operatorname{assign}(5,g)} = 1.
{\operatorname{assign}(3,r),\operatorname{assign}(3,b),\operatorname{assign}(3,g)}=1. {\operatorname{assign}(6,r),\operatorname{assign}(6,b),\operatorname{assign}(6,g)}=1.
```

```
:- assign(1,r), assign(2,r).
:- assign(1,b), assign(2,b) .
:- assign (1,g), assign (2,g).
:- assign(1,r), assign(3,r) .
:- assign(1,b), assign(3,b).
:- assign(1,g), assign (3,g).
:- assign(1,r), assign(4,r).
:- assign(1,b), assign(4,b) .
:- assign(1,g), assign}(4,g)
```

:- assign(2,r), assign(4,r).

```
:- assign(2,r), assign(4,r).
:- assign(2,b), assign(4,b).
:- assign(2,b), assign(4,b).
:- assign(2,g), assign(4,g).
:- assign(2,g), assign(4,g).
:- assign(2,r), assign(5,r).
:- assign(2,r), assign(5,r).
:- assign(2,b), assign(5,b).
:- assign(2,b), assign(5,b).
:- assign (2,g), assign (5,g).
:- assign (2,g), assign (5,g).
:- assign(2,r), assign(6,r).
:- assign(2,r), assign(6,r).
:- assign(2,b), assign(6,b).
:- assign(2,b), assign(6,b).
:- assign(2,g), assign(6,g).
```

```
:- assign(2,g), assign(6,g).
```

```
[...]
```

- assign(6,r), assign(2,r)
:- assign(6,b), assign(2,b)
:- assign(6,g), assign(2,g)
:- assign(6,r), assign(3,r)
:- assign(6, b), assign(3,b)
:- assign(6,g), assign(3,g)
:- assign(6,r), assign(5,r)
:- assign(6,b), assign(5,b)
:- assign(6,g) Psign(5,g).

```

\section*{Graph coloring: Grounding}
```

\$ gringo --text graph.lp color.lp

```
```

node(1). node(2). node(3). node(4). node(5). node(6).
edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge(5,3). edge(6,2).
edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge(5,4). edge(6,3).
edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge(6,5).

```
color(r). color(b). color(g).
\(\{\operatorname{assign}(1, r), \operatorname{assign}(1, b), \operatorname{assign}(1, g)\}=1 .\{\operatorname{assign}(4, r), \operatorname{assign}(4, b), \operatorname{assign}(4, g)\}=1\).
\(\{\operatorname{assign}(2, r), \operatorname{assign}(2, b), \operatorname{assign}(2, g)\}=1 .\{\operatorname{assign}(5, r), \operatorname{assign}(5, b), \operatorname{assign}(5, g)\}=1\).
\(\{\operatorname{assign}(3, r), \operatorname{assign}(3, b), \operatorname{assign}(3, g)\}=1 .\{\operatorname{assign}(6, r), \operatorname{assign}(6, b), \operatorname{assign}(6, g)\}=1\).
:- \(\operatorname{assign}(1, r), \operatorname{assign}(2, r)\).
:- \(\operatorname{assign}(1, b)\), \(\operatorname{assign}(2, b)\).
\(:-\operatorname{assign}(1, r), \operatorname{assign}(3, r)\). :- \(\operatorname{assign}(2, r), \operatorname{assign}(5, r)\).
:- assign(1, b), assign \((3, b)\). :- assign \((2, b)\), assign \((5, b)\).
:- \(\operatorname{assign}(1, g), \operatorname{assign}(3, g) . \quad:-\operatorname{assign}(2, g), \operatorname{assign}(5, g)\).
\(:-\operatorname{assign}(1, r), \operatorname{assign}(4, r)\). :- assign \((2, r)\), \(\operatorname{assign}(6, r)\).
:- \(\operatorname{assign}(1, b)\), \(\operatorname{assign}(4, b)\). :- \(\operatorname{assign}(2, b), \operatorname{assign}(6, b)\).
:- \(\operatorname{assign}(1, g), \operatorname{assign}(4, g) . \quad:-\operatorname{assign}(2, g), \operatorname{assign}(6, g)\).
:- assign(2,r), assign (4,r).
:- \(\operatorname{assign}(2, b)\), assign \((4, b)\).
:- \(\operatorname{assign}(2, g), \operatorname{assign}(4, g)\).
[...] :- \(\operatorname{assign}(6, r), \operatorname{assign}(2, r)\).
:- \(\operatorname{assign}(6, b)\), \(\operatorname{assign}(2, b)\).
:- \(\operatorname{assign}(6, g), \operatorname{assign}(2, g)\).
:- \(\operatorname{assign}(6, r)\), assign \((3, r)\).
:- assign \((6, b)\), assign \((3, b)\).
\(:-\operatorname{assign}(6, \mathrm{~g}), \operatorname{assign}(3, \mathrm{~g})\).
:- \(\operatorname{assign}(6, r), \operatorname{assign}(5, r)\).
:- \(\operatorname{assign}(6, b)\), assign \((5, b)\).
:- assign \((6, g)\) assign \((5, \mathrm{~g})\).

\section*{Graph coloring: Grounding}
```

\$ clingo --text graph.lp color.lp

```
```

node(1). node(2). node(3). node(4). node(5). node(6).
edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge(5,3). edge(6,2).
edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge(5,4). edge(6,3).
edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge(6,5).

```
color(r). color(b). color(g).
\(\{\operatorname{assign}(1, r), \operatorname{assign}(1, b), \operatorname{assign}(1, g)\}=1 .\{\operatorname{assign}(4, r), \operatorname{assign}(4, b), \operatorname{assign}(4, g)\}=1\).
\(\{\operatorname{assign}(2, r), \operatorname{assign}(2, b), \operatorname{assign}(2, g)\}=1 .\{\operatorname{assign}(5, r), \operatorname{assign}(5, b), \operatorname{assign}(5, g)\}=1\).
\(\{\operatorname{assign}(3, r), \operatorname{assign}(3, b), \operatorname{assign}(3, g)\}=1 .\{\operatorname{assign}(6, r), \operatorname{assign}(6, b), \operatorname{assign}(6, g)\}=1\).
:- \(\operatorname{assign}(1, r), \operatorname{assign}(2, r)\).
:- \(\operatorname{assign}(1, b)\), \(\operatorname{assign}(2, b)\).
\(:-\operatorname{assign}(1, r), \operatorname{assign}(3, r)\). :- \(\operatorname{assign}(2, r), \operatorname{assign}(5, r)\).
:- assign(1, b), assign \((3, b)\). :- assign \((2, b)\), assign \((5, b)\).
:- \(\operatorname{assign}(1, g), \operatorname{assign}(3, g) . \quad:-\operatorname{assign}(2, g), \operatorname{assign}(5, g)\).
\(:-\operatorname{assign}(1, r), \operatorname{assign}(4, r)\). :- assign \((2, r)\), \(\operatorname{assign}(6, r)\).
:- \(\operatorname{assign}(1, b)\), \(\operatorname{assign}(4, b)\). :- \(\operatorname{assign}(2, b), \operatorname{assign}(6, b)\).
:- \(\operatorname{assign}(1, g), \operatorname{assign}(4, g) . \quad:-\operatorname{assign}(2, g), \operatorname{assign}(6, g)\).
:- assign(2,r), assign (4,r).
:- \(\operatorname{assign}(2, b)\), assign \((4, b)\).
:- \(\operatorname{assign}(2, g), \operatorname{assign}(4, g)\).
[...] :- \(\operatorname{assign}(6, r), \operatorname{assign}(2, r)\).
:- \(\operatorname{assign}(6, b)\), \(\operatorname{assign}(2, b)\).
:- \(\operatorname{assign}(6, g), \operatorname{assign}(2, g)\).
:- \(\operatorname{assign}(6, r)\), assign \((3, r)\).
:- assign \((6, b)\), assign \((3, b)\).
\(:-\operatorname{assign}(6, g), \operatorname{assign}(3, g)\).
\(:-\operatorname{assign}(6, r), \operatorname{assign}(5, r)\).
:- \(\operatorname{assign}(6, b)\), assign \((5, b)\).
:- assign \((6, g)\) assign \((5, \mathrm{~g})\).

\section*{ASP solving process}


\section*{Graph coloring: Solving}

\section*{\$ gringo graph.lp color.lp | clasp 0}
clasp version 2.1.0
Reading from stdin
Solving...
Answer: 1
```

node(1) [...] assign(6,b) assign(5,g) assign(4,b) assign(3,r) assign(2,r) assign(1,g)

```
Answer: 2
node(1) [...] assign(6,r) assign(5,g) assign(4,r) assign(3,b) assign(2,b) assign(1,g)
Answer: 3
node(1) [...] assign(6,g) assign(5,b) assign(4,g) assign(3,r) assign(2,r) assign(1,b)
Answer: 4
node(1) [...] assign(6,r) assign(5,b) assign(4,r) assign(3,g) assign(2,g) assign(1,b)
Answer: 5
node(1) [...] assign(6,g) assign(5,r) assign(4,g) assign(3,b) assign(2,b) assign(1,r)
Answer: 6
node(1) [...] assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)
SATISFIABLE
```

Models : 6
Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

```

\section*{Graph coloring: Solving}
```

\$ gringo graph.lp color.lp | clasp 0

```
clasp version 2.1.0
Reading from stdin
Solving. .
Answer: 1
node(1) [...] assign(6,b) assign(5,g) assign(4,b) assign(3,r) assign(2,r) assign(1,g)
Answer: 2
node(1) [...] assign(6,r) assign(5,g) assign(4,r) assign(3,b) assign(2,b) assign(1,g)
Answer: 3
node(1) [...] assign(6,g) assign(5,b) assign(4,g) assign(3,r) assign(2,r) assign(1,b)
Answer: 4
node(1) [...] assign(6,r) assign(5,b) assign(4,r) assign(3,g) assign(2,g) assign(1,b)
Answer: 5
node(1) [...] assign(6,g) assign(5,r) assign(4,g) assign(3,b) assign(2,b) assign(1,r)
Answer: 6
node(1) [...] assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)
SATISFIABLE
Models : 6
Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

\section*{Graph coloring: Solving}
```

\$ clingo graph.lp color.lp 0

```
clasp version 2.1.0
Reading from stdin
Solving...
Answer: 1
node(1) [...] assign(6,b) assign(5,g) assign(4,b) assign(3,r) assign(2,r) assign(1,g)
Answer: 2
node(1) [...] assign(6,r) assign(5,g) assign(4,r) assign(3,b) assign(2,b) assign(1,g)
Answer: 3
node(1) [...] assign(6,g) assign(5,b) assign(4,g) assign(3,r) assign(2,r) assign(1,b)
Answer: 4
node(1) [...] assign(6,r) assign(5,b) assign(4,r) assign(3,g) assign(2,g) assign(1,b)
Answer: 5
node(1) [...] assign(6,g) assign(5,r) assign(4,g) assign(3,b) assign(2,b) assign(1,r)
Answer: 6
node(1) [...] assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)
SATISFIABLE
Models : 6
Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

\section*{ASP solving process}


\section*{A coloring}
```

Answer: 6
node(1) [...] \
assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)

```


\section*{A coloring}
```

Answer: 6
node(1) [...] \
assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)

```


\section*{Outline}

\section*{15 Elaboration tolerance}

\section*{16 ASD solving process}

17 Methodology

\section*{18 Case studies}

\section*{Basic methodology}

\section*{Methodology}

\section*{Generate and Test (or: Guess and Check)}

> Generator Generate potential stable model candidates (typically through non-deterministic constructs)

Tester Eliminate invalid candidates (typically through integrity constraints)

\section*{Basic methodology}

\section*{Methodology}

Generate and Test (or: Guess and Check)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell
Logic program \(=\) Data + Generator + Tester \((+\) Optimizer \()\)

\section*{Graph coloring}
node (1. . 6) .
```

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4, 2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).
color(r). color(b). color(g).
{ assign(N,C) : color(C) } = 1 :- node(N).
:- edge(N,M), assign(N,C), assign(M,C).

```

\section*{Graph coloring}
node (1. . 6) .
```

edge(1,2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).
color(r). color(b). color(g).

```
\(\{\operatorname{assign}(N, C): \operatorname{color}(C)\}=1:-\operatorname{node}(N)\).
:- edge( \(\mathrm{N}, \mathrm{M}\) ), assign( \(\mathrm{N}, \mathrm{C}\) ), assign(M,C).

\section*{Graph coloring}
node (1. . 6) .
```

edge(1, 2). edge(1,3). edge(1,4).
edge(2,4). edge(2,5). edge(2,6).
edge(3,1). edge(3,4). edge(3,5).
edge(4,1). edge(4,2).
edge(5,3). edge(5,4). edge(5,6).
edge(6,2). edge(6,3). edge(6,5).
color(r). color(b). color(g).

```
\(\{\operatorname{assign}(N, C): \operatorname{color}(C)\}=1:-\operatorname{node}(N)\).
:- edge( \(\mathrm{N}, \mathrm{M}\) ), \(\operatorname{assign}(\mathrm{N}, \mathrm{C})\), assign(M,C).

\section*{Outline}

\section*{15 Elaboration tolerance}

\section*{16 ^SP solving process}

17 Methodology
18 Case studies

\section*{Outline}

15 Elaboration tolerance

16 ASP solving process
17 Methodology

18 Case studies
- Satisfiability
- Queens
- Traveling salesperson
- Reviewer Assignment
- Planning

Torsten Schaub (KRR@UP)

\section*{Satisfiability testing}
- Problem Instance A propositional formula \(\phi\) in CNF
- Problem Class Is there an assignment of propositional variables to true and false such that a given formula \(\phi\) is true
- Example: Consider formula
\[
(a \vee \neg b) \wedge(\neg a \vee b)
\]

Generator


Tester


Stable models
\(X_{1}=\{a, b\}\)
\(X_{2}=\{ \}\)

\section*{Satisfiability testing}
- Problem Instance A propositional formula \(\phi\) in CNF
- Problem Class Is there an assignment of propositional variables to true and false such that a given formula \(\phi\) is true
- Example: Consider formula
\[
(a \vee \neg b) \wedge(\neg a \vee b)
\]
- Logic Program
\(\begin{array}{lc}\text { Generator } & \text { Tester } \\ \{a\} & \leftarrow \\ \{b\} & \leftarrow \\ & \leftarrow a, b \\ & \end{array}\)

Stable models
\(X_{1}=\{a, b\}\)
\(X_{2}=\{ \}\)

\section*{Satisfiability testing}
- Problem Instance A propositional formula \(\phi\) in CNF
- Problem Class Is there an assignment of propositional variables to true and false such that a given formula \(\phi\) is true
- Example: Consider formula
\[
(a \vee \neg b) \wedge(\neg a \vee b)
\]
- Logic Program
\begin{tabular}{lc}
\multicolumn{2}{l}{ Generator }
\end{tabular}\(\quad\) Tester \(\quad \begin{array}{cc}\{a\} & \leftarrow \\
\{b\} & \leftarrow \\
& \leftarrow a, b \\
& \end{array}\)

Stable models
\(X_{1}=\{a, b\}\)
\(X_{2}=\{ \}\)

\section*{Satisfiability testing}
- Problem Instance A propositional formula \(\phi\) in CNF
- Problem Class Is there an assignment of propositional variables to true and false such that a given formula \(\phi\) is true
- Example: Consider formula
\[
(a \vee \neg b) \wedge(\neg a \vee b)
\]
- Logic Program
\begin{tabular}{lc}
\multicolumn{2}{l}{ Generator }
\end{tabular}\(\quad\) Tester \(\quad \begin{array}{cc}\{a\} & \leftarrow \\
\{b\} & \leftarrow \\
& \leftarrow a, b \\
& \end{array}\)

Stable models
\(X_{1}=\{a, b\}\)
\(X_{2}=\{ \}\)

\section*{Satisfiability testing}
- Problem Instance A propositional formula \(\phi\) in CNF
- Problem Class Is there an assignment of propositional variables to true and false such that a given formula \(\phi\) is true
- Example: Consider formula
\[
(a \vee \neg b) \wedge(\neg a \vee b)
\]
- Logic Program


Stable models
\(X_{1}=\{a, b\}\)
\(X_{2}=\{ \}\)

\section*{Outline}

15 Elaboration tolerance

16 ASP solving process
17 Methodology

18 Case studies
- Satisfiability
- Queens
- Traveling salesperson
- Reviewer Assignment
- Planning

Torsten Schaub (KRR@UP)

\section*{The n-queens problem}

- Place \(n\) queens on an \(n \times n\) chess board
- Queens must not attack one another


\section*{Defining the field}

\section*{queens.lp}
```

row (1..n).
col(1..n).

```
- Create file queens.lp
- Define the field
- \(n\) rows
- \(n\) columns

\section*{Defining the field}
```

Running ...
\$ clingo queens.lp --const n=5
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5)
SATISFIABLE
Models : 1
Time : 0.000

```

\section*{Placing some queens}
```

queens.lp
row(1..n).
col(1..n).
{queen(I,J) : row(I), col(J) }.

```
- Guess a solution candidate by placing some queens on the board

\section*{Placing some queens}
```

Running . . .
\$ clingo queens.lp --const n=5 3
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5)
Answer: 2
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) queen(1,1)
Answer: 3
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) queen(2,1)
SATISFIABLE
Models : 3+

```

\section*{Placing some queens}

\section*{Answer: 1}

```

Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5)

```

Torsten Schaub (KRR@UP)

\section*{Placing some queens}

\section*{Answer: 2}

```

Answer: 2
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(1,1)

```

Torsten Schaub (KRR@UP)

\section*{Placing some queens}

\section*{Answer: 3}

```

Answer: 3
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(2,1)

```

Torsten Schaub (KRR@UP)

\section*{Placing \(n\) queens}
```

queens.lp
row(1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.
:- { queen(I,J) } != n.

```
- Place exactly \(n\) queens on the board

\section*{Placing \(n\) queens}
```

queens.lp
row(1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.
:- not { queen(I,J) } = n.

```
- Place exactly \(n\) queens on the board

\section*{Placing \(n\) queens}
```

Running . . .
\$ clingo queens.lp --const n=5 2
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(5,1) queen(4,1) queen(3,1) queen(2,1) queen(1,1)
Answer: 2
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(1,2) queen(4,1) queen(3,1) queen(2,1) queen(1,1)

```

\section*{Placing \(n\) queens}

\section*{Answer: 1}

```

Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(5,1) queen(4,1) queen(3,1) queen(2,1)
queen(1,1)

```

\section*{Placing \(n\) queens}

\section*{Answer: 2}

```

Answer: 2
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(1,2) queen(4,1) queen(3,1) queen(2,1)
queen(1,1)

```

\section*{Horizontal and vertical attack}
```

queens.lp
row(1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.
:- { queen(I,J) } != n.
:- queen(I,J), queen(I, J'), J != J'.
:- queen(I,J), queen(I',J), I != I'.

```
- Forbid horizontal attacks
- Forbid vertical attacks

\section*{Horizontal and vertical attack}
```

queens.lp
row(1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.
:- { queen(I,J) } != n.
:- queen(I, J), queen(I, J'), J != J'.
:- queen(I,J), queen(I',J), I != I'.

```
- Forbid horizontal attacks
- Forbid vertical attacks

\section*{Horizontal and vertical attack}
```

Running . . .
\$ clingo queens.lp --const n=5
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(5,5) queen(4,4) queen(3,3) queen(2,2) queen(1,1)

```

\section*{Horizontal and vertical attack}

\section*{Answer: 1}

```

Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(5,5) queen(4,4) queen(3,3) queen(2,2)
queen(1,1)

```

Torsten Schaub (KRR@UP)

\section*{Diagonal attack}
```

queens.lp
row(1..n).
col(1..n).
{ queen(I,J) : row(I), col(J) }.
:- { queen(I,J) } != n.
:- queen(I,J), queen(I,J'), J != J'.
:- queen(I,J), queen(I',J), I != I'.
:- queen(I,J), queen(I',J'), (I,J) != (I',J'), I-J == I'-J'.
:- queen(I,J), queen(I',J'), (I,J) != (I',J'), I+J == I'+J'.

```
- Forbid diagonal attacks

\section*{Diagonal attack}
```

Running ...
\$ clingo queens.lp --const n=5
Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(4,5) queen(1,4) queen(3,3) queen(5,2) queen(2,1)
SATISFIABLE

| Models | $: 1+$ |
| :--- | :--- |
| Time | $: 0.000$ |

```

\section*{Diagonal attack}

\section*{Answer: 1}

```

Answer: 1
row(1) row(2) row(3) row(4) row(5) \
col(1) col(2) col(3) col(4) col(5) \
queen(4,5) queen(1,4) queen(3,3) queen(5,2)
queen(2,1)

```

\section*{Optimizing}
```

queens-opt.lp
{ queen(I,1..n) } = 1 :- I = 1..n.
{ queen(1..n,J) } = 1 :- J = 1..n.
:- { queen(D-J,J) } > 1, D = 2..2*n.
:- { queen(D+J,J) } > 1, D = 1-n..n-1.

```
- Encoding can be optimized

■ Much faster to solve

\section*{And sometimes it rocks}
```

\$ clingo -c n=5000 queens-opt-diag.lp --config=jumpy -q --stats=2
clingo version 4.1.0
Solving.
SATISFIABLE
Models : 1+
Time : 3758.143s (Solving: 1905.22s 1st Model: 1896.20s Unsat: 0.00s)
CPU Time : 3758.320s
Choices :
Restarts : 17 (Average: 202.47 Last: 3442)
Model-Level : 7594728.0
Problems : 1 (Average Length: 0.00 Splits: 0)
Lemmas : 3442 (Deleted: 0)
Binary : 0 (Ratio: 0.00%)
Ternary : 0 (Ratio: 0.00%)
Conflict : 3442 (Average Length: 229056.5 Ratio: 100.00%)
Loop : 0 (Average Length: 0.0 Ratio: 0.00%)
Other : 0 (Average Length: 0.0 Ratio: 0.00%)

```


Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

\section*{And sometimes it rocks}
```

\$ clingo -c n=5000 queens-opt-diag.lp --config=jumpy -q --stats=2
clingo version 4.1.0
Solving...
SATISFIABLE
Models
CPU Time : 3758.320s
Choices : 288594554
Restarts : 17 (Average: 202.47 Last: 3442)
Model-Level : 7594728.0
Problems : 1 (Average Length: 0.00 Splits: 0)
Lemmas : 3442 (Deleted: 0)
Binary : 0 (Ratio: 0.00%)
Ternary : 0 (Ratio: 0.00%)
Conflict : 3442 (Average Length: 229056.5 Ratio: 100.00%)
Loop : 0 (Average Length: 0.0 Ratio: 0.00%)
Other : 0 (Average Length: 0.0 Ratio: 0.00%)

```


Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

\section*{Outline}

15 Elaboration tolerance

16 ASP solving process
17 Methodology

18 Case studies
- Satisfiability
- Queens
- Traveling salesperson
- Reviewer Assignment
- Planning

Torsten Schaub (KRR@UP)

\section*{The traveling salesperson problem (TSP)}
- Problem Instance A set of cities and distances among them, or simply a weighted graph
- Problem Class What is the shortest possible route visiting each city once and returning to the city of origin?
> - TSP extends the Hamiltonian cycle problem: Is there a cycle in a graph visiting each node exactly once
> - TSP is relevant to applications in logistics, planning, chip design, and the core of the vehicle routing problem

\section*{The traveling salesperson problem (TSP)}
- Problem Instance A set of cities and distances among them, or simply a weighted graph
- Problem Class What is the shortest possible route visiting each city once and returning to the city of origin?
- Note
- TSP extends the Hamiltonian cycle problem: Is there a cycle in a graph visiting each node exactly once
- TSP is relevant to applications in logistics, planning, chip design, and the core of the vehicle routing problem

Torsten Schaub (KRR@UP)

\section*{Traveling salesperson}
```

node(1..6).
edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6, (2;3;5)).
cost(1,2,2). cost(1,3,3). cost(1,4,1).
cost(2,4,2). cost(2,5,2). cost(2,6,4).
cost(3,1,3). cost(3,4,2). cost(3,5,2).
cost(4,1,1). cost(4,2,2).
cost(5,3,2). cost(5,4,2). cost(5,6,1).
cost(6,2,4). cost(6,3,3). cost(6,5,1).

```

\section*{Traveling salesperson}
```

node(1..6).
edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).
cost(1,2,2). cost(1,3,3). cost(1,4,1).
cost(2,4,2). cost(2,5,2). cost(2,6,4).
cost(3,1,3). cost(3,4,2). cost(3,5,2).
cost(4,1,1). cost(4,2,2).
cost(5,3,2). cost(5,4,2). cost(5,6,1).
cost(6,2,4). cost(6,3,3). cost(6,5,1).

```

\section*{Traveling salesperson}
```

node(1..6).
edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).
cost(1,2,2). cost(1,3,3). cost(1,4,1).
cost(2,4,2). cost(2,5,2). cost(2,6,4).
cost(3,1,3). cost(3,4,2). cost(3,5,2).
cost(4,1,1). cost(4,2,2).
cost(5,3,2). cost(5,4,2). cost(5,6,1).
cost(6,2,4). cost(6,3,3). cost(6,5,1).

```

\section*{Traveling salesperson}
```

node(1..6).

```
\(\begin{array}{lll}\operatorname{edge}(1,(2 ; 3 ; 4)) . & \operatorname{edge}(2,(4 ; 5 ; 6)) . & \quad \operatorname{edge}(3,(1 ; 4 ; 5)) . \\ \operatorname{edge}(4,(1 ; 2)) . & \operatorname{edge}(5,(3 ; 4 ; 6)) . & \operatorname{edge}(6,(2 ; 3 ; 5)) .\end{array}\)
\(\operatorname{cost}(1,2,2) . \operatorname{cost}(1,3,3) . \operatorname{cost}(1,4,1)\).
\(\operatorname{cost}(2,4,2) . \operatorname{cost}(2,5,2) . \operatorname{cost}(2,6,4)\).
\(\operatorname{cost}(3,1,3) . \operatorname{cost}(3,4,2) . \operatorname{cost}(3,5,2)\).
\(\operatorname{cost}(4,1,1)\). \(\operatorname{cost}(4,2,2)\).
\(\operatorname{cost}(5,3,2) . \operatorname{cost}(5,4,2) . \operatorname{cost}(5,6,1)\).
\(\operatorname{cost}(6,2,4) . \operatorname{cost}(6,3,3) . \operatorname{cost}(6,5,1)\).
edge( \(\mathrm{X}, \mathrm{Y}\) ) :- \(\operatorname{cost}(\mathrm{X}, \mathrm{Y}, \quad\) ) .

\section*{Traveling salesperson}

\section*{node (1. . 6) .}
```

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6, (2;3;5)).

```
\(\operatorname{cost}(1,2,2) . \operatorname{cost}(1,3,3) . \operatorname{cost}(1,4,1)\).
\(\operatorname{cost}(2,4,2) . \operatorname{cost}(2,5,2) . \operatorname{cost}(2,6,4)\).
\(\operatorname{cost}(3,1,3) . \operatorname{cost}(3,4,2) . \operatorname{cost}(3,5,2)\).
\(\operatorname{cost}(4,1,1)\). cost \((4,2,2)\).
\(\operatorname{cost}(5,3,2) . \operatorname{cost}(5,4,2) . \operatorname{cost}(5,6,1)\).
\(\operatorname{cost}(6,2,4) . \operatorname{cost}(6,3,3) . \operatorname{cost}(6,5,1)\).
edge(X,Y) :- cost(X,Y,_).


\section*{Traveling salesperson}
```

{ cycle(X,Y) : edge(X,Y) } = 1 :- node(X).
{ cycle(X,Y) : edge(X,Y) } = 1 :- node(Y).
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).
:- node(Y), not reached(Y).

```
\#minimize \{ C, X, Y : cycle(X,Y), cost(X,Y,C) \}.

\section*{Traveling salesperson}
```

{ cycle(X,Y) : edge(X,Y) } = 1 :- node(X).
{ cycle(X,Y) : edge(X,Y) } = 1 :- node(Y).

```
```

reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).

```
:- node(Y), not reached(Y).
\#minimize \{ C,X,Y : cycle(X,Y), cost(X,Y,C) \}.

\section*{Traveling salesperson}
```

{ cycle(X,Y) : edge(X,Y) } = 1 :- node(X).
{ cycle(X,Y) : edge(X,Y) } = 1 :- node(Y).
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).
:- node(Y), not reached(Y).

```
\#minimize \{ C, X, Y : cycle(X,Y), cost(X,Y,C) \}.

\section*{Traveling salesperson}
```

{ cycle(X,Y) : edge(X,Y) } = 1 :- node(X).
{ cycle(X,Y) : edge(X,Y) } = 1 :- node(Y).
reached(Y) :- cycle(1,Y).
reached(Y) :- cycle(X,Y), reached(X).
:- node(Y), not reached(Y).
\#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

```

\section*{Outline}

15 Elaboration tolerance

16 ASP solving process
17 Methodology

18 Case studies
- Satisfiability
- Queens
- Traveling salesperson
- Reviewer Assignment
- Planning

Torsten Schaub (KRR@UP)

\section*{Reviewer Assignment}
- Problem Instance A set of papers and a set of reviewers along with their first and second choices of papers and conflict of interests
- Problem Class A nice assignment of three reviewers to each paper

\section*{Reviewer Assignment}
- Problem Instance A set of papers and a set of reviewers along with their first and second choices of papers and conflict of interests

■ Problem Class A "nice" assignment of three reviewers to each paper

\section*{Reviewer Assignment \\ by Ilkka Niemelä}
```

paper(p1). reviewer(r1). classA(r1,p1). classB(r1,p2). coi(r1,p3).
paper(p2). reviewer(r2). classA(r2,p3). classB(r2,p4). coi(r2,p6).
[...]
{ assigned(P,R) : reviewer(R) } = 3 :- paper(P).
:- assigned(P,R), coi(R,P).
:- assigned(P,R), not classA(R,P), not classB(R,P).
:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).
assignedB(P,R) :- classB(R,P), assigned(P,R).
:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).
\#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

```

\section*{Reviewer Assignment \\ by Ilkka Niemelä}
```

paper(p1). reviewer(r1). classA(r1,p1). classB(r1,p2). coi(r1,p3).
paper(p2). reviewer(r2). classA(r2,p3). classB(r2,p4). coi(r2,p6).
[...]
{ assigned(P,R) : reviewer(R) } = 3 :- paper(P).
:- assigned(P,R), coi(R,P).
:- assigned(P,R), not classA(R,P), not classB(R,P).
:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).
assignedB(P,R) :- classB(R,P), assigned(P,R).
:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).
\#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

```

\section*{Reviewer Assignment}
by llkka Niemelä
```

paper(p1). reviewer(r1). classA(r1,p1). classB(r1,p2). coi(r1,p3).
paper(p2). reviewer(r2). classA(r2,p3). classB(r2,p4). coi(r2,p6).
[...]
{ assigned(P,R) : reviewer(R) } = 3 :- paper(P).
:- assigned(P,R), coi(R,P).
:- assigned(P,R), not classA(R,P), not classB(R,P).
:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).
assignedB(P,R) :- classB(R,P), assigned(P,R).
:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).
\#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

```

\section*{Reviewer Assignment}
by llkka Niemelä
```

paper(p1). reviewer(r1). classA(r1,p1). classB(r1,p2). coi(r1,p3).
paper(p2). reviewer(r2). classA(r2,p3). classB(r2,p4). coi(r2,p6).
[...]
{ assigned(P,R) : reviewer(R) } = 3 :- paper(P).
:- assigned(P,R), coi(R,P).
:- assigned(P,R), not classA(R,P), not classB(R,P).
:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).
assignedB(P,R) :- classB(R,P), assigned(P,R).
:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

```
\#minimize \{ 1, \(\mathrm{P}, \mathrm{R}\) : assignedB( \(\mathrm{P}, \mathrm{R}\) ), paper ( P ), reviewer ( R ) \}.

\section*{Reviewer Assignment}
by Ilkka Niemelä
```

paper(p1). reviewer(r1). classA(r1,p1). classB(r1,p2). coi(r1,p3).
paper(p2). reviewer(r2). classA(r2,p3). classB(r2,p4). coi(r2,p6).
[...]
{ assigned(P,R) : reviewer(R) } = 3 :- paper(P).
:- assigned(P,R), coi(R,P).
:- assigned(P,R), not classA(R,P), not classB(R,P).
:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).
assignedB(P,R) :- classB(R,P), assigned(P,R).
:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).
\#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

```

\section*{Reviewer Assignment} by Ilkka Niemelä
```

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).
reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).
[...]
\#count { P,R : assigned(P,R) : reviewer(R) } = 3 :- paper(P).
:- assigned(P,R), coi(R,P).
:- assigned(P,R), not classA(R,P), not classB(R,P).
:- not 6 <= \#count { P,R : assigned(P,R), paper(P) } <= 9, reviewer(R).
assignedB(P,R) :- classB(R,P), assigned(P,R).
:- 3 <= \#count { P,R : assignedB(P,R), paper(P) }, reviewer(R).
\#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

```

\section*{Reviewer Assignment}
by Ilkka Niemelä
```

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).
reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).
[...]
\#count { P,R : assigned(P,R) : reviewer(R) } = 3 :- paper(P).
:- assigned(P,R), coi(R,P).
:- assigned(P,R), not classA(R,P), not classB(R,P).
:- not 6 <= \#count { P,R : assigned(P,R), paper(P) } <= 9, reviewer(R).
assignedB(P,R) :- classB(R,P), assigned(P,R).
:- 3 <= \#count { P,R : assignedB(P,R), paper(P) }, reviewer(R).
\#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

```

\section*{Outline}

15 Elaboration tolerance

16 ASP solving process
17 Methodology

18 Case studies
- Satisfiability
- Queens
- Traveling salesperson
- Reviewer Assignment
- Planning

Torsten Schaub (KRR@UP)

\section*{Simplified STRIPS¹ Planning}
\(\qquad\)
- set of fluents
- initial and goal state
- set of actions, consisting of pre- and postconditions
n number \(k\) of allowed actions
- Problem Class Find a plan, that is, a sequence of \(k\) actions leading from the initial state to the goal state
- Example
- fluents \(\{p, q, r\}\)
- initial state \(\{p\}\)
- goal state \(\{r\}\)
\(\square\) actions \(a=(\{p\},\{q, \neg p\})\) and \(b=(\{q\},\{r, \neg q\})\)
- length 2
plan \(\langle a, b\rangle\)

\section*{Simplified STRIPS \({ }^{1}\) Planning}
- Problem Instance
- set of fluents
- initial and goal state
- set of actions, consisting of pre- and postconditions
- number \(k\) of allowed actions
- Problem Class Find a plan, that is, a sequence of \(k\) actions leading from the initial state to the goal state
- fluents \(\{p, q, r\}\)
- initial state \(\{p\}\)
goal state \(\{r\}\)
\(\square\) actions \(a=(\{p\},\{q, \neg p\})\) and \(b=(\{q\},\{r, \neg q\})\)
- length 2
plan \(\langle a, b\rangle\)

\section*{Simplified STRIPS \({ }^{1}\) Planning}
- Problem Instance
- set of fluents
- initial and goal state
- set of actions, consisting of pre- and postconditions
- number \(k\) of allowed actions
- Problem Class Find a plan, that is, a sequence of \(k\) actions leading from the initial state to the goal state
- Example
- fluents \(\{p, q, r\}\)
- initial state \(\{p\}\)
- goal state \(\{r\}\)
- actions \(a=(\{p\},\{q, \neg p\})\) and \(b=(\{q\},\{r, \neg q\})\)
- length 2
- plan \(\langle a, b\rangle\)

\section*{Simplified STRIPS \({ }^{1}\) Planning}
- Problem Instance
- set of fluents
- initial and goal state
- set of actions, consisting of pre- and postconditions
- number \(k\) of allowed actions
- Problem Class Find a plan, that is, a sequence of \(k\) actions leading from the initial state to the goal state
- Example
- fluents \(\{p, q, r\}\)
- initial state \(\{p\}\)
- goal state \(\{r\}\)
- actions \(a=(\{p\},\{q, \neg p\})\) and \(b=(\{q\},\{r, \neg q\})\)
- length 2
- plan \(\langle a, b\rangle\)

\section*{Simplistic STRIPS Planning}
```

time(1..k).
fluent (p).
action(a).
pre(a,p).
add (a,q).
del(a,p).
action(b).
pre(b,q).
add(b,r).
del(b,q).
holds(P,0) :- init(P).
{\operatorname{occ}(A,T): action(A) }=1:- time(T).
:- occ(A,T), pre(A,F), not holds(F,T-1).
holds(F,T) :- occ(A,T), add(A,F).
holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).
:- query(F), not holds(F,k).

```

\section*{Simplistic STRIPS Planning}
```

time(1..k).

| fluent (p). | $\operatorname{action}(a)$. | $\operatorname{action}(b)$. | init (p). |
| :--- | :---: | :---: | :---: |
| fluent (q). | $\operatorname{pre}(a, p)$. | $\operatorname{pre}(b, q)$. | |
| fluent (r). | $\operatorname{add}(a, q)$. | $\operatorname{add}(b, r)$. | query (r). |
| | $\operatorname{del}(a, p)$. | $\operatorname{del}(b, q)$. | |

holds(P,0) :- init(P).
{\operatorname{occ}(A,T): action(A) } = 1 :- time(T).
:- occ(A,T), pre(A,F), not holds(F,T-1).
holds(F,T) :- occ(A,T), add(A,F).
holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).
:- query(F), not holds(F,k).

```

\section*{Simplistic STRIPS Planning}
```

time(1..k).
fluent(p). 年隹隹(a).
holds(P,0) :- init(P).
{\operatorname{occ}(A,T): action(A) } = 1 :- time(T).
:- occ(A,T), pre(A,F), not holds(F,T-1).
holds(F,T) :- occ(A,T), add(A,F).
holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).

```
：－query（F），not holds（F，k）．

\section*{Simplistic STRIPS Planning}
```

time(1..k).
fluent(p). 年隹隹(a).
holds(P,0) :- init(P).
{\operatorname{occ}(A,T): action(A) } = 1 :- time(T).
:- occ(A,T), pre(A,F), not holds(F,T-1).
holds(F,T) :- occ(A,T), add(A,F).
holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).
:- query(F), not holds(F,k).

```

\section*{Language: Overview}

19 Motivation
20 Core language
21 Extended language
22 Intermediate formats

\section*{Outline}

\section*{19 Motivation}

\section*{20 Core language}

21 Extended language 22 Intermediate formats

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice

\section*{Basic language extensions}
- The expressiveness of a language can be enhanced by introducing new constructs
- To this end, we must address the following issues:
- What is the syntax of the new language construct?
- What is the semantics of the new language construct?
- How to implement the new language construct?
- A way of providing semantics is to furnish a translation removing the new constructs, eg. classical negation
- This translation might also be used for implementing the language extension

\section*{Basic language extensions}
- The expressiveness of a language can be enhanced by introducing new constructs
- To this end, we must address the following issues:
- What is the syntax of the new language construct?
- What is the semantics of the new language construct?
- How to implement the new language construct?
- A way of providing semantics is to furnish a translation removing the new constructs, eg. classical negation
- This translation might also be used for implementing the language extension

\section*{Basic language extensions}
- The expressiveness of a language can be enhanced by introducing new constructs
- To this end, we must address the following issues:
- What is the syntax of the new language construct?
- What is the semantics of the new language construct?
- How to implement the new language construct?
- A way of providing semantics is to furnish a translation removing the new constructs, eg. classical negation
- This translation might also be used for implementing the language extension

\section*{Outline}

\section*{19 Motivation}

20 Core language
21 Extended language
22 Intermediate formats

\section*{Outline}

19 Motivation
20 Core language
- Integrity constraint
- Choice rule
- Cardinality rule
- Weight rule

21 Extended language
\(\square\) Conditional literal
- Optimization statement

22 Intermediate formats
\(\square\) smodels format
- aspif format

\section*{Integrity constraint}
- Idea Eliminate unwanted solution candidates
- Syntax An integrity constraint is of the form
\[
\leftarrow a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}
\]
where \(0 \leq m \leq n\) and each \(a_{i}\) is an atom for \(1 \leq i \leq n\)
\[
:-\operatorname{edge}(3,7), \operatorname{color}(3, r e d), \operatorname{color}(7, r e d) .
\]
\[
\begin{aligned}
& \{a \leftarrow \sim b, b \leftarrow \sim a\} \\
& \{a \leftarrow \sim b, b \leftarrow \sim a\} \cup\{\leftarrow a\} \\
& \{a \leftarrow \sim b, b \leftarrow \sim a\} \cup\{\leftarrow \sim a\}
\end{aligned}
\]

\section*{Integrity constraint}
- Idea Eliminate unwanted solution candidates
- Syntax An integrity constraint is of the form
\[
\leftarrow a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}
\]
where \(0 \leq m \leq n\) and each \(a_{i}\) is an atom for \(1 \leq i \leq n\)
- Example
\[
:- \text { edge }(3,7), \text { color }(3, \text { red }), \text { color }(7, \text { red). }
\]
\[
\begin{aligned}
& \{a \leftarrow \sim b, b \leftarrow \sim a\} \\
& \{a \leftarrow \sim b, b \leftarrow \sim a\} \cup\{\leftarrow a\} \\
& \{a \leftarrow \sim b, b \leftarrow \sim a\} \cup\{\leftarrow \sim a\}
\end{aligned}
\]

\section*{Integrity constraint}
- Idea Eliminate unwanted solution candidates
- Syntax An integrity constraint is of the form
\[
\leftarrow a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}
\]
where \(0 \leq m \leq n\) and each \(a_{i}\) is an atom for \(1 \leq i \leq n\)
- Example
\[
:- \text { edge }(3,7), \text { color }(3, \text { red }), \text { color }(7, \text { red). }
\]
- Example programs
\[
\begin{aligned}
& \{a \leftarrow \sim b, b \leftarrow \sim a\} \\
& \{a \leftarrow \sim b, b \leftarrow \sim a\} \cup\{\leftarrow a\} \\
& \{a \leftarrow \sim b, b \leftarrow \sim a\} \cup\{\leftarrow \sim a\}
\end{aligned}
\]

\section*{Embedding in normal rules}

An integrity constraint of form
\[
\leftarrow a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}
\]
can be translated into the normal rule
\[
x \leftarrow a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}, \sim x
\]
where \(x\) is a new symbol

\section*{Embedding in normal rules}
- An integrity constraint of form
\[
\leftarrow a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}
\]
can be translated into the normal rule
\[
x \leftarrow a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}, \sim x
\]
where \(x\) is a new symbol

\section*{Outline}

19 Motivation
20 Core language
- Integrity constraint
- Choice rule
- Cardinality rule
- Weight rule

21 Extended language
Conditional literal
- Optimization statement

22 Intermediate formats
\(\square\) smodels format
- aspif format

Torsten Schaub (KRR@UP)

\section*{Choice rule}
- Idea Choices over subsets of literals
- Syntax A choice rule is of the form
\[
\left\{a_{1}, \ldots, a_{m}\right\} \leftarrow a_{m+1}, \ldots, a_{n}, \sim a_{n+1}, \ldots, \sim a_{0}
\]
where \(0 \leq m \leq n \leq o\) and each \(a_{i}\) is an atom for \(1 \leq i \leq o\)
- Informal meaning If the body is satisfied by the stable model at hand, then any subset of \(\left\{a_{1}, \ldots, a_{m}\right\}\) can be included in the stable model
\{ buy(pizza);buy(wine);buy(corn) \} :- at(grocery).
\[
\{\{a\} \leftarrow b, b \leftarrow\}
\]

\section*{Choice rule}
- Idea Choices over subsets of literals
- Syntax A choice rule is of the form
\[
\left\{a_{1}, \ldots, a_{m}\right\} \leftarrow a_{m+1}, \ldots, a_{n}, \sim a_{n+1}, \ldots, \sim a_{0}
\]
where \(0 \leq m \leq n \leq o\) and each \(a_{i}\) is an atom for \(1 \leq i \leq o\)
- Informal meaning If the body is satisfied by the stable model at hand, then any subset of \(\left\{a_{1}, \ldots, a_{m}\right\}\) can be included in the stable model
\{ buy(pizza);buy(wine);buy(corn) \} :- at(grocery).
\[
\{\{a\} \leftarrow b, b \leftarrow\}
\]

\section*{Choice rule}
- Idea Choices over subsets of literals
- Syntax A choice rule is of the form
\[
\left\{a_{1}, \ldots, a_{m}\right\} \leftarrow a_{m+1}, \ldots, a_{n}, \sim a_{n+1}, \ldots, \sim a_{0}
\]
where \(0 \leq m \leq n \leq o\) and each \(a_{i}\) is an atom for \(1 \leq i \leq o\)
- Informal meaning If the body is satisfied by the stable model at hand, then any subset of \(\left\{a_{1}, \ldots, a_{m}\right\}\) can be included in the stable model
- Example
\{ buy(pizza);buy(wine);buy(corn) \} :- at(grocery).
\[
\{\{a\} \leftarrow b, b \leftarrow\}
\]

\section*{Choice rule}
- Idea Choices over subsets of literals
- Syntax A choice rule is of the form
\[
\left\{a_{1}, \ldots, a_{m}\right\} \leftarrow a_{m+1}, \ldots, a_{n}, \sim a_{n+1}, \ldots, \sim a_{0}
\]
where \(0 \leq m \leq n \leq o\) and each \(a_{i}\) is an atom for \(1 \leq i \leq o\)
- Informal meaning If the body is satisfied by the stable model at hand, then any subset of \(\left\{a_{1}, \ldots, a_{m}\right\}\) can be included in the stable model
- Example
\{ buy(pizza);buy(wine);buy(corn) \} :- at(grocery).
- Example program
\[
\{\{a\} \leftarrow b, b \leftarrow\}
\]

\section*{Embedding in normal rules}
- A choice rule of form
\[
\left\{a_{1}, \ldots, a_{m}\right\} \leftarrow a_{m+1}, \ldots, a_{n}, \sim a_{n+1}, \ldots, \sim a_{o}
\]
can be translated into \(2 m+1\) normal rules
\[
\begin{array}{rlrr}
b & \leftarrow a a_{m+1}, \ldots, a_{n}, \sim a_{n+1}, \ldots, \sim a_{o} \\
a_{1} \leftarrow b, \sim a_{1}^{\prime} & \ldots & a_{m} \leftarrow b, \sim a_{m}^{\prime} \\
a_{1}^{\prime} \leftarrow \sim a_{1} & \ldots & a_{m}^{\prime} \leftarrow \sim \sim a_{m}
\end{array}
\]
by introducing new atoms \(b, a_{1}^{\prime}, \ldots, a_{m}^{\prime}\)

\section*{Embedding in normal rules}
- A choice rule of form
\[
\left\{a_{1}, \ldots, a_{m}\right\} \leftarrow a_{m+1}, \ldots, a_{n}, \sim a_{n+1}, \ldots, \sim a_{0}
\]
can be translated into \(2 m+1\) normal rules
\[
\begin{array}{rlrr}
b & \leftarrow a m+1, \ldots, a_{n}, \sim a_{n+1}, \ldots, \sim a_{o} \\
a_{1} \leftarrow b, \sim a_{1}^{\prime} & \ldots & a_{m} \leftarrow b, \sim a_{m}^{\prime} \\
a_{1}^{\prime} \leftarrow \sim a_{1} & \ldots & a_{m}^{\prime} \leftarrow \sim \sim a_{m}
\end{array}
\]
by introducing new atoms \(b, a_{1}^{\prime}, \ldots, a_{m}^{\prime}\)

\section*{Embedding in normal rules}
- A choice rule of form
\[
\left\{a_{1}, \ldots, a_{m}\right\} \leftarrow a_{m+1}, \ldots, a_{n}, \sim a_{n+1}, \ldots, \sim a_{0}
\]
can be translated into \(2 m+1\) normal rules
\[
\begin{array}{rlll}
b & \leftarrow & a_{m+1}, \ldots, & a_{n}, \sim a_{n+1}, \ldots, \sim a_{o} \\
a_{1} \leftarrow b, \sim a_{1}^{\prime} & \ldots & a_{m} \leftarrow b, \sim a_{m}^{\prime} \\
a_{1}^{\prime} \leftarrow \sim \sim a_{1} & \ldots & a_{m}^{\prime} \leftarrow \sim \sim a_{m}
\end{array}
\]
by introducing new atoms \(b, a_{1}^{\prime}, \ldots, a_{m}^{\prime}\)

\section*{Outline}

19 Motivation
20 Core language
- Integrity constraint
- Choice rule
- Cardinality rule
- Weight rule

21 Extended language
Conditional literal
- Optimization statement

22 Intermediate formats
\(\square\) smodels format
- aspif format

\section*{Cardinality rule}
- Idea Control (lower) cardinality of subsets of literals
- Syntax A cardinality rule is the form
\[
a_{0} \leftarrow I\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}
\]
where \(0 \leq m \leq n\) and each \(a_{i}\) is an atom for \(1 \leq i \leq n\); \(I\) is a non-negative integer (acting as a lower bound on the body)

The head atom belongs to the stable model, if at least / positive/negative body literals are in/excluded in the stable model
pass(c42) :- 2 \{ pass(a1); pass(a2); pass(a3) \}.
\[
\{a \leftarrow 1\{b, c\}, b \leftarrow\}
\]

\section*{Cardinality rule}
- Idea Control (lower) cardinality of subsets of literals
- Syntax A cardinality rule is the form
\[
a_{0} \leftarrow I\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}
\]
where \(0 \leq m \leq n\) and each \(a_{i}\) is an atom for \(1 \leq i \leq n\); \(I\) is a non-negative integer (acting as a lower bound on the body)
- Informal meaning The head atom belongs to the stable model, if at least / positive/negative body literals are in/excluded in the stable model
pass(c42) :- 2 \{ pass(a1); pass(a2); pass(a3) \}.
\[
\{a \leftarrow 1\{b, c\}, b \leftarrow\}
\]

\section*{Cardinality rule}
- Idea Control (lower) cardinality of subsets of literals
- Syntax A cardinality rule is the form
\[
a_{0} \leftarrow I\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}
\]
where \(0 \leq m \leq n\) and each \(a_{i}\) is an atom for \(1 \leq i \leq n\); \(I\) is a non-negative integer (acting as a lower bound on the body)
- Informal meaning The head atom belongs to the stable model, if at least / positive/negative body literals are in/excluded in the stable model
- Example
pass(c42) :- 2 \{ pass(a1); pass(a2); pass(a3) \}.
\[
\{a \leftarrow 1\{b, c\}, b \leftarrow\}
\]

\section*{Cardinality rule}
- Idea Control (lower) cardinality of subsets of literals
- Syntax A cardinality rule is the form
\[
a_{0} \leftarrow I\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}
\]
where \(0 \leq m \leq n\) and each \(a_{i}\) is an atom for \(1 \leq i \leq n\); \(I\) is a non-negative integer (acting as a lower bound on the body)
- Informal meaning The head atom belongs to the stable model, if at least / positive/negative body literals are in/excluded in the stable model
- Example
pass(c42) :- 2 \{ pass(a1); pass(a2); pass(a3) \}.
- Example program
\[
\{a \leftarrow 1\{b, c\}, b \leftarrow\}
\]

\section*{Embedding in normal rules}
- A cardinality rule of form
\[
a_{0} \leftarrow I\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}
\]
is translated into the normal rule \(a_{0} \leftarrow \operatorname{ctr}(1, I)\) and
The atom \(\operatorname{ctr}(i, j)\) represents the fact that at least \(j\) of the literals having an equal or greater index than \(i\), are in a stable model

\section*{Embedding in normal rules}
- A cardinality rule of form
\[
a_{0} \leftarrow I\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}
\]
is translated into the normal rule \(a_{0} \leftarrow \operatorname{ctr}(1, I)\) and
The atom \(\operatorname{ctr}(i, j)\) represents the fact that at least \(j\) of the literals having an equal or greater index than \(i\), are in a stable model

\section*{Embedding in normal rules}
- A cardinality rule of form
\[
a_{0} \leftarrow I\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}
\]
is translated into the normal rule \(a_{0} \leftarrow \operatorname{ctr}(1, /)\) and
- The atom \(\operatorname{ctr}(i, j)\) represents the fact that at least \(j\) of the literals having an equal or greater index than \(i\), are in a stable model

\section*{Embedding in normal rules}
- A cardinality rule of form
\[
a_{0} \leftarrow I\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}
\]
is translated into the normal rule \(a_{0} \leftarrow \operatorname{ctr}(1, /)\) and for \(0 \leq k \leq I\) the rules
\[
\begin{aligned}
\operatorname{ctr}(i, k+1) & \leftarrow \operatorname{ctr}(i+1, k), a_{i} & & \\
\operatorname{ctr}(i, k) & \leftarrow \operatorname{ctr}(i+1, k) & & \text { for } 1 \leq i \leq m \\
\operatorname{ctr}(j, k+1) & \leftarrow \operatorname{ctr}(j+1, k), \sim a_{j} & & \\
\operatorname{ctr}(j, k) & \leftarrow \operatorname{ctr}(j+1, k) & & \text { for } m+1 \leq j \leq n \\
\operatorname{ctr}(n+1,0) & \leftarrow & &
\end{aligned}
\]
- The atom \(\operatorname{ctr}(i, j)\) represents the fact that at least \(j\) of the literals having an equal or greater index than \(i\), are in a stable modet.

\section*{Embedding in normal rules}
- A cardinality rule of form
\[
a_{0} \leftarrow I\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}
\]
is translated into the normal rule \(a_{0} \leftarrow \operatorname{ctr}(1, I)\) and for \(0 \leq k \leq I\) the rules
\[
\begin{aligned}
\operatorname{ctr}(i, k+1) & \leftarrow \operatorname{ctr}(i+1, k), a_{i} & & \\
\operatorname{ctr}(i, k) & \leftarrow \operatorname{ctr}(i+1, k) & & \text { for } 1 \leq i \leq m \\
\operatorname{ctr}(j, k+1) & \leftarrow \operatorname{ctr}(j+1, k), \sim a_{j} & & \\
\operatorname{ctr}(j, k) & \leftarrow \operatorname{ctr}(j+1, k) & & \text { for } m+1 \leq j \leq n \\
\operatorname{ctr}(n+1,0) & \leftarrow & &
\end{aligned}
\]
- The atom \(\operatorname{ctr}(i, j)\) represents the fact that at least \(j\) of the literals having an equal or greater index than \(i\), are in a stable modet.

\section*{Embedding in normal rules}
- A cardinality rule of form
\[
a_{0} \leftarrow I\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}
\]
is translated into the normal rule \(a_{0} \leftarrow \operatorname{ctr}(1, I)\) and for \(0 \leq k \leq I\) the rules
\[
\begin{aligned}
\operatorname{ctr}(i, k+1) & \leftarrow \operatorname{ctr}(i+1, k), a_{i} & & \\
\operatorname{ctr}(i, k) & \leftarrow \operatorname{ctr}(i+1, k) & & \text { for } 1 \leq i \leq m \\
\operatorname{ctr}(j, k+1) & \leftarrow \operatorname{ctr}(j+1, k), \sim a_{j} & & \\
\operatorname{ctr}(j, k) & \leftarrow \operatorname{ctr}(j+1, k) & & \text { for } m+1 \leq j \leq n \\
\operatorname{ctr}(n+1,0) & \leftarrow & &
\end{aligned}
\]
- The atom \(\operatorname{ctr}(i, j)\) represents the fact that at least \(j\) of the literals having an equal or greater index than \(i\), are in a stable modet.

\section*{Embedding in normal rules}
- A cardinality rule of form
\[
a_{0} \leftarrow I\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}
\]
is translated into the normal rule \(a_{0} \leftarrow \operatorname{ctr}(1, /)\) and for \(0 \leq k \leq I\) the rules
\[
\begin{aligned}
\operatorname{ctr}(i, k+1) & \leftarrow \operatorname{ctr}(i+1, k), a_{i} & & \\
\operatorname{ctr}(i, k) & \leftarrow \operatorname{ctr}(i+1, k) & & \text { for } 1 \leq i \leq m \\
\operatorname{ctr}(j, k+1) & \leftarrow \operatorname{ctr}(j+1, k), \sim a_{j} & & \\
\operatorname{ctr}(j, k) & \leftarrow \operatorname{ctr}(j+1, k) & & \text { for } m+1 \leq j \leq n \\
\operatorname{ctr}(n+1,0) & \leftarrow & &
\end{aligned}
\]
- The atom \(\operatorname{ctr}(i, j)\) represents the fact that at least \(j\) of the literals having an equal or greater index than \(i\), are in a stable modet.

\section*{An example}
- Program \(\{a \leftarrow, c \leftarrow 1\{a, b\}\}\) has the stable model \(\{a, c\}\)
- Translating the cardinality rule yields the rules
```

a}

| c | $\leftarrow \operatorname{ctr}(1,1)$ |
| ---: | :--- |
| $\operatorname{ctr}(1,2)$ | $\leftarrow \operatorname{ctr}(2,1), a$ |
| $\operatorname{ctr}(1,1)$ | $\leftarrow \operatorname{ctr}(2,1)$ |
| $\operatorname{ctr}(2,2)$ | $\leftarrow \operatorname{ctr}(3,1), b$ |
| $\operatorname{ctr}(2,1)$ | $\leftarrow \operatorname{ctr}(3,1)$ |
| $\operatorname{ctr}(1,1)$ | $\leftarrow \operatorname{ctr}(2,0), a$ |
| $\operatorname{ctr}(1,0)$ | $\leftarrow \operatorname{ctr}(2,0)$ |
| $\operatorname{ctr}(2,1)$ | $\leftarrow \operatorname{ctr}(3,0), b$ |
| $\operatorname{ctr}(2,0)$ | $\leftarrow \operatorname{ctr}(3,0)$ |
| $\operatorname{ctr}(3,0)$ | \leftarrow |

```
having stable model \(\{a, \operatorname{ctr}(3,0), \operatorname{ctr}(2,0), \operatorname{ctr}(1,0), \operatorname{ctr}(1,1)\}\)

\section*{An example}
- Program \(\{a \leftarrow, c \leftarrow 1\{a, b\}\}\) has the stable model \(\{a, c\}\)
- Translating the cardinality rule yields the rules
\begin{tabular}{rl}
\(c\) & \(\leftarrow \operatorname{ctr}(1,1)\) \\
\(\operatorname{ctr}(1,2)\) & \(\leftarrow \operatorname{ctr}(2,1), a\) \\
\(\operatorname{ctr}(1,1)\) & \(\leftarrow \operatorname{ctr}(2,1)\) \\
\(\operatorname{ctr}(2,2)\) & \(\leftarrow \operatorname{ctr}(3,1), b\) \\
\(\operatorname{ctr}(2,1)\) & \(\leftarrow \operatorname{ctr}(3,1)\) \\
\(\operatorname{ctr}(1,1)\) & \(\leftarrow \operatorname{ctr}(2,0), a\) \\
\(\operatorname{ctr}(1,0)\) & \(\leftarrow \operatorname{ctr}(2,0)\) \\
& \(\operatorname{ctr}(2,1)\) \\
\(\operatorname{ctr}(2,0)\) & \(\leftarrow \operatorname{ctr}(3,0), b\) \\
& \(\operatorname{ctr}(3,0)\) \\
& \(\leftarrow\)
\end{tabular}
having stable model \(\{a, \operatorname{ctr}(3,0), \operatorname{ctr}(2,0), \operatorname{ctr}(1,0), \operatorname{ctr}(1,1) \underset{\sim}{c}\}\)

\section*{. . . and vice versa}
- A normal rule
\[
a_{0} \leftarrow a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}
\]
can be represented by the cardinality rule
\[
a_{0} \leftarrow n\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}
\]

\section*{Cardinality rules with upper bounds}
- A rule of the form
\[
\begin{equation*}
a_{0} \leftarrow I\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\} u \tag{1}
\end{equation*}
\]
where \(0 \leq m \leq n\) and each \(a_{i}\) is an atom for \(1 \leq i \leq n\); \(l\) and \(u\) are non-negative integers
stands for
\[
\begin{aligned}
a_{0} & \leftarrow b, \sim c \\
b & \leftarrow I\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\} \\
c & \leftarrow u+1\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}
\end{aligned}
\]
where \(b\) and \(c\) are new symbols
Note The expression in the body of the cardinality rule (1) is referred to as a cardinality constraint with lower and upper bound I fand u

\section*{Cardinality rules with upper bounds}
- A rule of the form
\[
\begin{equation*}
a_{0} \leftarrow I\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\} u \tag{1}
\end{equation*}
\]
where \(0 \leq m \leq n\) and each \(a_{i}\) is an atom for \(1 \leq i \leq n\); \(l\) and \(u\) are non-negative integers
stands for
\[
\begin{aligned}
a_{0} & \leftarrow b, \sim c \\
b & \leftarrow \mathcal{I}\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\} \\
c & \leftarrow u+1\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}
\end{aligned}
\]
where \(b\) and \(c\) are new symbols
- Note The expression in the body of the cardinality rule (1) is referred to as a cardinality constraint with lower and upper bound I and u

\section*{Cardinality rules with upper bounds}
- A rule of the form
\[
\begin{equation*}
a_{0} \leftarrow I\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\} u \tag{1}
\end{equation*}
\]
where \(0 \leq m \leq n\) and each \(a_{i}\) is an atom for \(1 \leq i \leq n\); \(l\) and \(u\) are non-negative integers
stands for
\[
\begin{aligned}
a_{0} & \leftarrow b, \sim c \\
b & \leftarrow I\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\} \\
c & \leftarrow u+1\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}
\end{aligned}
\]
where \(b\) and \(c\) are new symbols
- Note The expression in the body of the cardinality rule (1) is referred to as a cardinality constraint with lower and upper bound I and \(u\)

\section*{Cardinality constraints}
- Syntax A cardinality constraint is of the form
\[
I\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\} u
\]
where \(0 \leq m \leq n\) and each \(a_{i}\) is an atom for \(1 \leq i \leq n\); \(l\) and \(u\) are non-negative integers
- Informal meaning A cardinality constraint is satisfied by a stable model \(X\), if the number of its contained literals satisfied by \(X\) is between I and \(u\) (inclusive)
- In other words, if
\[
I \leq\left|\left(\left\{a_{1}, \ldots, a_{m}\right\} \cap X\right) \cup\left(\left\{a_{m+1}, \ldots, a_{n}\right\} \backslash X\right)\right| \leq u
\]

\section*{Cardinality constraints}
- Syntax A cardinality constraint is of the form
\[
l\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\} u
\]
where \(0 \leq m \leq n\) and each \(a_{i}\) is an atom for \(1 \leq i \leq n\); \(l\) and \(u\) are non-negative integers
- Informal meaning A cardinality constraint is satisfied by a stable model \(X\), if the number of its contained literals satisfied by \(X\) is between I and \(u\) (inclusive)
- In other words, if
\[
I \leq\left|\left(\left\{a_{1}, \ldots, a_{m}\right\} \cap X\right) \cup\left(\left\{a_{m+1}, \ldots, a_{n}\right\} \backslash X\right)\right| \leq u
\]

\section*{Cardinality constraints}
- Syntax A cardinality constraint is of the form
\[
I\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\} u
\]
where \(0 \leq m \leq n\) and each \(a_{i}\) is an atom for \(1 \leq i \leq n\); \(l\) and \(u\) are non-negative integers
- Informal meaning A cardinality constraint is satisfied by a stable model \(X\), if the number of its contained literals satisfied by \(X\) is between I and \(u\) (inclusive)
- In other words, if
\[
I \leq\left|\left(\left\{a_{1}, \ldots, a_{m}\right\} \cap X\right) \cup\left(\left\{a_{m+1}, \ldots, a_{n}\right\} \backslash X\right)\right| \leq u
\]

\section*{Cardinality constraints as heads}
- A rule of the form
\[
I\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\} u \leftarrow a_{n+1}, \ldots, a_{0}, \sim a_{0+1}, \ldots, \sim a_{p}
\]
where \(0 \leq m \leq n \leq 0 \leq p\) and each \(a_{i}\) is an atom for \(1 \leq i \leq p\); \(l\) and \(u\) are non-negative integers stands for
\[
\begin{aligned}
b & \leftarrow a_{n+1}, \ldots, a_{o}, \sim a_{o+1}, \ldots, \sim a_{p} \\
\left\{a_{1}, \ldots, a_{m}\right\} & \leftarrow b \\
c & \leftarrow l\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\} u \\
& \leftarrow b, \sim c
\end{aligned}
\]
where \(b\) and \(c\) are new symbols
\(1\{\operatorname{color}(v 42, r e d) ; \operatorname{color}(v 42\), green \() ; \operatorname{color}(v 42, b l u e)\} 1\).

\section*{Cardinality constraints as heads}
- A rule of the form
\[
I\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\} u \leftarrow a_{n+1}, \ldots, a_{0}, \sim a_{0+1}, \ldots, \sim a_{p}
\]
where \(0 \leq m \leq n \leq 0 \leq p\) and each \(a_{i}\) is an atom for \(1 \leq i \leq p\); \(I\) and \(u\) are non-negative integers stands for
\[
\begin{aligned}
b & \leftarrow a_{n+1}, \ldots, a_{o}, \sim a_{o+1}, \ldots, \sim a_{p} \\
\left\{a_{1}, \ldots, a_{m}\right\} & \leftarrow b \\
c & \leftarrow l\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\} u \\
& \leftarrow b, \sim c
\end{aligned}
\]
where \(b\) and \(c\) are new symbols
\(1\{\operatorname{color}(\mathrm{v} 42, \mathrm{red}) ; \operatorname{color}(\mathrm{v} 42\), green \() ; \operatorname{color}(\mathrm{v} 42, \mathrm{blue})\} 1\).

\section*{Cardinality constraints as heads}
- A rule of the form
\[
I\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\} u \leftarrow a_{n+1}, \ldots, a_{0}, \sim a_{0+1}, \ldots, \sim a_{p}
\]
where \(0 \leq m \leq n \leq 0 \leq p\) and each \(a_{i}\) is an atom for \(1 \leq i \leq p\); \(I\) and \(u\) are non-negative integers stands for
\[
\begin{aligned}
b & \leftarrow a_{n+1}, \ldots, a_{0}, \sim a_{o+1}, \ldots, \sim a_{p} \\
\left\{a_{1}, \ldots, a_{m}\right\} & \leftarrow b \\
c & \leftarrow l\left\{a_{1}, \ldots, a_{m}, \sim \sim a_{m+1}, \ldots, \sim a_{n}\right\} u \\
& \leftarrow b, \sim c
\end{aligned}
\]
where \(b\) and \(c\) are new symbols
- Example

1\{color(v42,red); color(v42,green); color(v42, blue)\}1.

\section*{Full-fledged cardinality rules}
- A rule of the form
\[
I_{0} S_{0} u_{0} \leftarrow I_{1} S_{1} u_{1}, \ldots, I_{n} S_{n} u_{n}
\]
where each \(I_{i} S_{i} u_{i}\) is a cardinality constraint for \(0 \leq i \leq n\) stands for

where \(a, b_{i}, c_{i}\) are new symbols (and .+ is defined as on Slide 44)

\section*{Full-fledged cardinality rules}
- A rule of the form
\[
I_{0} S_{0} u_{0} \leftarrow I_{1} S_{1} u_{1}, \ldots, I_{n} S_{n} u_{n}
\]
where each \(l_{i} S_{i} u_{i}\) is a cardinality constraint for \(0 \leq i \leq n\) stands for
\[
\begin{aligned}
a & \leftarrow b_{1}, \ldots, b_{n}, \sim c_{1}, \ldots, \sim c_{n} \\
S_{0}^{+} & \leftarrow a \\
& \leftarrow a, \sim b_{0} \quad b_{i} \leftarrow l_{i} S_{i} \\
& \leftarrow a, c_{0} \quad c_{i} \leftarrow u_{i}+1 S_{i}
\end{aligned}
\]
where \(a, b_{i}, c_{i}\) are new symbols (and .+ is defined as on Slide 44)

\section*{Full-fledged cardinality rules}
- A rule of the form
\[
I_{0} S_{0} u_{0} \leftarrow I_{1} S_{1} u_{1}, \ldots, I_{n} S_{n} u_{n}
\]
where each \(I_{i} S_{i} u_{i}\) is a cardinality constraint for \(0 \leq i \leq n\) stands for
\[
\begin{aligned}
a & \leftarrow b_{1}, \ldots, b_{n}, \sim c_{1}, \ldots, \sim c_{n} \\
S_{0}{ }^{+} & \leftarrow a \\
& \leftarrow a, \sim b_{0} \quad b_{i} \leftarrow l_{i} S_{i} \\
& \leftarrow a, c_{0} \quad c_{i} \leftarrow u_{i}+1 S_{i}
\end{aligned}
\]
where \(a, b_{i}, c_{i}\) are new symbols (and .+ is defined as on Slide 44)

\section*{Full-fledged cardinality rules}
- A rule of the form
\[
I_{0} S_{0} u_{0} \leftarrow I_{1} S_{1} u_{1}, \ldots, I_{n} S_{n} u_{n}
\]
where each \(I_{i} S_{i} u_{i}\) is a cardinality constraint for \(0 \leq i \leq n\) stands for
\[
\begin{aligned}
a & \leftarrow b_{1}, \ldots, b_{n}, \sim c_{1}, \ldots, \sim c_{n} \\
S_{0}{ }^{+} & \leftarrow a \\
& \leftarrow a, \sim b_{0} \quad b_{i} \leftarrow l_{i} S_{i} \\
& \leftarrow a, c_{0} \quad c_{i} \leftarrow u_{i}+1 S_{i}
\end{aligned}
\]
where \(a, b_{i}, c_{i}\) are new symbols (and .+ is defined as on Slide 44)

\section*{Full-fledged cardinality rules}
- A rule of the form
\[
I_{0} S_{0} u_{0} \leftarrow I_{1} S_{1} u_{1}, \ldots, I_{n} S_{n} u_{n}
\]
where each \(l_{i} S_{i} u_{i}\) is a cardinality constraint for \(0 \leq i \leq n\) stands for
\[
\begin{aligned}
a & \leftarrow b_{1}, \ldots, b_{n}, \sim c_{1}, \ldots, \sim c_{n} \\
S_{0}{ }^{+} & \leftarrow a \\
& \leftarrow a, \sim b_{0} \quad b_{i} \leftarrow l_{i} S_{i} \\
& \leftarrow a, c_{0} \quad c_{i} \leftarrow u_{i}+1 S_{i}
\end{aligned}
\]
where \(a, b_{i}, c_{i}\) are new symbols (and .+ is defined as on Slide 44)

\section*{Full-fledged cardinality rules}
- A rule of the form
\[
I_{0} S_{0} u_{0} \leftarrow I_{1} S_{1} u_{1}, \ldots, I_{n} S_{n} u_{n}
\]
where each \(I_{i} S_{i} u_{i}\) is a cardinality constraint for \(0 \leq i \leq n\) stands for
\[
\begin{aligned}
a & \leftarrow b_{1}, \ldots, b_{n}, \sim c_{1}, \ldots, \sim c_{n} \\
S_{0}^{+} & \leftarrow a \\
& \leftarrow a, \sim b_{0} \quad b_{i} \leftarrow l_{i} S_{i} \\
& \leftarrow a, c_{0} \quad c_{i} \leftarrow u_{i}+1 S_{i}
\end{aligned}
\]
where \(a, b_{i}, c_{i}\) are new symbols (and .+ is defined as on Slide 44)

\section*{Outline}

19 Motivation
20 Core language
\(\square\) Integrity constraint
- Choice rule
- Cardinality rule
- Weight rule

21 Extended language
Conditional literal
- Optimization statement

22 Intermediate formats
\(\square\) smodels format
- aspif format

Torsten Schaub (KRR@UP)

\section*{Weight rule}
- Idea Bound (lower) sum of subsets of literal weights
- Syntax A weighted literal \(w: k\) associates the weight \(w\) with literal \(k\)
- Syntax A weight rule is the form
\[
a_{0} \leftarrow I\left\{w_{1}: a_{1}, \ldots, w_{m}: a_{m}, w_{m+1}: \sim a_{m+1}, \ldots, w_{n}: \sim a_{n}\right\}
\]
where \(0 \leq m \leq n\) and each \(a_{i}\) is an atom; \(l\) and \(w_{i}\) are integers for \(1 \leq i \leq n\)The head atom belongs to the stable model, if the sum of weights associated with positive/negative body literals in/excluded in the stable model is at least /

A cardinality rule is a weight rule where \(w_{i}=1\) for \(0 \leq i \leq n\)

\section*{Weight rule}
- Idea Bound (lower) sum of subsets of literal weights
- Syntax A weighted literal \(w: k\) associates the weight \(w\) with literal \(k\)
- Syntax A weight rule is the form
\[
a_{0} \leftarrow l\left\{w_{1}: a_{1}, \ldots, w_{m}: a_{m}, w_{m+1}: \sim a_{m+1}, \ldots, w_{n}: \sim a_{n}\right\}
\]
where \(0 \leq m \leq n\) and each \(a_{i}\) is an atom; \(l\) and \(w_{i}\) are integers for \(1 \leq i \leq n\)
- Informal meaning The head atom belongs to the stable model, if the sum of weights associated with positive/negative body literals in/excluded in the stable model is at least /
\[
\text { A cardinality rule is a weight rule where } w_{i}=1 \text { for } 0 \leq i \leq n
\]

\section*{Weight rule}
- Idea Bound (lower) sum of subsets of literal weights
- Syntax A weighted literal \(w: k\) associates the weight \(w\) with literal \(k\)
- Syntax A weight rule is the form
\[
a_{0} \leftarrow l\left\{w_{1}: a_{1}, \ldots, w_{m}: a_{m}, w_{m+1}: \sim a_{m+1}, \ldots, w_{n}: \sim a_{n}\right\}
\]
where \(0 \leq m \leq n\) and each \(a_{i}\) is an atom; \(l\) and \(w_{i}\) are integers for \(1 \leq i \leq n\)
- Informal meaning The head atom belongs to the stable model, if the sum of weights associated with positive/negative body literals in/excluded in the stable model is at least /
- Note A cardinality rule is a weight rule where \(w_{i}=1\) for \(0 \leq i \leq n\)

\section*{Weight constraints}

■ Syntax A weight constraint is of the form
\[
\text { I }\left\{w_{1}: a_{1}, \ldots, w_{m}: a_{m}, w_{m+1}: \sim a_{m+1}, \ldots, w_{n}: \sim a_{n}\right\} u
\]
where \(0 \leq m \leq n\) and each \(a_{i}\) is an atom;
\(l, u\) and \(w_{i}\) are integers for \(1 \leq i \leq n\)
A weight constraint is satisfied by a stable model \(X\), if

(Cardinality and) weight constraints amount to constraints on (count and) sum aggregate functions

5 \{ 4:course(db); 6:course(ai); 3:course(xml) \} 10

\section*{Weight constraints}

■ Syntax A weight constraint is of the form
\[
\text { I }\left\{w_{1}: a_{1}, \ldots, w_{m}: a_{m}, w_{m+1}: \sim a_{m+1}, \ldots, w_{n}: \sim a_{n}\right\} u
\]
where \(0 \leq m \leq n\) and each \(a_{i}\) is an atom;
\(l, u\) and \(w_{i}\) are integers for \(1 \leq i \leq n\)
- Meaning A weight constraint is satisfied by a stable model \(X\), if
\[
I \leq\left(\sum_{1 \leq i \leq m, a_{i} \in X} w_{i}+\sum_{m<i \leq n, a_{i} \notin X} w_{i}\right) \leq u
\]
(Cardinality and) weight constraints amount to constraints on (count and) sum aggregate functions

5 \{ 4:course(db); 6:course(ai); 3:course(xml) \} 10

\section*{Weight constraints}
- Syntax A weight constraint is of the form
\[
\text { I }\left\{w_{1}: a_{1}, \ldots, w_{m}: a_{m}, w_{m+1}: \sim a_{m+1}, \ldots, w_{n}: \sim a_{n}\right\} u
\]
where \(0 \leq m \leq n\) and each \(a_{i}\) is an atom;
\(l, u\) and \(w_{i}\) are integers for \(1 \leq i \leq n\)
- Meaning A weight constraint is satisfied by a stable model \(X\), if
\[
I \leq\left(\sum_{1 \leq i \leq m, a_{i} \in X} w_{i}+\sum_{m<i \leq n, a_{i} \notin X} w_{i}\right) \leq u
\]
- Note (Cardinality and) weight constraints amount to constraints on (count and) sum aggregate functions

5 \{ 4:course(db); 6:course(ai); 3:course(xml) \} 10

\section*{Weight constraints}
- Syntax A weight constraint is of the form
\[
\text { I }\left\{w_{1}: a_{1}, \ldots, w_{m}: a_{m}, w_{m+1}: \sim a_{m+1}, \ldots, w_{n}: \sim a_{n}\right\} u
\]
where \(0 \leq m \leq n\) and each \(a_{i}\) is an atom;
\(l, u\) and \(w_{i}\) are integers for \(1 \leq i \leq n\)
- Meaning A weight constraint is satisfied by a stable model \(X\), if
\[
I \leq\left(\sum_{1 \leq i \leq m, a_{i} \in X} w_{i}+\sum_{m<i \leq n, a_{i} \notin X} w_{i}\right) \leq u
\]
- Note (Cardinality and) weight constraints amount to constraints on (count and) sum aggregate functions
- Example

5 \{ 4:course(db); 6:course(ai); 3:course(xml) \} 10

\section*{Outline}

\section*{19 Motivation}

\section*{20 Core language}

21 Extended language
22 Intermediate formats

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice

\section*{Outline}

19 Motivation
20 Core language
- Integrity constraint
- Choice rule
- Cardinality rule
- Weight rule

21 Extended language
- Conditional literal
- Optimization statement

22 Intermediate formats
- smodels format
- aspif format

Torsten Schaub (KRR@UP)

\section*{Conditional literals}
- Syntax A conditional literal is of the form
\[
I: I_{1}, \ldots, I_{n}
\]
where \(I\) and \(I_{i}\) are literals for \(0 \leq i \leq n\)
- Informal meaning A conditional literal can be regarded as the list of elements in the set \(\left\{I \mid I_{1}, \ldots, I_{n}\right\}\)

The expansion of conditional literals is context dependent Example Given 'p(1..3). \(q(2)\).' \(r(X): p(X), \operatorname{not} q(X):-r(X): p(X), \operatorname{not} q(X) ; 1\{r(X): p(X), \operatorname{not} q(X)\}\). is instantiated to
\(r(1) ; r(3):-r(1), r(3), 1\{r(1) ; r(3)\}\).

Torsten Schaub (KRR@UP)

\section*{Conditional literals}
- Syntax A conditional literal is of the form
\[
I: I_{1}, \ldots, I_{n}
\]
where \(I\) and \(I_{i}\) are literals for \(0 \leq i \leq n\)
- Informal meaning A conditional literal can be regarded as the list of elements in the set \(\left\{I \mid I_{1}, \ldots, I_{n}\right\}\)
- Note The expansion of conditional literals is context dependent


\section*{Conditional literals}
- Syntax A conditional literal is of the form
\[
I: I_{1}, \ldots, I_{n}
\]
where \(I\) and \(I_{i}\) are literals for \(0 \leq i \leq n\)
- Informal meaning A conditional literal can be regarded as the list of elements in the set \(\left\{I \mid I_{1}, \ldots, I_{n}\right\}\)
- Note The expansion of conditional literals is context dependent
- Example Given 'p(1..3). q(2).'
\(r(X): p(X), \operatorname{not} q(X):-r(X): p(X), \operatorname{not} q(X) ; 1\{r(X): p(X), \operatorname{not} q(X)\}\). is instantiated to
\(r(1) ; r(3):-r(1), r(3), 1\{r(1) ; r(3)\}\).

\section*{Conditional literals}
- Syntax A conditional literal is of the form
\[
I: I_{1}, \ldots, I_{n}
\]
where \(I\) and \(I_{i}\) are literals for \(0 \leq i \leq n\)
- Informal meaning A conditional literal can be regarded as the list of elements in the set \(\left\{I \mid I_{1}, \ldots, I_{n}\right\}\)
- Note The expansion of conditional literals is context dependent
- Example Given 'p(1..3). q(2).'
\(r(X): p(X), \operatorname{not} q(X):-r(X): p(X), \operatorname{not} q(X) ; 1\{r(X): p(X), \operatorname{not} q(X)\}\). is instantiated to
\(r(1) ; r(3):-r(1), r(3), 1\{r(1) ; r(3)\}\).

\section*{Conditional literals}
- Syntax A conditional literal is of the form
\[
I: I_{1}, \ldots, I_{n}
\]
where \(I\) and \(I_{i}\) are literals for \(0 \leq i \leq n\)
- Informal meaning A conditional literal can be regarded as the list of elements in the set \(\left\{I \mid I_{1}, \ldots, I_{n}\right\}\)
- Note The expansion of conditional literals is context dependent
- Example Given 'p(1..3). q(2).'
\(r(X): p(X), \operatorname{not} q(X):-r(X): p(X), \operatorname{not} q(X) ; 1\{r(X): p(X), \operatorname{not} q(X)\}\). is instantiated to
\(r(1) ; r(3):-r(1), r(3), 1\{r(1) ; r(3)\}\).

\section*{Conditional literals}
- Syntax A conditional literal is of the form
\[
I: I_{1}, \ldots, I_{n}
\]
where \(I\) and \(I_{i}\) are literals for \(0 \leq i \leq n\)
- Informal meaning A conditional literal can be regarded as the list of elements in the set \(\left\{I \mid I_{1}, \ldots, I_{n}\right\}\)
- Note The expansion of conditional literals is context dependent
- Example Given 'p(1..3). q(2).'
\(r(X): p(X), \operatorname{not} q(X):-r(X): p(X), \operatorname{not} q(X) ; 1\{r(X): p(X), \operatorname{not} q(X)\}\). is instantiated to
\(r(1) ; r(3):-r(1), r(3), 1\{r(1) ; r(3)\}\).

\section*{Conditional literals}
- Syntax A conditional literal is of the form
\[
I: I_{1}, \ldots, I_{n}
\]
where \(I\) and \(I_{i}\) are literals for \(0 \leq i \leq n\)
- Informal meaning A conditional literal can be regarded as the list of elements in the set \(\left\{I \mid I_{1}, \ldots, I_{n}\right\}\)
- Note The expansion of conditional literals is context dependent
- Example Given 'p(1..3). q(2).'
\(r(X): p(X), \operatorname{not} q(X):-r(X): p(X), \operatorname{not} q(X) ; 1\{r(X): p(X), \operatorname{not} q(X)\}\). is instantiated to
\(r(1) ; r(3):-r(1), r(3), 1\{r(1) ; r(3)\}\).

\section*{Outline}

19 Motivation
20 Core language
- Integrity constraint
- Choice rule
- Cardinality rule
- Weight rule

21 Extended language
- Conditional literal
- Optimization statement

22 Intermediate formats
\(\square\) smodels format
- aspif format

Torsten Schaub (KRR@UP)

\section*{Optimization statement}
- Idea Express (multiple) cost functions subject to minimization and/or maximization
- Syntax A minimize statement is of the form
\[
\text { minimize }\left\{w_{1} @ p_{1}: I_{1_{1}}, \ldots, I_{m_{1}} ; \ldots ; w_{n} @ p_{n}: I_{1_{n}}, \ldots, I_{m_{n}}\right\} .
\]
where each \(l_{j_{i}}\) is a literal; and \(w_{i}\) and \(p_{i}\) are integers for \(1 \leq i \leq n\) Priority levels, \(p_{i}\), allow for representing lexicographically ordered minimization objectives
- Meaning A minimize statement is a directive that instructs the ASP solver to compute optimal stable models by minimizing a weighted sum of elements

\section*{Optimization statement}
- Idea Express (multiple) cost functions subject to minimization and/or maximization
- Syntax A minimize statement is of the form
\[
\text { minimize }\left\{w_{1} @ p_{1}: l_{1_{1}}, \ldots, I_{m_{1}} ; \ldots ; w_{n} @ p_{n}: I_{1_{n}}, \ldots, I_{m_{n}}\right\} .
\]
where each \(l_{j_{i}}\) is a literal; and \(w_{i}\) and \(p_{i}\) are integers for \(1 \leq i \leq n\)
Priority levels, \(p_{i}\), allow for representing lexicographically ordered minimization objectives
- Meaning A minimize statement is a directive that instructs the ASP solver to compute optimal stable models by minimizing a weighted sum of elements

\section*{Optimization statement}
- Idea Express (multiple) cost functions subject to minimization and/or maximization
- Syntax A minimize statement is of the form
\[
\text { minimize }\left\{w_{1} @ p_{1}: I_{1_{1}}, \ldots, I_{m_{1}} ; \ldots ; w_{n} @ p_{n}: I_{1_{n}}, \ldots, I_{m_{n}}\right\} .
\]
where each \(l_{j_{i}}\) is a literal; and \(w_{i}\) and \(p_{i}\) are integers for \(1 \leq i \leq n\)
Priority levels, \(p_{i}\), allow for representing lexicographically ordered minimization objectives
- Meaning A minimize statement is a directive that instructs the ASP solver to compute optimal stable models by minimizing a weighted sum of elements

\section*{Optimization statement}
- A maximize statement of the form
\[
\operatorname{maximize}\left\{w_{1} @ p_{1}: I_{1}, \ldots, w_{n} @ p_{n}: I_{n}\right\}
\]
stands for minimize \(\left\{-w_{1} @ p_{1}: I_{1}, \ldots,-w_{n} @ p_{n}: I_{n}\right\}\)
- Example When configuring a computer, we may want to maximize hard disk capacity, while minimizing price \#maximize \{ 250@1:hd(1); 50001:hd(2); 750@1:hd(3); 1000@1:hd(4) \}. \#minimize \{ 30@2:hd(1); 40@2:hd(2); 60@2:hd(3); 80@2:hd(4) \}.

The priority levels indicate that (minimizing) price is more important than (maximizing) capacity

\section*{Optimization statement}
- A maximize statement of the form
\[
\operatorname{maximize}\left\{w_{1} @ p_{1}: I_{1}, \ldots, w_{n} @ p_{n}: I_{n}\right\}
\]
stands for minimize \(\left\{-w_{1} @ p_{1}: I_{1}, \ldots,-w_{n} @ p_{n}: I_{n}\right\}\)
- Example When configuring a computer, we may want to maximize hard disk capacity, while minimizing price
\#maximize \{ 250@1:hd(1); 500@1:hd(2); 750@1:hd(3); 1000@1:hd(4) \}.
\#minimize \{ 30@2:hd(1); 40@2:hd(2); 60@2:hd(3); 80@2:hd(4) \}.
The priority levels indicate that (minimizing) price is more important than (maximizing) capacity

\section*{Optimization statement}
- A maximize statement of the form
\[
\operatorname{maximize}\left\{w_{1} @ p_{1}: I_{1}, \ldots, w_{n} @ p_{n}: I_{n}\right\}
\]
stands for minimize \(\left\{-w_{1} @ p_{1}: I_{1}, \ldots,-w_{n} @ p_{n}: I_{n}\right\}\)
- Example When configuring a computer, we may want to maximize hard disk capacity, while minimizing price
\#maximize \{ P@1:hd(I,P,C) \}.
\#minimize \{ C@2:hd(I,P,C) \}.
The priority levels indicate that (minimizing) price is more important than (maximizing) capacity

\section*{Weak constraints}
- Weak constraints are an alternative to minimize statements
- Syntax :~ \(I_{1}, \ldots, I_{n}[w @ /]\) where each \(l_{i}\) is a literal for \(1 \leq i \leq n\); and \(w\) and \(p\) are integers
:~ hd(1). [30@2]
:~ hd(2). [40@2]
:~ hd(3). [60@2]
:~ hd(4). [80@2]

\section*{Weak constraints}
- Weak constraints are an alternative to minimize statements
- Syntax \(\quad: \sim I_{1}, \ldots, I_{n}\) [ \(\left.w @ /\right]\)
where each \(I_{i}\) is a literal for \(1 \leq i \leq n\); and \(w\) and \(p\) are integers
```

:~ hd(1). [30@2]
:~ hd(2). [40@2]
:~ hd(3). [60@2]
:~ hd(4). [80@2]

```

Torsten Schaub (KRR@UP)

\section*{Weak constraints}
- Weak constraints are an alternative to minimize statements
- Syntax \(\quad: \sim I_{1}, \ldots, I_{n}\) [ \(\left.w @ /\right]\) where each \(I_{i}\) is a literal for \(1 \leq i \leq n\); and \(w\) and \(p\) are integers
- Example
\[
\begin{aligned}
& \text { :~ hd(1). [30@2] } \\
& \text { :~ hd(2). [40@2] } \\
& \text { :~ hd(3). [60@2] } \\
& \text { :~ hd(4). [80@2] }
\end{aligned}
\]

\section*{Weak constraints}
- Weak constraints are an alternative to minimize statements
- Syntax \(\quad: \sim I_{1}, \ldots, I_{n}\) [ \(\left.w @ /\right]\) where each \(I_{i}\) is a literal for \(1 \leq i \leq n\); and \(w\) and \(p\) are integers
- Example
\[
:^{\sim} \text { hd (I, P, C). [C@2] }
\]

\section*{Outline}

\section*{19 Motivation}

20 Core language
21 Extended language
22 Intermediate formats

\section*{Outline}

19 Motivation
20 Core language
- Integrity constraint
- Choice rule
- Cardinality rule
- Weight rule

21 Extended language
\(\square\) Conditional literal
- Optimization statement

22 Intermediate formats
- smodels format
- aspif format

Torsten Schaub (KRR@UP)

\section*{smodels format}
- The smodels format consists of
- normal rules
- choice rules
- cardinality rules
- weight rules
- minimization statements
- Block-oriented format

\section*{Minimization statements are not part of the logic program}

\section*{smodels format}
- The smodels format consists of
- normal rules
- choice rules
- cardinality rules
- weight rules
- minimization statements
- Block-oriented format
- Note Minimization statements are not part of the logic program

\section*{smodels format in detail}

\section*{Type/Format}

Normal rule Slide 158
\(\left.\left.\left.\left.1_{\lrcorner} \iota\left(a_{0}\right)\right\lrcorner n\right\lrcorner n-m\right\lrcorner \iota\left(a_{m+1}\right) \_\ldots \iota \iota\left(a_{n}\right) \iota \iota\left(a_{1}\right)\right\lrcorner \ldots \iota \iota\left(a_{m}\right)\)
Cardinality rule Slide 400
\(2 \_\iota\left(a_{0}\right) \_n_{\lrcorner} n-m_{\iota} / \iota \iota\left(a_{m+1}\right)_{\lrcorner} \ldots \iota \iota\left(a_{n}\right) \_\iota\left(a_{1}\right) \iota \ldots \iota \iota\left(a_{m}\right)\)
Choice rule Slide 392
\(\left.\left.\left.\left.\left.\left.\left.\left.3 \_m\right\lrcorner \iota\left(a_{1}\right)\right\lrcorner \ldots\right\lrcorner \iota\left(a_{m}\right)\right\lrcorner 0-m\right\lrcorner 0-n_{\lrcorner} \iota\left(a_{n+1}\right)\right\lrcorner \ldots \iota \iota\left(a_{0}\right)\right\lrcorner \iota\left(a_{m+1}\right)\right\lrcorner \ldots \iota\left(a_{n}\right)\)
Weight rule Slide 430

Minimize statement \({ }^{2}\) Slide 447
\(\left.\left.\left.\left.\left.\left.\left.6 \_0 \_n\right\lrcorner n-m\left\llcorner\iota\left(a_{m+1}\right)\right\lrcorner \ldots \iota \iota\left(a_{n}\right)\right\lrcorner \iota\left(a_{1}\right)\right\lrcorner \ldots \iota \iota\left(a_{m}\right)\right\lrcorner W_{m+1\lrcorner} \ldots\right\lrcorner W_{n}\right\lrcorner W_{1}\right\lrcorner \ldots \iota W_{m}\)
Disjunctive rule Slide 502
\(8 \_m_{\iota} \iota\left(a_{1}\right)_{\lrcorner} \ldots \iota \iota\left(a_{m}\right) \_o-m_{\lrcorner} o-n_{\iota} \iota\left(a_{n+1}\right)_{\lrcorner} \ldots \iota \iota\left(a_{0}\right) \_\iota\left(a_{m+1}\right)_{\lrcorner} \ldots \iota\left(a_{n}\right)\)
- The function \(\iota\) represents a mapping of atoms to numbers

\section*{Outline}

19 Motivation
20 Core language
- Integrity constraint
- Choice rule
\(\square\) Cardinality rule
- Weight rule

21 Extended language
\(\square\) Conditional literal
- Optimization statement

22 Intermediate formats
\(\square\) smodels format
- aspif format

\section*{aspif format}
- The aspif format consists of
- rule statements
- minimize statements
- projection statements
- output statements
- external statements
- assumption statements
- heuristic statements
- edge statements
- theory terms and atoms
- comments

■ Line-oriented format

\section*{Rule statements}

Rule statements have the form
- Head H has form
\(1_{\lrcorner} H_{\lrcorner} B\)
\(h_{\llcorner } m_{\llcorner } a_{1 \leftarrow} \ldots a_{m}\)
- \(h \in\{0,1\}\) determines whether
the head is a disjunction or choice,
- \(m \geq 0\) is the number of head elements, and
\(\square\) each \(a_{i}\) is a positive literal
Heads are disjunctions or choices, including the special case of singular disjunctions for representing normal rules.
- Body \(B\) has one of two forms
- normal bodies have form
\[
\left.0 \_n \_l_{1}\right\lrcorner \ldots I_{n}
\]
\(n \geq 0\) is the length of the rule body, and
- each \(I_{i}\) is a literal.
weight bodies have form
\[
\left.\left.1\lrcorner l_{\llcorner } n_{\lrcorner} l_{1}\right\lrcorner W_{1}\right\lrcorner \ldots \iota l_{n}\left\llcorner W_{n}\right.
\]
\(\square\) I is a positive integer to denote the lower bound,
\(\square n \geq 0\) is the number of literals in the rule body, and
each \(l_{i}\) and \(w_{i}\) are a literal and a positive integer

\section*{Rule statements}

Rule statements have the form
- Head \(H\) has form

1_H_B
\(h\left\llcorner m_{\llcorner } a_{1} \_\ldots\left\llcorner a_{m}\right.\right.\)
- \(h \in\{0,1\}\) determines whether the head is a disjunction or choice,
- \(m \geq 0\) is the number of head elements, and
- each \(a_{i}\) is a positive literal

Heads are disjunctions or choices, including the special case of singular disjunctions for representing normal rules.
- Body \(B\) has one of two forms
\(\square\) normal bodies have form \(0 \_n \_l_{1} \ldots \ldots l_{n}\)
\(\square n \geq 0\) is the length of the rule body, and
a each \(l_{i}\) is a literal.
n weight bodies have form \(\left.\left.\quad 1 \_l_{\llcorner } n_{\lrcorner} l_{1}\right\lrcorner W_{1}\right\lrcorner \ldots \iota l_{n}\left\llcorner W_{n}\right.\)
I is a positive integer to denote the lower bound,
\(n \geq 0\) is the number of literals in the rule body, and
- each \(l_{i}\) and \(w_{i}\) are a literal and a positive integer

\section*{Rule statements}

Rule statements have the form
- Head \(H\) has form

1」H_B
\(h \_m_{\llcorner } a_{1} \ldots \ldots a_{m}\)
- \(h \in\{0,1\}\) determines whether the head is a disjunction or choice,
- \(m \geq 0\) is the number of head elements, and
- each \(a_{i}\) is a positive literal

Heads are disjunctions or choices, including the special case of singular disjunctions for representing normal rules.
- Body \(B\) has one of two forms
- normal bodies have form
\[
\left.0 \_n \_l_{1}\right\lrcorner \ldots I_{n}
\]
- \(n \geq 0\) is the length of the rule body, and
- each \(l_{i}\) is a literal.
- weight bodies have form
\[
\left.1 \_l_{\llcorner } n_{\lrcorner} l_{1}\right\lrcorner W_{1}\left\llcorner\ldots \left\llcornerl _ { n } \left\llcorner W_{n}\right.\right.\right.
\]

■ I is a positive integer to denote the lower bound,
- \(n \geq 0\) is the number of literals in the rule body, and
- each \(l_{i}\) and \(w_{i}\) are a literal and a positive integer

\section*{Example}
```

{a}.
b :- a.
c :- not a.

```
```

asp 100
111100
1012011
$\begin{array}{lllllll}1 & 0 & 1 & 3 & 0 & 1 & -1\end{array}$
41 a 11
41 b 12
41 c 13
0

```

\section*{Example}
```

{a}.
b :- a.
c :- not a.

```
```

asp 100
111100
1012011
$1001301-1$
41 a 11
41 b 12
41 c 13
0

```

\section*{Language Extensions: Overview}

23 Two kinds of negation
24 Disjunctive logic programs
25 Propositional theories
26 Aggregates
27 Gringo language

Torsten Schaub (KRR@UP)

\section*{Outline}

\section*{23 Two kinds of negation 24 Disjunctive logic programs 25 Propositional theories \\ 26 Aggregates \\ 27 Gringo language}

\section*{Motivation}
- Classical versus default negation
- Symbol \(\neg\) and \(\sim\)
\[
\begin{aligned}
& \square a \approx \neg a \in X \\
& \square \sim a \approx a \notin X \\
& \text { sample } \\
& \square \text { cross } \leftarrow \neg \text { train } \\
& \square \text { cross } \leftarrow \sim \text { train }
\end{aligned}
\]

\section*{Motivation}
- Classical versus default negation
- Symbol \(\neg\) and \(\sim\)
- Idea
\(\neg a \approx \neg a \in X\)
\(\sim a \approx a \notin X\)
\(\square\) cross \(\leftarrow \neg\) train
\(\square\) cross \(\leftarrow \sim\) train

\section*{Motivation}
- Classical versus default negation
- Symbol \(\neg\) and \(\sim\)
- Idea
\(\square \neg a \approx \neg a \in X\)
- ~a \(\approx a \notin X\)
- Example
- cross \(\leftarrow \neg\) train
- cross \(\leftarrow \sim\) train

\section*{Classical negation}
- We consider logic programs in negation normal form
- That is, classical negation is applied to atoms only
- Given an alphabet \(\mathcal{A}\) of atoms, let \(\overline{\mathcal{A}}=\{\neg a \mid a \in \mathcal{A}\}\) such that \(\mathcal{A} \cap \overline{\mathcal{A}}=\emptyset\)
- Given a program \(P\) over \(\mathcal{A}\), classical negation is encoded by adding
\[
P^{\urcorner}=\{a \leftarrow b, \neg b \mid a \in(\mathcal{A} \cup \overline{\mathcal{A}}), b \in \mathcal{A}\}
\]

A set \(X\) of atoms is a stable model of a program \(P\) over \(\mathcal{A} \cup \overline{\mathcal{A}}\), if \(X\) is a stable model of \(P \cup P^{\urcorner}\)

\section*{Classical negation}
- We consider logic programs in negation normal form
- That is, classical negation is applied to atoms only
- Given an alphabet \(\mathcal{A}\) of atoms, let \(\overline{\mathcal{A}}=\{\neg a \mid a \in \mathcal{A}\}\) such that \(\mathcal{A} \cap \overline{\mathcal{A}}=\emptyset\)
- Given a program \(P\) over \(\mathcal{A}\), classical negation is encoded by adding
\[
P^{\urcorner}=\{a \leftarrow b, \neg b \mid a \in(\mathcal{A} \cup \overline{\mathcal{A}}), b \in \mathcal{A}\}
\]
- A set \(X\) of atoms is a stable model of a program \(P\) over \(\mathcal{A} \cup \overline{\mathcal{A}}\), if \(X\) is a stable model of \(P \cup P^{\urcorner}\)

\section*{Classical negation}
- We consider logic programs in negation normal form
- That is, classical negation is applied to atoms only
- Given an alphabet \(\mathcal{A}\) of atoms, let \(\overline{\mathcal{A}}=\{\neg a \mid a \in \mathcal{A}\}\) such that \(\mathcal{A} \cap \overline{\mathcal{A}}=\emptyset\)
- Given a program \(P\) over \(\mathcal{A}\), classical negation is encoded by adding
\[
P^{\urcorner}=\{a \leftarrow b, \neg b \mid a \in(\mathcal{A} \cup \overline{\mathcal{A}}), b \in \mathcal{A}\}
\]
- A set \(X\) of atoms is a stable model of a program \(P\) over \(\mathcal{A} \cup \overline{\mathcal{A}}\), if \(X\) is a stable model of \(P \cup P^{\urcorner}\)

\section*{Classical negation}

We consider logic programs in negation normal form That is, classical negation is applied to atoms only
- Given an alphabet \(\mathcal{A}\) of atoms, let \(\overline{\mathcal{A}}=\{\neg a \mid a \in \mathcal{A}\}\) such that \(\mathcal{A} \cap \overline{\mathcal{A}}=\emptyset\)
- Given a program \(P\) over \(\mathcal{A}\), classical negation is encoded by adding
\[
P^{\urcorner}=\{a \leftarrow b, \neg b \mid a \in(\mathcal{A} \cup \overline{\mathcal{A}}), b \in \mathcal{A}\}
\]
- A set \(X\) of atoms is a stable model of a program \(P\) over \(\mathcal{A} \cup \overline{\mathcal{A}}\), if \(X\) is a stable model of \(P \cup P \neg\)

\section*{An example}
- The program
\[
P=\{a \leftarrow \sim b, b \leftarrow \sim a\} \cup\{c \leftarrow b, \neg c \leftarrow b\}
\]
induces
- The stable models of \(P\) are given by the ones of \(P \cup P^{\urcorner}\), viz \(\{a\}\)

\section*{An example}
- The program
\[
P=\{a \leftarrow \sim b, b \leftarrow \sim a\} \cup\{c \leftarrow b, \neg c \leftarrow b\}
\]
induces
\[
P^{\neg}=\left\{\begin{array}{rrrrrrr}
a & \leftarrow a, \neg a & a & \leftarrow & b, \neg b & a & \leftarrow c, \neg c \\
\neg a & \leftarrow a, \neg a & \neg a & \leftarrow & b, \neg b & \neg a & \leftarrow c, \neg c \\
b & \leftarrow a, \neg a & b & \leftarrow & b, \neg b & b & \leftarrow \\
\neg b, \neg c \\
c & \leftarrow a, \neg a & \neg b & \leftarrow & b, \neg b & \neg b & \leftarrow \\
c & \leftarrow a, \neg a & c & \leftarrow b, \neg b & c & \leftarrow c, \neg c \\
\neg c & \leftarrow & a, \neg a & \neg c & \leftarrow & b, \neg b & \neg c
\end{array}\right\}
\]
- The stable models of \(P\) are given by the ones of \(P \cup P^{\urcorner}\), viz \(\{a\}\)

\section*{An example}
- The program
\[
P=\{a \leftarrow \sim b, b \leftarrow \sim a\} \cup\{c \leftarrow b, \neg c \leftarrow b\}
\]
induces
\[
P^{\neg}=\left\{\begin{array}{rrrrrrr}
a & \leftarrow a, \neg a & a & \leftarrow & b, \neg b & a & \leftarrow c, \neg c \\
\neg a & \leftarrow a, \neg a & \neg a & \leftarrow & b, \neg b & \neg a & \leftarrow c, \neg c \\
b & \leftarrow a, \neg a & b & \leftarrow & b, \neg b & b & \leftarrow \\
\neg b, \neg c \\
c & \leftarrow a, \neg a & \neg b & \leftarrow & b, \neg b & \neg b & \leftarrow \\
c & \leftarrow a, \neg a & c & \leftarrow b, \neg b & c & \leftarrow c, \neg c \\
\neg c & \leftarrow & a, \neg a & \neg c & \leftarrow & b, \neg b & \neg c
\end{array}\right\}
\]
- The stable models of \(P\) are given by the ones of \(P \cup P^{\urcorner}\), viz \(\{a\}\)

\section*{Properties}
- The only inconsistent stable "model" is \(X=\mathcal{A} \cup \overline{\mathcal{A}}\) Strictly speaking, an inconsistemt set like \(\mathcal{A} \cup \overline{\mathcal{A}}\) is not a model
- For a logic program \(P\) over \(\mathcal{A} \cup \overline{\mathcal{A}}\), exactly one of the following two cases applies:
1. All stable models of \(P\) are consistent or
\(2 X=\mathcal{A} \cup \overline{\mathcal{A}}\) is the only stable model of \(P\)

\section*{Properties}
- The only inconsistent stable "model" is \(X=\mathcal{A} \cup \overline{\mathcal{A}}\) Strictly speaking, an inconsistemt set like \(\mathcal{A} \cup \overline{\mathcal{A}}\) is not a model
- For a logic program \(P\) over \(\mathcal{A} \cup \overline{\mathcal{A}}\), exactly one of the following two cases applies:
1 All stable models of \(P\) are consistent or
2 \(X=\mathcal{A} \cup \overline{\mathcal{A}}\) is the only stable model of \(P\)

\section*{Properties}
- The only inconsistent stable "model" is \(X=\mathcal{A} \cup \overline{\mathcal{A}}\) Strictly speaking, an inconsistemt set like \(\mathcal{A} \cup \overline{\mathcal{A}}\) is not a model
- For a logic program \(P\) over \(\mathcal{A} \cup \overline{\mathcal{A}}\), exactly one of the following two cases applies:
1 All stable models of \(P\) are consistent or
\(2 X=\mathcal{A} \cup \overline{\mathcal{A}}\) is the only stable model of \(P\)

\section*{Train spotting}
- \(P_{1}=\{\) cross \(\leftarrow \sim\) train \(\}\)
stable model: \{cross\}
- \(P_{2}=\{\) cross \(\leftarrow \neg\) train \(\}\)
stable model: \(\emptyset\)
- \(P_{3}=\{\) cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow\}\)
stable model: \{cross, \(\neg\) train \(\}\)
- \(P_{4}=\{\) cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow, \neg\) cross \(\leftarrow\}\)
stable model: \{cross, \(\neg\) cross, train, \(\neg\) train \(\}\)
- \(P_{5}=\{\) cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow \sim\) train \(\}\)
stable model: \{cross, \(\neg\) train \(\}\)
- \(P_{6}=\{\) cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow \sim\) train, \(\neg\) cross \(\leftarrow\}\)
no stable model

Torsten Schaub (KRR@UP)

\section*{Train spotting}
- \(P_{1}=\{\) cross \(\leftarrow \sim\) train \(\}\)
- stable model: \(\{\) cross \(\}\)
- \(P_{2}=\{\) cross \(\leftarrow \neg\) train \(\}\) stable model: \(\emptyset\)
\(P_{3}=\{\) cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow\}\) stable model: \{cross, \(\neg\) train \}
\(\square P_{4}=\{\) cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow, \neg\) cross \(\leftarrow\}\) stable model: \{cross, \(\neg\) cross, train, \(\neg\) train \(\}\)
- \(P_{5}=\) \{cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow \sim\) train \(\}\) stable model: \{cross, \(\neg\) train \(\}\)
\(P_{6}=\{\) cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow \sim\) train, \(\neg\) cross \(\leftarrow\}\)
no stable model

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

\section*{Train spotting}
- \(P_{1}=\{\) cross \(\leftarrow \sim\) train \(\}\)
stable model: \{cross\}
- \(P_{2}=\{\) cross \(\leftarrow \neg\) train \(\}\)
stable model: \(\emptyset\)
\(\square P_{3}=\{\) cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow\}\) stable model: \{cross, \(\neg\) train \(\}\)
\(P_{4}=\{\) cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow, \neg\) cross \(\leftarrow\}\) stable model: \{cross, ᄀcross, train, \(\neg\) train\}
\(\square P_{5}=\) \{cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow \sim\) train \(\}\) stable model: \{cross, \(\neg\) train \(\}\)
\(\square P_{6}=\{\) cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow \sim\) train, \(\neg\) cross \(\leftarrow\}\)
no stable model

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

\section*{Train spotting}
\[
\begin{aligned}
P_{1}= & \{\text { cross } \leftarrow \sim \text { train }\} \\
& \text { stable model: }\{\text { cross }\}
\end{aligned}
\]
- \(P_{2}=\{\) cross \(\leftarrow \neg\) train \(\}\)
- stable model: \(\emptyset\)
\[
\begin{aligned}
P_{3}= & \{\text { cross } \leftarrow \neg \text { train, } \neg \text { train } \leftarrow\} \\
& \text { stable model: }\{\text { cross, } \neg \text { train }\} \\
P_{4}= & \{\text { cross } \leftarrow \neg \text { train, } \neg \text { train } \leftarrow, \neg \text { cross } \leftarrow\} \\
& \text { stable model: }\{\text { cross, } \neg \text { cross, train, } \neg \text { train }\} \\
P_{5}= & \{\text { cross } \leftarrow \neg \text { train, } \neg \text { train } \leftarrow \sim \text { train }\} \\
& \text { stable model: }\{\text { cross, } \neg \text { train }\} \\
P_{6}= & \{\text { cross } \leftarrow \neg \text { train, } \neg \text { train } \leftarrow \sim \text { train }, \neg \text { cross } \leftarrow\} \\
& \text { no stable model }
\end{aligned}
\]

\section*{Train spotting}
\[
\begin{aligned}
P_{1}= & \{\text { cross } \leftarrow \sim \text { train }\} \\
& \text { stable model: }\{\text { cross }\} \\
P_{2}= & \{\text { cross } \leftarrow \neg \text { train }\} \\
& \text { stable model: } \emptyset
\end{aligned}
\]
- \(P_{3}=\{\) cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow\}\)
```

 a stable model: \{cross, ᄀtrain\}
 $P_{4}=\{$ cross $\leftarrow \neg$ train, \neg train \leftarrow, \neg cross $\leftarrow\}$
stable model: \{cross, ᄀcross, train, ᄀtrain\}
$P_{5}=$ \{cross $\leftarrow \neg$ train, \neg train $\leftarrow \sim$ train $\}$
stable model: \{cross, \neg train $\}$
$P_{6}=\{$ cross $\leftarrow \neg$ train, \neg train $\leftarrow \sim$ train, \neg cross $\leftarrow\}$
no stable model

```

\section*{Train spotting}
\[
\begin{aligned}
P_{1}= & \{\text { cross } \leftarrow \sim \text { train }\} \\
& \text { stable model: }\{\text { cross }\} \\
P_{2}= & \{\text { cross } \leftarrow \neg \text { train }\} \\
& \text { stable model: } \emptyset
\end{aligned}
\]
- \(P_{3}=\{\) cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow\}\)
- stable model: \{cross, \(\neg\) train \(\}\)
\[
P_{4}=\{\text { cross } \leftarrow \neg \text { train }, \neg \text { train } \leftarrow, \neg \text { cross } \leftarrow\}
\]
stable model: \{cross, \(\neg\) cross, train, \(\neg\) train\}
```

$P_{5}=$ \{cross $\leftarrow \neg$ train, \neg train $\leftarrow \sim$ train $\}$
stable model: \{cross, \neg train \}
$P_{6}=\{$ cross $\leftarrow \neg$ train, \neg train $\leftarrow \sim$ train, \neg cross $\leftarrow\}$
no stable model

```

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

\section*{Train spotting}
\[
\begin{aligned}
P_{1}= & \{\text { cross } \leftarrow \sim \text { train }\} \\
& \text { stable model: }\{\text { cross }\} \\
P_{2}= & \{\text { cross } \leftarrow \neg \text { train }\} \\
& \text { stable model: } \emptyset \\
P_{3}= & \{\text { cross } \leftarrow \neg \text { train }, \neg \text { train } \leftarrow\} \\
& \text { stable model: }\{\text { cross }, \neg \text { train }\}
\end{aligned}
\]
\(\square P_{4}=\{\) cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow, \neg\) cross \(\leftarrow\}\)
stable model: \{cross, ᄀcross, train, ᄀtrain\}
\[
\begin{aligned}
P_{5}= & \{\text { cross } \leftarrow \neg \text { train, } \neg \text { train } \leftarrow \sim \text { train }\} \\
& \text { stable model: }\{\text { cross, } \neg \text { train }\} \\
P_{6}= & \{\text { cross } \leftarrow \neg \text { train, } \neg \text { train } \leftarrow \sim \text { train, } \neg \text { cross } \leftarrow\} \\
& \text { no stable model }
\end{aligned}
\]

\section*{Train spotting}
\[
\begin{aligned}
P_{1}= & \{\text { cross } \leftarrow \sim \text { train }\} \\
& \text { stable model: }\{\text { cross }\} \\
P_{2}= & \{\text { cross } \leftarrow \neg \text { train }\} \\
& \text { stable model: } \emptyset \\
P_{3}= & \{\text { cross } \leftarrow \neg \text { train }, \neg \text { train } \leftarrow\} \\
& \text { stable model: }\{\text { cross }, \neg \text { train }\}
\end{aligned}
\]

■ \(P_{4}=\{\) cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow, \neg\) cross \(\leftarrow\}\)
■ stable model: \{cross, ᄀcross, train, \(\neg\) train \(\}\)
\[
\begin{aligned}
P_{5}= & \{\text { cross } \leftarrow \neg \text { train, } \neg \text { train } \leftarrow \sim \text { train }\} \\
& \text { stable model: }\{\text { cross, } \neg \text { train }\} \\
P_{6}= & \{\text { cross } \leftarrow \neg \text { train, } \neg \text { train } \leftarrow \sim \text { train }, \neg \text { cross } \leftarrow\} \\
& \text { no stable model }
\end{aligned}
\]

\section*{Train spotting}
\[
\begin{aligned}
P_{1}= & \{\text { cross } \leftarrow \sim \text { train }\} \\
& \text { stable model: }\{\text { cross }\} \\
P_{2}= & \{\text { cross } \leftarrow \neg \text { train }\} \\
& \text { stable model: } \emptyset \\
P_{3}= & \{\text { cross } \leftarrow \neg \text { train }, \neg \text { train } \leftarrow\} \\
& \text { stable model: }\{\text { cross }, \neg \text { train }\} \\
P_{4}= & \{\text { cross } \leftarrow \neg \text { train }, \neg \text { train } \leftarrow, \neg \text { cross } \leftarrow\} \\
& \text { stable model: }\{\text { cross }, \neg \text { cross, train }, \neg \text { train }\}
\end{aligned}
\]
- \(P_{5}=\{\) cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow \sim\) train \(\}\)
- stable model: \{cross, ᄀtrain\}
\[
\begin{aligned}
P_{6}= & \{\text { cross } \leftarrow \neg \text { train, } \neg \text { train } \leftarrow \sim \text { train, } \neg \text { cross } \leftarrow\} \\
& \text { no stable model }
\end{aligned}
\]

\section*{Train spotting}
\[
\begin{aligned}
P_{1}= & \{\text { cross } \leftarrow \sim \text { train }\} \\
& \text { stable model: }\{\text { cross }\} \\
P_{2}= & \{\text { cross } \leftarrow \neg \text { train }\} \\
& \text { stable model: } \emptyset \\
P_{3}= & \{\text { cross } \leftarrow \neg \text { train }, \neg \text { train } \leftarrow\} \\
& \text { stable model: }\{\text { cross }, \neg \text { train }\} \\
P_{4}= & \{\text { cross } \leftarrow \neg \text { train }, \neg \text { train } \leftarrow, \neg \text { cross } \leftarrow\} \\
& \text { stable model }:\{\text { cross, } \neg \text { cross, train }, \neg \text { train }\}
\end{aligned}
\]
- \(P_{5}=\) \{cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow \sim\) train \(\}\)
- stable model: \{cross, \(\neg\) train\}
\[
\begin{aligned}
P_{6}= & \{\text { cross } \leftarrow \neg \text { train }, \neg \text { train } \leftarrow \sim \text { train }, \neg \text { cross } \leftarrow\} \\
& \text { no stable model }
\end{aligned}
\]

\section*{Train spotting}
\[
\begin{aligned}
P_{1}= & \{\text { cross } \leftarrow \sim \text { train }\} \\
& \text { stable model: }\{\text { cross }\} \\
P_{2}= & \{\text { cross } \leftarrow \neg \text { train }\} \\
& \text { stable model: } \emptyset \\
P_{3}= & \{\text { cross } \leftarrow \neg \text { train }, \neg \text { train } \leftarrow\} \\
& \text { stable model: }\{\text { cross }, \neg \text { train }\} \\
P_{4}= & \{\text { cross } \leftarrow \neg \text { train }, \neg \text { train } \leftarrow, \neg \text { cross } \leftarrow\} \\
& \text { stable model: }\{\text { cross, } \neg \text { cross, train, } \neg \text { train }\} \\
P_{5}= & \{\text { cross } \leftarrow \neg \text { train }, \neg \text { train } \leftarrow \sim \text { train }\} \\
& \text { stable model: }\{\text { cross }, \neg \text { train }\}
\end{aligned}
\]
- \(P_{6}=\{\) cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow \sim\) train, \(\neg\) cross \(\leftarrow\}\)
- no stable model

\section*{Train spotting}
\[
\begin{aligned}
P_{1}= & \{\text { cross } \leftarrow \sim \text { train }\} \\
& \text { stable model: }\{\text { cross }\} \\
P_{2}= & \{\text { cross } \leftarrow \neg \text { train }\} \\
& \text { stable model: } \emptyset \\
P_{3}= & \{\text { cross } \leftarrow \neg \text { train }, \neg \text { train } \leftarrow\} \\
& \text { stable model: }\{\text { cross }, \neg \text { train }\} \\
P_{4}= & \{\text { cross } \leftarrow \neg \text { train, } \neg \text { train } \leftarrow, \neg \text { cross } \leftarrow\} \\
& \text { stable model: }\{\text { cross, } \neg \text { cross, train }, \neg \text { train }\} \\
P_{5}= & \{\text { cross } \leftarrow \neg \text { train }, \neg \text { train } \leftarrow \sim \text { train }\} \\
& \text { stable model: }\{\text { cross, } \neg \text { train }\}
\end{aligned}
\]
- \(P_{6}=\{\) cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow \sim\) train, \(\neg\) cross \(\leftarrow\}\)
- no stable model

\section*{Train spotting}
- \(P_{1}=\{\) cross \(\leftarrow \sim\) train \(\}\)
- stable model: \(\{\) cross \(\}\)
- \(P_{2}=\{\) cross \(\leftarrow \neg\) train \(\}\)
- stable model: \(\emptyset\)
- \(P_{3}=\{\) cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow\}\)
- stable model: \{cross, \(\neg\) train \(\}\)
- \(P_{4}=\{\) cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow, \neg\) cross \(\leftarrow\}\)
- stable model: \{cross, \(\neg\) cross, train, \(\neg\) train\}
- \(P_{5}=\{\) cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow \sim\) train \(\}\)
- stable model: \{cross, \(\neg\) train\}
- \(P_{6}=\{\) cross \(\leftarrow \neg\) train, \(\neg\) train \(\leftarrow \sim\) train, \(\neg\) cross \(\leftarrow\}\)
- no stable model

\section*{Default negation in rule heads}
- We consider logic programs with default negation in rule heads
- Given an alphabet \(\mathcal{A}\) of atoms, let \(\widetilde{\mathcal{A}}=\{\widetilde{a} \mid a \in \mathcal{A}\}\) such that \(\mathcal{A} \cap \widetilde{\mathcal{A}}=\emptyset\)

■ Given a program \(P\) over \(\mathcal{A}\), consider the program
\[
\begin{aligned}
\widetilde{P}= & \{r \in P \mid h(r) \neq \sim a\} \\
& \cup\{\leftarrow B(r) \cup\{\sim \tilde{a}\} \mid r \in P \text { and } h(r)=\sim a\} \\
& \cup\{\widetilde{a} \leftarrow \sim a \mid r \in P \text { and } h(r)=\sim a\}
\end{aligned}
\]

A set \(X\) of atoms is a stable model of a program \(P\) (with default negation in rule heads) over \(\mathcal{A}\),
if \(X=Y \cap \mathcal{A}\) for some stable model \(Y\) of \(\widetilde{P}\) over \(\mathcal{A} \cup \widetilde{\mathcal{A}}\)

\section*{Default negation in rule heads}
- We consider logic programs with default negation in rule heads
- Given an alphabet \(\mathcal{A}\) of atoms, let \(\widetilde{\mathcal{A}}=\{\widetilde{a} \mid a \in \mathcal{A}\}\) such that \(\mathcal{A} \cap \widetilde{\mathcal{A}}=\emptyset\)
- Given a program \(P\) over \(\mathcal{A}\), consider the program
\[
\begin{aligned}
\widetilde{P}= & \{r \in P \mid h(r) \neq \sim a\} \\
& \cup\{\leftarrow B(r) \cup\{\sim \widetilde{a}\} \mid r \in P \text { and } h(r)=\sim a\} \\
& \cup\{\widetilde{a} \leftarrow \sim a \mid r \in P \text { and } h(r)=\sim a\}
\end{aligned}
\]
- A set \(X\) of atoms is a stable model of a program \(P\) (with default negation in rule heads) over \(\mathcal{A}\),
if \(X=Y \cap \mathcal{A}\) for some stable model \(Y\) of \(\widetilde{P}\) over \(\mathcal{A} \cup \widetilde{\mathcal{A}}\)

\section*{Default negation in rule heads}
- We consider logic programs with default negation in rule heads
- Given an alphabet \(\mathcal{A}\) of atoms, let \(\widetilde{\mathcal{A}}=\{\widetilde{a} \mid a \in \mathcal{A}\}\) such that \(\mathcal{A} \cap \widetilde{\mathcal{A}}=\emptyset\)
- Given a program \(P\) over \(\mathcal{A}\), consider the program
\[
\begin{aligned}
\widetilde{P}= & \{r \in P \mid h(r) \neq \sim a\} \\
& \cup\{\leftarrow B(r) \cup\{\sim \tilde{a}\} \mid r \in P \text { and } h(r)=\sim a\} \\
& \cup\{\widetilde{a} \leftarrow \sim a \mid r \in P \text { and } h(r)=\sim a\}
\end{aligned}
\]
\(\square\) A set \(X\) of atoms is a stable model of a program \(P\) (with default negation in rule heads) over \(\mathcal{A}\), if \(X=Y \cap \mathcal{A}\) for some stable model \(Y\) of \(\widetilde{P}\) over \(\mathcal{A} \cup \widetilde{\mathcal{A}}\)

\section*{Default negation in rule heads}

\section*{We consider logic programs with default negation in rule heads}
- Given an alphabet \(\mathcal{A}\) of atoms, let \(\widetilde{\mathcal{A}}=\{\widetilde{a} \mid a \in \mathcal{A}\}\) such that \(\mathcal{A} \cap \widetilde{\mathcal{A}}=\emptyset\)
- Given a program \(P\) over \(\mathcal{A}\), consider the program
\[
\begin{aligned}
\widetilde{P}= & \{r \in P \mid h(r) \neq \sim a\} \\
& \cup\{\leftarrow B(r) \cup\{\sim \tilde{a}\} \mid r \in P \text { and } h(r)=\sim a\} \\
& \cup\{\widetilde{a} \leftarrow \sim a \mid r \in P \text { and } h(r)=\sim a\}
\end{aligned}
\]
- A set \(X\) of atoms is a stable model of a program \(P\) (with default negation in rule heads) over \(\mathcal{A}\), if \(X=Y \cap \mathcal{A}\) for some stable model \(Y\) of \(\widetilde{P}\) over \(\mathcal{A} \cup \widetilde{\mathcal{A}}\)

\section*{Outline}

\section*{23 Two kinds of negation}

24 Disjunctive logic programs
25 Propositional theories
26 Aggregates
27 Gringo language

\section*{Disjunctive logic programs}
- A disjunctive rule, \(r\), is of the form
\[
a_{1} ; \ldots ; a_{m} \leftarrow a_{m+1}, \ldots, a_{n}, \sim a_{n+1}, \ldots, \sim a_{0}
\]
where \(0 \leq m \leq n \leq o\) and each \(a_{i}\) is an atom for \(0 \leq i \leq 0\)
- A disjunctive logic program is a finite set of disjunctive rules
\[
\begin{aligned}
H(r) & =\left\{a_{1}, \ldots, a_{m}\right\} \\
B(r) & =\left\{a_{m+1}, \ldots, a_{n}, \sim a_{n+1}, \ldots, \sim a_{0}\right\} \\
B(r)^{+} & =\left\{a_{m+1}, \ldots, a_{n}\right\} \\
B(r)^{-} & =\left\{a_{n+1}, \ldots, a_{0}\right\} \\
A(P) & =\bigcup_{r \in P}\left(H(r) \cup B(r)^{+} \cup B(r)^{-}\right) \\
B(P) & =\{B(r) \mid r \in P\}
\end{aligned}
\]
- A program is called positive if \(B(r)^{-}=\emptyset\) for all its rules

\section*{Disjunctive logic programs}
- A disjunctive rule, \(r\), is of the form
\[
a_{1} ; \ldots ; a_{m} \leftarrow a_{m+1}, \ldots, a_{n}, \sim a_{n+1}, \ldots, \sim a_{0}
\]
where \(0 \leq m \leq n \leq o\) and each \(a_{i}\) is an atom for \(0 \leq i \leq o\)
- A disjunctive logic program is a finite set of disjunctive rules
- Notation
\[
\begin{aligned}
H(r) & =\left\{a_{1}, \ldots, a_{m}\right\} \\
B(r) & =\left\{a_{m+1}, \ldots, a_{n}, \sim a_{n+1}, \ldots, \sim a_{o}\right\} \\
B(r)^{+} & =\left\{a_{m+1}, \ldots, a_{n}\right\} \\
B(r)^{-} & =\left\{a_{n+1}, \ldots, a_{o}\right\} \\
A(P) & =\bigcup_{r \in P}\left(H(r) \cup B(r)^{+} \cup B(r)^{-}\right) \\
B(P) & =\{B(r) \mid r \in P\}
\end{aligned}
\]
- A program is called positive if \(B(r)^{-}=\emptyset\) for all its rules

\section*{Disjunctive logic programs}
- A disjunctive rule, \(r\), is of the form
\[
a_{1} ; \ldots ; a_{m} \leftarrow a_{m+1}, \ldots, a_{n}, \sim a_{n+1}, \ldots, \sim a_{0}
\]
where \(0 \leq m \leq n \leq o\) and each \(a_{i}\) is an atom for \(0 \leq i \leq o\)
- A disjunctive logic program is a finite set of disjunctive rules
- Notation
\[
\begin{aligned}
H(r) & =\left\{a_{1}, \ldots, a_{m}\right\} \\
B(r) & =\left\{a_{m+1}, \ldots, a_{n}, \sim a_{n+1}, \ldots, \sim a_{o}\right\} \\
B(r)^{+} & =\left\{a_{m+1}, \ldots, a_{n}\right\} \\
B(r)^{-} & =\left\{a_{n+1}, \ldots, a_{o}\right\} \\
A(P) & =\bigcup_{r \in P}\left(H(r) \cup B(r)^{+} \cup B(r)^{-}\right) \\
B(P) & =\{B(r) \mid r \in P\}
\end{aligned}
\]
- A program is called positive if \(B(r)^{-}=\emptyset\) for all its rules

\section*{Stable models}
- Positive programs
- A set \(X\) of atoms is closed under a positive program \(P\) iff for any \(r \in P, H(r) \cap X \neq \emptyset\) whenever \(B(r)^{+} \subseteq X\)
- \(X\) corresponds to a model of \(P\) (seen as a formula)
- The set of all \(\subseteq\)-minimal sets of atoms being closed under a positive program \(P\) is denoted by \(\min _{\subseteq}(P)\)

■ min \(\subseteq(P)\) corresponds to the \(\subseteq\)-minimal models of \(P\) (ditto)

The reduct, \(P^{X}\), of a disjunctive program \(P\) relative to a set \(X\) of atoms is defined by
\[
P^{X}=\left\{H(r) \leftarrow B(r)^{+} \mid r \in P \text { and } B(r)^{-} \cap X=\emptyset\right\}
\]

A set \(X\) of atoms is a stable model of a disjunctive program \(P\), if \(X \in \min _{\subseteq}\left(P^{X}\right)\)

\section*{Stable models}
- Positive programs
- A set \(X\) of atoms is closed under a positive program \(P\) iff for any \(r \in P, H(r) \cap X \neq \emptyset\) whenever \(B(r)^{+} \subseteq X\)
- \(X\) corresponds to a model of \(P\) (seen as a formula)
- The set of all \(\subseteq\)-minimal sets of atoms being closed under a positive program \(P\) is denoted by \(\min _{\subseteq}(P)\)
- \(\min _{\subseteq}(P)\) corresponds to the \(\subseteq\)-minimal models of \(P\) (ditto)
- Disjunctive programs
- The reduct, \(P^{X}\), of a disjunctive program \(P\) relative to a set \(X\) of atoms is defined by
\[
P^{X}=\left\{H(r) \leftarrow B(r)^{+} \mid r \in P \text { and } B(r)^{-} \cap X=\emptyset\right\}
\]
- A set \(X\) of atoms is a stable model of a disjunctive program \(P\), if \(X \in \min _{\subseteq}\left(P^{X}\right)\)

\section*{Stable models}
- Positive programs
- A set \(X\) of atoms is closed under a positive program \(P\) iff for any \(r \in P, H(r) \cap X \neq \emptyset\) whenever \(B(r)^{+} \subseteq X\)
- \(X\) corresponds to a model of \(P\) (seen as a formula)
- The set of all \(\subseteq\)-minimal sets of atoms being closed under a positive program \(P\) is denoted by \(\min _{\subseteq}(P)\)

■ min \(\subseteq(P)\) corresponds to the \(\subseteq\)-minimal models of \(P\) (ditto)
- Disjunctive programs
- The reduct, \(P^{X}\), of a disjunctive program \(P\) relative to a set \(X\) of atoms is defined by
\[
P^{X}=\left\{H(r) \leftarrow B(r)^{+} \mid r \in P \text { and } B(r)^{-} \cap X=\emptyset\right\}
\]
- A set \(X\) of atoms is a stable model of a disjunctive program \(P\), if \(X \in \min _{\subseteq}\left(P^{X}\right)\)

\section*{A "positive" example}
\[
P=\left\{\begin{array}{llll}
a & \leftarrow & \\
b ; c & \leftarrow & a
\end{array}\right\}
\]

The sets \(\{a, b\},\{a, c\}\), and \(\{a, b, c\}\) are closed under \(P\)
- We have \(\min \subseteq(P)=\{\{a, b\},\{a, c\}\}\)

\section*{A "positive" example}
\[
P=\left\{\begin{array}{lll}
a & \leftarrow & \\
b ; c & \leftarrow & a
\end{array}\right\}
\]
- The sets \(\{a, b\},\{a, c\}\), and \(\{a, b, c\}\) are closed under \(P\)
- We have \(\min \subseteq(P)=\{\{a, b\},\{a, c\}\}\)

\section*{A "positive" example}
\[
P=\left\{\begin{array}{lll}
a & \leftarrow & \\
b ; c & \leftarrow & a
\end{array}\right\}
\]
- The sets \(\{a, b\},\{a, c\}\), and \(\{a, b, c\}\) are closed under \(P\)
- We have \(\min \subseteq(P)=\{\{a, b\},\{a, c\}\}\)

\section*{Graph coloring (reloaded)}
```

node (1. .6).
edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).
assign(X,r) ; assign(X,b) ; assign(X,g) :- node(X).
:- edge(X,Y), assign(X,C), assign(Y,C).

```

\section*{Graph coloring (reloaded)}
```

node(1..6).
edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).
edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).
color(r). color(b). color(g).
assign(X,C) : color(C) :- node(X).
:- edge(X,Y), assign(X,C), assign(Y,C).

```

\section*{More Examples}
- \(P_{1}=\{a ; b ; c \leftarrow\}\)
stable models \(\{a\},\{b\}\), and \(\{c\}\)
\[
\begin{aligned}
P_{2}= & \{a ; b ; c \leftarrow, \leftarrow a\} \\
& \text { stable models }\{b\} \text { and }\{c\} \\
P_{3}= & \{a ; b ; c \leftarrow, \leftarrow a, b \leftarrow c, c \leftarrow b\} \\
& \text { stable model }\{b, c\} \\
P_{4}= & \{a ; b \leftarrow c, b \leftarrow \sim a, \sim c, a ; c \leftarrow \sim b\} \\
& \text { stable models }\{a\} \text { and }\{b\}
\end{aligned}
\]

\section*{More Examples}
- \(P_{1}=\{a ; b ; c \leftarrow\}\)
- stable models \(\{a\},\{b\}\), and \(\{c\}\)
\(P_{2}=\{a ; b ; c \leftarrow, \leftarrow a\}\)
stable models \(\{b\}\) and \(\{c\}\)
\[
\begin{aligned}
P_{3}= & \{a ; b ; c \leftarrow, \leftarrow a, b \leftarrow c, c \leftarrow b\} \\
& \text { stable model }\{b, c\}
\end{aligned}
\]
\[
P_{4}=\{a ; b \leftarrow c, b \leftarrow \sim a, \sim c, a ; c \leftarrow \sim b\}
\]
stable models \(\{a\}\) and \(\{b\}\)

\section*{More Examples}
\[
\begin{aligned}
P_{1}= & \{a ; b ; c \leftarrow\} \\
& \text { stable models }\{a\},\{b\}, \text { and }\{c\} \\
■ & P_{2}= \\
& \{a ; b ; c \leftarrow, \leftarrow a\} \\
& \text { stable models }\{b\} \text { and }\{c\} \\
P_{3}= & \{a ; b ; c \leftarrow, \leftarrow a, b \leftarrow c, c \leftarrow b\} \\
& \text { stable model }\{b, c\} \\
P_{4}= & \{a ; b \leftarrow c, b \leftarrow \sim a, \sim c, a ; c \leftarrow \sim b\} \\
& \text { stable models }\{a\} \text { and }\{b\}
\end{aligned}
\]

\section*{More Examples}
\[
P_{1}=\{a ; b ; c \leftarrow\}
\]
stable models \(\{a\}\), \(\{b\}\), and \(\{c\}\)
- \(P_{2}=\{a ; b ; c \leftarrow, \leftarrow a\}\)
- stable models \(\{b\}\) and \(\{c\}\)
\[
\begin{aligned}
P_{3}= & \{a ; b ; c \leftarrow, \leftarrow a, b \leftarrow c, c \leftarrow b\} \\
& \text { } t \text { table model }\{b, c\} \\
P_{4}= & \{a ; b \leftarrow c, b \leftarrow \sim a, \sim c, a ; c \leftarrow \sim b\} \\
& \text { stable models }\{a\} \text { and }\{b\}
\end{aligned}
\]

\section*{More Examples}
\[
\begin{aligned}
P_{1}= & \{a ; b ; c \leftarrow\} \\
& \text { stable models }\{a\},\{b\}, \text { and }\{c\} \\
P_{2}= & \{a ; b ; c \leftarrow, \leftarrow a\} \\
& \text { } \text { stable models }\{b\} \text { and }\{c\} \\
■ P_{3}= & \{a ; b ; c \leftarrow, \leftarrow a, b \leftarrow c, c \leftarrow b\} \\
& \text { stable model }\{b, c\} \\
P_{4}= & \{a ; b \leftarrow c, b \leftarrow \sim a, \sim c, a ; c \leftarrow \sim b\} \\
& \text { stable models }\{a\} \text { and }\{b\}
\end{aligned}
\]

\section*{More Examples}
\[
\begin{aligned}
P_{1}= & \{a ; b ; c \leftarrow\} \\
& \text { stable models }\{a\},\{b\}, \text { and }\{c\} \\
P_{2}= & \{a ; b ; c \leftarrow, \leftarrow a\} \\
& \text { stable models }\{b\} \text { and }\{c\}
\end{aligned}
\]
- \(P_{3}=\{a ; b ; c \leftarrow, \leftarrow a, b \leftarrow c, c \leftarrow b\}\)
- stable model \(\{b, c\}\)
\(P_{4}=\{a ; b \leftarrow c, b \leftarrow \sim a, \sim c, a ; c \leftarrow \sim b\}\) stable models \(\{a\}\) and \(\{b\}\)

\section*{More Examples}
\[
\begin{aligned}
P_{1}= & \{a ; b ; c \leftarrow\} \\
& \text { stable models }\{a\},\{b\}, \text { and }\{c\} \\
P_{2}= & \{a ; b ; c \leftarrow, \leftarrow a\} \\
& \text { } \left.\begin{array}{rl} 
& \{t a b l e ~ m o d e l s
\end{array} b\right\} \text { and }\{c\} \\
P_{3}= & \{a ; b ; c \leftarrow, \leftarrow a, b \leftarrow c, c \leftarrow b\} \\
& \text { stable model }\{b, c\} \\
\square P_{4}= & \{a ; b \leftarrow c, b \leftarrow \sim a, \sim c, a ; c \leftarrow \sim b\} \\
& \text { stable models }\{a\} \text { and }\{b\}
\end{aligned}
\]

\section*{More Examples}
\[
\begin{aligned}
P_{1}= & \{a ; b ; c \leftarrow\} \\
& \text { stable models }\{a\},\{b\}, \text { and }\{c\} \\
P_{2}= & \{a ; b ; c \leftarrow, \leftarrow a\} \\
& \text { stable models }\{b\} \text { and }\{c\} \\
P_{3}= & \{a ; b ; c \leftarrow, \leftarrow a, b \leftarrow c, c \leftarrow b\} \\
& \text { stable model }\{b, c\} \\
■ P_{4}= & \{a ; b \leftarrow c, b \leftarrow \sim a, \sim c, a ; c \leftarrow \sim b\} \\
■ & \text { stable models }\{a\} \text { and }\{b\}
\end{aligned}
\]

\section*{More Examples}
- \(P_{1}=\{a ; b ; c \leftarrow\}\)
- stable models \(\{a\},\{b\}\), and \(\{c\}\)
- \(P_{2}=\{a ; b ; c \leftarrow, \leftarrow a\}\)
- stable models \(\{b\}\) and \(\{c\}\)

■ \(P_{3}=\{a ; b ; c \leftarrow, \leftarrow a, b \leftarrow c, c \leftarrow b\}\)
- stable model \(\{b, c\}\)
- \(P_{4}=\{a ; b \leftarrow c, b \leftarrow \sim a, \sim c, a ; c \leftarrow \sim b\}\)
- stable models \(\{a\}\) and \(\{b\}\)

\section*{Some properties}
- A disjunctive logic program may have zero, one, or multiple stable models
- If \(X\) is a stable model of a disjunctive logic program \(P\), then \(X\) is a model of \(P\) (seen as a formula)
- If \(X\) and \(Y\) are stable models of a disjunctive logic program \(P\), then \(X \not \subset Y\)
- If \(a \in X\) for some stable model \(X\) of a disjunctive logic program \(P\), then there is a rule \(r \in P\) such that
\(B(r)^{+} \subseteq X, B(r)^{-} \cap X=\emptyset\), and \(H(r) \cap X=\{a\}\)

\section*{Some properties}
- A disjunctive logic program may have zero, one, or multiple stable models
- If \(X\) is a stable model of a disjunctive logic program \(P\), then \(X\) is a model of \(P\) (seen as a formula)
- If \(X\) and \(Y\) are stable models of a disjunctive logic program \(P\), then \(X \not \subset Y\)
- If \(a \in X\) for some stable model \(X\) of a disjunctive logic program \(P\), then there is a rule \(r \in P\) such that
\(B(r)^{+} \subseteq X, B(r)^{-} \cap X=\emptyset\), and \(H(r) \cap X=\{a\}\)

\section*{An example with variables}
\[
\begin{aligned}
P & =\left\{\begin{array}{lll}
a(1,2) & \leftarrow \\
b(X) ; c(Y) & \leftarrow & a(X, Y), \sim c(Y)
\end{array}\right\} \\
\operatorname{ground}(P) & =\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1), \sim c(1) \\
b(1) ; c(2) & \leftarrow & a(1,2), \sim c(2) \\
b(2) ; c(1) & \leftarrow & a(2,1), \sim c(1) \\
b(2) ; c(2) & \leftarrow & a(2,2), \sim c(2)
\end{array}\right\}
\end{aligned}
\]

For every stable model \(X\) of \(P\), we have
- a(1,2) \(\in X\) and
- \(\{a(1,1), a(2,1), a(2,2)\} \cap X=\emptyset\)

\section*{An example with variables}
\[
\begin{aligned}
P & =\left\{\begin{array}{lll}
a(1,2) & \leftarrow \\
b(X) ; c(Y) & \leftarrow & a(X, Y), \sim c(Y)
\end{array}\right\} \\
\operatorname{ground}(P) & =\left\{\begin{array}{lll}
a(1,2) & \leftarrow \\
b(1) ; c(1) & \leftarrow & a(1,1), \sim c(1) \\
b(1) ; c(2) & \leftarrow & a(1,2), \sim c(2) \\
b(2) ; c(1) & \leftarrow & a(2,1), \sim c(1) \\
b(2) ; c(2) & \leftarrow & a(2,2), \sim c(2)
\end{array}\right\}
\end{aligned}
\]

For every stable model \(X\) of \(P\), we have
- \(a(1,2) \in X\) and
- \(\{a(1,1), a(2,1), a(2,2)\} \cap X=\emptyset\)

\section*{An example with variables}
\[
\begin{aligned}
& P=\left\{\begin{array}{l}
a(1,2) \\
b(X) ; c(Y) \\
\leftarrow \\
\leftarrow \\
a(X, Y), \sim c(Y)
\end{array}\right\} \\
& \operatorname{ground}(P)=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1), \sim c(1) \\
b(1) ; c(2) & \leftarrow & a(1,2), \sim c(2) \\
b(2) ; c(1) & \leftarrow & a(2,1), \sim c(1) \\
b(2) ; c(2) & \leftarrow a(2,2), \sim c(2)
\end{array}\right\}
\end{aligned}
\]

For every stable model \(X\) of \(P\), we have
- a(1,2) \(\in X\) and
- \(\{a(1,1), a(2,1), a(2,2)\} \cap X=\emptyset\)

\section*{An example with variables}


Consider \(X=\{a(1,2), b(1)\}\)
We get \(\min _{\subset}\left(\operatorname{ground}^{\left.(P)^{X}\right)}=\{\{a(1,2), b(1)\},\{a(1,2), c(2)\}\}\right.\) \(X\) is a stable model of \(P\) because \(X \in \min \subseteq\left(\operatorname{ground}(P)^{X}\right)\)

\section*{An example with variables}
\[
\operatorname{ground}(P)^{X}=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1), \sim c(1) \\
b(1) ; c(2) & \leftarrow & a(1,2), \sim c(2) \\
b(2) ; c(1) & \leftarrow & a(2,1), \sim c(1) \\
b(2) ; c(2) & \leftarrow & a(2,2), \sim c(2)
\end{array}\right\}
\]
- Consider \(X=\{a(1,2), b(1)\}\)
- We get min \(\subseteq\left(\operatorname{ground}(P)^{X}\right)=\{\{a(1,2), b(1)\},\{a(1,2), c(2)\}\}\) \(X\) is a stable model of \(P\) because \(X \in \min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)\)

\section*{An example with variables}

- Consider \(X=\{a(1,2), b(1)\}\)
- We get \(\min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)=\{\{a(1,2), b(1)\},\{a(1,2), c(2)\}\}\)
- \(X\) is a stable model of \(P\) because \(X \in \min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)\)

\section*{An example with variables}
\(\operatorname{ground}(P)^{x}=\left\{\begin{array}{llll}a(1,2) & \leftarrow & \\ b(1) ; c(1) & \leftarrow & a(1,1), \sim c(1) \\ b(1) ; c(2) & \leftarrow & a(1,2), \sim c(2) \\ b(2) ; c(1) & \leftarrow & a(2,1), \sim c(1) \\ b(2) ; c(2) & \leftarrow & a(2,2), \sim c(2)\end{array}\right\}\)
- Consider \(X=\{a(1,2), b(1)\}\)
- We get \(\min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)=\{\{a(1,2), b(1)\},\{a(1,2), c(2)\}\}\)
- \(X\) is a stable model of \(P\) because \(X \in \min \subseteq\left(\operatorname{ground}(P)^{X}\right)\)

\section*{An example with variables}
\[
\operatorname{ground}(P)^{x}=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1), \sim c(1) \\
b(1) ; c(2) & \leftarrow & a(1,2), \sim c(2) \\
b(2) ; c(1) & \leftarrow & a(2,1), \sim c(1) \\
b(2) ; c(2) & \leftarrow & a(2,2), \sim c(2)
\end{array}\right\}
\]
- Consider \(X=\{a(1,2), b(1)\}\)
- We get \(\min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)=\{\{a(1,2), b(1)\},\{a(1,2), c(2)\}\}\)
- \(X\) is a stable model of \(P\) because \(X \in \min \subseteq\left(\operatorname{ground}(P)^{X}\right)\)

\section*{An example with variables}
\(\operatorname{ground}(P)^{X}=\left\{\begin{array}{lll}a(1,2) & \leftarrow & \\ b(1) ; c(1) & \leftarrow & a(1,1), \sim c(1) \\ b(1) ; c(2) & \leftarrow & a(1,2), \sim c(2) \\ b(2) ; c(1) & \leftarrow & a(2,1), \sim c(1) \\ b(2) ; c(2) & \leftarrow & a(2,2), \sim c(2)\end{array}\right\}\)

Consider \(X=\{a(1,2), c(2)\}\)
We get \(\min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)=\{\{a(1,2)\}\}\)
\(X\) is no stable model of \(P\) because \(X \notin \min \subseteq\left(\operatorname{ground}(P)^{X}\right)\)

\section*{An example with variables}
\[
\operatorname{ground}(P)^{X}=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1), \sim c(1) \\
b(1) ; c(2) & \leftarrow & a(1,2), \sim c(2) \\
b(2) ; c(1) & \leftarrow & a(2,1), \sim c(1) \\
b(2) ; c(2) & \leftarrow & a(2,2), \sim c(2)
\end{array}\right\}
\]
- Consider \(X=\{a(1,2), c(2)\}\)

We get \(\min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)=\{\{a(1,2)\}\}\)
\(X\) is no stable model of \(P\) because \(X \notin \min _{\subseteq}\left(\operatorname{ground}^{(P)^{X}}\right)\)

\section*{An example with variables}
\[
\operatorname{ground}(P)^{X}=\left\{\begin{array}{llll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1), \sim c(1) \\
b(1) ; c(2) & \leftarrow & a(1,2), \sim c(2) \\
b(2) ; c(1) & \leftarrow & a(2,1), \sim c(1) \\
b(2) ; c(2) & \leftarrow & a(2,2), \sim c(2)
\end{array}\right\}
\]
- Consider \(X=\{a(1,2), c(2)\}\)
- We get \(\min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)=\{\{a(1,2)\}\}\)
- \(X\) is no stable model of \(P\) because \(X \notin \min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)\)

\section*{An example with variables}
\[
\operatorname{ground}(P)^{X}=\left\{\begin{array}{lll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1), \sim c(1) \\
b(1) ; c(2) & \leftarrow & a(1,2), \sim c(2) \\
b(2) ; c(1) & \leftarrow & a(2,1), \sim c(1) \\
b(2) ; c(2) & \leftarrow & a(2,2), \sim c(2)
\end{array}\right\}
\]
- Consider \(X=\{a(1,2), c(2)\}\)
- We get \(\min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)=\{\{a(1,2)\}\}\)
- \(X\) is no stable model of \(P\) because \(X \notin \min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)\)

\section*{An example with variables}
\[
\operatorname{ground}(P)^{X}=\left\{\begin{array}{llll}
a(1,2) & \leftarrow & \\
b(1) ; c(1) & \leftarrow & a(1,1), \sim c(1) \\
b(1) ; c(2) & \leftarrow & a(1,2), \sim c(2) \\
b(2) ; c(1) & \leftarrow & a(2,1), \sim c(1) \\
b(2) ; c(2) & \leftarrow & a(2,2), \sim c(2)
\end{array}\right\}
\]
- Consider \(X=\{a(1,2), c(2)\}\)
- We get \(\min _{\subseteq}\left(\operatorname{ground}(P)^{X}\right)=\{\{a(1,2)\}\}\)
- \(X\) is no stable model of \(P\) because \(X \notin \min _{\subseteq}\left(\operatorname{ground}^{(P)^{X}}\right)\)

\section*{Default negation in rule heads}
- Consider disjunctive rules of the form
\[
a_{1} ; \ldots ; a_{m} ; \sim a_{m+1} ; \ldots ; \sim a_{n} \leftarrow a_{n+1}, \ldots, a_{0}, \sim a_{o+1}, \ldots, \sim a_{p}
\]
where \(0 \leq m \leq n \leq 0 \leq p\) and each \(a_{i}\) is an atom for \(0 \leq i \leq p\)
- Given a program \(P\) over \(\mathcal{A}\), consider the program
\[
\begin{gathered}
\widetilde{P}=\quad\left\{H(r)^{+} \leftarrow B(r) \cup\left\{\sim \widetilde{a} \mid a \in H(r)^{-}\right\} \mid r \in P\right\} \\
\cup\left\{\widetilde{a} \leftarrow \sim a \mid r \in P \text { and } a \in H(r)^{-}\right\}
\end{gathered}
\]
\(\square\) A set \(X\) of atoms is a stable model of a disjunctive program \(P\) (with default negation in rule heads) over \(\mathcal{A}\), if \(X=Y \cap \mathcal{A}\) for some stable model \(Y\) of \(\widetilde{P}\) over \(\mathcal{A} \cup \widetilde{\mathcal{A}}\)

\section*{Default negation in rule heads}
- Consider disjunctive rules of the form
\[
a_{1} ; \ldots ; a_{m} ; \sim a_{m+1} ; \ldots ; \sim a_{n} \leftarrow a_{n+1}, \ldots, a_{0}, \sim a_{o+1}, \ldots, \sim a_{p}
\]
where \(0 \leq m \leq n \leq o \leq p\) and each \(a_{i}\) is an atom for \(0 \leq i \leq p\)
- Given a program \(P\) over \(\mathcal{A}\), consider the program
\[
\begin{array}{cl}
\widetilde{P}= & \left\{H(r)^{+} \leftarrow B(r) \cup\left\{\sim \widetilde{a} \mid a \in H(r)^{-}\right\} \mid r \in P\right\} \\
\cup\left\{\widetilde{a} \leftarrow \sim a \mid r \in P \text { and } a \in H(r)^{-}\right\}
\end{array}
\]
- A set \(X\) of atoms is a stable model of a disjunctive program \(P\) (with default negation in rule heads) over \(\mathcal{A}\), if \(X=Y \cap \mathcal{A}\) for some stable model \(Y\) of \(\widetilde{P}\) over \(\mathcal{A} \cup \widetilde{\mathcal{A}}\)

\section*{Default negation in rule heads}
- Consider disjunctive rules of the form
\[
a_{1} ; \ldots ; a_{m} ; \sim a_{m+1} ; \ldots ; \sim a_{n} \leftarrow a_{n+1}, \ldots, a_{0}, \sim a_{o+1}, \ldots, \sim a_{p}
\]
where \(0 \leq m \leq n \leq o \leq p\) and each \(a_{i}\) is an atom for \(0 \leq i \leq p\)
- Given a program \(P\) over \(\mathcal{A}\), consider the program
\[
\begin{array}{cl}
\widetilde{P}= & \left\{H(r)^{+} \leftarrow B(r) \cup\left\{\sim \widetilde{a} \mid a \in H(r)^{-}\right\} \mid r \in P\right\} \\
\cup\left\{\widetilde{a} \leftarrow \sim a \mid r \in P \text { and } a \in H(r)^{-}\right\}
\end{array}
\]
- A set \(X\) of atoms is a stable model of a disjunctive program \(P\) (with default negation in rule heads) over \(\mathcal{A}\), if \(X=Y \cap \mathcal{A}\) for some stable model \(Y\) of \(\widetilde{P}\) over \(\mathcal{A} \cup \widetilde{\mathcal{A}}\)

\section*{An example}
- The program
\[
P=\{a ; \sim a \leftarrow\}
\]
yields
\[
\widetilde{P}=\{a \leftarrow \sim \widetilde{a}\} \cup\{\widetilde{a} \leftarrow \sim a\}
\]
\(\widetilde{P}\) has two stable models, \(\{a\}\) and \(\{\widetilde{a}\}\)
This induces the stable models \(\{a\}\) and \(\emptyset\) of \(P\)

\section*{An example}
- The program
\[
P=\{a ; \sim a \leftarrow\}
\]
yields
\[
\widetilde{P}=\{a \leftarrow \sim \widetilde{a}\} \cup\{\widetilde{a} \leftarrow \sim a\}
\]
- \(\widetilde{P}\) has two stable models, \(\{a\}\) and \(\{\widetilde{a}\}\)
\(\square\) This induces the stable models \(\{a\}\) and \(\emptyset\) of \(P\)

\section*{An example}
- The program
\[
P=\{a ; \sim a \leftarrow\}
\]
yields
\[
\widetilde{P}=\{a \leftarrow \sim \widetilde{a}\} \cup\{\widetilde{a} \leftarrow \sim a\}
\]
- \(\widetilde{P}\) has two stable models, \(\{a\}\) and \(\{\widetilde{a}\}\)
- This induces the stable models \(\{a\}\) and \(\emptyset\) of \(P\)

\section*{An example}
- The program
\[
P=\{a ; \sim a \leftarrow\}
\]
yields
\[
\widetilde{P}=\{a \leftarrow \sim \widetilde{a}\} \cup\{\widetilde{a} \leftarrow \sim a\}
\]
- \(\widetilde{P}\) has two stable models, \(\{a\}\) and \(\{\widetilde{a}\}\)
- This induces the stable models \(\{a\}\) and \(\emptyset\) of \(P\)

\section*{Outline}

\section*{23 Two kinds of negation}

\section*{24 Disjunctive logic nrograrns}

25 Propositional theories
26 Aggregates
27 Gringo language

\section*{Propositional theories}
- Formulas are formed from
- atoms in \(\mathcal{A}\)
- \(\perp\)
using
- conjunction ( \(\wedge\) )
- disjunction ( \(\vee\) )
- implication \((\rightarrow)\)
- Notation
\[
\begin{aligned}
\top & =(\perp \rightarrow \perp) \\
\sim \phi & =(\phi \rightarrow \perp)
\end{aligned}
\]

A propositional theory is a finite set of formulas

\section*{Propositional theories}
- Formulas are formed from
- atoms in \(\mathcal{A}\)
- \(\perp\)
using
- conjunction ( \(\wedge\) )
- disjunction ( \(\vee\) )
- implication \((\rightarrow)\)
- Notation
\[
\begin{aligned}
\top & =(\perp \rightarrow \perp) \\
\sim \phi & =(\phi \rightarrow \perp)
\end{aligned}
\]
- A propositional theory is a finite set of formulas

\section*{Propositional theories}
- Formulas are formed from
- atoms in \(\mathcal{A}\)
- \(\perp\)
using
- conjunction ( \(\wedge\) )
- disjunction ( \(\vee\) )
- implication \((\rightarrow)\)
- Notation
\[
\begin{aligned}
\top & =(\perp \rightarrow \perp) \\
\sim \phi & =(\phi \rightarrow \perp)
\end{aligned}
\]
- A propositional theory is a finite set of formulas

Torsten Schaub (KRR@UP)

\section*{Reduct}
- The satisfaction relation \(X=\phi\) between a set \(X\) of atoms and a (set of) formula(s) \(\phi\) is defined as in propositional logic The reduct, \(\phi^{X}\), of a formula \(\phi\) relative to a set \(X\) of atoms is defined recursively as follows:
```

$\phi^{X}=\perp$
$\phi^{x}=\phi$
if $X \not \vDash \phi$
$\phi^{x}=\left(\psi^{x} \circ \varphi^{x}\right)$
if $X=\phi$ and $\phi=(\psi \circ \varphi)$ for $\circ \in\{\wedge, \vee, \rightarrow\}$
If $\phi=\sim \psi=(\psi \rightarrow \perp)$,
then $\phi^{X}=(\perp \rightarrow \perp)=T$, if $X \mid \neq \psi$, and $\phi^{X}=\perp$, otherwise

```
The reduct, \(\Phi^{X}\), of a propositional theory \(\Phi\) relative to a set \(X\) of atoms is defined as \(\phi^{X}=\left\{\phi^{X} \mid \phi \in \Phi\right\}\)

\section*{Reduct}
- The satisfaction relation \(X \models \phi\) between a set \(X\) of atoms and a (set of) formula(s) \(\phi\) is defined as in propositional logic
- The reduct, \(\phi^{X}\), of a formula \(\phi\) relative to a set \(X\) of atoms is defined recursively as follows:


The reduct, \(\Phi^{X}\), of a propositional theory \(\Phi\) relative to a set \(X\) of atoms is defined as \(\phi^{X}=\left\{\phi^{X} \mid \phi \in \Phi\right\}\)

\section*{Reduct}
- The satisfaction relation \(X \models \phi\) between a set \(X\) of atoms and a (set of) formula(s) \(\phi\) is defined as in propositional logic
- The reduct, \(\phi^{X}\), of a formula \(\phi\) relative to a set \(X\) of atoms is defined recursively as follows:
- \(\phi^{X}=\perp\)
if \(X \not \vDash \phi\)
\(\phi^{x}=\phi\)
if \(\phi \in X\)
\(\phi^{X}=\left(\psi^{X} \circ \varphi^{X}\right)\) if \(X \models \phi\) and \(\phi=(\psi \circ \varphi)\) for \(\circ \in\{\Lambda, \vee, \rightarrow\}\)
If \(\phi=\sim \psi=(\psi \rightarrow \perp)\),
then \(\phi^{X}=(\perp \rightarrow \perp)=T\), if \(X \mid \nLeftarrow\), and \(\phi^{X}=\perp\), otherwise
The reduct, \(\Phi^{X}\), of a propositional theory \(\Phi\) relative to a set \(X\) of atoms is defined as \(\phi^{X}=\left\{\phi^{X} \mid \phi \in \Phi\right\}\)

\section*{Reduct}
- The satisfaction relation \(X=\phi\) between a set \(X\) of atoms and a (set of) formula(s) \(\phi\) is defined as in propositional logic
- The reduct, \(\phi^{X}\), of a formula \(\phi\) relative to a set \(X\) of atoms is defined recursively as follows:
- \(\phi_{x}^{X}=\perp \quad\) if \(X \not \vDash \phi\)
- \(\phi^{X}=\phi \quad\) if \(\phi \in X\)
\(\phi^{X}=\left(\psi^{X} \circ \varphi^{X}\right)\) if \(X=\phi\) and \(\phi=(\psi \circ \varphi)\) for \(\circ \in\{\wedge, \vee, \rightarrow\}\)
- If \(\phi=\sim \psi=(\psi \rightarrow \perp)\),
then \(\phi^{X}=(\perp \rightarrow \perp)=T\), if \(X \mid \vDash \psi\), and \(\phi^{X}=\perp\), otherwise
The reduct, \(\Phi^{X}\), of a propositional theory \(\Phi\) relative to a set \(X\) of atoms is defined as \(\phi^{X}=\left\{\phi^{X} \mid \phi \in \Phi\right\}\)

\section*{Reduct}
- The satisfaction relation \(X=\phi\) between a set \(X\) of atoms and a (set of) formula(s) \(\phi\) is defined as in propositional logic
- The reduct, \(\phi^{X}\), of a formula \(\phi\) relative to a set \(X\) of atoms is defined recursively as follows:
- \(\phi^{X}=\perp \quad\) if \(X \not \vDash \phi\)
- \(\phi^{X}=\phi \quad\) if \(\phi \in X\)
- \(\phi^{X}=\left(\psi^{X} \circ \varphi^{X}\right) \quad\) if \(X \models \phi\) and \(\phi=(\psi \circ \varphi)\) for \(\circ \in\{\wedge, \vee, \rightarrow\}\)
- If \(\phi=\sim \psi=(\psi \rightarrow \perp)\),
then \(\phi^{X}=(\perp \rightarrow \perp)=\mathrm{T}\), if \(X \not \vDash \psi\), and \(\phi^{X}=\perp\), otherwise
- The reduct, \(\phi^{X}\), of a propositional theory \(\Phi\) relative to a set \(X\) of atoms is defined as \(\phi^{X}=\left\{\phi^{X} \mid \phi \in \Phi\right\}\)

\section*{Reduct}
- The satisfaction relation \(X=\phi\) between a set \(X\) of atoms and a (set of) formula(s) \(\phi\) is defined as in propositional logic
- The reduct, \(\phi^{X}\), of a formula \(\phi\) relative to a set \(X\) of atoms is defined recursively as follows:
- \(\phi^{X}=\perp\)
\[
\text { if } X \not \models \phi
\]
- \(\phi^{x}=\phi\)
if \(\phi \in X\)
- \(\phi^{X}=\left(\psi^{X} \circ \varphi^{X}\right) \quad\) if \(X \models \phi\) and \(\phi=(\psi \circ \varphi)\) for \(\circ \in\{\wedge, \vee, \rightarrow\}\)
- If \(\phi=\sim \psi=(\psi \rightarrow \perp)\),
then \(\phi^{X}=(\perp \rightarrow \perp)=\top\), if \(X \not \vDash \psi\), and \(\phi^{X}=\perp\), otherwise
- The reduct, \(\Phi^{X}\), of a propositional theory \(\Phi\) relative to a set \(X\) of atoms is defined as \(\phi^{X}=\left\{\phi^{X} \mid \phi \in \Phi\right\}\)

\section*{Reduct}
- The satisfaction relation \(X=\phi\) between a set \(X\) of atoms and a (set of) formula(s) \(\phi\) is defined as in propositional logic
- The reduct, \(\phi^{X}\), of a formula \(\phi\) relative to a set \(X\) of atoms is defined recursively as follows:
- \(\phi^{X}=\perp\)
\[
\text { if } X \not \models \phi
\]
- \(\phi^{x}=\phi\)
if \(\phi \in X\)
- \(\phi^{X}=\left(\psi^{X} \circ \varphi^{X}\right) \quad\) if \(X \models \phi\) and \(\phi=(\psi \circ \varphi)\) for \(\circ \in\{\wedge, \vee, \rightarrow\}\)
- If \(\phi=\sim \psi=(\psi \rightarrow \perp)\),
then \(\phi^{X}=(\perp \rightarrow \perp)=T\), if \(X \not \vDash \psi\), and \(\phi^{X}=\perp\), otherwise
- The reduct, \(\Phi^{X}\), of a propositional theory \(\Phi\) relative to a set \(X\) of atoms is defined as \(\Phi^{X}=\left\{\phi^{X} \mid \phi \in \Phi\right\}\)

\section*{Stable models}
- A set \(X\) of atoms satisfies a propositional theory \(\Phi\), written \(X=\Phi\), if \(X=\phi\) for each \(\phi \in \Phi\)
- The set of all \(\subseteq\)-minimal sets of atoms satisfying a propositional theory \(\Phi\) is denoted by \(\min _{\subseteq}(\Phi)\)

A set \(X\) of atoms is a stable model of a propositional theory \(\Phi\), if \(X \in \min \subseteq\left(\phi^{X}\right)\)

If \(X\) is a stable model of \(\Phi\), then
```

 X=\varnothing and
    ```
    \(\min _{\subseteq}\left(\Phi^{X}\right)=\{X\}\)
    In general, this does not imply \(X \in \min _{\subseteq}(\Phi)\) !

\section*{Stable models}
- A set \(X\) of atoms satisfies a propositional theory \(\Phi\), written \(X \models \Phi\), if \(X=\phi\) for each \(\phi \in \Phi\)
- The set of all \(\subseteq\)-minimal sets of atoms satisfying a propositional theory \(\Phi\) is denoted by \(\min _{\subseteq}(\Phi)\)
- A set \(X\) of atoms is a stable model of a propositional theory \(\Phi\), if \(X \in \min _{\subseteq}\left(\Phi^{X}\right)\)
- If \(X\) is a stable model of \(\phi\), then
\(\square=\Phi\) and
\(\square \min _{\subseteq}\left(\Phi^{X}\right)=\{X\}\)
In general, this does not imply \(X \in \min \subseteq(\Phi)\) !

\section*{Stable models}
- A set \(X\) of atoms satisfies a propositional theory \(\Phi\), written \(X \models \Phi\), if \(X=\phi\) for each \(\phi \in \Phi\)
- The set of all \(\subseteq\)-minimal sets of atoms satisfying a propositional theory \(\Phi\) is denoted by \(\min _{\subseteq}(\Phi)\)
- A set \(X\) of atoms is a stable model of a propositional theory \(\Phi\), if \(X \in \min _{\subseteq}\left(\Phi^{X}\right)\)
- If \(X\) is a stable model of \(\phi\), then
\(\square X \mid=\Phi\) and
\(-\min _{\subseteq}\left(\Phi^{X}\right)=\{X\}\)
- Note In general, this does not imply \(X \in \min \subseteq(\phi)\) !

\section*{Stable models}
- A set \(X\) of atoms satisfies a propositional theory \(\Phi\), written \(X=\Phi\), if \(X=\phi\) for each \(\phi \in \Phi\)
- The set of all \(\subseteq\)-minimal sets of atoms satisfying a propositional theory \(\Phi\) is denoted by \(\min _{\subseteq}(\Phi)\)
- A set \(X\) of atoms is a stable model of a propositional theory \(\Phi\), if \(X \in \min _{\subseteq}\left(\Phi^{X}\right)\)
- If \(X\) is a stable model of \(\Phi\), then
- \(X \models \Phi\) and
- \(\min _{\subseteq}\left(\Phi^{X}\right)=\{X\}\)
- Note In general, this does not imply \(X \in \min \subseteq(\phi)\) !

\section*{Stable models}
- A set \(X\) of atoms satisfies a propositional theory \(\Phi\), written \(X \models \Phi\), if \(X=\phi\) for each \(\phi \in \Phi\)
- The set of all \(\subseteq\)-minimal sets of atoms satisfying a propositional theory \(\Phi\) is denoted by \(\min _{\subseteq}(\Phi)\)
- A set \(X\) of atoms is a stable model of a propositional theory \(\Phi\), if \(X \in \min _{\subseteq}\left(\Phi^{X}\right)\)
- If \(X\) is a stable model of \(\Phi\), then
- \(X \models \Phi\) and
- \(\min _{\subseteq}\left(\Phi^{X}\right)=\{X\}\)
- Note In general, this does not imply \(X \in \min _{\subseteq}(\Phi)\) !

\section*{Two examples}
- \(\Phi_{1}=\{p \vee(p \rightarrow(q \wedge r))\}\)

For \(X=\{p, q, r\}\), we get
\(\phi_{1}^{\{p, q, r\}}=\{p \vee(p \rightarrow(q \wedge r))\}\) and \(\min _{\subseteq}\left(\phi_{1}^{\{p, q, r\}}\right)=\{\emptyset\}\)
For \(X=\emptyset\), we get
\(\Phi_{1}^{\emptyset}=\{\perp \vee(\perp \rightarrow \perp)\}\) and \(\min _{\subseteq}\left(\Phi_{1}^{\emptyset}\right)=\{\emptyset\}\)
\(\Phi_{2}=\{p \vee(\sim p \rightarrow(q \wedge r))\}\)
For \(X=\emptyset\), we get
\(\Phi_{2}^{0}=\{\perp\}\) and \(\min _{\subseteq}\left(\Phi_{2}^{\pi}\right)=\emptyset\)
For \(X=\{p\}\), we get
\(\Phi_{2}^{\{p\}}=\{p \vee(\perp \rightarrow \perp)\}\) and \(\min _{\subseteq}\left(\Phi_{2}^{\{p\}}\right)=\{\emptyset\}\)
For \(X=\{q, r\}\), we get
\(\phi_{2}^{\{q, r\}}=\{\perp \vee(T \rightarrow(q \wedge r))\}\) and \(\min \subseteq\left(\phi_{2}^{\{q, r\}}\right)=\{\{q, r\}\}\)

\section*{Two examples}
- \(\Phi_{1}=\{p \vee(p \rightarrow(q \wedge r))\}\)
- For \(X=\{p, q, r\}\), we get
\(\Phi_{1}^{\{p, q, r\}}=\{p \vee(p \rightarrow(q \wedge r))\}\) and \(\min _{\subseteq}\left(\phi_{1}^{\{p, q, r\}}\right)=\{\phi\}\)
For \(X=\emptyset\), we get
\(\Phi_{1}^{\emptyset}=\{\perp \vee(\perp \rightarrow \perp)\}\) and \(\min _{\subseteq}\left(\phi_{1}^{0}\right)=\{\emptyset\}\)
\(\Phi_{2}=\{p \vee(\sim p \rightarrow(q \wedge r))\}\)
For \(X=\emptyset\), we get
\(\Phi_{2}^{0}=\{\perp\}\) and \(\min _{\subseteq}\left(\Phi_{2}^{0}\right)=\emptyset\)
For \(X=\{p\}\), we get
\(\Phi_{2}^{\{p\}}=\{p \vee(\perp \rightarrow \perp)\}\) and \(\min _{\subseteq}\left(\Phi_{2}^{\{p\}}\right)=\{\emptyset\}\)
For \(X=\{q, r\}\), we get
\(\phi_{2}^{\{q, r\}}=\{\perp \vee(T \rightarrow(q \wedge r))\}\) and \(\min \subseteq\left(\phi_{2}^{\{q, r\}}\right)=\{\{q, r\}\}\)

\section*{Two examples}
- \(\Phi_{1}=\{p \vee(p \rightarrow(q \wedge r))\}\)
- For \(X=\{p, q, r\}\), we get
\(\Phi_{1}^{\{p, q, r\}}=\{p \vee(p \rightarrow(q \wedge r))\}\) and \(\min _{\subseteq}\left(\Phi_{1}^{\{p, q, r\}}\right)=\{\emptyset\}\)
For \(X=\emptyset\), we get
\(\phi_{1}^{0}=\{\perp \vee(\perp \rightarrow \perp)\}\) and \(\min _{\subseteq}\left(\phi_{1}^{0}\right)=\{\phi\}\)
\(\Phi_{2}=\{p \vee(\sim p \rightarrow(q \wedge r))\}\)
For \(X=\emptyset\), we get
\(\Phi_{2}^{0}=\{\perp\}\) and \(\min \subseteq\left(\Phi_{2}^{0}\right)=\emptyset\)
For \(X=\{p\}\), we get
\(\Phi_{2}^{\{p\}}=\{p \vee(\perp \rightarrow \perp)\}\) and \(\min _{\subseteq}\left(\Phi_{2}^{\{p\}}\right)=\{\emptyset\}\)
For \(X=\{q, r\}\), we get
\(\phi_{2}^{\{q, r\}}=\{\perp \vee(T \rightarrow(q \wedge r))\}\) and \(\min \subseteq\left(\phi_{2}^{\{q, r\}}\right)=\{\{q, r\}\}\)

\section*{Two examples}
- \(\Phi_{1}=\{p \vee(p \rightarrow(q \wedge r))\}\)
- For \(X=\{p, q, r\}\), we get
\(\Phi_{1}^{\{p, q, r\}}=\{p \vee(p \rightarrow(q \wedge r))\}\) and \(\min _{\subseteq}\left(\Phi_{1}^{\{p, q, r\}}\right)=\{\emptyset\}\)
- For \(X=\emptyset\), we get
\[
\Phi_{1}^{0}=\{\perp \vee(\perp \rightarrow \perp)\} \text { and } \min _{\subseteq}\left(\Phi_{1}^{0}\right)=\{\emptyset\}
\]
\[
\Phi_{2}=\{p \vee(\sim p \rightarrow(q \wedge r))\}
\]

For \(X=\emptyset\), we get
\(\Phi_{2}^{\emptyset}=\{\perp\}\) and \(\min _{\subseteq}\left(\Phi_{2}^{0}\right)=\emptyset\)
For \(X=\{p\}\), we get
\(\Phi_{2}^{\{p\}}=\{p \vee(\perp \rightarrow \perp)\}\) and \(\min _{\subseteq}\left(\Phi_{2}^{\{p\}}\right)=\{\emptyset\}\)
For \(X=\{q, r\}\), we get
\(\Phi_{2}^{\{q, r\}}=\{\perp \vee(T \rightarrow(q \wedge r))\}\) and \(\min \subseteq\left(\phi_{2}^{\{q, r\}}\right)=\{\{q, r\}\}\)

\section*{Two examples}
- \(\Phi_{1}=\{p \vee(p \rightarrow(q \wedge r))\}\)
- For \(X=\{p, q, r\}\), we get
\(\phi_{1}^{\{p, q, r\}}=\{p \vee(p \rightarrow(q \wedge r))\}\) and \(\min _{\subseteq}\left(\Phi_{1}^{\{p, q, r\}}\right)=\{\emptyset\}\)
- For \(X=\emptyset\), we get
\[
\Phi_{1}^{\emptyset}=\{\perp \vee(\perp \rightarrow \perp)\} \text { and } \min _{\subseteq}\left(\Phi_{1}^{\emptyset}\right)=\{\emptyset\}
\]
\(\Phi_{2}=\{p \vee(\sim p \rightarrow(q \wedge r))\}\)
For \(X=\emptyset\), we get
\(\Phi_{2}^{0}=\{\perp\}\) and \(\min \subseteq\left(\Phi_{2}^{0}\right)=\emptyset\)
For \(X=\{p\}\), we get
\(\Phi_{2}^{\{p\}}=\{p \vee(\perp \rightarrow \perp)\}\) and \(\min _{\subseteq}\left(\Phi_{2}^{\{p\}}\right)=\{\emptyset\}\)
For \(X=\{q, r\}\), we get
\(\Phi_{2}^{\{q, r\}}=\{\perp \vee(T \rightarrow(q \wedge r))\}\) and \(\min _{\subseteq}\left(\Phi_{2}^{\{q, r\}}\right)=\{\{q, r\}\}\)

\section*{Two examples}
- \(\Phi_{1}=\{p \vee(p \rightarrow(q \wedge r))\}\)
- For \(X=\{p, q, r\}\), we get
\(\Phi_{1}^{\{p, q, r\}}=\{p \vee(p \rightarrow(q \wedge r))\}\) and \(\min _{\subseteq}\left(\Phi_{1}^{\{p, q, r\}}\right)=\{\emptyset\}\)
- For \(X=\emptyset\), we get
\(\Phi_{1}^{\emptyset}=\{\perp \vee(\perp \rightarrow \perp)\}\) and \(\min _{\subseteq}\left(\Phi_{1}^{\emptyset}\right)=\{\emptyset\}\)

■ \(\Phi_{2}=\{p \vee(\sim p \rightarrow(q \wedge r))\}\)
- For \(X=\emptyset\), we get
\(\Phi_{2}^{\emptyset}=\{\perp\}\) and \(\min _{\subseteq}\left(\Phi_{2}^{\emptyset}\right)=\emptyset\)
For \(X=\{p\}\), we get
\(\Phi_{2}^{\{p\}}=\{p \vee(\perp \rightarrow \perp)\}\) and \(\min _{\subseteq}\left(\Phi_{2}^{\{p\}}\right)=\{\emptyset\}\)
For \(X=\{q, r\}\), we get
\(\phi_{2}^{\{q, r\}}=\{\perp \vee(T \rightarrow(q \wedge r))\}\) and \(\min _{\subseteq}\left(\phi_{2}^{\{q, r\}}\right)=\{\{q, r\}\}\)

\section*{Two examples}
- \(\Phi_{1}=\{p \vee(p \rightarrow(q \wedge r))\}\)
- For \(X=\{p, q, r\}\), we get
\(\phi_{1}^{\{p, q, r\}}=\{p \vee(p \rightarrow(q \wedge r))\}\) and \(\min _{\subseteq}\left(\Phi_{1}^{\{p, q, r\}}\right)=\{\emptyset\}\)
- For \(X=\emptyset\), we get
\(\Phi_{1}^{\emptyset}=\{\perp \vee(\perp \rightarrow \perp)\}\) and \(\min _{\subseteq}\left(\Phi_{1}^{\emptyset}\right)=\{\emptyset\}\)

■ \(\Phi_{2}=\{p \vee(\sim p \rightarrow(q \wedge r))\}\)
- For \(X=\emptyset\), we get
\[
\Phi_{2}^{\emptyset}=\{\perp\} \text { and } \min _{\subseteq}\left(\Phi_{2}^{0}\right)=\emptyset
\]

For \(X=\{p\}\), we get
\(\Phi_{2}^{\{p\}}=\{p \vee(\perp \rightarrow \perp)\}\) and \(\min _{\subseteq}\left(\Phi_{2}^{\{p\}}\right)=\{\emptyset\}\)
For \(X=\{q, r\}\), we get
\(\Phi_{2}^{\{q, r\}}=\{\perp \vee(T \rightarrow(q \wedge r))\}\) and \(\min \subseteq\left(\phi_{2}^{\{q, r\}}\right)=\{\{q, r\}\}\)

\section*{Two examples}
- \(\Phi_{1}=\{p \vee(p \rightarrow(q \wedge r))\}\)
- For \(X=\{p, q, r\}\), we get
\(\phi_{1}^{\{p, q, r\}}=\{p \vee(p \rightarrow(q \wedge r))\}\) and \(\min _{\subseteq}\left(\Phi_{1}^{\{p, q, r\}}\right)=\{\emptyset\}\)
- For \(X=\emptyset\), we get
\(\Phi_{1}^{\emptyset}=\{\perp \vee(\perp \rightarrow \perp)\}\) and \(\min _{\subseteq}\left(\Phi_{1}^{\emptyset}\right)=\{\emptyset\}\)

■ \(\Phi_{2}=\{p \vee(\sim p \rightarrow(q \wedge r))\}\)
- For \(X=\emptyset\), we get
\(\Phi_{2}^{\emptyset}=\{\perp\}\) and \(\min _{\subseteq}\left(\Phi_{2}^{\emptyset}\right)=\emptyset\)
- For \(X=\{p\}\), we get
\(\phi_{2}^{\{p\}}=\{p \vee(\perp \rightarrow \perp)\}\) and \(\min _{\subseteq}\left(\phi_{2}^{\{p\}}\right)=\{\emptyset\}\)
For \(X=\{q, r\}\), we get
\(\Phi_{2}^{\{q, r\}}=\{\perp \vee(T \rightarrow(q \wedge r))\}\) and \(\min \subseteq\left(\phi_{2}^{\{q, r\}}\right)=\{\{q, r\}\}\)

\section*{Two examples}
- \(\Phi_{1}=\{p \vee(p \rightarrow(q \wedge r))\}\)
- For \(X=\{p, q, r\}\), we get
\[
\Phi_{1}^{\{p, q, r\}}=\{p \vee(p \rightarrow(q \wedge r))\} \text { and } \min _{\subseteq}\left(\Phi_{1}^{\{p, q, r\}}\right)=\{\emptyset\}
\]
- For \(X=\emptyset\), we get
\[
\Phi_{1}^{\emptyset}=\{\perp \vee(\perp \rightarrow \perp)\} \text { and } \min _{\subseteq}\left(\Phi_{1}^{\emptyset}\right)=\{\emptyset\}
\]

■ \(\Phi_{2}=\{p \vee(\sim p \rightarrow(q \wedge r))\}\)
- For \(X=\emptyset\), we get
\(\Phi_{2}^{\emptyset}=\{\perp\}\) and \(\min _{\subseteq}\left(\Phi_{2}^{\emptyset}\right)=\emptyset\)
- For \(X=\{p\}\), we get
\(\Phi_{2}^{\{p\}}=\{p \vee(\perp \rightarrow \perp)\}\) and \(\min _{\subseteq}\left(\Phi_{2}^{\{p\}}\right)=\{\emptyset\}\)
For \(X=\{q, r\}\), we get
\(\phi_{2}^{\{q, r\}}=\{\perp \vee(T \rightarrow(q \wedge r))\}\) and \(\min _{\subseteq}\left(\phi_{2}^{\{q, r\}}\right)=\{\{q, r\}\}\)

\section*{Two examples}
- \(\Phi_{1}=\{p \vee(p \rightarrow(q \wedge r))\}\)
- For \(X=\{p, q, r\}\), we get
\[
\Phi_{1}^{\{p, q, r\}}=\{p \vee(p \rightarrow(q \wedge r))\} \text { and } \min _{\subseteq}\left(\Phi_{1}^{\{p, q, r\}}\right)=\{\emptyset\}
\]
- For \(X=\emptyset\), we get
\[
\Phi_{1}^{\emptyset}=\{\perp \vee(\perp \rightarrow \perp)\} \text { and } \min _{\subseteq}\left(\Phi_{1}^{\emptyset}\right)=\{\emptyset\}
\]
\(\Phi_{2}=\{p \vee(\sim p \rightarrow(q \wedge r))\}\)
- For \(X=\emptyset\), we get
\(\Phi_{2}^{\emptyset}=\{\perp\}\) and \(\min _{\subseteq}\left(\Phi_{2}^{\emptyset}\right)=\emptyset\)
- For \(X=\{p\}\), we get
\(\Phi_{2}^{\{p\}}=\{p \vee(\perp \rightarrow \perp)\}\) and \(\min _{\subseteq}\left(\Phi_{2}^{\{p\}}\right)=\{\emptyset\}\)
- For \(X=\{q, r\}\), we get
\(\phi_{2}^{\{q, r\}}=\{\perp \vee(T \rightarrow(q \wedge r))\}\) and \(\min _{\subseteq}\left(\phi_{2}^{\{q, r\}}\right)=\{\{q, r\}\}\)

\section*{Two examples}
- \(\Phi_{1}=\{p \vee(p \rightarrow(q \wedge r))\}\)
- For \(X=\{p, q, r\}\), we get
\[
\Phi_{1}^{\{p, q, r\}}=\{p \vee(p \rightarrow(q \wedge r))\} \text { and } \min _{\subseteq}\left(\Phi_{1}^{\{p, q, r\}}\right)=\{\emptyset\}
\]
- For \(X=\emptyset\), we get
\[
\Phi_{1}^{\emptyset}=\{\perp \vee(\perp \rightarrow \perp)\} \text { and } \min _{\subseteq}\left(\Phi_{1}^{\emptyset}\right)=\{\emptyset\}
\]

■ \(\Phi_{2}=\{p \vee(\sim p \rightarrow(q \wedge r))\}\)
- For \(X=\emptyset\), we get
\(\phi_{2}^{\emptyset}=\{\perp\}\) and \(\min _{\subseteq}\left(\Phi_{2}^{\emptyset}\right)=\emptyset\)
- For \(X=\{p\}\), we get
\(\Phi_{2}^{\{p\}}=\{p \vee(\perp \rightarrow \perp)\}\) and \(\min _{\subseteq}\left(\Phi_{2}^{\{p\}}\right)=\{\emptyset\}\)
- For \(X=\{q, r\}\), we get
\[
\Phi_{2}^{\{q, r\}}=\{\perp \vee(T \rightarrow(q \wedge r))\} \text { and } \min _{\subseteq}\left(\phi_{2}^{\{q, r\}}\right)=\{\{q, r\}\}
\]

\section*{Two examples}
- \(\Phi_{1}=\{p \vee(p \rightarrow(q \wedge r))\}\)
- For \(X=\{p, q, r\}\), we get
\[
\Phi_{1}^{\{p, q, r\}}=\{p \vee(p \rightarrow(q \wedge r))\} \text { and } \min _{\subseteq}\left(\Phi_{1}^{\{p, q, r\}}\right)=\{\emptyset\}
\]
- For \(X=\emptyset\), we get
\[
\Phi_{1}^{\emptyset}=\{\perp \vee(\perp \rightarrow \perp)\} \text { and } \min _{\subseteq}\left(\Phi_{1}^{\emptyset}\right)=\{\emptyset\}
\]

■ \(\Phi_{2}=\{p \vee(\sim p \rightarrow(q \wedge r))\}\)
- For \(X=\emptyset\), we get
\(\Phi_{2}^{\emptyset}=\{\perp\}\) and \(\min _{\subseteq}\left(\Phi_{2}^{\emptyset}\right)=\emptyset\)
- For \(X=\{p\}\), we get
\(\Phi_{2}^{\{p\}}=\{p \vee(\perp \rightarrow \perp)\}\) and \(\min _{\subseteq}\left(\Phi_{2}^{\{p\}}\right)=\{\emptyset\}\)
- For \(X=\{q, r\}\), we get
\(\Phi_{2}^{\{q, r\}}=\{\perp \vee(T \rightarrow(q \wedge r))\}\) and \(\min _{\subseteq}\left(\Phi_{2}^{\{q, r\}}\right)=\{\{q, r\}\}\)

\section*{Relationship to logic programs}
- The translation, \(\tau[(\phi \leftarrow \psi)\) ], of a rule \((\phi \leftarrow \psi)\) is defined as follows:
- \(\tau[(\phi \leftarrow \psi)]=(\tau[\psi] \rightarrow \tau[\phi])\)
\(\square \tau[\perp]=\perp\)
\(\square \tau[T]=T\)
- \(\tau[\phi]=\phi \quad\) if \(\phi\) is an atom
- \(\tau[\sim \phi]=\sim \tau[\phi]\)
\(\square \tau[(\phi, \psi)]=(\tau[\phi] \wedge \tau[\psi])\)
\(\square \tau[(\phi ; \psi)]=(\tau[\phi] \vee \tau[\psi])\)
The translation of a logic program \(P\) is \(\tau[P]=\{\tau[r] \mid r \in P\}\)
Given a logic program \(P\) and a set \(X\) of atoms, \(X\) is a stable model of \(P\) iff \(X\) is a stable model of \(\tau[P]\)

\section*{Relationship to logic programs}

■ The translation, \(\tau[(\phi \leftarrow \psi)]\), of a rule \((\phi \leftarrow \psi)\) is defined as follows:
- \(\tau[(\phi \leftarrow \psi)]=(\tau[\psi] \rightarrow \tau[\phi])\)
- \(\tau[\perp]=\perp\)
- \(\tau[T]=T\)
- \(\tau[\phi]=\phi \quad\) if \(\phi\) is an atom
- \(\tau[\sim \phi]=\sim \tau[\phi]\)
- \(\tau[(\phi, \psi)]=(\tau[\phi] \wedge \tau[\psi])\)
- \(\tau[(\phi ; \psi)]=(\tau[\phi] \vee \tau[\psi])\)
- The translation of a logic program \(P\) is \(\tau[P]=\{\tau[r] \mid r \in P\}\)
- Given a logic program \(P\) and a set \(X\) of atoms, \(X\) is a stable model of \(P\) iff \(X\) is a stable model of \(\tau[P]\)

\section*{Relationship to logic programs}
- The translation, \(\tau[(\phi \leftarrow \psi)]\), of a rule \((\phi \leftarrow \psi)\) is defined as follows:
- \(\tau[(\phi \leftarrow \psi)]=(\tau[\psi] \rightarrow \tau[\phi])\)
- \(\tau[\perp]=\perp\)
- \(\tau[T]=T\)
- \(\tau[\phi]=\phi \quad\) if \(\phi\) is an atom
- \(\tau[\sim \phi]=\sim \tau[\phi]\)
- \(\tau[(\phi, \psi)]=(\tau[\phi] \wedge \tau[\psi])\)
- \(\tau[(\phi ; \psi)]=(\tau[\phi] \vee \tau[\psi])\)
- The translation of a logic program \(P\) is \(\tau[P]=\{\tau[r] \mid r \in P\}\)
- Given a logic program \(P\) and a set \(X\) of atoms, \(X\) is a stable model of \(P\) iff \(X\) is a stable model of \(\tau[P]\)

\section*{Relationship to logic programs}

■ The translation, \(\tau[(\phi \leftarrow \psi)]\), of a rule \((\phi \leftarrow \psi)\) is defined as follows:
- \(\tau[(\phi \leftarrow \psi)]=(\tau[\psi] \rightarrow \tau[\phi])\)
- \(\tau[\perp]=\perp\)
- \(\tau[\mathrm{T}]=\mathrm{T}\)
- \(\tau[\phi]=\phi \quad\) if \(\phi\) is an atom
- \(\tau[\sim \phi]=\sim \tau[\phi]\)
- \(\tau[(\phi, \psi)]=(\tau[\phi] \wedge \tau[\psi])\)
- \(\tau[(\phi ; \psi)]=(\tau[\phi] \vee \tau[\psi])\)
- The translation of a logic program \(P\) is \(\tau[P]=\{\tau[r] \mid r \in P\}\)
- Given a logic program \(P\) and a set \(X\) of atoms, \(X\) is a stable model of \(P\) iff \(X\) is a stable model of \(\tau[P]\)

\section*{Logic programs as propositional theories}
- The normal logic program \(P=\{p \leftarrow \sim q, q \leftarrow \sim p\}\) corresponds to \(\tau[P]=\{\sim q \rightarrow p, \sim p \rightarrow q\}\)
- stable models: \(\{p\}\) and \(\{q\}\)

The disjunctive logic program \(P=\{p ; q \leftarrow\}\) corresponds to \(\tau[P]=\{T \rightarrow p \vee q\}\)
stable models: \(\{p\}\) and \(\{q\}\)
The nested logic program \(P=\{p \leftarrow \sim \sim p\}\) corresponds to \(\tau[P]=\{\sim \sim p \rightarrow p\}\)
stable models: \(\emptyset\) and \(\{p\}\)

\section*{Logic programs as propositional theories}
- The normal logic program \(P=\{p \leftarrow \sim q, q \leftarrow \sim p\}\) corresponds to \(\tau[P]=\{\sim q \rightarrow p, \sim p \rightarrow q\}\)
- stable models: \(\{p\}\) and \(\{q\}\)

The disjunctive logic program \(P=\{p ; q \leftarrow\}\) corresponds to \(\tau[P]=\{T \rightarrow p \vee q\}\)
stable models: \(\{p\}\) and \(\{q\}\)
The nested logic program \(P=\{p \leftarrow \sim \sim p\}\)
corresponds to \(\tau[P]=\{\sim \sim p \rightarrow p\}\)
stable models: \(\emptyset\) and \(\{p\}\)

\section*{Logic programs as propositional theories}
- The normal logic program \(P=\{p \leftarrow \sim q, q \leftarrow \sim p\}\) corresponds to \(\tau[P]=\{\sim q \rightarrow p, \sim p \rightarrow q\}\)
- stable models: \(\{p\}\) and \(\{q\}\)
- The disjunctive logic program \(P=\{p ; q \leftarrow\}\) corresponds to \(\tau[P]=\{\top \rightarrow p \vee q\}\)
stable models: \(\{p\}\) and \(\{q\}\)
The nested logic program \(P=\{p \leftarrow \sim \sim p\}\) corresponds to \(\tau[P]=\{\sim \sim p \rightarrow p\}\)
stable models: \(\emptyset\) and \(\{p\}\)

\section*{Logic programs as propositional theories}
- The normal logic program \(P=\{p \leftarrow \sim q, q \leftarrow \sim p\}\) corresponds to \(\tau[P]=\{\sim q \rightarrow p, \sim p \rightarrow q\}\)
- stable models: \(\{p\}\) and \(\{q\}\)
- The disjunctive logic program \(P=\{p ; q \leftarrow\}\) corresponds to \(\tau[P]=\{\top \rightarrow p \vee q\}\)
- stable models: \(\{p\}\) and \(\{q\}\)

The nested logic program \(P=\{p \leftarrow \sim \sim p\}\) corresponds to \(\tau[P]=\{\sim \sim p \rightarrow p\}\)
stable models: \(\emptyset\) and \(\{p\}\)

\section*{Logic programs as propositional theories}
- The normal logic program \(P=\{p \leftarrow \sim q, q \leftarrow \sim p\}\) corresponds to \(\tau[P]=\{\sim q \rightarrow p, \sim p \rightarrow q\}\)
- stable models: \(\{p\}\) and \(\{q\}\)
- The disjunctive logic program \(P=\{p ; q \leftarrow\}\) corresponds to \(\tau[P]=\{\top \rightarrow p \vee q\}\)
- stable models: \(\{p\}\) and \(\{q\}\)
- The nested logic program \(P=\{p \leftarrow \sim \sim p\}\) corresponds to \(\tau[P]=\{\sim \sim p \rightarrow p\}\)
stable models: \(\emptyset\) and \(\{p\}\)

\section*{Logic programs as propositional theories}
- The normal logic program \(P=\{p \leftarrow \sim q, q \leftarrow \sim p\}\) corresponds to \(\tau[P]=\{\sim q \rightarrow p, \sim p \rightarrow q\}\)
- stable models: \(\{p\}\) and \(\{q\}\)
- The disjunctive logic program \(P=\{p ; q \leftarrow\}\) corresponds to \(\tau[P]=\{\top \rightarrow p \vee q\}\)
- stable models: \(\{p\}\) and \(\{q\}\)
- The nested logic program \(P=\{p \leftarrow \sim \sim p\}\) corresponds to \(\tau[P]=\{\sim \sim p \rightarrow p\}\)
- stable models: \(\emptyset\) and \(\{p\}\)

\section*{Outline}

\section*{23 Two kinds of negation 24 Disjunctive logic prograrns 25 Propositional theories}

26 Aggregates
27 Gringo language

\section*{Motivation}
- Aggregates provide a general way to obtain a single value from a collection of input values
- Popular aggregate (functions)

■ average
- count
- maximum
- minimum
- sum

■ Cardinality and weight constraints rely on count and sum aggregates

\section*{Syntax}
- An aggregate has the form:
\[
\alpha\left\{w_{1}: a_{1}, \ldots, w_{m}: a_{m}, w_{m+1}: \sim a_{m+1}, \ldots, w_{n}: \sim a_{n}\right\} \prec k
\]
where for \(1 \leq i \leq n\)
- \(\alpha\) stands for a function mapping multisets over \(\mathbb{Z}\) to \(\mathbb{Z} \cup\{+\infty,-\infty\}\)
- \(\prec\) stands for a relation between \(\mathbb{Z} \cup\{+\infty,-\infty\}\) and \(\mathbb{Z}\)
- \(k \in \mathbb{Z}\)
- \(a_{i}\) are atoms and
- \(w_{i}\) are integers

■ Example sum \(\{30\) : hd \((a), \ldots, 50: h d(m)\} \leq 300\)

\section*{Semantics}
- A (positive) aggregate \(\alpha\left\{w_{1}: a_{1}, \ldots, w_{n}: a_{n}\right\} \prec k\) can be represented by the formula:
\[
\bigwedge_{I \subseteq\{1, \ldots, n\}, \alpha\left\{w_{i} \mid i \in I\right\} \nless k}\left(\bigwedge_{i \in I} a_{i} \rightarrow \bigvee_{i \in \bar{I}} a_{i}\right)
\]
where \(\bar{I}=\{1, \ldots, n\} \backslash /\) and \(\nprec\) is the complement of \(\prec\)
- Then, \(\alpha\left\{w_{1}: a_{1}, \ldots, w_{n}: a_{n}\right\} \prec k\) is true in \(X\) iff the above formula is true in \(X\)

\section*{Example}
- Consider \(\operatorname{sum}\{1: p, 1: q\} \neq 1\) That is, \(a_{1}=p, a_{2}=q\) and \(w_{1}=1, w_{2}=1\)
■ Calculemus!
\begin{tabular}{c|c|c|c}
\(I\) & \(\left\{w_{i} \mid i \in I\right\}\) & \(\sum\left\{w_{i} \mid i \in I\right\}\) & \(\sum\left\{w_{i} \mid i \in I\right\}=1\) \\
\hline\(\emptyset\) & \(\}\) & 0 & false \\
\(\{1\}\) & \(\{1\}\) & 1 & true \\
\(\{2\}\) & \(\{1\}\) & 1 & true \\
\(\{1,2\}\) & \(\{1,1\}\) & 2 & false
\end{tabular}
- We get \((p \rightarrow q) \wedge(q \rightarrow p)\)
- Analogously, we obtain \((p \vee q) \wedge \neg(p \wedge q)\) for \(\operatorname{sum}\{1: p, 1: q\}=1\)

\section*{Example}
- Consider \(\operatorname{sum}\{1: p, 1: q\} \neq 1\) That is, \(a_{1}=p, a_{2}=q\) and \(w_{1}=1, w_{2}=1\)
■ Calculemus!
\begin{tabular}{c|c|c|c}
\(I\) & \(\left\{w_{i} \mid i \in I\right\}\) & \(\sum\left\{w_{i} \mid i \in I\right\}\) & \(\sum\left\{w_{i} \mid i \in I\right\}=1\) \\
\hline\(\emptyset\) & \(\}\) & 0 & false \\
\(\{1\}\) & \(\{1\}\) & 1 & true \\
\(\{2\}\) & \(\{1\}\) & 1 & true \\
\(\{1,2\}\) & \(\{1,1\}\) & 2 & false
\end{tabular}
- We get \((p \rightarrow q) \wedge(q \rightarrow p)\)
- Analogously, we obtain \((p \vee q) \wedge \neg(p \wedge q)\) for \(\operatorname{sum}\{1: p, 1: q\}=1\)

\section*{Example}
- Consider \(\operatorname{sum}\{1: p, 1: q\} \neq 1\) That is, \(a_{1}=p, a_{2}=q\) and \(w_{1}=1, w_{2}=1\)
■ Calculemus!
\begin{tabular}{c|c|c|c}
\(I\) & \(\left\{w_{i} \mid i \in I\right\}\) & \(\sum\left\{w_{i} \mid i \in I\right\}\) & \(\sum\left\{w_{i} \mid i \in I\right\}=1\) \\
\hline\(\emptyset\) & \(\}\) & 0 & false \\
\(\{1\}\) & \(\{1\}\) & 1 & true \\
\(\{2\}\) & \(\{1\}\) & 1 & true \\
\(\{1,2\}\) & \(\{1,1\}\) & 2 & false
\end{tabular}
- We get \((p \rightarrow q) \wedge(q \rightarrow p)\)
- Analogously, we obtain \((p \vee q) \wedge \neg(p \wedge q)\) for \(\operatorname{sum}\{1: p, 1: q\}=1\)

\section*{Monotonicity}
- Monotone aggregates
- For instance,
- \(B(r)^{+}\)
- \(\operatorname{sum}\{1: p, 1: q\}>1\) amounts to \(p \wedge q\)
- We get a simpler characterization: \(\bigwedge_{I \subseteq\{1, \ldots, n\}, \alpha\left\{w_{i} \mid i \in I\right\} \nprec k} \bigvee_{i \in \bar{I}} a_{i}\)
- Anti-monotone aggregates
- For instance,
- \(B(r)^{-}\)

■ \(\operatorname{sum}\{1: p, 1: q\}<1\) amounts to \(\neg p \wedge \neg q\)
- We get a simpler characterization: \(\bigwedge_{I \subseteq\{1, \ldots, n\}, \alpha\left\{w_{i} \mid i \in I\right\} \nprec k} \neg \bigwedge_{i \in I} a_{i}\)
- Non-monotone aggregates
- For instance, \(\operatorname{sum}\{1: p, 1: q\} \neq 1\) is non-monotone.

\section*{Monotonicity}
- Monotone aggregates
- For instance,
- \(B(r)^{+}\)
- \(\operatorname{sum}\{1: p, 1: q\}>1\) amounts to \(p \wedge q\)
- We get a simpler characterization: \(\bigwedge_{I \subseteq\{1, \ldots, n\}, \alpha\left\{w_{i} \mid i \in I\right\} \nprec k} \bigvee_{i \in \bar{I}} a_{i}\)
- Anti-monotone aggregates
- For instance,
- \(B(r)^{-}\)

■ \(\operatorname{sum}\{1: p, 1: q\}<1\) amounts to \(\neg p \wedge \neg q\)
- We get a simpler characterization: \(\bigwedge_{I \subseteq\{1, \ldots, n\}, \alpha\left\{w_{i} \mid i \in I\right\} \nprec k} \neg \bigwedge_{i \in I} a_{i}\)
- Non-monotone aggregates
- For instance, \(\operatorname{sum}\{1: p, 1: q\} \neq 1\) is non-monotone.

\section*{Outline}

\section*{23 Two kinds of negation 24 Disjunctive logic nrograrns 25 Propositional theories \\ 26 Aggregates \\ 27 Gringo language}

\section*{Gringo language}

\(\square\) aspif format is a machine-oriented standard for ground programs
■ gringo format is a user-oriented language for (non-ground) programs extending the ASP language standard ASP-Core-2

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

\section*{Gringo language}

- aspif format is a machine-oriented standard for ground programs
- gringo format is a user-oriented language for (non-ground) programs extending the ASP language standard ASP-Core-2

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

\section*{Gringo language}

- aspif format is a machine-oriented standard for ground programs
- gringo format is a user-oriented language for (non-ground) programs extending the ASP language standard ASP-Core-2

\section*{Gringo language}

- aspif format is a machine-oriented standard for ground programs
- gringo format is a user-oriented language for (non-ground) programs extending the ASP language standard ASP-Core-2

\section*{Terms and literals}
\[
\begin{aligned}
& t \\
& t \\
& a, \neg a \\
& \text { ic literals } a, \sim a, \sim \sim a \\
& \text { atic literals } t_{1} \prec t_{2} \\
& \text { anal literals } 1: L \\
& \text { ate atioms } s_{1} \prec_{1} \alpha\left\{t_{1}: L_{1} ; \ldots ; t_{n}: L_{n}\right\} \prec_{2} s_{2} \\
& \text { atie litierals } a, \sim a, \sim \sim a
\end{aligned}
\]

\section*{Terms and literals}
- Terms \(t\) are formed from

■ constant symbols, eg c, d, ...
- function symbols, eg f, \(\mathrm{g}, \ldots\)
- numeric symbols, eg \(1,2, \ldots\)

■ variable symbols, eg X, Y, .... , -
- parentheses (, )
- tuple delimiters \(\langle\),\(\rangle (omitted whenever possible)\)
\(\qquad\)


\section*{Terms and literals}
- Terms \(t\) are formed from

■ constants, eg c, d, ...
- functions, eg f, g, ...
- numerics, eg \(1,2, \ldots\)
- variables, eg X, Y, ..., -
- parentheses (, )
- tuple delimiters \(\langle\),
```

a,~a,~~a
t
l:L
s}\mp@subsup{\iota}{1}{}\mp@subsup{\prec}{1}{}\alpha{\mp@subsup{\boldsymbol{t}}{1}{}:\mp@subsup{\boldsymbol{L}}{1}{};···;\mp@subsup{\boldsymbol{t}}{n}{}:\mp@subsup{\boldsymbol{L}}{n}{}}\prec\mp@subsup{\prec}{2}{}\mp@subsup{s}{2}{
a,~a,~~a

```

\section*{Terms and literals}
- Terms \(t\) are formed from

■ constants, eg c, d, ...
- functions, eg f, g, ...
- numerics, eg \(1,2, \ldots\)
- variables, eg X, Y, .... -
- parentheses (, )
- tuple delimiters \(\langle\),
eg \(\left.f(3, c, Z), g(42,-,)^{\prime}\right)\) or \(f((3, c), X)\)
                                    a, ~a, ~~a
    \(t_{1} \prec t_{2}\)
    \(1: L\)
\(s_{1} \prec_{1} \alpha\left\{\boldsymbol{t}_{1}: \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{n}: \boldsymbol{L}_{n}\right\} \prec_{2} s_{2}\)
a, ~a, ~~a

\section*{Terms and literals}
- Terms \(t\)
- Tuples \(t\) of terms
\[
\begin{aligned}
& \text { a, } \neg a \\
& \text { ic literals } a, \sim a, \sim \sim a \\
& \text { atic literals } t_{1} \prec t_{2} \\
& \text { anal literals } \quad l: L \\
& \text { ate atoms } s_{1} \prec_{1} \alpha\left\{\boldsymbol{t}_{1}: L_{1} ; \ldots ; \boldsymbol{t}_{n}: \boldsymbol{L}_{n}\right\} \nprec_{2} s_{2} \\
& \text { ate literals } a, \sim a, \sim \sim a
\end{aligned}
\]

\section*{Terms and literals}
- Terms \(t\)
- Tuples \(\boldsymbol{t}\)
- (Negated) Atoms a, ᄀa are formed from
- predicate symbols, eg p, q, ...
- parentheses (, )
- tuples of terms
```

a,~a,~~a
t
|:L
s}\mp@subsup{\iota}{1}{}\alpha{{\mp@subsup{\boldsymbol{t}}{1}{}:\mp@subsup{\boldsymbol{L}}{1}{};···;\mp@subsup{\boldsymbol{t}}{n}{}:\mp@subsup{\boldsymbol{L}}{n}{}}\mp@subsup{\prec}{2}{}\mp@subsup{s}{2}{
a, ~a, ~~a

```

\section*{Terms and literals}
- Terms \(t\)
- Tuples \(\boldsymbol{t}\)
- Atoms \(a, \neg a\) are formed from
- predicates, eg p, q, ...
- parentheses (, )
- tuples of terms
\[
\begin{aligned}
& a, \sim a, \sim \sim a \\
& t_{1} \prec t_{2} \\
& \quad /: \boldsymbol{L} \\
& s_{1} \prec_{1} \alpha\left\{\boldsymbol{t}_{1}: \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{n}: \boldsymbol{L}_{n}\right\} \nprec_{2} s_{2} \\
& a, \sim a, \sim \sim a
\end{aligned}
\]

\section*{Terms and literals}
- Terms \(t\)
- Tuples \(\boldsymbol{t}\)
- Atoms \(a, \neg a\) are formed from
- predicates, eg p, q, ...
- parentheses (, )
- tuples of terms
\[
\begin{gathered}
\text { eg }-\mathrm{p}(\mathrm{f}(3, \mathrm{c}, \mathrm{Z}), \mathrm{g}(42,-,-)) \text { or } \mathrm{q}() \text { written as } \mathrm{q} \\
a, \sim a, \sim \sim a \\
t_{1} \prec t_{2} \\
\\
1: L \\
\\
s_{1} \nprec_{1} \alpha\left\{t_{1}: L_{1} ; \ldots ; t_{n}: L_{n}\right\} \nprec_{2} s_{2} \\
\\
a, \sim a, \sim \sim a
\end{gathered}
\]

\section*{Terms and literals}
- Terms \(t\)
- Tuples \(\boldsymbol{t}\)
- Atoms a, \(\neg a, \perp, \top\)
\[
\begin{aligned}
& a, \sim a, \sim \sim a \\
& t_{1} \prec t_{2} \\
& \quad /: \boldsymbol{L} \\
& s_{1} \prec_{1} \alpha\left\{\boldsymbol{t}_{1}: \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{n}: \boldsymbol{L}_{n}\right\} \nprec_{2} s_{2} \\
& a, \sim a, \sim \sim a
\end{aligned}
\]

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice

\section*{Terms and literals}
- Terms \(t\)
- Tuples \(\boldsymbol{t}\)
- Atoms a, \(\neg a, \perp\), \(\top\)
viz \#false and \#true
\[
\begin{aligned}
& a, \sim a, \sim \sim a \\
& t_{1} \prec t_{2} \\
& \quad /: \boldsymbol{L} \\
& s_{1} \prec 1 \alpha\left\{\boldsymbol{t}_{1}: \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{n}: \boldsymbol{L}_{n}\right\} \nprec_{2} s_{2} \\
& a, \sim a, \sim \sim a
\end{aligned}
\]

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice

\section*{Terms and literals}
- Terms \(t\)
- Tuples \(\boldsymbol{t}\)
- Atoms a, \(\neg a, \perp\), \(\top\)
- Symbolic literals a, ~a, ~~a
\[
\begin{aligned}
& t_{1} \prec t_{2} \\
& \quad /: \boldsymbol{L} \\
& s_{1} \prec_{1} \alpha\left\{\boldsymbol{t}_{1}: \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{n}: \boldsymbol{L}_{n}\right\} \nprec_{2} s_{2} \\
& a, \sim a, \sim \sim a
\end{aligned}
\]

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice

\section*{Terms and literals}
- Terms \(t\)
- Tuples \(\boldsymbol{t}\)
- Atoms a, aa, \(\perp\), \(\top\)
- Symbolic literals a, na, ~~a eg \(p(a, X), ' n o t p(a, X)\) ', 'not not \(p(a, X)\) '
\[
\begin{aligned}
t_{1} & \prec t_{2} \\
\quad & : \boldsymbol{L} \\
s_{1} & \prec_{1} \alpha\left\{\boldsymbol{t}_{1}: \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{n}: \boldsymbol{L}_{n}\right\} \nprec_{2} s_{2} \\
a, & \sim a, \sim \sim a
\end{aligned}
\]

\section*{Terms and literals}
- Terms \(t\)
- Tuples \(\boldsymbol{t}\)
- Atoms a, \(\neg a, \perp, \top\)
- Symbolic literals a, ~a, ~~a
- Arithmetic literals \(t_{1} \prec t_{2}\) where
- \(t_{1}\) and \(t_{2}\) are terms

■ \(\prec\) is a comparison symbol
- Conditional literals /: L
\[
\begin{aligned}
& s_{1} \prec_{1} \alpha\left\{\boldsymbol{t}_{1}: \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{n}: \boldsymbol{L}_{n}\right\} \prec_{2} s_{2} \\
& a, \sim a, \sim \sim a
\end{aligned}
\]

Torsten Schaub (KRR@UP)

\section*{Terms and literals}
- Terms \(t\)
- Tuples \(\boldsymbol{t}\)
- Atoms a, \(\neg a, \perp, \top\)
- Symbolic literals a, ~a, ~~a
- Arithmetic literals \(t_{1} \prec t_{2}\) where
- \(t_{1}\) and \(t_{2}\) are terms

■ \(\prec\) is a comparison symbol
eg \(3<1\) or \(f(42)=X\)
\(\square\) Conditional literals \(/: \mathbf{L}\)
\[
\begin{aligned}
& s_{1} \prec 1 \alpha\left\{\boldsymbol{t}_{1}: L_{1} ; \ldots ; t_{n}: L_{n}\right\} \prec_{2} s_{2} \\
& a, \sim a, \sim \sim a
\end{aligned}
\]

Torsten Schaub (KRR@UP)

\section*{Terms and literals}
- Terms \(t\)
- Tuples \(\boldsymbol{t}, \boldsymbol{L}\) of literals
- Atoms a, \(\neg a, \perp, \top\)
- Symbolic literals a, ~a, ~~a
- Arithmetic literals \(t_{1} \prec t_{2}\)
- Conditional literals l: L where

■ I is a symbolic or arithmetic literal
- \(L\) is a tuple of symbol or arithmetic literals
\[
\begin{aligned}
& s_{1} \prec_{1} \alpha\left\{\boldsymbol{t}_{1}: \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{n}: \boldsymbol{L}_{n}\right\} \prec_{2} s_{2} \\
& a, \sim a, \sim \sim a
\end{aligned}
\]

\section*{Terms and literals}
- Terms \(t\)
- Tuples \(\boldsymbol{t}, \boldsymbol{L}\)
- Atoms a, \(\neg a, \perp, \top\)
- Symbolic literals a, ~a, ~~a
- Arithmetic literals \(t_{1} \prec t_{2}\)
- Conditional literals \(/: L\) where

■ I is a symbolic or arithmetic literal
- \(L\) is a tuple of symbol or arithmetic literals
- \(/: \boldsymbol{L}\) is written as \(/\) whenever \(\boldsymbol{L}\) is empty
\[
\begin{aligned}
& s_{1} \prec_{1} \alpha\left\{\boldsymbol{t}_{1}: \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{n}: \boldsymbol{L}_{n}\right\} \prec_{2} s_{2} \\
& a, \sim a, \sim \sim a
\end{aligned}
\]

Torsten Schaub (KRR@UP)

\section*{Terms and literals}
- Terms \(t\)
- Tuples \(\boldsymbol{t}, \boldsymbol{L}\)
- Atoms a, \(\neg a, \perp\), \(\top\)
- Symbolic literals a, ~a, ~~a
- Arithmetic literals \(t_{1} \prec t_{2}\)
- Conditional literals l: \(\mathbf{L}\) where

■ / is a symbolic or arithmetic literal
- \(L\) is a tuple of symbol or arithmetic literals eg 'p(X,Y):q(X),r(Y)' or p(42) or '\#false:q'
\[
\begin{aligned}
& s_{1} \prec_{1} \alpha\left\{\boldsymbol{t}_{1}: \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{n}: \boldsymbol{L}_{n}\right\} \prec_{2} s_{2} \\
& a, \sim a, \sim \sim a
\end{aligned}
\]

\section*{Terms and literals}
- Terms \(t\)
- Tuples \(\boldsymbol{t}, \boldsymbol{L}\)
- Atoms a, ᄀa, \(\perp\), T
- Symbolic literals a, ~a, ~~a
- Arithmetic literals \(t_{1} \prec t_{2}\)
- Conditional literals I: L
- Aggregate atoms \(s_{1} \prec_{1} \alpha\left\{\boldsymbol{t}_{1}: \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{n}: \boldsymbol{L}_{n}\right\} \prec_{2} s_{2}\) where
- \(\alpha\) is an aggregate name
- \(\boldsymbol{t}_{1}: \boldsymbol{L}_{1}, \ldots, \boldsymbol{t}_{\boldsymbol{n}}: \boldsymbol{L}_{\boldsymbol{n}}\) are conditional literals
- \(\prec_{1}\) and \(\prec_{2}\) are comparison symbols
- \(s_{1}\) and \(s_{2}\) are terms
\[
a, \sim a, \sim \sim a
\]

\section*{Terms and literals}
- Terms \(t\)
- Tuples \(\boldsymbol{t}, \boldsymbol{L}\)
- Atoms a, \(\neg a, \perp, \top\)
- Symbolic literals a, ~a, ~~a
- Arithmetic literals \(t_{1} \prec t_{2}\)
- Conditional literals /: L
- Aggregate atoms \(s_{1} \prec_{1} \alpha\left\{\boldsymbol{t}_{1}: \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{n}: \boldsymbol{L}_{n}\right\} \prec_{2} s_{2}\) where
- \(\alpha\) is an aggregate name
- \(\boldsymbol{t}_{1}: \boldsymbol{L}_{1}, \ldots, \boldsymbol{t}_{\boldsymbol{n}}: \boldsymbol{L}_{\boldsymbol{n}}\) are conditional literals
- \(\prec_{1}\) and \(\prec_{2}\) are comparison symbols
- \(s_{1}\) and \(s_{2}\) are terms
- one (or both) of ' \(s_{1} \prec_{1}\) ' and ' \(\prec_{2} s_{2}\) ' can be omitted
\[
a, \sim a, \sim \sim a
\]

\section*{Terms and literals}
- Terms \(t\)
- Tuples \(\boldsymbol{t}, \boldsymbol{L}\)
- Atoms a, ᄀa, \(\perp\), T
- Symbolic literals a, ~a, ~~a
- Arithmetic literals \(t_{1} \prec t_{2}\)
- Conditional literals \(/: \mathbf{L}\)
- Aggregate atoms \(s_{1} \prec_{1} \alpha\left\{\boldsymbol{t}_{1}: \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{n}: \boldsymbol{L}_{n}\right\} \nprec_{2} s_{2}\) where
- \(\alpha\) is an aggregate name
- \(\boldsymbol{t}_{1}: \boldsymbol{L}_{1}, \ldots, \boldsymbol{t}_{\boldsymbol{n}}: \boldsymbol{L}_{\boldsymbol{n}}\) are conditional literals
- \(\prec_{1}\) and \(\prec_{2}\) are comparison symbols
- \(s_{1}\) and \(s_{2}\) are terms
- omitting \(\prec_{1}\) or \(\prec_{2}\) defaults to \(\leq\)
\[
a, \sim a, \sim \sim a
\]
are conditional or aggregate literals

\section*{Terms and literals}
- Terms \(t\)
- Tuples \(\boldsymbol{t}, \boldsymbol{L}\)
- Atoms a, ᄀa, \(\perp\), \(\top\)
- Symbolic literals a, ~a, ~~a
- Arithmetic literals \(t_{1} \prec t_{2}\)
- Conditional literals l: \(\boldsymbol{L}\)
- Aggregate atoms \(s_{1} \prec_{1} \alpha\left\{\boldsymbol{t}_{1}: \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{n}: \boldsymbol{L}_{n}\right\} \prec_{2} s_{2}\) where
- \(\alpha\) is an aggregate name
- \(\boldsymbol{t}_{1}: \boldsymbol{L}_{1}, \ldots, \boldsymbol{t}_{\boldsymbol{n}}: \boldsymbol{L}_{\boldsymbol{n}}\) are conditional literals
- \(\prec_{1}\) and \(\prec_{2}\) are comparison symbols
- \(s_{1}\) and \(s_{2}\) are terms
eg \(10<=\#\) sum \(\{6, C\) : course (C); 3, S: seminar \((S)\}<=20\)
a, ~a, ~~a
are conditional or aggregate literals

\section*{Terms and literals}
- Terms \(t\)
- Tuples \(\boldsymbol{t}, \boldsymbol{L}\)
- Atoms a, ᄀa, \(\perp\), \(\top\)
- Symbolic literals a, ~a, ~~a
- Arithmetic literals \(t_{1} \prec t_{2}\)

■ Conditional literals l: L
- Aggregate atoms \(s_{1} \prec_{1} \alpha\left\{\boldsymbol{t}_{1}: \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{n}: \boldsymbol{L}_{n}\right\} \prec_{2} s_{2}\) where
- \(\alpha\) is an aggregate name
- \(\boldsymbol{t}_{1}: \boldsymbol{L}_{1}, \ldots, \boldsymbol{t}_{\boldsymbol{n}}: \boldsymbol{L}_{\boldsymbol{n}}\) are conditional literals
- \(\prec_{1}\) and \(\prec_{2}\) are comparison symbols
- \(s_{1}\) and \(s_{2}\) are terms
eg 10 \#sum \(\{6, C\) :course (C); 3, S: seminar (S) \(\} 20\)
\(a, \sim a, \sim \sim a\)
are conditional or aggregate literals

\section*{Terms and literals}
- Terms \(t\)
- Tuples \(\boldsymbol{t}, \boldsymbol{L}\)
- Atoms a, ᄀa, \(\perp\), T
- Symbolic literals a, ~a, ~~a
- Arithmetic literals \(t_{1} \prec t_{2}\)
- Conditional literals I: L
- Aggregate atoms \(s_{1} \prec_{1} \alpha\left\{\boldsymbol{t}_{1}: \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{n}: \boldsymbol{L}_{n}\right\} \prec_{2} s_{2}\)
- Aggregate literals \(a, \sim a, \sim \sim a\) where
- a is an aggregate atom
- Literals are conditional or aggregate literals

\section*{Terms and literals}
- Terms \(t\)
- Tuples \(\boldsymbol{t}, \boldsymbol{L}\)
- Atoms a, \(\neg a, \perp\), \(\top\)
- Symbolic literals a, ~a, ~~a
- Arithmetic literals \(t_{1} \prec t_{2}\)
- Conditional literals I: L
- Aggregate atoms \(s_{1} \prec_{1} \alpha\left\{\boldsymbol{t}_{1}: \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{n}: \boldsymbol{L}_{n}\right\} \prec_{2} s_{2}\)
- Aggregate literals \(a, \sim a, \sim \sim a\) where
- a is an aggregate atom
eg not 10 \#sum \(\{6, C\) : course (C); 3, S: seminar(S) 20
are conditional or aggregate literals

\section*{Terms and literals}
- Terms \(t\)
- Tuples \(\boldsymbol{t}, \boldsymbol{L}\)
- Atoms a, \(\neg a, \perp, \top\)
- Symbolic literals a, ~a, ~~a
- Arithmetic literals \(t_{1} \prec t_{2}\)
- Conditional literals /: L

■ Aggregate atoms \(s_{1} \prec_{1} \alpha\left\{\boldsymbol{t}_{1}: \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{n}: \boldsymbol{L}_{n}\right\} \nprec_{2} s_{2}\)
- Aggregate literals \(a, \sim a, \sim \sim a\)
- Literals are conditional or aggregate literals

\section*{Terms and literals}
- Terms \(t\)
- Tuples \(\boldsymbol{t}, \boldsymbol{L}\)
- Atoms a, \(\neg a, \perp, \top\)
- Symbolic literals a, ~a, ~~a
- Arithmetic literals \(t_{1} \prec t_{2}\)
- Conditional literals /: L
- Aggregate atoms \(s_{1} \prec_{1} \alpha\left\{\boldsymbol{t}_{1}: \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{n}: \boldsymbol{L}_{n}\right\} \prec \prec_{2} s_{2}\)
- Aggregate literals \(a, \sim a, \sim \sim a\)
- Literals are conditional or aggregate literals
- For a detailed account please consult the user's guide!

\section*{Rules}
- Rules are of the form
\[
\begin{equation*}
I_{1} ; \ldots ; I_{m} \leftarrow I_{m+1}, \ldots, I_{n} \tag{2}
\end{equation*}
\]
where
- \(l_{i}\) is a conditional literal for \(1 \leq i \leq m\) and
- \(l_{i}\) is a literal for \(m+1 \leq i \leq n\)
- Note Semicolons ';' must be used in (2) instead of commas ',' whenever some \(I_{i}\) is a (genuine) conditional literal for \(1 \leq i \leq n\)
\[
a(X):-b(X): c(X), d(X) ; e(x) .
\]

\section*{Rules}
- Rules are of the form
\[
\begin{equation*}
I_{1} ; \ldots ; I_{m} \leftarrow I_{m+1}, \ldots, I_{n} \tag{2}
\end{equation*}
\]
where
- \(I_{i}\) is a conditional literal for \(1 \leq i \leq m\) and
- \(l_{i}\) is a literal for \(m+1 \leq i \leq n\)
- Note Semicolons ';' must be used in (2) instead of commas ',' whenever some \(l_{i}\) is a (genuine) conditional literal for \(1 \leq i \leq n\)
\[
a(X):-b(X): c(X), d(X) ; e(x) .
\]

\section*{Rules}
- Rules are of the form
\[
\begin{equation*}
I_{1} ; \ldots ; I_{m} \leftarrow I_{m+1}, \ldots, I_{n} \tag{2}
\end{equation*}
\]
where
- \(I_{i}\) is a conditional literal for \(1 \leq i \leq m\) and
- \(l_{i}\) is a literal for \(m+1 \leq i \leq n\)

■ Note Semicolons ';' must be used in (2) instead of commas ',' whenever some \(I_{i}\) is a (genuine) conditional literal for \(1 \leq i \leq n\)
- Example \(a(X)\) :- \(b(X): c(X), d(X) ; e(x)\).

\section*{Shortcuts}
- A rule of the form
\[
s_{1} \prec{ }_{1} \alpha\left\{\boldsymbol{t}_{1}: I_{1}: \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{k}: I_{k}: \boldsymbol{L}_{k}\right\} \prec \prec_{2} s_{2} \leftarrow I_{m+1}, \ldots, I_{n}
\]
where
- \(\alpha, \prec_{i}, s_{i}, \boldsymbol{t}_{j}\) are as given above for \(i=1,2\) and \(1 \leq j \leq k\)
- \(l_{j}: \boldsymbol{L}_{j}\) is a conditional literal for \(1 \leq j \leq k\)
- \(l_{i}\) is a literal for \(m+1 \leq i \leq n\) (as in (2))
is a shorthand for the following \(k+1\) rules
\[
\begin{aligned}
\left\{I_{j}\right\} & \leftarrow I_{m+1}, \ldots, I_{n}, \boldsymbol{L}_{j} \quad \text { for } 1 \leq j \leq k \\
& \leftarrow I_{m+1}, \ldots, I_{n}, \sim s_{1} \prec_{1} \alpha\left\{\boldsymbol{t}_{1}: I_{1}, \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{k}: I_{k}, \boldsymbol{L}_{k}\right\} \prec_{2} s_{2}
\end{aligned}
\]
\[
10<\# \operatorname{sum}\{C, X, Y: \operatorname{edge}(X, Y): \operatorname{cost}(X, Y, C)\} .
\]

\section*{Shortcuts}
- A rule of the form
\[
s_{1} \prec{ }_{1} \alpha\left\{\boldsymbol{t}_{1}: I_{1}: \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{k}: I_{k}: \boldsymbol{L}_{k}\right\} \prec \prec_{2} s_{2} \leftarrow I_{m+1}, \ldots, I_{n}
\]
where
- \(\alpha, \prec_{i}, s_{i}, \boldsymbol{t}_{j}\) are as given above for \(i=1,2\) and \(1 \leq j \leq k\)
- \(l_{j}: \boldsymbol{L}_{j}\) is a conditional literal for \(1 \leq j \leq k\)
- \(l_{i}\) is a literal for \(m+1 \leq i \leq n\) (as in (2))
is a shorthand for the following \(k+1\) rules
\[
\begin{aligned}
\left\{I_{j}\right\} & \leftarrow I_{m+1}, \ldots, I_{n}, \boldsymbol{L}_{j} \quad \text { for } 1 \leq j \leq k \\
& \leftarrow I_{m+1}, \ldots, I_{n}, \sim s_{1} \prec_{1} \alpha\left\{\boldsymbol{t}_{1}: I_{1}, \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{k}: I_{k}, \boldsymbol{L}_{k}\right\} \prec_{2} s_{2}
\end{aligned}
\]
\(10<\#\) mum \(\{\mathrm{C}, \mathrm{X}, \mathrm{Y}\) : edge \((\mathrm{X}, \mathrm{Y})\)

\section*{Shortcuts}
- A rule of the form
\[
s_{1} \prec{ }_{1} \alpha\left\{\boldsymbol{t}_{1}: I_{1}: \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{k}: I_{k}: \boldsymbol{L}_{k}\right\} \prec \prec_{2} s_{2} \leftarrow I_{m+1}, \ldots, I_{n}
\]
where
- \(\alpha, \prec_{i}, s_{i}, \boldsymbol{t}_{j}\) are as given above for \(i=1,2\) and \(1 \leq j \leq k\)
- \(l_{j}: \boldsymbol{L}_{j}\) is a conditional literal for \(1 \leq j \leq k\)
- \(l_{i}\) is a literal for \(m+1 \leq i \leq n\) (as in (2))
is a shorthand for the following \(k+1\) rules
\[
\begin{aligned}
\left\{I_{j}\right\} & \leftarrow I_{m+1}, \ldots, I_{n}, \boldsymbol{L}_{j} \quad \text { for } 1 \leq j \leq k \\
& \leftarrow I_{m+1}, \ldots, I_{n}, \sim s_{1} \prec_{1} \alpha\left\{\boldsymbol{t}_{1}: I_{1}, \boldsymbol{L}_{1} ; \ldots ; \boldsymbol{t}_{k}: I_{k}, \boldsymbol{L}_{k}\right\} \prec_{2} s_{2}
\end{aligned}
\]
- Example \(10<\#\) sum \(\{\mathrm{C}, \mathrm{X}, \mathrm{Y}: \operatorname{edge}(\mathrm{X}, \mathrm{Y}): \operatorname{cost}(\mathrm{X}, \mathrm{Y}, \mathrm{C})\}\).

\section*{Shortcuts}
- The expression
\[
s_{1}\left\{I_{1}: \boldsymbol{L}_{1} ; \ldots ; I_{k}: \boldsymbol{L}_{k}\right\} s_{2}
\]
is a shortcut for
- \(s_{1} \leq \operatorname{count}\left\{t_{1}: I_{1}: \boldsymbol{L}_{1} ; \ldots ; t_{k}: I_{k}: \boldsymbol{L}_{k}\right\} \leq s_{2}\)
if it appears in the head of a rule and
- \(s_{1} \leq \operatorname{count}\left\{t_{1}: I_{1}, \boldsymbol{L}_{1} ; \ldots ; t_{k}: I_{k}, \boldsymbol{L}_{k}\right\} \leq s_{2}\)
if it appears in the body of a rule
where \(t_{i} \neq t_{j}\) whenever \(L_{i} \neq L_{j}\) for \(i \neq j\) and \(1 \leq i, j \leq k\)
one (or both) of \(s_{1}\) and \(s_{2}\) can be omitted

\section*{Shortcuts}
- The expression
\[
s_{1}\left\{I_{1}: \boldsymbol{L}_{1} ; \ldots ; I_{k}: \boldsymbol{L}_{k}\right\} s_{2}
\]
is a shortcut for
- \(s_{1} \leq \operatorname{count}\left\{t_{1}: I_{1}: \boldsymbol{L}_{1} ; \ldots ; t_{k}: I_{k}: \boldsymbol{L}_{k}\right\} \leq s_{2}\)
if it appears in the head of a rule and
- \(s_{1} \leq \operatorname{count}\left\{t_{1}: I_{1}, \boldsymbol{L}_{1} ; \ldots ; t_{k}: I_{k}, \boldsymbol{L}_{k}\right\} \leq s_{2}\)
if it appears in the body of a rule
where \(t_{i} \neq t_{j}\) whenever \(L_{i} \neq L_{j}\) for \(i \neq j\) and \(1 \leq i, j \leq k\)
- Note one (or both) of \(s_{1}\) and \(s_{2}\) can be omitted

\section*{Examples}
```

= $\{\mathrm{a} ; \mathrm{b}\}$
\$ gringo --text < (echo "\{a;b\}.")
\#count $\{1,0, a: a ; 1,0, b: b\}$.
gringo generates two distinct term tuples 1,0,a and 1,0, b
$1=\{q(X, Y): p(X), p(Y), X<Y ; q(X, X): p(X)\}$

```

\section*{Examples}
- \(\{\mathrm{a} ; \mathrm{b}\}\)
\$ gringo --text < (echo "\{a;b\}.") \#count \(\{1,0, a: a ; 1,0, b: b\}\).
gringo generates two distinct term tuples 1,0,a and 1,0, b
\(1=\{q(X, Y): p(X), p(Y), X<Y ; q(X, X): p(X)\}\)

\section*{Examples}
- \(\{\mathrm{a} ; \mathrm{b}\}\)
\$ gringo --text < (echo "\{a;b\}.") \#count \(\{1,0, \mathrm{a}: \mathrm{a} ; 1,0, \mathrm{~b}: \mathrm{b}\}\).
gringo generates two distinct term tuples 1,0, a and 1,0,b
\(1=\{q(X, Y): p(X), p(Y), X<Y ; q(X, X): p(X)\}\)

\section*{Examples}
- \(\{\mathrm{a} ; \mathrm{b}\}\)
\$ gringo --text <(echo "\{a;b\}.") \#count \(\{1,0, \mathrm{a}: \mathrm{a} ; 1,0, \mathrm{~b}: \mathrm{b}\}\).
gringo generates two distinct term tuples 1,0,a and 1,0,b
\(1=\{q(X, Y): p(X), p(Y), X<Y ; q(X, X): p(X)\}\)

\section*{Examples}
- \(\{\mathrm{a} ; \mathrm{b}\}\)
\$ gringo --text <(echo "\{a;b\}.") \#count \(\{1,0, \mathrm{a}: \mathrm{a} ; 1,0, \mathrm{~b}: \mathrm{b}\}\).
gringo generates two distinct term tuples 1,0,a and 1,0,b
- \(1=\{q(X, Y): p(X), p(Y), X<Y ; q(X, X): p(X)\}\)

\section*{Weak constraints}
- Syntax A weak constraint is of the form
\[
: \sim I_{1}, \ldots, I_{n} \cdot\left[w @ p, t_{1}, \ldots, t_{m}\right]
\]
where
- \(I_{1}, \ldots, I_{n}\) are literals
- \(t_{1}, \ldots, t_{m}, w\), and \(p\) are terms
- \(w\) and \(p\) stand for a weight and priority level ( \(p=0\) if ' \(@ p\) ' is omitted)

The weak constraint
:~hd (I, P, C). [CO2, I]
amounts to the minimize statement
\#minimize\{ C@2, I : hd (I, P, C) \}.

\section*{Weak constraints}
- Syntax A weak constraint is of the form
\[
: \sim I_{1}, \ldots, I_{n} \cdot\left[w @ p, t_{1}, \ldots, t_{m}\right]
\]
where
- \(I_{1}, \ldots, I_{n}\) are literals
- \(t_{1}, \ldots, t_{m}, w\), and \(p\) are terms
- \(w\) and \(p\) stand for a weight and priority level ( \(p=0\) if ' \(@\) ' ' is omitted)
- Example The weak constraint
\(: \sim h(I, P, C) .[C @ 2, I]\)
amounts to the minimize statement
\#minimize\{ C@2,I : hd(I,P,C) \}.

\section*{Weak constraints}
- Syntax A weak constraint is of the form
\[
: \sim I_{1}, \ldots, I_{n} \cdot\left[w @ p, t_{1}, \ldots, t_{m}\right]
\]
where
- \(I_{1}, \ldots, I_{n}\) are literals
- \(t_{1}, \ldots, t_{m}, w\), and \(p\) are terms
- \(w\) and \(p\) stand for a weight and priority level ( \(p=0\) if ' @ \(p\) ' is omitted)
- Example The weak constraint
:~hd (I, P , C). [C@2, I]
amounts to the minimize statement
\#minimize\{ C@2,I : hd (I, P,C) \}.

\section*{Weak constraints}
- Syntax A weak constraint is of the form
\[
: \sim I_{1}, \ldots, I_{n} \cdot\left[w @ p, t_{1}, \ldots, t_{m}\right]
\]
where
- \(I_{1}, \ldots, I_{n}\) are literals
- \(t_{1}, \ldots, t_{m}, w\), and \(p\) are terms
- \(w\) and \(p\) stand for a weight and priority level ( \(p=0\) if ' @ \(p\) ' is omitted)
- Example The weak constraint
\[
: \sim \mathrm{hd}(\mathrm{I}, \mathrm{P}, \mathrm{C}) .[\mathrm{C@} 2, \mathrm{I}]
\]
amounts to the minimize statement
```

\#minimize{ C@2,I : hd(I,P,C) }.

```

\section*{Some more directives}
- Output
\#show. \#show p/n. \#show \(t: I_{1}, \ldots, I_{n}\).
- Projection
\[
\text { \#project p/n. \#project a : } I_{1}, \ldots, I_{n} \text {. }
\]

Heuristics
\#heuristic a : \(I_{1}, \ldots, I_{n}\). [k@p,m]
Acyclicity
```

\#edge (u,v) : / / , ..., /n.

```

Torsten Schaub (KRR@UP)

\section*{Some more directives}
- Output
\#show. \#show p/n. \#show \(t: I_{1}, \ldots, I_{n}\).
- Projection
\#project p/n. \#project a : \(l_{1}, \ldots, I_{n}\).
- Heuristics
\#heuristic a : \(I_{1}, \ldots, I_{n} .[k @ p, m]\)
Acyclicity
\#edge \((u, v): \iota_{1}, \ldots, \iota_{n}\).

Torsten Schaub (KRR@UP)

\section*{Some more directives}
- Output
\#show. \#show p/n. \#show \(t: l_{1}, \ldots, I_{n}\).
- Projection
\#project \(p / n\). \#project a : \(l_{1}, \ldots, l_{n}\).
- Heuristics
\#heuristic a : \(I_{1}, \ldots, I_{n}\). \([k @ p, m]\)
Acyclicity
\#edge \((u, v): l_{1}, \ldots, I_{n}\).

Torsten Schaub (KRR@UP)

\section*{Some more directives}
- Output
\#show. \#show \(p / n\). \#show \(t: I_{1}, \ldots, I_{n}\).
- Projection
\[
\text { \#project p/n. \#project a : } l_{1}, \ldots, I_{n} \text {. }
\]
- Heuristics
\[
\text { \#heuristic a : } l_{1}, \ldots, I_{n} .[k @ p, m]
\]
- Acyclicity
\[
\text { \#edge }(u, v): l_{1}, \ldots, I_{n} .
\]

\section*{gringo 3 versus 4/5}
- The input language of gringo series \(4 / 5\) comprises
- ASP-Core-2
- concepts from Iparse and gringo 3
- Example The gringo 3 rule
\(\square r(X): p(X): n o t q(X):-r(X): p(X): \operatorname{not} q(X)\), 1 \{ \(r(X): p(X):\) not \(q(X)\}\).
can be written as foilows in the language of gringo 4/5:
\(r(X): p(X)\), not \(q(X):-r(X): p(X)\), not \(q(X)\);

Directives \#compute, \#domain, and \#hide are discontinued

The languages of gringo 3 and \(4 / 5\) are not fully compatible Many example programs in the literature are written for gringo 3
\#Potassco

\section*{gringo 3 versus 4/5}
- The input language of gringo series \(4 / 5\) comprises
- ASP-Core-2
- concepts from Iparse and gringo 3
- Example The gringo 3 rule
- \(r(X): p(X): \operatorname{not} q(X):-r(X): p(X): \operatorname{not} q(X)\), 1 \{ \(r(X): p(X): \operatorname{not} q(X)\}\).
can be written as follows in the language of gringo 4/5:
-r(X) : p(X), not \(q(X):-r(X): p(X)\), not \(q(X)\);
Directives \#compute, \#domain, and \#hide are discontinued

The languages of gringo 3 and \(4 / 5\) are not fully compatible Many example programs in the literature are written for gringo 3
\# Potassco

\section*{gringo 3 versus 4/5}
- The input language of gringo series \(4 / 5\) comprises
- ASP-Core-2
- concepts from lparse and gringo 3
- Example The gringo 3 rule
- \(r(X): p(X): \operatorname{not} q(X):-r(X): p(X): \operatorname{not} q(X)\), 1 \{ \(r(X): p(X): \operatorname{not} q(X)\}\).
can be written as follows in the language of gringo 4/5:
- \(r(X): p(X)\), not \(q(X):-r(X): p(X)\), not \(q(X)\); \(1<=\#\) count \(\{1, r(X): r(X), p(X)\), not \(q(X)\}\).
Directives \#compute, \#domain, and \#hide are discontinued

The languages of gringo 3 and \(4 / 5\) are not fully compatible Many example programs in the literature are written for gringo 3

\section*{gringo 3 versus 4/5}
- The input language of gringo series \(4 / 5\) comprises
- ASP-Core-2
- concepts from lparse and gringo 3
- Example The gringo 3 rule
- \(r(X): p(X): \operatorname{not} q(X):-r(X): p(X): \operatorname{not} q(X)\), 1 \{ \(r(X): p(X): \operatorname{not} q(X)\}\).
can be written as follows in the language of gringo 4/5:
- \(r(X): p(X), \operatorname{not} q(X):-r(X): p(X), \operatorname{not} q(X)\); 1 \{ \(r(X): p(X), \operatorname{not} q(X)\}\).
Directives \#compute, \#domain, and \#hide are discontinued
- The languages of gringo 3 and \(4 / 5\) are not fully compatible - Many example programs in the literature are written for gringo 3

\section*{gringo 3 versus 4/5}
- The input language of gringo series \(4 / 5\) comprises
- ASP-Core-2
- concepts from lparse and gringo 3
- Example The gringo 3 rule
- \(r(X): p(X): \operatorname{not} q(X):-r(X): p(X): \operatorname{not} q(X)\), 1 \{ \(r(X): p(X): \operatorname{not} q(X)\}\).
can be written as follows in the language of gringo 4/5:
- \(r(X): p(X), \operatorname{not} q(X):-r(X): p(X)\), not \(q(X)\); 1 \{ \(r(X): p(X)\), not \(q(X)\}\).
■ Note Directives \#compute, \#domain, and \#hide are discontinued
- The languages of gringo 3 and \(4 / 5\) are not fully compatible
- Many example programs in the literature are written for gringo 3

\section*{gringo 3 versus 4/5}
- The input language of gringo series \(4 / 5\) comprises
- ASP-Core-2
- concepts from lparse and gringo 3
- Example The gringo 3 rule
- \(r(X): p(X): \operatorname{not} q(X):-r(X): p(X): n o t q(X)\), 1 \{ \(r(X): p(X): \operatorname{not} q(X)\}\).
can be written as follows in the language of gringo 4/5:
- \(r(X): p(X), \operatorname{not} q(X):-r(X): p(X)\), not \(q(X)\); 1 \{ \(r(X): p(X)\), not \(q(X)\}\).
■ Note Directives \#compute, \#domain, and \#hide are discontinued
- Attention
- The languages of gringo 3 and \(4 / 5\) are not fully compatible
- Many example programs in the literature are written for gringo 3

\section*{Computational Aspects: Overview}

28 Consequence operator
29 Computation from first principles
30 Complexity

Torsten Schaub (KRR@UP)

\section*{Outline}

\section*{28 Consequence operator \\ 29 Computation from first principles \\ 30 Complexity}

\section*{Consequence operator}
- Let \(P\) be a positive program and \(X\) a set of atoms
- The consequence operator \(T_{P}\) is defined as follows:
\[
T_{P} X=\{h(r) \mid r \in P \text { and } B(r) \subseteq X\}
\]
- Iterated applications of \(T_{P}\) are written as \(T_{P}^{j}\) for \(j \geq 0\), where
\[
\begin{aligned}
& T_{P}^{0} X=X \text { and } \\
& T_{P}^{i} X=T_{P} T_{P}^{i-1} X \text { for } i \geq 1
\end{aligned}
\]
- For any positive program \(P\), we have
\(\square C n(P)=\bigcup_{i>0} T_{p}^{i} \emptyset\)
\(\square X \subseteq Y\) implies \(T_{P} X \subseteq T_{P} Y\)
- \(\operatorname{Cn}(P)\) is the smallest fixpoint of \(T_{P}\)

\section*{Consequence operator}
- Let \(P\) be a positive program and \(X\) a set of atoms
- The consequence operator \(T_{P}\) is defined as follows:
\[
T_{P} X=\{h(r) \mid r \in P \text { and } B(r) \subseteq X\}
\]
- Iterated applications of \(T_{P}\) are written as \(T_{P}^{j}\) for \(j \geq 0\), where
- \(T_{P}^{0} X=X\) and
- \(T_{P}^{i} X=T_{P} T_{P}^{i-1} X\) for \(i \geq 1\)
- For any positive program \(P\), we have
- \(C n(P)=\bigcup_{i \geq 0} T_{P}^{i} \emptyset\)
\(\square X \subseteq Y\) implies \(T_{P} X \subseteq T_{P} Y\)
- \(\operatorname{Cn}(P)\) is the smallest fixpoint of \(T_{P}\)

\section*{Consequence operator}
- Let \(P\) be a positive program and \(X\) a set of atoms
- The consequence operator \(T_{P}\) is defined as follows:
\[
T_{P} X=\{h(r) \mid r \in P \text { and } B(r) \subseteq X\}
\]
- Iterated applications of \(T_{P}\) are written as \(T_{P}^{j}\) for \(j \geq 0\), where
- \(T_{P}^{0} X=X\) and
- \(T_{P}^{i} X=T_{P} T_{P}^{i-1} X\) for \(i \geq 1\)
- For any positive program \(P\), we have
- \(C n(P)=\bigcup_{i \geq 0} T_{p}^{i} \emptyset\)
- \(X \subseteq Y\) implies \(T_{P} X \subseteq T_{P} Y\)
- \(C n(P)\) is the smallest fixpoint of \(T_{P}\)

\section*{An example}
- Consider the program
\[
P=\{p \leftarrow, q \leftarrow, r \leftarrow p, s \leftarrow q, t, t \leftarrow r, u \leftarrow v\}
\]
- We get
\[
\begin{aligned}
& T_{p}^{0} \emptyset=\emptyset \\
& T_{p}^{1} \emptyset=\{p, q\} \quad=T_{p} T_{p}^{0} \emptyset=T_{p} \emptyset \\
& T_{p}^{2} \emptyset=\{p, q, r\}=T_{p} T_{p}^{1} \emptyset=T_{p}\{p, q\} \\
& T_{p}^{3} \emptyset=\{p, q, r, t\}=T_{p} T_{p}^{2} \emptyset=T_{p}\{p, q, r\} \\
& T_{P}^{4} \emptyset=\{p, q, r, t, s\}=T_{P} T_{P}^{3} \emptyset=T_{P}\{p, q, r, t\} \\
& T_{p}^{5} \emptyset=\{p, q, r, t, s\}=T_{p} T_{p}^{4} \emptyset=T_{p}\{p, q, r, t, s\} \\
& T_{p}^{6} \emptyset=\{p, q, r, t, s\}=T_{p} T_{p}^{5} \emptyset=T_{p}\{p, q, r, t, s\}
\end{aligned}
\]
- Cn \((P)=\{p, q, r, t, s\}\) is the smallest fixpoint of \(T_{P}\) because
\(\square T_{p}\{p, q, r, t, s\}=\{p, q, r, t, s\}\) and
- \(T_{p} X \neq X\) for each \(X \subset\{p, q, r, t, s\}\)

\section*{An example}
- Consider the program
\[
P=\{p \leftarrow, q \leftarrow, r \leftarrow p, s \leftarrow q, t, t \leftarrow r, u \leftarrow v\}
\]
- We get
\[
\begin{aligned}
& T_{P}^{0} \emptyset=\emptyset \\
& T_{P}^{1} \emptyset=\{p, q\} \\
& T_{P}^{2} \emptyset=\{p, q, r\}=T_{P} T_{P}^{0} \emptyset=T_{P} \emptyset \\
& T_{P}^{3} \emptyset=\{p, q, r, t\}=T_{P}^{1} \emptyset=T_{P}\{p, q\} \\
& \left.T_{P}^{4} \emptyset=\{p, q, r, t, s\}=T_{P}=T_{P}^{2} \emptyset p, q, r\right\} \\
& T_{P}^{5} \emptyset=\{p, q, r, t, s\}=T_{P}\{p, q, r, t\} \\
& T_{P}^{6} \emptyset=\{p, q, r, t, s\}=T_{P}^{4} T_{P}^{4} \emptyset=T_{P}\{p, q, r, t, s\} \\
& T_{P}^{5} \emptyset=T_{P}\{p, q, r, t, s\}
\end{aligned}
\]
- Cn \((P)=\{p, q, r, t, s\}\) is the smallest fixpoint of \(T_{P}\) because

\section*{An example}
- Consider the program
\[
P=\{p \leftarrow, q \leftarrow, r \leftarrow p, s \leftarrow q, t, t \leftarrow r, u \leftarrow v\}
\]
- We get
\[
\begin{aligned}
& T_{P}^{0} \emptyset=\emptyset \\
& T_{P}^{1} \emptyset=\{p, q\} \\
& T_{P}^{2} \emptyset=\{p, q, r\}=T_{P} T_{P}^{0} \emptyset=T_{P} \emptyset \\
& T_{P}^{3} \emptyset=\{p, q, r, t\}=T_{P}^{1} \emptyset=T_{P}\{p, q\} \\
& \left.T_{P}^{4} \emptyset=\{p, q, r, t, s\}=T_{P}=T_{P}^{3} \emptyset p, q, r\right\} \\
& T_{P}^{5} \emptyset=\{p, q, r, t, s\}=T_{P}\{p, q, r, t\} \\
& T_{P}^{6} \emptyset=\{p, q, r, t, s\}=T_{P}^{4} \emptyset=T_{P}=\{p, q, r, t, s\} \\
& T_{P}^{5} \emptyset=T_{P}\{p, q, r, t, s\}
\end{aligned}
\]
- Cn \((P)=\{p, q, r, t, s\}\) is the smallest fixpoint of \(T_{P}\) because
- \(T_{P}\{p, q, r, t, s\}=\{p, q, r, t, s\}\) and
- \(T_{P} X \neq X\) for each \(X \subset\{p, q, r, t, s\}\)

\section*{Outline}

\section*{28 Consequence operator}

\section*{29 Computation from first principles}

\section*{30 Complexity}

\section*{Approximating stable models}
- First Idea Approximate a stable model \(X\) by two sets of atoms \(L\) and \(U\) such that \(L \subseteq X \subseteq U\)
- \(L\) and \(U\) constitute lower and upper bounds on \(X\)
- \(L\) and \((\mathcal{A} \backslash U)\) describe a three-valued model of the program
```

X\subseteqY implies }\mp@subsup{P}{}{Y}\subseteq\mp@subsup{P}{}{X}\mathrm{ implies Cn(P
Let }X\mathrm{ be a stable model of normal logic program P
If }L\subseteqX, then X\subseteqCn(PL
If X\subseteqU, then Cn(PU})\subseteq
If L\subseteqX\subseteqU, then LUCn(PU})\subseteqX\subseteqU\capCn(P

```

\section*{Approximating stable models}
- First Idea Approximate a stable model \(X\) by two sets of atoms \(L\) and \(U\) such that \(L \subseteq X \subseteq U\)
- \(L\) and \(U\) constitute lower and upper bounds on \(X\)
- \(L\) and \((\mathcal{A} \backslash U)\) describe a three-valued model of the program
- Observation
```

X\subseteqY implies }\mp@subsup{P}{}{Y}\subseteq\mp@subsup{P}{}{X}\mathrm{ implies Cn(P
Let }X\mathrm{ be a stable model of normal logic program P
If L\subseteqX, then X\subseteqCn(PL)
If X\subseteqU, then Cn(PU})\subseteq
If L\subseteqX\subseteqU, then LUCn(PU})\subseteqX\subseteqU\capCn(PL

```

\section*{Approximating stable models}
- First Idea Approximate a stable model \(X\) by two sets of atoms \(L\) and \(U\) such that \(L \subseteq X \subseteq U\)
- \(L\) and \(U\) constitute lower and upper bounds on \(X\)
- \(L\) and \((\mathcal{A} \backslash U)\) describe a three-valued model of the program
- Observation
\[
X \subseteq Y \text { implies } P^{Y} \subseteq P^{X} \text { implies } C n\left(P^{Y}\right) \subseteq C n\left(P^{X}\right)
\]
- Properties Let \(X\) be a stable model of normal logic program \(P\)
```

- If L\subseteqX, then X\subseteqCn(PL}
If X\subseteqU, then Cn(PU})\subseteq

```


\section*{Approximating stable models}
- First Idea Approximate a stable model \(X\) by two sets of atoms \(L\) and \(U\) such that \(L \subseteq X \subseteq U\)
- \(L\) and \(U\) constitute lower and upper bounds on \(X\)
- \(L\) and \((\mathcal{A} \backslash U)\) describe a three-valued model of the program
- Observation
\[
X \subseteq Y \text { implies } P^{Y} \subseteq P^{X} \text { implies } \operatorname{Cn}\left(P^{Y}\right) \subseteq \operatorname{Cn}\left(P^{X}\right)
\]
- Properties Let \(X\) be a stable model of normal logic program \(P\)
- If \(L \subseteq X\), then \(X \subseteq C n\left(P^{L}\right)\)

If \(X \subseteq U\), then \(C n\left(P^{U}\right) \subseteq X\)
If \(L \subseteq X \subseteq U\), then \(L \cup C n\left(P^{U}\right) \subseteq X \subseteq U \cap C n\left(P^{L}\right)\)

\section*{Approximating stable models}
- First Idea Approximate a stable model \(X\) by two sets of atoms \(L\) and \(U\) such that \(L \subseteq X \subseteq U\)
- \(L\) and \(U\) constitute lower and upper bounds on \(X\)
- \(L\) and \((\mathcal{A} \backslash U)\) describe a three-valued model of the program
- Observation
\[
X \subseteq Y \text { implies } P^{Y} \subseteq P^{X} \text { implies } C n\left(P^{Y}\right) \subseteq C n\left(P^{X}\right)
\]
- Properties Let \(X\) be a stable model of normal logic program \(P\)
- If \(L \subseteq X\), then \(X \subseteq C n\left(P^{L}\right)\)
- If \(X \subseteq U\), then \(C n\left(P^{U}\right) \subseteq X\)

If \(L \subseteq X \subseteq U\), then \(L \cup C n\left(P^{U}\right) \subseteq X \subseteq U \cap C n\left(P^{L}\right)\)

\section*{Approximating stable models}
- First Idea Approximate a stable model \(X\) by two sets of atoms \(L\) and \(U\) such that \(L \subseteq X \subseteq U\)
- \(L\) and \(U\) constitute lower and upper bounds on \(X\)
- \(L\) and \((\mathcal{A} \backslash U)\) describe a three-valued model of the program
- Observation
\[
X \subseteq Y \text { implies } P^{Y} \subseteq P^{X} \text { implies } C n\left(P^{Y}\right) \subseteq C n\left(P^{X}\right)
\]
- Properties Let \(X\) be a stable model of normal logic program \(P\)
- If \(L \subseteq X\), then \(X \subseteq C n\left(P^{L}\right)\)
- If \(X \subseteq U\), then \(C n\left(P^{U}\right) \subseteq X\)

If \(L \subseteq X \subseteq U\), then \(L \cup C n\left(P^{U}\right) \subseteq X \subseteq U \cap C n\left(P^{L}\right)\)

\section*{Approximating stable models}
- First Idea Approximate a stable model \(X\) by two sets of atoms \(L\) and \(U\) such that \(L \subseteq X \subseteq U\)
- \(L\) and \(U\) constitute lower and upper bounds on \(X\)
- \(L\) and \((\mathcal{A} \backslash U)\) describe a three-valued model of the program
- Observation
\[
X \subseteq Y \text { implies } P^{Y} \subseteq P^{X} \text { implies } C n\left(P^{Y}\right) \subseteq C n\left(P^{X}\right)
\]
- Properties Let \(X\) be a stable model of normal logic program \(P\)
- If \(L \subseteq X\), then \(X \subseteq C n\left(P^{L}\right)\)
- If \(X \subseteq U\), then \(\operatorname{Cn}\left(P^{U}\right) \subseteq X\)

If \(L \subseteq X \subseteq U\), then \(L \cup C n\left(P^{U}\right) \subseteq X \subseteq U \cap C n\left(P^{L}\right)\)

\section*{Approximating stable models}
- First Idea Approximate a stable model \(X\) by two sets of atoms \(L\) and \(U\) such that \(L \subseteq X \subseteq U\)
- \(L\) and \(U\) constitute lower and upper bounds on \(X\)
- \(L\) and \((\mathcal{A} \backslash U)\) describe a three-valued model of the program
- Observation
\[
X \subseteq Y \text { implies } P^{Y} \subseteq P^{X} \text { implies } C n\left(P^{Y}\right) \subseteq C n\left(P^{X}\right)
\]
- Properties Let \(X\) be a stable model of normal logic program \(P\)
- If \(L \subseteq X\), then \(X \subseteq C n\left(P^{L}\right)\)
- If \(X \subseteq U\), then \(\operatorname{Cn}\left(P^{U}\right) \subseteq X\)
- If \(L \subseteq X \subseteq U\), then \(L \cup C n\left(P^{U}\right) \subseteq X \subseteq U \cap C n\left(P^{L}\right)\)

\section*{Approximating stable models}
- First Idea Approximate a stable model \(X\) by two sets of atoms \(L\) and \(U\) such that \(L \subseteq X \subseteq U\)
- \(L\) and \(U\) constitute lower and upper bounds on \(X\)
- \(L\) and \((\mathcal{A} \backslash U)\) describe a three-valued model of the program
- Observation
\[
X \subseteq Y \text { implies } P^{Y} \subseteq P^{X} \text { implies } C n\left(P^{Y}\right) \subseteq C n\left(P^{X}\right)
\]
- Properties Let \(X\) be a stable model of normal logic program \(P\)
- If \(L \subseteq X\), then \(X \subseteq C n\left(P^{L}\right)\)
- If \(X \subseteq U\), then \(\operatorname{Cn}\left(P^{U}\right) \subseteq X\)
- If \(L \subseteq X \subseteq U\), then \(L \cup C n\left(P^{U}\right) \subseteq X \subseteq U \cap \operatorname{Cn}\left(P^{L}\right)\)

\section*{Approximating stable models}
- Second Idea
repeat
replace \(L\) by \(L \cup C n\left(P^{U}\right)\)
replace \(U\) by \(U \cap C n\left(P^{L}\right)\)
until \(L\) and \(U\) do not change anymore
```

- At each iteration step
L L becomes larger (or equal)
 - U becomes smaller (or equal)
_}L\subseteqX\subseteqU\mathrm{ is invariant for every stable model X of P
If L\&\subseteqU, then P has no stable model
If }L=U\mathrm{ , then }L\mathrm{ is a stable model of }

```

\section*{Approximating stable models}
- Second Idea
repeat
replace \(L\) by \(L \cup C n\left(P^{U}\right)\)
replace \(U\) by \(U \cap C n\left(P^{L}\right)\)
until \(L\) and \(U\) do not change anymore
■ Observations
- At each iteration step
- \(L\) becomes larger (or equal)
- U becomes smaller (or equal)
- \(L \subseteq X \subseteq U\) is invariant for every stable model \(X\) of \(P\)
- If \(L \nsubseteq U\), then \(P\) has no stable model
- If \(L=U\), then \(L\) is a stable model of \(P\)

Torsten Schaub (KRR@UP)

\section*{Approximating stable models}
- Second Idea
repeat
replace \(L\) by \(L \cup C n\left(P^{U}\right)\)
replace \(U\) by \(U \cap C n\left(P^{L}\right)\)
until \(L\) and \(U\) do not change anymore
■ Observations
- At each iteration step
- \(L\) becomes larger (or equal)
- U becomes smaller (or equal)
- \(L \subseteq X \subseteq U\) is invariant for every stable model \(X\) of \(P\)
- If \(L \nsubseteq U\), then \(P\) has no stable model
- If \(L=U\), then \(L\) is a stable model of \(P\)

\section*{Approximating stable models}
- Second Idea
repeat replace \(L\) by \(L \cup C n\left(P^{U}\right)\) replace \(U\) by \(U \cap C n\left(P^{L}\right)\)
until \(L\) and \(U\) do not change anymore
■ Observations
- At each iteration step
- \(L\) becomes larger (or equal)
- U becomes smaller (or equal)
- \(L \subseteq X \subseteq U\) is invariant for every stable model \(X\) of \(P\)
- If \(L \nsubseteq U\), then \(P\) has no stable model
- If \(L=U\), then \(L\) is a stable model of \(P\)

\section*{The simplistic expand algorithm}
\(\operatorname{expand}_{P}(L, U)\) repeat
\(L^{\prime} \leftarrow L\)
\(U^{\prime} \leftarrow U\)
\(L \leftarrow L^{\prime} \cup C n\left(P^{U^{\prime}}\right)\)
\(U \leftarrow U^{\prime} \cap C n\left(P^{L^{\prime}}\right)\)
if \(L \nsubseteq U\) then return
until \(L=L^{\prime}\) and \(U=U^{\prime}\)

\section*{An example}
\[
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow a, \sim c \\
d \leftarrow b, \sim e \\
e \leftarrow \sim d
\end{array}\right\}
\]
\begin{tabular}{lllllll} 
& \(L^{\prime}\) & \(\operatorname{Cn}\left(P^{U^{\prime}}\right)\) & \(L\) & \(U^{\prime}\) & \(\operatorname{Cn}\left(P^{L^{\prime}}\right)\) & \(U\) \\
\hline 1 & 0 & \(\{a\}\) & \(\{a\}\) & \(\{a, b, c, d, e\}\) & \(\{a, b, d, e\}\) & \(\{a, b, d, e\}\) \\
2 & \(\{a\}\) & \(\{a, b\}\) & \(\{a, b\}\) & \(\{a, b, d, e\}\) & \(\{a, b, d, e\}\) & \(\{a, b, d, e\}\) \\
3 & \(\{a, b\}\) & \(\{a, b\}\) & \(\{a, b\}\) & \(\{a, b, d, e\}\) & \(\{a, b, d, e\}\) & \(\{a, b, d, e\}\)
\end{tabular}
- Note We have \(\{a, b\} \subseteq X\) and \((\mathcal{A} \backslash\{a, b, d, e\}) \cap X=(\{c\} \cap X)=\emptyset\) for every stable model \(X\) of \(P\)

\section*{An example}
\[
\left.\left.\begin{array}{l}
P=\left\{\begin{array}{llll}
a \leftarrow \\
b \leftarrow a, \sim c \\
d \leftarrow b, \sim e \\
e \leftarrow \sim d
\end{array}\right\}
\end{array}\right] \begin{array}{llllll} 
\\
& L^{\prime} & C n\left(P U^{U^{\prime}}\right) & L & U^{\prime} & C n\left(P^{L^{\prime}}\right)
\end{array}\right]
\]

\section*{Note We have \(\{a, b\} \subseteq X\) and \((\mathcal{A} \backslash\{a, b, d, e\}) \cap X=(\{c\} \cap X)=\emptyset\)} for every stable model \(X\) of \(P\)

\section*{An example}
\[
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow a, \sim c \\
d \leftarrow b, \sim e \\
e \leftarrow \sim d
\end{array}\right\}
\]
\begin{tabular}{lllllll} 
& \(L^{\prime}\) & \(C n\left(P U^{\prime}\right)\) & \(L\) & \(U^{\prime}\) & \(C n\left(P L^{\prime}\right)\) & \(U\) \\
\hline 1 & \(\emptyset\) & \(\{a\}\) & \(\{a\}\) & \(\{a, b, c, d, e\}\) & \(\{a, b, d, e\}\) & \(\{a, b, d, e\}\) \\
2 & \(\{a\}\) & \(\{a, b\}\) & \(\{a, b\}\) & \(\{a, b, d, e\}\) & \(\{a, b, d, e\}\) & \(\{a, b, d, e\}\) \\
3 & \(\{a, b\}\) & \(\{a, b\}\) & \(\{a, b\}\) & \(\{a, b, d, e\}\) & \(\{a, b, d, e\}\) & \(\{a, b, d, e\}\)
\end{tabular}
- Note We have \(\{a, b\} \subseteq X\) and \((\mathcal{A} \backslash\{a, b, d, e\}) \cap X=(\{c\} \cap X)=\emptyset\) for every stable model \(X\) of \(P\)

\section*{The simplistic expand algorithm}
- expand \(_{P}\)
- tightens the approximation on stable models
- is stable model preserving

\section*{Let's expand with \(d\) !}
\[
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow a, \sim c \\
d \leftarrow b, \sim e \\
e \leftarrow \sim d
\end{array}\right\}
\]
\begin{tabular}{lllllll} 
& \(L^{\prime}\) & \(C n\left(P^{U^{\prime}}\right)\) & \(L\) & \(U^{\prime}\) & \(C n\left(P^{L^{\prime}}\right)\) & \(U\) \\
\hline 1 & \(\{d\}\) & \(\{a\}\) & \(\{a, d\}\) & \(\{a, b, c, d, e\}\) & \(\{a, b, d\}\) & \(\{a, b, d\}\) \\
2 & \(\{a, d\}\) & \(\{a, b, d\}\) \\
3 & \(\{a, b, d\}\) & \(\{a, b, d\}\)
\end{tabular}
- Note \(\{a, b, d\}\) is a stable model of \(P\)

\section*{Let's expand with \(d\) !}
\[
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow a, \sim c \\
d \leftarrow b, \sim e \\
e \leftarrow \sim d
\end{array}\right\}
\]
\begin{tabular}{lllllll} 
& \(L^{\prime}\) & \(C n\left(P^{U^{\prime}}\right)\) & \(L\) & \(U^{\prime}\) & \(C n\left(P^{L^{\prime}}\right)\) & \(U\) \\
\hline 1 & \(\{d\}\) & \(\{a\}\) & \(\{a, d\}\) & \(\{a, b, c, d, e\}\) & \(\{a, b, d\}\) & \(\{a, b, d\}\) \\
2 & \(\{a, d\}\) & \(\{a, b, d\}\) \\
3 & \(\{a, b, d\}\) & \(\{a, b, d\}\)
\end{tabular}

\section*{Let's expand with \(d\) !}
\[
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow a, \sim c \\
d \leftarrow b, \sim e \\
e \leftarrow \sim d
\end{array}\right\}
\]
\begin{tabular}{lllllll} 
& \(L^{\prime}\) & \(C n\left(P^{U^{\prime}}\right)\) & \(L\) & \(U^{\prime}\) & \(C n\left(P^{L^{\prime}}\right)\) & \(U\) \\
\hline 1 & \(\{d\}\) & \(\{a\}\) & \(\{a, d\}\) & \(\{a, b, c, d, e\}\) & \(\{a, b, d\}\) & \(\{a, b, d\}\) \\
2 & \(\{a, d\}\) & \(\{a, b, d\}\) \\
3 & \(\{a, b, d\}\) & \(\{a, b, d\}\)
\end{tabular}
- Note \(\{a, b, d\}\) is a stable model of \(P\)

\section*{Let's expand with ~d!}
\[
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow a, \sim c \\
d \leftarrow b, \sim e \\
e \leftarrow \sim d
\end{array}\right\}
\]
\begin{tabular}{lllllll} 
& \(L^{\prime}\) & \(C n\left(P^{U^{\prime}}\right)\) & \(L\) & \(U^{\prime}\) & \(C n\left(P^{L^{\prime}}\right)\) & \(U\) \\
\hline 1 & \(\emptyset\) & \(\{a, e\}\) & \(\{a, e\}\) & \(\{a, b, c, e\}\) & \(\{a, b, d, e\}\) & \(\{a, b, e\}\) \\
2 & \(\{a, e\}\) & \(\{a, b, e\}\) \\
3 & \(\{a, b, e\}\) & \(\{a, b, e\}\)
\end{tabular}
- Note \(\{a, b, e\}\) is a stable model of \(P\)

\section*{Let's expand with ~d!}
\[
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow a, \sim c \\
d \leftarrow b, \sim e \\
e \leftarrow \sim d
\end{array}\right\}
\]
\begin{tabular}{lllllll} 
& \(L^{\prime}\) & \(C n\left(P^{U^{\prime}}\right)\) & \(L\) & \(U^{\prime}\) & \(C n\left(P^{L^{\prime}}\right)\) & \(U\) \\
\hline 1 & \(\emptyset\) & \(\{a, e\}\) & \(\{a, e\}\) & \(\{a, b, c, e\}\) & \(\{a, b, d, e\}\) & \(\{a, b, e\}\) \\
2 & \(\{a, e\}\) & \(\{a, b, e\}\) \\
3 & \(\{a, b, e\}\) & \(\{a, b, e\}\)
\end{tabular}

\section*{Let's expand with ~d!}
\[
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow a, \sim c \\
d \leftarrow b, \sim e \\
e \leftarrow \sim d
\end{array}\right\}
\]
\begin{tabular}{lllllll} 
& \(L^{\prime}\) & \(C n\left(P^{U^{\prime}}\right)\) & \(L\) & \(U^{\prime}\) & \(C n\left(P^{L^{\prime}}\right)\) & \(U\) \\
\hline 1 & \(\emptyset\) & \(\{a, e\}\) & \(\{a, e\}\) & \(\{a, b, c, e\}\) & \(\{a, b, d, e\}\) & \(\{a, b, e\}\) \\
2 & \(\{a, e\}\) & \(\{a, b, e\}\) \\
3 & \(\{a, b, e\}\) & \(\{a, b, e\}\)
\end{tabular}
- Note \(\{a, b, e\}\) is a stable model of \(P\)

\section*{A simplistic solving algorithm}
solve \(_{P}(L, U)\)
\begin{tabular}{cl}
\((L, U) \leftarrow \operatorname{expand}_{P}(L, U)\) & // propagation \\
if \(L \nsubseteq U\) then failure & // failure \\
if \(L=U\) then output \(L\) & \(/ /\) success \\
else choose \(a \in U \backslash L\) & \(/ /\) choice \\
& \(\operatorname{solve}_{P}(L \cup\{a\}, U)\) \\
& \\
& \(\operatorname{solve}_{P}(L, U \backslash\{a\})\)
\end{tabular}

\section*{A simplistic solving algorithm}

■ Close to the approach taken by the ASP solver smodels, inspired by the Davis-Putman-Logemann-Loveland (DPLL) procedure
- Backtracking search building a binary search tree
- A node in the search tree corresponds to a three-valued interpretation
- The search space is pruned by
deriving deterministic consequences and detecting conflicts (expand)
- making one choice at a time by appeal to a heuristic (choose)

Heuristic choices are made on atoms

\section*{A simplistic solving algorithm}

■ Close to the approach taken by the ASP solver smodels, inspired by the Davis-Putman-Logemann-Loveland (DPLL) procedure
- Backtracking search building a binary search tree
- A node in the search tree corresponds to a three-valued interpretation
- The search space is pruned by
\(\square\) deriving deterministic consequences and detecting conflicts (expand) \(\square\) making one choice at a time by appeal to a heuristic (choose)
- Heuristic choices are made on atoms

\section*{A simplistic solving algorithm}

■ Close to the approach taken by the ASP solver smodels, inspired by the Davis-Putman-Logemann-Loveland (DPLL) procedure
- Backtracking search building a binary search tree
- A node in the search tree corresponds to a three-valued interpretation
- The search space is pruned by
- deriving deterministic consequences and detecting conflicts (expand)
- making one choice at a time by appeal to a heuristic (choose)
- Heuristic choices are made on atoms

\section*{A simplistic solving algorithm}

■ Close to the approach taken by the ASP solver smodels, inspired by the Davis-Putman-Logemann-Loveland (DPLL) procedure
- Backtracking search building a binary search tree
- A node in the search tree corresponds to a three-valued interpretation
- The search space is pruned by
- deriving deterministic consequences and detecting conflicts (expand)
- making one choice at a time by appeal to a heuristic (choose)
- Heuristic choices are made on atoms

\section*{Outline}

\section*{28 Consequence operator}

\section*{29 Computation from finst principles}

\section*{30 Complexity}

\section*{Complexity}

\section*{Let a be an atom and \(X\) be a set of atoms}
- For a positive normal logic program \(P\) :
- Deciding whether \(X\) is the stable model of \(P\) is \(P\)-complete
- Deciding whether a is in the stable model of \(P\) is \(P\)-complete
- For a normal logic program \(P\) :
- Deciding whether \(X\) is a stable model of \(P\) is \(P\)-complete
- Deciding whether a is in a stable model of \(P\) is \(N P\)-complete

For a normal logic program \(P\) with optimization statements:
Deciding whether \(X\) is an optimal stable model of \(P\) is co- \(N P\)-complete Deciding whether a is in an optimal stable model of \(P\) is \(\Delta_{2}^{p}\)-complete

\section*{Complexity}

Let a be an atom and \(X\) be a set of atoms
- For a positive normal logic program \(P\) :
- Deciding whether \(X\) is the stable model of \(P\) is \(P\)-complete
- Deciding whether a is in the stable model of \(P\) is \(P\)-complete
- For a normal logic program P:
- Deciding whether \(X\) is a stable model of \(P\) is \(P\)-complete
- Deciding whether \(a\) is in a stable model of \(P\) is \(N P\)-complete
- For a normal logic program \(P\) with optimization statements:
- Deciding whether \(X\) is an optimal stable model of \(P\) is co- \(N P\)-complete

Deciding whether a is in an optimal stable model of \(P\) is \(\Delta_{2}^{p}\)-complete

\section*{Complexity}

Let a be an atom and \(X\) be a set of atoms
- For a positive normal logic program \(P\) :
- Deciding whether \(X\) is the stable model of \(P\) is \(P\)-complete
- Deciding whether a is in the stable model of \(P\) is \(P\)-complete
- For a normal logic program \(P\) :
- Deciding whether \(X\) is a stable model of \(P\) is \(P\)-complete
- Deciding whether a is in a stable model of \(P\) is \(N P\)-complete
- For a normal logic program \(P\) with optimization statements:
- Deciding whether \(X\) is an optimal stable model of \(P\) is co-NP-complete
- Deciding whether a is in an optimal stable model of \(P\) is \(\Delta_{2}^{p}\)-complete

\section*{Complexity}

Let a be an atom and \(X\) be a set of atoms
■ For a positive normal logic program \(P\) :
- Deciding whether \(X\) is the stable model of \(P\) is \(P\)-complete
- Deciding whether a is in the stable model of \(P\) is \(P\)-complete
- For a normal logic program \(P\) :
- Deciding whether \(X\) is a stable model of \(P\) is \(P\)-complete
- Deciding whether a is in a stable model of \(P\) is \(N P\)-complete
- For a normal logic program \(P\) with optimization statements:
- Deciding whether \(X\) is an optimal stable model of \(P\) is co-NP-complete
- Deciding whether a is in an optimal stable model of \(P\) is \(\Delta_{2}^{P}\)-complete

\section*{Complexity}

Let \(a\) be an atom and \(X\) be a set of atoms
- For a positive disjunctive logic program \(P\) :
- Deciding whether \(X\) is a stable model of \(P\) is co-NP-complete
- Deciding whether \(a\) is in a stable model of \(P\) is \(N P^{N P}\)-complete
- For a disjunctive logic program \(P\) :
- Deciding whether \(X\) is a stable model of \(P\) is co- \(N P\)-complete
- Deciding whether a is in a stable model of \(P\) is \(N P^{N P}\)-complete
- For a disjunctive logic program \(P\) with optimization statements:
- Deciding whether \(X\) is an optimal stable model of \(P\) is co- \(N P^{N P}\)-complete
- Deciding whether a is in an optimal stable model of \(P\) is \(\Delta_{3}^{p}\)-complete
- For a propositional theory \(\phi\) :
- Deciding whether \(X\) is a stable model of \(\Phi\) is co-NP-complete
- Deciding whether a is in a stable model of \(\phi\) is \(N P^{N P}\)-complete

\section*{Complexity}

Let a be an atom and \(X\) be a set of atoms
- For a positive disjunctive logic program \(P\) :
- Deciding whether \(X\) is a stable model of \(P\) is co-NP-complete
- Deciding whether a is in a stable model of \(P\) is \(N P^{N P}\)-complete
- For a disjunctive logic program \(P\) :
- Deciding whether \(X\) is a stable model of \(P\) is co- \(N P\)-complete
- Deciding whether a is in a stable model of \(P\) is \(N P^{N P}\)-complete
- For a disjunctive logic program \(P\) with optimization statements:
- Deciding whether \(X\) is an optimal stable model of \(P\) is co- \(N P^{N P}\)-complete
- Deciding whether a is in an optimal stable model of \(P\) is \(\Delta_{3}^{p}\)-complete
- For a propositional theory \(\Phi\) :
- Deciding whether \(X\) is a stable model of \(\Phi\) is co-NP-complete
- Deciding whether a is in a stable model of \(\Phi\) is \(N P^{N P}\)-complete

\section*{Axiomatic Characterization: Overview}

\section*{31 Completion}

32 Tightness
33 Loops and Loop Formulas

\section*{Outline}

\section*{31 Completion}

32 Tightness
33 Loops and Loop Formulas

\section*{Motivation}
- Question Is there a propositional formula \(F(P)\) such that the models of \(F(P)\) correspond to the stable models of \(P\) ?
- Observation Although each atom is defined through a set of rules, each such rule provides only a sufficient condition for its head atom
- Idea The idea of program completion is to turn such implications into a definition by adding the corresponding necessary counterpart

\section*{Motivation}
- Question Is there a propositional formula \(F(P)\) such that the models of \(F(P)\) correspond to the stable models of \(P\) ?
- Observation Although each atom is defined through a set of rules, each such rule provides only a sufficient condition for its head atom

> The idea of program completion is to turn such implications into a definition by adding the corresponding necessary counterpart

\section*{Motivation}
- Question Is there a propositional formula \(F(P)\) such that the models of \(F(P)\) correspond to the stable models of \(P\) ?
- Observation Although each atom is defined through a set of rules, each such rule provides only a sufficient condition for its head atom
- Idea The idea of program completion is to turn such implications into a definition by adding the corresponding necessary counterpart

\section*{Program completion}

Let \(P\) be a normal logic program
- The completion \(C F(P)\) of \(P\) is defined as follows
\[
C F(P)=\left\{a \leftrightarrow \bigvee_{r \in P, h(r)=a} B F(B(r)) \mid a \in A(P)\right\}
\]
where
\[
B F(B(r))=\bigwedge_{a \in B(r)^{+}} a \wedge \bigwedge_{a \in B(r)^{-} \neg a}
\]

\section*{An example}
\[
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow \sim a \\
c \leftarrow a, \sim d \\
d \leftarrow \sim c, \sim e \\
e \leftarrow b, \sim f \\
e \leftarrow e
\end{array}\right\} \quad C F(P)=\left\{\begin{array}{l}
a \leftrightarrow T \\
b \leftrightarrow \neg a \\
c \leftrightarrow a \wedge \neg d \\
d \leftrightarrow \neg c \wedge \neg e \\
e \leftrightarrow(b \wedge \neg f) \vee e \\
f \leftrightarrow \perp
\end{array}\right\}
\]

\section*{An example}
\[
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow \sim a \\
c \leftarrow a, \sim d \\
d \leftarrow \sim c, \sim e \\
e \leftarrow b, \sim f \\
e \leftarrow e
\end{array}\right\} \quad C F(P)=\left\{\begin{array}{l}
a \leftrightarrow T \\
b \leftrightarrow \neg a \\
c \leftrightarrow a \wedge \neg d \\
d \leftrightarrow \neg c \wedge \neg e \\
e \leftrightarrow(b \wedge \neg f) \vee e \\
f \leftrightarrow \perp
\end{array}\right\}
\]

\section*{A closer look}
- CF(P) is logically equivalent to \(\overleftarrow{C F}(P) \cup \overrightarrow{C F}(P)\), where
\[
\begin{aligned}
\overleftarrow{C F}(P) & =\left\{a \leftarrow \bigvee_{B \in B_{P}(a)} B F(B) \mid a \in A(P)\right\} \\
\stackrel{C F}{C F}(P) & =\left\{a \rightarrow \bigvee_{B \in B_{P}(a)} B F(B) \mid a \in A(P)\right\} \\
B P(a) & =\{B(r) \mid r \in P \text { and } h(r)=a\}
\end{aligned}
\]
- \(\overleftarrow{C F}(P)\) characterizes the classical models of \(P\)
- \(\overrightarrow{C F}(P)\) completes \(P\) by adding necessary conditions for all atoms

\section*{A closer look}
- CF(P) is logically equivalent to \(\overleftarrow{C F}(P) \cup \overrightarrow{C F}(P)\), where
\[
\begin{aligned}
\overleftarrow{C F}(P) & =\left\{a \leftarrow \bigvee_{B \in B_{P}(a)} B F(B) \mid a \in A(P)\right\} \\
\overrightarrow{C F}(P) & =\left\{a \rightarrow \bigvee_{B \in B_{P}(a)} B F(B) \mid a \in A(P)\right\} \\
B P(a) & =\{B(r) \mid r \in P \text { and } h(r)=a\}
\end{aligned}
\]
- \(\overleftarrow{C F}(P)\) characterizes the classical models of \(P\)
- \(\overrightarrow{C F}(P)\) completes \(P\) by adding necessary conditions for all atoms

\section*{A closer look}
\[
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow \sim a \\
c \leftarrow a, \sim d \\
d \leftarrow \sim c, \sim e \\
e \leftarrow b, \sim f \\
e \leftarrow e
\end{array}\right\}
\]

\section*{A closer look}
\[
P=\left\{\begin{array}{l}
a \leftarrow \\
b \leftarrow \sim a \\
c \leftarrow a, \sim d \\
d \leftarrow \sim c, \sim e \\
e \leftarrow b, \sim f \\
e \leftarrow e
\end{array}\right\} \quad \overleftarrow{C F}(P)=\left\{\begin{array}{l}
a \leftarrow \top \\
b \leftarrow \neg a \\
c \leftarrow a \wedge \neg d \\
d \leftarrow \neg c \wedge \neg e \\
e \leftarrow(b \wedge \neg f) \vee e \\
f \leftarrow \perp
\end{array}\right\}
\]

\section*{A closer look}
\[
\overleftarrow{C F}(P)=\left\{\begin{array}{l}
a \leftarrow T \\
b \leftarrow \neg a \\
c \leftarrow a \wedge \neg d \\
d \leftarrow \neg c \wedge \neg e \\
e \leftarrow(b \wedge \neg f) \vee e \\
f \leftarrow \perp
\end{array}\right\}
\]

\section*{A closer look}
\[
\overleftarrow{C F}(P)=\left\{\begin{array}{l}
a \leftarrow T \\
b \leftarrow \neg a \\
c \leftarrow a \wedge \neg d \\
d \leftarrow \neg c \wedge \neg e \\
e \leftarrow(b \wedge \neg f) \vee e \\
f \leftarrow \perp
\end{array}\right\}\left\{\begin{array}{l}
a \rightarrow T \\
b \rightarrow \neg a \\
c \rightarrow a \wedge \neg d \\
d \rightarrow \neg c \wedge \neg e \\
e \rightarrow(b \wedge \neg f) \vee e \\
f \rightarrow \perp
\end{array}\right\}=\overrightarrow{C F}(P)
\]

\section*{A closer look}
\[
\begin{aligned}
& \overleftarrow{C F}(P)=\left\{\begin{array}{l}
a \leftarrow T \\
b \leftarrow \neg a \\
c \leftarrow a \wedge \neg d \\
d \leftarrow \neg c \wedge \neg e \\
e \leftarrow(b \wedge \neg f) \vee e \\
f \leftarrow \perp
\end{array}\right\}\left\{\begin{array}{l}
a \rightarrow T \\
b \rightarrow \neg a \\
c \rightarrow a \wedge \neg d \\
d \rightarrow \neg c \wedge \neg e \\
e \rightarrow(b \wedge \neg f) \vee e \\
f \rightarrow \perp
\end{array}\right\}=\overrightarrow{C F}(P) \\
& C F(P)=\left\{\begin{array}{l}
a \leftrightarrow T \\
b \leftrightarrow \neg a \\
c \leftrightarrow a \wedge \neg d \\
d \leftrightarrow \neg c \wedge \neg e \\
e \leftrightarrow(b \wedge \neg f) \vee e \\
f \leftrightarrow \perp
\end{array}\right\}
\end{aligned}
\]

\section*{A closer look}
\[
\begin{aligned}
& \overleftarrow{C F}(P)=\left\{\begin{array}{l}
a \leftarrow T \\
b \leftarrow \neg a \\
c \leftarrow a \wedge \neg d \\
d \leftarrow \neg c \wedge \neg e \\
e \leftarrow(b \wedge \neg f) \vee e \\
f \leftarrow \perp
\end{array}\right\}\left\{\begin{array}{l}
a \rightarrow T \\
b \rightarrow \neg a \\
c \rightarrow a \wedge \neg d \\
d \rightarrow \neg c \wedge \neg e \\
e \rightarrow(b \wedge \neg f) \vee e \\
f \rightarrow \perp
\end{array}\right\}=\overrightarrow{C F}(P) \\
& C F(P)=\left\{\begin{array}{l}
a \leftrightarrow T \\
b \leftrightarrow \neg a \\
c \leftrightarrow a \wedge \neg d \\
d \leftrightarrow \neg c \wedge \neg e \\
e \leftrightarrow(b \wedge \neg f) \vee e \\
f \leftrightarrow \perp
\end{array}\right\} \quad \leftrightarrow \stackrel{\rightharpoonup}{C F}(P) \cup \overrightarrow{C F}(P)
\end{aligned}
\]

\section*{Supported models}
- Every stable model of \(P\) is a model of \(C F(P)\), but not vice versa Models of \(C F(P)\) are called the supported models of \(P\)

In other words, every stable model of \(P\) is a supported model of \(P\) By definition, every supported model of \(P\) is also a model of \(P\)

\section*{Supported models}
- Every stable model of \(P\) is a model of \(C F(P)\), but not vice versa

Models of CF(P) are called the supported models of \(P\)
- In other words, every stable model of \(P\) is a supported model of \(P\)
- By definition, every supported model of \(P\) is also a model of \(P\)

\section*{Supported models}
- Every stable model of \(P\) is a model of \(C F(P)\), but not vice versa
- Models of \(C F(P)\) are called the supported models of \(P\)
- In other words, every stable model of \(P\) is a supported model of \(P\)

By definition, every supported model of \(P\) is also a model of \(P\)

\section*{Supported models}
- Every stable model of \(P\) is a model of \(C F(P)\), but not vice versa
- Models of \(C F(P)\) are called the supported models of \(P\)
- In other words, every stable model of \(P\) is a supported model of \(P\)

■ By definition, every supported model of \(P\) is also a model of \(P\)

\section*{An example}
\[
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
\]
- \(P\) has 21 models, including \(\{a, c\},\{a, d\}\), but also \(\{a, b, c, d, e, f\}\)
- \(P\) has 3 supported models, namely \(\{a, c\},\{a, d\}\), and \(\{a, c, e\}\)
\(P\) has 2 stable models, namely \(\{a, c\}\) and \(\{a, d\}\)

\section*{An example}
\[
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
\]
- \(P\) has 21 models, including \(\{a, c\},\{a, d\}\), but also \(\{a, b, c, d, e, f\}\)
- \(P\) has 3 supported models, namely \(\{a, c\},\{a, d\}\), and \(\{a, c, e\}\)
- \(P\) has 2 stable models, namely \(\{a, c\}\) and \(\{a, d\}\)

\section*{An example}
\[
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
\]
- \(P\) has 21 models, including \(\{a, c\},\{a, d\}\), but also \(\{a, b, c, d, e, f\}\)
- \(P\) has 3 supported models, namely \(\{a, c\},\{a, d\}\), and \(\{a, c, e\}\)
- \(P\) has 2 stable models, namely \(\{a, c\}\) and \(\{a, d\}\)

\section*{An example}
\[
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
\]
- \(P\) has 21 models, including \(\{a, c\},\{a, d\}\), but also \(\{a, b, c, d, e, f\}\)
- \(P\) has 3 supported models, namely \(\{a, c\},\{a, d\}\), and \(\{a, c, e\}\)
- \(P\) has 2 stable models, namely \(\{a, c\}\) and \(\{a, d\}\)

\section*{Outline}

\section*{31 Completion}

32 Tightness
33 Loops and Loop Formulas

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice

\section*{The mismatch}

■ Question What causes the mismatch between supported and stable models?
- Hint Consider the unstable yet supported model \(\{a, c, e\}\) of \(P\) !
- Answer The mismatch between supported and stable models is caused by cyclic derivations

Atoms in a stable model can be "derived" from a program in a finite number of steps
Atoms in a cycle (not being "supported from outside the cycle")
cannot be "derived" from a program in a finite number of steps
But such atoms do not contradict the completion of a program and do thus not eliminate an unstable supported model

\section*{The mismatch}
- Question What causes the mismatch between supported and stable models?

■ Hint Consider the unstable yet supported model \(\{a, c, e\}\) of \(P\) !
- Answer The mismatch between supported and stable models is caused by cyclic derivations

Atoms in a stable model can be "derived" from a program in a finite number of steps
Atoms in a cycle (not being "supported from outside the cycle")
cannot be "derived" from a program in a finite number of steps
But such atoms do not contradict the completion of a program and do thus not eliminate an unstable supported model

\section*{The mismatch}
- Question What causes the mismatch between supported and stable models?

■ Hint Consider the unstable yet supported model \(\{a, c, e\}\) of \(P\) !
- Answer The mismatch between supported and stable models is caused by cyclic derivations
- Atoms in a stable model can be "derived" from a program in a finite number of steps
- Atoms in a cycle (not being "supported from outside the cycle") cannot be "derived" from a program in a finite number of steps

But such atoms do not contradict the completion of a program and do thus not eliminate an unstable supported model

\section*{The mismatch}
- Question What causes the mismatch between supported and stable models?

■ Hint Consider the unstable yet supported model \(\{a, c, e\}\) of \(P\) !
- Answer The mismatch between supported and stable models is caused by cyclic derivations
- Atoms in a stable model can be "derived" from a program in a finite number of steps
- Atoms in a cycle (not being "supported from outside the cycle") cannot be "derived" from a program in a finite number of steps

But such atoms do not contradict the completion of a program and do thus not eliminate an unstable supported model

\section*{The mismatch}
- Question What causes the mismatch between supported and stable models?

■ Hint Consider the unstable yet supported model \(\{a, c, e\}\) of \(P\) !
- Answer The mismatch between supported and stable models is caused by cyclic derivations
- Atoms in a stable model can be "derived" from a program in a finite number of steps
- Atoms in a cycle (not being "supported from outside the cycle") cannot be "derived" from a program in a finite number of steps

But such atoms do not contradict the completion of a program and do thus not eliminate an unstable supported model

\section*{The mismatch}
- Question What causes the mismatch between supported and stable models?

■ Hint Consider the unstable yet supported model \(\{a, c, e\}\) of \(P\) !
- Answer The mismatch between supported and stable models is caused by cyclic derivations
- Atoms in a stable model can be "derived" from a program in a finite number of steps
- Atoms in a cycle (not being "supported from outside the cycle") cannot be "derived" from a program in a finite number of steps
Note But such atoms do not contradict the completion of a program and do thus not eliminate an unstable supported model

\section*{Non-cyclic derivations}

Let \(X\) be a stable model of normal logic program \(P\)
- For every atom \(a \in X\), there is a finite sequence of positive rules
\[
\left\langle r_{1}, \ldots, r_{n}\right\rangle
\]
such that
\(1 . h\left(r_{1}\right)=a\)
\(2 B\left(r_{i}\right)^{+} \subseteq\left\{h\left(r_{j}\right) \mid i<j \leq n\right\}\)
for \(1 \leq i \leq n\)
\(3 r_{i} \in P^{X}\)
for \(1 \leq i \leq n\)
- That is, each atom of \(X\) has a non-cyclic derivation from \(P^{X}\)
- Example There is no finite sequence of rules providing a derivation for e from \(P\{a, c, e\}\)

\section*{Non-cyclic derivations}

Let \(X\) be a stable model of normal logic program \(P\)
- For every atom \(a \in X\), there is a finite sequence of positive rules
\[
\left\langle r_{1}, \ldots, r_{n}\right\rangle
\]
such that
\(1 . h\left(r_{1}\right)=a\)
\(2 B\left(r_{i}\right)^{+} \subseteq\left\{h\left(r_{j}\right) \mid i<j \leq n\right\}\)
for \(1 \leq i \leq n\)
\(3 r_{i} \in P^{X}\)
for \(1 \leq i \leq n\)
- That is, each atom of \(X\) has a non-cyclic derivation from \(P^{X}\)
- Example There is no finite sequence of rules providing a derivation for \(e\) from \(P\{a, c, e\}\)

\section*{Non-cyclic derivations}

Let \(X\) be a stable model of normal logic program \(P\)
- For every atom \(a \in X\), there is a finite sequence of positive rules
\[
\left\langle r_{1}, \ldots, r_{n}\right\rangle
\]
such that
\(1 . h\left(r_{1}\right)=a\)
2. \(B\left(r_{i}\right)^{+} \subseteq\left\{h\left(r_{j}\right) \mid i<j \leq n\right\}\)
for \(1 \leq i \leq n\)
\(3 r_{i} \in P^{X}\)
for \(1 \leq i \leq n\)
- That is, each atom of \(X\) has a non-cyclic derivation from \(P^{X}\)
- Example There is no finite sequence of rules providing a derivation for \(e\) from \(P^{\{a, c, e\}}\)

\section*{Positive atom dependency graph}
- The origin of (potential) circular derivations can be read off the positive atom dependency graph \(G(P)\) of a logic program \(P\) given by
\[
\left(A(P),\left\{(a, b) \mid r \in P, a \in B(r)^{+}, h(r)=b\right\}\right)
\]

A logic program \(P\) is called tight, if \(G(P)\) is acyclic

\section*{Positive atom dependency graph}
- The origin of (potential) circular derivations can be read off the positive atom dependency graph \(G(P)\) of a logic program \(P\) given by
\[
\left(A(P),\left\{(a, b) \mid r \in P, a \in B(r)^{+}, h(r)=b\right\}\right)
\]
- A logic program \(P\) is called tight, if \(G(P)\) is acyclic

\section*{Example}
- \(P=\left\{\begin{array}{lll}a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e\end{array}\right\}\)
- \(G(P)=(\{a, b, c, d, e, f\},\{(a, c),(b, e),(e, e)\})\)



\(P\) has supported models: \(\{a, c\},\{a, d\}\), and \(\{a, c, e\}\)
\(P\) has stable models: \(\{a, c\}\) and \(\{a, d\}\)

\section*{Example}
- \(P=\left\{\begin{array}{lll}a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e\end{array}\right\}\)
- \(G(P)=(\{a, b, c, d, e, f\},\{(a, c),(b, e),(e, e)\})\)

\(\square P\) has supported models: \(\{a, c\},\{a, d\}\), and \(\{a, c, e\}\)
\(\_P\) has stable models: \(\{a, c\}\) and \(\{a, d\}\)

\section*{Example}
- \(P=\left\{\begin{array}{lll}a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e\end{array}\right\}\)
- \(G(P)=(\{a, b, c, d, e, f\},\{(a, c),(b, e),(e, e)\})\)

- \(P\) has supported models: \(\{a, c\},\{a, d\}\), and \(\{a, c, e\}\)
\(\square P\) has stable models: \(\{a, c\}\) and \(\{a, d\}\)

\section*{Example}
- \(P=\left\{\begin{array}{lll}a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e\end{array}\right\}\)
- \(G(P)=(\{a, b, c, d, e, f\},\{(a, c),(b, e),(e, e)\})\)

- \(P\) has supported models: \(\{a, c\},\{a, d\}\), and \(\{a, c, e\}\)
- \(P\) has stable models: \(\{a, c\}\) and \(\{a, d\}\)

\section*{Tight programs}
- A logic program \(P\) is called tight, if \(G(P)\) is acyclic
- For tight programs, stable and supported models coincide:

Let \(P\) be a tight normal logic program and \(X \subseteq A(P)\) Then, \(X\) is a stable model of \(P\) iff \(X \models C F(P)\)

\section*{Tight programs}
- A logic program \(P\) is called tight, if \(G(P)\) is acyclic

■ For tight programs, stable and supported models coincide:
```

Let P be a tight normal logic program and X\subseteqA(P)
Then, X is a stable model of P iff X\modelsCF(P)

```

\section*{Tight programs}
- A logic program \(P\) is called tight, if \(G(P)\) is acyclic

■ For tight programs, stable and supported models coincide:

Fages' Theorem
Let \(P\) be a tight normal logic program and \(X \subseteq A(P)\) Then, \(X\) is a stable model of \(P\) iff \(X \models C F(P)\)

\section*{Another example}
- \(P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c & \end{array}\right\}\)
\(G(P)=(\{a, b, c, d, e\},\{(a, c),(a, d),(b, c),(b, d),(c, d),(d, c)\})\)

\(P\) has supported models: \(\{a, c, d\},\{b\}\), and \(\{b, c, d\}\)
\(P\) has stable models: \(\{a, c, d\}\) and \(\{b\}\)

\section*{Another example}
- \(P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c\end{array}\right\}\)
- \(G(P)=(\{a, b, c, d, e\},\{(a, c),(a, d),(b, c),(b, d),(c, d),(d, c)\})\)

- \(P\) has supported models: \(\{a, c, d\},\{b\}\), and \(\{b, c, d\}\)
\(\square P\) has stable models: \(\{a, c, d\}\) and \(\{b\}\)

\section*{Another example}
- \(P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c\end{array}\right\}\)
- \(G(P)=(\{a, b, c, d, e\},\{(a, c),(a, d),(b, c),(b, d),(c, d),(d, c)\})\)

- \(P\) has supported models: \(\{a, c, d\},\{b\}\), and \(\{b, c, d\}\)
\(\square P\) has stable models: \(\{a, c, d\}\) and \(\{b\}\)

\section*{Another example}
- \(P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c\end{array}\right\}\)
- \(G(P)=(\{a, b, c, d, e\},\{(a, c),(a, d),(b, c),(b, d),(c, d),(d, c)\})\)

- \(P\) has supported models: \(\{a, c, d\},\{b\}\), and \(\{b, c, d\}\)
- \(P\) has stable models: \(\{a, c, d\}\) and \(\{b\}\)

\section*{Outline}

\section*{31 Completion}

32 Tightness
33 Loops and Loop Formulas

\section*{Motivation}
- Question Is there a propositional formula \(F(P)\) such that the models of \(F(P)\) correspond to the stable models of \(P\) ?
- Observation Starting from the completion of a program, the problem boils down to eliminating the circular support of atoms holding in the supported models of the program
- Idea Add formulas prohibiting circular support of sets of atoms Circular support between atoms \(a\) and \(b\) is possible,
if \(a\) has a path to \(b\) and \(b\) has a path to \(a\)
in the program's positive atom dependency graph

\section*{Motivation}
- Question Is there a propositional formula \(F(P)\) such that the models of \(F(P)\) correspond to the stable models of \(P\) ?
- Observation Starting from the completion of a program, the problem boils down to eliminating the circular support of atoms holding in the supported models of the program

Add formulas prohibiting circular support of sets of atoms Circular support between atoms \(a\) and \(b\) is possible, if \(a\) has a path to \(b\) and \(b\) has a path to \(a\) in the program's positive atom dependency graph

\section*{Motivation}
- Question Is there a propositional formula \(F(P)\) such that the models of \(F(P)\) correspond to the stable models of \(P\) ?
- Observation Starting from the completion of a program, the problem boils down to eliminating the circular support of atoms holding in the supported models of the program
- Idea Add formulas prohibiting circular support of sets of atoms Note Circular support between atoms \(a\) and \(b\) is possible,
if \(a\) has a path to \(b\) and \(b\) has a path to \(a\)
in the program's positive atom dependency graph

\section*{Motivation}
- Question Is there a propositional formula \(F(P)\) such that the models of \(F(P)\) correspond to the stable models of \(P\) ?

■ Observation Starting from the completion of a program, the problem boils down to eliminating the circular support of atoms holding in the supported models of the program
- Idea Add formulas prohibiting circular support of sets of atoms
- Note Circular support between atoms \(a\) and \(b\) is possible, if \(a\) has a path to \(b\) and \(b\) has a path to \(a\) in the program's positive atom dependency graph

\section*{Loops}

Let \(P\) be a normal logic program, and
let \(G(P)=(A(P), E)\) be the positive atom dependency graph of \(P\)
- A set \(\emptyset \subset L \subseteq A(P)\) is a loop of \(P\) if it induces a non-trivial strongly connected subgraph of \(G(P)\)
That is, each pair of atoms in \(L\) is connected by a path of non-zero length in \((L, E \cap(L \times L))\)

We denote the set of all loops of \(P\) by loop( \(P\) )
A program \(P\) is tight iff \(\operatorname{loop}(P)=\emptyset\)

\section*{Loops}

Let \(P\) be a normal logic program, and
let \(G(P)=(A(P), E)\) be the positive atom dependency graph of \(P\)
- A set \(\emptyset \subset L \subseteq A(P)\) is a loop of \(P\)
if it induces a non-trivial strongly connected subgraph of \(G(P)\)
That is, each pair of atoms in \(L\) is connected by a path of non-zero length in \((L, E \cap(L \times L))\)
- We denote the set of all loops of \(P\) by loop \((P)\)

A program \(P\) is tight iff \(\operatorname{loop}(P)=\emptyset\)

\section*{Loops}

Let \(P\) be a normal logic program, and
let \(G(P)=(A(P), E)\) be the positive atom dependency graph of \(P\)
- A set \(\emptyset \subset L \subseteq A(P)\) is a loop of \(P\) if it induces a non-trivial strongly connected subgraph of \(G(P)\)
That is, each pair of atoms in \(L\) is connected by a path of non-zero length in \((L, E \cap(L \times L))\)
- We denote the set of all loops of \(P\) by loop \((P)\)
= Note \(A\) program \(P\) is tight iff \(\operatorname{loop}(P)=\emptyset\)

\section*{Loops}

Let \(P\) be a normal logic program, and
let \(G(P)=(A(P), E)\) be the positive atom dependency graph of \(P\)
- A set \(\emptyset \subset L \subseteq A(P)\) is a loop of \(P\) if it induces a non-trivial strongly connected subgraph of \(G(P)\)
That is, each pair of atoms in \(L\) is connected by a path of non-zero length in \((L, E \cap(L \times L))\)
- We denote the set of all loops of \(P\) by loop( \(P\) )
- Note A program \(P\) is tight iff \(\operatorname{loop}(P)=\emptyset\)

\section*{Loops}

Let \(P\) be a normal logic program, and
let \(G(P)=(A(P), E)\) be the positive atom dependency graph of \(P\)
- A set \(\emptyset \subset L \subseteq A(P)\) is a loop of \(P\) if it induces a non-trivial strongly connected subgraph of \(G(P)\)
That is, each pair of atoms in \(L\) is connected by a path of non-zero length in \((L, E \cap(L \times L))\)
- We denote the set of all loops of \(P\) by loop \((P)\)
- Note A program \(P\) is tight iff \(\operatorname{loop}(P)=\emptyset\)

\section*{Example}
- \(P=\left\{\begin{array}{lll}a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e\end{array}\right\}\)

\(\operatorname{loop}(P)=\{\{e\}\}\)

\section*{Example}
- \(P=\left\{\begin{array}{lll}a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e\end{array}\right\}\)

- \(\operatorname{loop}(P)=\{\{e\}\}\)

\section*{Another example}
- \(P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c & \end{array}\right\}\)

\(\operatorname{loop}(P)=\{\{c, d\}\}\)

\section*{Another example}
- \(P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c & \end{array}\right\}\)

- \(\operatorname{loop}(P)=\{\{c, d\}\}\)

\section*{Yet another example}
- \(P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d\end{array}\right\}\)

\(\square \operatorname{loop}(P)=\{\{c, d\},\{d, e\},\{c, d, e\}\}\)

\section*{Yet another example}
- \(P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d\end{array}\right\}\)

\(\operatorname{loop}(P)=\{\{c, d\},\{d, e\},\{c, d, e\}\}\)

\section*{Yet another example}
- \(P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d\end{array}\right\}\)

- \(\operatorname{loop}(P)=\{\{c, d\},\{d, e\},\{c, d, e\}\}\)

\section*{Loop formulas}

Let \(P\) be a normal logic program
- For \(L \subseteq A(P)\), define the external supports of \(L\) for \(P\) as
\[
E S_{P}(L)=\left\{r \in P \mid h(r) \in L \text { and } B(r)^{+} \cap L=\emptyset\right\}
\]
- Define the external bodies of \(L\) in \(P\) as \(E B_{P}(L)=B\left(E S_{P}(L)\right)\)
- The (disjunctive) loop formula of \(L\) for \(P\) is
\[
\begin{aligned}
L F_{P}(L) & =\left(\bigvee_{a \in L^{a}} a\right) \rightarrow\left(\bigvee_{B \in E B_{p}(L)} B F(B)\right) \\
& \leftrightarrow\left(\bigwedge_{\left.B \in E B_{p}(L) \neg B F(B)\right) \rightarrow\left(\bigwedge_{a \in L} \neg a\right)}\right.
\end{aligned}
\]

The loop formula of \(L\) enforces all atoms in \(L\) to be false
whenever \(L\) is not externally supported
Define \(L F(P)=\left\{L F_{P}(L) \mid L \in \operatorname{loop}(P)\right\}\)

\section*{Loop formulas}

Let \(P\) be a normal logic program
- For \(L \subseteq A(P)\), define the external supports of \(L\) for \(P\) as
\[
E S_{P}(L)=\left\{r \in P \mid h(r) \in L \text { and } B(r)^{+} \cap L=\emptyset\right\}
\]
- Define the external bodies of \(L\) in \(P\) as \(E B_{P}(L)=B\left(E S_{P}(L)\right)\)
- The (disjunctive) loop formula of \(L\) for \(P\) is
\[
\begin{aligned}
L F_{P}(L) & =\left(\bigvee_{a \in L} a\right) \rightarrow\left(\bigvee_{B \in E B_{P}(L)} B F(B)\right) \\
& \leftrightarrow\left(\bigwedge_{B \in E B_{P}(L)} \neg B F(B)\right) \rightarrow\left(\bigwedge_{a \in L} \neg a\right)
\end{aligned}
\]
- Note The loop formula of \(L\) enforces all atoms in \(L\) to be false whenever \(L\) is not externally supported
Define \(L F(P)=\left\{L F_{P}(L) \mid L \in \operatorname{loop}(P)\right\}\)

\section*{Loop formulas}

Let \(P\) be a normal logic program
- For \(L \subseteq A(P)\), define the external supports of \(L\) for \(P\) as
\[
E S_{P}(L)=\left\{r \in P \mid h(r) \in L \text { and } B(r)^{+} \cap L=\emptyset\right\}
\]
- Define the external bodies of \(L\) in \(P\) as \(E B_{P}(L)=B\left(E S_{P}(L)\right)\)
- The (disjunctive) loop formula of \(L\) for \(P\) is
\[
\begin{aligned}
L F_{P}(L) & =\left(\bigvee_{a \in L} a\right) \rightarrow\left(\bigvee_{B \in E B_{P}(L)} B F(B)\right) \\
& \leftrightarrow\left(\bigwedge_{B \in E B_{P}(L)} \neg B F(B)\right) \rightarrow\left(\bigwedge_{a \in L} \neg a\right)
\end{aligned}
\]

The loop formula of \(L\) enforces all atoms in \(L\) to be false
whenever \(L\) is not externally supported
- Define \(L F(P)=\left\{L F_{P}(L) \mid L \in \operatorname{loop}(P)\right\}\)

\section*{Loop formulas}

Let \(P\) be a normal logic program
- For \(L \subseteq A(P)\), define the external supports of \(L\) for \(P\) as
\[
E S_{P}(L)=\left\{r \in P \mid h(r) \in L \text { and } B(r)^{+} \cap L=\emptyset\right\}
\]
- Define the external bodies of \(L\) in \(P\) as \(E B_{P}(L)=B\left(E S_{P}(L)\right)\)
- The (disjunctive) loop formula of \(L\) for \(P\) is
\[
\begin{aligned}
L F_{P}(L) & =\left(\bigvee_{a \in L^{a}}\right) \rightarrow\left(\bigvee_{B \in E B_{P}(L)} B F(B)\right) \\
& \leftrightarrow\left(\bigwedge_{B \in E B_{P}(L)} \neg B F(B)\right) \rightarrow\left(\bigwedge_{a \in L} \neg a\right)
\end{aligned}
\]
- Note The loop formula of \(L\) enforces all atoms in \(L\) to be false whenever \(L\) is not externally supported
- Define \(L F(P)=\left\{L F_{P}(L) \mid L \in \operatorname{loop}(P)\right\}\)

\section*{Example}
- \(P=\left\{\begin{array}{lll}a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e\end{array}\right\}\)

- \(\operatorname{loop}(P)=\{\{e\}\}\)

ـ \(L F(P)=\{e \rightarrow b \wedge \neg f\}\)

\section*{Example}
- \(P=\left\{\begin{array}{lll}a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\ b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e\end{array}\right\}\)

- \(\operatorname{loop}(P)=\{\{e\}\}\)
- \(L F(P)=\{e \rightarrow b \wedge \neg f\}\)

\section*{Another example}
- \(P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c & \end{array}\right\}\)


- \(\operatorname{loop}(P)=\{\{c, d\}\}\)
\(L F(P)=\{c \vee d \rightarrow(a \wedge b) \vee a\}\)

\section*{Another example}
- \(P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a, b & d \leftarrow a & e \leftarrow \sim a, \sim b \\ b \leftarrow \sim a & c \leftarrow d & d \leftarrow b, c & \end{array}\right\}\)


- \(\operatorname{loop}(P)=\{\{c, d\}\}\)
- \(L F(P)=\{c \vee d \rightarrow(a \wedge b) \vee a\}\)

\section*{Yet another example}
- \(P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d\end{array}\right\}\)

- \(\operatorname{loop}(P)=\{\{c, d\},\{d, e\},\{c, d, e\}\}\)
\(\operatorname{LF}(P)=\left\{\begin{array}{l}c \vee d \rightarrow a \vee e \\ d \vee e \rightarrow(b \wedge c) \vee(b \wedge \neg a) \\ c \vee d \vee e \rightarrow a \vee(b \wedge \neg a)\end{array}\right\}\)

\section*{Yet another example}
- \(P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d\end{array}\right\}\)

- \(\operatorname{loop}(P)=\{\{c, d\},\{d, e\},\{c, d, e\}\}\)
- \(L F(P)=\left\{\begin{array}{l}c \vee d \rightarrow a \vee e \\ d \vee e \rightarrow(b \wedge c) \vee(b \wedge \neg a) \\ c \vee d \vee e \rightarrow a \vee(b \wedge \neg a)\end{array}\right\}\)

\section*{Yet another example}
- \(P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d\end{array}\right\}\)

- \(\operatorname{loop}(P)=\{\{c, d\},\{d, e\},\{c, d, e\}\}\)

■ \(L F(P)=\left\{\begin{array}{l}c \vee d \rightarrow a \vee e \\ d \vee e \rightarrow(b \wedge c) \vee(b \wedge \neg a) \\ c \vee d \vee e \rightarrow a \vee(b \wedge \neg a)\end{array}\right\}\)

\section*{Yet another example}
- \(P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d\end{array}\right\}\)

- \(\operatorname{loop}(P)=\{\{c, d\},\{d, e\},\{c, d, e\}\}\)
- \(L F(P)=\left\{\begin{array}{l}c \vee d \rightarrow a \vee e \\ d \vee e \rightarrow(b \wedge c) \vee(b \wedge \neg a) \\ c \vee d \vee e \rightarrow a \vee(b \wedge \neg a)\end{array}\right\}\)

\section*{Yet another example}
- \(P=\left\{\begin{array}{llll}a \leftarrow \sim b & c \leftarrow a & d \leftarrow b, c & e \leftarrow b, \sim a \\ b \leftarrow \sim a & c \leftarrow b, d & d \leftarrow e & e \leftarrow c, d\end{array}\right\}\)

- \(\operatorname{loop}(P)=\{\{c, d\},\{d, e\},\{c, d, e\}\}\)
- \(L F(P)=\left\{\begin{array}{l}c \vee d \rightarrow a \vee e \\ d \vee e \rightarrow(b \wedge c) \vee(b \wedge \neg a) \\ c \vee d \vee e \rightarrow a \vee(b \wedge \neg a)\end{array}\right\}\)

\section*{Lin-Zhao Theorem}

\section*{Theorem}

Let \(P\) be a normal logic program and \(X \subseteq A(P)\)
Then, \(X\) is a stable model of \(P\) iff \(X \models C F(P) \cup L F(P)\)

\section*{Loops and loop formulas: Properties}

Let \(X\) be a supported model of normal logic program \(P\)
Then, \(X\) is a stable model of \(P\) iff
\(\square X=\left\{L F_{P}(U) \mid U \subseteq A(P)\right\}\)
\(\square X=\left\{L F_{P}(U) \mid U \subseteq X\right\}\)
\(X \mid=\left\{L F_{P}(L) \mid L \in \operatorname{loop}(P)\right\}\), that is, \(X=L F(P)\)
- \(X=\left\{L F_{P}(L) \mid L \in \operatorname{loop}(P)\right.\) and \(\left.L \subseteq X\right\}\)
- Note If \(X\) is not a stable model of \(P\),
then there is a loop \(L \subseteq X \backslash \operatorname{Cn}\left(P^{X}\right)\) such that \(X \not \vDash L F_{P}(L)\)

\section*{Loops and loop formulas: Properties}

Let \(X\) be a supported model of normal logic program \(P\)
- Then, \(X\) is a stable model of \(P\) iff
- \(X \models\left\{L F_{P}(U) \mid U \subseteq A(P)\right\}\)
- \(X=\left\{L F_{P}(U) \mid U \subseteq X\right\}\)
- \(X=\left\{L F_{P}(L) \mid L \in \operatorname{loop}(P)\right\}\), that is, \(X \models L F(P)\)
- \(X \in\left\{L F_{P}(L) \mid L \in \operatorname{loop}(P)\right.\) and \(\left.L \subseteq X\right\}\)
- Note If \(X\) is not a stable model of \(P\),
then there is a loop \(L \subseteq X \backslash \operatorname{Cn}\left(P^{X}\right)\) such that \(X \not \vDash L F_{P}(L)\)

\section*{Loops and loop formulas: Properties}

Let \(X\) be a supported model of normal logic program \(P\)
- Then, \(X\) is a stable model of \(P\) iff
- \(X \models\left\{L F_{P}(U) \mid U \subseteq A(P)\right\}\)
- \(X=\left\{L F_{P}(U) \mid U \subseteq X\right\}\)
- \(X=\left\{L F_{P}(L) \mid L \in \operatorname{loop}(P)\right\}\), that is, \(X \models L F(P)\)
- \(X \models\left\{L F_{P}(L) \mid L \in \operatorname{loop}(P)\right.\) and \(\left.L \subseteq X\right\}\)
- Note If \(X\) is not a stable model of \(P\), then there is a loop \(L \subseteq X \backslash \operatorname{Cn}\left(P^{X}\right)\) such that \(X \not \vDash L F_{P}(L)\)

\section*{Loops and loop formulas: Properties (ctd)}
- Result If \(\mathcal{P} \nsubseteq \mathcal{N C}{ }^{1} /\) poly, \({ }^{3}\) then there is no translation \(\mathcal{T}\) from logic programs to propositional formulas such that, for each normal logic program \(P\), both of the following conditions hold:

1 The propositional variables in \(\mathcal{T}[P]\) are a subset of \(A(P)\)
2 The size of \(\mathcal{T}[P]\) is polynomial in the size of \(P\)
Every vocabulary-preserving translation from normal logic programs to propositional formulas must be exponential (in the worst case)
> - Translation \(C F(P) \cup L F(P)\) preserves the vocabulary of \(P\) - The number of loops in loop \((P)\) may be exponential in \(|A(P)|\)

\footnotetext{
\({ }^{3}\) A conjecture from complexity theory that is believed to be true
}

\section*{Loops and loop formulas: Properties (ctd)}
- Result If \(\mathcal{P} \nsubseteq \mathcal{N C}{ }^{1} /\) poly, \({ }^{3}\) then there is no translation \(\mathcal{T}\) from logic programs to propositional formulas such that, for each normal logic program \(P\), both of the following conditions hold:
1 The propositional variables in \(\mathcal{T}[P]\) are a subset of \(A(P)\)
2 The size of \(\mathcal{T}[P]\) is polynomial in the size of \(P\)
■ Note Every vocabulary-preserving translation from normal logic programs to propositional formulas must be exponential (in the worst case)
> - Translation \(C F(P) \cup L F(P)\) preserves the vocabulary of \(P\) The number of loops in loop \((P)\) may be exponential in \(|A(P)|\)

\footnotetext{
\({ }^{3}\) A conjecture from complexity theory that is believed to be true
}

\section*{Loops and loop formulas: Properties (ctd)}
- Result If \(\mathcal{P} \nsubseteq \mathcal{N C}{ }^{1} /\) poly, \({ }^{3}\) then there is no translation \(\mathcal{T}\) from logic programs to propositional formulas such that, for each normal logic program \(P\), both of the following conditions hold:
1 The propositional variables in \(\mathcal{T}[P]\) are a subset of \(A(P)\)
2 The size of \(\mathcal{T}[P]\) is polynomial in the size of \(P\)
■ Note Every vocabulary-preserving translation from normal logic programs to propositional formulas must be exponential (in the worst case)
- Observations
- Translation \(C F(P) \cup L F(P)\) preserves the vocabulary of \(P\)
- The number of loops in loop \((P)\) may be exponential in \(|A(P)|\)

\footnotetext{
\({ }^{3}\) A conjecture from complexity theory that is believed to be true
}

\section*{Operational Characterization: Overview}

\author{
34 Partial Interpretations \\ 35 Fitting Operator \\ 36 Unfounded Sets \\ 37 Well-Founded Operator
}

\section*{Outline}

\section*{34 Partial Interpretations}

\section*{35 Fitting Operator}

36 Unfounded Sets
37 Well Founded Operator

\section*{Interlude: Partial interpretations or: 3-valued interpretations}

A partial interpretation maps atoms onto truth values true, false, and unknown
- Representation \(\langle T, F\rangle\), where
- \(T\) is the set of all true atoms and
- \(F\) is the set of all false atoms
- Truth of atoms in \(\mathcal{A} \backslash(T \cup F)\) is unknown
- \(\langle T, F\rangle\) is conflicting if \(T \cap F \neq \emptyset\)
\(\langle T, F\rangle\) is total if \(T \cup F=\mathcal{A}\) and \(T \cap F=\emptyset\)
For \(\left\langle T_{1}, F_{1}\right\rangle\) and \(\left\langle T_{2}, F_{2}\right\rangle\), define
\(\left\langle T_{1}, F_{1}\right\rangle \sqsubseteq\left\langle T_{2}, F_{2}\right\rangle\) iff \(T_{1} \subseteq T_{2}\) and \(F_{1} \subseteq F_{2}\) \(\left\langle T_{1}, F_{1}\right\rangle \sqcup\left\langle T_{2}, F_{2}\right\rangle=\left\langle T_{1} \cup T_{2}, F_{1} \cup F_{2}\right\rangle\)

Torsten Schaub (KRR@UP)

\section*{Interlude: Partial interpretations or: 3-valued interpretations}

A partial interpretation maps atoms onto truth values true, false, and unknown
- Representation \(\langle T, F\rangle\), where
- \(T\) is the set of all true atoms and
- \(F\) is the set of all false atoms
- Truth of atoms in \(\mathcal{A} \backslash(T \cup F)\) is unknown
```

_ \langleT,F\rangle is conflicting if T\capF\not=\emptyset

- }\langleT,F\rangle\mathrm{ is total if }T\cupF=\mathcal{A}\mathrm{ and }T\capF=
For }\langle\mp@subsup{T}{1}{},\mp@subsup{F}{1}{}\rangle\mathrm{ and }\langle\mp@subsup{T}{2}{},\mp@subsup{F}{2}{}\rangle\mathrm{ , define
|}\langle\mp@subsup{T}{1}{},\mp@subsup{F}{1}{}\rangle\sqsubseteq\langle\mp@subsup{T}{2}{},\mp@subsup{F}{2}{}\rangle\mathrm{ iff }\mp@subsup{T}{1}{}\subseteq\mp@subsup{T}{2}{}\mathrm{ and }\mp@subsup{F}{1}{}\subseteq\mp@subsup{F}{2}{
\square\langle\mp@subsup{T}{1}{},\mp@subsup{F}{1}{}\rangle\sqcup\langle\mp@subsup{T}{2}{},\mp@subsup{F}{2}{}\rangle=\langle\mp@subsup{T}{1}{}\cup\mp@subsup{T}{2}{},\mp@subsup{F}{1}{}\cup\mp@subsup{F}{2}{}\rangle

```

\section*{Interlude: Partial interpretations} or: 3-valued interpretations

A partial interpretation maps atoms onto truth values true, false, and unknown
- Representation \(\langle T, F\rangle\), where
- \(T\) is the set of all true atoms and
- \(F\) is the set of all false atoms
- Truth of atoms in \(\mathcal{A} \backslash(T \cup F)\) is unknown
- Properties
- \(\langle T, F\rangle\) is conflicting if \(T \cap F \neq \emptyset\)
- \(\langle T, F\rangle\) is total if \(T \cup F=\mathcal{A}\) and \(T \cap F=\emptyset\) For \(\left\langle T_{1}, F_{1}\right\rangle\) and \(\left\langle T_{2}, F_{2}\right\rangle\), define \(\square\left\langle T_{1}, F_{1}\right\rangle \sqsubseteq\left\langle T_{2}, F_{2}\right\rangle\) iff \(T_{1} \subseteq T_{2}\) and \(F_{1} \subseteq F_{2}\)
\(-\left\langle T_{1}, F_{1}\right\rangle \sqcup\left\langle T_{2}, F_{2}\right\rangle=\left\langle T_{1} \cup T_{2}, F_{1} \cup F_{2}\right\rangle\)

\section*{Interlude: Partial interpretations}
or: 3-valued interpretations
A partial interpretation maps atoms onto truth values true, false, and unknown
- Representation \(\langle T, F\rangle\), where
- \(T\) is the set of all true atoms and
- \(F\) is the set of all false atoms
- Truth of atoms in \(\mathcal{A} \backslash(T \cup F)\) is unknown
- Properties
- \(\langle T, F\rangle\) is conflicting if \(T \cap F \neq \emptyset\)
- \(\langle T, F\rangle\) is total if \(T \cup F=\mathcal{A}\) and \(T \cap F=\emptyset\)
- Definition For \(\left\langle T_{1}, F_{1}\right\rangle\) and \(\left\langle T_{2}, F_{2}\right\rangle\), define
- \(\left\langle T_{1}, F_{1}\right\rangle \sqsubseteq\left\langle T_{2}, F_{2}\right\rangle\) iff \(T_{1} \subseteq T_{2}\) and \(F_{1} \subseteq F_{2}\)
- \(\left\langle T_{1}, F_{1}\right\rangle \sqcup\left\langle T_{2}, F_{2}\right\rangle=\left\langle T_{1} \cup T_{2}, F_{1} \cup F_{2}\right\rangle\)

\section*{Outline}

\section*{34 Partial Interpretations}

\section*{35 Fitting Operator}

36 Unfounded Sets
37 Well-Founded Operator

\section*{Basic idea}
- Idea Extend \(T_{P}\) to normal logic programs
- Logical background The idea is to turn a program's completion into an operator such that
- the head atom of a rule must be true if the rule's body is true
- an atom must be false if the body of each rule having it as head is false

Torsten Schaub (KRR@UP)

\section*{Definition}
- Let \(P\) be a normal logic program

Define
\[
\mathbf{\Phi}_{P}\langle T, F\rangle=\left\langle\mathbf{T}_{P}\langle T, F\rangle, \mathbf{F}_{P}\langle T, F\rangle\right\rangle
\]
where
\[
\begin{aligned}
& \mathbf{T}_{P}\langle T, F\rangle=\left\{h(r) \mid r \in P, B(r)^{+} \subseteq T, B(r)^{-} \subseteq F\right\} \\
& \mathbf{F}_{P}\langle T, F\rangle=\{a \in A(P) \mid
\end{aligned}
\]
\[
\begin{aligned}
& B(r)^{+} \cap F \neq \emptyset \text { or } B(r)^{-} \cap T \neq \emptyset \\
& \quad \text { for each } r \in P \text { such that } h(r)=a\}
\end{aligned}
\]

\section*{Definition}
- Let \(P\) be a normal logic program
- Define
\[
\boldsymbol{\Phi}_{P}\langle T, F\rangle=\left\langle\mathbf{T}_{P}\langle T, F\rangle, \mathbf{F}_{P}\langle T, F\rangle\right\rangle
\]
where
\[
\begin{aligned}
& \mathbf{T}_{P}\langle T, F\rangle=\left\{h(r) \mid r \in P, B(r)^{+} \subseteq T, B(r)^{-} \subseteq F\right\} \\
& \mathbf{F}_{P}\langle T, F\rangle=\{a \in A(P) \mid
\end{aligned}
\]
\[
B(r)^{+} \cap F \neq \emptyset \text { or } B(r)^{-} \cap T \neq \emptyset
\]
\[
\text { for each } r \in P \text { such that } h(r)=a\}
\]

\section*{Example}
\[
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
\]
- Let's iterate \(\boldsymbol{\Phi}_{P}\) on \(\langle\{a\},\{d\}\rangle\) :
\[
\begin{aligned}
\Phi_{P}\langle\{a\},\{d\}\rangle & =\langle\{a, c\},\{b, f\}\rangle \\
\Phi_{P}\langle\{a, c\},\{b, f\}\} & =\langle\{a\},\{b, d, f\}\rangle \\
\Phi_{P}\langle\{a\},\{b, d, f\}\rangle & =\langle\{a, c\},\{b, f\}\rangle
\end{aligned}
\]

\section*{Example}
\[
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
\]
- Let's iterate \(\boldsymbol{\Phi}_{P}\) on \(\langle\{a\},\{d\}\rangle\) :
\[
\begin{aligned}
\boldsymbol{\Phi}_{P}\langle\{a\},\{d\}\rangle & =\langle\{a, c\},\{b, f\}\rangle \\
\boldsymbol{\Phi}_{P}\langle\{a, c\},\{b, f\}\rangle & =\langle\{a\},\{b, d, f\}\rangle \\
\boldsymbol{\Phi}_{P}\langle\{a\},\{b, d, f\}\rangle & =\langle\{a, c\},\{b, f\}\rangle
\end{aligned}
\]

\section*{Fitting semantics}
- Define the iterative variant of \(\boldsymbol{\Phi}_{P}\) analogously to \(T_{P}\) :
\[
\boldsymbol{\Phi}_{P}^{0}\langle T, F\rangle=\langle T, F\rangle \quad \boldsymbol{\Phi}_{P}^{i+1}\langle T, F\rangle=\boldsymbol{\Phi}_{P} \boldsymbol{\Phi}_{P}^{i}\langle T, F\rangle
\]

Define the Fitting semantics of a normal logic program \(P\) as the partial interpretation:
\[
\bigsqcup_{i \geq 0} \Phi_{p}^{i}\langle\emptyset, \emptyset\rangle
\]

\section*{Fitting semantics}
- Define the iterative variant of \(\boldsymbol{\Phi}_{P}\) analogously to \(T_{P}\) :
\[
\boldsymbol{\Phi}_{P}^{0}\langle T, F\rangle=\langle T, F\rangle \quad \boldsymbol{\Phi}_{P}^{i+1}\langle T, F\rangle=\boldsymbol{\Phi}_{P} \boldsymbol{\Phi}_{P}^{i}\langle T, F\rangle
\]
- Define the Fitting semantics of a normal logic program \(P\) as the partial interpretation:
\[
\bigsqcup_{i \geq 0} \boldsymbol{\Phi}_{P}^{i}\langle\emptyset, \emptyset\rangle
\]

\section*{Example}
\[
\begin{aligned}
& P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\} \\
& \boldsymbol{\Phi}^{0}\langle\emptyset, \emptyset\rangle=\quad\langle\emptyset, \emptyset\rangle \\
& \boldsymbol{\Phi}^{1}\langle\emptyset, \emptyset\rangle=\boldsymbol{\Phi}\langle\emptyset, \emptyset\rangle \quad=\langle\{a\},\{f\}\rangle \\
& \Phi^{2}\langle\emptyset, \emptyset\rangle=\Phi\langle\{a\},\{f\}\rangle=\langle\{a\},\{b, f\}\rangle \\
& \Phi^{3}\langle\emptyset, \emptyset\rangle=\Phi\langle\{a\},\{b, f\}\rangle=\langle\{a\},\{b, f\}\rangle \\
& \bigsqcup_{i>0} \Phi^{i}\langle\emptyset, \emptyset\rangle=\langle\{a\},\{b, f\}\rangle
\end{aligned}
\]

\section*{Example}
\[
\begin{aligned}
& P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\} \\
& \Phi^{0}\langle\emptyset, \emptyset\rangle=\quad\langle\emptyset, \emptyset\rangle \\
& \boldsymbol{\Phi}^{1}\langle\emptyset, \emptyset\rangle=\boldsymbol{\Phi}\langle\emptyset, \emptyset\rangle \quad=\langle\{a\},\{f\}\rangle \\
& \boldsymbol{\Phi}^{2}\langle\emptyset, \emptyset\rangle=\boldsymbol{\Phi}\langle\{a\},\{f\}\rangle=\langle\{a\},\{b, f\}\rangle \\
& \boldsymbol{\Phi}^{3}\langle\emptyset, \emptyset\rangle=\boldsymbol{\Phi}\langle\{a\},\{b, f\}\rangle=\langle\{a\},\{b, f\}\rangle \\
& \bigsqcup_{i \geq 0} \Phi^{i}\langle\emptyset, \emptyset\rangle=\langle\{a\},\{b, f\}\rangle
\end{aligned}
\]

\section*{Properties}

Let \(P\) be a normal logic program
- \(\boldsymbol{\Phi}_{P}\langle\emptyset, \emptyset\rangle\) is monotonic

That is, \(\boldsymbol{\Phi}_{P}^{i}\langle\emptyset, \emptyset\rangle \sqsubseteq \boldsymbol{\Phi}_{P}^{i+1}\langle\emptyset, \emptyset\rangle\)
- The Fitting semantics of \(P\) is
- not conflicting,
- and generally not total

\section*{Fitting fixpoints}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Define \(\langle T, F\rangle\) as a Fitting fixpoint of \(P\) if \(\boldsymbol{\Phi}_{P}\langle T, F\rangle=\langle T, F\rangle\)
- The Fitting semantics is the ■-least Fitting fixpoint of \(P\)

Any other Fitting fixpoint extends the Fitting semantics
- Total Fitting fixpoints correspond to supported models

\section*{Fitting fixpoints}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Define \(\langle T, F\rangle\) as a Fitting fixpoint of \(P\) if \(\boldsymbol{\Phi}_{P}\langle T, F\rangle=\langle T, F\rangle\)
- The Fitting semantics is the \(\sqsubseteq\)-least Fitting fixpoint of \(P\)
- Any other Fitting fixpoint extends the Fitting semantics
- Total Fitting fixpoints correspond to supported models

\section*{Example}
\[
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
\]
\(P\) has three total Fitting fixpoints:
\[
\begin{aligned}
& \langle\{a, c\},\{b, d, e, f\}\rangle \\
& \langle\{a, d\},\{b, c, e, f\}\rangle \\
& \langle\{a, c, e\},\{b, d, f\}\rangle
\end{aligned}
\]
\(P\) has three supported models, two of them are stable models

\section*{Example}
\[
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
\]

■ \(P\) has three total Fitting fixpoints:
\[
\begin{aligned}
& \langle\{a, c\},\{b, d, e, f\}\rangle \\
& \langle\{a, d\},\{b, c, e, f\}\rangle \\
& \langle\{a, c, e\},\{b, d, f\}\rangle
\end{aligned}
\]
\(P\) has three supported models, two of them are stable models

\section*{Example}
\[
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
\]
- \(P\) has three total Fitting fixpoints:
\(1\langle\{a, c\},\{b, d, e, f\}\rangle\)
\(2\langle\{a, d\},\{b, c, e, f\}\rangle\)
\(3\langle\{a, c, e\},\{b, d, f\}\rangle\)
- \(P\) has three supported models, two of them are stable models

\section*{Example}
\[
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
\]
- \(P\) has three total Fitting fixpoints:
\(1\langle\{a, c\},\{b, d, e, f\}\rangle\)
\(2\langle\{a, d\},\{b, c, e, f\}\rangle\)
\(3\langle\{a, c, e\},\{b, d, f\}\rangle\)
- \(P\) has three supported models, two of them are stable models

\section*{Properties}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Let \(\boldsymbol{\Phi}_{P}\langle T, F\rangle=\left\langle T^{\prime}, F^{\prime}\right\rangle\)

If \(X\) is a stable model of \(P\) such that \(T \subseteq X\) and \(X \cap F=\emptyset\), then \(T^{\prime} \subseteq X\) and \(X \cap F^{\prime}=\emptyset\)
That is, \(\boldsymbol{\Phi}_{p}\) is stable model preserving
Hence, \(\Phi_{P}\) can be used for approximating stable models and so for propagation in ASP-solvers

However, \(\Phi_{p}\) is still insufficient, because total fixpoints correspond to supported models, not necessarily stable models

The problem is the same as with program completion
The missing piece is non-circularity of derivations !
© Potassco

\section*{Properties}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Let \(\boldsymbol{\Phi}_{P}\langle T, F\rangle=\left\langle T^{\prime}, F^{\prime}\right\rangle\)
- If \(X\) is a stable model of \(P\) such that \(T \subseteq X\) and \(X \cap F=\emptyset\), then \(T^{\prime} \subseteq X\) and \(X \cap F^{\prime}=\emptyset\)
That is, \(\Phi_{P}\) is stable model preserving
Hence, \(\boldsymbol{\Phi}_{P}\) can be used for approximating stable models and so for propagation in ASP-solvers
- However, \(\Phi_{P}\) is still insufficient, because total fixpoints correspond to supported models, not necessarily stable models

The problem is the same as with program completion
The missing piece is non-circularity of derivations !

\section*{Properties}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Let \(\boldsymbol{\Phi}_{P}\langle T, F\rangle=\left\langle T^{\prime}, F^{\prime}\right\rangle\)
- If \(X\) is a stable model of \(P\) such that \(T \subseteq X\) and \(X \cap F=\emptyset\), then \(T^{\prime} \subseteq X\) and \(X \cap F^{\prime}=\emptyset\)
That is, \(\boldsymbol{\Phi}_{P}\) is stable model preserving Hence, \(\boldsymbol{\Phi}_{P}\) can be used for approximating stable models and so for propagation in ASP-solvers

However, \(\Phi_{P}\) is still insufficient, because total fixpoints correspond to supported models, not necessarily stable models

The problem is the same as with program completion
The missing piece is non-circularity of derivations !

\section*{Properties}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Let \(\boldsymbol{\Phi}_{P}\langle T, F\rangle=\left\langle T^{\prime}, F^{\prime}\right\rangle\)
- If \(X\) is a stable model of \(P\) such that \(T \subseteq X\) and \(X \cap F=\emptyset\), then \(T^{\prime} \subseteq X\) and \(X \cap F^{\prime}=\emptyset\)

That is, \(\boldsymbol{\Phi}_{P}\) is stable model preserving
Hence, \(\boldsymbol{\Phi}_{P}\) can be used for approximating stable models and so for propagation in ASP-solvers

■ However, \(\boldsymbol{\Phi}_{P}\) is still insufficient, because total fixpoints correspond to supported models, not necessarily stable models

\section*{The problem is the same as with program completion}

The missing piece is non-circularity of derivations !

\section*{Properties}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Let \(\boldsymbol{\Phi}_{P}\langle T, F\rangle=\left\langle T^{\prime}, F^{\prime}\right\rangle\)
- If \(X\) is a stable model of \(P\) such that \(T \subseteq X\) and \(X \cap F=\emptyset\), then \(T^{\prime} \subseteq X\) and \(X \cap F^{\prime}=\emptyset\)

That is, \(\boldsymbol{\Phi}_{P}\) is stable model preserving
Hence, \(\boldsymbol{\Phi}_{P}\) can be used for approximating stable models and so for propagation in ASP-solvers
- However, \(\boldsymbol{\Phi}_{P}\) is still insufficient, because total fixpoints correspond to supported models, not necessarily stable models
Note The problem is the same as with program completion The missing piece is non-circularity of derivations !

\section*{Properties}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Let \(\boldsymbol{\Phi}_{P}\langle T, F\rangle=\left\langle T^{\prime}, F^{\prime}\right\rangle\)
- If \(X\) is a stable model of \(P\) such that \(T \subseteq X\) and \(X \cap F=\emptyset\), then \(T^{\prime} \subseteq X\) and \(X \cap F^{\prime}=\emptyset\)

That is, \(\boldsymbol{\Phi}_{P}\) is stable model preserving
Hence, \(\boldsymbol{\Phi}_{P}\) can be used for approximating stable models and so for propagation in ASP-solvers
- However, \(\boldsymbol{\Phi}_{P}\) is still insufficient, because total fixpoints correspond to supported models, not necessarily stable models
Note The problem is the same as with program completion The missing piece is non-circularity of derivations !

\section*{Example}
\[
\begin{aligned}
& P=\left\{\begin{array}{lll}
a & \leftarrow & b \\
b & \leftarrow & a
\end{array}\right\} \\
& \Phi_{P}^{0}\langle\emptyset, \emptyset\rangle=\langle\emptyset, \emptyset\rangle \\
& \Phi_{P}^{1}\langle\emptyset, \emptyset\rangle=\langle\emptyset, \emptyset\rangle
\end{aligned}
\]
- That is, Fitting semantics cannot assign false to \(a\) and \(b\), although they can never become true !

\section*{Example}
\[
\begin{aligned}
& P=\left\{\begin{array}{lll}
a & \leftarrow & b \\
b & \leftarrow & a
\end{array}\right\} \\
& \Phi_{P}^{0}\langle\emptyset, \emptyset\rangle=\langle\emptyset, \emptyset\rangle \\
& \Phi_{P}^{1}\langle\emptyset, \emptyset\rangle=\langle\emptyset, \emptyset\rangle
\end{aligned}
\]

That is, Fitting semantics cannot assign false to \(a\) and \(b\), although they can never become true!

\section*{Example}
\[
\begin{aligned}
& P=\left\{\begin{array}{lll}
a & \leftarrow & b \\
b & \leftarrow & a
\end{array}\right\} \\
& \begin{array}{l}
\Phi_{P}^{0}\langle\emptyset, \emptyset\rangle
\end{array}=\langle\emptyset, \emptyset\rangle \\
& \Phi_{P}^{1}\langle\emptyset, \emptyset\rangle=\langle\emptyset, \emptyset\rangle
\end{aligned}
\]
- That is, Fitting semantics cannot assign false to \(a\) and \(b\), although they can never become true!

\section*{Outline}

\section*{34 Partial Interpretations}

\section*{35 Fitting Onerator}

\section*{36 Unfounded Sets}

\section*{37 Well-Founded Operator}

\section*{Unfounded sets}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- A set \(U \subseteq A(P)\) is an unfounded set of \(P\) wrt \(\langle T, F\rangle\), if for each rule \(r \in P\) such that \(h(r) \in U\), we have that
\[
\begin{aligned}
& B(r)^{+} \cap F \neq \emptyset \text { or } B(r)^{-} \cap T \neq \emptyset \text { or } \\
& B(r)^{+} \cap U \neq \emptyset
\end{aligned}
\]

Intuitively, \(\langle T, F\rangle\) is what we already know about \(P\)
Rules satisfying Condition 1 are not usable for further clerivations
Condition 2 is the unfounded set condition treating cyclic derivations: All rules still being usable to derive an atom in \(U\) require an(other) atom in \(U\) to be true

\section*{Unfounded sets}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- A set \(U \subseteq A(P)\) is an unfounded set of \(P\) wrt \(\langle T, F\rangle\),
if for each rule \(r \in P\) such that \(h(r) \in U\), we have that
\[
\begin{aligned}
& B(r)^{+} \cap F \neq \emptyset \text { or } B(r)^{-} \cap T \neq \emptyset \text { or } \\
& B(r)^{+} \cap U \neq \emptyset
\end{aligned}
\]

Intuitively, \(\langle T, F\rangle\) is what we already know about \(P\)
Rules satisfying Condition 1 are not usable for further cerivations
Condition 2 is the unfounded set condition treating cyclic derivations: All rules still being usable to derive an atom in \(U\) require an(other) atom in \(U\) to be true

\section*{Unfounded sets}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- A set \(U \subseteq A(P)\) is an unfounded set of \(P\) wrt \(\langle T, F\rangle\),
if for each rule \(r \in P\) such that \(h(r) \in U\), we have that
\[
\begin{aligned}
& B(r)^{+} \cap F \neq \emptyset \text { or } B(r)^{-} \cap T \neq \emptyset \text { or } \\
& B(r)^{+} \cap U \neq \emptyset
\end{aligned}
\]
- Intuitively, \(\langle T, F\rangle\) is what we already know about \(P\)

Rules satisfying Condition 1 are not usable for further clerivations
Condition 2 is the unfounded set condition treating cyclic derivations: All rules still being usable to derive an atom in \(U\) require an(other) atom in \(U\) to be true

\section*{Unfounded sets}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- A set \(U \subseteq A(P)\) is an unfounded set of \(P\) wrt \(\langle T, F\rangle\), if for each rule \(r \in P\) such that \(h(r) \in U\), we have that
\[
\begin{aligned}
& B(r)^{+} \cap F \neq \emptyset \text { or } B(r)^{-} \cap T \neq \emptyset \text { or } \\
& B(r)^{+} \cap U \neq \emptyset
\end{aligned}
\]

Intuitively, \(\langle T, F\rangle\) is what we already know about \(P\)
Rules satisfying Condition 1 are not usable for further clerivations
Condition 2 is the unfounded set condition treating cyclic derivations: All rules still being usable to derive an atom in \(U\) require an(other) atom in \(U\) to be true

\section*{Unfounded sets}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- A set \(U \subseteq A(P)\) is an unfounded set of \(P\) wrt \(\langle T, F\rangle\), if for each rule \(r \in P\) such that \(h(r) \in U\), we have that
\(1 B(r)^{+} \cap F \neq \emptyset\) or \(B(r)^{-} \cap T \neq \emptyset\) or \(B(r)^{+} \cap U \neq \emptyset\)

Intuitively, \(\langle T, F\rangle\) is what we already know about \(P\)
Rules satisfying Condition 1 are not usable for further derivations
Condition 2 is the unfounded set condition treating cyclic derivations: All rules still being usable to derive an atom in \(U\) require an(other) atom in \(U\) to be true

\section*{Unfounded sets}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- A set \(U \subseteq A(P)\) is an unfounded set of \(P\) wrt \(\langle T, F\rangle\), if for each rule \(r \in P\) such that \(h(r) \in U\), we have that
\(1 B(r)^{+} \cap F \neq \emptyset\) or \(B(r)^{-} \cap T \neq \emptyset\) or \(B(r)^{+} \cap U \neq \emptyset\)

Intuitively, \(\langle T, F\rangle\) is what we already know about \(P\)
Rules satisfying Condition 1 are not usable for further clerivations
Condition 2 is the unfounded set condition treating cyclic derivations: All rules still being usable to derive an atom in \(U\) require an(other) atom in \(U\) to be true

\section*{Unfounded sets}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- A set \(U \subseteq A(P)\) is an unfounded set of \(P\) wrt \(\langle T, F\rangle\), if for each rule \(r \in P\) such that \(h(r) \in U\), we have that
\(1 B(r)^{+} \cap F \neq \emptyset\) or \(B(r)^{-} \cap T \neq \emptyset\) or \(B(r)^{+} \cap U \neq \emptyset\)

Intuitively, \(\langle T, F\rangle\) is what we already know about \(P\)
- Rules satisfying Condition 1 are not usable for further clerivations

Condition 2 is the unfounded set condition treating cyclic derivations: All rules still being usable to derive an atom in \(U\) require an(other) atom in \(U\) to be true

\section*{Unfounded sets}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- A set \(U \subseteq A(P)\) is an unfounded set of \(P\) wrt \(\langle T, F\rangle\), if for each rule \(r \in P\) such that \(h(r) \in U\), we have that
\(1 B(r)^{+} \cap F \neq \emptyset\) or \(B(r)^{-} \cap T \neq \emptyset\) or
\(2 B(r)^{+} \cap U \neq \emptyset\)
Intuitively, \(\langle T, F\rangle\) is what we already know about \(P\)
- Rules satisfying Condition 1 are not usable for further derivations
- Condition 2 is the unfounded set condition treating cyclic derivations: All rules still being usable to derive an atom in \(U\) require an(other) atom in \(U\) to be true

\section*{Unfounded sets}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- A set \(U \subseteq A(P)\) is an unfounded set of \(P\) wrt \(\langle T, F\rangle\), if for each rule \(r \in P\) such that \(h(r) \in U\), we have that
\(1 B(r)^{+} \cap F \neq \emptyset\) or \(B(r)^{-} \cap T \neq \emptyset\) or
\(2 B(r)^{+} \cap U \neq \emptyset\)
Intuitively, \(\langle T, F\rangle\) is what we already know about \(P\)
- Rules satisfying Condition 1 are not usable for further derivations
- Condition 2 is the unfounded set condition treating cyclic derivations: All rules still being usable to derive an atom in \(U\) require an(other) atom in \(U\) to be true

\section*{Example}
\[
P=\left\{\begin{array}{lll}
a & \leftarrow & b \\
b & \leftarrow & a
\end{array}\right\}
\]
\(\square \emptyset\) is an unfounded set (by definition)
- \(\{a\}\) is not an unfounded set of \(P\) wrt \(\langle\emptyset, \emptyset\rangle\)
- \(\{a\}\) is an unfounded set of \(P\) wrt \(\langle\emptyset,\{b\}\rangle\)
- \(\{a\}\) is not an unfounded set of \(P\) wrt \(\langle\{b\}, \emptyset\rangle\)

Analogously for \(\{b\}\)
- \(\{a, b\}\) is an unfounded set of \(P\) wrt \(\langle\emptyset, \emptyset\rangle\)
\(\{a, b\}\) is an unfounded set of \(P\) wrt any partial interpretation

\section*{Example}
\[
P=\left\{\begin{array}{lll}
a & \leftarrow & b \\
b & \leftarrow & a
\end{array}\right\}
\]
- \(\emptyset\) is an unfounded set (by definition)
- \(\{a\}\) is not an unfounded set of \(P\) wrt \(\langle\emptyset, \emptyset\rangle\)
\(\square\{a\}\) is an unfounded set of \(P\) wrt \(\langle\emptyset,\{b\}\rangle\) \(\{a\}\) is not an unfounded set of \(P\) wrt \(\langle\{b\}, \emptyset\rangle\)

Analogously for \(\{b\}\)
\(\{a, b\}\) is an unfounded set of \(P\) wrt \(\langle\emptyset, \emptyset\rangle\)
\(\{a, b\}\) is an unfounded set of \(P\) wrt any partial interpretation

\section*{Example}
\[
P=\left\{\begin{array}{lll}
a & \leftarrow & b \\
b & \leftarrow & a
\end{array}\right\}
\]
- \(\emptyset\) is an unfounded set (by definition)
- \(\{a\}\) is not an unfounded set of \(P\) wrt \(\langle\emptyset, \emptyset\rangle\)
- \(\{a\}\) is an unfounded set of \(P\) wrt \(\langle\emptyset,\{b\}\rangle\)
- \(\{a\}\) is not an unfounded set of \(P\) wrt \(\langle\{b\}, \emptyset\rangle\)

Analogously for \(\{b\}\)
\(\{a, b\}\) is an unfounded set of \(P\) wrt \(\langle\emptyset, \emptyset\rangle\)
\(\{a, b\}\) is an unfounded set of \(P\) wrt any partial interpretation

Torsten Schaub (KRR@UP)

\section*{Example}
\[
P=\left\{\begin{array}{lll}
a & \leftarrow & b \\
b & \leftarrow & a
\end{array}\right\}
\]
- \(\emptyset\) is an unfounded set (by definition)
- \(\{a\}\) is not an unfounded set of \(P\) wrt \(\langle\emptyset, \emptyset\rangle\)
- \(\{a\}\) is an unfounded set of \(P\) wrt \(\langle\emptyset,\{b\}\rangle\)
- \(\{a\}\) is not an unfounded set of \(P\) wrt \(\langle\{b\}, \emptyset\rangle\)
- Analogously for \(\{b\}\)
\(\{a, b\}\) is an unfounded set of \(P\) wrt \(\langle\emptyset, \emptyset\rangle\)
\(\{a, b\}\) is an unfounded set of \(P\) wrt any partial interpretation

Torsten Schaub (KRR@UP)

\section*{Example}
\[
P=\left\{\begin{array}{lll}
a & \leftarrow & b \\
b & \leftarrow & a
\end{array}\right\}
\]
- \(\emptyset\) is an unfounded set (by definition)
- \(\{a\}\) is not an unfounded set of \(P\) wrt \(\langle\emptyset, \emptyset\rangle\)
- \(\{a\}\) is an unfounded set of \(P\) wrt \(\langle\emptyset,\{b\}\rangle\)
- \(\{a\}\) is not an unfounded set of \(P\) wrt \(\langle\{b\}, \emptyset\rangle\)
- Analogously for \(\{b\}\)
\(\square\{a, b\}\) is an unfounded set of \(P\) wrt \(\langle\emptyset, \emptyset\rangle\) \(\{a, b\}\) is an unfounded set of \(P\) wrt any partial interpretation

\section*{Example}
\[
P=\left\{\begin{array}{lll}
a & \leftarrow & b \\
b & \leftarrow & a
\end{array}\right\}
\]
- \(\emptyset\) is an unfounded set (by definition)
- \(\{a\}\) is not an unfounded set of \(P\) wrt \(\langle\emptyset, \emptyset\rangle\)
- \(\{a\}\) is an unfounded set of \(P\) wrt \(\langle\emptyset,\{b\}\rangle\)
- \(\{a\}\) is not an unfounded set of \(P\) wrt \(\langle\{b\}, \emptyset\rangle\)
- Analogously for \(\{b\}\)
- \(\{a, b\}\) is an unfounded set of \(P\) wrt \(\langle\emptyset, \emptyset\rangle\)
\(\square\{a, b\}\) is an unfounded set of \(P\) wrt any partial interpretation

\section*{Example}
\[
P=\left\{\begin{array}{lll}
a & \leftarrow & b \\
b & \leftarrow & a
\end{array}\right\}
\]
- \(\emptyset\) is an unfounded set (by definition)
- \(\{a\}\) is not an unfounded set of \(P\) wrt \(\langle\emptyset, \emptyset\rangle\)
- \(\{a\}\) is an unfounded set of \(P\) wrt \(\langle\emptyset,\{b\}\rangle\)
- \(\{a\}\) is not an unfounded set of \(P\) wrt \(\langle\{b\}, \emptyset\rangle\)
- Analogously for \(\{b\}\)
- \(\{a, b\}\) is an unfounded set of \(P\) wrt \(\langle\emptyset, \emptyset\rangle\)
\(\square\{a, b\}\) is an unfounded set of \(P\) wrt any partial interpretation

\section*{Example}
\[
P=\left\{\begin{array}{lll}
a & \leftarrow & b \\
b & \leftarrow & a
\end{array}\right\}
\]
- \(\emptyset\) is an unfounded set (by definition)
- \(\{a\}\) is not an unfounded set of \(P\) wrt \(\langle\emptyset, \emptyset\rangle\)
- \(\{a\}\) is an unfounded set of \(P\) wrt \(\langle\emptyset,\{b\}\rangle\)
- \(\{a\}\) is not an unfounded set of \(P\) wrt \(\langle\{b\}, \emptyset\rangle\)
- Analogously for \(\{b\}\)
- \(\{a, b\}\) is an unfounded set of \(P\) wrt \(\langle\emptyset, \emptyset\rangle\)
- \(\{a, b\}\) is an unfounded set of \(P\) wrt any partial interpretation

\section*{Greatest unfounded sets}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- The greatest unfounded set of \(P\) wrt \(\langle T, F\rangle\) is the union of all unfounded sets of \(P\) wrt \(\langle T, F\rangle\)
It is denoted by \(\mathrm{U}_{P}\langle T, F\rangle\)
Alternatively, we may define
\[
\begin{aligned}
& \mathrm{U}_{P}\langle T, F\rangle=A(P) \backslash \operatorname{Cn}\left(\left\{r \in P \mid B(r)^{+} \cap F=\emptyset\right\}^{T}\right) \\
& C n\left(\left\{r \in P \mid B(r)^{+} \cap F=\emptyset\right\}^{T}\right) \text { contains all non-circularly } \\
& \text { derivable atoms from } P \text { wrt }\langle T, F\rangle
\end{aligned}
\]

\section*{Greatest unfounded sets}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Observation The union of two unfounded sets is an unfounded set
- The greatest unfounded set of \(P\) wrt \(\langle T, F\rangle\) is the union of all unfounded sets of \(P\) wrt \(\langle T, F\rangle\)
It is denoted by \(\mathbf{U}_{P}\langle T, F\rangle\)
Alternatively, we may define
\[
\begin{aligned}
& \qquad \mathbf{U}_{P}\langle T, F\rangle=A(P) \backslash C n\left(\left\{r \in P \mid B(r)^{+} \cap F=\emptyset\right\}^{T}\right) \\
& \text { Note } C n\left(\left\{r \in P \mid B(r)^{+} \cap F=\emptyset\right\}^{T}\right) \text { contains all non-circularly } \\
& \text { derivable atoms from } P \text { wrt }\langle T, F\rangle
\end{aligned}
\]

\section*{Greatest unfounded sets}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Observation The union of two unfounded sets is an unfounded set
- The greatest unfounded set of \(P\) wrt \(\langle T, F\rangle\) is the union of all unfounded sets of \(P\) wrt \(\langle T, F\rangle\)
It is denoted by \(\mathbf{U}_{P}\langle T, F\rangle\)
\(\square\) Alternatively, we may define
\[
\begin{aligned}
& \qquad \mathrm{U}_{P}\langle T, F\rangle=A(P) \backslash \operatorname{Cn}\left(\left\{r \in P \mid B(r)^{+} \cap F=\emptyset\right\}^{T}\right) \\
& \text { Non } \operatorname{Cn}\left(\left\{r \in P \mid B(r)^{+} \cap F=\emptyset\right\}^{T}\right) \text { contains all non-circularly } \\
& \text { derivable atoms from } P \text { wrt }\langle T, F\rangle
\end{aligned}
\]

\section*{Greatest unfounded sets}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Observation The union of two unfounded sets is an unfounded set
- The greatest unfounded set of \(P\) wrt \(\langle T, F\rangle\) is the union of all unfounded sets of \(P\) wrt \(\langle T, F\rangle\)
It is denoted by \(\mathbf{U}_{P}\langle T, F\rangle\)
- Alternatively, we may define
\[
\begin{aligned}
& \qquad \mathbf{U}_{P}\langle T, F\rangle=A(P) \backslash C n\left(\left\{r \in P \mid B(r)^{+} \cap F=\emptyset\right\}^{T}\right) \\
& \text { Note } C n\left(\left\{r \in P \mid B(r)^{+} \cap F=\emptyset\right\}^{T}\right) \text { contains all non-circularly } \\
& \text { derivable atoms from } P \text { wrt }\langle T, F\rangle
\end{aligned}
\]

\section*{Greatest unfounded sets}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Observation The union of two unfounded sets is an unfounded set
- The greatest unfounded set of \(P\) wrt \(\langle T, F\rangle\) is the union of all unfounded sets of \(P\) wrt \(\langle T, F\rangle\)
It is denoted by \(\mathbf{U}_{P}\langle T, F\rangle\)
- Alternatively, we may define
\[
\begin{aligned}
& \qquad \mathbf{U}_{P}\langle T, F\rangle=A(P) \backslash C n\left(\left\{r \in P \mid B(r)^{+} \cap F=\emptyset\right\}^{T}\right) \\
& \text { Note } C n\left(\left\{r \in P \mid B(r)^{+} \cap F=\emptyset\right\}^{T}\right) \text { contains all non-circularly } \\
& \text { derivable atoms from } P \text { wrt }\langle T, F\rangle
\end{aligned}
\]

\section*{Greatest unfounded sets}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Observation The union of two unfounded sets is an unfounded set
- The greatest unfounded set of \(P\) wrt \(\langle T, F\rangle\) is the union of all unfounded sets of \(P\) wrt \(\langle T, F\rangle\)
It is denoted by \(\mathbf{U}_{P}\langle T, F\rangle\)
- Alternatively, we may define
\[
\mathbf{U}_{P}\langle T, F\rangle=A(P) \backslash C n\left(\left\{r \in P \mid B(r)^{+} \cap F=\emptyset\right\}^{T}\right)
\]
- Note \(\operatorname{Cn}\left(\left\{r \in P \mid B(r)^{+} \cap F=\emptyset\right\}^{T}\right)\) contains all non-circularly derivable atoms from \(P\) wrt \(\langle T, F\rangle\)

\section*{Outline}

\section*{34 Partial Interpretations}

\section*{35 Fitting Onerator}

36 Unfounded Sets
37 Well-Founded Operator

\section*{Well-founded operator}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Observation Condition 1 (in the definition of an unfounded set) corresponds to \(\mathbf{F}_{p}\langle T, F\rangle\) of Fitting's \(\boldsymbol{\Phi}_{P}\langle T, F\rangle\)

Extend (negative part of) Fitting's operator \(\Phi_{P}\)
That is,
a keep definition of \(T_{p}\langle T, F\rangle\) from \(\Phi_{P}\langle T, F\rangle\) and
replace \(\mathbf{F}_{p}\langle T, F\rangle\) from \(\Phi_{P}\langle T, F\rangle\) by \(U_{P}\langle T, F\rangle\)
In words, an atom must be false
if it belongs to the greatest unfouncled set
\[
\begin{aligned}
& \Omega_{P}\langle T, F\rangle=\left\langle\mathbf{T}_{P}\langle T, F\rangle, \mathbf{U}_{P}\langle T, F\rangle\right\rangle \\
& \boldsymbol{\Phi}_{P}\langle T, F\rangle \sqsubseteq \Omega_{P}\langle T, F\rangle
\end{aligned}
\]

\section*{Well-founded operator}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Observation Condition 1 (in the definition of an unfounded set) corresponds to \(\mathbf{F}_{P}\langle T, F\rangle\) of Fitting's \(\boldsymbol{\Phi}_{P}\langle T, F\rangle\)
- Idea Extend (negative part of) Fitting's operator \(\boldsymbol{\Phi}_{P}\)

That is,
- keep definition of \(\mathbf{T}_{P}\langle T, F\rangle\) from \(\boldsymbol{\Phi}_{P}\langle T, F\rangle\) and
- replace \(\mathbf{F}_{P}\langle T, F\rangle\) from \(\boldsymbol{\Phi}_{P}\langle T, F\rangle\) by \(\mathbf{U}_{P}\langle T, F\rangle\)
- In words, an atom must be false
if it belongs to the greatest unfounded set
\[
\begin{aligned}
& \Omega_{P}\langle T, F\rangle=\left\langle\mathbf{T}_{P}\langle T, F\rangle, \mathbf{U}_{P}\langle T, F\rangle\right\rangle \\
& \boldsymbol{\Phi}_{P}\langle T, F\rangle \sqsubseteq \Omega_{P}\langle T, F\rangle
\end{aligned}
\]

\section*{Well-founded operator}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Observation Condition 1 (in the definition of an unfounded set) corresponds to \(\mathbf{F}_{P}\langle T, F\rangle\) of Fitting's \(\boldsymbol{\Phi}_{P}\langle T, F\rangle\)
- Idea Extend (negative part of) Fitting's operator \(\boldsymbol{\Phi}_{P}\)

That is,
- keep definition of \(\mathbf{T}_{P}\langle T, F\rangle\) from \(\boldsymbol{\Phi}_{P}\langle T, F\rangle\) and
- replace \(\mathbf{F}_{P}\langle T, F\rangle\) from \(\boldsymbol{\Phi}_{P}\langle T, F\rangle\) by \(\mathbf{U}_{P}\langle T, F\rangle\)
- In words, an atom must be false
if it belongs to the greatest unfounded set
\[
\begin{aligned}
& \Omega_{P}\langle T, F\rangle=\left\langle\mathbf{T}_{P}\langle T, F\rangle, \mathbf{U}_{P}\langle T, F\rangle\right\rangle \\
& \boldsymbol{\Phi}_{P}\langle T, F\rangle \sqsubseteq \Omega_{P}\langle T, F\rangle
\end{aligned}
\]

\section*{Well-founded operator}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Observation Condition 1 (in the definition of an unfounded set) corresponds to \(\mathbf{F}_{p}\langle T, F\rangle\) of Fitting's \(\boldsymbol{\Phi}_{P}\langle T, F\rangle\)
- Idea Extend (negative part of) Fitting's operator \(\boldsymbol{\Phi}_{P}\)

That is,
- keep definition of \(\mathbf{T}_{P}\langle T, F\rangle\) from \(\boldsymbol{\Phi}_{P}\langle T, F\rangle\) and
- replace \(\mathbf{F}_{P}\langle T, F\rangle\) from \(\boldsymbol{\Phi}_{P}\langle T, F\rangle\) by \(\mathbf{U}_{P}\langle T, F\rangle\)
- In words, an atom must be false if it belongs to the greatest unfounded set
\[
\begin{aligned}
& \Omega_{P}\langle T, F\rangle=\left\langle\mathbf{T}_{P}\langle T, F\rangle, \mathbf{U}_{P}\langle T, F\rangle\right\rangle \\
& \boldsymbol{\Phi}_{P}\langle T, F\rangle \sqsubseteq \Omega_{P}\langle T, F\rangle
\end{aligned}
\]

\section*{Well-founded operator}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Observation Condition 1 (in the definition of an unfounded set) corresponds to \(\mathbf{F}_{P}\langle T, F\rangle\) of Fitting's \(\boldsymbol{\Phi}_{P}\langle T, F\rangle\)
- Idea Extend (negative part of) Fitting's operator \(\boldsymbol{\Phi}_{P}\)

That is,
- keep definition of \(\mathbf{T}_{P}\langle T, F\rangle\) from \(\boldsymbol{\Phi}_{P}\langle T, F\rangle\) and
- replace \(\mathbf{F}_{P}\langle T, F\rangle\) from \(\boldsymbol{\Phi}_{P}\langle T, F\rangle\) by \(\mathbf{U}_{P}\langle T, F\rangle\)
- In words, an atom must be false if it belongs to the greatest unfounded set
- Definition \(\Omega_{P}\langle T, F\rangle=\left\langle\mathbf{T}_{P}\langle T, F\rangle, \mathbf{U}_{P}\langle T, F\rangle\right\rangle\)
- Property \(\boldsymbol{\Phi}_{P}\langle T, F\rangle \sqsubseteq \boldsymbol{\Omega}_{P}\langle T, F\rangle\)

\section*{Example}
\[
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
\]
- Let's iterate \(\Omega_{P_{1}}\) on \(\langle\{c\}, \emptyset\rangle\) :
\[
\begin{aligned}
\Omega_{P}\langle\{c\},(d\rangle & =\langle\{a\},\{d, f\}\rangle \\
\Omega_{P}\langle\{a\},\{d, f\}\rangle & =\{\{a, c\},\{b, e, f\}\rangle \\
\Omega_{P}\langle\{a, c\},\{b, e, f\}\rangle & =\langle\{a\},\{b, d, e, f\}\} \\
\Omega_{P}\langle\{a\},\{b, d, e, f\}\rangle & =\langle\{a, c\},\{b, e, f\}\rangle
\end{aligned}
\]

\section*{Example}
\[
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
\]
- Let's iterate \(\Omega_{P_{1}}\) on \(\langle\{c\}, \emptyset\rangle\) :
\[
\begin{aligned}
\Omega_{P}\langle\{c\}, \emptyset\rangle & =\langle\{a\},\{d, f\}\rangle \\
\Omega_{P}\langle\{a\},\{d, f\}\rangle & =\langle\{a, c\},\{b, e, f\}\rangle \\
\Omega_{P}\langle\{a, c\},\{b, e, f\}\rangle & =\langle\{a\},\{b, d, e, f\}\rangle \\
\Omega_{P}\langle\{a\},\{b, d, e, f\}\rangle & =\langle\{a, c\},\{b, e, f\}\rangle
\end{aligned}
\]

\section*{Well-founded semantics}
- Define the iterative variant of \(\Omega_{P}\) analogously to \(\boldsymbol{\Phi}_{P}\) :
\[
\Omega_{P}^{0}\langle T, F\rangle=\langle T, F\rangle \quad \Omega_{P}^{i+1}\langle T, F\rangle=\Omega_{P} \Omega_{P}^{i}\langle T, F\rangle
\]
- Define the well-founded semantics of a normal logic program \(P\) as the partial interpretation:
\[
\bigsqcup_{i \geq 0} \Omega_{p}^{i}\langle\emptyset, \phi\rangle
\]

\section*{Well-founded semantics}
- Define the iterative variant of \(\Omega_{P}\) analogously to \(\boldsymbol{\Phi}_{P}\) :
\[
\Omega_{P}^{0}\langle T, F\rangle=\langle T, F\rangle \quad \Omega_{P}^{i+1}\langle T, F\rangle=\Omega_{P} \Omega_{P}^{i}\langle T, F\rangle
\]

■ Define the well-founded semantics of a normal logic program \(P\) as the partial interpretation:
\[
\bigsqcup_{i \geq 0} \Omega_{p}^{i}\langle\emptyset, \emptyset\rangle
\]

\section*{Example}
\[
\begin{aligned}
& P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\} \\
& \Omega^{0}\langle\emptyset, \emptyset\rangle=\quad\langle\emptyset, \emptyset\rangle \\
& \Omega^{1}\langle\emptyset, \emptyset\rangle=\Omega\langle\emptyset, \emptyset\rangle \quad=\langle\{a\},\{f\}\rangle \\
& \Omega^{2}\langle\emptyset, \emptyset\rangle=\Omega\langle\{a\},\{f\}\rangle=\langle\{a\},\{b, e, f\}\rangle \\
& \Omega^{3}\langle\emptyset, \emptyset\rangle=\Omega\langle\{a\},\{b, e, f\}\rangle=\langle\{a\},\{b, e, f\}\rangle \\
& \bigsqcup_{i \geq 0} \Omega^{i}\langle\emptyset, \emptyset\rangle=\langle\{a\},\{b, e, f\}\rangle
\end{aligned}
\]

\section*{Example}
\[
\begin{aligned}
& P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\} \\
& \Omega^{0}\langle\emptyset, \emptyset\rangle=\quad\langle\emptyset, \emptyset\rangle \\
& \Omega^{1}\langle\emptyset, \emptyset\rangle=\Omega\langle\emptyset, \emptyset\rangle \quad=\langle\{a\},\{f\}\rangle \\
& \Omega^{2}\langle\emptyset, \emptyset\rangle=\Omega\{\{a\},\{f\}\rangle=\langle\{a\},\{b, e, f\}\rangle \\
& \Omega^{3}\langle\emptyset, \emptyset\rangle=\Omega\{\{a\},\{b, e, f\}\rangle=\langle\{a\},\{b, e, f\}\rangle \\
& \bigsqcup_{i>0} \Omega^{i}\langle\emptyset, \emptyset\rangle=\langle\{\mathrm{a}\},\{b, e, f\}\rangle
\end{aligned}
\]

\section*{Properties}

Let \(P\) be a normal logic program
- \(\Omega_{p}\langle\emptyset, \emptyset\rangle\) is monotonic

That is, \(\Omega_{P}^{i}\langle\emptyset, \emptyset\rangle \sqsubseteq \Omega_{P}^{i+1}\langle\emptyset, \emptyset\rangle\)
■ The well-founded semantics of \(P\) is
- not conflicting,
- and generally not total
- We have \(\bigsqcup_{i \geq 0} \Phi_{P}^{i}\langle\emptyset, \emptyset\rangle \sqsubseteq \bigsqcup_{i \geq 0} \Omega_{P}^{i}\langle\emptyset, \emptyset\rangle\)

\section*{Well-founded fixpoints}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Define \(\langle T, F\rangle\) as a well-founded fixpoint of \(P\) if \(\Omega_{P}\langle T, F\rangle=\langle T, F\rangle\)
- The well-founded semantics is the \(\sqsubseteq\)-least well-founded fixpoint of \(P\)
- Any other well-founded fixpoint extends the well-founded semantics
- Total well-founded fixpoints correspond to stable models

\section*{Well-founded fixpoints}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Define \(\langle T, F\rangle\) as a well-founded fixpoint of \(P\) if \(\Omega_{P}\langle T, F\rangle=\langle T, F\rangle\)
- The well-founded semantics is the \(\sqsubseteq\)-least well-founded fixpoint of \(P\)
- Any other well-founded fixpoint extends the well-founded semantics
- Total well-founded fixpoints correspond to stable models

\section*{Well-founded fixpoints: Example}
\[
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
\]
\(P\) has two total well-founded fixpoints:
\[
\begin{aligned}
& \langle\{a, c\},\{b, d, e, f\}\rangle \\
& \langle\{a, d\},\{b, c, e, f\}\rangle
\end{aligned}
\]

Both of them represent stable models

\section*{Well-founded fixpoints: Example}
\[
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
\]
- \(P\) has two total well-founded fixpoints:
\(1\langle\{a, c\},\{b, d, e, f\}\rangle\)
\(2\langle\{a, d\},\{b, c, e, f\}\rangle\)
Both of them represent stable models

\section*{Well-founded fixpoints: Example}
\[
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
\]
- \(P\) has two total well-founded fixpoints:
\(1\langle\{a, c\},\{b, d, e, f\}\rangle\)
\(2\langle\{a, d\},\{b, c, e, f\}\rangle\)
Both of them represent stable models

\section*{Well-founded fixpoints: Example}
\[
P=\left\{\begin{array}{lll}
a \leftarrow & c \leftarrow a, \sim d & e \leftarrow b, \sim f \\
b \leftarrow \sim a & d \leftarrow \sim c, \sim e & e \leftarrow e
\end{array}\right\}
\]
- \(P\) has two total well-founded fixpoints:
\(1\langle\{a, c\},\{b, d, e, f\}\rangle\)
\(2\langle\{a, d\},\{b, c, e, f\}\rangle\)
- Both of them represent stable models

\section*{Properties}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Let \(\Omega_{p}\langle T, F\rangle=\left\langle T^{\prime}, F^{\prime}\right\rangle\)
- If \(X\) is a stable model of \(P\) such that \(T \subseteq X\) and \(X \cap F=\emptyset\), then \(T^{\prime} \subseteq X\) and \(X \cap F^{\prime}=\emptyset\)
That is, \(\Omega_{p}\) is stable model preserving
Hence, \(\Omega_{p}\) can be used for approximating stable models and so for propagation in ASP-solvers

In contrast to \(\boldsymbol{\Phi}_{P}\), operator \(\Omega_{P}\) is sufficient for propagation because total fixpoints correspond to stable models

In addition to \(\Omega_{P}\), most ASP-solvers apply backward propagation, originating from program completion (although this is unnecessary from a formal point of view)

\section*{Properties}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Let \(\Omega_{p}\langle T, F\rangle=\left\langle T^{\prime}, F^{\prime}\right\rangle\)
- If \(X\) is a stable model of \(P\) such that \(T \subseteq X\) and \(X \cap F=\emptyset\), then \(T^{\prime} \subseteq X\) and \(X \cap F^{\prime}=\emptyset\)
That is, \(\Omega_{p}\) is stable model preserving
Hence, \(\Omega_{p}\) can be used for approximating stable models and so for propagation in ASP-solvers

In contrast to \(\Phi_{p}\), operator \(\Omega_{p}\) is sufficient for propagation because total fixpoints correspond to stable models

In addition to \(\Omega_{p}\), most ASP-solvers apply backward propagation, originating from program completion (although this is unnecessary from a formal point of view)

\section*{Properties}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Let \(\Omega_{p}\langle T, F\rangle=\left\langle T^{\prime}, F^{\prime}\right\rangle\)
- If \(X\) is a stable model of \(P\) such that \(T \subseteq X\) and \(X \cap F=\emptyset\), then \(T^{\prime} \subseteq X\) and \(X \cap F^{\prime}=\emptyset\)
That is, \(\Omega_{P}\) is stable model preserving
Hence, \(\Omega_{p}\) can be used for approximating stable models and so for propagation in ASP-solvers
\(\square\) In contrast to \(\Phi_{p}\), operator \(\Omega_{p}\) is sufficient for propagation because total fixpoints correspond to stable models
- Notc In addition to \(\Omega_{P}\), most ASP-solvers apply backward propagation, originating from program completion (although this is unnecessary from a formal point of view)

\section*{Properties}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Let \(\Omega_{p}\langle T, F\rangle=\left\langle T^{\prime}, F^{\prime}\right\rangle\)
- If \(X\) is a stable model of \(P\) such that \(T \subseteq X\) and \(X \cap F=\emptyset\), then \(T^{\prime} \subseteq X\) and \(X \cap F^{\prime}=\emptyset\)
That is, \(\Omega_{P}\) is stable model preserving
Hence, \(\Omega_{p}\) can be used for approximating stable models and so for propagation in ASP-solvers

■ In contrast to \(\boldsymbol{\Phi}_{P}\), operator \(\Omega_{p}\) is sufficient for propagation because total fixpoints correspond to stable models

In addition to \(\Omega_{p}\), most ASP-solvers apply backward
propagation, originating from program completion
(although this is unnecessary from a formal point of view)

\section*{Properties}

Let \(P\) be a normal logic program, and let \(\langle T, F\rangle\) be a partial interpretation
- Let \(\Omega_{P}\langle T, F\rangle=\left\langle T^{\prime}, F^{\prime}\right\rangle\)
- If \(X\) is a stable model of \(P\) such that \(T \subseteq X\) and \(X \cap F=\emptyset\), then \(T^{\prime} \subseteq X\) and \(X \cap F^{\prime}=\emptyset\)
That is, \(\Omega_{P}\) is stable model preserving
Hence, \(\Omega_{p}\) can be used for approximating stable models and so for propagation in ASP-solvers

■ In contrast to \(\boldsymbol{\Phi}_{P}\), operator \(\Omega_{p}\) is sufficient for propagation because total fixpoints correspond to stable models

■ Note In addition to \(\Omega_{p}\), most ASP-solvers apply backward propagation, originating from program completion
(although this is unnecessary from a formal point of view)

\section*{Proof-theoretic Characterization: \\ Overview}

\author{
38 Tableau Calculi \\ 39 Tableau Calculi for ASP \\ 40 Tableau Calculi characterizing ASP solvers \\ 41 Proof complexity
}

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

\section*{Outline}

\section*{38 Tableau Calculi \\ 39 Tableau Calculi for ASP \\ 40 Tableau Calculi characterizing ASP solvers 41 Droof complexity}

\section*{Motivation}
- Goal Analyze computations in ASP solvers
- Wanted A declarative and fine-grained instrument for characterizing operations as well as strategies of ASP solvers
- Idea View stable model computations as derivations in an inference system

Consider Tableau-based proof systems for analyzing ASP solving

\section*{Motivation}
- Goal Analyze computations in ASP solvers
- Wanted A declarative and fine-grained instrument for characterizing operations as well as strategies of ASP solvers
- Idea View stable model computations as derivations in an inference system
Consider Tableau-based proof systems for analyzing ASP solving

\section*{Motivation}
- Goal Analyze computations in ASP solvers
- Wanted A declarative and fine-grained instrument for characterizing operations as well as strategies of ASP solvers
- Idea View stable model computations as derivations in an inference system
Consider Tableau-based proof systems for analyzing ASP solving

\section*{Tableau calculi}

■ Traditionally, tableau calculi are used for
- automated theorem proving and
- proof theoretical analysis
in classical as well as non-classical logics
- General idea Given an input, prove some property by decomposition Decomposition is done by applying deduction rules
- For details, see Handbook of Tableau Methods, Kluwer, 1999

\section*{General definitions}
- A tableau is a (mostly binary) tree
- A branch in a tableau is a path from the root to a leaf

A branch containing \(\gamma_{1}, \ldots, \gamma_{m}\) can be extended by applying tableau rules of form


> Rules of the former format append entries \(\alpha_{1}, \ldots, \alpha_{n}\) to the branch
> Rules of the latter format create multiple sub-branches for \(\beta_{1}, \ldots, \beta_{n}\)

\section*{General definitions}
- A tableau is a (mostly binary) tree
- A branch in a tableau is a path from the root to a leaf
- A branch containing \(\gamma_{1}, \ldots, \gamma_{m}\) can be extended by applying tableau rules of form

- Rules of the former format append entries \(\alpha_{1}, \ldots, \alpha_{n}\) to the branch Rules of the latter format create multiple sub-branches for \(\beta_{1}, \ldots, \beta_{n}\)

\section*{General definitions}
- A tableau is a (mostly binary) tree
- A branch in a tableau is a path from the root to a leaf
- A branch containing \(\gamma_{1}, \ldots, \gamma_{m}\) can be extended by applying tableau rules of form


- Rules of the former format append entries \(\alpha_{1}, \ldots, \alpha_{n}\) to the branch
- Rules of the latter format create multiple sub-branches for \(\beta_{1}, \ldots, \beta_{n}\)

\section*{Example}
- A simple tableau calculus for proving unsatisfiability of propositional formulas, composed from \(\neg, \wedge\), and \(\vee\), consists of rules
\[
\begin{gathered}
\neg \neg \alpha \\
\alpha
\end{gathered} \frac{\alpha_{1} \wedge \alpha_{2}}{\alpha_{1}} \quad \frac{\beta_{1} \vee \beta_{2}}{\alpha_{2}} \quad \frac{\beta_{1} \mid \beta_{2}}{}
\]
- All rules are semantically valid, when interpreting entries in a branch conjunctively and distinct (sub-)branches as connected disjunctively
a A propositional formula \(\varphi\) is unsatisfiable iff there is a tableau with \(\varphi\) as the root node such that
1 all other entries can be produced by tableau rules and
2 every branch contains some formulas \(\alpha\) and \(\neg \alpha\)

\section*{Example}
- A simple tableau calculus for proving unsatisfiability of propositional formulas, composed from \(\neg, \wedge\), and \(\vee\), consists of rules
\[
\begin{gathered}
\neg \neg \alpha \\
\alpha
\end{gathered} \frac{\alpha_{1} \wedge \alpha_{2}}{\alpha_{1}} \quad \frac{\beta_{1} \vee \beta_{2}}{\alpha_{2}} \quad \frac{\beta_{1} \mid \beta_{2}}{}
\]
- All rules are semantically valid, when interpreting entries in a branch conjunctively and distinct (sub-)branches as connected disjunctively A propositional formula \(\varphi\) is unsatisfiable iff there is a tableau with \(\varphi\) as the root node such that
1 all other entries can be produced by tableau rules and 2 every branch contains some formulas \(\alpha\) and \(\neg \alpha\)

\section*{Example}
- A simple tableau calculus for proving unsatisfiability of propositional formulas, composed from \(\neg, \wedge\), and \(\vee\), consists of rules
\[
\begin{gathered}
\neg \neg \alpha \\
\alpha
\end{gathered} \frac{\alpha_{1} \wedge \alpha_{2}}{\alpha_{1}} \quad \frac{\beta_{1} \vee \beta_{2}}{\alpha_{2}} \quad \frac{\beta_{1} \mid \beta_{2}}{}
\]
- All rules are semantically valid, when interpreting entries in a branch conjunctively and distinct (sub-)branches as connected disjunctively
- A propositional formula \(\varphi\) is unsatisfiable iff there is a tableau with \(\varphi\) as the root node such that

1 all other entries can be produced by tableau rules and
2 every branch contains some formulas \(\alpha\) and \(\neg \alpha\)

\section*{Example}

> (1) \(a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a) \quad[\varphi]\)
> (2)
> a
> (3)
> \((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a\)
> [1]
> [3]
> (9)
> (10)
> \(\begin{gathered}\text { マワマa } \\ \neg a\end{gathered}\)
> [1]
> (4) \(\neg b \wedge(\neg a \vee b)\)
> [4]
> \(\begin{aligned} & {[3]} \\ & {[9]}\end{aligned}\)
> (6)
> \(\neg a \vee b \quad\) [4]
> (7) ᄀa [6]
> (8) \(b \quad[6]\)

All three branches of the tableau are contradictory（cf 2，5，7，8，10）
Hence，\(a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a)\) is unsatisfiable

\section*{Example}
\[
\begin{aligned}
& \text { (1) } \quad a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a) \quad[\varphi] \\
& \text { (2) } \\
& \text { (3) } \\
& \text { a } \\
& (\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a \\
& \text { [1] } \\
& \text { [1] } \\
& \text { (4) } \\
& \text { (5) } \\
& \neg b \wedge(\neg a \vee b) \\
& \text { [3] } \\
& \text { (9) } \\
& \text { (10) } \\
& \text { (6) } \\
& \text { (7) } \neg a[6] \\
& \neg a \vee b \text { [4] } \\
& \begin{array}{l}
{[4]} \\
b \text { [6] }
\end{array} \\
& \begin{array}{c}
\neg \neg \neg a \\
\neg a
\end{array} \\
& \begin{array}{l}
{[3]} \\
{[9]}
\end{array}
\end{aligned}
\]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)
Hence, \(a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a)\) is unsatisfiable

\section*{Example}
(1) \(a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a) \quad[\varphi]\)
(2)
(3)
\[
\begin{gathered}
a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a) \\
a \\
(\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a
\end{gathered}
\]
(9)
(10)
\(\neg \neg \neg a\)
[3]
(4) \(\neg b \wedge(\neg a \vee b)\)
[4]
(6)
\(\neg a \vee b \quad[4]\)
(7) \(\neg a\) [6]
(8) \(b\) [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)
Hence, \(a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a)\) is unsatisfiable

\section*{Example}
(2)
\[
\begin{gathered}
{[\varphi]} \\
{[1]}
\end{gathered}
\]
(1) \(a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a) \quad[\varphi]\)
(3)
\[
\begin{gathered}
a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a) \\
a \\
(\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a
\end{gathered}
\]
[1]
(4) \(\neg b \wedge(\neg a \vee b)\)

(9)
(10)
[3]
(5) \(\neg b\) \([4]\)
\([4]\)

(6)
\(\neg a \vee b\)
(7) \(\neg a[6]\)
(8) \(b \quad[6]\)

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)
Hence, \(a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a)\) is unsatisfiable

\section*{Example}
(2)
\[
\begin{gathered}
{[\varphi]} \\
{[1]}
\end{gathered}
\]
(1) \(a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a) \quad[\varphi]\)
(3)
\[
\begin{gather*}
a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a) \\
a  \tag{3}\\
(\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a
\end{gather*}
\]
[1]
(4) \(\neg b \wedge(\neg a \vee b)\)
(9)
(10)
(5) \(\neg b\)
[4]
(6)
\(\neg a \vee b\)
[4]
[3]
\(\neg \neg \neg a\)
(7) \(\neg a \quad[6]\)
(8) \(b\) [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)
Hence, \(a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a)\) is unsatisfiable

\section*{Example}
(2)
\[
\begin{gathered}
{[\varphi]} \\
{[1]}
\end{gathered}
\]
(1) \(a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a) \quad[\varphi]\)
(3)
\[
\begin{gather*}
a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a) \\
a  \tag{3}\\
(\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a
\end{gather*}
\]
[1]
(4) \(\neg b \wedge(\neg a \vee b)\)
(9)
(10)
(5) \(\neg b\)
[4]
(6)
\(\neg a \vee b\)
[4]
[3]
\(\neg \neg \neg a\)
(7) \(\neg a \quad[6]\)
(8) \(b\) [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)
Hence, \(a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a)\) is unsatisfiable

\section*{Example}
(2)
\[
\begin{gathered}
{[\varphi]} \\
{[1]}
\end{gathered}
\]
(1) \(a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a) \quad[\varphi]\)
(3)
\[
\begin{gather*}
a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a) \\
a  \tag{3}\\
(\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a
\end{gather*}
\]
[1]
(4) \(\neg b \wedge(\neg a \vee b)\)
(9)
(10)
(5) \(\neg b\)
[4]
(6)
\(\neg a \vee b\)
[4]
[3]
\(\neg \neg \neg a\)
[9]
(7) \(\neg a \quad[6]\)
(8) \(b\) [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)
Hence, \(a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a)\) is unsatisfiable

\section*{Example}
(2)
(3)
\[
\begin{array}{lcc}
\text { (1) } & a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a) & {[\varphi]} \\
\text { (2) } & a & {[1]} \\
\text { (3) } & (\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a & {[1]} \tag{3}
\end{array}
\]
(4) \(\neg b \wedge(\neg a \vee b)\)
(9)
[3]
(5) \(\neg b\)
[4]
(10)
\(\neg \neg \neg a\)
(6)
\(\neg a \vee b\)
[4]
[9]
(7) \(\neg a \quad[6] \quad\) (8) \(b\) [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)
Hence, \(a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a)\) is unsatisfiable

\section*{Example}
(2)
\[
\begin{gathered}
{[\varphi]} \\
{[1]}
\end{gathered}
\]
(1) \(a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a) \quad[\varphi]\)
(3)
\[
\begin{gathered}
a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a) \\
a \\
(\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a
\end{gathered}
\]
[1]
(4) \(\neg b \wedge(\neg a \vee b)\)
[3]
(9)
[3]
(5) \(\neg b\)
[4]
(10)
\(\neg \neg \neg a\)
(6)
\(\neg a \vee b\)
[4]
[9]
(7) \(\neg a[6]\)
(8) \(b\) [6]
- All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)
\(\square\) Hence, \(a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a)\) is unsatisfiable

\section*{Example}
(2)
(3)
\[
\begin{array}{lcl}
\text { (1) } & a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a) & {[\varphi]} \\
\text { (2) } & a & {[1]} \\
\text { (3) } & (\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a & {[1]} \tag{3}
\end{array}
\]
(9) \(\neg \neg \neg a\)
[3]
(4) \(\neg b \wedge(\neg a \vee b)\)
[4]
(10)
\(\neg a\)
[9]
(5) \(\neg b\) [4]
(7) \(\neg a \quad[6]\)
(8) \(b\) [6]
- All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)
- Hence, \(a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a)\) is unsatisfiable

\section*{Example}
\[
\begin{gathered}
{[\varphi]} \\
{[1]}
\end{gathered}
\]
(1) \(a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a) \quad[\varphi]\)
(2)
(3)
\[
\begin{gather*}
a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a) \\
a  \tag{3}\\
(\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a
\end{gather*}
\]
[1]
(4) \(\neg b \wedge(\neg a \vee b)\)
(9)
[3]
(5) \(\neg b\)
[4]
(10)
\(\neg \neg \neg a\)
(6)
[4]
(7) ᄀa [6]
(8) \(b\) [6]
- All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)
- Hence, \(a \wedge((\neg b \wedge(\neg a \vee b)) \vee \neg \neg \neg a)\) is unsatisfiable

\section*{Outline}

\section*{38 Tableau Calculi}

39 Tableau Calculi for ASP
40 Tableau Calculi characterizing ASP solvers 41 Proof complexity

\section*{Tableaux and ASP}
- A tableau rule captures an elementary inference scheme in an ASP solver

A branch in a tableau corresponds to a successful or unsuccessful computation of a stable model
- An entire tableau represents a traversal of the search space

\section*{Tableaux and ASP}
- A tableau rule captures an elementary inference scheme in an ASP solver
- A branch in a tableau corresponds to a successful or unsuccessful computation of a stable model
- An entire tableau represents a traversal of the search space

\section*{Tableaux and ASP}
- A tableau rule captures an elementary inference scheme in an ASP solver
- A branch in a tableau corresponds to a successful or unsuccessful computation of a stable model

■ An entire tableau represents a traversal of the search space

\section*{ASP-specific definitions}
- A (signed) tableau for a logic program \(P\) is a binary tree such that
- the root node of the tree consists of the rules in \(P\);
- the other nodes in the tree are entries of the form \(\mathbf{T v}\) or \(\mathbf{F} v\), called signed literals, where \(v\) is a variable,
- generated by extending a tableau using deduction rules (given below)
- An entry \(T v(F v)\) reflects that variable \(v\) is true (false) in a corresponding variable assignment
A set of signed literals constitutes a partial assignment
- For a normal logic program \(P\),
atoms of \(P\) in \(A(P)\) and
- bodies of \(P\) in \(B(P)\)
can occur as variables in signed literals

\section*{ASP-specific definitions}
- A (signed) tableau for a logic program \(P\) is a binary tree such that
- the root node of the tree consists of the rules in \(P\);
- the other nodes in the tree are entries of the form \(\mathbf{T v}\) or \(\mathbf{F} v\), called signed literals, where \(v\) is a variable,
- generated by extending a tableau using deduction rules (given below)
- An entry \(\operatorname{Tv}(\mathbf{F} v)\) reflects that variable \(v\) is true (false) in a corresponding variable assignment
A set of signed literals constitutes a partial assignment
- For a normal logic program \(P\),
atoms of \(P\) in \(A(P)\) and
- bodies of \(P\) in \(B(P)\)
can occur as variables in signed literals

\section*{ASP-specific definitions}
- A (signed) tableau for a logic program \(P\) is a binary tree such that
- the root node of the tree consists of the rules in \(P\);
- the other nodes in the tree are entries of the form \(\mathbf{T v}\) or \(\mathbf{F} v\), called signed literals, where \(v\) is a variable,
- generated by extending a tableau using deduction rules (given below)
- An entry \(\mathbf{T} v(\mathbf{F} v)\) reflects that variable \(v\) is true (false) in a corresponding variable assignment
A set of signed literals constitutes a partial assignment
- For a normal logic program \(P\),
- atoms of \(P\) in \(A(P)\) and
- bodies of \(P\) in \(B(P)\)
can occur as variables in signed literals

\section*{Tableau rules for ASP at a glance}

(Cut[X])

\section*{More concepts}
- A tableau calculus is a set of tableau rules
- A branch in a tableau is conflicting, if it contains both \(T v\) and \(\mathbf{F v}\) for some variable \(v\)

A branch in a tableau is total for a program \(P\), if it contains either \(T v\) or \(\mathbf{F} v\) for each \(v \in A(P) \cup B(P)\)
A branch in a tableau of some calculus \(\mathcal{T}\) is closed,
if no rule in \(\mathcal{T}\) other than Cut can produce any new entries
A branch in a tableau is complete,
if it is either conflicting or both total and closed
A tableau is complete, if all its branches are complete A tableau of some calculus \(\mathcal{T}\) is a refutation of \(\mathcal{T}\) for a program \(P\), if every branch in the tableau is conflicting

\section*{More concepts}
- A tableau calculus is a set of tableau rules
- A branch in a tableau is conflicting, if it contains both \(T v\) and \(\mathbf{F v}\) for some variable \(v\)
- A branch in a tableau is total for a program \(P\), if it contains either \(\mathbf{T} v\) or \(\mathbf{F} v\) for each \(v \in A(P) \cup B(P)\)
A branch in a tableau of some calculus \(\mathcal{T}\) is closed,
if no rule in \(\mathcal{T}\) other than Cut can produce any new entries
A branch in a tableau is complete,
if it is either conflicting or both total and closed
A tableau is complete, if all its branches are complete A tableau of some calculus \(\mathcal{T}\) is a refutation of \(\mathcal{T}\) for a program \(P\), if every branch in the tableau is conflicting

\section*{More concepts}
- A tableau calculus is a set of tableau rules
- A branch in a tableau is conflicting, if it contains both \(\mathbf{T} v\) and \(\mathbf{F} v\) for some variable \(v\)
- A branch in a tableau is total for a program \(P\), if it contains either \(\mathbf{T} v\) or \(\mathbf{F} v\) for each \(v \in A(P) \cup B(P)\)
A branch in a tableau of some calculus \(\mathcal{T}\) is closed,
if no rule in \(\mathcal{T}\) other than Cut can produce any new entries
A branch in a tableau is complete, if it is either conflicting or both total and closed

A tableau is complete, if all its branches are complete A tableau of some calculus \(\mathcal{T}\) is a refutation of \(\mathcal{T}\) for a program \(P\), if every branch in the tableau is conflicting

\section*{More concepts}
- A tableau calculus is a set of tableau rules
- A branch in a tableau is conflicting, if it contains both \(T v\) and \(\mathrm{F} v\) for some variable \(v\)
- A branch in a tableau is total for a program \(P\), if it contains either \(\mathbf{T} v\) or \(\mathbf{F} v\) for each \(v \in A(P) \cup B(P)\)
- A branch in a tableau of some calculus \(\mathcal{T}\) is closed, if no rule in \(\mathcal{T}\) other than Cut can produce any new entries
A branch in a tableau is complete, if it is either conflicting or both total and closed
- A tableau is complete, if all its branches are complete A tableau of some calculus \(\mathcal{T}\) is a refutation of \(\mathcal{T}\) for a program \(P\), if every branch in the tableau is conflicting

\section*{More concepts}
- A tableau calculus is a set of tableau rules
- A branch in a tableau is conflicting, if it contains both \(T v\) and \(\mathrm{F} v\) for some variable \(v\)
- A branch in a tableau is total for a program \(P\), if it contains either \(\mathbf{T} v\) or \(\mathbf{F} v\) for each \(v \in A(P) \cup B(P)\)
- A branch in a tableau of some calculus \(\mathcal{T}\) is closed, if no rule in \(\mathcal{T}\) other than Cut can produce any new entries
- A branch in a tableau is complete, if it is either conflicting or both total and closed
- A tableau is complete, if all its branches are complete
- A tableau of some calculus \(\mathcal{T}\) is a refutation of \(\mathcal{T}\) for a program \(P\), if every branch in the tableau is conflicting

\section*{More concepts}
- A tableau calculus is a set of tableau rules
- A branch in a tableau is conflicting, if it contains both \(T v\) and \(\mathrm{F} v\) for some variable \(v\)
- A branch in a tableau is total for a program \(P\), if it contains either \(\mathbf{T} v\) or \(\mathbf{F} v\) for each \(v \in A(P) \cup B(P)\)
- A branch in a tableau of some calculus \(\mathcal{T}\) is closed, if no rule in \(\mathcal{T}\) other than Cut can produce any new entries
- A branch in a tableau is complete, if it is either conflicting or both total and closed
- A tableau is complete, if all its branches are complete
- A tableau of some calculus \(\mathcal{T}\) is a refutation of \(\mathcal{T}\) for a program \(P\), if every branch in the tableau is conflicting

\section*{More concepts}
- A tableau calculus is a set of tableau rules
- A branch in a tableau is conflicting, if it contains both \(T v\) and \(\mathrm{F} v\) for some variable \(v\)
- A branch in a tableau is total for a program \(P\), if it contains either \(\mathbf{T} v\) or \(\mathbf{F} v\) for each \(v \in A(P) \cup B(P)\)
- A branch in a tableau of some calculus \(\mathcal{T}\) is closed, if no rule in \(\mathcal{T}\) other than Cut can produce any new entries
- A branch in a tableau is complete, if it is either conflicting or both total and closed
- A tableau is complete, if all its branches are complete
- A tableau of some calculus \(\mathcal{T}\) is a refutation of \(\mathcal{T}\) for a program \(P\), if every branch in the tableau is conflicting

\section*{Example}
- Consider the program
\[
P=\left\{\begin{array}{l}
a \leftarrow \\
c \leftarrow \sim b, \sim d \\
d \leftarrow a, \sim c
\end{array}\right\}
\]
having stable models \(\{a, c\}\) and \(\{a, d\}\)

\section*{(Previewed) Example}


\section*{(Previewed) Example}


\section*{(Previewed) Example}


\section*{(Previewed) Example}
\[
\begin{gathered}
a \leftarrow \\
c \leftarrow \sim b, \sim d \\
d \leftarrow a, \sim c \\
\mathrm{~T} \emptyset \\
\mathrm{~T} a \\
\mathrm{~F} b
\end{gathered}
\]
(FTB) (FTA)
(FFA)
(Cut \([A(P)])\)

\section*{(Previewed) Example}
\[
\begin{gathered}
a \leftarrow \\
c \leftarrow \sim b, \sim d \\
d \leftarrow a, \sim c \\
\mathrm{~T} \emptyset \\
\mathrm{~T} a \\
\mathrm{~F} b
\end{gathered}
\]
(FTB) (FTA)
(FFA)
(Cut \([A(P)])\)

\section*{(Previewed) Example}
\[
\begin{gathered}
a \leftarrow \\
c \leftarrow \sim b, \sim d \\
d \leftarrow a, \sim c \\
\mathrm{~T} \emptyset \\
\mathrm{~T} a \\
\mathrm{~F} b
\end{gathered}
\]
(FTB) (FTA)
(FFA)
(Cut \([A(P)])\)

\section*{Auxiliary definitions}
- For a literal I, define conjugation functions \(\mathbf{t}\) and \(\mathbf{f}\) as follows
\[
\begin{aligned}
\mathbf{t} / & = \begin{cases}\mathbf{T} / & \text { if } / \text { is an atom } \\
\mathbf{F a} & \text { if } I=\sim a \text { for an atom } a\end{cases} \\
\mathbf{f} / & = \begin{cases}\mathbf{F} / & \text { if } / \text { is an atom } \\
\mathbf{T a} & \text { if } I=\sim a \text { for an atom } a\end{cases} \\
\text { Examples } \mathrm{t} a & =\mathrm{Ta}, \mathrm{f} a=\mathrm{Fa}, \mathbf{t} \sim a=\mathrm{Fa} \text {, and } \mathbf{f} \sim a=\mathrm{Ta} a
\end{aligned}
\]

\section*{Auxiliary definitions}
- For a literal I, define conjugation functions \(\mathbf{t}\) and \(\mathbf{f}\) as follows
\[
\begin{aligned}
& \mathbf{t} /= \begin{cases}\mathbf{T} / & \text { if } I \text { is an atom } \\
\mathbf{F a} & \text { if } I=\sim a \text { for an atom a }\end{cases} \\
& \mathbf{f} /= \begin{cases}\mathbf{F} / & \text { if } / \text { is an atom } \\
\mathbf{T} a & \text { if } I=\sim a \text { for an atom } a\end{cases}
\end{aligned}
\]
- Examples \(\mathbf{t a}=\mathbf{T} a, \mathbf{f} \mathbf{a}=\mathbf{F} a, \mathbf{t} \sim a=\mathbf{F} a\), and \(\mathbf{f} \sim a=\mathbf{T} a\)

\section*{Auxiliary definitions}
- Some tableau rules require conditions for their application
- Such conditions are specified as provisos
\[
\frac{\text { prerequisites }}{\text { consequence }} \text { (proviso) }
\]
proviso: some condition(s)

■ Note All tableau rules given in the sequel are stable model preserving

\section*{Forward true body (FTB)}
- Prerequisites All of a body's literals are true
- Consequence The body is true
- Tableau Rule FTB
\[
\begin{gathered}
p \leftarrow I_{1}, \ldots, I_{n} \\
\mathbf{t} I_{1}, \ldots, \mathbf{t} I_{n} \\
\hline \mathbf{T}\left\{I_{1}, \ldots, I_{n}\right\}
\end{gathered}
\]


\section*{Forward true body (FTB)}
- Prerequisites All of a body's literals are true
- Consequence The body is true
- Tableau Rule FTB
\[
\begin{gathered}
p \leftarrow I_{1}, \ldots, I_{n} \\
\mathbf{t} /_{1}, \ldots, \mathbf{t} I_{n} \\
\hline \mathbf{T}\left\{I_{1}, \ldots, I_{n}\right\}
\end{gathered}
\]
- Example
\[
\begin{gathered}
a \leftarrow b, \sim c \\
\mathbf{T} b \\
\mathbf{F} c \\
\mathbf{T}\{b, \sim c\}
\end{gathered}
\]

\section*{Backward false body (BFB)}
- Prerequisites A body is false, and all its literals except for one are true
- Consequence The residual body literal is false
- Tableau Rule BFB
\[
\begin{gathered}
\mathbf{F}\left\{I_{1}, \ldots, l_{i}, \ldots, I_{n}\right\} \\
\mathbf{t} /_{1}, \ldots, \mathbf{t} /_{i-1}, \mathbf{t} /_{i+1}, \ldots, \mathbf{t} l_{n} \\
\mathbf{f} /_{i}
\end{gathered}
\]


\section*{Backward false body (BFB)}
- Prerequisites A body is false, and all its literals except for one are true
- Consequence The residual body literal is false
- Tableau Rule BFB
\[
\begin{gathered}
\mathbf{F}\left\{I_{1}, \ldots, l_{i}, \ldots, I_{n}\right\} \\
\mathbf{t} /_{1}, \ldots, \mathbf{t} /_{i-1}, \mathbf{t} /_{i+1}, \ldots, \mathbf{t} l_{n} \\
\mathbf{f} /_{i}
\end{gathered}
\]
- Examples
\(F\{b, \sim c\}\)
Tb
Tc
\[
\mathbf{F}\{b, \sim c\}
\]


\section*{Forward false body (FFB)}
- Prerequisites Some literal of a body is false
- Consequence The body is false
- Tableau Rule FFB
\[
\begin{gathered}
p \leftarrow I_{1}, \ldots, l_{i}, \ldots, I_{n} \\
\mathbf{f} l_{i} \\
F\left\{l_{1}, \ldots, l_{i}, \ldots, I_{n}\right\}
\end{gathered}
\]


\section*{Forward false body (FFB)}
- Prerequisites Some literal of a body is false
- Consequence The body is false
- Tableau Rule FFB
\[
\begin{gathered}
p \leftarrow I_{1}, \ldots, I_{i}, \ldots, I_{n} \\
\mathbf{f} l_{i} \\
F\left\{I_{1}, \ldots, l_{i}, \ldots, I_{n}\right\}
\end{gathered}
\]
- Examples
\[
\begin{array}{cc}
a \leftarrow b, \sim c & a \leftarrow b, \sim c \\
\mathbf{F b} & \frac{\mathbf{T} c}{\mathbf{F}\{b, \sim c\}}
\end{array}
\]

\section*{Backward true body (BTB)}
- Prerequisites A body is true
- Consequence The body's literals are true
- Tableau Rule BTB
\[
\frac{\mathbf{T}\left\{I_{1}, \ldots, I_{i}, \ldots, I_{n}\right\}}{\mathbf{t} l_{i}}
\]

\[
\frac{\mathrm{T}\{b, \sim c\}}{\mathrm{F} c}
\]

\section*{Backward true body (BTB)}
- Prerequisites A body is true

■ Consequence The body's literals are true
- Tableau Rule BTB
\[
\frac{\mathbf{T}\left\{I_{1}, \ldots, l_{i}, \ldots, I_{n}\right\}}{\mathbf{t} l_{i}}
\]
- Examples
\[
\begin{gathered}
\mathrm{T}\{b, \sim c\} \\
\mathrm{T} b
\end{gathered}
\]
\[
\frac{\mathrm{T}\{b, \sim c\}}{\mathrm{F} c}
\]

\section*{Tableau rules for bodies}

Consider rule body \(B=\left\{I_{1}, \ldots, I_{n}\right\}\)
- Rules FTB and BFB amount to implication
\[
I_{1} \wedge \cdots \wedge I_{n} \rightarrow B
\]

Rules FFB and BTB amount to implication
\[
B \rightarrow I_{1} \wedge \cdots \wedge I_{n}
\]
- Together they yield
\[
B \leftrightarrow I_{1} \wedge \cdots \wedge I_{n}
\]

\section*{Tableau rules for bodies}

Consider rule body \(B=\left\{I_{1}, \ldots, I_{n}\right\}\)
- Rules FTB and BFB amount to implication
\[
I_{1} \wedge \cdots \wedge I_{n} \rightarrow B
\]
- Rules FFB and BTB amount to implication
\[
B \rightarrow I_{1} \wedge \cdots \wedge I_{n}
\]
- Together they yield


\section*{Tableau rules for bodies}

Consider rule body \(B=\left\{I_{1}, \ldots, I_{n}\right\}\)
- Rules FTB and BFB amount to implication
\[
I_{1} \wedge \cdots \wedge I_{n} \rightarrow B
\]
- Rules FFB and BTB amount to implication
\[
B \rightarrow I_{1} \wedge \cdots \wedge I_{n}
\]
- Together they yield
\[
B \leftrightarrow I_{1} \wedge \cdots \wedge I_{n}
\]

\section*{Forward true atom (FTA)}
- Prerequisites Some of an atom's bodies is true
- Consequence The atom is true
- Tableau Rule FTA
\[
\begin{gathered}
p \leftarrow I_{1}, \ldots, I_{n} \\
\mathbf{T}\left\{I_{1}, \ldots, I_{n}\right\} \\
\mathbf{T} p
\end{gathered}
\]


\(\frac{\mathbf{T}\{d, \sim e\}}{\mathrm{T} a}\)

\section*{Forward true atom (FTA)}
- Prerequisites Some of an atom's bodies is true
- Consequence The atom is true
- Tableau Rule FTA
\[
\begin{gathered}
p \leftarrow I_{1}, \ldots, I_{n} \\
\mathbf{T}\left\{I_{1}, \ldots, I_{n}\right\} \\
\mathbf{T} p
\end{gathered}
\]
- Examples
\[
\begin{array}{ll}
a \leftarrow b, \sim c & a \leftarrow d, \sim e \\
\frac{\mathrm{~T}\{b, \sim c\}}{\mathrm{T} a} & \frac{\mathrm{~T}\{d, \sim e\}}{\mathrm{T} a}
\end{array}
\]

\section*{Backward false atom (BFA)}
- Prerequisites An atom is false
- Consequence The bodies of all rules with the atom as head are false
- Tableau Rule BFA
\[
\begin{gathered}
p \leftarrow I_{1}, \ldots, I_{n} \\
\mathbf{F} p \\
\mathbf{F}\left\{I_{1}, \ldots, I_{n}\right\}
\end{gathered}
\]


\section*{Backward false atom (BFA)}
- Prerequisites An atom is false
- Consequence The bodies of all rules with the atom as head are false
- Tableau Rule BFA
\[
\begin{gathered}
p \leftarrow I_{1}, \ldots, I_{n} \\
\mathbf{F} p \\
\mathbf{F}\left\{I_{1}, \ldots, I_{n}\right\}
\end{gathered}
\]
- Examples
\[
\begin{array}{cc}
a \leftarrow b, \sim c & a \leftarrow d, \sim e \\
\mathrm{Fa} & \frac{\mathrm{Fa}}{\mathrm{~F}\{b, \sim c\}}
\end{array}
\]

\section*{Forward false atom (FFA)}
- Prerequisites For some atom, the bodies of all rules with the atom as head are false
- Consequence The atom is false
- Tableau Rule FFA
\[
\frac{\mathbf{F} B_{1}, \ldots, \mathbf{F} B_{m}}{\mathbf{F p}}\left(B_{p}(p)=\left\{B_{1}, \ldots, B_{m}\right\}\right)
\]
\[
\begin{aligned}
& \mathbf{F}\{b, \sim c\} \\
& \mathbf{F}\{d, \sim e\} \\
& \frac{F a}{}\left(B_{P}(a)=\{\{b, \sim c\},\{d, \sim e\}\}\right)
\end{aligned}
\]

\section*{Forward false atom (FFA)}
- Prerequisites For some atom, the bodies of all rules with the atom as head are false
- Consequence The atom is false
- Tableau Rule FFA
\[
\frac{\mathbf{F} B_{1}, \ldots, \mathbf{F} B_{m}}{\mathbf{F} p}\left(B_{P}(p)=\left\{B_{1}, \ldots, B_{m}\right\}\right)
\]
- Example
\[
\begin{aligned}
& \mathbf{F}\{b, \sim c\} \\
& \frac{\mathbf{F}\{d, \sim e\}}{\mathbf{F a}}\left(B_{P}(a)=\{\{b, \sim c\},\{d, \sim e\}\}\right)
\end{aligned}
\]

\section*{Backward true atom (BTA)}
- Prerequisites An atom is true, and the bodies of all rules with the atom as head except for one are false
- Consequence The residual body is true
- Tableau Rule BTA
\(\frac{\mathbf{T} p}{\mathbf{F} B_{1}, \ldots, \mathbf{F} B_{i-1}, \mathbf{F} B_{i+1}, \ldots, \mathbf{F} B_{m}} \underset{\mathbf{T} B_{i}}{ }\left(B_{p}(p)=\left\{B_{1}, \ldots, B_{m}\right\}\right)\)

(*) \(B_{P}(a)=\{\{b, \sim c\},\{d, \sim e\}\}\)

\section*{Backward true atom (BTA)}
- Prerequisites An atom is true, and the bodies of all rules with the atom as head except for one are false
- Consequence The residual body is true
- Tableau Rule BTA
\[
\begin{gathered}
\mathrm{T} p \\
\mathbf{F} B_{1}, \ldots, \mathbf{F} B_{i-1}, \mathbf{F} B_{i+1}, \ldots, \mathbf{F} B_{m} \\
\mathbf{T} B_{i}
\end{gathered}\left(B_{p}(p)=\left\{B_{1}, \ldots, B_{m}\right\}\right)
\]
- Examples
\[
\begin{array}{r}
\begin{array}{c}
\mathrm{T} a \\
\frac{\mathbf{F}\{b, \sim c\}}{\mathrm{T}\{d, \sim e\}}(*)
\end{array} \frac{\mathrm{Ta}}{\mathrm{~F}\{d, \sim e\}}(*\{b, \sim c\} \\
(*) \quad B_{P}(a)=\{\{b, \sim c\},\{d, \sim e\}\}
\end{array}
\]

\section*{Tableau rules for atoms}

Consider an atom \(p\) such that \(B_{P}(p)=\left\{B_{1}, \ldots, B_{m}\right\}\)
- Rules FTA and BFA amount to implication
\[
B_{1} \vee \cdots \vee B_{m} \rightarrow p
\]

Rules FFA and BTA amount to implication
\[
p \rightarrow B_{1} \vee \cdots \vee B_{m}
\]
\(\square\) Together they yield
\[
p \leftrightarrow B_{1} \vee \cdots \vee B_{m}
\]

\section*{Tableau rules for atoms}

Consider an atom \(p\) such that \(B_{P}(p)=\left\{B_{1}, \ldots, B_{m}\right\}\)
- Rules FTA and BFA amount to implication
\[
B_{1} \vee \cdots \vee B_{m} \rightarrow p
\]
- Rules FFA and BTA amount to implication
\[
p \rightarrow B_{1} \vee \cdots \vee B_{m}
\]
- Together they yield
\[
p \leftrightarrow B_{1} \vee \cdots \vee B_{m}
\]

\section*{Tableau rules for atoms}

Consider an atom \(p\) such that \(B_{P}(p)=\left\{B_{1}, \ldots, B_{m}\right\}\)
- Rules FTA and BFA amount to implication
\[
B_{1} \vee \cdots \vee B_{m} \rightarrow p
\]
- Rules FFA and BTA amount to implication
\[
p \rightarrow B_{1} \vee \cdots \vee B_{m}
\]
- Together they yield
\[
p \leftrightarrow B_{1} \vee \cdots \vee B_{m}
\]

\section*{Relationship with program completion}

Let \(P\) be a normal logic program
- The eight tableau rules introduced so far essentially provide (straightforward) inferences from CF(P)

Torsten Schaub (KRR@UP)

\section*{Preliminaries for unfounded sets}

Let \(P\) be a normal logic program
■ For \(P^{\prime} \subseteq P\), define the greatest unfounded set of \(P\) wrt \(P^{\prime}\) as
\[
\mathbf{U}_{P}\left(P^{\prime}\right)=A(P) \backslash C n\left(\left(P^{\prime}\right)^{\emptyset}\right)
\]
- For a loop \(L \in \operatorname{loop}(P)\), define the external bodies of \(L\) as
\[
E B_{P}(L)=\left\{B(r) \mid r \in P, h(r) \in L, B(r)^{+} \cap L=\emptyset\right\}
\]

\section*{Preliminaries for unfounded sets}

Let \(P\) be a normal logic program
■ For \(P^{\prime} \subseteq P\), define the greatest unfounded set of \(P\) wrt \(P^{\prime}\) as
\[
\mathbf{U}_{P}\left(P^{\prime}\right)=A(P) \backslash C n\left(\left(P^{\prime}\right)^{\emptyset}\right)
\]

■ For a loop \(L \in \operatorname{loop}(P)\), define the external bodies of \(L\) as
\[
E B_{P}(L)=\left\{B(r) \mid r \in P, h(r) \in L, B(r)^{+} \cap L=\emptyset\right\}
\]

\section*{Well-founded negation (WFN)}
- Prerequisites An atom is in the greatest unfounded set wrt rules whose bodies are false
- Consequence The atom is false
- Tableau Rule WFN
\[
\frac{\mathbf{F} B_{1}, \ldots, \mathbf{F} B_{m}}{\mathbf{F} p}\left(p \in \mathbf{U}_{P}\left(\left\{r \in P \mid B(r) \notin\left\{B_{1}, \ldots, B_{m}\right\}\right\}\right)\right)
\]


\section*{Well-founded negation (WFN)}
- Prerequisites An atom is in the greatest unfounded set wrt rules whose bodies are false
- Consequence The atom is false
- Tableau Rule WFN
\[
\frac{\mathbf{F} B_{1}, \ldots, \mathbf{F} B_{m}}{\mathbf{F} p}\left(p \in \mathbf{U}_{P}\left(\left\{r \in P \mid B(r) \notin\left\{B_{1}, \ldots, B_{m}\right\}\right\}\right)\right)
\]
- Examples
\[
\begin{array}{cc} 
& a \leftarrow a \\
\frac{a \leftarrow \sim b}{\mathbf{F}\{\sim b\}} & \\
\mathrm{Fa} & (*) \\
& \frac{a \leftarrow \sim b}{\mathrm{~F}\{\sim b\}} \\
& (*) \\
\mathrm{Fa} & a \in \mathbf{U}_{P}(P \backslash\{a \leftarrow \sim b\})
\end{array}
\]

\section*{Well-founded justification (WFJ)}
- Prerequisites A true atom is in the greatest unfounded set wrt rules whose bodies are false, if a particular body is made false
- Consequence The respective body is true
- Tableau Rule WFJ
\(\frac{\mathbf{T} p}{\mathbf{F} B_{1}, \ldots, \mathbf{F} B_{i-1}, \mathbf{F} B_{i+1}, \ldots, \mathbf{F} B_{m}} \underset{\mathbf{T} B_{i}}{ }\left(p \in \mathbf{U}_{P}\left(\left\{r \in P \mid B(r) \notin\left\{B_{1}, \ldots, B_{m}\right\}\right\}\right)\right)\)
- Examples
\[
\begin{array}{cc} 
& a \leftarrow a \\
a \leftarrow \sim b & a \leftarrow \sim b \\
\frac{\mathbf{T} a}{\mathbf{T}\{\sim b\}}(*) & \frac{\mathrm{T} a}{\mathrm{~T}\{\sim b\}}(*) \\
& (*) \\
& a \in \mathbf{U}_{P}(P \backslash\{a \leftarrow \sim b\})
\end{array}
\]

\section*{Well-founded justification (WFJ)}
- Prerequisites A true atom is in the greatest unfounded set wrt rules whose bodies are false, if a particular body is made false
- Consequence The respective body is true
- Tableau Rule WFJ
\[
\frac{\mathbf{T} p}{\mathbf{F} B_{1}, \ldots, \mathbf{F} B_{i-1}, \mathbf{F} B_{i+1}, \ldots, \mathbf{F} B_{m}} \underset{\mathbf{T} B_{i}}{ }\left(p \in \mathbf{U}_{P}\left(\left\{r \in P \mid B(r) \notin\left\{B_{1}, \ldots, B_{m}\right\}\right\}\right)\right)
\]
- Examples
\[
\begin{array}{cc} 
& a \leftarrow a \\
a \leftarrow \sim b & a \leftarrow \sim b \\
\frac{\mathbf{T} a}{\mathbf{T}\{\sim b\}}(*) & \frac{\mathbf{T} a}{\mathbf{T}\{\sim b\}}(*) \\
& (*) \\
& a \in \mathbf{U}_{P}(P \backslash\{a \leftarrow \sim b\})
\end{array}
\]

\section*{Well-founded tableau rules}
- Tableau rules WFN and WFJ ensure non-circular support for true atoms
```

1. WFN subsumes falsifying atoms via FFA,
2. WFJ can be viewed as "backward propagation" for unfounded sets,
3 WFJ subsumes backward propagation of true atoms via BTA
```

\section*{Well-founded tableau rules}

■ Tableau rules WFN and WFJ ensure non-circular support for true atoms
- Note

1 WFN subsumes falsifying atoms via FFA,
2 WFJ can be viewed as "backward propagation" for unfounded sets,
3 WFJ subsumes backward propagation of true atoms via BTA

\section*{Relationship with well-founded operator}

Let \(P\) be a normal logic program, \(\langle T, F\rangle\) a partial interpretation, and \(P^{\prime}=\left\{r \in P \mid B(r)^{+} \cap F=\emptyset\right.\) and \(\left.B(r)^{-} \cap T=\emptyset\right\}\).
- The following conditions are equivalent
\(1 p \in \mathbf{U}_{P}\langle T, F\rangle\)
2 \(p \in \mathbf{U}_{P}\left(P^{\prime}\right)\)
- Hence, the well-founded operator \(\Omega\) and WFN coincide

In contrast to \(\Omega\), WFN does not necessarily require a rule body
to contain a false literal for the rule being inapplicable

\section*{Relationship with well-founded operator}

Let \(P\) be a normal logic program, \(\langle T, F\rangle\) a partial interpretation, and \(P^{\prime}=\left\{r \in P \mid B(r)^{+} \cap F=\emptyset\right.\) and \(\left.B(r)^{-} \cap T=\emptyset\right\}\).
- The following conditions are equivalent
\(1 p \in \mathbf{U}_{P}\langle T, F\rangle\)
\(2 p \in \mathbf{U}_{P}\left(P^{\prime}\right)\)
- Hence, the well-founded operator \(\Omega\) and WFN coincide
- Note In contrast to \(\Omega\), WFN does not necessarily require a rule body to contain a false literal for the rule being inapplicable

\section*{Relationship with well-founded operator}

Let \(P\) be a normal logic program, \(\langle T, F\rangle\) a partial interpretation, and \(P^{\prime}=\left\{r \in P \mid B(r)^{+} \cap F=\emptyset\right.\) and \(\left.B(r)^{-} \cap T=\emptyset\right\}\).
- The following conditions are equivalent
\(1 p \in \mathbf{U}_{P}\langle T, F\rangle\)
\(2 p \in \mathbf{U}_{P}\left(P^{\prime}\right)\)
- Hence, the well-founded operator \(\Omega\) and WFN coincide

Note In contrast to \(\Omega\), WFN does not necessarily require a rule body to contain a false literal for the rule being inapplicable

\section*{Relationship with well-founded operator}

Let \(P\) be a normal logic program, \(\langle T, F\rangle\) a partial interpretation, and \(P^{\prime}=\left\{r \in P \mid B(r)^{+} \cap F=\emptyset\right.\) and \(\left.B(r)^{-} \cap T=\emptyset\right\}\).
- The following conditions are equivalent
\(1 p \in \mathbf{U}_{P}\langle T, F\rangle\)
\(2 p \in \mathbf{U}_{P}\left(P^{\prime}\right)\)
- Hence, the well-founded operator \(\Omega\) and WFN coincide
- Note In contrast to \(\Omega\), WFN does not necessarily require a rule body to contain a false literal for the rule being inapplicable

\section*{Forward loop (FL)}
- Prerequisites The external bodies of a loop are false
- Consequence The atoms in the loop are false
- Tableau Rule FL
\[
\frac{\mathbf{F} B_{1}, \ldots, \mathbf{F} B_{m}}{\mathbf{F} p}\left(p \in L, L \in \operatorname{loop}(P), E B_{P}(L)=\left\{B_{1}, \ldots, B_{m}\right\}\right)
\]


\section*{Forward loop (FL)}
- Prerequisites The external bodies of a loop are false
- Consequence The atoms in the loop are false
- Tableau Rule FL
\[
\frac{\mathbf{F} B_{1}, \ldots, \mathbf{F} B_{m}}{\mathbf{F} p}\left(p \in L, L \in \operatorname{loop}(P), E B_{P}(L)=\left\{B_{1}, \ldots, B_{m}\right\}\right)
\]
- Example
\[
\begin{aligned}
& a \leftarrow a \\
& a \leftarrow \sim b \\
& \frac{\mathbf{F}\{\sim b\}}{\mathbf{F a}}\left(E B_{P}(\{a\})=\{\{\sim b\}\}\right)
\end{aligned}
\]

\section*{Backward loop (BL)}
- Prerequisites An atom of a loop is true, and all external bodies except for one are false
- Consequence The residual external body is true
- Tableau Rule BL
\(\frac{\mathbf{T} p}{\frac{\mathbf{F} B_{1}, \ldots, \mathbf{F} B_{i-1}, \mathbf{F} B_{i+1}, \ldots, \mathbf{F} B_{m}}{\mathbf{T} B_{i}}\left(p \in L, L \in \operatorname{loop}(P), E B_{P}(L)=\left\{B_{1}, \ldots, B_{m}\right\}\right)}\)


\section*{Backward loop (BL)}
- Prerequisites An atom of a loop is true, and all external bodies except for one are false
- Consequence The residual external body is true
- Tableau Rule BL
\(\frac{\mathrm{T} p}{\mathbf{F} B_{1}, \ldots, \mathbf{F} B_{i-1}, \mathbf{F} B_{i+1}, \ldots, \mathbf{F} B_{m}} \underset{\mathbf{T} B_{i}}{ }\left(p \in L, L \in \operatorname{loop}(P), E B_{P}(L)=\left\{B_{1}, \ldots, B_{m}\right\}\right)\)
- Example
\[
\begin{aligned}
& a \leftarrow a \\
& a \leftarrow \sim b \\
& \frac{\mathbf{T} a}{\mathbf{T}\{\sim b\}}\left(E B_{P}(\{a\})=\{\{\sim b\}\}\right)
\end{aligned}
\]

\section*{Tableau rules for loops}
- Tableau rules FL and BL ensure non-circular support for true atoms
- For a loop \(L\) such that \(E B_{P}(L)=\left\{B_{1}, \ldots, B_{m}\right\}\), they amount to implications of form
\[
\vee_{p \in L} p \rightarrow B_{1} \vee \cdots \vee B_{m}
\]
- Comparison to well-founded tableau rules yields
\(\square\) FL (plus FFA and FFB) is equivalent to WFN (plus FFB),
BL cannot simulate inferences via WFJ

\section*{Tableau rules for loops}
- Tableau rules FL and BL ensure non-circular support for true atoms
- For a loop \(L\) such that \(E B_{P}(L)=\left\{B_{1}, \ldots, B_{m}\right\}\), they amount to implications of form
\[
\bigvee_{p \in L} p \rightarrow B_{1} \vee \cdots \vee B_{m}
\]

Comparison to well-founded tableau rules yields
\(\square\) FL (plus FFA and FFB) is equivalent to WFN (plus FFB),
- BL cannot simulate inferences via WFJ

\section*{Tableau rules for loops}
- Tableau rules FL and BL ensure non-circular support for true atoms
- For a loop \(L\) such that \(E B_{P}(L)=\left\{B_{1}, \ldots, B_{m}\right\}\), they amount to implications of form
\[
\bigvee_{p \in L} p \rightarrow B_{1} \vee \cdots \vee B_{m}
\]
- Comparison to well-founded tableau rules yields
- FL (plus FFA and FFB) is equivalent to WFN (plus FFB),
- BL cannot simulate inferences via WFJ

\section*{Relationship with loop formulas}
- Tableau rules FL and BL essentially provide (straightforward) inferences from loop formulas
- Impractical to precompute exponentially many loop formulas
- In practice, ASP solvers such as smodels and clasp
- exploit strongly connected components of positive atom dependency graphs
can be viewed as an interpolation of FL do not directly implement BL (and neither WFJ) probably difficult to do efficiently could simulate BL via FL/WFN by means of failed-literal detection (lookahead)

\section*{Relationship with loop formulas}
- Tableau rules FL and BL essentially provide (straightforward) inferences from loop formulas
- Impractical to precompute exponentially many loop formulas

■ In practice, ASP solvers such as smodels and clasp
- exploit strongly connected components of positive atom dependency graphs
- can be viewed as an interpolation of FL
do not directly implement BL (and neither WFJ)
probably difficult to do efficiently
could simulate BL via FL/WFN by means of failed-literal detection (lookahead)

\section*{Relationship with loop formulas}
- Tableau rules FL and BL essentially provide (straightforward) inferences from loop formulas
- Impractical to precompute exponentially many loop formulas

■ In practice, ASP solvers such as smodels and clasp
- exploit strongly connected components of positive atom dependency graphs
- can be viewed as an interpolation of FL
- do not directly implement BL (and neither WFJ)
- probably difficult to do efficiently
- could simulate BL via FL/WFN by means of failed-literal detection (lookahead)

\section*{Relationship with loop formulas}

■ Tableau rules FL and BL essentially provide (straightforward) inferences from loop formulas
- Impractical to precompute exponentially many loop formulas

■ In practice, ASP solvers such as smodels and clasp
- exploit strongly connected components of positive atom dependency graphs
- can be viewed as an interpolation of FL
- do not directly implement BL (and neither WFJ)
- probably difficult to do efficiently
- could simulate BL via FL/WFN by means of failed-literal detection (lookahead)

\section*{Case analysis by Cut}
- Up to now, all tableau rules are deterministic

That is, rules extend a single branch but cannot create sub-branches
- In general, closing a branch leads to a partial assignment
- Case analysis is done by \(\operatorname{Cut}[\mathcal{C}]\) where \(\mathcal{C} \subseteq A(P) \cup B(P)\)

\section*{Case analysis by Cut}
- Up to now, all tableau rules are deterministic That is, rules extend a single branch but cannot create sub-branches
- In general, closing a branch leads to a partial assignment
- Case analysis is done by \(\operatorname{Cut}[C]\) where \(\mathcal{C} \subseteq A(P) \cup B(P)\)

\section*{Case analysis by Cut}
- Up to now, all tableau rules are deterministic That is, rules extend a single branch but cannot create sub-branches
- In general, closing a branch leads to a partial assignment
- Case analysis is done by \(C u t[\mathcal{C}]\) where \(\mathcal{C} \subseteq A(P) \cup B(P)\)

\section*{Case analysis by Cut}
- Prerequisites None
- Consequence Two alternative (complementary) entries
- Tableau Rule Cut[C]
\[
\overline{\mathbf{T} v} \mid \mathrm{F}_{v}(v \in \mathcal{C})
\]


Torsten Schaub (KRR@UP)

\section*{Case analysis by Cut}
- Prerequisites None
- Consequence Two alternative (complementary) entries
- Tableau Rule Cut[C]
\[
\overline{\mathbf{T} v} \mid \boldsymbol{F} v(v \in \mathcal{C})
\]
- Examples
\[
\begin{gathered}
a \leftarrow \sim b \\
b \leftarrow \sim a \\
\hline \mathbf{T} a \mid \mathrm{Fa} \\
a \leftarrow \sim b \\
b \leftarrow \sim a \\
\begin{array}{c}
\mathrm{T}\{\sim b\} \\
b \leftarrow\{\sim b\}
\end{array}(\mathcal{C}=B(P))
\end{gathered}
\]

\section*{Well-known tableau calculi}
- Fitting's operator \(\boldsymbol{\Phi}\) applies forward propagation without sophisticated unfounded set checks
\[
\mathcal{T}_{\boldsymbol{\Phi}}=\{F T B, F T A, F F B, F F A\}
\]
- Well-founded operator \(\Omega\) replaces negation of single atoms with negation of unfounded sets
\[
T_{\Omega}=\{F T B, F T A, F F B, W F N\}
\]
- "Local" propagation via a program's completion can be determined by elementary inferences on atoms and rule bodies
\[
\mathcal{T}_{\text {completion }}=\{F T B, F T A, F F B, F F A, B T B, B T A, B F B, B F A\}
\]

\section*{Well-known tableau calculi}
- Fitting's operator \(\boldsymbol{\Phi}\) applies forward propagation without sophisticated unfounded set checks
\[
\mathcal{T}_{\Phi}=\{F T B, F T A, F F B, F F A\}
\]
- Well-founded operator \(\Omega\) replaces negation of single atoms with negation of unfounded sets
\[
\mathcal{T}_{\Omega}=\{F T B, F T A, F F B, W F N\}
\]

\section*{"Local" propagation via a program's completion can be determined by elementary inferences on atoms and rule bodies}
\[
T_{\text {completion }}=\{F T B, F T A, F F B, F F A, B T B, B T A, B F B, B F A\}
\]

\section*{Well-known tableau calculi}

■ Fitting's operator \(\boldsymbol{\Phi}\) applies forward propagation without sophisticated unfounded set checks
\[
\mathcal{T}_{\boldsymbol{\Phi}}=\{F T B, F T A, F F B, F F A\}
\]
- Well-founded operator \(\Omega\) replaces negation of single atoms with negation of unfounded sets
\[
\mathcal{T}_{\Omega}=\{F T B, F T A, F F B, W F N\}
\]

■ "Local" propagation via a program's completion can be determined by elementary inferences on atoms and rule bodies
\[
\mathcal{T}_{\text {completion }}=\{F T B, F T A, F F B, F F A, B T B, B T A, B F B, B F A\}
\]

\section*{Outline}

\section*{38 Tableau Calculi}

39 Tableau Calculi for ASP
40 Tableau Calculi characterizing ASP solvers
41 Proof complexity

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

\section*{Tableau calculi characterizing ASP solvers}
- ASP solvers combine propagation with case analysis
- We obtain the following tableau calculi characterizing
\[
\begin{aligned}
\mathcal{T}_{\text {cmodels-1 }} & =\mathcal{T}_{\text {completion }} \cup\{\operatorname{Cut}[A(P) \cup B(P)]\} \\
\mathcal{T}_{\text {assat }} & =\mathcal{T}_{\text {completion }} \cup\{F L\} \cup\{\operatorname{Cut}[A(P) \cup B(P)]\} \\
\mathcal{T}_{\text {smodels }} & =\mathcal{T}_{\text {completion }} \cup\{\text { WFN }\} \cup\{\operatorname{Cut}[A(P)]\} \\
\mathcal{T}_{\text {noMoRe }} & =\mathcal{T}_{\text {completion }} \cup\{\text { WFN }\} \cup\{\operatorname{Cut}[B(P)]\} \\
\mathcal{T}_{\text {nomore }}{ }^{++} & =\mathcal{T}_{\text {completion }} \cup\{\text { WFN }\} \cup\{\operatorname{Cut}[A(P) \cup B(P)]\}
\end{aligned}
\]
- SAT-based ASP solvers, assat and cmodels, incrementally add loop formulas to a program's completion Native ASP solvers, smodels, dlv, noMoRe, and nomore + + , essentially differ only in their Cut rules

\section*{Tableau calculi characterizing ASP solvers}
- ASP solvers combine propagation with case analysis
- We obtain the following tableau calculi characterizing
\[
\begin{aligned}
& \mathcal{T}_{\text {cmodels-1 }}=\mathcal{T}_{\text {completion }} \cup\{\operatorname{Cut}[A(P) \cup B(P)]\} \\
& \mathcal{T}_{\text {assat }}=\mathcal{T}_{\text {completion }} \cup\{F L\} \cup\{\operatorname{Cut}[A(P) \cup B(P)]\} \\
& \mathcal{T}_{\text {smodels }}=\mathcal{T}_{\text {completion }} \cup\{\text { WFN }\} \cup\{\operatorname{Cut}[A(P)]\} \\
& \mathcal{T}_{\text {noMoRe }}=\mathcal{T}_{\text {completion }} \cup\{\text { WFN }\} \cup\{\operatorname{Cut}[B(P)]\} \\
& \mathcal{T}_{\text {nomore }}++=\mathcal{T}_{\text {completion }} \cup\{\text { WFN }\} \cup\{\operatorname{Cut}[A(P) \cup B(P)]\} \\
& \text { SAT-based ASP solvers, assat and cmodels, } \\
& \text { incrementally add loop formulas to a program's completion } \\
& \text { Native ASP solvers, smodels, dlv, noMoRe, and nomore }++,
\end{aligned}
\]

\section*{Tableau calculi characterizing ASP solvers}
- ASP solvers combine propagation with case analysis
- We obtain the following tableau calculi characterizing
\[
\begin{aligned}
\mathcal{T}_{\text {cmodels-1 }} & =\mathcal{T}_{\text {completion }} \cup\{\operatorname{Cut}[A(P) \cup B(P)]\} \\
\mathcal{T}_{\text {assat }} & =\mathcal{T}_{\text {completion }} \cup\{F L\} \cup\{\operatorname{Cut}[A(P) \cup B(P)]\} \\
\mathcal{T}_{\text {smodels }} & =\mathcal{T}_{\text {completion }} \cup\{\text { WFN } \cup\{\operatorname{Cut}[A(P)]\} \\
\mathcal{T}_{\text {noMoRe }} & =\mathcal{T}_{\text {completion }} \cup\{\text { WFN }\} \cup\{\operatorname{Cut}[B(P)]\} \\
\mathcal{T}_{\text {nomoreet+ }} & =\mathcal{T}_{\text {completion }} \cup\{\text { WFN }\}\{\operatorname{Cut}[A(P) \cup B(P)]\}
\end{aligned}
\]
- SAT-based ASP solvers, assat and cmodels, incrementally add loop formulas to a program's completion
- Native ASP solvers, smodels, dlv, noMoRe, and nomore+ + +, essentially differ only in their Cut rules

\section*{Tableau calculi characterizing ASP solvers}
- ASP solvers combine propagation with case analysis
- We obtain the following tableau calculi characterizing
\[
\begin{aligned}
\mathcal{T}_{\text {cmodels-1 }} & =\mathcal{T}_{\text {completion }} \cup\{\operatorname{Cut}[A(P) \cup B(P)]\} \\
\mathcal{T}_{\text {assat }} & =\mathcal{T}_{\text {completion }} \cup\{F L\} \cup\{\operatorname{Cut}[A(P) \cup B(P)]\} \\
\mathcal{T}_{\text {smodels }} & =\mathcal{T}_{\text {completion }} \cup\{\text { WFN } \cup\{\operatorname{Cut}[A(P)]\} \\
\mathcal{T}_{\text {noMoRe }} & =\mathcal{T}_{\text {completion }} \cup\{\text { WFN }\} \cup\{\operatorname{Cut}[B(P)]\} \\
\mathcal{T}_{\text {nomoreet+ }} & =\mathcal{T}_{\text {completion }} \cup\{\text { WFN }\}\{\operatorname{Cut}[A(P) \cup B(P)]\}
\end{aligned}
\]
- SAT-based ASP solvers, assat and cmodels, incrementally add loop formulas to a program's completion
- Native ASP solvers, smodels, dlv, noMoRe, and nomore++, essentially differ only in their Cut rules

\section*{Outline}

\section*{38 Tableau Calculi}

\section*{39 Tableau Calculi for ASP}

40 Tableau Calculi characterizing ASP solvers
41 Proof complexity

\section*{Proof complexity}
- Proof complexity is used for describing the relative efficiency of different proof systems

It compares proof systems based on minimal refutations
It is independent of heuristics
A proof system \(\mathcal{T}\) polynomially simulates a proof system \(\mathcal{T}^{\prime}\), if every refutation of \(\mathcal{T}^{\prime}\) can be polynomially mapped to a refutation of \(\mathcal{T}\) Otherwise, \(\mathcal{T}\) does not polynomially simulate \(\mathcal{T}^{\prime}\) For showing that proof system \(\mathcal{T}\) does not polynomially simulate \(\mathcal{T}^{\prime}\), we have to provide an infinite witnessing family of programs such that minimal refutations of \(\mathcal{T}\) asymptotically are exponentially larger than minimal refutations of \(\mathcal{T}^{\prime}\)

The size of tableaux is simply the number of their entries We do not need to know the precise number of entries: Counting required Cut applications is sufficient!

\section*{Proof complexity}
- Proof complexity is used for describing the relative efficiency of different proof systems

It compares proof systems based on minimal refutations
It is independent of heuristics
- A proof system \(\mathcal{T}\) polynomially simulates a proof system \(\mathcal{T}^{\prime}\), if every refutation of \(\mathcal{T}^{\prime}\) can be polynomially mapped to a refutation of \(\mathcal{T}\) Otherwise, \(\mathcal{T}\) does not polynomially simulate \(\mathcal{T}^{\prime}\)
- For showing that proof system \(\mathcal{T}\) does not polynomially simulate \(\mathcal{T}^{\prime}\), we have to provide an infinite witnessing family of programs such that minimal refutations of \(\mathcal{T}\) asymptotically are exponentially larger than minimal refutations of \(\mathcal{T}^{\prime}\)

The size of tableaux is simply the number of their entries We do not need to know the precise number of entries: Counting required Cut applications is sufficient !

\section*{Proof complexity}
- Proof complexity is used for describing the relative efficiency of different proof systems

It compares proof systems based on minimal refutations
It is independent of heuristics
- A proof system \(\mathcal{T}\) polynomially simulates a proof system \(\mathcal{T}^{\prime}\), if every refutation of \(\mathcal{T}^{\prime}\) can be polynomially mapped to a refutation of \(\mathcal{T}\) Otherwise, \(\mathcal{T}\) does not polynomially simulate \(\mathcal{T}^{\prime}\) For showing that proof system \(\mathcal{T}\) does not polynomially simulate \(\mathcal{T}^{\prime}\), we have to provide an infinite witnessing family of programs such that minimal refutations of \(\mathcal{T}\) asymptotically are exponentially larger than minimal refutations of \(\mathcal{T}^{\prime}\)

The size of tableaux is simply the number of their entries
- We do not need to know the precise number of entries: Counting required Cut applications is sufficient!

\section*{Proof complexity}
- Proof complexity is used for describing the relative efficiency of different proof systems

It compares proof systems based on minimal refutations
It is independent of heuristics
- A proof system \(\mathcal{T}\) polynomially simulates a proof system \(\mathcal{T}^{\prime}\), if every refutation of \(\mathcal{T}^{\prime}\) can be polynomially mapped to a refutation of \(\mathcal{T}\) Otherwise, \(\mathcal{T}\) does not polynomially simulate \(\mathcal{T}^{\prime}\)
- For showing that proof system \(\mathcal{T}\) does not polynomially simulate \(\mathcal{T}^{\prime}\), we have to provide an infinite witnessing family of programs such that minimal refutations of \(\mathcal{T}\) asymptotically are exponentially larger than minimal refutations of \(\mathcal{T}^{\prime}\)
The size of tableaux is simply the number of their entries
- We do not need to know the precise number of entries: Counting required Cut applications is sufficient!

\section*{Proof complexity}
- Proof complexity is used for describing the relative efficiency of different proof systems

It compares proof systems based on minimal refutations
It is independent of heuristics
- A proof system \(\mathcal{T}\) polynomially simulates a proof system \(\mathcal{T}^{\prime}\), if every refutation of \(\mathcal{T}^{\prime}\) can be polynomially mapped to a refutation of \(\mathcal{T}\) Otherwise, \(\mathcal{T}\) does not polynomially simulate \(\mathcal{T}^{\prime}\)
- For showing that proof system \(\mathcal{T}\) does not polynomially simulate \(\mathcal{T}^{\prime}\), we have to provide an infinite witnessing family of programs such that minimal refutations of \(\mathcal{T}\) asymptotically are exponentially larger than minimal refutations of \(\mathcal{T}^{\prime}\)
The size of tableaux is simply the number of their entries
- We do not need to know the precise number of entries:

Counting required Cut applications is sufficient!

\section*{\(\mathcal{T}_{\text {smodels }}\) versus \(\mathcal{T}_{\text {noMo }}\) Re}
- \(\mathcal{T}_{\text {smodels }}\) restricts Cut to \(A(P)\) and \(\mathcal{T}_{\text {noMoRe }}\) to \(B(P)\) Are both approaches similar or is one of them superior to the other?

Let \(\left\{P_{a}^{n}\right\},\left\{P_{b}^{n}\right\}\), and \(\left\{P_{c}^{n}\right\}\) be infinite families of programs where
\[
P_{a}^{n}=\left\{\begin{array}{c}
x \leftarrow \sim x \\
x \leftarrow a_{1}, b_{1} \\
\vdots \\
x \leftarrow a_{n}, b_{n}
\end{array}\right\} P_{b}^{n}=\left\{\begin{array}{c}
x \leftarrow c_{1}, \ldots, c_{n}, \sim x \\
c_{1} \leftarrow a_{1} \\
c_{1} \leftarrow b_{1} \\
\vdots \\
\vdots \\
c_{n} \leftarrow a_{n} \\
c_{n} \leftarrow b_{n}
\end{array}\right\} P_{c}^{n}=\left\{\begin{array}{c}
a_{1} \leftarrow \sim b_{1} \\
b_{1} \leftarrow \sim a_{1} \\
\vdots \\
a_{n} \leftarrow \sim b_{n} \\
b_{n} \leftarrow \sim a_{n}
\end{array}\right\}
\]
- In minimal refutations for \(P_{a}^{n} \cup P_{c}^{n}\), the number of applications of \(\operatorname{Cut}\left[B\left(P_{a}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {noMoRe }}\) is linear in \(n\), whereas \(\mathcal{T}_{\text {smodels }}\) requires exponentially many applications of \(\operatorname{Cut}\left[A\left(P_{a}^{n} \cup P_{c}^{n}\right)\right]\) Vice versa, minimal refutations for \(P_{b}^{n} \cup P_{c}^{n}\) require linearly many applications of \(\operatorname{Cut}\left[A\left(P_{b}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {smodels }}\) and exponentially many applications of \(\operatorname{Cut}\left[B\left(P_{b}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {noMoRe }}\)

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

\section*{\(\mathcal{T}_{\text {smodels }}\) versus \(\mathcal{T}_{\text {noMoRe }}\)}
- \(\mathcal{T}_{\text {smodels }}\) restricts Cut to \(A(P)\) and \(\mathcal{T}_{\text {noMoRe }}\) to \(B(P)\) Are both approaches similar or is one of them superior to the other?
- Let \(\left\{P_{a}^{n}\right\},\left\{P_{b}^{n}\right\}\), and \(\left\{P_{c}^{n}\right\}\) be infinite families of programs where
\[
P_{a}^{n}=\left\{\begin{array}{c}
x \leftarrow \sim x \\
x \leftarrow a_{1}, b_{1} \\
\vdots \\
x \leftarrow a_{n}, b_{n}
\end{array}\right\} P_{b}^{n}=\left\{\begin{array}{c}
x \leftarrow c_{1}, \ldots, c_{n}, \sim x \\
c_{1} \leftarrow a_{1} \\
\vdots \\
c_{1} \leftarrow b_{1} \\
c_{n} \leftarrow a_{n} \\
c_{n} \leftarrow b_{n}
\end{array}\right\} P_{c}^{n}=\left\{\begin{array}{c}
a_{1} \leftarrow \sim b_{1} \\
b_{1} \leftarrow \sim a_{1} \\
\vdots \\
a_{n} \leftarrow \sim b_{n} \\
b_{n} \leftarrow \sim a_{n}
\end{array}\right\}
\]
- In minimal refutations for \(P_{a}^{n} \cup P_{c}^{n}\), the number of applications of \(\operatorname{Cut}\left[B\left(P_{a}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {noMoRe }}\) is linear in \(n\), whereas \(\mathcal{T}_{\text {smodels }}\) requires exponentially many applications of \(\operatorname{Cut}\left[A\left(P_{a}^{n} \cup P_{c}^{n}\right)\right]\) Vice versa, minimal refutations for \(P_{b}^{n} \cup P_{c}^{n}\) require linearly many applications of \(\operatorname{Cut}\left[A\left(P_{b}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {smodels }}\) and exponentially many applications of \(\operatorname{Cut}\left[B\left(P_{b}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {noMoRe }}\)

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

\section*{\(\mathcal{T}_{\text {smodels }}\) versus \(\mathcal{T}_{\text {noMoRe }}\)}
- \(\mathcal{T}_{\text {smodels }}\) restricts Cut to \(A(P)\) and \(\mathcal{T}_{\text {noMoRe }}\) to \(B(P)\) Are both approaches similar or is one of them superior to the other?
- Let \(\left\{P_{a}^{n}\right\},\left\{P_{b}^{n}\right\}\), and \(\left\{P_{c}^{n}\right\}\) be infinite families of programs where
\[
P_{a}^{n}=\left\{\begin{array}{c}
x \leftarrow \sim x \\
x \leftarrow a_{1}, b_{1} \\
\vdots \\
x \leftarrow a_{n}, b_{n}
\end{array}\right\} P_{b}^{n}=\left\{\begin{array}{c}
x \leftarrow c_{1}, \ldots, c_{n}, \sim x \\
c_{1} \leftarrow a_{1} \\
\vdots \\
c_{1} \leftarrow b_{1} \\
c_{n} \leftarrow a_{n} \\
c_{n} \leftarrow b_{n}
\end{array}\right\} P_{c}^{n}=\left\{\begin{array}{c}
a_{1} \leftarrow \sim b_{1} \\
b_{1} \leftarrow \sim a_{1} \\
\vdots \\
a_{n} \leftarrow \sim b_{n} \\
b_{n} \leftarrow \sim a_{n}
\end{array}\right\}
\]
- In minimal refutations for \(P_{a}^{n} \cup P_{c}^{n}\), the number of applications of \(\operatorname{Cut}\left[B\left(P_{a}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {noMoRe }}\) is linear in \(n\), whereas \(\mathcal{T}_{\text {smodels }}\) requires exponentially many applications of \(C u t\left[A\left(P_{a}^{n} \cup P_{c}^{n}\right)\right]\) Vice versa, minimal refutations for \(P_{b}^{n} \cup P_{c}^{n}\) require linearly many applications of \(\operatorname{Cut}\left[A\left(P_{b}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {smodels }}\) and exponentially many applications of \(\operatorname{Cut}\left[B\left(P_{b}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {noMoRe }}\)

Torsten Schaub (KRR@UP)

\section*{\(\mathcal{T}_{\text {smodels }}\) versus \(\mathcal{T}_{\text {noMoRe }}\)}
- \(\mathcal{T}_{\text {smodels }}\) restricts Cut to \(A(P)\) and \(\mathcal{T}_{\text {noMoRe }}\) to \(B(P)\) Are both approaches similar or is one of them superior to the other?
- Let \(\left\{P_{a}^{n}\right\},\left\{P_{b}^{n}\right\}\), and \(\left\{P_{c}^{n}\right\}\) be infinite families of programs where
\[
P_{a}^{n}=\left\{\begin{array}{c}
x \leftarrow \sim x \\
x \leftarrow a_{1}, b_{1} \\
\vdots \\
x \leftarrow a_{n}, b_{n}
\end{array}\right\} P_{b}^{n}=\left\{\begin{array}{c}
x \leftarrow c_{1}, \ldots, c_{n}, \sim x \\
c_{1} \leftarrow a_{1} \\
\vdots \\
c_{1} \leftarrow b_{1} \\
c_{n} \leftarrow a_{n} \\
c_{n} \leftarrow b_{n}
\end{array}\right\} P_{c}^{n}=\left\{\begin{array}{c}
a_{1} \leftarrow \sim b_{1} \\
b_{1} \leftarrow \sim a_{1} \\
\vdots \\
a_{n} \leftarrow \sim b_{n} \\
b_{n} \leftarrow \sim a_{n}
\end{array}\right\}
\]
- In minimal refutations for \(P_{a}^{n} \cup P_{c}^{n}\), the number of applications of \(\operatorname{Cut}\left[B\left(P_{a}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {noMoRe }}\) is linear in \(n\), whereas \(\mathcal{T}_{\text {smodels }}\) requires exponentially many applications of \(\operatorname{Cut}\left[A\left(P_{a}^{n} \cup P_{c}^{n}\right)\right]\)
- Vice versa, minimal refutations for \(P_{b}^{n} \cup P_{c}^{n}\) require linearly many applications of \(\operatorname{Cut}\left[A\left(P_{b}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {smodels }}\) and exponentially many applications of \(C u t\left[B\left(P_{b}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {noMoRe }}\)

\section*{\(\mathcal{T}_{\text {smodels }}\) versus \(\mathcal{T}_{\text {noMo }}\)}
- \(\mathcal{T}_{\text {smodels }}\) restricts Cut to \(A(P)\) and \(\mathcal{T}_{\text {noMoRe }}\) to \(B(P)\) Are both approaches similar or is one of them superior to the other?
- Let \(\left\{P_{a}^{n}\right\},\left\{P_{b}^{n}\right\}\), and \(\left\{P_{c}^{n}\right\}\) be infinite families of programs where
\[
P_{a}^{n}=\left\{\begin{array}{c}
x \leftarrow \sim x \\
x \leftarrow a_{1}, b_{1} \\
\vdots \\
x \leftarrow a_{n}, b_{n}
\end{array}\right\} P_{b}^{n}=\left\{\begin{array}{c}
x \leftarrow c_{1}, \ldots, c_{n}, \sim x \\
c_{1} \leftarrow a_{1} \\
\vdots \\
c_{1} \leftarrow b_{1} \\
c_{n} \leftarrow a_{n} \\
c_{n} \leftarrow b_{n}
\end{array}\right\} P_{c}^{n}=\left\{\begin{array}{c}
a_{1} \leftarrow \sim b_{1} \\
b_{1} \leftarrow \sim a_{1} \\
\vdots \\
a_{n} \leftarrow \sim b_{n} \\
b_{n} \leftarrow \sim a_{n}
\end{array}\right\}
\]
- In minimal refutations for \(P_{a}^{n} \cup P_{c}^{n}\), the number of applications of \(\operatorname{Cut}\left[B\left(P_{a}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {noMoRe }}\) is linear in \(n\), whereas \(\mathcal{T}_{\text {smodels }}\) requires exponentially many applications of \(\operatorname{Cut}\left[A\left(P_{a}^{n} \cup P_{c}^{n}\right)\right]\)
- Vice versa, minimal refutations for \(P_{b}^{n} \cup P_{c}^{n}\) require linearly many applications of \(\operatorname{Cut}\left[A\left(P_{b}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {smodels }}\) and exponentially many applications of \(\operatorname{Cut}\left[B\left(P_{b}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {noMoRe }}\)

\section*{\(\mathcal{T}_{\text {smodels }}\) versus \(\mathcal{T}_{\text {noMoRe }}\)}
- \(\mathcal{T}_{\text {smodels }}\) restricts Cut to \(A(P)\) and \(\mathcal{T}_{\text {noMoRe }}\) to \(B(P)\) Are both approaches similar or is one of them superior to the other?
- Let \(\left\{P_{a}^{n}\right\},\left\{P_{b}^{n}\right\}\), and \(\left\{P_{c}^{n}\right\}\) be infinite families of programs where
\[
P_{a}^{n}=\left\{\begin{array}{c}
x \leftarrow \sim x \\
x \leftarrow a_{1}, b_{1} \\
\vdots \\
x \leftarrow a_{n}, b_{n}
\end{array}\right\} P_{b}^{n}=\left\{\begin{array}{c}
x \leftarrow c_{1}, \ldots, c_{n}, \sim x \\
c_{1} \leftarrow a_{1} \\
c_{1} \leftarrow b_{1} \\
\vdots \\
\vdots \\
c_{n} \leftarrow a_{n} \\
c_{n} \leftarrow b_{n}
\end{array}\right\} P_{c}^{n}=\left\{\begin{array}{c}
a_{1} \leftarrow \sim b_{1} \\
b_{1} \leftarrow \sim a_{1} \\
\vdots \\
a_{n} \leftarrow \sim b_{n} \\
b_{n} \leftarrow \sim a_{n}
\end{array}\right\}
\]
- In minimal refutations for \(P_{a}^{n} \cup P_{c}^{n}\), the number of applications of \(\operatorname{Cut}\left[B\left(P_{a}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {noMo }}\) Re is linear in \(n\), whereas \(\mathcal{T}_{\text {smodels }}\) requires exponentially many applications of \(C u t\left[A\left(P_{a}^{n} \cup P_{c}^{n}\right)\right]\)
- Vice versa, minimal refutations for \(P_{b}^{n} \cup P_{c}^{n}\) require linearly many applications of \(C u t\left[A\left(P_{b}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {smodels }}\) and exponentially many applications of \(\operatorname{Cut}\left[B\left(P_{b}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {noMo }}\) Re

\section*{\(\mathcal{T}_{\text {smodels }}\) versus \(\mathcal{T}_{\text {noMoRe }}\)}
- \(\mathcal{T}_{\text {smodels }}\) restricts Cut to \(A(P)\) and \(\mathcal{T}_{\text {noMoRe }}\) to \(B(P)\) Are both approaches similar or is one of them superior to the other?
- Let \(\left\{P_{a}^{n}\right\},\left\{P_{b}^{n}\right\}\), and \(\left\{P_{c}^{n}\right\}\) be infinite families of programs where
\[
P_{a}^{n}=\left\{\begin{array}{c}
x \leftarrow \sim x \\
x \leftarrow a_{1}, b_{1} \\
\vdots \\
x \leftarrow a_{n}, b_{n}
\end{array}\right\} P_{b}^{n}=\left\{\begin{array}{c}
x \leftarrow c_{1}, \ldots, c_{n}, \sim x \\
c_{1} \leftarrow a_{1} \\
c_{1} \leftarrow b_{1} \\
\vdots \\
\vdots \\
c_{n} \leftarrow a_{n} \\
c_{n} \leftarrow b_{n}
\end{array}\right\} P_{c}^{n}=\left\{\begin{array}{c}
a_{1} \leftarrow \sim b_{1} \\
b_{1} \leftarrow \sim a_{1} \\
\vdots \\
a_{n} \leftarrow \sim b_{n} \\
b_{n} \leftarrow \sim a_{n}
\end{array}\right\}
\]
- In minimal refutations for \(P_{a}^{n} \cup P_{c}^{n}\), the number of applications of \(\operatorname{Cut}\left[B\left(P_{a}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {noMoRe }}\) is linear in \(n\), whereas \(\mathcal{T}_{\text {smodels }}\) requires exponentially many applications of \(C u t\left[A\left(P_{a}^{n} \cup P_{c}^{n}\right)\right]\)
- Vice versa, minimal refutations for \(P_{b}^{n} \cup P_{c}^{n}\) require linearly many applications of \(\operatorname{Cut}\left[A\left(P_{b}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {smodels }}\) and exponentially many applications of \(\operatorname{Cut}\left[B\left(P_{b}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {noMoRe }}\)

\section*{\(\mathcal{T}_{\text {smodels }}\) versus \(\mathcal{T}_{\text {noMoRe }}\)}
- \(\mathcal{T}_{\text {smodels }}\) restricts Cut to \(A(P)\) and \(\mathcal{T}_{\text {noMoRe }}\) to \(B(P)\) Are both approaches similar or is one of them superior to the other?
- Let \(\left\{P_{a}^{n}\right\},\left\{P_{b}^{n}\right\}\), and \(\left\{P_{c}^{n}\right\}\) be infinite families of programs where
\[
P_{a}^{n}=\left\{\begin{array}{c}
x \leftarrow \sim x \\
x \leftarrow a_{1}, b_{1} \\
\vdots \\
x \leftarrow a_{n}, b_{n}
\end{array}\right\} P_{b}^{n}=\left\{\begin{array}{c}
x \leftarrow c_{1}, \ldots, c_{n}, \sim x \\
c_{1} \leftarrow a_{1} \\
c_{1} \leftarrow b_{1} \\
\vdots \\
\vdots \\
c_{n} \leftarrow a_{n} \\
c_{n} \leftarrow b_{n}
\end{array}\right\} P_{c}^{n}=\left\{\begin{array}{c}
a_{1} \leftarrow \sim b_{1} \\
b_{1} \leftarrow \sim a_{1} \\
\vdots \\
a_{n} \leftarrow \sim b_{n} \\
b_{n} \leftarrow \sim a_{n}
\end{array}\right\}
\]
- In minimal refutations for \(P_{a}^{n} \cup P_{c}^{n}\), the number of applications of \(\operatorname{Cut}\left[B\left(P_{a}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {noMoRe }}\) is linear in \(n\), whereas \(\mathcal{T}_{\text {smodels }}\) requires exponentially many applications of \(C u t\left[A\left(P_{a}^{n} \cup P_{c}^{n}\right)\right]\)
■ Vice versa, minimal refutations for \(P_{b}^{n} \cup P_{c}^{n}\) require linearly many applications of \(\operatorname{Cut}\left[A\left(P_{b}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {smodels }}\) and exponentially many applications of \(\operatorname{Cut}\left[B\left(P_{b}^{n} \cup P_{c}^{n}\right)\right]\) with \(\mathcal{T}_{\text {noMoRe }}\)

\section*{Relative efficiency}
- As witnessed by \(\left\{P_{a}^{n} \cup P_{c}^{n}\right\}\) and \(\left\{P_{b}^{n} \cup P_{c}^{n}\right\}\), respectively, \(\mathcal{T}_{\text {smodels }}\) and \(\mathcal{T}_{\text {noMoRe }}\) do not polynomially simulate one another
- Any refutation of \(\mathcal{T}_{\text {smodels }}\) or \(\mathcal{T}_{\text {noMo }}\) e is a refutation of \(\mathcal{T}_{\text {nomore }}{ }^{++}\) (but not vice versa)
\(\square\) Hence
- both \(\mathcal{T}_{\text {smodels }}\) and \(\mathcal{T}_{\text {noMoRe }}\) are polynomially simulated by \(\mathcal{T}_{\text {nomore }}+\) and
\(\square \mathcal{T}_{\text {nomorere }}\) is polynomially simulated by neither \(\mathcal{T}_{\text {smodels }}\) nor \(\mathcal{T}_{\text {noMoRe }}\)

More generally, the proof system obtained with \(\operatorname{Cut}[A(P) \cup B(P)]\) is exponentially stronger than
the ones with either \(\operatorname{Cut}[A(P)]\) or \(\operatorname{Cut}[B(P)]\)
Case analyses (at least) on atoms and bodies are mandatory in powerful ASP solvers

\section*{Relative efficiency}
- As witnessed by \(\left\{P_{a}^{n} \cup P_{c}^{n}\right\}\) and \(\left\{P_{b}^{n} \cup P_{c}^{n}\right\}\), respectively, \(\mathcal{T}_{\text {smodels }}\) and \(\mathcal{T}_{\text {noMoRe }}\) do not polynomially simulate one another
- Any refutation of \(\mathcal{T}_{\text {smodels }}\) or \(\mathcal{T}_{\text {noMoRe }}\) is a refutation of \(\mathcal{T}_{\text {nomore }}{ }^{++}\) (but not vice versa)
- Hence
- both \(\mathcal{T}_{\text {smodels }}\) and \(\mathcal{T}_{\text {noMoRe }}\) are polynomially simulated by \(\mathcal{T}_{\text {nomore }}{ }^{++}\)and \(-\mathcal{T}_{\text {nomoret }}+\) is polynomially simulated by neither \(\mathcal{T}_{\text {smodels }}\) nor \(\mathcal{T}_{\text {noMoRe }}\)
\(\square\) More generally, the proof system obtained with \(\operatorname{Cut}[A(P) \cup B(P)]\) is exponentially stronger than
the ones with either \(\operatorname{Cut}[A(P)]\) or \(\operatorname{Cut}[B(P)]\)
Case analyses (at least) on atoms and bodies are mandatory in powerful ASP solvers

\section*{Relative efficiency}
- As witnessed by \(\left\{P_{a}^{n} \cup P_{c}^{n}\right\}\) and \(\left\{P_{b}^{n} \cup P_{c}^{n}\right\}\), respectively, \(\mathcal{T}_{\text {smodels }}\) and \(\mathcal{T}_{\text {noMoRe }}\) do not polynomially simulate one another
- Any refutation of \(\mathcal{T}_{\text {smodels }}\) or \(\mathcal{T}_{\text {noMoRe }}\) is a refutation of \(\mathcal{T}_{\text {nomore }}{ }^{++}\) (but not vice versa)
■ Hence
- both \(\mathcal{T}_{\text {smodels }}\) and \(\mathcal{T}_{\text {noMoRe }}\) are polynomially simulated by \(\mathcal{T}_{\text {nomore }}{ }^{++}\)and
- \(\mathcal{T}_{\text {nomore }}{ }^{++}\)is polynomially simulated by neither \(\mathcal{T}_{\text {smodels }}\) nor \(\mathcal{T}_{\text {noMo }}\) Re
- More generally, the proof system obtained with \(\operatorname{Cut}[A(P) \cup B(P)]\) is exponentially stronger than
the ones with either \(\operatorname{Cut}[A(P)]\) or \(\operatorname{Cut}[B(P)]\)
\(\square\) Case analyses (at least) on atoms and bodies are mandatory in powerful ASP solvers

Torsten Schaub (KRR@UP)

\section*{Relative efficiency}
- As witnessed by \(\left\{P_{a}^{n} \cup P_{c}^{n}\right\}\) and \(\left\{P_{b}^{n} \cup P_{c}^{n}\right\}\), respectively, \(\mathcal{T}_{\text {smodels }}\) and \(\mathcal{T}_{\text {noMoRe }}\) do not polynomially simulate one another
- Any refutation of \(\mathcal{T}_{\text {smodels }}\) or \(\mathcal{T}_{\text {noMoRe }}\) is a refutation of \(\mathcal{T}_{\text {nomore }}{ }^{++}\) (but not vice versa)
- Hence
- both \(\mathcal{T}_{\text {smodels }}\) and \(\mathcal{T}_{\text {noMoRe }}\) are polynomially simulated by \(\mathcal{T}_{\text {nomore }}{ }^{++}\)and
- \(\mathcal{T}_{\text {nomore }}{ }^{++}\)is polynomially simulated by neither \(\mathcal{T}_{\text {smodels }}\) nor \(\mathcal{T}_{\text {noMoRe }}\)
- More generally, the proof system obtained with \(\operatorname{Cut}[A(P) \cup B(P)]\) is exponentially stronger than the ones with either \(\operatorname{Cut}[A(P)]\) or \(\operatorname{Cut}[B(P)]\)
- Case analyses (at least) on atoms and bodies are mandatory in powerful ASP solvers

\section*{Relative efficiency}
- As witnessed by \(\left\{P_{a}^{n} \cup P_{c}^{n}\right\}\) and \(\left\{P_{b}^{n} \cup P_{c}^{n}\right\}\), respectively, \(\mathcal{T}_{\text {smodels }}\) and \(\mathcal{T}_{\text {noMoRe }}\) do not polynomially simulate one another
- Any refutation of \(\mathcal{T}_{\text {smodels }}\) or \(\mathcal{T}_{\text {noMoRe }}\) is a refutation of \(\mathcal{T}_{\text {nomore }}{ }^{++}\) (but not vice versa)
- Hence
- both \(\mathcal{T}_{\text {smodels }}\) and \(\mathcal{T}_{\text {noMoRe }}\) are polynomially simulated by \(\mathcal{T}_{\text {nomore }}{ }^{++}\)and - \(\mathcal{T}_{\text {nomore }}{ }^{++}\)is polynomially simulated by neither \(\mathcal{T}_{\text {smodels }}\) nor \(\mathcal{T}_{\text {noMoRe }}\)
- More generally, the proof system obtained with \(\operatorname{Cut}[A(P) \cup B(P)]\) is exponentially stronger than the ones with either \(\operatorname{Cut}[A(P)]\) or \(\operatorname{Cut}[B(P)]\)
- Case analyses (at least) on atoms and bodies are mandatory in powerful ASP solvers

\section*{\(\mathcal{T}_{\text {smodels: }}\) : Example tableau}
\(\left.\begin{array}{lllll}\left(r_{1}\right) & a \leftarrow \sim b & \left(r_{2}\right) & b \leftarrow d, \sim a & \left(r_{3}\right) c \leftarrow b, d \\ \left(r_{4}\right) & c \leftarrow g & \left(r_{5}\right) & d \leftarrow c & \left(r_{6}\right) \\ \left(r_{7}\right) & d \leftarrow f, \sim c & \left(r_{8}\right) & f \leftarrow \sim g & \left(r_{9}\right) \\ \hline\end{array}\right) \leftarrow \sim a, \sim f\)
\begin{tabular}{|c|c|c|}
\hline (1) & Ta & [Cut] \\
\hline (2) & \(\mathrm{T}\{\sim b\}\) & [BTA: \(\left.r_{1}, 1\right]\) \\
\hline (3) & Fb & [BTB: 2] \\
\hline (4) & \(F\{d, \sim a\}\) & [BFA: \(\left.r_{2}, 3\right]\) \\
\hline (5) & \(\mathbf{F}\{\sim a, \sim f\}\) & [FFB: \(\left.r_{9}, 1\right]\) \\
\hline (6) & Fg & [FFA: \(\left.r_{9}, 5\right]\) \\
\hline (7) & \(\mathrm{T}\{\sim g\}\) & [FTB: \(\left.r_{8}, 6\right]\) \\
\hline (8) & Tf & [FTA: \(\left.r_{8}, 7\right]\) \\
\hline (9) & \(\mathbf{F}\{b, d\}\) & [FFB: \(\left.r_{3}, 3\right]\) \\
\hline (10) & F \(\{\mathrm{g}\}\) & [FFB: \(\left.r_{4}, r_{6}, 6\right]\) \\
\hline (11) & Fc & [FFA: \(\left.r_{3}, r_{4}, 9,10\right]\) \\
\hline (12) & \(\mathrm{F}\{\mathrm{c}\}\) & [FFB: \(\left.r_{5}, 11\right]\) \\
\hline (13) & Fd & [FFA: \(\left.r_{5}, r_{6}, 10,12\right]\) \\
\hline (14) & \(\mathbf{T}\{f, \sim c\}\) & [FTB: \(\left.r_{7}, 8,11\right]\) \\
\hline (15) & Te & [FTA: \(\left.r_{7}, 14\right]\) \\
\hline
\end{tabular}


\section*{\(\mathcal{T}_{\text {noMoRe }}\) : Example tableau}
\begin{tabular}{lllll}
\(\left(r_{1}\right)\) & \(a \leftarrow \sim b\) & \(\left(r_{2}\right)\) & \(b \leftarrow d, \sim a\) & \(\left(r_{3}\right)\) \\
\(\left(r_{4}\right)\) & \(c \leftarrow G\) & \(\left(r_{5}\right)\) & \(d \leftarrow c, d\) \\
\(\left(r_{7}\right)\) & \(e \leftarrow f, \sim c\) & \(\left(r_{8}\right)\) & \(f \leftarrow \sim g\) & \(\left(r_{6}\right)\) \\
\(d \leftarrow G\) \\
& & \(\left(r_{9}\right)\) & \(g \leftarrow \sim a, \sim f\)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline (1) & \(\mathrm{T}\{\sim b\}\) & [Cut] \\
\hline (2) & Ta & [FTA: \(\left.r_{1}, 1\right]\) \\
\hline (3) & Fb & [BTB: 1] \\
\hline (4) & \(\mathrm{F}\{\mathrm{d}, \sim a\}\) & [BFA: \(\left.r_{2}, 3\right]\) \\
\hline (5) & \(\mathbf{F}\{\sim a, \sim f\}\) & [FFB: \(\left.r_{9}, 2\right]\) \\
\hline (6) & Fg & [FFA: \(\left.r_{9}, 5\right]\) \\
\hline (7) & \(\mathrm{T}\{\sim \mathrm{g}\}\) & [FTB: \(\left.r_{8}, 6\right]\) \\
\hline (8) & Tf & [FTA: \(\left.r_{8}, 7\right]\) \\
\hline (9) & \(\mathrm{F}\{\mathrm{b}, \mathrm{d}\}\) & [FFB: \(\left.r_{3}, 3\right]\) \\
\hline (10) & F \(\{\mathrm{g}\}\) & [FFB: \(\left.r_{4}, r_{6}, 6\right]\) \\
\hline (11) & Fc & [FFA: \(\left.r_{3}, r_{4}, 9,10\right]\) \\
\hline (12) & \(\mathrm{F}\{\mathrm{c}\}\) & [FFB: \(\left.r_{5}, 11\right]\) \\
\hline (13) & F \(d\) & [FFA: \(\left.r_{5}, r_{6}, 10,12\right]\) \\
\hline (14) & \(\mathrm{T}\{\mathrm{f}, \sim c\}\) & [FTB: \(\left.r_{7}, 8,11\right]\) \\
\hline (15) & Te & [FTA: \(\left.r_{7}, 14\right]\) \\
\hline
\end{tabular}


\section*{\(T_{\text {nomore }}{ }^{++}\): Example tableau}
\begin{tabular}{lllll}
\(\left(r_{1}\right)\) & \(a \leftarrow \sim b\) & \(\left(r_{2}\right)\) & \(b \leftarrow d, \sim a\) & \(\left(r_{3}\right)\) \\
\(\left(r_{4}\right)\) & \(c \leftarrow g\) & \(\left(r_{5}\right)\) & \(d \leftarrow c, d\) \\
\(\left(r_{7}\right)\) & \(e \leftarrow f, \sim c\) & \(\left(r_{8}\right)\) & \(f \leftarrow \sim g\) & \(\left(r_{6}\right)\) \\
& \(d \leftarrow g\) \\
& & \(\left(r_{9}\right)\) & \(g \leftarrow \sim a, \sim f\)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline (1) & Ta & [Cut] \\
\hline (2) & \(\mathrm{T}\{\sim b\}\) & [BTA: \(\left.r_{1}, 1\right]\) \\
\hline (3) & Fb & [BTB: 2] \\
\hline (4) & F \(\{d, \sim a\}\) & [BFA: \(\left.r_{2}, 3\right]\) \\
\hline (5) & \(\mathbf{F}\{\sim a, \sim f\}\) & [FFB: \(\left.r_{9}, 1\right]\) \\
\hline (6) & Fg & [FFA: \(\left.r_{9}, 5\right]\) \\
\hline (7) & \(\mathrm{T}\{\sim \mathrm{g}\}\) & [FTB: \(\left.r_{8}, 6\right]\) \\
\hline (8) & Tf & [FTA: \(\left.r_{8}, 7\right]\) \\
\hline (9) & \(\mathbf{F}\{b, d\}\) & [FFB: \(\left.r_{3}, 3\right]\) \\
\hline (10) & F \(\{\mathrm{g}\}\) & [FFB: \(\left.r_{4}, r_{6}, 6\right]\) \\
\hline (11) & Fc & [FFA: \(\left.r_{3}, r_{4}, 9,10\right]\) \\
\hline (12) & \(F\{c\}\) & [FFB: \(\left.r_{5}, 11\right]\) \\
\hline (13) & Fd & [FFA: \(\left.r_{5}, r_{6}, 10,12\right]\) \\
\hline (14) & \(\mathbf{T}\{f, \sim c\}\) & [FTB: \(\left.r_{7}, 8,11\right]\) \\
\hline (15) & Te & [FTA: \(\left.r_{7}, 14\right]\) \\
\hline
\end{tabular}


\section*{Conflict-driven ASP Solving: Overview}

\author{
42 Motivation
}

43 Boolean constraints
44 Nogoods from logic programs
45 Conflict-driven nogood learning

\section*{Outline}

\section*{42 Motivation}

\section*{43 Boolean constraints}

44 Nogoods from logic programs 45 Conflict-driven nogood learning

\section*{Motivation}

■ Goal Approach to computing stable models of logic programs, based on concepts from
- Constraint Processing (CP) and
- Satisfiability Testing (SAT)
- Idea View inferences in ASP as unit propagation on nogoods
- Benefits
- A uniform constraint-based framework for different kinds of inferences in ASP
- Advanced techniques from the areas of CP and SAT
- Highly competitive implementation

\section*{Outline}

\section*{42 Motivation}

\section*{43 Boolean constraints}

44 Nogoods from logic programs 45 Conflict-driven nogood learning

\section*{Assignments}
- An assignment \(A\) over \(\operatorname{dom}(A)=A(P) \cup B(P)\) is a sequence
\[
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
\]
of signed literals \(\sigma_{i}\) of form \(\mathbf{T} v\) or \(\mathbf{F} v\) for \(v \in \operatorname{dom}(A)\) and \(1 \leq i \leq n\)
- Tv expresses that \(v\) is true and \(\mathbf{F} v\) that it is false
- The complement, \(\bar{\sigma}\), of a literal \(\sigma\) is defined as \(T v=\mathbf{F} v\) and \(\bar{F} v=T v\)
- \(A \circ \sigma\) stands for the result of appending \(\sigma\) to \(A\)

Given \(\boldsymbol{A}=\left(\sigma_{1}, \ldots, \sigma_{k-1}, \sigma_{k}, \ldots, \sigma_{n}\right)\), we let \(A\left[\sigma_{k}\right]=\left(\sigma_{1}, \ldots, \sigma_{k-1}\right)\)
We sometimes identify an assignment with the set of its literals
Given this, we access true and false propositions in \(A\) via
\[
A^{\top}=\{v \in \operatorname{dom}(A) \mid \mathbf{T} v \in A\} \text { and } A^{\mathbf{F}}=\{v \in \operatorname{dom}(A) \mid \mathbf{F} v \in A\}
\]

\section*{Assignments}
- An assignment \(A\) over \(\operatorname{dom}(A)=A(P) \cup B(P)\) is a sequence
\[
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
\]
of signed literals \(\sigma_{i}\) of form \(\mathbf{T} v\) or \(\mathbf{F} v\) for \(v \in \operatorname{dom}(A)\) and \(1 \leq i \leq n\)
- Tv expresses that \(v\) is true and \(\mathbf{F} v\) that it is false
- The complement, \(\bar{\sigma}\), of a literal \(\sigma\) is defined as \(\bar{T} v=\mathbf{F} v\) and \(\overline{\mathbf{F} v}=\mathbf{T} v\)

A \(\circ \sigma\) stands for the result of appending \(\sigma\) to \(A\)
\(\square\) Given \(A=\left(\sigma_{1}, \ldots, \sigma_{k-1}, \sigma_{k}, \ldots, \sigma_{n}\right)\), we let \(A\left[\sigma_{k}\right]=\left(\sigma_{1}, \ldots, \sigma_{k-1}\right)\)
We sometimes identify an assignment with the set of its literals
Given this, we access true and false propositions in \(A\) via
\[
A^{\mathbf{\top}}=\{v \in \operatorname{dom}(A) \mid \mathbf{T} v \in A\} \text { and } A^{\mathbf{F}}=\{v \in \operatorname{dom}(A) \mid \mathbf{F} v \in A\}
\]

\section*{Assignments}
- An assignment \(A\) over \(\operatorname{dom}(A)=A(P) \cup B(P)\) is a sequence
\[
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
\]
of signed literals \(\sigma_{i}\) of form \(\mathbf{T} v\) or \(\mathbf{F} v\) for \(v \in \operatorname{dom}(A)\) and \(1 \leq i \leq n\)
- Tv expresses that \(v\) is true and \(\mathbf{F} v\) that it is false

The complement, \(\bar{\sigma}\), of a literal \(\sigma\) is defined as \(\bar{T} v=\mathbf{F} v\) and \(\overline{\mathbf{F} v}=\mathrm{T} v\)
- \(A \circ \sigma\) stands for the result of appending \(\sigma\) to \(A\)

Given \(\boldsymbol{A}=\left(\sigma_{1}, \ldots, \sigma_{k-1}, \sigma_{k}, \ldots, \sigma_{n}\right)\), we let \(A\left[\sigma_{k}\right]=\left(\sigma_{1}, \ldots, \sigma_{k-1}\right)\)
\(\square\) We sometimes identify an assignment with the set of its literals Given this, we access true and false propositions in \(A\) via
\[
A^{\mathbf{\top}}=\{v \in \operatorname{dom}(A) \mid \mathbf{T} v \in A\} \text { and } A^{\mathbf{F}}=\{v \in \operatorname{dom}(A) \mid \mathbf{F} v \in A\}
\]

\section*{Assignments}
- An assignment \(A\) over \(\operatorname{dom}(A)=A(P) \cup B(P)\) is a sequence
\[
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
\]
of signed literals \(\sigma_{i}\) of form \(\mathbf{T} v\) or \(\mathbf{F} v\) for \(v \in \operatorname{dom}(A)\) and \(1 \leq i \leq n\) T \(v\) expresses that \(v\) is true and \(\mathbf{F} v\) that it is false
The complement, \(\bar{\sigma}\), of a literal \(\sigma\) is defined as \(\overline{T v}=\mathbf{F} v\) and \(\overline{\mathbf{F} v}=\mathbf{T} v\)
\(\square A \circ \sigma\) stands for the result of appending \(\sigma\) to \(A\)
- Given \(\boldsymbol{A}=\left(\sigma_{1}, \ldots, \sigma_{k-1}, \sigma_{k}, \ldots, \sigma_{n}\right)\), we let \(A\left[\sigma_{k}\right]=\left(\sigma_{1}, \ldots, \sigma_{k-1}\right)\)
- We sometimes identify an assignment with the set of its literals
\(\square\) Given this, we access true and false propositions in \(A\) via
\[
A^{\top}=\{v \in \operatorname{dom}(A) \mid \mathbf{T} v \in A\} \text { and } A^{\mathbf{F}}=\{v \in \operatorname{dom}(A) \mid \mathbf{F} v \in A\}
\]

\section*{Assignments}
- An assignment \(A\) over \(\operatorname{dom}(A)=A(P) \cup B(P)\) is a sequence
\[
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
\]
of signed literals \(\sigma_{i}\) of form \(\mathbf{T} v\) or \(\mathbf{F} v\) for \(v \in \operatorname{dom}(A)\) and \(1 \leq i \leq n\) TV expresses that \(v\) is true and \(\mathbf{F} v\) that it is false The complement, \(\bar{\sigma}\), of a literal \(\sigma\) is defined as \(\overline{\mathbf{T} v}=\mathbf{F} v\) and \(\overline{\mathbf{F} v}=\mathbf{T} v\)
- \(A \circ \sigma\) stands for the result of appending \(\sigma\) to \(A\)

Given \(A=\left(\sigma_{1}, \ldots, \sigma_{k-1}, \sigma_{k}, \ldots, \sigma_{n}\right)\), we let \(A\left[\sigma_{k}\right]=\left(\sigma_{1}, \ldots, \sigma_{k-1}\right)\)
- We sometimes identify an assignment with the set of its literals
- Given this, we access true and false propositions in A via
\[
A^{\mathbf{\top}}=\{v \in \operatorname{dom}(A) \mid \mathbf{T} v \in A\} \text { and } A^{\mathbf{F}}=\{v \in \operatorname{dom}(A) \mid \mathbf{F} v \in A\}
\]

\section*{Assignments}
- An assignment \(A\) over \(\operatorname{dom}(A)=A(P) \cup B(P)\) is a sequence
\[
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
\]
of signed literals \(\sigma_{i}\) of form \(\mathbf{T} v\) or \(\mathbf{F} v\) for \(v \in \operatorname{dom}(A)\) and \(1 \leq i \leq n\)
TV expresses that \(v\) is true and \(\mathbf{F} v\) that it is false
The complement, \(\bar{\sigma}\), of a literal \(\sigma\) is defined as \(\overline{T_{v}}=\mathbf{F}_{v}\) and \(\overline{\mathbf{F}_{v}}=\mathbf{T}_{v}\) \(A \circ \sigma\) stands for the result of appending \(\sigma\) to \(A\)
Given \(\boldsymbol{A}=\left(\sigma_{1}, \ldots, \sigma_{k-1}, \sigma_{k}, \ldots, \sigma_{n}\right)\), we let \(\boldsymbol{A}\left[\sigma_{k}\right]=\left(\sigma_{1}, \ldots, \sigma_{k-1}\right)\)
- We sometimes identify an assignment with the set of its literals
- Given this, we access true and false propositions in \(A\) via
\[
A^{\mathbf{\top}}=\{v \in \operatorname{dom}(A) \mid \mathbf{T} v \in A\} \text { and } A^{\mathbf{F}}=\{v \in \operatorname{dom}(A) \mid \mathbf{F} v \in A\}
\]

\section*{Assignments}
- An assignment \(A\) over \(\operatorname{dom}(A)=A(P) \cup B(P)\) is a sequence
\[
\left(\sigma_{1}, \ldots, \sigma_{n}\right)
\]
of signed literals \(\sigma_{i}\) of form \(\mathbf{T} v\) or \(\mathbf{F} v\) for \(v \in \operatorname{dom}(A)\) and \(1 \leq i \leq n\)
- Tv expresses that \(v\) is true and \(\mathbf{F} v\) that it is false
- The complement, \(\bar{\sigma}\), of a literal \(\sigma\) is defined as \(\bar{T} v=\mathbf{F} v\) and \(\overline{\mathbf{F} v}=\mathbf{T} v\)
- \(A \circ \sigma\) stands for the result of appending \(\sigma\) to \(A\)

■ Given \(\boldsymbol{A}=\left(\sigma_{1}, \ldots, \sigma_{k-1}, \sigma_{k}, \ldots, \sigma_{n}\right)\), we let \(A\left[\sigma_{k}\right]=\left(\sigma_{1}, \ldots, \sigma_{k-1}\right)\)
- We sometimes identify an assignment with the set of its literals
- Given this, we access true and false propositions in \(A\) via
\[
A^{\mathbf{\top}}=\{v \in \operatorname{dom}(A) \mid \mathbf{T} v \in A\} \text { and } A^{\mathbf{F}}=\{v \in \operatorname{dom}(A) \mid \mathbf{F} v \in A\}
\]

\section*{Nogoods, solutions, and unit propagation}
- A nogood is a set \(\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}\) of signed literals, expressing a constraint violated by any assignment containing \(\sigma_{1}, \ldots, \sigma_{n}\)
- An assignment \(A\) such that \(A^{\top} \cup A^{\mathrm{F}}=\operatorname{dom}(A)\) and \(A^{\top} \cap A^{\mathrm{F}}=\emptyset\) is a solution for a set \(\Delta\) of nogoods, if \(\delta \nsubseteq A\) for all \(\delta \in \triangle\)
- For a nogood \(\delta\), a literal \(\sigma \in \delta\), and an assignment \(A\), we say that \(\bar{\sigma}\) is unit-resulting for \(\delta\) wrt \(A\), if
```

1 }\delta\A={\sigma}\mathrm{ and
2 \overline{\sigma}\not\inA

```

For a set \(\triangle\) of nogoods and an assignment \(A\), unit propagation is the iterated process of extending \(A\) with unit-resulting literals until no further literal is unit-resulting for any nogood in \(\triangle\)

\section*{Nogoods, solutions, and unit propagation}
- A nogood is a set \(\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}\) of signed literals, expressing a constraint violated by any assignment containing \(\sigma_{1}, \ldots, \sigma_{n}\)
- An assignment \(A\) such that \(A^{\mathbf{T}} \cup A^{\mathbf{F}}=\operatorname{dom}(A)\) and \(A^{\mathbf{T}} \cap A^{\mathbf{F}}=\emptyset\) is a solution for a set \(\Delta\) of nogoods, if \(\delta \nsubseteq A\) for all \(\delta \in \Delta\)
- For a nogood \(\delta\), a literal \(\sigma \in \delta\), and an assignment \(A\), we say that \(\bar{\sigma}\) is unit-resulting for \(\delta\) wrt \(A\), if
\[
\frac{1}{2} \bar{\sigma} \notin A=\{\sigma\} \text { and }
\]
\(\square\) For a set \(\Delta\) of nogoods and an assignment \(A\), unit propagation is the iterated process of extending \(A\) with unit-resulting literals until no further literal is unit-resulting for any nogood in \(\triangle\)

\section*{Nogoods, solutions, and unit propagation}
- A nogood is a set \(\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}\) of signed literals, expressing a constraint violated by any assignment containing \(\sigma_{1}, \ldots, \sigma_{n}\)
- An assignment \(A\) such that \(A^{\mathbf{T}} \cup A^{\mathbf{F}}=\operatorname{dom}(A)\) and \(A^{\mathbf{T}} \cap A^{\mathbf{F}}=\emptyset\) is a solution for a set \(\Delta\) of nogoods, if \(\delta \nsubseteq A\) for all \(\delta \in \Delta\)
- For a nogood \(\delta\), a literal \(\sigma \in \delta\), and an assignment \(A\), we say that \(\bar{\sigma}\) is unit-resulting for \(\delta\) wrt \(A\), if
\(1 \delta \backslash A=\{\sigma\}\) and
\(2 \bar{\sigma} \notin A\)
- For a set \(\Delta\) of nogoods and an assignment \(A\), unit propagation is the iterated process of extending \(A\) with unit-resulting literals until no further literal is unit-resulting for any nogood in \(\triangle\)

\section*{Nogoods, solutions, and unit propagation}
- A nogood is a set \(\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}\) of signed literals, expressing a constraint violated by any assignment containing \(\sigma_{1}, \ldots, \sigma_{n}\)
- An assignment \(A\) such that \(A^{\mathbf{T}} \cup A^{\mathbf{F}}=\operatorname{dom}(A)\) and \(A^{\mathbf{T}} \cap A^{\mathbf{F}}=\emptyset\) is a solution for a set \(\Delta\) of nogoods, if \(\delta \nsubseteq A\) for all \(\delta \in \Delta\)
- For a nogood \(\delta\), a literal \(\sigma \in \delta\), and an assignment \(A\), we say that \(\bar{\sigma}\) is unit-resulting for \(\delta\) wrt \(A\), if
\(1 \delta \backslash A=\{\sigma\}\) and
\(2 \bar{\sigma} \notin A\)
- For a set \(\Delta\) of nogoods and an assignment \(A\), unit propagation is the iterated process of extending \(A\) with unit-resulting literals until no further literal is unit-resulting for any nogood in \(\Delta\)

\section*{Outline}

\section*{42 Motivation}

\section*{43 Boolean constraints}

44 Nogoods from logic programs

\section*{45 Conflict-driven nogood learning}

\section*{Outline}

42 Motivation

43 Boolean constraints

44 Nogoods from logic programs
- Nogoods from program completion
- Nogoods from loop formulas

45 Conflict-driven nogood learning
- CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis

\section*{Nogoods from logic programs via program completion}

The completion of a logic program \(P\) can be defined as follows:
\[
\begin{aligned}
\left\{v_{B} \leftrightarrow\right. & a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n} \mid \\
& \left.B \in B(P) \text { and } B=\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}\right\} \\
\cup\{a \leftrightarrow & v_{B_{1}} \vee \cdots \vee v_{B_{k}} \mid \\
& \left.a \in A(P) \text { and } B_{P}(a)=\left\{B_{1}, \ldots, B_{k}\right\}\right\},
\end{aligned}
\]
where \(B_{P}(a)=\{B(r) \mid r \in P\) and \(h(r)=a\}\)

\section*{Nogoods from logic programs via program completion}
- The (body-oriented) equivalence
\[
v_{B} \leftrightarrow a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n}
\]
can be decomposed into two implications:

\section*{Nogoods from logic programs via program completion}
- The (body-oriented) equivalence
\[
v_{B} \leftrightarrow a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n}
\]
can be decomposed into two implications:
\(1 v_{B} \rightarrow a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n}\) is equivalent to the conjunction of
\[
\neg v_{B} \vee a_{1}, \ldots, \neg v_{B} \vee a_{m}, \neg v_{B} \vee \neg a_{m+1}, \ldots, \neg v_{B} \vee \neg a_{n}
\]
and induces the set of nogoods
\[
\Delta(B)=\left\{\left\{\mathbf{T} B, \mathbf{F} a_{1}\right\}, \ldots,\left\{\mathbf{T} B, \mathbf{F} a_{m}\right\},\left\{\mathbf{T} B, \mathbf{T} a_{m+1}\right\}, \ldots,\left\{\mathbf{T} B, \mathbf{T} a_{n}\right\}\right\}
\]

\section*{Nogoods from logic programs via program completion}
- The (body-oriented) equivalence
\[
v_{B} \leftrightarrow a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n}
\]
can be decomposed into two implications:
\(2 a_{1} \wedge \cdots \wedge a_{m} \wedge \neg a_{m+1} \wedge \cdots \wedge \neg a_{n} \rightarrow v_{B}\) gives rise to the nogood
\[
\delta(B)=\left\{\mathbf{F} B, \mathbf{T} a_{1}, \ldots, \mathbf{T} a_{m}, \mathbf{F} a_{m+1}, \ldots, \mathbf{F} a_{n}\right\}
\]

\section*{Nogoods from logic programs via program completion}
- Analogously, the (atom-oriented) equivalence
\[
a \leftrightarrow v_{B_{1}} \vee \cdots \vee v_{B_{k}}
\]
yields the nogoods
\(1 \Delta(a)=\left\{\left\{\mathbf{F} a, \mathbf{T} B_{1}\right\}, \ldots,\left\{\mathbf{F} a, \mathbf{T} B_{k}\right\}\right\}\) and
\(2 \delta(a)=\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\}\)

\section*{Nogoods from logic programs atom-oriented nogoods}
- For an atom a where \(B_{P}(a)=\left\{B_{1}, \ldots, B_{k}\right\}\), we get
\[
\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\mathbf{F} a, \mathbf{T} B_{1}\right\}, \ldots,\left\{\mathbf{F} a, \mathbf{T} B_{k}\right\}\right\}
\]
- Example Given Atom \(x\) with \(B(x)=\{\{y\},\{\sim z\}\}\), we obtain

\[
\begin{aligned}
& \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
& \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{aligned}
\]

For nogood \(\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}\), the signed literal
\(F x\) is unit-resulting wrt assignment \((\mathbf{F}\{y\}, \mathbf{F}\{\sim z\})\) and \(\mathrm{T}\{\sim z\}\) is unit-resulting wrt assignment ( \(\mathbf{T} x, \mathbf{F}\{y\}\) )

\section*{Nogoods from logic programs atom-oriented nogoods}
- For an atom a where \(B_{P}(a)=\left\{B_{1}, \ldots, B_{k}\right\}\), we get
\[
\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\} \text { and }\left\{\left\{\mathbf{F} a, \mathbf{T} B_{1}\right\}, \ldots,\left\{\mathbf{F} a, \mathbf{T} B_{k}\right\}\right\}
\]
- Example Given Atom \(x\) with \(B(x)=\{\{y\},\{\sim z\}\}\), we obtain
\[
\begin{array}{|lll|}
\hline x & \leftarrow & y \\
x & \leftarrow & \sim z
\end{array}
\]
\[
\begin{aligned}
& \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
& \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{aligned}
\]

For nogood \(\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}\), the signed literal
> \(F x\) is unit-resulting wrt assignment \((\mathbf{F}\{y\}, \mathbf{F}\{\sim z\})\) and \(\mathbf{T}\{\sim z\}\) is unit-resulting wrt assignment ( \(\mathbf{T} x, \mathbf{F}\{y\}\) )

\section*{Nogoods from logic programs atom-oriented nogoods}
- For an atom a where \(B_{P}(a)=\left\{B_{1}, \ldots, B_{k}\right\}\), we get
\[
\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\mathbf{F} a, \mathbf{T} B_{1}\right\}, \ldots,\left\{\mathbf{F} a, \mathbf{T} B_{k}\right\}\right\}
\]
- Example Given Atom \(x\) with \(B(x)=\{\{y\},\{\sim z\}\}\), we obtain
\begin{tabular}{|lll|}
\hline\(x\) & \(\leftarrow\) & \(y\) \\
\(x\) & \(\leftarrow\) & \(\sim z\) \\
\hline
\end{tabular}
\[
\begin{aligned}
& \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
& \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{aligned}
\]

For nogood \(\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}\), the signed literal
\(\boldsymbol{F} x\) is unit-resulting wrt assignment \((F\{y\}, F\{\sim z\})\) and \(\mathbf{T}\{\sim z\}\) is unit-resulting wrt assignment ( \(\mathbf{T} x, \mathbf{F}\{y\}\) )

\section*{Nogoods from logic programs atom-oriented nogoods}

For an atom a where \(B_{P}(a)=\left\{B_{1}, \ldots, B_{k}\right\}\), we get
\[
\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\mathbf{F} a, \mathbf{T} B_{1}\right\}, \ldots,\left\{\mathbf{F} a, \mathbf{T} B_{k}\right\}\right\}
\]
- Example Given Atom \(x\) with \(B(x)=\{\{y\},\{\sim z\}\}\), we obtain
\begin{tabular}{|lll|}
\hline\(x\) & \(\leftarrow\) & \(y\) \\
\(x\) & \(\leftarrow\) & \(\sim z\)
\end{tabular}
\[
\begin{aligned}
& \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
& \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{aligned}
\]

For nogood \(\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}\), the signed literal
- \(\boldsymbol{F} x\) is unit-resulting wrt assignment \((\boldsymbol{F}\{y\}, F\{\sim z\})\) and \(\mathrm{T}\{\sim z\}\) is unit-resulting wrt assignment ( \(\mathbf{T} x, \mathbf{F}\{y\}\) )

\section*{Nogoods from logic programs atom-oriented nogoods}

For an atom a where \(B_{P}(a)=\left\{B_{1}, \ldots, B_{k}\right\}\), we get
\[
\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\mathbf{F} a, \mathbf{T} B_{1}\right\}, \ldots,\left\{\mathbf{F} a, \mathbf{T} B_{k}\right\}\right\}
\]
- Example Given Atom \(x\) with \(B(x)=\{\{y\},\{\sim z\}\}\), we obtain
\begin{tabular}{|lll|}
\hline\(x\) & \(\leftarrow\) & \(y\) \\
\(x\) & \(\leftarrow\) & \(\sim z\) \\
\hline
\end{tabular}
\[
\begin{aligned}
& \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
& \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{aligned}
\]

For nogood \(\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}\), the signed literal
- \(\mathbf{F} x\) is unit-resulting wrt assignment \((\mathbf{F}\{y\}, \mathbf{F}\{\sim z\})\) and \(\mathrm{T}\{\sim z\}\) is unit-resulting wrt assignment ( \(\mathbf{T} x, \mathbf{F}\{y\}\) )

\section*{Nogoods from logic programs atom-oriented nogoods}

For an atom a where \(B_{P}(a)=\left\{B_{1}, \ldots, B_{k}\right\}\), we get
\[
\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\mathbf{F} a, \mathbf{T} B_{1}\right\}, \ldots,\left\{\mathbf{F} a, \mathbf{T} B_{k}\right\}\right\}
\]
- Example Given Atom \(x\) with \(B(x)=\{\{y\},\{\sim z\}\}\), we obtain
\begin{tabular}{lll|}
\hline\(x\) & \(\leftarrow\) & \(y\) \\
\(x\) & \(\leftarrow\) & \(\sim z\)
\end{tabular}
\[
\begin{aligned}
& \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
& \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{aligned}
\]

For nogood \(\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}\), the signed literal
- \(\mathbf{F} x\) is unit-resulting wrt assignment \((\mathbf{F}\{y\}, \mathbf{F}\{\sim z\})\) and \(\mathbf{T}\{\sim z\}\) is unit-resulting wrt assignment ( \(\mathbf{T} x, \mathbf{F}\{y\}\) )

\section*{Nogoods from logic programs atom-oriented nogoods}

For an atom a where \(B_{P}(a)=\left\{B_{1}, \ldots, B_{k}\right\}\), we get
\[
\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\mathbf{F} a, \mathbf{T} B_{1}\right\}, \ldots,\left\{\mathbf{F} a, \mathbf{T} B_{k}\right\}\right\}
\]
- Example Given Atom \(x\) with \(B(x)=\{\{y\},\{\sim z\}\}\), we obtain
\begin{tabular}{lll|}
\hline\(x\) & \(\leftarrow\) & \(y\) \\
\(x\) & \(\leftarrow\) & \(\sim z\)
\end{tabular}
\[
\begin{aligned}
& \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
& \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{aligned}
\]

For nogood \(\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}\), the signed literal
- \(\mathbf{F} \times\) is unit-resulting wrt assignment \((\mathbf{F}\{y\}, \mathbf{F}\{\sim z\})\) and \(\mathrm{T}\{\sim z\}\) is unit-resulting wrt assignment \((\mathbf{T} x, \mathbf{F}\{y\})\)

\section*{Nogoods from logic programs atom-oriented nogoods}

For an atom a where \(B_{P}(a)=\left\{B_{1}, \ldots, B_{k}\right\}\), we get
\[
\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\mathbf{F} a, \mathbf{T} B_{1}\right\}, \ldots,\left\{\mathbf{F} a, \mathbf{T} B_{k}\right\}\right\}
\]
- Example Given Atom \(x\) with \(B(x)=\{\{y\},\{\sim z\}\}\), we obtain
\begin{tabular}{|lll|}
\hline\(x\) & \(\leftarrow\) & \(y\) \\
\(x\) & \(\leftarrow\) & \(\sim z\) \\
\hline
\end{tabular}
\[
\begin{aligned}
& \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
& \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{aligned}
\]

For nogood \(\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}\), the signed literal
- \(\mathbf{F} x\) is unit-resulting wrt assignment \((\mathbf{F}\{y\}, \mathbf{F}\{\sim z\})\) and - \(\mathbf{T}\{\sim z\}\) is unit-resulting wrt assignment ( \(\mathbf{T} x, \mathbf{F}\{y\}\) )

\section*{Nogoods from logic programs atom-oriented nogoods}

For an atom a where \(B_{P}(a)=\left\{B_{1}, \ldots, B_{k}\right\}\), we get
\[
\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\mathbf{F} a, \mathbf{T} B_{1}\right\}, \ldots,\left\{\mathbf{F} a, \mathbf{T} B_{k}\right\}\right\}
\]
- Example Given Atom \(x\) with \(B(x)=\{\{y\},\{\sim z\}\}\), we obtain

\[
\begin{aligned}
& \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
& \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{aligned}
\]

For nogood \(\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}\), the signed literal
- \(\mathbf{F} \times\) is unit-resulting wrt assignment \((\mathbf{F}\{y\}, \mathbf{F}\{\sim z\})\) and - \(\mathbf{T}\{\sim z\}\) is unit-resulting wrt assignment ( \(\mathbf{T} x, \mathbf{F}\{y\}\) )

\section*{Nogoods from logic programs atom-oriented nogoods}

For an atom a where \(B_{P}(a)=\left\{B_{1}, \ldots, B_{k}\right\}\), we get
\[
\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\mathbf{F} a, \mathbf{T} B_{1}\right\}, \ldots,\left\{\mathbf{F} a, \mathbf{T} B_{k}\right\}\right\}
\]
- Example Given Atom \(x\) with \(B(x)=\{\{y\},\{\sim z\}\}\), we obtain
\begin{tabular}{|lll|}
\hline\(x\) & \(\leftarrow\) & \(y\) \\
\(x\) & \(\leftarrow\) & \(\sim z\) \\
\hline
\end{tabular}
\[
\begin{aligned}
& \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
& \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{aligned}
\]

For nogood \(\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}\), the signed literal
\(F x\) is unit-resulting wrt assignment \((F\{y\}, F\{\sim z\})\) and
- \(\mathbf{T}\{\sim z\}\) is unit-resulting wrt assignment ( \(\mathbf{T} x, \mathbf{F}\{y\}\) )

\section*{Nogoods from logic programs atom-oriented nogoods}

For an atom a where \(B_{P}(a)=\left\{B_{1}, \ldots, B_{k}\right\}\), we get
\[
\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\mathbf{F} a, \mathbf{T} B_{1}\right\}, \ldots,\left\{\mathbf{F} a, \mathbf{T} B_{k}\right\}\right\}
\]
- Example Given Atom \(x\) with \(B(x)=\{\{y\},\{\sim z\}\}\), we obtain
\begin{tabular}{|lll|}
\hline\(x\) & \(\leftarrow\) & \(y\) \\
\(x\) & \(\leftarrow\) & \(\sim z\) \\
\hline
\end{tabular}
\[
\begin{aligned}
& \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
& \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{aligned}
\]

For nogood \(\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}\), the signed literal
\(\mathbf{F} x\) is unit-resulting wrt assignment \((\mathbf{F}\{y\}, \mathbf{F}\{\sim z\})\) and
- \(\mathbf{T}\{\sim z\}\) is unit-resulting wrt assignment ( \(\mathbf{T} x, \mathbf{F}\{y\}\) )

\section*{Nogoods from logic programs atom-oriented nogoods}

For an atom a where \(B_{P}(a)=\left\{B_{1}, \ldots, B_{k}\right\}\), we get
\[
\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\mathbf{F} a, \mathbf{T} B_{1}\right\}, \ldots,\left\{\mathbf{F} a, \mathbf{T} B_{k}\right\}\right\}
\]
- Example Given Atom \(x\) with \(B(x)=\{\{y\},\{\sim z\}\}\), we obtain
\begin{tabular}{lll|}
\hline\(x\) & \(\leftarrow\) & \(y\) \\
\(x\) & \(\leftarrow\) & \(\sim z\)
\end{tabular}
\[
\begin{aligned}
& \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
& \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{aligned}
\]

For nogood \(\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}\), the signed literal

\section*{\(\mathbf{F} x\) is unit-resulting wrt assignment ( \(\mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\) ) and}
- \(\mathbf{T}\{\sim z\}\) is unit-resulting wrt assignment ( \(\mathbf{T} x, \mathbf{F}\{y\}\) )

\section*{Nogoods from logic programs atom-oriented nogoods}

For an atom a where \(B_{P}(a)=\left\{B_{1}, \ldots, B_{k}\right\}\), we get
\[
\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\mathbf{F} a, \mathbf{T} B_{1}\right\}, \ldots,\left\{\mathbf{F} a, \mathbf{T} B_{k}\right\}\right\}
\]
- Example Given Atom \(x\) with \(B(x)=\{\{y\},\{\sim z\}\}\), we obtain
\begin{tabular}{|lll|}
\hline\(x\) & \(\leftarrow\) & \(y\) \\
\(x\) & \(\leftarrow\) & \(\sim z\) \\
\hline
\end{tabular}
\[
\begin{aligned}
& \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
& \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{aligned}
\]

For nogood \(\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}\), the signed literal

\section*{\(F x\) is unit-resulting wrt assignment ( \(\mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\) ) and}

■ \(\mathbf{T}\{\sim z\}\) is unit-resulting wrt assignment ( \(\mathbf{T} x, \mathbf{F}\{y\}\) )

\section*{Nogoods from logic programs atom-oriented nogoods}

For an atom a where \(B_{P}(a)=\left\{B_{1}, \ldots, B_{k}\right\}\), we get
\[
\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\} \quad \text { and } \quad\left\{\left\{\mathbf{F} a, \mathbf{T} B_{1}\right\}, \ldots,\left\{\mathbf{F} a, \mathbf{T} B_{k}\right\}\right\}
\]
- Example Given Atom \(x\) with \(B(x)=\{\{y\},\{\sim z\}\}\), we obtain
\begin{tabular}{|lll|}
\hline\(x\) & \(\leftarrow\) & \(y\) \\
\(x\) & \(\leftarrow\) & \(\sim z\) \\
\hline
\end{tabular}
\[
\begin{aligned}
& \{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\} \\
& \{\{\mathbf{F} x, \mathbf{T}\{y\}\},\{\mathbf{F} x, \mathbf{T}\{\sim z\}\}\}
\end{aligned}
\]

For nogood \(\{\mathbf{T} x, \mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\}\), the signed literal

\section*{\(F x\) is unit-resulting wrt assignment ( \(\mathbf{F}\{y\}, \mathbf{F}\{\sim z\}\) ) and}
- \(\mathbf{T}\{\sim z\}\) is unit-resulting wrt assignment ( \(\mathbf{T} x, \mathbf{F}\{y\}\) )

\section*{Nogoods from logic programs body-oriented nogoods}
- For a body \(B=\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}\), we get
```

$\left\{\mathbf{F} B, \mathbf{T} a_{1}, \ldots, \mathbf{T} a_{m}, \mathbf{F} a_{m+1}, \ldots, \mathbf{F} a_{n}\right\}$
$\left\{\left\{\mathbf{T} B, \mathbf{F} \mathrm{a}_{1}\right\}, \ldots,\left\{\mathbf{T} B, \mathbf{F} \mathrm{a}_{m}\right\},\left\{\mathbf{T} B, \mathbf{T} \mathrm{a}_{m+1}\right\}, \ldots,\left\{\mathbf{T} B, \mathbf{T} \mathrm{a}_{n}\right\}\right\}$

```

Given Body \(\{x, \sim y\}\), we obtain

\[
\begin{aligned}
& \{\mathbf{F}\{x, \sim y\}, \mathbf{T} x, \mathbf{F} y\} \\
& \{\{\mathbf{T}\{x, \sim y\}, \mathbf{F} x\},\{\boldsymbol{T}\{x, \sim y\}, \boldsymbol{T} y\}\}
\end{aligned}
\]

For nogood \(\delta(\{x, \sim y\})=\{\mathbf{F}\{x, \sim y\}, \mathbf{T} x, \mathbf{F} y\}\), the signed literal
- \(\mathbf{T}\{x, \sim y\}\) is unit-resulting wrt assignment ( \(\mathbf{T} x, \mathbf{F}^{\prime} y\) ) and

T \(\mathrm{T} y\) is unit-resulting wrt assignment ( \(\mathbf{F}\{x, \sim y\}, \mathrm{T} x\) )

\section*{Nogoods from logic programs body-oriented nogoods}
- For a body \(B=\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}\), we get
\[
\begin{aligned}
& \left\{\mathbf{F} B, \mathbf{T}_{a_{1}, \ldots,},{\boldsymbol{T} a_{m},}, \mathbf{F} a_{m+1}, \ldots, \mathbf{F}_{a_{n}}\right\} \\
& \left\{\left\{\mathbf{T} B, \mathbf{F} a_{1}\right\}, \ldots,\left\{\mathbf{T} B, \mathbf{F} a_{m}\right\},\left\{\mathbf{T} B, \boldsymbol{T}_{a_{m+1}}\right\}, \ldots,\left\{\mathbf{T} B, \boldsymbol{T} a_{n}\right\}\right\}
\end{aligned}
\]

■ Example Given Body \(\{x, \sim y\}\), we obtain
\[
\begin{gathered}
\ldots \leftarrow x, \sim y \\
\vdots \\
\ldots \leftarrow x, \sim y
\end{gathered}
\]
\(\{\mathbf{F}\{x, \sim y\}, \mathbf{T} x, \boldsymbol{F} y\}\)
\(\{\{\mathbf{T}\{x, \sim y\}, \mathbf{F} x\},\{\mathbf{T}\{x, \sim y\}, \mathbf{T} y\}\}\)
For nogood \(\delta(\{x, \sim y\})=\{\mathbf{F}\{x, \sim y\}, \mathbf{T} x, \mathbf{F} y\}\), the signed literal
- \(\mathbf{T}\{x, \sim y\}\) is unit-resulting wrt assignment ( \(\mathbf{T} x, \mathbf{F}^{\prime} y\) ) and
- \(\mathbf{T} y\) is unit-resulting wrt assignment ( \(\mathbf{F}\{x, \sim y\}, \mathbf{T} x\) )

\section*{Nogoods from logic programs body-oriented nogoods}
- For a body \(B=\left\{a_{1}, \ldots, a_{m}, \sim a_{m+1}, \ldots, \sim a_{n}\right\}\), we get
\[
\begin{aligned}
& \left\{\mathbf{F} B, \mathbf{T} a_{1}, \ldots, \mathbf{T}_{a_{m}}, \mathbf{F} a_{m+1}, \ldots, \mathbf{F} a_{n}\right\} \\
& \left\{\left\{\mathbf{T} B, \mathbf{F} a_{1}\right\}, \ldots,\left\{\mathbf{T} B, \mathbf{F} a_{m}\right\},\left\{\mathbf{T} B, \mathbf{T}_{a_{m+1}}\right\}, \ldots,\left\{\mathbf{T} B, \boldsymbol{T} a_{n}\right\}\right\}
\end{aligned}
\]
- Example Given Body \(\{x, \sim y\}\), we obtain
\[
\begin{gathered}
\ldots \leftarrow x, \sim y \\
\vdots \\
\ldots \leftarrow x, \sim y
\end{gathered}
\]
\[
\begin{aligned}
& \{\mathbf{F}\{x, \sim y\}, \mathbf{T} x, \mathbf{F} y\} \\
& \{\{\mathbf{T}\{x, \sim y\}, \mathbf{F} x\},\{\mathbf{T}\{x, \sim y\}, \mathbf{T} y\}\}
\end{aligned}
\]

For nogood \(\delta(\{x, \sim y\})=\{\mathbf{F}\{x, \sim y\}, \mathbf{T} x, \boldsymbol{F} y\}\), the signed literal
- \(\mathbf{T}\{x, \sim y\}\) is unit-resulting wrt assignment ( \(\mathbf{T} x, \mathbf{F}^{\prime} y\) ) and
- \(\mathbf{T} y\) is unit-resulting wrt assignment ( \(\mathbf{F}\{x, \sim y\}, \mathbf{T} x\) )

\section*{Characterization of stable models} for tight logic programs

Let \(P\) be a logic program and
\[
\begin{aligned}
\Delta_{P} & =\quad\{\delta(a) \mid a \in A(P)\} \cup\{\delta \in \Delta(a) \mid a \in A(P)\} \\
& \cup\{\delta(B) \mid B \in B(P)\} \cup\{\delta \in \Delta(B) \mid B \in B(P)\}
\end{aligned}
\]

Let \(P\) be a tight logic program. Then,
\(X \subseteq A(P)\) is a stable model of \(P\) iff
\(X=A^{\top} \cap A(P)\) for a (unique) solution \(A\) for \(\Delta_{P}\)

\section*{Characterization of stable models} for tight logic programs

Let \(P\) be a logic program and
\[
\begin{aligned}
\Delta_{P} & =\{\delta(a) \mid a \in A(P)\} \cup\{\delta \in \Delta(a) \mid a \in A(P)\} \\
& \cup\{\delta(B) \mid B \in B(P)\} \cup\{\delta \in \Delta(B) \mid B \in B(P)\}
\end{aligned}
\]

Theorem
Let \(P\) be a tight logic program. Then, \(X \subseteq A(P)\) is a stable model of \(P\) iff
\(X=A^{\top} \cap A(P)\) for a (unique) solution \(A\) for \(\Delta_{P}\)

\section*{Characterization of stable models} for tight logic programs, ie. free of positive recursion

Let \(P\) be a logic program and
\[
\begin{aligned}
\Delta_{P} & =\{\delta(a) \mid a \in A(P)\} \cup\{\delta \in \Delta(a) \mid a \in A(P)\} \\
& \cup\{\delta(B) \mid B \in B(P)\} \cup\{\delta \in \Delta(B) \mid B \in B(P)\}
\end{aligned}
\]

Theorem
Let \(P\) be a tight logic program. Then, \(X \subseteq A(P)\) is a stable model of \(P\) iff
\(X=A^{\top} \cap A(P)\) for a (unique) solution \(A\) for \(\Delta_{P}\)

\section*{Outline}

42 Motivation

43 Boolean constraints

44 Nogoods from logic programs
- Nogoods from program completion
- Nogoods from loop formulas

45 Conflict-driven nogood learning
- CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis

\section*{Nogoods from logic programs} via loop formulas

Let \(P\) be a normal logic program and recall that:
- For \(L \subseteq A(P)\), the external supports of \(L\) for \(P\) are
\[
E S_{P}(L)=\left\{r \in P \mid h(r) \in L \text { and } B(r)^{+} \cap L=\emptyset\right\}
\]
- The (disjunctive) loop formula of \(L\) for \(P\) is
\[
\begin{aligned}
L F_{P}(L) & =\left(\bigvee_{A \in L} A\right) \rightarrow\left(\bigvee_{r \in E S_{P}(L)} B(r)\right) \\
& \leftrightarrow\left(\bigwedge_{r \in E S_{P}(L)} \neg B(r)\right) \rightarrow\left(\bigwedge_{A \in L} \neg A\right)
\end{aligned}
\]
- Note The loop formula of \(L\) enforces all atoms in \(L\) to be false whenever \(L\) is not externally supported
- The external bodies of \(L\) for \(P\) are
\(E B_{P}(L)=\left\{B(r) \mid r \in E S_{P}(L)\right\}\)

\section*{Nogoods from logic programs} via loop formulas

Let \(P\) be a normal logic program and recall that:
- For \(L \subseteq A(P)\), the external supports of \(L\) for \(P\) are
\[
E S_{P}(L)=\left\{r \in P \mid h(r) \in L \text { and } B(r)^{+} \cap L=\emptyset\right\}
\]
- The (disjunctive) loop formula of \(L\) for \(P\) is
\[
\begin{aligned}
L F_{P}(L) & =\left(\bigvee_{A \in L} A\right) \rightarrow\left(\bigvee_{r \in E S_{P}(L)} B(r)\right) \\
& \leftrightarrow\left(\bigwedge_{r \in E S_{P}(L)} \neg B(r)\right) \rightarrow\left(\bigwedge_{A \in L} \neg A\right)
\end{aligned}
\]
- Note The loop formula of \(L\) enforces all atoms in \(L\) to be false whenever \(L\) is not externally supported
- The external bodies of \(L\) for \(P\) are
\(E B_{P}(L)=\left\{B(r) \mid r \in E S_{P}(L)\right\}\)

\section*{Nogoods from logic programs} via loop formulas

Let \(P\) be a normal logic program and recall that:
- For \(L \subseteq A(P)\), the external supports of \(L\) for \(P\) are
\[
E S_{P}(L)=\left\{r \in P \mid h(r) \in L \text { and } B(r)^{+} \cap L=\emptyset\right\}
\]
- The (disjunctive) loop formula of \(L\) for \(P\) is
\[
\begin{aligned}
L F_{P}(L) & =\left(\bigvee_{A \in L} A\right) \rightarrow\left(\bigvee_{r \in E S_{P}(L)} B(r)\right) \\
& \leftrightarrow\left(\bigwedge_{r \in E S_{P}(L)} \neg B(r)\right) \rightarrow\left(\bigwedge_{A \in L} \neg A\right)
\end{aligned}
\]
- Note The loop formula of \(L\) enforces all atoms in \(L\) to be false whenever \(L\) is not externally supported
- The external bodies of \(L\) for \(P\) are
\[
E B_{P}(L)=\left\{B(r) \mid r \in E S_{p}(L)\right\}
\]

\section*{Nogoods from logic programs loop nogoods}
- For a logic program \(P\) and some \(\emptyset \subset U \subseteq A(P)\), define the loop nogood of an atom \(a \in U\) as
\[
\lambda(a, U)=\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\}
\]
where \(E B_{P}(U)=\left\{B_{1}, \ldots, B_{k}\right\}\)
We get the following set of loop nogoods for \(P\) :
\[
\Lambda_{P}=\bigcup_{\emptyset \subset U \subseteq A(P)}\{\lambda(a, U) \mid a \in U\}
\]
- The set \(\Lambda_{P}\) of loop nogoods denies cyclic support among true atoms

\section*{Nogoods from logic programs loop nogoods}
- For a logic program \(P\) and some \(\emptyset \subset U \subseteq A(P)\), define the loop nogood of an atom \(a \in U\) as
\[
\lambda(a, U)=\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\}
\]
where \(E B_{P}(U)=\left\{B_{1}, \ldots, B_{k}\right\}\)
- We get the following set of loop nogoods for \(P\) :
\[
\Lambda_{P}=\bigcup_{\emptyset \subset U \subseteq A(P)}\{\lambda(a, U) \mid a \in U\}
\]
- The set \(\Lambda_{p}\) of loop nogoods denies cyclic support among true atoms

\section*{Nogoods from logic programs loop nogoods}
- For a logic program \(P\) and some \(\emptyset \subset U \subseteq A(P)\), define the loop nogood of an atom \(a \in U\) as
\[
\lambda(a, U)=\left\{\mathbf{T} a, \mathbf{F} B_{1}, \ldots, \mathbf{F} B_{k}\right\}
\]
where \(E B_{P}(U)=\left\{B_{1}, \ldots, B_{k}\right\}\)
- We get the following set of loop nogoods for \(P\) :
\[
\Lambda_{P}=\bigcup_{\emptyset \subset U \subseteq A(P)}\{\lambda(a, U) \mid a \in U\}
\]

■ The set \(\Lambda_{P}\) of loop nogoods denies cyclic support among true atoms

\section*{Example}
- Consider the program
\[
\left\{\begin{array}{ll}
x \leftarrow \sim y & u \leftarrow x \\
y \leftarrow \sim x & u \leftarrow v \\
& v \leftarrow u, y
\end{array}\right\}
\]
- For \(u\) in the set \(\{u, v\}\), we obtain the loop nogood:
\[
\begin{gathered}
\lambda(u,\{u, v\})=\{\mathbf{T} u, \mathbf{F}\{x\}\} \\
\text { Similarly for } v \text { in }\{u, v\} \text {, we get: } \\
\lambda(v,\{u, v\})=\{\boldsymbol{T} v, \mathbf{F}\{x\}\}
\end{gathered}
\]

\section*{Example}
- Consider the program
\[
\left\{\begin{array}{ll}
x \leftarrow \sim y & u \leftarrow x \\
y \leftarrow \sim x & u \leftarrow v \\
& v \leftarrow u, y
\end{array}\right\}
\]
- For \(u\) in the set \(\{u, v\}\), we obtain the loop nogood:
\[
\begin{aligned}
& \lambda(u,\{u, v\})=\{\mathbf{T} u, \mathbf{F}\{x\}\} \\
& \text { Similarly for } v \text { in }\{u, v\}, \text { we get: } \\
& \lambda(v,\{u, v\})=\{\mathbf{T} v, \boldsymbol{F}\{x\}\}
\end{aligned}
\]

\section*{Example}
- Consider the program
\[
\left\{\begin{array}{ll} 
& u \leftarrow \sim y \\
y \leftarrow \sim x & u \leftarrow v \\
& v \leftarrow u, y
\end{array}\right\}
\]
- For \(u\) in the set \(\{u, v\}\), we obtain the loop nogood:
\[
\lambda(u,\{u, v\})=\{\mathbf{T} u, \mathbf{F}\{x\}\}
\]

Similarly for \(v\) in \(\{u, v\}\), we get:
\[
\lambda(v,\{u, v\})=\{\mathbf{T} v, \mathbf{F}\{x\}\}
\]

\section*{Characterization of stable models}

\section*{Theorem}

Let \(P\) be a logic program. Then, \(X \subseteq A(P)\) is a stable model of \(P\) iff \(X=A^{\top} \cap A(P)\) for a (unique) solution \(A\) for \(\Delta_{P} \cup \Lambda_{P}\)
\(\square\) Nogoods in \(\Lambda_{P}\) augment \(\Delta_{P}\) with conditions checking for unfounded sets, in particular, those being loops
- While \(\mid \Delta_{P}\) is linear in the size of \(P, \Lambda_{P}\) may contain exponentially many (non-redundant) loop nogoods

\section*{Characterization of stable models}

\section*{Theorem}

Let \(P\) be a logic program. Then, \(X \subseteq A(P)\) is a stable model of \(P\) iff \(X=A^{\top} \cap A(P)\) for a (unique) solution \(A\) for \(\Delta_{P} \cup \Lambda_{P}\)

Some remarks
■ Nogoods in \(\Lambda_{P}\) augment \(\Delta_{P}\) with conditions checking for unfounded sets, in particular, those being loops
- While \(\left|\Delta_{P}\right|\) is linear in the size of \(P, \Lambda_{P}\) may contain exponentially many (non-redundant) loop nogoods

\section*{Outline}

\section*{42 Motivation}

\section*{43 Boolean constraints}

44 Nogoods from logic programs
45 Conflict-driven nogood learning

\section*{Towards conflict-driven search}

Boolean constraint solving algorithms pioneered for SAT led to:
- Traditional DPLL-style approach
(DPLL stands for 'Davis-Putnam-Logemann-Loveland')
- (Unit) propagation
- (Chronological) backtracking
- in ASP, eg smodels
- Modern CDCL-style approach (CDCL stands for 'Conflict-Driven Constraint Learning')
- (Unit) propagation
- Conflict analysis (via resolution)
- Learning + Backjumping + Assertion
- in ASP, eg clasp

Torsten Schaub (KRR@UP)

\section*{DPLL-style solving}

\section*{loop}
propagate
// deterministically assign literals
if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal
else
if top-level conflict then return unsatisfiable else
backtrack // unassign literals propagated after last decision flip // assign complement of last decision literal

\section*{CDCL-style solving}

\section*{loop}
propagate
// deterministically assign literals
if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal
else
if top-level conflict then return unsatisfiable else
analyze // analyze conflict and add conflict constraint backjump // unassign literals until conflict constraint is unit

\section*{Outline}

42 Motivation

43 Boolean constraints

44 Nogoods from logic programs
- Nogoods from program completion
- Nogoods from loop formulas

45 Conflict-driven nogood learning
- CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis

\section*{Outline of CDNL-ASP algorithm}
- Keep track of deterministic consequences by unit propagation on:
- Program completion
- Loop nogoods, determined and recorded on demand
- Dynamic nogoods, derived from conflicts and unfounded sets
- When a nogood in \(\Delta_{P} \cup \nabla\) becomes violated:
- Analyze the conflict by resolution
(until reaching a Unique Implication Point, short: UIP)
Learn the derived conflict nogood \(\delta\)
- Backjump to the earliest (heuristic) choice such that the
complement of the UIP is unit-resulting for \(\delta\)
- Assert the complement of the UIP and proceed (by unit propagation)
- Terminate when either:
- Finding a stable model (a solution for \(\triangle_{P} \cup \Lambda_{P}\) )
- Deriving a conflict independently of (heuristic) choices

Torsten Schaub (KRR@UP)

\section*{Outline of CDNL-ASP algorithm}
- Keep track of deterministic consequences by unit propagation on:
- Program completion
- Loop nogoods, determined and recorded on demand
- Dynamic nogoods, derived from conflicts and unfounded sets
- When a nogood in \(\Delta_{P} \cup \nabla\) becomes violated:
- Analyze the conflict by resolution (until reaching a Unique Implication Point, short: UIP)
- Learn the derived conflict nogood \(\delta\)
- Backjump to the earliest (heuristic) choice such that the complement of the UIP is unit-resulting for \(\delta\)
- Assert the complement of the UIP and proceed (by unit propagation)
- Terminate when either:
- Finding a stable model (a solution for \(\Delta_{P} \cup \Lambda_{P}\) )
- Deriving a conflict independently of (heuristic) choices

\section*{Outline of CDNL-ASP algorithm}
- Keep track of deterministic consequences by unit propagation on:
- Program completion
- Loop nogoods, determined and recorded on demand
- Dynamic nogoods, derived from conflicts and unfounded sets
- When a nogood in \(\Delta_{P} \cup \nabla\) becomes violated:
- Analyze the conflict by resolution (until reaching a Unique Implication Point, short: UIP)
- Learn the derived conflict nogood \(\delta\)
- Backjump to the earliest (heuristic) choice such that the complement of the UIP is unit-resulting for \(\delta\)
- Assert the complement of the UIP and proceed (by unit propagation)
- Terminate when either:
- Finding a stable model (a solution for \(\Delta_{P} \cup \Lambda_{P}\) )
- Deriving a conflict independently of (heuristic) choices

\section*{Algorithm 1: CDNL-ASP}

Input : A normal program \(P\)
Output : A stable model of \(P\) or "no stable model"
\[
\begin{aligned}
& A:=\emptyset \\
& \nabla:=\emptyset \\
& \text { dl }:=0 \\
& \text { // assignment over } A(P) \cup B(P) \\
& \text { // set of recorded nogoods } \\
& \text { // decision level } \\
& \text { loop }
\end{aligned}
\]

\section*{Observations}

■ Decision level dl, initially set to 0 , is used to count the number of heuristically chosen literals in assignment \(A\)
■ For a heuristically chosen literal \(\sigma_{d}=\mathbf{T} a\) or \(\sigma_{d}=\mathbf{F a}\), respectively, we require \(a \in(A(P) \cup B(P)) \backslash\left(A^{\top} \cup A^{\mathbf{F}}\right)\)
- For any literal \(\sigma \in A, \operatorname{dl}(\sigma)\) denotes the decision level of \(\sigma\), viz. the value \(d l\) had when \(\sigma\) was assigned
- A conflict is detected from violation of a nogood \(\varepsilon \subseteq \triangle_{p} \cup \nabla\)
\(\square\) A conflict at decision level 0 (where \(A\) contains no heuristically chosen literals) indicates non-existence of stable models
A nogood \(\delta\) derived by conflict analysis is asserting, that is, some literal is unit-resulting for \(\delta\) at a decision level \(k<d l\)
- After learning \(\delta\) and backjumping to decision level \(k\),
at least one literal is newly derivable by unit propagation
- No explicit flipping of heuristically chosen literals !

\section*{Observations}
- Decision level dl, initially set to 0 , is used to count the number of heuristically chosen literals in assignment \(A\)
- For a heuristically chosen literal \(\sigma_{d}=\mathbf{T}\) a or \(\sigma_{d}=\mathbf{F a}\), respectively, we require \(a \in(A(P) \cup B(P)) \backslash\left(A^{\mathbf{T}} \cup A^{\mathbf{F}}\right)\)
- For any literal \(\sigma \in A, d /(\sigma)\) denotes the decision level of \(\sigma\), viz. the value \(d l\) had when \(\sigma\) was assigned
- A conflict is detected from violation of a nogood \(\varepsilon \subseteq \Delta_{P} \cup \nabla\)
- A conflict at decision level 0 (where \(A\) contains no heuristically chosen literals) indicates non-existence of stable models
- A nogood \(\delta\) derived by conflict analysis is asserting, that is, some literal is unit-resulting for \(\delta\) at a decision level \(k<d l\)
> - After learning \(\delta\) and backjumping to decision level \(k\), at least one literal is newly derivable by unit propagation
> - No explicit flipping of heuristically chosen literals !

\section*{Observations}
- Decision level dl, initially set to 0 , is used to count the number of heuristically chosen literals in assignment \(A\)
- For a heuristically chosen literal \(\sigma_{d}=\mathbf{T}\) a or \(\sigma_{d}=\mathbf{F a}\), respectively, we require \(a \in(A(P) \cup B(P)) \backslash\left(A^{\mathbf{T}} \cup A^{\mathbf{F}}\right)\)
- For any literal \(\sigma \in A, d l(\sigma)\) denotes the decision level of \(\sigma\), viz. the value \(d l\) had when \(\sigma\) was assigned
- A conflict is detected from violation of a nogood \(\varepsilon \subseteq \Delta_{P} \cup \nabla\)
- A conflict at decision level 0 (where \(A\) contains no heuristically chosen literals) indicates non-existence of stable models
- A nogood \(\delta\) derived by conflict analysis is asserting, that is, some literal is unit-resulting for \(\delta\) at a decision level \(k<d l\)
- After learning \(\delta\) and backjumping to decision level \(k\), at least one literal is newly derivable by unit propagation
- No explicit flipping of heuristically chosen literals!

\section*{Example: CDNL-ASP}

\section*{Consider}
\[
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|c|c|c|}
\hline dl & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline 1 & Tu & & \\
\hline 2 & \[
F\{\sim x, \sim y\}
\] & Fw & \(\{\mathrm{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)\) \\
\hline 3 & \[
F\{\sim y\}
\] & FX F \(\{x\}\) F \(\{x, y\}\) & \[
\begin{aligned}
& \{\mathbf{T} x, \boldsymbol{F}\{\sim y\}\}=\delta(x) \\
& \{\mathbf{T}\{x\}, \boldsymbol{F} x\} \in \triangle(\{x\}) \\
& \{\mathbf{T}\{x, y\}, \boldsymbol{F} x\} \in \triangle(\{x, y\}) \\
& \vdots \\
& \{\mathbf{T} u, \boldsymbol{F}\{x\}, \boldsymbol{F}\{x, y\}\}=\lambda(u,\{u, y\})
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Example: CDNL-ASP}

\section*{Consider}
\[
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|ll|l|}
\hline\(d l\) & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline \hline 1 & \(\mathbf{T} u\) & & \\
\hline 2 & \(\mathbf{F}\{\sim x, \sim y\}\) & & \\
& & \(\mathrm{F} w\) & \(\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)\) \\
\hline 3 & \(\mathrm{~F}\{\sim y\}\) & & \\
& & \(\mathrm{F} x\) & \(\{\mathbf{T} x, \mathbf{F}\{\sim y\}\}=\delta(x)\) \\
& & \(\mathrm{F}\{x\}\) & \(\{\mathbf{T}\{x\}, \mathbf{F} x\} \in \triangle(\{x\})\) \\
& & \(\mathrm{F}\{x, y\}\) & \(\{\mathbf{T}\{x, y\}, \mathbf{F} x\} \in \triangle(\{x, y\})\) \\
& & \(\vdots\) & \(\vdots\) \\
& & & \(\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, y\})\) \\
\hline
\end{tabular}

\section*{Example: CDNL-ASP}

\section*{Consider}
\[
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|c|c|c|}
\hline dl & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline 1 & Tu & & \\
\hline 2 & \[
F\{\sim x, \sim y\}
\] & & \(\{\mathrm{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)\) \\
\hline 3 & \[
F\{\sim y\}
\] & FX F \(\{x\}\) F \(\{x, y\}\) & \[
\begin{aligned}
& \{\mathbf{T} x, \boldsymbol{F}\{\sim y\}\}=\delta(x) \\
& \{\mathbf{T}\{x\}, \boldsymbol{F} x\} \in \triangle(\{x\}) \\
& \{\mathbf{T}\{x, y\}, \boldsymbol{F} x\} \in \triangle(\{x, y\}) \\
& \vdots \\
& \{\mathbf{T} u, \boldsymbol{F}\{x\}, \boldsymbol{F}\{x, y\}\}=\lambda(u,\{u, y\})
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Example: CDNL-ASP}

\section*{Consider}
\[
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|ll|l|}
\hline\(d l\) & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline \hline 1 & \(\mathbf{T} u\) & & \\
\hline 2 & \(\mathbf{F}\{\sim x, \sim y\}\) & & \\
& & \(\mathbf{F} w\) & \(\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)\) \\
\hline 3 & \(\mathbf{F}\{\sim y\}\) & & \\
& & \(\mathbf{F} x\) & \(\{\mathbf{T} x, \mathbf{F}\{\sim y\}\}=\delta(x)\) \\
& & \(\mathbf{F}\{x\}\) & \(\{\mathbf{T}\{x\}, \mathbf{F} x\} \in \triangle(\{x\})\) \\
& & \(\mathbf{F}\{x, y\}\) & \(\{\mathbf{T}\{x, y\}, \mathbf{F} x\} \in \triangle(\{x, y\})\) \\
& & \(\vdots\) & \(\vdots\) \\
& & & \(\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, v\})\) \\
\hline
\end{tabular}

\section*{Example: CDNL-ASP}

\section*{Consider}
\[
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|ll|l|}
\hline\(d l\) & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline \hline 1 & \(\mathbf{T} u\) & & \\
\hline 2 & \(\mathbf{F}\{\sim x, \sim y\}\) & & \\
& & \(\mathbf{F} w\) & \(\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)\) \\
\hline 3 & \(\mathbf{F}\{\sim y\}\) & & \\
& & \(\mathbf{F} x\) & \(\{\mathbf{T} x, \mathbf{F}\{\sim y\}\}=\delta(x)\) \\
& & \(\mathbf{F}\{x\}\) & \(\{\mathbf{T}\{x\}, \mathbf{F} x\} \in \triangle(\{x\})\) \\
& & \(\mathbf{F}\{x, y\}\) & \(\{\mathbf{T}\{x, y\}, \mathbf{F} x\} \in \triangle(\{x, y\})\) \\
& & \(\vdots\) & \(\vdots\) \\
& & & \(\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, v\})\) \\
\hline
\end{tabular}

\section*{Example: CDNL-ASP}

\section*{Consider}
\[
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|ll|l|}
\hline\(d l\) & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline \hline 1 & \(\mathbf{T} u\) & & \\
\hline 2 & \(\mathbf{F}\{\sim x, \sim y\}\) & & \\
& & \(\mathbf{F} w\) & \(\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)\) \\
\hline 3 & \(\mathbf{F}\{\sim y\}\) & & \\
& & \(\mathbf{F} x\) & \(\{\mathbf{T} x, \mathbf{F}\{\sim y\}\}=\delta(x)\) \\
& & \(\mathbf{F}\{x\}\) & \(\{\mathbf{T}\{x\}, \mathbf{F} x\} \in \Delta(\{x\})\) \\
& & \(\mathbf{F}\{x, y\}\) & \(\{\mathbf{T}\{x, y\}, \mathbf{F} x\} \in \Delta(\{x, y\})\) \\
& & \(\vdots\) & \(\vdots\) \\
& & & \(\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, y\})\) \\
\hline
\end{tabular}

\section*{Example: CDNL-ASP}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|ll|l|}
\hline dl & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline \hline 1 & \(\mathbf{T} u\) & & \\
\hline 2 & \(\mathbf{F}\{\sim x, \sim y\}\) & & \\
& & \(\mathbf{F} w\) & \(\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)\) \\
\hline 3 & \(\mathbf{F}\{\sim y\}\) & & \\
& & \(\mathbf{F} x\) & \(\{\mathbf{T} x, \mathbf{F}\{\sim y\}\}=\delta(x)\) \\
& & \(\mathbf{F}\{x\}\) & \(\{\mathbf{T}\{x\}, \mathbf{F} x\} \in \Delta(\{x\})\) \\
& & \(\mathbf{F}\{x, y\}\) & \(\{\mathbf{T}\{x, y\}, \mathbf{F} x\} \in \Delta(\{x, y\})\) \\
& & \(\vdots\) & \(\vdots\) \\
& & & \(\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, y\})\) \\
\hline
\end{tabular}

\section*{Example: CDNL-ASP}

\section*{Consider}
\[
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|ll|l|}
\hline\(d l\) & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline 1 & \(\mathbf{T} u\) & & \\
& & \(\mathrm{~T} x\) & \(\{\mathbf{T} u, \mathbf{F} x\} \in \nabla\) \\
& & \(\vdots\) & \(\vdots\) \\
& & \(\mathrm{T} v\) & \(\{\mathbf{F} v, \mathbf{T}\{x\}\} \in \triangle(v)\) \\
& & \(\mathrm{F} y\) & \(\{\mathbf{T} y, \mathbf{F}\{\sim x\}\}=\delta(y)\) \\
& & Fw & \(\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)\) \\
\hline
\end{tabular}

\section*{Example: CDNL-ASP}

\section*{Consider}
\[
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|ll|l|}
\hline dl & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline \hline 1 & \(\mathbf{T} u\) & & \\
& & \(\mathbf{T} x\) & \(\{\mathbf{T} u, \mathbf{F} x\} \in \nabla\) \\
& & \(\vdots\) & \(\vdots\) \\
& & Tv & \(\{\mathbf{F} v, \mathbf{T}\{x\}\} \in \triangle(v)\) \\
& & Fw \(w\) & \(\{\mathbf{T} y, \mathbf{F}\{\sim x\}\}=\delta(y)\) \\
& & & \\
& & &
\end{tabular}

\section*{Example: CDNL-ASP}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|l|ll|l|}
\hline\(d l\) & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline 1 & \(\mathbf{T} u\) & & \\
& & \(\mathbf{T} x\) & \(\{\mathbf{T} u, \mathbf{F} x\} \in \nabla\) \\
& & \(\vdots\) & \(\vdots\) \\
& & \(\mathbf{T} v\) & \(\{\mathbf{F} v, \mathbf{T}\{x\}\} \in \Delta(v)\) \\
& & \(\mathbf{F} y\) & \(\{\mathbf{T} y, \mathbf{F}\{\sim x\}\}=\delta(y)\) \\
& & \(\mathbf{F} w\) & \(\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)\) \\
\hline
\end{tabular}

\section*{Example: CDNL-ASP}

Consider
\[
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|l|ll|l|}
\hline\(d l\) & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline 1 & \(\mathbf{T} u\) & & \\
& & \(\mathbf{T} x\) & \(\{\mathbf{T} u, \mathbf{F} x\} \in \nabla\) \\
& & \(\vdots\) & \(\vdots\) \\
& & \(\mathbf{T} v\) & \(\{\mathbf{F} v, \mathbf{T}\{x\}\} \in \Delta(v)\) \\
& & \(\mathbf{F} y\) & \(\{\mathbf{T} y, \mathbf{F}\{\sim x\}\}=\delta(y)\) \\
& & \(\mathbf{F} w\) & \(\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)\) \\
\hline
\end{tabular}

\section*{Outline}

42 Motivation

43 Boolean constraints

44 Nogoods from logic programs
- Nogoods from program completion
- Nogoods from loop formulas

45 Conflict-driven nogood learning
- CDNL-ASP Algorithm

■ Nogood Propagation
- Conflict Analysis

\section*{Outline of NogoodPropagation}
- Derive deterministic consequences via:
- Unit propagation on \(\Delta_{P}\) and \(\nabla\);
- Unfounded sets \(U \subseteq A(P)\)
- Note that \(U\) is unfounded if \(E B_{P}(U) \subseteq A^{\mathbf{F}}\)
- Note For any \(a \in U\), we have \((\lambda(a, U) \backslash\{T a\}) \subseteq A\)
- An "interesting" unfounded set \(U\) satisfies:
\[
\emptyset \subset U \subseteq\left(A(P) \backslash A^{F}\right)
\]
- Wrt a fixpoint of unit propagation, such an unfounded set contains some loop of \(P\)

> Tight programs do not yield "interesting" unfounded sets !

Given an unfounded set \(U\) and some \(a \in U\), adding \(\lambda(a, U)\) to \(\nabla\) triggers a conflict or further derivations by unit propagation Add loop nogoods atom by atom to eventually falsify a

\section*{Outline of NogoodPropagation}
- Derive deterministic consequences via:
- Unit propagation on \(\Delta_{P}\) and \(\nabla\);
- Unfounded sets \(U \subseteq A(P)\)
- Note that \(U\) is unfounded if \(E B_{P}(U) \subseteq A^{\mathbf{F}}\)
- Note For any \(a \in U\), we have \((\lambda(a, U) \backslash\{T a\}) \subseteq A\)

■ An "interesting" unfounded set \(U\) satisfies:
\[
\emptyset \subset U \subseteq\left(A(P) \backslash A^{\mathbf{F}}\right)
\]
- Wrt a fixpoint of unit propagation, such an unfounded set contains some loop of \(P\)
\(\square\) Note Tight programs do not yield "interesting" unfounded sets !
- Given an unfounded set \(U\) and some \(a \in U\), adding \(\lambda(a, U)\) to \(\nabla\) triggers a conflict or further derivations by unit propagation Add loop nogoods atom by atom to eventually falsify atha \(U\)

\section*{Outline of NogoodPropagation}
- Derive deterministic consequences via:
- Unit propagation on \(\Delta_{P}\) and \(\nabla\);
- Unfounded sets \(U \subseteq A(P)\)
- Note that \(U\) is unfounded if \(E B_{P}(U) \subseteq A^{\mathbf{F}}\)
- Note For any \(a \in U\), we have \((\lambda(a, U) \backslash\{T a\}) \subseteq A\)
- An "interesting" unfounded set \(U\) satisfies:
\[
\emptyset \subset U \subseteq\left(A(P) \backslash A^{\mathbb{F}}\right)
\]
- Wrt a fixpoint of unit propagation, such an unfounded set contains some loop of \(P\)

■ Note Tight programs do not yield "interesting" unfounded sets !
- Given an unfounded set \(U\) and some \(a \in U\), adding \(\lambda(a, U)\) to \(\nabla\) triggers a conflict or further derivations by unit propagation Add loop nogoods atom by atom to eventually falsify athe \(U\)

\section*{Outline of NogoodPropagation}
- Derive deterministic consequences via:
- Unit propagation on \(\Delta_{P}\) and \(\nabla\);
- Unfounded sets \(U \subseteq A(P)\)
- Note that \(U\) is unfounded if \(E B_{P}(U) \subseteq A^{\mathbf{F}}\)
- Note For any \(a \in U\), we have \((\lambda(a, U) \backslash\{T a\}) \subseteq A\)
- An "interesting" unfounded set \(U\) satisfies:
\[
\emptyset \subset U \subseteq\left(A(P) \backslash A^{\mathbf{F}}\right)
\]
- Wrt a fixpoint of unit propagation, such an unfounded set contains some loop of \(P\)
- Note Tight programs do not yield "interesting" unfounded sets !
- Given an unfounded set \(U\) and some \(a \in U\), adding \(\lambda(a, U)\) to \(\nabla\) triggers a conflict or further derivations by unit propagation
- Note Add loop nogoods atom by atom to eventually falsify alla \(a \in\)

\section*{Algorithm 2: NogoodPropagation}


\section*{Requirements for UnFOUNDEDSET}
- Implementations of UnFOUNDEDSET must guarantee the following for a result \(U\)
\(1 U \subseteq\left(A(P) \backslash A^{F}\right)\)
\(2 E B_{P}(U) \subseteq A^{F}\)
\(3 U=\emptyset\) iff there is no nonempty unfounded subset of \(\left(A(P) \backslash A^{F}\right)\)
- Beyond that, there are various alternatives, such as:
\(\square\) Calculating the greatest unfounded set
- Calculating unfounded sets within strongly connected components of the positive atom dependency graph of \(P\)
- Usually, the latter option is implemented in ASP solvers

\section*{Requirements for UnFoundedSet}
- Implementations of UnFOUNDEDSET must guarantee the following for a result \(U\)
\(1 U \subseteq\left(A(P) \backslash A^{F}\right)\)
\(2 E B_{P}(U) \subseteq A^{F}\)
\(3 U=\emptyset\) iff there is no nonempty unfounded subset of \(\left(A(P) \backslash A^{F}\right)\)
- Beyond that, there are various alternatives, such as:
- Calculating the greatest unfounded set
- Calculating unfounded sets within strongly connected components of the positive atom dependency graph of \(P\)
- Usually, the latter option is implemented in ASP solvers

\section*{Example: NogoodPropagation}

\section*{Consider}
\[
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|c|c|c|}
\hline dl & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline 1 & Tu & & \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{F \(\{\sim x, \sim y\}\)} & & \\
\hline & & Fw & \(\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)\) \\
\hline 3 & & \begin{tabular}{l}
Fx \\
F \(\{x\}\) \\
F \(\{x, y\}\) \\
\(\mathbf{T}\{\sim x\}\) \\
Ty \\
T \(\{v\}\) \\
\(\mathbf{T}\{u, y\}\) \\
Tv
\end{tabular} & \[
\begin{aligned}
& \{\mathbf{T} x, \mathbf{F}\{\sim y\}\}=\delta(x) \\
& \{\mathbf{T}\{x\}, \mathbf{F} x\} \in \Delta(\{x\}) \\
& \{\mathbf{T}\{x, y\}, \mathbf{F} x\} \in \Delta(\{x, y\}) \\
& \{\mathbf{F}\{\sim x\}, \mathbf{F} x\}=\delta(\{\sim x\}) \\
& \{\mathbf{F}\{\sim y\}, \mathbf{F} y\}=\delta(\{\sim y\}) \\
& \{\mathbf{T} u, \mathbf{F}\{x, y\}, \mathbf{F}\{v\}\}=\delta(u) \\
& \{\mathbf{F}\{u, y\}, \mathbf{T} u, \mathbf{T} y\}=\delta(\{u, y\}) \\
& \{\mathbf{F} v, \mathbf{T}\{u, y\}\} \in \Delta(v) \\
& \{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, v\}) \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Outline}

42 Motivation

43 Boolean constraints

44 Nogoods from logic programs
- Nogoods from program completion
- Nogoods from loop formulas

45 Conflict-driven nogood learning
- CDNL-ASP Algorithm
- Nogood Propagation
- Conflict Analysis

\section*{Outline of ConflictAnalysis}
- Conflict analysis is triggered whenever some nogood \(\delta \in \Delta_{P} \cup \nabla\) becomes violated, viz. \(\delta \subseteq A\), at a decision level \(d l>0\)
- Note that all but the first literal assigned at \(d l\) have been unit-resulting for nogoods \(\varepsilon \in \Delta_{P} \cup \nabla\)
- If \(\sigma \in \delta\) has been unit-resulting for \(\varepsilon\), we obtain a new violated nogood by resolving \(\delta\) and \(\varepsilon\) as follows:
\[
(\delta \backslash\{\sigma\}) \cup(\varepsilon \backslash\{\bar{\sigma}\})
\]
- Resolution is directed by resolving first over the literal \(\sigma \in \delta\) derived last, viz. \((\delta \backslash A[\sigma])=\{\sigma\}\)
- Iterated resolution progresses in inverse order of assignment
- Iterated resolution stops as soon as it generates a nogood \(\delta\) containing exactly one literal \(\sigma\) assigned at decision level \(d l\)
- This literal \(\sigma\) is called First Unique Implication Point (First-UIP)
- All literals in \((\delta \backslash\{\sigma\})\) are assigned at decision levels smaller than dl
(11 Potassco

\section*{Outline of ConflictAnalysis}
- Conflict analysis is triggered whenever some nogood \(\delta \in \Delta_{P} \cup \nabla\) becomes violated, viz. \(\delta \subseteq A\), at a decision level \(d l>0\)
- Note that all but the first literal assigned at \(d l\) have been unit-resulting for nogoods \(\varepsilon \in \Delta_{P} \cup \nabla\)
- If \(\sigma \in \delta\) has been unit-resulting for \(\varepsilon\), we obtain a new violated nogood by resolving \(\delta\) and \(\varepsilon\) as follows:
\[
(\delta \backslash\{\sigma\}) \cup(\varepsilon \backslash\{\bar{\sigma}\})
\]
- Resolution is directed by resolving first over the literal \(\sigma \in \delta\) derived last, viz. \((\delta \backslash A[\sigma])=\{\sigma\}\)
- Iterated resolution progresses in inverse order of assignment
- Iterated resolution stops as soon as it generates a nogood \(\delta\) containing exactly one literal \(\sigma\) assigned at decision level dl
- This literal \(\sigma\) is called First Unique Implication Point (First-UIP)

All literals in \((\delta \backslash\{\sigma\})\) are assigned at decision levels smaller than dl

\section*{Outline of ConflictAnalysis}
- Conflict analysis is triggered whenever some nogood \(\delta \in \Delta_{P} \cup \nabla\) becomes violated, viz. \(\delta \subseteq A\), at a decision level \(d l>0\)
- Note that all but the first literal assigned at \(d l\) have been unit-resulting for nogoods \(\varepsilon \in \Delta_{P} \cup \nabla\)
- If \(\sigma \in \delta\) has been unit-resulting for \(\varepsilon\), we obtain a new violated nogood by resolving \(\delta\) and \(\varepsilon\) as follows:
\[
(\delta \backslash\{\sigma\}) \cup(\varepsilon \backslash\{\bar{\sigma}\})
\]
- Resolution is directed by resolving first over the literal \(\sigma \in \delta\) derived last, viz. \((\delta \backslash A[\sigma])=\{\sigma\}\)
- Iterated resolution progresses in inverse order of assignment
- Iterated resolution stops as soon as it generates a nogood \(\delta\) containing exactly one literal \(\sigma\) assigned at decision level dl
- This literal \(\sigma\) is called First Unique Implication Point (First-UIP)
- All literals in ( \(\delta \backslash\{\sigma\}\) ) are assigned at decision levels smaller than dl

\section*{Algorithm 3: ConflictAnALYSIS}

Input : A non-empty violated nogood \(\delta\), a normal program \(P\), a set \(\nabla\) of nogoods, and an assignment \(A\).
Output : A derived nogood and a decision level.

\section*{loop}
let \(\sigma \in \delta\) such that \(\delta \backslash A[\sigma]=\{\sigma\}\) in
\(k:=\max (\{\operatorname{dlevel}(\rho) \mid \rho \in \delta \backslash\{\sigma\}\} \cup\{0\})\)
if \(k=\operatorname{dlevel}(\sigma)\) then
let \(\varepsilon \in \Delta_{P} \cup \nabla\) such that \(\varepsilon \backslash A[\sigma]=\{\bar{\sigma}\}\) in
\[
\delta:=(\delta \backslash\{\sigma\}) \cup(\varepsilon \backslash\{\bar{\sigma}\})
\]
// resolution
else return \((\delta, k)\)

\section*{Example: ConflictAnalysis}

\section*{Consider}
\[
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|c|c|c|}
\hline & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline 1 & Tu & & \\
\hline \multirow[t]{2}{*}{2} & F \(\{\sim x, \sim y\}\) & & \\
\hline & & Fw & \(\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)\) \\
\hline \multirow[t]{10}{*}{3} & F\{~y\} & & \\
\hline & & F \(x\)
f &  \\
\hline & & F \(\{x\}\) & \(\{\mathbf{T}\{x\}, \mathbf{F} x\} \in \Delta(\{x\})\) \\
\hline & & F \(\{x, y\}\) & \{ \(\boldsymbol{T}\{x, y\}, \mathbf{F} x\} \in \Delta(\{x, y\})\) \\
\hline & & T \(\{\sim x\}\) & \(\{\mathbf{F}\{\sim x\}, \mathbf{F} x\}=\delta(\{\sim x\})\) \\
\hline & & Ty & \(\{\mathbf{F}\{\sim y\}, \mathbf{F} y\}=\delta(\{\sim y\})\) \\
\hline & & T \(\{v\}\) & \(\{\mathbf{T} u, \mathbf{F}\{x, y\}, \mathbf{F}\{v\}\}=\delta(u)\) \\
\hline & & T \(\{u, y\}\) & \(\{\mathbf{F}\{u, y\}, \mathbf{T} u, \mathbf{T} y\}=\delta(\{u, y\})\) \\
\hline & & TV & \(\{\mathbf{F} v, \mathbf{T}\{u, y\}\} \in \Delta(v)\) \\
\hline & & & \(\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, v\})\) \\
\hline
\end{tabular}


\section*{Example: ConflictAnalysis}

\section*{Consider}
\[
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|c|c|c|}
\hline & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\bigcirc\) \\
\hline 1 & Tu & & \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{F \(\{\sim x, \sim y\}\)} & & \\
\hline & & Fw & \(\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)\) \\
\hline \multirow[t]{10}{*}{3} & F\{~y\} & & \\
\hline & & Fx & \(\{\boldsymbol{T} x, \mathbf{F}\{\sim y\}\}=\delta(x)\) \\
\hline & & F \(\{x\}\) & \(\{\mathbf{T}\{x\}, \mathbf{F} x\} \in \Delta(\{x\})\) \\
\hline & & \[
\mathbf{F}\{x, y\}
\] & \[
\{\mathbf{T}\{x, y\}, \mathbf{F} x\} \in \Delta(\{x, y\})
\] \\
\hline & & \[
\mathbf{T}\{\sim x\}
\] & \[
\{\mathbf{F}\{\sim x\}, \mathbf{F} x\}=\delta(\{\sim x\})
\] \\
\hline & & Ty & \(\{\mathbf{F}\{\sim y\}, \mathbf{F} y\}=\delta(\{\sim y\})\) \\
\hline & & T \(\{v\}\) & \(\{\mathbf{T} u, \mathbf{F}\{x, y\}, \mathbf{F}\{v\}\}=\delta(u)\) \\
\hline & & T \(\{u, y\}\) & \(\{\mathbf{F}\{u, y\}, \mathbf{T} u, \mathbf{T} y\}=\delta(\{u, y\})\) \\
\hline & & Tv & \(\{\mathbf{F} v, \mathbf{T}\{u, y\}\} \in \Delta(v)\) \\
\hline & & & \(\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, v\})\) \\
\hline
\end{tabular}


\section*{Example: ConflictAnalysis}

\section*{Consider}
\[
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|c|c|c|}
\hline & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\bigcirc\) \\
\hline 1 & Tu & & \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{F \(\{\sim x, \sim y\}\)} & & \\
\hline & & Fw & \(\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)\) \\
\hline \multirow[t]{10}{*}{3} & F\{~y\} & & \\
\hline & & Fx & \(\{\boldsymbol{T} x, \mathbf{F}\{\sim y\}\}=\delta(x)\) \\
\hline & & F \(\{x\}\) & \(\{\mathbf{T}\{x\}, \mathbf{F} x\} \in \Delta(\{x\})\) \\
\hline & & \[
\mathbf{F}\{x, y\}
\] & \[
\{\mathbf{T}\{x, y\}, \mathbf{F} x\} \in \Delta(\{x, y\})
\] \\
\hline & & \[
\mathbf{T}\{\sim x\}
\] & \[
\{\mathbf{F}\{\sim x\}, \mathbf{F} x\}=\delta(\{\sim x\})
\] \\
\hline & & Ty & \(\{\mathbf{F}\{\sim y\}, \mathbf{F} y\}=\delta(\{\sim y\})\) \\
\hline & & T \(\{v\}\) & \(\{\mathbf{T} u, \mathbf{F}\{x, y\}, \mathbf{F}\{v\}\}=\delta(u)\) \\
\hline & & T \(\{u, y\}\) & \(\{\mathbf{F}\{u, y\}, \mathbf{T} u, \mathbf{T} y\}=\delta(\{u, y\})\) \\
\hline & & Tv & \(\{\mathbf{F} v, \mathbf{T}\{u, y\}\} \in \Delta(v)\) \\
\hline & & & \(\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, v\})\) \\
\hline
\end{tabular}
\# Potassco

\section*{Example: ConflictAnalysis}

\section*{Consider}
\[
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|c|c|c|}
\hline & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\bigcirc\) \\
\hline 1 & Tu & & \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{F \(\{\sim x, \sim y\}\)} & & \\
\hline & & Fw & \(\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)\) \\
\hline \multirow[t]{10}{*}{3} & F\{~y\} & & \\
\hline & & Fx & \(\{\boldsymbol{T} x, \mathbf{F}\{\sim y\}\}=\delta(x)\) \\
\hline & & F \(\{x\}\) & \(\{\mathbf{T}\{x\}, \mathbf{F} x\} \in \Delta(\{x\})\) \\
\hline & & \[
\mathbf{F}\{x, y\}
\] & \[
\{\mathbf{T}\{x, y\}, \mathbf{F} x\} \in \Delta(\{x, y\})
\] \\
\hline & & \[
\mathbf{T}\{\sim x\}
\] & \[
\{\mathbf{F}\{\sim x\}, \mathbf{F} x\}=\delta(\{\sim x\})
\] \\
\hline & & Ty & \(\{\mathbf{F}\{\sim y\}, \mathbf{F} y\}=\delta(\{\sim y\})\) \\
\hline & & T \(\{v\}\) & \(\{\mathbf{T} u, \mathbf{F}\{x, y\}, \mathbf{F}\{v\}\}=\delta(u)\) \\
\hline & & T \(\{u, y\}\) & \(\{\mathbf{F}\{u, y\}, \mathbf{T} u, \mathbf{T} y\}=\delta(\{u, y\})\) \\
\hline & & Tv & \(\{\mathbf{F} v, \mathbf{T}\{u, y\}\} \in \Delta(v)\) \\
\hline & & & \(\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, v\})\) \\
\hline
\end{tabular}
\# Potassco

\section*{Example: ConflictAnalysis}

\section*{Consider}

\section*{Example: ConflictAnalysis}

\section*{Consider}

\section*{Example: ConflictAnalysis}

\section*{Consider}

\section*{Example: ConflictAnalysis}

\section*{Consider}
\[
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|c|c|c|}
\hline & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\bigcirc\) \\
\hline 1 & Tu & & \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{F \(\{\sim x, \sim y\}\)} & & \\
\hline & & Fw & \(\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)\) \\
\hline \multirow[t]{10}{*}{3} & F\{~y\} & & \\
\hline & & Fx & \(\{\boldsymbol{T} x, \mathbf{F}\{\sim y\}\}=\delta(x)\) \\
\hline & & F \(\{x\}\) & \(\{\mathbf{T}\{x\}, \mathbf{F} x\} \in \Delta(\{x\})\) \\
\hline & & \[
\mathbf{F}\{x, y\}
\] & \[
\{\mathbf{T}\{x, y\}, \mathbf{F} x\} \in \Delta(\{x, y\})
\] \\
\hline & & \[
\mathbf{T}\{\sim x\}
\] & \[
\{\mathbf{F}\{\sim x\}, \mathbf{F} x\}=\delta(\{\sim x\})
\] \\
\hline & & Ty & \(\{\mathbf{F}\{\sim y\}, \mathbf{F} y\}=\delta(\{\sim y\})\) \\
\hline & & T \(\{v\}\) & \(\{\mathbf{T} u, \mathbf{F}\{x, y\}, \mathbf{F}\{v\}\}=\delta(u)\) \\
\hline & & T \(\{u, y\}\) & \(\{\mathbf{F}\{u, y\}, \mathbf{T} u, \mathbf{T} y\}=\delta(\{u, y\})\) \\
\hline & & Tv & \(\{\mathbf{F} v, \mathbf{T}\{u, y\}\} \in \Delta(v)\) \\
\hline & & & \(\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, v\})\) \\
\hline
\end{tabular}
\(\left\{\mathbf{T} u, \mathbf{F}_{x}\right\}\)
\(\left\{\mathbf{T} u, \mathbf{F}_{x}, \mathbf{F}\{x\}\right\}\)

\section*{Example: ConflictAnalysis}

\section*{Consider}
\[
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|c|c|c|}
\hline & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\delta\) \\
\hline 1 & Tu & & \\
\hline \multirow[t]{2}{*}{2} & F \(\{\sim x, \sim y\}\) & & \\
\hline & & Fw & \(\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)\) \\
\hline \multirow[t]{10}{*}{3} & F\{~y\} & & \\
\hline & & F \(x\)
f &  \\
\hline & & F \(\{x\}\) & \(\{\mathbf{T}\{x\}, \mathbf{F} x\} \in \Delta(\{x\})\) \\
\hline & & F \(\{x, y\}\) & \{ \(\boldsymbol{T}\{x, y\}, \mathbf{F} x\} \in \Delta(\{x, y\})\) \\
\hline & & T \(\{\sim x\}\) & \(\{\mathbf{F}\{\sim x\}, \mathbf{F} x\}=\delta(\{\sim x\})\) \\
\hline & & Ty & \(\{\mathbf{F}\{\sim y\}, \mathbf{F} y\}=\delta(\{\sim y\})\) \\
\hline & & T \(\{v\}\) & \(\{\mathbf{T} u, \mathbf{F}\{x, y\}, \mathbf{F}\{v\}\}=\delta(u)\) \\
\hline & & T \(\{u, y\}\) & \(\{\mathbf{F}\{u, y\}, \mathbf{T} u, \mathbf{T} y\}=\delta(\{u, y\})\) \\
\hline & & TV & \(\{\mathbf{F} v, \mathbf{T}\{u, y\}\} \in \Delta(v)\) \\
\hline & & & \(\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, v\})\) \\
\hline
\end{tabular}
\(\{\mathbf{T} u, \mathbf{F} x\}\)
\(\left\{\mathbf{T} u, \mathbf{F}_{x}, \mathbf{F}\{x\}\right\}\)

\section*{Example: ConflictAnalysis}

\section*{Consider}
\[
P=\left\{\begin{array}{llll}
x \leftarrow \sim y & u \leftarrow x, y & v \leftarrow x & w \leftarrow \sim x, \sim y \\
y \leftarrow \sim x & u \leftarrow v & v \leftarrow u, y &
\end{array}\right\}
\]
\begin{tabular}{|c|c|c|c|}
\hline & \(\sigma_{d}\) & \(\bar{\sigma}\) & \(\bigcirc\) \\
\hline 1 & Tu & & \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{F \(\{\sim x, \sim y\}\)} & & \\
\hline & & Fw & \(\{\mathbf{T} w, \mathbf{F}\{\sim x, \sim y\}\}=\delta(w)\) \\
\hline \multirow[t]{10}{*}{3} & F\{~y\} & & \\
\hline & & Fx & \(\{\boldsymbol{T} x, \mathbf{F}\{\sim y\}\}=\delta(x)\) \\
\hline & & F \(\{x\}\) & \(\{\mathbf{T}\{x\}, \mathbf{F} x\} \in \Delta(\{x\})\) \\
\hline & & \[
\mathbf{F}\{x, y\}
\] & \[
\{\mathbf{T}\{x, y\}, \mathbf{F} x\} \in \Delta(\{x, y\})
\] \\
\hline & & \[
\mathbf{T}\{\sim x\}
\] & \[
\{\mathbf{F}\{\sim x\}, \mathbf{F} x\}=\delta(\{\sim x\})
\] \\
\hline & & Ty & \(\{\mathbf{F}\{\sim y\}, \mathbf{F} y\}=\delta(\{\sim y\})\) \\
\hline & & T \(\{v\}\) & \(\{\mathbf{T} u, \mathbf{F}\{x, y\}, \mathbf{F}\{v\}\}=\delta(u)\) \\
\hline & & T \(\{u, y\}\) & \(\{\mathbf{F}\{u, y\}, \mathbf{T} u, \mathbf{T} y\}=\delta(\{u, y\})\) \\
\hline & & Tv & \(\{\mathbf{F} v, \mathbf{T}\{u, y\}\} \in \Delta(v)\) \\
\hline & & & \(\{\mathbf{T} u, \mathbf{F}\{x\}, \mathbf{F}\{x, y\}\}=\lambda(u,\{u, v\})\) \\
\hline
\end{tabular}
\(\left\{\mathbf{T} u, \mathbf{F}_{x}\right\}\)
\(\left\{\mathbf{T} u, \mathbf{F}_{x}, \mathbf{F}\{x\}\right\}\)

\section*{Remarks}
- There always is a First-UIP at which conflict analysis terminates
- In the worst, resolution stops at the heuristically chosen literal assigned at decision level dl
The nogood \(\delta\) containing First-UIP \(\sigma\) is violated by \(A\), viz. \(\delta \subseteq A\)
- We have \(k=\max (\{d l(\rho) \mid \rho \in \delta \backslash\{\sigma\}\} \cup\{0\})<d l\)
- After recording \(\delta\) in \(\nabla\) and backjumping to decision level \(k\), \(\bar{\sigma}\) is unit-resulting for \(\delta\) !
- Such a nogood \(\delta\) is called asserting

Asserting nogoods direct conflict-driven search into a different region of the search space than traversed before,
without explicitly flipping any heuristically chosen literal !

\section*{Remarks}
- There always is a First-UIP at which conflict analysis terminates
- In the worst, resolution stops at the heuristically chosen literal assigned at decision level dl
- The nogood \(\delta\) containing First-UIP \(\sigma\) is violated by \(A\), viz. \(\delta \subseteq A\)
- We have \(k=\max (\{d l(\rho) \mid \rho \in \delta \backslash\{\sigma\}\} \cup\{0\})<d l\)
- After recording \(\delta\) in \(\nabla\) and backjumping to decision level \(k\), \(\bar{\sigma}\) is unit-resulting for \(\delta\) !
- Such a nogood \(\delta\) is called asserting
- Asserting nogoods direct conflict-driven search into a different region of the search space than traversed before,
without explicitly flipping any heuristically chosen literal !

\section*{Remarks}
- There always is a First-UIP at which conflict analysis terminates
- In the worst, resolution stops at the heuristically chosen literal assigned at decision level dl
- The nogood \(\delta\) containing First-UIP \(\sigma\) is violated by \(A\), viz. \(\delta \subseteq A\)
- We have \(k=\max (\{d l(\rho) \mid \rho \in \delta \backslash\{\sigma\}\} \cup\{0\})<d l\)
- After recording \(\delta\) in \(\nabla\) and backjumping to decision level \(k\), \(\bar{\sigma}\) is unit-resulting for \(\delta\) !
- Such a nogood \(\delta\) is called asserting
- Asserting nogoods direct conflict-driven search into a different region of the search space than traversed before, without explicitly flipping any heuristically chosen literal !

\section*{Remarks}
- There always is a First-UIP at which conflict analysis terminates
- In the worst, resolution stops at the heuristically chosen literal assigned at decision level dl
- The nogood \(\delta\) containing First-UIP \(\sigma\) is violated by \(A\), viz. \(\delta \subseteq A\)
- We have \(k=\max (\{d l(\rho) \mid \rho \in \delta \backslash\{\sigma\}\} \cup\{0\})<d l\)
- After recording \(\delta\) in \(\nabla\) and backjumping to decision level \(k\), \(\bar{\sigma}\) is unit-resulting for \(\delta\) !
- Such a nogood \(\delta\) is called asserting
- Asserting nogoods direct conflict-driven search into a different region of the search space than traversed before, without explicitly flipping any heuristically chosen literal !

\section*{Multi-shot ASP Solving: Overview}

\author{
46 Motivation \\ 47 \#program and \#external declaration \\ 48 Module composition \\ 49 States and operations \\ 50 Incremental reasoning \\ 51 Boardgaming
}

\section*{Outline}

\section*{46 Motivation}

47 \#program and \#external declaration
48 Module composition
40 States and operations
50 Incremental reasoning
51 Boardgaming

\section*{Motivation}
- Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine within an encompassing software environment
- Single-shot solving: ground | solve

Multi-shot solving: ground | solve
\(\Rightarrow\) continuously changing logic programs

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

\section*{Motivation}
- Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine within an encompassing software environment

■ Single-shot solving: ground | solve Multi-shot solving: ground | solve
\(\Rightarrow\) continuously changing logic programs

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

\section*{Motivation}
- Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine within an encompassing software environment

■ Single-shot solving: ground | solve
- Multi-shot solving: ground |solve
\(\square\) continuously changing logic programs

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

\section*{Motivation}
- Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine within an encompassing software environment

■ Single-shot solving: ground | solve
- Multi-shot solving: ground | solve
\(\Rightarrow\) continuously changing logic programs

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

\section*{Motivation}
- Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine within an encompassing software environment

■ Single-shot solving: ground | solve
■ Multi-shot solving: ground* | solve*
- continuously changing logic programs

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

\section*{Motivation}
- Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine within an encompassing software environment

■ Single-shot solving: ground | solve
- Multi-shot solving: ( ground* \(\mid\) solve* \({ }^{*}\)
\(\bullet\) continuously changing logic programs

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

\section*{Motivation}
- Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine within an encompassing software environment

■ Single-shot solving: ground | solve
- Multi-shot solving: (input | ground* | solve*)*
\(\Rightarrow\) continuously changing logic programs

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

\section*{Motivation}
- Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine within an encompassing software environment

■ Single-shot solving: ground | solve
- Multi-shot solving: (input | ground* \(\mid\) solve*| theory )*
\(\square\) continuously changing logic programs

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

\section*{Motivation}
- Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine within an encompassing software environment

■ Single-shot solving: ground | solve
■ Multi-shot solving: (input | ground* \({ }^{*}\) solve*| theory | . . .)*
\(\bullet\) continuously changing logic programs

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

\section*{Motivation}
- Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine within an encompassing software environment
- Single-shot solving: ground | solve

■ Multi-shot solving: (input | ground* \({ }^{*}\) solve*| theory | ... )*
\(\Rightarrow\) continuously changing logic programs

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

\section*{Motivation}
- Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine within an encompassing software environment

Single-shot solving: ground | solve
■ Multi-shot solving: (input | ground* \({ }^{*}\) solve*| theory | ... )*
\(\Rightarrow\) continuously changing logic programs
- Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

\section*{Clingo \(=\) ASP + Control}
```

\#program <name> [(<parameters>)]
\#program play(t).
\#external <atom> [: <body>]
\#external mark(X,Y,P,t) : field(X,Y), player(P).

```

Python (wWW.python.org)
    prg.solve(), prg.ground(parts), ...

C, Lua, and Prolog embeddings are available too
in ASP: embedded scripting language (\#script)
in Python: library import (import clingo)

\section*{Clingo \(=\) ASP + Control}
- ASP

■ \#program <name> [ (<parameters>) ]
- Example \#program play(t).

■ \#external <atom> [ : <body> ]
- Example \#external mark(X,Y,P,t) : field (X,Y), player(P).

Python (www.python.org)
prg.solve(), prg.ground(parts), ...
C, Lua, and Prolog embeddings are available too
in ASP: embedded scripting language (\#script)
in Python: library import (import clingo)

\section*{Clingo \(=\) ASP + Control}
- ASP
- \#program <name> [ (<parameters>) ]

■ Example \#program play(t).
■ \#external <atom> [ : <body> ]
■ Example \#external mark(X,Y,P,t) : field(X,Y), player (P).

Python (www.python.org)
prg.solve(), prg.ground(parts), ...
C, Lua, and Prolog embeddings are available too
in ASP: embedded scripting language (\#script)
in Python: library import (import clingo)

\section*{Clingo \(=\) ASP + Control}
- ASP
- \#program <name> [ (<parameters>) ]

■ Example \#program play(t).
■ \#external <atom> [ : <body> ]
■ Example \#external mark(X,Y,P,t) : field(X,Y), player (P).
- Control

■ Python (www.python.org)
> prg.solve(), prg.ground(parts),
> - C, Lua, and Prolog embeddings are available too

in ASP: embedded scripting language (\#script)
in Python: library import (import clingo)

\section*{Clingo \(=\) ASP + Control}
- ASP
- \#program <name> [ (<parameters>) ]

■ Example \#program play(t).
■ \#external <atom> [ : <body> ]
■ Example \#external mark(X,Y,P,t) : field(X,Y), player (P).
- Control
- Python (www.python.org)

■ Example prg.solve(), prg.ground(parts), ...
- C, Lua, and Prolog embeddings are available too
in ASP: embedded scripting language (\#script)
in Python: library import (import clingo)

Torsten Schaub (KRR@UP)

\section*{Clingo \(=\) ASP + Control}
- ASP

■ \#program <name> [ (<parameters>) ]
■ Example \#program play(t).
■ \#external <atom> [ : <body> ]
■ Example \#external mark(X,Y,P,t) : field(X,Y), player (P).
- Control
- Python (www.python.org)

■ Example prg.solve(), prg.ground(parts), ...
- C, Lua, and Prolog embeddings are available too
in ASP: embedded scripting language (\#script)
in Python: library import (import clingo)

Torsten Schaub (KRR@UP)

\section*{Clingo \(=\) ASP + Control}
- ASP

■ \#program <name> [ (<parameters>) ]
■ Example \#program play(t).
■ \#external <atom> [ : <body> ]
■ Example \#external mark(X,Y,P,t) : field(X,Y), player (P).
- Control
- Python (www.python.org)

■ Example prg.solve(), prg.ground(parts), ...
- C, Lua, and Prolog embeddings are available too
- Integration
- in ASP: embedded scripting language (\#script)
- in Python: library import (import clingo)

Torsten Schaub (KRR@UP)

\section*{Vanilla clingo}
```

\#script (python)
def main(prg):
parts = []
parts.append(("base", []))
prg.ground(parts)
prg.solve()
\#end.

```

\section*{Vanilla clingo}
```

\#script (python)
def main(prg):
parts = []
parts.append(("base", []))
prg.ground(parts)
prg.solve()
\#end.

```

\section*{Vanilla clingo}
```

\#script (python)
def main(prg):
parts = []
parts.append(("base", []))
prg.ground(parts)
prg.solve()
\#end.

```

\section*{Hello world!}
```

\#script (python)
def main(prg):
print("Hello world!")
\#end.

```
```

\$ clingo hello.lp
clingo version 4.5.0
Reading from hello.lp
Hello world!
UNKNOWN

```
```

Models : 0+

```
Models : 0+
Calls : 1
Calls : 1
Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s
```

CPU Time : 0.000s

```

Torsten Schaub (KRR@UP)

\section*{Hello world!}
```

\#script (python)
def main(prg):
print("Hello world!")
\#end.

```
```

\$ clingo hello.lp
clingo version 4.5.0
Reading from hello.lp
Hello world!
UNKNOWN

```
```

Models : 0+

```
Models : 0+
Calls : 1
Calls : 1
Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s
```

CPU Time : 0.000s

```

Torsten Schaub (KRR@UP)

\section*{Hello world!}
```

\#script (python)
def main(prg):
print("Hello world!")
\#end.

```
\$ clingo hello.lp
clingo version 4.5 .0
Reading from hello.lp
Hello world!
UNKNOWN
\begin{tabular}{ll} 
Models & \(: 0+\) \\
Calls & \(: 1\) \\
Time & \(: 0.009 \mathrm{~s}\) (Solving: 0.00 s 1st Model: 0.00 s Unsat: 0.00 s ) \\
CPU Time & \(: 0.000 \mathrm{~s}\)
\end{tabular}

\section*{Hello world!}
```

\#script (python)
def main(prg):
print("Hello world!")
\#end.

```
\$ clingo hello.lp
clingo version 4.5 .0
Reading from hello.lp
Hello world!
UNKNOWN
\begin{tabular}{ll} 
Models & \(: 0+\) \\
Calls & \(: 1\) \\
Time & \(: 0.009 \mathrm{~s}\) (Solving: 0.00 s 1st Model: 0.00 s Unsat: 0.00 s ) \\
CPU Time & \(: 0.000 \mathrm{~s}\)
\end{tabular}

\section*{Preview on incremental solving}
```

\#program base.
p(0).
\#program step (t).
p(t) :- p(t-1).
\#program check (t).
\#external plug(t).
:- not p(42), plug(t).

```

\section*{Preview on incremental solving}
```

\#program base.
p(0).
\#program step (t).
p(t) :- p(t-1).
\#program check (t).
\#external plug(t).
:- not p(42), plug(t).

```

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

\section*{Preview on incremental solving}
```

\#program base.
p(0).
\#program step (t).
p(t) :- p(t-1).
\#program check (t).
\#external plug(t).
:- not p(42), plug(t).

```

\section*{Preview on incremental solving}
```

\#program base.
p(0).
\#program step (t).
p(t) :- p(t-1).
\#program check (t).
\#external plug(t).
:- not p(42), plug(t).

```

\title{
Outline
}
46 Motivation47 \#program and \#external declaration
48 Module composition
49 States and operations
50 Incremental reasoning51 Boardgaming

\section*{\#program declaration}
- A program declaration is of form
\[
\text { \#program } n\left(p_{1}, \ldots, p_{k}\right)
\]
where \(n, p_{1}, \ldots, p_{k}\) are non-integer constants
We call \(n\) the name of the declaration and \(p_{1}, \ldots, p_{k}\) its parameters

\section*{Different occurrences of program declarations with the} same name share the same parameters
```

\#program acid(k).
b(k).
c(X,k) :- a(X).
\#program base.
a(2).

```

\section*{\#program declaration}
- A program declaration is of form
\[
\# \operatorname{program} n\left(p_{1}, \ldots, p_{k}\right)
\]
where \(n, p_{1}, \ldots, p_{k}\) are non-integer constants
- We call \(n\) the name of the declaration and \(p_{1}, \ldots, p_{k}\) its parameters
\(\square\)
Different occurrences of program declarations with the same name share the same parameters
```

\#program acid(k).
b (k).
c(X,k) :- a(X).
\#program base.
a(2).

```

Torsten Schaub (KRR@UP)

\section*{\#program declaration}
- A program declaration is of form
\[
\text { \#program } n\left(p_{1}, \ldots, p_{k}\right)
\]
where \(n, p_{1}, \ldots, p_{k}\) are non-integer constants
- We call \(n\) the name of the declaration and \(p_{1}, \ldots, p_{k}\) its parameters

■ Convention Different occurrences of program declarations with the same name share the same parameters
```

\#program acid(k).
b(k).
c(X,k) :- a(X).
\#program base.
a(2).

```

\section*{\#program declaration}
- A program declaration is of form
\[
\text { \#program } n\left(p_{1}, \ldots, p_{k}\right)
\]
where \(n, p_{1}, \ldots, p_{k}\) are non-integer constants
- We call \(n\) the name of the declaration and \(p_{1}, \ldots, p_{k}\) its parameters

■ Convention Different occurrences of program declarations with the same name share the same parameters
```

\#program acid(k).
b(k).
c(X,k) :- a(X).
\#program base.
a(2).

```

\section*{\#program declaration}
- A program declaration is of form
\[
\# \text { program } n\left(p_{1}, \ldots, p_{k}\right)
\]
where \(n, p_{1}, \ldots, p_{k}\) are non-integer constants
- We call \(n\) the name of the declaration and \(p_{1}, \ldots, p_{k}\) its parameters
- Convention Different occurrences of program declarations with the same name share the same parameters
- Example
\[
\begin{aligned}
& \text { \#program acid(k). } \\
& \text { b(k). } \\
& \text { c(X,k) :- a(X). } \\
& \text { \#program base. } \\
& \text { a(2). }
\end{aligned}
\]

\section*{Scope of \#program declarations}
- The scope of an occurrence of a program declaration in a list of rules and declarations consists of the set of all rules and non-program declarations appearing between the occurrence and the next occurrence of a program declaration or the end of the list
- Rules and non-program declarations outside the scope of any program declaration are implicitly preceded by a base program declaration
```

a(1).
\#program acid(k).
b(k).
c(X,k) :- a(X).
\#program base.
a(2).

```

\section*{Scope of \#program declarations}
- The scope of an occurrence of a program declaration in a list of rules and declarations consists of the set of all rules and non-program declarations appearing between the occurrence and the next occurrence of a program declaration or the end of the list
- Rules and non-program declarations outside the scope of any program declaration are implicitly preceded by a base program declaration
```

a(1).
\#program acid(k).
b(k).
c(X,k) :- a(X).
\#program base.
a(2).

```

\section*{Scope of \#program declarations}
- The scope of an occurrence of a program declaration in a list of rules and declarations consists of the set of all rules and non-program declarations appearing between the occurrence and the next occurrence of a program declaration or the end of the list
- Rules and non-program declarations outside the scope of any program declaration are implicitly preceded by a base program declaration
- Example
```

a(1).
\#program acid(k).
b(k).
c(X,k) :- a(X).
\#program base.
a(2).

```

\section*{Scope of \#program declarations}
- The scope of an occurrence of a program declaration in a list of rules and declarations consists of the set of all rules and non-program declarations appearing between the occurrence and the next occurrence of a program declaration or the end of the list
- Rules and non-program declarations outside the scope of any program declaration are implicitly preceded by a base program declaration
- Example
```

a(1).
\#program acid(k).
b(k).
c(X,k) :- a(X).
\#program base.
a(2).

```

\section*{Scope of \#program declarations}
- The scope of an occurrence of a program declaration in a list of rules and declarations consists of the set of all rules and non-program declarations appearing between the occurrence and the next occurrence of a program declaration or the end of the list
- Rules and non-program declarations outside the scope of any program declaration are implicitly preceded by a base program declaration
- Example
```

a(1).
\#program acid(k).
b(k).
c(X,k) :- a(X).
\#program base.
a(2).

```

\section*{Scope of \#program declarations}
- Given a list \(R\) of (non-ground) rules and declarations and a name \(n\), we define \(R(n)\) as the set of all rules and non-program declarations in the scope of all occurrences of program declarations with name \(n\)
- We often refer to \(R(n)\) as a subprogram of \(R\)
- \(R(\) base \()=\{a(1), a(2)\}\)
\(\square R(\) acid \()=\{b(k), c(X, k) \leftarrow a(X)\}\)
Given a name \(n\) with associated parameters \(\left(p_{1}, \ldots, p_{k}\right)\), the instantiation of \(R(n)\) with a term tuple \(\left(t_{1}, \ldots, t_{k}\right)\) results in the set
\[
R(n)\left[p_{1} / t_{1}, \ldots, p_{k} / t_{k}\right]
\]
obtained by replacing in \(R(n)\) each occurrence of \(p_{i}\) by \(t_{i}\)

Torsten Schaub (KRR@UP)

\section*{Scope of \#program declarations}
- Given a list \(R\) of (non-ground) rules and declarations and a name \(n\), we define \(R(n)\) as the set of all rules and non-program declarations in the scope of all occurrences of program declarations with name \(n\)
- We often refer to \(R(n)\) as a subprogram of \(R\)
\(\square R(\) base \()=\{a(1), a(2)\}\)
\(\square R(\) acid \()=\{b(k), c(X, k) \leftarrow a(X)\}\)
- Given a name \(n\) with associated parameters \(\left(p_{1}, \ldots, p_{k}\right)\), the instantiation of \(R(n)\) with a term tuple \(\left(t_{1}, \ldots, t_{k}\right)\) results in the set
\[
R(n)\left[p_{1} / t_{1}, \ldots, p_{k} / t_{k}\right]
\]
obtained by replacing in \(R(n)\) each occurrence of \(p_{i}\) by \(t_{i}\)

\section*{Scope of \#program declarations}
- Given a list \(R\) of (non-ground) rules and declarations and a name \(n\), we define \(R(n)\) as the set of all rules and non-program declarations in the scope of all occurrences of program declarations with name \(n\)
- We often refer to \(R(n)\) as a subprogram of \(R\)
- Example
- \(R(\) base \()=\{a(1), a(2)\}\)
- \(R(\) acid \()=\{b(k), c(X, k) \leftarrow a(X)\}\)
- Given a name \(n\) with associated parameters \(\left(p_{1}, \ldots, p_{k}\right)\), the instantiation of \(R(n)\) with a term tuple \(\left(t_{1}, \ldots, t_{k}\right)\) results in the set
\[
R(n)\left[p_{1} / t_{1}, \ldots, p_{k} / t_{k}\right]
\]
obtained by replacing in \(R(n)\) each occurrence of \(p_{i}\) by \(t_{i}\)

\section*{Scope of \#program declarations}
- Given a list \(R\) of (non-ground) rules and declarations and a name \(n\), we define \(R(n)\) as the set of all rules and non-program declarations in the scope of all occurrences of program declarations with name \(n\)
- We often refer to \(R(n)\) as a subprogram of \(R\)
- Example
- \(R(\) base \()=\{a(1), a(2)\}\)
- \(R(\) acid \()=\{b(k), c(X, k) \leftarrow a(X)\}\)
- Given a name \(n\) with associated parameters \(\left(p_{1}, \ldots, p_{k}\right)\), the instantiation of \(R(n)\) with a term tuple \(\left(t_{1}, \ldots, t_{k}\right)\) results in the set
\[
R(n)\left[p_{1} / t_{1}, \ldots, p_{k} / t_{k}\right]
\]
obtained by replacing in \(R(n)\) each occurrence of \(p_{i}\) by \(t_{i}\)

\section*{Scope of \#program declarations}
- Given a list \(R\) of (non-ground) rules and declarations and a name \(n\), we define \(R(n)\) as the set of all rules and non-program declarations in the scope of all occurrences of program declarations with name \(n\)
- We often refer to \(R(n)\) as a subprogram of \(R\)
- Example
- \(R(\) base \()=\{a(1), a(2)\}\)
- \(R(\) acid \()[k / 42]=\{b(k), c(X, k) \leftarrow a(X)\}[k / 42]\)
- Given a name \(n\) with associated parameters \(\left(p_{1}, \ldots, p_{k}\right)\), the instantiation of \(R(n)\) with a term tuple \(\left(t_{1}, \ldots, t_{k}\right)\) results in the set
\[
R(n)\left[p_{1} / t_{1}, \ldots, p_{k} / t_{k}\right]
\]
obtained by replacing in \(R(n)\) each occurrence of \(p_{i}\) by \(t_{i}\)

\section*{Scope of \#program declarations}
- Given a list \(R\) of (non-ground) rules and declarations and a name \(n\), we define \(R(n)\) as the set of all rules and non-program declarations in the scope of all occurrences of program declarations with name \(n\)
- We often refer to \(R(n)\) as a subprogram of \(R\)
- Example
- \(R(\) base \()=\{a(1), a(2)\}\)
- \(R(\) acid \()[k / 42]=\{b(42), c(X, 42) \leftarrow a(X)\}\)
- Given a name \(n\) with associated parameters \(\left(p_{1}, \ldots, p_{k}\right)\), the instantiation of \(R(n)\) with a term tuple \(\left(t_{1}, \ldots, t_{k}\right)\) results in the set
\[
R(n)\left[p_{1} / t_{1}, \ldots, p_{k} / t_{k}\right]
\]
obtained by replacing in \(R(n)\) each occurrence of \(p_{i}\) by \(t_{i}\)

\section*{Contextual grounding}

■ Rules are grounded relative to a set of atoms, called atom base
- Given a set \(R\) of (non-ground) rules and two sets C, D of ground atoms, we define an instantiation of \(R\) relative to \(C\) as a ground program ground \(C_{C}(R)\) over \(D\) subject to the following conditions:
\[
\begin{aligned}
& C \subseteq D \subseteq C \cup h\left(\text { ground }_{C}(R)\right) \\
& \text { ground }_{C}(R) \subseteq\left\{h(r) \leftarrow B(r)^{+} \cup\left\{\sim a \mid a \in B(r)^{-} \cap D\right\}\right. \\
&\left.\mid r \in \operatorname{ground}(R), B(r)^{+} \subseteq D\right\}
\end{aligned}
\]
\(\square\) Example Given \(R=\{a(X) \leftarrow f(X), e(X) ; b(X) \leftarrow f(X), \sim e(X)\}\) and \(C=\{f(1), f(2), e(1)\}\), we obtain
\[
\text { ground }_{C}(R)=\left\{\begin{array}{ll}
a(1) \leftarrow f(1), e(1) ; & b(1) \leftarrow f(1), \sim e(1) \\
& b(2) \leftarrow f(2)
\end{array}\right\}
\]
\# Potassco

\section*{Contextual grounding}
- Rules are grounded relative to a set of atoms, called atom base
- Given a set \(R\) of (non-ground) rules and two sets \(C, D\) of ground atoms, we define an instantiation of \(R\) relative to \(C\) as a ground program ground \({ }_{C}(R)\) over \(D\) subject to the following conditions:
\[
\begin{aligned}
& C \subseteq D \subseteq C \cup h\left(\text { ground }_{C}(R)\right) \\
& \operatorname{ground}_{C}(R) \subseteq\left\{h(r) \leftarrow B(r)^{+} \cup\left\{\sim a \mid a \in B(r)^{-} \cap D\right\}\right. \\
&\left.\mid r \in \operatorname{ground}(R), B(r)^{+} \subseteq D\right\}
\end{aligned}
\]
- Example Given \(R=\{a(X) \leftarrow f(X), e(X) ; b(X) \leftarrow f(X), \sim e(X)\}\) and \(C=\{f(1), f(2), e(1)\}\), we obtain
\[
\text { ground }_{C}(R)=\left\{\begin{array}{ll}
a(1) \leftarrow f(1), e(1) ; & b(1) \leftarrow f(1), \sim e(1) \\
& b(2) \leftarrow f(2)
\end{array}\right\}
\]

\section*{Contextual grounding}
- Rules are grounded relative to a set of atoms, called atom base
- Given a set \(R\) of (non-ground) rules and two sets \(C, D\) of ground atoms, we define an instantiation of \(R\) relative to \(C\) as a ground program ground \({ }_{C}(R)\) over \(D\) subject to the following conditions:
\[
\begin{aligned}
& C \subseteq D \subseteq C \cup h\left(\text { ground }_{C}(R)\right) \\
& \text { ground }_{C}(R) \subseteq\left\{h(r) \leftarrow B(r)^{+} \cup\left\{\sim a \mid a \in B(r)^{-} \cap D\right\}\right. \\
&\left.\mid r \in \operatorname{ground}(R), B(r)^{+} \subseteq D\right\}
\end{aligned}
\]
- Example Given \(R=\{a(X) \leftarrow f(X), e(X) ; b(X) \leftarrow f(X), \sim e(X)\}\) and \(C=\{f(1), f(2), e(1)\}\), we obtain
\[
\operatorname{ground}_{C}(R)=\left\{\begin{array}{ll}
a(1) \leftarrow f(1), e(1) ; & b(1) \leftarrow f(1), \sim e(1) \\
& b(2) \leftarrow f(2)
\end{array}\right\}
\]

\section*{\#external declaration}
- An external declaration is of form
\[
\text { \#external a : } B
\]
where \(a\) is an atom and \(B\) a rule body
- A logic program with external declarations is said to be extensible

```

\#external e(X) : f(X), X < 2.
f(1..2).
a(X) :- f(X), e(X).
b(X) :- f(X), not e(X).

```

\section*{\#external declaration}
- An external declaration is of form
\#external a: B
where \(a\) is an atom and \(B\) a rule body
- A logic program with external declarations is said to be extensible
```

\#external e(X) : f(X), X < 2.
f(1..2).
a(X) :- f(X), e(X).
b(X) :- f(X), not e(X).

```

\section*{\#external declaration}
- An external declaration is of form
\#external a: B
where \(a\) is an atom and \(B\) a rule body
- A logic program with external declarations is said to be extensible
- Example
```

\#external e(X) : f(X), X < 2.
f(1..2).
a(X) :- f(X), e(X).
b(X) :- f(X), not e(X).

```

\section*{Grounding extensible logic programs}
- Given an extensible program \(R\), we define
\[
\begin{aligned}
Q & =\{a \leftarrow B, \varepsilon \mid(\# \text { external } a: B) \in R\} \\
R^{\prime} & =\{a \leftarrow B \in R\}
\end{aligned}
\]
\(\square\) Note An external declaration is treated as a rule \(a \leftarrow B, \varepsilon\) where \(\varepsilon\) is a ground marking atom
- Given an atom base \(C\), the ground instantiation of an extensible logic program \(R\) is defined as a (ground) logic program \(P\) with externals \(E\) where
\[
\begin{aligned}
& P=\left\{r \in \text { ground }_{C \cup\{\varepsilon\}}\left(R^{\prime} \cup Q\right) \mid \varepsilon \notin B(r)\right\} \\
& E=\left\{h(r) \mid r \in \text { ground }_{C \cup\{\varepsilon\}}\left(R^{\prime} \cup Q\right), \varepsilon \in B(r)\right\}
\end{aligned}
\]

The marking atom \(\varepsilon\) appears neither in \(P\) nor \(E\), respectively, and \(P\) is a logic program over \(C \cup E \cup h(P)\)

\section*{Grounding extensible logic programs}
- Given an extensible program \(R\), we define
\[
\begin{aligned}
Q & =\{a \leftarrow B, \varepsilon \mid(\text { \#external } a: B) \in R\} \\
R^{\prime} & =\{a \leftarrow B \in R\}
\end{aligned}
\]
- Note An external declaration is treated as a rule \(a \leftarrow B, \varepsilon\) where \(\varepsilon\) is a ground marking atom
- Given an atom base \(C\), the ground instantiation of an extensible logic program \(R\) is defined as a (ground) logic program \(P\) with externals \(E\) where
\[
\begin{aligned}
& P=\left\{r \in \text { ground }_{C \cup\{\varepsilon\}}\left(R^{\prime} \cup Q\right) \mid \varepsilon \notin B(r)\right\} \\
& E=\left\{h(r) \mid r \in \text { ground }_{C \cup\{\varepsilon\}}\left(R^{\prime} \cup Q\right), \varepsilon \in B(r)\right\}
\end{aligned}
\]
\[
\text { The marking atom } \varepsilon \text { appears neither in } P \text { nor } E \text {, respectively, }
\]
\[
\text { and } P \text { is a logic program over } C \cup E \cup h(P)
\]

\section*{Grounding extensible logic programs}
- Given an extensible program \(R\), we define
\[
\begin{aligned}
Q & =\{a \leftarrow B, \varepsilon \mid(\text { \#external } a: B) \in R\} \\
R^{\prime} & =\{a \leftarrow B \in R\}
\end{aligned}
\]
- Note An external declaration is treated as a rule \(a \leftarrow B, \varepsilon\) where \(\varepsilon\) is a ground marking atom
- Given an atom base \(C\), the ground instantiation of an extensible logic program \(R\) is defined as a (ground) logic program \(P\) with externals \(E\) where
\[
\begin{aligned}
& P=\left\{r \in \text { ground }_{C \cup\{\varepsilon\}}\left(R^{\prime} \cup Q\right) \mid \varepsilon \notin B(r)\right\} \\
& E=\left\{h(r) \mid r \in \operatorname{ground}_{C \cup\{\varepsilon\}}\left(R^{\prime} \cup Q\right), \varepsilon \in B(r)\right\} \\
& \text { The marking atom } \varepsilon \text { appears neither in } P \text { nor } E \text {, respectively, } \\
& \text { and } P \text { is a logic program over } C \cup E \cup h(P)
\end{aligned}
\]

\section*{Grounding extensible logic programs}
- Given an extensible program \(R\), we define
\[
\begin{aligned}
Q & =\{a \leftarrow B, \varepsilon \mid(\text { \#external } a: B) \in R\} \\
R^{\prime} & =\{a \leftarrow B \in R\}
\end{aligned}
\]
- Note An external declaration is treated as a rule \(a \leftarrow B, \varepsilon\) where \(\varepsilon\) is a ground marking atom
- Given an atom base \(C\), the ground instantiation of an extensible logic program \(R\) is defined as a (ground) logic program \(P\) with externals \(E\) where
\[
\begin{aligned}
& P=\left\{r \in \text { ground }_{C \cup\{\varepsilon\}}\left(R^{\prime} \cup Q\right) \mid \varepsilon \notin B(r)\right\} \\
& E=\left\{h(r) \mid r \in \text { ground }_{C \cup\{\varepsilon\}}\left(R^{\prime} \cup Q\right), \varepsilon \in B(r)\right\}
\end{aligned}
\]
- Note The marking atom \(\varepsilon\) appears neither in \(P\) nor \(E\), respectively, and \(P\) is a logic program over \(C \cup E \cup h(P)\)

\section*{Example}
- Extensible program
\#external \(e(X): f(X), g(X)\).
\(f(1) . f(2)\).
\(a(X):-f(X), e(X)\).
b(X) :- f(X), not e(X).
Atom base \(\{\mathrm{g}(1)\} \cup\{\varepsilon\}\)
Ground program
\(f(1) . f(2)\).
\(a(1):-f(1), e(1)\).
\(b(1):-f(1)\), not \(e(1)\). \(b(2):-f(2)\).
with externals \(\{e(1)\}\)

\section*{Example}
- Extensible program
```

 \(\mathrm{e}(\mathrm{X}):-\mathrm{f}(\mathrm{X}), \mathrm{g}(\mathrm{X}), \quad \varepsilon\).
 \(f(1) . f(2)\).
 \(a(X)\) :- \(f(X), e(X)\).
 b(X) :- f(X), not e(X).
 Atom base \(\{\mathrm{g}(1)\} \cup\{\varepsilon\}\)
 Ground program
 \(f(1) . f(2)\).
 \(a(1):-f(1), \quad e(1)\).
 \(b(1):-f(1)\), not \(e(1)\). \(b(2):-f(2)\).
 with externals $\{\mathrm{e}(1)\}$

```

\section*{Example}
- Extensible program
```

 \(\mathrm{e}(1):-\mathrm{f}(1), \mathrm{g}(1), \mathrm{\varepsilon} . \quad \mathrm{e}(2):-\mathrm{f}(2), \mathrm{g}(2), \varepsilon\).
 \(f(1) . f(2)\).
 \(a(X):-f(X), e(X)\).
 b(X) :- f(X), not e(X).
 Atom base \(\{\mathrm{g}(1)\} \cup\{\varepsilon\}\)
 Ground program
 \(f(1) . f(2)\).
 a(1) :- f(1), e(1).
 \(b(1):-f(1)\), not \(e(1)\). \(b(2):-f(2)\).
 with externals $\{\mathrm{e}(1)\}$

```

\section*{Example}
- Extensible program
```

 e(1) :- f(1), g(1), \varepsilon. e(2) :- f(2),g(2), \varepsilon.
 f(1). f(2).
 a(1) :- f(1), e(1). a(2) :- f(2), e(2).
 b(1) :- f(1), not e(1). b(2) :- f(2), not e(2).
 Atom base {g(1)}\cup{\varepsilon}
 Ground program
 f(1). f(2).
 a(1) :- f(1), e(1).
 b(1) :- f(1), not e(1). b(2) :- f(2).
 with externals {e(1)}

```

\section*{Example}
- Extensible program
\[
\begin{array}{ll}
e(1):-f(1), g(1), \varepsilon . & e(2):-f(2), g(2), \varepsilon . \\
f(1) . f(2) . & \\
a(1):-f(1), e(1) . & a(2):-f(2), e(2) . \\
b(1):-f(1), \operatorname{not} e(1) . & b(2):-f(2), \operatorname{not} e(2) .
\end{array}
\]

Atom base \(\{\mathrm{g}(1)\} \cup\{\varepsilon\}\)
Ground program
```

f(1). f(2).
a(1) :- f(1), e(1).
b(1) :- f(1), not e(1). b(2) :- f(2).

```
with externals \(\{\mathrm{e}(1)\}\)

\section*{Example}
- Extensible program
\[
\begin{array}{ll}
e(1):-f(1), g(1), \varepsilon . & e(2):-f(2), g(2), \varepsilon . \\
f(1) . f(2) . & \\
a(1):-f(1), e(1) . & a(2):-f(2), e(2) . \\
b(1):-f(1), \operatorname{not} e(1) . & b(2):-f(2), \operatorname{not} e(2) .
\end{array}
\]

Atom base \(\{\mathrm{g}(1)\} \cup\{\varepsilon\}\)
Ground program
```

f(1). f(2).
a(1) :- f(1), e(1).
b(1) :- f(1), not e(1). b(2) :- f(2).

```
with externals \(\{\mathrm{e}(1)\}\)

\section*{Example}
- Extensible program
\[
\begin{array}{ll}
e(1):-f(1), g(1), \varepsilon . & e(2):-f(2), g(2), \varepsilon . \\
f(1) . f(2) . & \\
a(1):-f(1), e(1) . & a(2):-f(2), e(2) . \\
b(1):-f(1), \operatorname{not} e(1) . & b(2):-f(2), \operatorname{not} e(2) .
\end{array}
\]

Atom base \(\{\mathrm{g}(1)\} \cup\{\varepsilon\}\)
- Ground program
```

f(1). f(2).
a(1) :- f(1), e(1).
b(1) :- f(1), not e(1). b(2) :- f(2).

```
with externals \(\{\mathrm{e}(1)\}\)

\section*{Example}
- Extensible program
\[
\begin{aligned}
& e(1):-f(1), g(1), \varepsilon . \\
& f(1) . f(2) . \\
& a(1):-f(1), e(1) . \\
& b(1):-f(1), \operatorname{not} e(1) . \quad b(2):-f(2) .
\end{aligned}
\]

Atom base \(\{\mathrm{g}(1)\} \cup\{\varepsilon\}\)
- Ground program
```

f(1). f(2).
a(1) :- f(1), e(1).
b(1) :- f(1), not e(1). b(2) :- f(2).
with externals $\{\mathrm{e}(1)\}$

```

\section*{Example}
- Extensible program
\[
\begin{aligned}
& e(1):-f(1), g(1), \varepsilon . \\
& f(1) . f(2) . \\
& a(1):-f(1), e(1) . \\
& b(1):-f(1), \operatorname{not} e(1) . \quad b(2):-f(2) .
\end{aligned}
\]

Atom base \(\{\mathrm{g}(1)\} \cup\{\varepsilon\}\)
- Ground program
\[
\begin{aligned}
& f(1) . f(2) . \\
& a(1):-f(1), e(1) . \\
& b(1):-f(1), \text { not } e(1) . \quad b(2):-f(2) .
\end{aligned}
\]
with externals \(\{\mathbf{e}(1)\}\)

\section*{Example}
- Extensible program
\[
\begin{aligned}
& e(1):-f(1), g(1), \varepsilon . \\
& f(1) . f(2) . \\
& a(1):-f(1), e(1) . \\
& b(1):-f(1), \operatorname{not} e(1) . \quad b(2):-f(2) .
\end{aligned}
\]

Atom base \(\{\mathrm{g}(1)\} \cup\{\varepsilon\}\)
- Ground program
```

 f(1). f(2).
 a(1) :- e(1).
 b(1) :- not e(1).
 b(2).
 with externals $\{\mathrm{e}(1)\}$

```

\section*{Outline}

\section*{46 Motivation}

\section*{47 \#program and \#external declaration}

48 Module composition
49 States and operations
50 Incremental reasoning
51 Boardgaming

\section*{Module}
- The assembly of subprograms can be characterized by means of modules:
- A module \(\mathbb{P}\) is a triple \((P, I, O)\) consisting of
- a (ground) program \(P\) over ground \((\mathcal{A})\) and
sets \(I, O \subseteq \operatorname{ground}(\mathcal{A})\) such that
\(\square I \cap O=\emptyset\),
- \(A(P) \subseteq I \cup O\), and
\(h(P) \subseteq 0\)
- The elements of \(I\) and \(O\) are called input and output atoms denoted by \(I(\mathbb{P})\) and \(O(\mathbb{P})\)
Similarly, we refer to (ground) program \(P\) by \(P(\mathbb{P})\)

Torsten Schaub (KRR@UP)

\section*{Module}
- The assembly of subprograms can be characterized by means of modules:
- A module \(\mathbb{P}\) is a triple \((P, I, O)\) consisting of
- a (ground) program \(P\) over ground \((\mathcal{A})\) and
- sets \(I, O \subseteq \operatorname{ground}(\mathcal{A})\) such that
- \(I \cap O=\emptyset\),
- \(A(P) \subseteq I \cup O\), and
- \(h(P) \subseteq O\)
- The elements of \(I\) and \(O\) are called input and output atoms denoted by \(I(\mathbb{P})\) and \(O(\mathbb{P})\)
Similarly, we refer to (ground) program \(P\) by \(P(\mathbb{P})\)

Torsten Schaub (KRR@UP)

\section*{Module}
- The assembly of subprograms can be characterized by means of modules:
- A module \(\mathbb{P}\) is a triple \((P, I, O)\) consisting of
- a (ground) program \(P\) over ground \((\mathcal{A})\) and
- sets \(I, O \subseteq \operatorname{ground}(\mathcal{A})\) such that
- \(I \cap O=\emptyset\),
- \(A(P) \subseteq I \cup O\), and
- \(h(P) \subseteq O\)
- The elements of \(I\) and \(O\) are called input and output atoms denoted by \(I(\mathbb{P})\) and \(O(\mathbb{P})\)
- Similarly, we refer to (ground) program \(P\) by \(P(\mathbb{P})\)

\section*{Module}
- The assembly of subprograms can be characterized by means of modules:
- A module \(\mathbb{P}\) is a triple \((P, I, O)\) consisting of
- a (ground) program \(P\) over ground \((\mathcal{A})\) and
- sets \(I, O \subseteq \operatorname{ground}(\mathcal{A})\) such that
- \(I \cap O=\emptyset\),
- \(A(P) \subseteq I \cup O\), and
- \(h(P) \subseteq O\)
- The elements of \(I\) and \(O\) are called input and output atoms
- denoted by \(I(\mathbb{P})\) and \(O(\mathbb{P})\)
- Similarly, we refer to (ground) program \(P\) by \(P(\mathbb{P})\)

\section*{Module}
- The assembly of subprograms can be characterized by means of modules:
- A module \(\mathbb{P}\) is a triple \((P, I, O)\) consisting of
- a (ground) program \(P\) over ground \((\mathcal{A})\) and
- sets \(I, O \subseteq \operatorname{ground}(\mathcal{A})\) such that
- \(I \cap O=\emptyset\),
- \(A(P) \subseteq I \cup O\), and
- \(h(P) \subseteq O\)
- The elements of \(I\) and \(O\) are called input and output atoms
- denoted by \(I(\mathbb{P})\) and \(O(\mathbb{P})\)

■ Similarly, we refer to (ground) program \(P\) by \(P(\mathbb{P})\)

\section*{Composing modules}

Two modules \(\mathbb{P}\) and \(\mathbb{Q}\) are compositional, if
\(O(\mathbb{P}) \cap O(\mathbb{Q})=\emptyset\) and
\(O(\mathbb{P}) \cap S=\emptyset\) or \(O(\mathbb{Q}) \cap S=\emptyset\)
for every strongly connected component \(S\) of \(P(\mathbb{P}) \cup P(\mathbb{Q})\)

Recursion between two modules to be joined is disallowed Recursion within each module is allowed

The join, \(\mathbb{P} \sqcup \mathbb{Q}\), of two modules \(\mathbb{P}\) and \(\mathbb{Q}\) is defined as the module \((P(\mathbb{P}) \cup P(\mathbb{Q}),(I(\mathbb{P}) \backslash O(\mathbb{Q})) \cup(I(\mathbb{Q}) \backslash O(\mathbb{P})), O(\mathbb{P}) \cup O(\mathbb{Q}))\)
provided that \(\mathbb{P}\) and \(\mathbb{Q}\) are compositional

\section*{Composing modules}
- Two modules \(\mathbb{P}\) and \(\mathbb{Q}\) are compositional, if
\(O(\mathbb{P}) \cap O(\mathbb{Q})=\emptyset\) and
\(O(\mathbb{P}) \cap S=\emptyset\) or \(O(\mathbb{Q}) \cap S=\emptyset\)
for every strongly connected component \(S\) of \(P(\mathbb{P}) \cup P(\mathbb{Q})\)

Recursion between two modules to be joined is disallowed
Recursion within each module is allowed
The join, \(\mathbb{P} \sqcup \mathbb{Q}\), of two modules \(\mathbb{P}\) and \(\mathbb{Q}\) is defined as the module
\[
(P(\mathbb{P}) \cup P(\mathbb{Q}),(I(\mathbb{P}) \backslash O(\mathbb{Q})) \cup(I(\mathbb{Q}) \backslash O(\mathbb{P})), O(\mathbb{P}) \cup O(\mathbb{Q}))
\]
provided that \(\mathbb{P}\) and \(\mathbb{Q}\) are compositional

\section*{Composing modules}
- Two modules \(\mathbb{P}\) and \(\mathbb{Q}\) are compositional, if
- \(O(\mathbb{P}) \cap O(\mathbb{Q})=\emptyset\) and
\(O(\mathbb{P}) \cap S=\emptyset\) or \(O(\mathbb{Q}) \cap S=\emptyset\)
for every strongly connected component \(S\) of \(P(\mathbb{P}) \cup P(\mathbb{Q})\)

Recursion between two modules to be joined is disallowed Recursion within each module is allowed

The join, \(\mathbb{P} \sqcup \mathbb{Q}\), of two modules \(\mathbb{P}\) and \(\mathbb{Q}\) is defined as the module \((P(\mathbb{P}) \cup P(\mathbb{Q}),(I(\mathbb{P}) \backslash O(\mathbb{Q})) \cup(I(\mathbb{Q}) \backslash O(\mathbb{P})), O(\mathbb{P}) \cup O(\mathbb{Q}))\)
provided that \(\mathbb{P}\) and \(\mathbb{Q}\) are compositional

\section*{Composing modules}
- Two modules \(\mathbb{P}\) and \(\mathbb{Q}\) are compositional, if
- \(O(\mathbb{P}) \cap O(\mathbb{Q})=\emptyset\) and
- \(O(\mathbb{P}) \cap S=\emptyset\) or \(O(\mathbb{Q}) \cap S=\emptyset\) for every strongly connected component \(S\) of \(P(\mathbb{P}) \cup P(\mathbb{Q})\)
- Recursion between two modules to be joined is disallowed
\(\square\) Recursion within each module is allowed
\(\square\) The join, \(\mathbb{P} \sqcup \mathbb{Q}\), of two modules \(\mathbb{P}\) and \(\mathbb{Q}\) is defined as the module \((P(\mathbb{P}) \cup P(\mathbb{Q}),(I(\mathbb{P}) \backslash O(\mathbb{Q})) \cup(I(\mathbb{Q}) \backslash O(\mathbb{P})), O(\mathbb{P}) \cup O(\mathbb{Q}))\)
provided that \(\mathbb{P}\) and \(\mathbb{Q}\) are compositional

\section*{Composing modules}
- Two modules \(\mathbb{P}\) and \(\mathbb{Q}\) are compositional, if
- \(O(\mathbb{P}) \cap O(\mathbb{Q})=\emptyset\) and
- \(O(\mathbb{P}) \cap S=\emptyset\) or \(O(\mathbb{Q}) \cap S=\emptyset\)
for every strongly connected component \(S\) of \(P(\mathbb{P}) \cup P(\mathbb{Q})\)
- Note
- Recursion between two modules to be joined is disallowed
- Recursion within each module is allowed

The join, \(\mathbb{P} \sqcup \mathbb{Q}\), of two modules \(\mathbb{P}\) and \(\mathbb{Q}\) is defined as the module \((P(\mathbb{P}) \cup P(\mathbb{Q}),(I(\mathbb{P}) \backslash O(\mathbb{Q})) \cup(I(\mathbb{Q}) \backslash O(\mathbb{P})), O(\mathbb{P}) \cup O(\mathbb{Q}))\)
provided that \(\mathbb{P}\) and \(\mathbb{Q}\) are compositional

\section*{Composing modules}
- Two modules \(\mathbb{P}\) and \(\mathbb{Q}\) are compositional, if
- \(O(\mathbb{P}) \cap O(\mathbb{Q})=\emptyset\) and
- \(O(\mathbb{P}) \cap S=\emptyset\) or \(O(\mathbb{Q}) \cap S=\emptyset\) for every strongly connected component \(S\) of \(P(\mathbb{P}) \cup P(\mathbb{Q})\)
- Note
- Recursion between two modules to be joined is disallowed
- Recursion within each module is allowed
- The join, \(\mathbb{P} \sqcup \mathbb{Q}\), of two modules \(\mathbb{P}\) and \(\mathbb{Q}\) is defined as the module
\[
(P(\mathbb{P}) \cup P(\mathbb{Q}),(I(\mathbb{P}) \backslash O(\mathbb{Q})) \cup(I(\mathbb{Q}) \backslash O(\mathbb{P})), O(\mathbb{P}) \cup O(\mathbb{Q}))
\]
provided that \(\mathbb{P}\) and \(\mathbb{Q}\) are compositional

\section*{Composing modules}
- Two modules \(\mathbb{P}\) and \(\mathbb{Q}\) are compositional, if
- \(O(\mathbb{P}) \cap O(\mathbb{Q})=\emptyset\) and
- \(O(\mathbb{P}) \cap S=\emptyset\) or \(O(\mathbb{Q}) \cap S=\emptyset\) for every strongly connected component \(S\) of \(P(\mathbb{P}) \cup P(\mathbb{Q})\)
- Note
- Recursion between two modules to be joined is disallowed
- Recursion within each module is allowed
- The join, \(\mathbb{P} \sqcup \mathbb{Q}\), of two modules \(\mathbb{P}\) and \(\mathbb{Q}\) is defined as the module
\[
(P(\mathbb{P}) \cup P(\mathbb{Q}),(I(\mathbb{P}) \backslash O(\mathbb{Q})) \cup(I(\mathbb{Q}) \backslash O(\mathbb{P})), O(\mathbb{P}) \cup O(\mathbb{Q}))
\]
provided that \(\mathbb{P}\) and \(\mathbb{Q}\) are compositional

\section*{Composing logic programs with externals}
- Idea Each ground instruction induces a module to be joined with the module representing the current program state
- Given an atom base \(C\), a (non-ground) extensible program \(R\) induces the module
\[
\mathbb{R}(C)=(P,(C \cup E) \backslash h(P), h(P))
\]
via the ground program \(P\) with externals \(E\) obtained from \(R\) and \(C\)
Noice \(E \backslash h(P)\) consists of atoms stemming from non-overwritten external declarations

\section*{Composing logic programs with externals}
- Idea Each ground instruction induces a module to be joined with the module representing the current program state
- Given an atom base \(C\), a (non-ground) extensible program \(R\) induces the module
\[
\mathbb{R}(C)=(P,(C \cup E) \backslash h(P), h(P))
\]
via the ground program \(P\) with externals \(E\) obtained from \(R\) and \(C\)

\section*{\(E \backslash h(P)\) consists of atoms stemming from non-overwritten} external declarations

\section*{Composing logic programs with externals}
- Idea Each ground instruction induces a module to be joined with the module representing the current program state
- Given an atom base \(C\), a (non-ground) extensible program \(R\) induces the module
\[
\mathbb{R}(C)=(P,(C \cup E) \backslash h(P), h(P))
\]
via the ground program \(P\) with externals \(E\) obtained from \(R\) and \(C\)
- Note \(E \backslash h(P)\) consists of atoms stemming from non-overwritten external declarations

\section*{Example}
- Atom base \(C=\{\mathrm{g}(1)\}\)
- Extensible program \(R\)
\[
\text { \#external e(X) : f(X), } g(X)
\]
\[
f(1) . f(2) .
\]
\[
a(X):-f(X), e(X) .
\]
\[
b(X):-f(X), \operatorname{not} e(X) .
\]

Module \(\mathbb{R}(C)=(P,(C \cup E) \backslash h(P), h(P))\)
\[
=\left(\left\{\begin{array}{l}
f(1), f(2), \\
a(1) \leftarrow f(1), e(1), \\
b(1) \leftarrow f(1), \sim e(1), \\
b(2) \leftarrow f(2)
\end{array}\right\},\left\{\begin{array}{l}
g(1), \\
e(1)
\end{array}\right\},\left\{\begin{array}{l}
f(1), f(2), \\
a(1), \\
b(1), b(2)
\end{array}\right\}\right)
\]

\section*{Example}
- Atom base \(C=\{g(1)\}\)
- Ground program \(P\)
\[
\begin{aligned}
& f(1) . f(2) . \\
& a(1):-f(1), e(1) . \\
& b(1):-f(1), \text { not } e(1) . \quad b(2):-f(2) .
\end{aligned}
\]
with externals \(E=\{\mathrm{e}(1)\}\)
- Module \(\mathbb{R}(C)=(P,(C \cup E) \backslash h(P), h(P))\)
\[
=\left(\left\{\begin{array}{l}
f(1), f(2), \\
a(1) \leftarrow f(1), e(1), \\
b(1) \leftarrow f(1), \sim e(1), \\
b(2) \leftarrow f(2)
\end{array}\right\},\left\{\begin{array}{l}
g(1), \\
e(1)
\end{array}\right\},\left\{\begin{array}{l}
f(1), f(2), \\
a(1), \\
b(1), b(2)
\end{array}\right\}\right)
\]

\section*{Example}
- Atom base \(C=\{\mathrm{g}(1)\}\)
- Ground program \(P\)
```

f(1). f(2).
a(1) :- f(1), e(1).
b(1) :- f(1), not e(1). b(2) :- f(2).

```
with externals \(E=\{\mathrm{e}(1)\}\)
- Module \(\mathbb{R}(C)=(P,(C \cup E) \backslash h(P), h(P))\)
\[
=\left(\left\{\begin{array}{l}
f(1), f(2), \\
a(1) \leftarrow f(1), e(1), \\
b(1) \leftarrow f(1), \sim e(1), \\
b(2) \leftarrow f(2)
\end{array}\right\},\left\{\begin{array}{l}
g(1), \\
e(1)
\end{array}\right\},\left\{\begin{array}{l}
f(1), f(2), \\
a(1), \\
b(1), b(2)
\end{array}\right\}\right)
\]

\section*{Example}
- Atom base \(C=\{g(1)\}\)
- Extensible program \(R\)
```

\#external e(X) : f(X), g(X)
f(1). f(2).
a(X) :- f(X), e(X).
b(X) :- f(X), not e(X).

```
- Module \(\mathbb{R}(C)=(P,(C \cup E) \backslash h(P), h(P))\)
\[
=\left(\left\{\begin{array}{l}
f(1), f(2), \\
a(1) \leftarrow f(1), e(1), \\
b(1) \leftarrow f(1), \sim e(1), \\
b(2) \leftarrow f(2)
\end{array}\right\},\left\{\begin{array}{l}
g(1), \\
e(1)
\end{array}\right\},\left\{\begin{array}{l}
f(1), f(2), \\
a(1), \\
b(1), b(2)
\end{array}\right\}\right)
\]

\section*{Capturing program states by modules}
- Each program state is captured by a module
- The input and output atoms of each module provide the atom base
- The initial program state is given by the empty module
\[
\mathbb{P}_{0}=(\emptyset, \emptyset, \phi)
\]

The program state succeeding \(\mathbb{P}_{\boldsymbol{i}}\) is captured by the module
\[
\mathbb{P}_{i+1}=\mathbb{P}_{i} \sqcup \mathbb{R}_{i+1}\left(I\left(\mathbb{P}_{i}\right) \cup O\left(\mathbb{P}_{i}\right)\right)
\]
where \(\mathbb{R}_{i+1}\left(I\left(\mathbb{P}_{i}\right) \cup O\left(\mathbb{P}_{i}\right)\right)\) captures the result of grounding an extensible program \(R\) relative to atom base \(I\left(\mathbb{P}_{i}\right) \cup O\left(\mathbb{P}_{i}\right)\)

The join leading to \(\mathbb{P}_{i+1}\) can be undefined in case the constituent modules are non-compositional

\section*{Capturing program states by modules}
- Each program state is captured by a module
- The input and output atoms of each module provide the atom base
- The initial program state is given by the empty module
\[
\mathbb{P}_{0}=(\emptyset, \emptyset, \emptyset)
\]
- The program state succeeding \(\mathbb{P}_{i}\) is captured by the module
\[
\mathbb{P}_{i+1}=\mathbb{P}_{i} \sqcup \mathbb{R}_{i+1}\left(l\left(\mathbb{P}_{i}\right) \cup O\left(\mathbb{P}_{i}\right)\right)
\]
where \(\mathbb{R}_{i+1}\left(I\left(\mathbb{P}_{i}\right) \cup O\left(\mathbb{P}_{i}\right)\right)\) captures the result of grounding an extensible program \(R\) relative to atom base \(I\left(\mathbb{P}_{i}\right) \cup O\left(\mathbb{P}_{i}\right)\)

The join leading to \(\mathbb{P}_{i+1}\) can be undefined in case the
constituent modules are non-compositional

Torsten Schaub (KRR@UP)

\section*{Capturing program states by modules}
- Each program state is captured by a module
- The input and output atoms of each module provide the atom base
- The initial program state is given by the empty module
\[
\mathbb{P}_{0}=(\emptyset, \emptyset, \emptyset)
\]
- The program state succeeding \(\mathbb{P}_{i}\) is captured by the module
\[
\mathbb{P}_{i+1}=\mathbb{P}_{i} \sqcup \mathbb{R}_{i+1}\left(I\left(\mathbb{P}_{i}\right) \cup O\left(\mathbb{P}_{i}\right)\right)
\]
where \(\mathbb{R}_{i+1}\left(I\left(\mathbb{P}_{i}\right) \cup O\left(\mathbb{P}_{i}\right)\right)\) captures the result of grounding an extensible program \(R\) relative to atom base \(I\left(\mathbb{P}_{i}\right) \cup O\left(\mathbb{P}_{i}\right)\)

The join leading to \(\mathbb{P}_{i+1}\) can be undefined in case the constituent modules are non-compositional

\section*{Capturing program states by modules}
- Each program state is captured by a module
- The input and output atoms of each module provide the atom base
- The initial program state is given by the empty module
\[
\mathbb{P}_{0}=(\emptyset, \emptyset, \emptyset)
\]
- The program state succeeding \(\mathbb{P}_{i}\) is captured by the module
\[
\mathbb{P}_{i+1}=\mathbb{P}_{i} \sqcup \mathbb{R}_{i+1}\left(I\left(\mathbb{P}_{i}\right) \cup O\left(\mathbb{P}_{i}\right)\right)
\]
where \(\mathbb{R}_{i+1}\left(I\left(\mathbb{P}_{i}\right) \cup O\left(\mathbb{P}_{i}\right)\right)\) captures the result of grounding an extensible program \(R\) relative to atom base \(I\left(\mathbb{P}_{i}\right) \cup O\left(\mathbb{P}_{i}\right)\)

The join leading to \(\mathbb{P}_{i+1}\) can be undefined in case the constituent modules are non-compositional

\section*{Capturing program states by modules}
- Each program state is captured by a module
- The input and output atoms of each module provide the atom base
- The initial program state is given by the empty module
\[
\mathbb{P}_{0}=(\emptyset, \emptyset, \emptyset)
\]
- The program state succeeding \(\mathbb{P}_{i}\) is captured by the module
\[
\mathbb{P}_{i+1}=\mathbb{P}_{i} \sqcup \mathbb{R}_{i+1}\left(I\left(\mathbb{P}_{i}\right) \cup O\left(\mathbb{P}_{i}\right)\right)
\]
where \(\mathbb{R}_{i+1}\left(I\left(\mathbb{P}_{i}\right) \cup O\left(\mathbb{P}_{i}\right)\right)\) captures the result of grounding an extensible program \(R\) relative to atom base \(I\left(\mathbb{P}_{i}\right) \cup O\left(\mathbb{P}_{i}\right)\)
- Note The join leading to \(\mathbb{P}_{i+1}\) can be undefined in case the constituent modules are non-compositional

\section*{Capturing program states by modules}
- Let \(\left(R_{i}\right)_{i>0}\) be a sequence of (non-ground) extensible programs, and let \(P_{i+1}\) be the ground program with externals \(E_{i+1}\) obtained from \(R_{i+1}\) and \(I\left(\mathbb{P}_{i}\right) \cup O\left(\mathbb{P}_{i}\right)\)

If \(\bigsqcup_{i \geq 0} \mathbb{P}_{i}\) is compositional, then
\[
\begin{array}{ll}
1 & P\left(\bigsqcup_{i>0} \mathbb{P}_{i}\right)=\bigcup_{i>0} P_{i} \\
1 & I\left(\bigsqcup_{i>0} \mathbb{P}_{i}\right)=\bigcup_{i>0} E_{i} \backslash \bigcup_{i>0} h\left(P_{i}\right) \\
& O\left(\bigsqcup_{i>0} \mathbb{P}_{i}\right)=\bigcup_{i>0} h\left(P_{i}\right)
\end{array}
\]

\section*{Capturing program states by modules}
- Let \(\left(R_{i}\right)_{i>0}\) be a sequence of (non-ground) extensible programs, and let \(P_{i+1}\) be the ground program with externals \(E_{i+1}\) obtained from \(R_{i+1}\) and \(I\left(\mathbb{P}_{i}\right) \cup O\left(\mathbb{P}_{i}\right)\)

If \(\bigsqcup_{i \geq 0} \mathbb{P}_{i}\) is compositional, then
\(1 P\left(\bigsqcup_{i \geq 0} \mathbb{P}_{i}\right)=\bigcup_{i>0} P_{i}\)
\(2 \quad I\left(\bigsqcup_{i \geq 0} \mathbb{P}_{i}\right)=\bigcup_{i>0} E_{i} \backslash \bigcup_{i>0} h\left(P_{i}\right)\)
\(3 O\left(\bigsqcup_{i \geq 0} \mathbb{P}_{i}\right)=\bigcup_{i>0} h\left(P_{i}\right)\)

\section*{Outline}
46 Motivation
47 \#program and \#external declaration
48 Module composition
49 States and operations
50 Incremental reasoning
51 Boardgaming

\section*{Clingo state}
- A clingo state is a triple
\[
(R, \mathbb{P}, V)
\]
where
- \(R\) is a collection of extensible (non-ground) logic programs
- \(\mathbb{P}\) is a module
- \(V\) is a three-valued assignment over \(I(\mathbb{P})\)

\section*{Clingo state}
- A clingo state is a triple
\[
(R, \mathbb{P}, V)
\]
where
- \(\boldsymbol{R}=\left(R_{c}\right)_{c \in \mathcal{C}}\) is a collection of extensible (non-ground) logic programs where \(\mathcal{C}\) is the set of all non-integer constants
- \(\mathbb{P}\) is a module
- \(V\) is a three-valued assignment over \(I(\mathbb{P})\)

\section*{Clingo state}
- A clingo state is a triple
\[
(R, \mathbb{P}, V)
\]
where
- \(\boldsymbol{R}=\left(R_{c}\right)_{c \in \mathcal{C}}\) is a collection of extensible (non-ground) logic programs where \(\mathcal{C}\) is the set of all non-integer constants
- \(\mathbb{P}\) is a module
- \(V=\left(V^{t}, V^{u}\right)\) is a three-valued assignment over \(I(\mathbb{P})\) where \(V^{f}=I(\mathbb{P}) \backslash\left(V^{t} \cup V^{u}\right)\)

\section*{Clingo state}
- A clingo state is a triple
\[
(R, \mathbb{P}, V)
\]
where
- \(\boldsymbol{R}=\left(R_{c}\right)_{c \in \mathcal{C}}\) is a collection of extensible (non-ground) logic programs where \(\mathcal{C}\) is the set of all non-integer constants
- \(\mathbb{P}\) is a module
- \(V=\left(V^{t}, V^{u}\right)\) is a three-valued assignment over \(I(\mathbb{P})\) where \(V^{f}=I(\mathbb{P}) \backslash\left(V^{t} \cup V^{u}\right)\)
- Note Input atoms in \(I(\mathbb{P})\) are taken to be false by default

\section*{create}
- create \((R): \mapsto(R, \mathbb{P}, V)\)
for a list \(R\) of (non-ground) rules and declarations where
- \(\boldsymbol{R}=(R(c))_{c \in \mathcal{C}}\)
\(\square \mathbb{P}=(\emptyset, \emptyset, \emptyset)\)
- \(V=(\emptyset, \emptyset)\)

Torsten Schaub (KRR@UP)

\section*{create}
- create \((R): \mapsto(R, \mathbb{P}, V)\)
for a list \(R\) of (non-ground) rules and declarations where
- \(\boldsymbol{R}=(R(c))_{c \in \mathcal{C}}\)
- \(\mathbb{P}=(\emptyset, \emptyset, \emptyset)\)
- \(V=(\emptyset, \emptyset)\)

\section*{add}

■ \(\operatorname{add}(R):\left(\boldsymbol{R}_{1}, \mathbb{P}, V\right) \mapsto\left(\boldsymbol{R}_{2}, \mathbb{P}, V\right)\) for a list \(R\) of (non-ground) rules and declarations where
\[
\boldsymbol{R}_{1}=\left(R_{c}\right)_{c \in \mathcal{C}} \text { and } \boldsymbol{R}_{2}=\left(R_{c} \cup R(c)\right)_{c \in \mathcal{C}}
\]

\section*{add}

■ \(\operatorname{add}(R):\left(\boldsymbol{R}_{1}, \mathbb{P}, V\right) \mapsto\left(\boldsymbol{R}_{2}, \mathbb{P}, V\right)\) for a list \(R\) of (non-ground) rules and declarations where - \(\boldsymbol{R}_{1}=\left(R_{c}\right)_{c \in \mathcal{C}}\) and \(\boldsymbol{R}_{2}=\left(R_{c} \cup R(c)\right)_{c \in \mathcal{C}}\)

\section*{ground}
- ground \(\left(\left(n, \boldsymbol{p}_{n}\right)_{n \in N}\right):\left(\boldsymbol{R}, \mathbb{P}_{1}, V_{1}\right) \mapsto\left(\boldsymbol{R}, \mathbb{P}_{2}, V_{2}\right)\)
for a collection \(\left(n, \boldsymbol{p}_{n}\right)_{n \in N}\) such that \(N \subseteq \mathcal{C}\) and \(\boldsymbol{p}_{n} \in \mathcal{T}^{k}\) for some \(k\) where
```

$\square \mathbb{P}_{2}=\mathbb{P}_{1} \sqcup \mathbb{R}\left(I\left(\mathbb{P}_{1}\right) \cup O\left(\mathbb{P}_{1}\right)\right)$
and $\mathbb{R}\left(I\left(\mathbb{P}_{1}\right) \cup O\left(\mathbb{P}_{1}\right)\right)$ is the module obtained from
- extensible program $\bigcup_{n \in N} R_{n}\left[\boldsymbol{p} / \boldsymbol{p}_{n}\right]$ and
a atom base $I\left(\mathbb{P}_{1}\right) \cup O\left(\mathbb{P}_{1}\right)$
for $\left(R_{c}\right)_{c \in \mathcal{C}}=R$
$V_{2}^{t}=\left\{a \in I\left(\mathbb{P}_{2}\right) \mid V_{1}(a)=t\right\}$
$V_{2}^{u}=\left\{a \in I\left(\mathbb{P}_{2}\right) \mid V_{1}(a)=u\right\}$

```

\section*{ground}
- ground \(\left(\left(n, \boldsymbol{p}_{n}\right)_{n \in N}\right):\left(\boldsymbol{R}, \mathbb{P}_{1}, V_{1}\right) \mapsto\left(\boldsymbol{R}, \mathbb{P}_{2}, V_{2}\right)\)
for a collection \(\left(n, \boldsymbol{p}_{n}\right)_{n \in N}\) such that \(N \subseteq \mathcal{C}\) and \(\boldsymbol{p}_{n} \in \mathcal{T}^{k}\) for some \(k\) where
- \(\mathbb{P}_{2}=\mathbb{P}_{1} \sqcup \mathbb{R}\left(I\left(\mathbb{P}_{1}\right) \cup O\left(\mathbb{P}_{1}\right)\right)\)
and \(\mathbb{R}\left(I\left(\mathbb{P}_{1}\right) \cup O\left(\mathbb{P}_{1}\right)\right)\) is the module obtained from
- extensible program \(\bigcup_{n \in N} R_{n}\left[\boldsymbol{p} / \boldsymbol{p}_{n}\right]\) and
- atom base \(I\left(\mathbb{P}_{1}\right) \cup O\left(\mathbb{P}_{1}\right)\)
for \(\left(R_{c}\right)_{c \in \mathcal{C}}=\boldsymbol{R}\)
- \(V_{2}^{t}=\left\{a \in I\left(\mathbb{P}_{2}\right) \mid V_{1}(a)=t\right\}\)
\(V_{2}^{u}=\left\{a \in I\left(\mathbb{P}_{2}\right) \mid V_{1}(a)=u\right\}\)

\section*{ground}

■ Notes
- The external status of an atom is eliminated once it becomes defined by a rule in some added program This is accomplished by module composition, namely, the elimination of output atoms from input atoms
- Jointly grounded subprograms are treated as a single subprogram
ground \(((n, \boldsymbol{p}),(n, \boldsymbol{p}))(s)=\operatorname{ground}((n, \boldsymbol{p}))(s)\) while ground \(((n, \boldsymbol{p}))(\operatorname{ground}((n, \boldsymbol{p}))(s))\) leads to two non-compositional modules whenever \(h\left(R_{n}\right) \neq \emptyset\)
Inputs stemming from added external declarations are set to false

\section*{ground}
- Notes
- The external status of an atom is eliminated once it becomes defined by a rule in some added program
This is accomplished by module composition, namely, the elimination of output atoms from input atoms
- Jointly grounded subprograms are treated as a single subprogram
ground \(((n, \boldsymbol{p}),(n, \boldsymbol{p}))(s)=\operatorname{ground}((n, \boldsymbol{p}))(s)\) while ground \(((n, \boldsymbol{p}))(\) ground \(((n, \boldsymbol{p}))(s))\) leads to two
non-compositional modules whenever \(h\left(R_{n}\right) \neq \emptyset\)
- Inputs stemming from added external declarations are set to false

\section*{ground}

■ Notes
- The external status of an atom is eliminated once it becomes defined by a rule in some added program
This is accomplished by module composition, namely, the elimination of output atoms from input atoms
- Jointly grounded subprograms are treated as a single subprogram
- ground \(((n, \boldsymbol{p}),(n, \boldsymbol{p}))(s)=\operatorname{ground}((n, \boldsymbol{p}))(s)\) while ground \(((n, \boldsymbol{p}))(\operatorname{ground}((n, \boldsymbol{p}))(s))\) leads to two non-compositional modules whenever \(h\left(R_{n}\right) \neq \emptyset\)
- Inputs stemming from added external declarations are set to false

\section*{ground}
- Notes
- The external status of an atom is eliminated once it becomes defined by a rule in some added program
This is accomplished by module composition, namely, the elimination of output atoms from input atoms
- Jointly grounded subprograms are treated as a single subprogram
- ground \(((n, \boldsymbol{p}),(n, \boldsymbol{p}))(s)=\operatorname{ground}((n, \boldsymbol{p}))(s)\) while \(\operatorname{ground}((n, \boldsymbol{p}))(\operatorname{ground}((n, \boldsymbol{p}))(s))\) leads to two non-compositional modules whenever \(h\left(R_{n}\right) \neq \emptyset\)
- Inputs stemming from added external declarations are set to false

\section*{assignExternal}
- assignExternal(a, v) : \(\left(\boldsymbol{R}, \mathbb{P}, V_{1}\right) \mapsto\left(\boldsymbol{R}, \mathbb{P}, V_{2}\right)\) for a ground atom a and \(v \in\{t, u, f\}\) where
\[
\begin{aligned}
& \text { if } v=t \\
& \quad V_{2}^{t}
\end{aligned}=V_{1}^{t} \cup\{a\} \text { if } a \in I(\mathbb{P}) \text {, and } V_{2}^{t}=V_{1}^{t} \text { otherwise } 0 \text {. } \quad \begin{aligned}
& u=V_{1}^{u} \backslash\{a\} \\
& \text { if } v=u \\
& \square V_{2}^{t}=V_{1}^{t} \backslash\{a\} \\
& \square V_{2}^{u}=V_{1}^{u} \cup\{a\} \text { if } a \in I(\mathbb{P}) \text {, and } V_{2}^{u}=V_{1}^{u} \text { otherwise } \\
& \text { if } v=f \\
& \square V_{2}^{t}=V_{1}^{t} \backslash\{a\} \\
& V_{2}^{u}=V_{1}^{u} \backslash\{a\}
\end{aligned}
\]

Only input atoms, that is, non-overwritten externals are affected

\section*{assignExternal}
- assignExternal( \(a, v):\left(\boldsymbol{R}, \mathbb{P}, V_{1}\right) \mapsto\left(\boldsymbol{R}, \mathbb{P}, V_{2}\right)\) for a ground atom a and \(v \in\{t, u, f\}\) where
- if \(v=t\)
- \(V_{2}^{t}=V_{1}^{t} \cup\{a\}\) if \(a \in I(\mathbb{P})\), and \(V_{2}^{t}=V_{1}^{t}\) otherwise
- \(V_{2}^{u}=V_{1}^{u} \backslash\{a\}\)
- if \(v=u\)
- \(V_{2}^{t}=V_{1}^{t} \backslash\{a\}\)
- \(V_{2}^{u}=V_{1}^{u} \cup\{a\}\) if \(a \in I(\mathbb{P})\), and \(V_{2}^{u}=V_{1}^{u}\) otherwise
- if \(v=f\)
- \(V_{2}^{t}=V_{1}^{t} \backslash\{a\}\)
- \(V_{2}^{u}=V_{1}^{u} \backslash\{a\}\)

Only input atoms, that is, non-overwritten externals are affected

\section*{assignExternal}
- assignExternal( \(a, v):\left(\boldsymbol{R}, \mathbb{P}, V_{1}\right) \mapsto\left(R, \mathbb{P}, V_{2}\right)\) for a ground atom a and \(v \in\{t, u, f\}\) where
- if \(v=t\)
\[
\begin{aligned}
& V_{2}^{t}=V_{1}^{t} \cup\{a\} \text { if } a \in I(\mathbb{P}), \text { and } V_{2}^{t}=V_{1}^{t} \text { otherwise } \\
& V_{2}^{u}=V_{1}^{u} \backslash\{a\}
\end{aligned}
\]
- if \(v=u\)
- \(V_{2}^{t}=V_{1}^{t} \backslash\{a\}\)
- \(V_{2}^{u}=V_{1}^{u} \cup\{a\}\) if \(a \in I(\mathbb{P})\), and \(V_{2}^{u}=V_{1}^{u}\) otherwise
- if \(v=f\)
- \(V_{2}^{t}=V_{1}^{t} \backslash\{a\}\)
- \(V_{2}^{u}=V_{1}^{u} \backslash\{a\}\)
- Note Only input atoms, that is, non-overwritten externals are affected

\section*{releaseExternal}
- releaseExternal(a) : \(\left(\boldsymbol{R}, \mathbb{P}_{1}, V_{1}\right) \mapsto\left(R, \mathbb{P}_{2}, V_{2}\right)\) for a ground atom a where
\(-\mathbb{P}_{2}=\left(P\left(\mathbb{P}_{1}\right), I\left(\mathbb{P}_{1}\right) \backslash\{a\}, O\left(\mathbb{P}_{1}\right) \cup\{a\}\right)\) if \(a \in I\left(\mathbb{P}_{1}\right)\), and \(\mathbb{P}_{2}=\mathbb{P}_{1}\) otherwise
\(V_{2}^{t}=V_{1}^{t} \backslash\{a\}\)
\(V_{2}^{u}=V_{1}^{u} \backslash\{a\}\)
releaseExternal only affects input atoms; defined atoms remain unaffected
A released atom can never be re-defined, neither by a rule nor an external declaration
A released (input) atom is made permanently false, since it is neither defined by any rule nor part of the input atoms

\section*{releaseExternal}
- releaseExternal(a) : \(\left(\boldsymbol{R}, \mathbb{P}_{1}, V_{1}\right) \mapsto\left(\boldsymbol{R}, \mathbb{P}_{2}, V_{2}\right)\)
for a ground atom a where
- \(\mathbb{P}_{2}=\left(P\left(\mathbb{P}_{1}\right), I\left(\mathbb{P}_{1}\right) \backslash\{a\}, O\left(\mathbb{P}_{1}\right) \cup\{a\}\right)\) if \(a \in I\left(\mathbb{P}_{1}\right)\), and \(\mathbb{P}_{2}=\mathbb{P}_{1}\) otherwise
- \(V_{2}^{t}=V_{1}^{t} \backslash\{a\}\)
\(V_{2}^{u}=V_{1}^{u} \backslash\{a\}\)
releaseExternal only affects input atoms; defined atoms remain unaffected
A released atom can never be re-defined, neither by a rule nor an external declaration
A released (input) atom is made permanently false, since it is neither defined by any rule nor part of the input atoms

\section*{releaseExternal}
- releaseExternal \((a):\left(R, \mathbb{P}_{1}, V_{1}\right) \mapsto\left(R, \mathbb{P}_{2}, V_{2}\right)\)
for a ground atom a where
- \(\mathbb{P}_{2}=\left(P\left(\mathbb{P}_{1}\right), I\left(\mathbb{P}_{1}\right) \backslash\{a\}, O\left(\mathbb{P}_{1}\right) \cup\{a\}\right)\) if \(a \in I\left(\mathbb{P}_{1}\right)\), and \(\mathbb{P}_{2}=\mathbb{P}_{1}\) otherwise
- \(V_{2}^{t}=V_{1}^{t} \backslash\{a\}\)
\(V_{2}^{u}=V_{1}^{u} \backslash\{a\}\)
- Notes
- releaseExternal only affects input atoms; defined atoms remain unaffected
- A released atom can never be re-defined, neither by a rule nor an external declaration
- A released (input) atom is made permanently false, since it is neither defined by any rule nor part of the input atoms

\section*{releaseExternal}
- releaseExternal \((a):\left(R, \mathbb{P}_{1}, V_{1}\right) \mapsto\left(R, \mathbb{P}_{2}, V_{2}\right)\)
for a ground atom a where
- \(\mathbb{P}_{2}=\left(P\left(\mathbb{P}_{1}\right), I\left(\mathbb{P}_{1}\right) \backslash\{a\}, O\left(\mathbb{P}_{1}\right) \cup\{a\}\right)\) if \(a \in I\left(\mathbb{P}_{1}\right)\), and \(\mathbb{P}_{2}=\mathbb{P}_{1}\) otherwise
- \(V_{2}^{t}=V_{1}^{t} \backslash\{a\}\)
\(V_{2}^{u}=V_{1}^{u} \backslash\{a\}\)
- Notes
- releaseExternal only affects input atoms; defined atoms remain unaffected
- A released atom can never be re-defined, neither by a rule nor an external declaration
- A released (input) atom is made permanently false, since it is neither defined by any rule nor part of the input atoms

\section*{releaseExternal}
- releaseExternal(a) : \(\left(\boldsymbol{R}, \mathbb{P}_{1}, V_{1}\right) \mapsto\left(R, \mathbb{P}_{2}, V_{2}\right)\)
for a ground atom a where
- \(\mathbb{P}_{2}=\left(P\left(\mathbb{P}_{1}\right), I\left(\mathbb{P}_{1}\right) \backslash\{a\}, O\left(\mathbb{P}_{1}\right) \cup\{a\}\right)\) if \(a \in I\left(\mathbb{P}_{1}\right)\), and \(\mathbb{P}_{2}=\mathbb{P}_{1}\) otherwise
- \(V_{2}^{t}=V_{1}^{t} \backslash\{a\}\) \(V_{2}^{u}=V_{1}^{u} \backslash\{a\}\)
- Notes
- releaseExternal only affects input atoms; defined atoms remain unaffected
- A released atom can never be re-defined, neither by a rule nor an external declaration
- A released (input) atom is made permanently false, since it is neither defined by any rule nor part of the input atoms

\section*{solve}
- solve \(\left(\left(A^{t}, A^{f}\right)\right):(R, \mathbb{P}, V) \mapsto(R, \mathbb{P}, V)\) prints the set \(\left\{X \mid X\right.\) is a stable model of \(\mathbb{P}\) wrt \(V\) st \(A^{t} \subseteq X\) and \(\left.A^{f} \cap X=\emptyset\right\}\)
where the stable models of a module \(\mathbb{P}\) wrt an assignment \(V\) are given by the stable models of the program
\[
P(\mathbb{P}) \cup\left\{a \leftarrow \mid a \in V^{t}\right\} \cup\left\{\{a\} \leftarrow \mid a \in V^{u}\right\}
\]

\section*{solve}
- solve \(\left(\left(A^{t}, A^{f}\right)\right):(R, \mathbb{P}, V) \mapsto(\boldsymbol{R}, \mathbb{P}, V)\) prints the set
\[
\left\{X \mid X \text { is a stable model of } \mathbb{P} \text { wrt } V \text { st } A^{t} \subseteq X \text { and } A^{f} \cap X=\emptyset\right\}
\]
where the stable models of a module \(\mathbb{P}\) wrt an assignment \(V\) are given by the stable models of the program
\[
P(\mathbb{P}) \cup\left\{a \leftarrow \mid a \in V^{t}\right\} \cup\left\{\{a\} \leftarrow \mid a \in V^{u}\right\}
\]

\section*{\#script declaration}
- A script declaration is of form
```

\#script(python) P \#end

```
where \(P\) is a Python program
Analogously for Lua
main routine exercises control (from within clingo, not from Python)
```

\#script(python)
def main(prg):
prg.ground([("base", [])])
prg.solve()
\#end.

```
```

\#script(python)
def main(prg):
prg.ground([("acid", [42])])
prg.solve()
\#end.

```

Torsten Schaub (KRR@UP)

\section*{\#script declaration}
- A script declaration is of form
\#script (python) P \#end
where \(P\) is a Python program
- Analogously for Lua
- main routine exercises control (from within clingo, not from Python)
```

\#script(python)
def main(prg):
prg.ground([("base", [])])
prg.solve()
\#end.

```
```

\#script(python)
def main(prg):
prg.ground([("acid", [42])])
prg.solve()
\#end.

```

Torsten Schaub (KRR@UP)

\section*{\#script declaration}
- A script declaration is of form
```

\#script(python) P \#end

```
where \(P\) is a Python program
- Analogously for Lua
- main routine exercises control (from within clingo, not from Python)
```

\#script(python)
def main(prg):
prg.ground([("base", [])])
prg.solve()
\#end.

```
```

\#script(python)
def main(prg):
prg.ground([("acid", [42])])
prg.solve()
\#end.

```

Torsten Schaub (KRR@UP)

\section*{\#script declaration}
- A script declaration is of form
\#script (python) P \#end
where \(P\) is a Python program
- Analogously for Lua
- main routine exercises control (from within clingo, not from Python)
```

\#script(python)
def main(prg):
prg.ground([("base", [])])
prg.solve()
\#end.

```
```

\#script(python)
def main(prg):
prg.ground([("acid", [42])])
prg.solve()
\#end.

```

Torsten Schaub (KRR@UP)

\section*{\#script declaration}
- A script declaration is of form
\#script (python) P \#end
where \(P\) is a Python program

\section*{Analogously for Lua}
- main routine exercises control (from within clingo, not from Python)
```

\#script(python)
def main(prg):
prg.ground([("base", [])])
prg.solve()
\#end.

```
```

\#script (python)
def main(prg):
prg.ground([("acid", [42])])
prg.solve()
\#end.

```

Torsten Schaub (KRR@UP)

\section*{\#script declaration}
- A script declaration is of form
\#script (python) P \#end
where \(P\) is a Python program

\section*{Analogously for Lua}
- main routine exercises control (from within clingo, not from Python)
- Example
```

\#script(python)
def main(prg):
prg.ground([("base", [])])
prg.solve()

```
\#end.
```

\#script(python)
def main(prg):
prg.ground([("acid", [42])])
prg.solve()

```
\#end.

\section*{\#script declaration}
- A script declaration is of form
\#script (python) P \#end
where \(P\) is a Python program

\section*{Analogously for Lua}
- main routine exercises control (from within clingo, not from Python)
- Examples
```

\#script(python)
def main(prg):
prg.ground([("base",[])])
prg.solve()
\#end.

```
```

\#script(python)

```
#script(python)
def main(prg):
def main(prg):
    prg.ground([("acid",[42])])
    prg.ground([("acid",[42])])
    prg.solve()
    prg.solve()
#end.
```

\#end.

```

\section*{Example}
```

\#external p(1;2;3).
p(0) :- p(3).
p(0) :- not p(0).
\#program succ(n).
\#external p(n+3).
p(n) :- p(n+3).
p(n) :- not p(n+1), not p(n+2).
\#script(python)
from clingo import Fun
def main(prg):
prg.ground([("base", [])])
prg.assign_external(Fun("p", [3]), True)
prg.solve()
prg.assign_external(Fun("p", [3]), False)
prg.solve()
prg.ground([("succ", [1]),("succ", [2])])
prg.solve()
prg.ground([("succ", [3])])
prg.solve()

```
\#end.

Torsten Schaub (KRR@UP)

\section*{Example}
```

\#external p(1;2;3).
p(0) :- p(3).
p(0) :- not p(0).
\#program succ(n).
\#external p(n+3).
p(n) :- p(n+3).
p(n) : - not p(n+1), not p(n+2).
\#script(python)
from clingo import Fun
def main(prg):
prg.ground([("base", [])])
prg.assign_external(Fun("p", [3]), True)
prg.solve()
prg.assign_external(Fun("p", [3]), False)
prg.solve()
prg.ground([("succ", [1]),("succ", [2])])
prg.solve()
prg.ground([("succ", [3])])
prg.solve()

```
\#end.

Torsten Schaub (KRR@UP)

\section*{Example}
```

\#external p(1;2;3).
p(0) :- p(3).
p(0) :- not p(0).
\#program succ(n).
\#external p(n+3).
p(n) :- p(n+3).
p(n) :- not p(n+1), not p(n+2).
\#script(python)
from clingo import Fun
def main(prg):
prg.ground([("base", [])])
prg.assign_external(Fun("p", [3]), True)
prg.solve()
prg.assign_external(Fun("p", [3]), False)
prg.solve()
prg.ground([("succ", [1]),("succ", [2])])
prg.solve()
prg.ground([("succ", [3])])
prg.solve()

```
\#end.

Torsten Schaub (KRR@UP)

\section*{Extensible programs}
- Initial clingo state
\[
\left(R_{0}, \mathbb{P}_{0}, V_{0}\right)=((R(\text { base }), R(\text { succ })),(\emptyset, \emptyset, \emptyset),(\emptyset, \emptyset))
\]
where
\[
\left.\left.\begin{array}{l}
R(\text { base })=\left\{\begin{array}{l}
\text { \#external } p(1) \\
\text { \#external } p(2) \\
\text { \#external } p(3)
\end{array} \quad p(0) \leftarrow p(3)\right. \\
\text { \#p(0) }
\end{array}\right\}, \begin{array}{l}
\text { \#external } p(n+3) \\
p(n) \leftarrow p(n+3) \\
p(n) \leftarrow \sim p(n+1), \sim p(n+2)
\end{array}\right\}, ~ \$
\]
- Initial atom base \(/\left(\mathbb{P}_{0}\right) \cup O\left(\mathbb{P}_{0}\right)=\emptyset\)

\section*{Extensible programs}
- Initial clingo state
\[
\left(R_{0}, \mathbb{P}_{0}, V_{0}\right)=((R(\text { base }), R(\text { succ })),(\emptyset, \emptyset, \emptyset),(\emptyset, \emptyset))
\]
where
\[
\left.\left.\begin{array}{l}
R(\text { base })=\left\{\begin{array}{l}
\text { \#external } p(1) \\
\text { \#external } p(2) \\
\text { \#external } p(3)
\end{array} \quad p(0) \leftarrow p(3)\right. \\
\text { \#p(0) }
\end{array}\right\}, \begin{array}{l}
\text { \#external } p(n+3) \\
p(n) \leftarrow p(n+3) \\
p(n) \leftarrow \sim p(n+1), \sim p(n+2)
\end{array}\right\}, ~ \$
\]
- Initial atom base \(I\left(\mathbb{P}_{0}\right) \cup O\left(\mathbb{P}_{0}\right)=\emptyset\)

\section*{Extensible programs}
- Initial clingo state, or more precisely, state of clingo object 'prg'
\[
\left(R_{0}, \mathbb{P}_{0}, V_{0}\right)=((R(\text { base }), R(\text { succ })),(\emptyset, \emptyset, \emptyset),(\emptyset, \emptyset))
\]
where
\[
\left.\left.\begin{array}{l}
R(\text { base })=\left\{\begin{array}{l}
\text { \#external } p(1) \\
\text { \#external } p(2) \\
\text { \#external } p(3)
\end{array} \quad p(0) \leftarrow p(3)\right. \\
\text { \#p(0) }
\end{array}\right\}, \begin{array}{l}
\text { \#external } p(n+3) \\
p(n) \leftarrow p(n+3) \\
p(n) \leftarrow \sim p(n+1), \sim p(n+2)
\end{array}\right\}, ~ \$
\]
- Initial atom base \(I\left(\mathbb{P}_{0}\right) \cup O\left(\mathbb{P}_{0}\right)=\emptyset\)

\section*{Extensible programs}
- Initial clingo state, or more precisely, state of clingo object 'prg'
\[
\operatorname{create}(R)=((R(\text { base }), R(\text { succ })),(\emptyset, \emptyset, \emptyset),(\emptyset, \emptyset))
\]
where \(R\) is the list of rules and declarations in Line 1-8 and
\[
\begin{aligned}
& R(\text { base })=\left\{\begin{array}{ll}
\text { \#external } p(1) & p(0) \leftarrow p(3) \\
\text { \#external } p(2) & p(0) \leftarrow \sim p(0) \\
\text { \#external } p(3)
\end{array}\right\} \\
& R(\text { succ })=\left\{\begin{array}{l}
\text { \#external } p(n+3) \\
p(n) \leftarrow p(n+3) \\
p(n) \leftarrow \sim p(n+1), \sim p(n+2)
\end{array}\right\}
\end{aligned}
\]
- Initial atom base \(I\left(\mathbb{P}_{0}\right) \cup O\left(\mathbb{P}_{0}\right)=\emptyset\)

\section*{Extensible programs}
- Initial clingo state, or more precisely, state of clingo object 'prg'
\[
\operatorname{create}(R)=((R(\text { base }), R(\text { succ })),(\emptyset, \emptyset, \emptyset),(\emptyset, \emptyset))
\]
where \(R\) is the list of rules and declarations in Line 1-8 and
\[
\begin{aligned}
& R(\text { base })=\left\{\begin{array}{ll}
\text { \#external } p(1) & p(0) \leftarrow p(3) \\
\text { \#external } p(2) & p(0) \leftarrow \sim p(0) \\
\text { \#external } p(3)
\end{array}\right\} \\
& R(\text { succ })=\left\{\begin{array}{l}
\text { \#external } p(n+3) \\
p(n) \leftarrow p(n+3) \\
p(n) \leftarrow \sim p(n+1), \sim p(n+2)
\end{array}\right\}
\end{aligned}
\]
- Initial atom base \(I\left(\mathbb{P}_{0}\right) \cup O\left(\mathbb{P}_{0}\right)=\emptyset\)


\section*{Example}
```

\#external p(1;2;3).
p(0) :- p(3).
p(0) :- not p(0).
\#program succ(n).
\#external p(n+3).
p(n) :- p(n+3).
p(n) :- not p(n+1), not p(n+2).
\#script(python)
from clingo import Fun
def main(prg):
prg.ground([("base", [])])
prg.assign_external(Fun("p", [3]), True)
prg.solve()
prg.assign_external(Fun("p", [3]), False)
prg.solve()
prg.ground([("succ", [1]),("succ", [2])])
prg.solve()
prg.ground([("succ", [3])])
prg.solve()

```
\#end.

Torsten Schaub (KRR@UP)

\section*{Example}
```

\#external p(1;2;3).
p(0) :- p(3).
p(0) :- not p(0).
\#program succ(n).
\#external p(n+3).
p(n) :- p(n+3).
p(n) : - not p(n+1), not p(n+2).
\#script(python)
from clingo import Fun
def main(prg):
prg.ground([("base", [])])
prg.assign_external(Fun("p", [3]), True)
prg.solve()
prg.assign_external(Fun("p", [3]), False)
prg.solve()
prg.ground([("succ", [1]),("succ", [2])])
prg.solve()
prg.ground([("succ", [3])])
prg.solve()

```
\#end.

Torsten Schaub (KRR@UP)

\section*{prg.ground([("base", [])])}
- Global clingo state ( \(\boldsymbol{R}_{0}, \mathbb{P}_{0}, V_{0}\) ), including atom base \(\emptyset\)
- Input Extensible program \(R\) (base)

\section*{Module}
\[
\begin{aligned}
\mathbb{R}_{1}(\emptyset) & =\left(P_{1}, E_{1},\{p(0)\}\right) \quad \text { where } \\
P_{1} & =\{p(0) \leftarrow p(3) ; p(0) \leftarrow \sim p(0)\} \\
E_{1} & =\{p(1), p(2), p(3)\}
\end{aligned}
\]
\(\square\) Result clingo state
\[
\left(\boldsymbol{R}_{1}, \mathbb{P}_{1}, V_{1}\right)=\left(\boldsymbol{R}_{0}, \mathbb{P}_{0} \sqcup \mathbb{R}_{1}(\emptyset), V_{0}\right)
\]
where
\[
\begin{aligned}
\mathbb{P}_{1} & =\mathbb{P}_{0} \sqcup \mathbb{R}_{1}(\emptyset)=(\emptyset, \emptyset, \emptyset) \sqcup\left(P_{1}, E_{1},\{p(0)\}\right) \\
& =(\{p(0) \leftarrow p(3) ; p(0) \leftarrow \sim p(0)\},\{p(1), p(2), p(3)\},\{p(0)\})
\end{aligned}
\]

\section*{prg.ground([("base", [])])}
- Global clingo state ( \(\boldsymbol{R}_{0}, \mathbb{P}_{0}, V_{0}\) ), including atom base \(\emptyset\)
- Input Extensible program \(R\) (base)
- Output Module
\[
\begin{aligned}
\mathbb{R}_{1}(\emptyset) & =\left(P_{1}, E_{1},\{p(0)\}\right) \quad \text { where } \\
P_{1} & =\{p(0) \leftarrow p(3) ; p(0) \leftarrow \sim p(0)\} \\
E_{1} & =\{p(1), p(2), p(3)\}
\end{aligned}
\]
- Result clingo state
\[
\left(\boldsymbol{R}_{1}, \mathbb{P}_{1}, V_{1}\right)=\left(\boldsymbol{R}_{0}, \mathbb{P}_{0} \sqcup \mathbb{R}_{1}(\emptyset), V_{0}\right)
\]
where
\[
\begin{aligned}
\mathbb{P}_{1} & =\mathbb{P}_{0} \sqcup \mathbb{R}_{1}(\emptyset)=(\emptyset, \emptyset, \emptyset) \sqcup\left(P_{1}, E_{1},\{p(0)\}\right) \\
& =(\{p(0) \leftarrow p(3) ; p(0) \leftarrow \sim p(0)\},\{p(1), p(2), p(3)\},\{p(0)\})
\end{aligned}
\]

\section*{prg.ground([("base", [])])}
- Global clingo state ( \(\boldsymbol{R}_{0}, \mathbb{P}_{0}, V_{0}\) ), including atom base \(\emptyset\)
- Input Extensible program \(R\) (base)
- Output Module
\[
\begin{aligned}
\mathbb{R}_{1}(\emptyset) & =\left(P_{1}, E_{1},\{p(0)\}\right) \quad \text { where } \\
P_{1} & =\{p(0) \leftarrow p(3) ; p(0) \leftarrow \sim p(0)\} \\
E_{1} & =\{p(1), p(2), p(3)\}
\end{aligned}
\]
- Result clingo state
\[
\left(\boldsymbol{R}_{1}, \mathbb{P}_{1}, V_{1}\right)=\left(R_{0}, \mathbb{P}_{0} \sqcup \mathbb{R}_{1}(\emptyset), V_{0}\right)
\]
where
\[
\begin{aligned}
\mathbb{P}_{1} & =\mathbb{P}_{0} \sqcup \mathbb{R}_{1}(\emptyset)=(\emptyset, \emptyset, \emptyset) \sqcup\left(P_{1}, E_{1},\{p(0)\}\right) \\
& =(\{p(0) \leftarrow p(3) ; p(0) \leftarrow \sim p(0)\},\{p(1), p(2), p(3)\},\{p(0)\})
\end{aligned}
\]

\section*{prg.ground([("base", [])])}
- Global clingo state ( \(\boldsymbol{R}_{0}, \mathbb{P}_{0}, V_{0}\) ), including atom base \(\emptyset\)
- Input Extensible program \(R\) (base)
- Output Module
\[
\begin{aligned}
\mathbb{R}_{1}(\emptyset) & =\left(P_{1}, E_{1},\{p(0)\}\right) \quad \text { where } \\
P_{1} & =\{p(0) \leftarrow p(3) ; p(0) \leftarrow \sim p(0)\} \\
E_{1} & =\{p(1), p(2), p(3)\}
\end{aligned}
\]
- Result clingo state
\[
\left(\boldsymbol{R}_{1}, \mathbb{P}_{1}, V_{1}\right)=\left(\boldsymbol{R}_{0}, \mathbb{P}_{0} \sqcup \mathbb{R}_{1}(\emptyset), V_{0}\right)
\]
where
\[
\begin{aligned}
\mathbb{P}_{1} & =\mathbb{P}_{0} \sqcup \mathbb{R}_{1}(\emptyset)=(\emptyset, \emptyset, \emptyset) \sqcup\left(P_{1}, E_{1},\{p(0)\}\right) \\
& =(\{p(0) \leftarrow p(3) ; p(0) \leftarrow \sim p(0)\},\{p(1), p(2), p(3)\},\{p(0)\})
\end{aligned}
\]

\section*{prg.ground([("base", [])])}
- Global clingo state ( \(\boldsymbol{R}_{0}, \mathbb{P}_{0}, V_{0}\) ), including atom base \(\emptyset\)
- Input Extensible program \(R\) (base)
- Output Module
\[
\begin{aligned}
\mathbb{R}_{1}(\emptyset) & =\left(P_{1}, E_{1},\{p(0)\}\right) \quad \text { where } \\
P_{1} & =\{p(0) \leftarrow p(3) ; p(0) \leftarrow \sim p(0)\} \\
E_{1} & =\{p(1), p(2), p(3)\}
\end{aligned}
\]
- Result clingo state
\[
\left(\boldsymbol{R}_{1}, \mathbb{P}_{1}, V_{1}\right)=\left(\boldsymbol{R}_{0}, \mathbb{P}_{0} \sqcup \mathbb{R}_{1}(\emptyset), V_{0}\right)
\]
where
\[
\begin{aligned}
\mathbb{P}_{1} & =\mathbb{P}_{0} \sqcup \mathbb{R}_{1}(\emptyset)=(\emptyset, \emptyset, \emptyset) \sqcup\left(P_{1}, E_{1},\{p(0)\}\right) \\
& =(\{p(0) \leftarrow p(3) ; p(0) \leftarrow \sim p(0)\},\{p(1), p(2), p(3)\},\{p(0)\})
\end{aligned}
\]

\section*{Example}
```

\#external p(1;2;3).
p(0) :- p(3).
p(0) :- not p(0).
\#program succ(n).
\#external p(n+3).
p(n) :- p(n+3).
p(n) : - not p(n+1), not p(n+2).
\#script(python)
from clingo import Fun
def main(prg):
prg.ground([("base", [])])
prg.assign_external(Fun("p", [3]), True)
prg.solve()
prg.assign_external(Fun("p", [3]), False)
prg.solve()
prg.ground([("succ", [1]),("succ", [2])])
prg.solve()
prg.ground([("succ", [3])])
prg.solve()

```
\#end.

Torsten Schaub (KRR@UP)

\section*{Example}
```

\#external p(1;2;3).
p(0) :- p(3).
p(0) :- not p(0).
\#program succ(n).
\#external p(n+3).
p(n) :- p(n+3).
p(n) : - not p(n+1), not p(n+2).
\#script(python)
from clingo import Fun
def main(prg):
prg.ground([("base", [])])
prg.assign_external(Fun("p", [3]), True)
prg.solve()
prg.assign_external(Fun("p", [3]), False)
prg.solve()
prg.ground([("succ", [1]),("succ", [2])])
prg.solve()
prg.ground([("succ", [3])])
prg.solve()

```
\#end.

Torsten Schaub (KRR@UP)

\section*{prg.assign_external(Fun("p", [3]), True)}
- Global clingo state \(\left(R_{1}, \mathbb{P}_{1}, V_{1}\right)\)
- Input assignment \(p(3) \mapsto t\)
- Result clingo state
\[
\left(\boldsymbol{R}_{2}, \mathbb{P}_{2}, V_{2}\right)=\left(\boldsymbol{R}_{0}, \mathbb{P}_{1},(\{p(3)\}, \emptyset)\right)
\]

\section*{prg.assign_external(Fun("p", [3]), True)}
- Global clingo state \(\left(\boldsymbol{R}_{1}, \mathbb{P}_{1}, V_{1}\right)\)
- Input assignment \(p(3) \mapsto t\)
- Result clingo state
\[
\left(\boldsymbol{R}_{2}, \mathbb{P}_{2}, V_{2}\right)=\left(\boldsymbol{R}_{0}, \mathbb{P}_{1},(\{p(3)\}, \emptyset)\right)
\]

\section*{Example}
```

\#external p(1;2;3).
p(0) :- p(3).
p(0) :- not p(0).
\#program succ(n).
\#external p(n+3).
p(n) :- p(n+3).
p(n) : - not p(n+1), not p(n+2).
\#script(python)
from clingo import Fun
def main(prg):
prg.ground([("base", [])])
prg.assign_external(Fun("p", [3]), True)
prg.solve()
prg.assign_external(Fun("p", [3]), False)
prg.solve()
prg.ground([("succ", [1]),("succ", [2])])
prg.solve()
prg.ground([("succ", [3])])
prg.solve()

```
\#end.

Torsten Schaub (KRR@UP)

\section*{Example}
```

\#external p(1;2;3).
p(0) :- p(3).
p(0) :- not p(0).
\#program succ(n).
\#external p(n+3).
p(n) :- p(n+3).
p(n) : - not p(n+1), not p(n+2).
\#script(python)
from clingo import Fun
def main(prg):
prg.ground([("base", [])])
prg.assign_external(Fun("p", [3]), True)
prg.solve()
prg.assign_external(Fun("p", [3]), False)
prg.solve()
prg.ground([("succ", [1]),("succ", [2])])
prg.solve()
prg.ground([("succ", [3])])
prg.solve()

```
\#end.

Torsten Schaub (KRR@UP)

\section*{prg.solve()}
- Global clingo state \(\left(\boldsymbol{R}_{2}, \mathbb{P}_{2}, V_{2}\right)\)
- Input empty assignment
- Result clingo state
\[
\left(\boldsymbol{R}_{2}, \mathbb{P}_{2}, \boldsymbol{V}_{2}\right)=\left(\boldsymbol{R}_{0}, \mathbb{P}_{1},(\{p(3)\}, \emptyset)\right)
\]
\[
\text { stable model }\{p(0), p(3)\} \text { of } \mathbb{P}_{2} \text { wrt } V_{2}
\]

\section*{prg.solve()}
- Global clingo state \(\left(\boldsymbol{R}_{2}, \mathbb{P}_{2}, V_{2}\right)\)
- Input empty assignment
- Result clingo state
\[
\begin{aligned}
& \left(\boldsymbol{R}_{2}, \mathbb{P}_{2}, \boldsymbol{V}_{2}\right)=\left(\boldsymbol{R}_{0}, \mathbb{P}_{1},(\{p(3)\}, \emptyset)\right) \\
& \text { stable model }\{p(0), p(3)\} \text { of } \mathbb{P}_{2} \text { wrt } V_{2}
\end{aligned}
\]

\section*{prg.solve()}
- Global clingo state \(\left(\boldsymbol{R}_{2}, \mathbb{P}_{2}, V_{2}\right)\)
- Input empty assignment
- Result clingo state
\[
\left(\boldsymbol{R}_{2}, \mathbb{P}_{2}, V_{2}\right)=\left(\boldsymbol{R}_{0}, \mathbb{P}_{1},(\{p(3)\}, \emptyset)\right)
\]
- Print stable model \(\{p(0), p(3)\}\) of \(\mathbb{P}_{2}\) wrt \(V_{2}\)

\section*{prg.solve()}
- Global clingo state \(\left(\boldsymbol{R}_{2}, \mathbb{P}_{2}, V_{2}\right)\)
- Input empty assignment
- Result clingo state
\[
\left(\boldsymbol{R}_{2}, \mathbb{P}_{2}, V_{2}\right)=\left(\boldsymbol{R}_{0}, \mathbb{P}_{1},(\{p(3)\}, \emptyset)\right)
\]
- Print stable model \(\{p(0), p(3)\}\) of \(\mathbb{P}_{2}\) wrt \(V_{2}\)

\section*{Example}
```

\#external p(1;2;3).
p(0) :- p(3).
p(0) :- not p(0).
\#program succ(n).
\#external p(n+3).
p(n) :- p(n+3).
p(n) : - not p(n+1), not p(n+2).
\#script(python)
from clingo import Fun
def main(prg):
prg.ground([("base", [])])
prg.assign_external(Fun("p", [3]), True)
prg.solve()
prg.assign_external(Fun("p", [3]), False)
prg.solve()
prg.ground([("succ", [1]),("succ", [2])])
prg.solve()
prg.ground([("succ", [3])])
prg.solve()

```
\#end.

Torsten Schaub (KRR@UP)

\section*{Example}
```

\#external p(1;2;3).
p(0) :- p(3).
p(0) :- not p(0).
\#program succ(n).
\#external p(n+3).
p(n) :- p(n+3).
p(n) : - not p(n+1), not p(n+2).
\#script(python)
from clingo import Fun
def main(prg):
prg.ground([("base", [])])
prg.assign_external(Fun("p", [3]), True)
prg.solve()
prg.assign_external(Fun("p", [3]), False)
prg.solve()
prg.ground([("succ", [1]),("succ", [2])])
prg.solve()
prg.ground([("succ", [3])])
prg.solve()

```
\#end.

Torsten Schaub (KRR@UP)

\section*{prg.assign_external(Fun("p", [3]), False)}
- Global clingo state \(\left(\boldsymbol{R}_{2}, \mathbb{P}_{2}, V_{2}\right)\)
- Input assignment \(p(3) \mapsto f\)
- Result clingo state
\[
\left(\boldsymbol{R}_{3}, \mathbb{P}_{3}, V_{3}\right)=\left(\boldsymbol{R}_{0}, \mathbb{P}_{1},(\emptyset, \emptyset)\right)
\]

\section*{prg.assign_external(Fun("p", [3]), False)}
- Global clingo state \(\left(\boldsymbol{R}_{2}, \mathbb{P}_{2}, V_{2}\right)\)
- Input assignment \(p(3) \mapsto f\)
- Result clingo state
\[
\left(R_{3}, \mathbb{P}_{3}, V_{3}\right)=\left(R_{0}, \mathbb{P}_{1},(\emptyset, \emptyset)\right)
\]

\section*{Example}
```

\#external p(1;2;3).
p(0) :- p(3).
p(0) :- not p(0).
\#program succ(n).
\#external p(n+3).
p(n) :- p(n+3).
p(n) : - not p(n+1), not p(n+2).
\#script(python)
from clingo import Fun
def main(prg):
prg.ground([("base", [])])
prg.assign_external(Fun("p", [3]), True)
prg.solve()
prg.assign_external(Fun("p", [3]), False)
prg.solve()
prg.ground([("succ", [1]),("succ", [2])])
prg.solve()
prg.ground([("succ", [3])])
prg.solve()

```
\#end.

Torsten Schaub (KRR@UP)

\section*{Example}
```

\#external p(1;2;3).
p(0) :- p(3).
p(0) :- not p(0).
\#program succ(n).
\#external p(n+3).
p(n) :- p(n+3).
p(n) : - not p(n+1), not p(n+2).
\#script(python)
from clingo import Fun
def main(prg):
prg.ground([("base", [])])
prg.assign_external(Fun("p", [3]), True)
prg.solve()
prg.assign_external(Fun("p", [3]), False)
prg.solve()
prg.ground([("succ", [1]),("succ", [2])])
prg.solve()
prg.ground([("succ", [3])])
prg.solve()

```
\#end.

Torsten Schaub (KRR@UP)

\title{
prg.solve()
}
- Global clingo state \(\left(\boldsymbol{R}_{3}, \mathbb{P}_{3}, V_{3}\right)\)
- Input empty assignment
- Result clingo state
\(\left(\boldsymbol{R}_{3}, \mathbb{P}_{3}, V_{3}\right)=\left(\boldsymbol{R}_{0}, \mathbb{P}_{1},(\emptyset, \emptyset)\right)\)
- Print no stable model of \(\mathbb{P}_{3}\) wrt \(V_{3}\)

\section*{prg.solve()}
- Global clingo state \(\left(\boldsymbol{R}_{3}, \mathbb{P}_{3}, V_{3}\right)\)
- Input empty assignment
- Result clingo state
\[
\left(\boldsymbol{R}_{3}, \mathbb{P}_{3}, V_{3}\right)=\left(R_{0}, \mathbb{P}_{1},(\emptyset, \emptyset)\right)
\]
- Print no stable model of \(\mathbb{P}_{3}\) wrt \(V_{3}\)

\section*{prg.solve()}
- Global clingo state \(\left(\boldsymbol{R}_{3}, \mathbb{P}_{3}, V_{3}\right)\)
- Input empty assignment
- Result clingo state
\[
\left(\boldsymbol{R}_{3}, \mathbb{P}_{3}, V_{3}\right)=\left(R_{0}, \mathbb{P}_{1},(\emptyset, \emptyset)\right)
\]
- Print no stable model of \(\mathbb{P}_{3}\) wrt \(V_{3}\)

\section*{Example}
```

\#external p(1;2;3).
p(0) :- p(3).
p(0) :- not p(0).
\#program succ(n).
\#external p(n+3).
p(n) :- p(n+3).
p(n) : - not p(n+1), not p(n+2).
\#script(python)
from clingo import Fun
def main(prg):
prg.ground([("base", [])])
prg.assign_external(Fun("p", [3]), True)
prg.solve()
prg.assign_external(Fun("p", [3]), False)
prg.solve()
prg.ground([("succ", [1]),("succ", [2])])
prg.solve()
prg.ground([("succ", [3])])
prg.solve()

```
\#end.

Torsten Schaub (KRR@UP)

\section*{Example}
```

\#external p(1;2;3).
p(0) :- p(3).
p(0) :- not p(0).
\#program succ(n).
\#external p(n+3).
p(n) :- p(n+3).
p(n) : - not p(n+1), not p(n+2).
\#script(python)
from clingo import Fun
def main(prg):
prg.ground([("base", [])])
prg.assign_external(Fun("p", [3]), True)
prg.solve()
prg.assign_external(Fun("p", [3]), False)
prg.solve()
prg.ground([("succ", [1]),("succ", [2])])
prg.solve()
prg.ground([("succ", [3])])
prg.solve()

```
\#end.

Torsten Schaub (KRR@UP)

\section*{prg.ground([("succ", [1]), ("succ", [2])])}

■ Global clingo state \(\left(\boldsymbol{R}_{3}, \mathbb{P}_{3}, V_{3}\right)\), including atom base
\[
I\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)=\{p(0), p(1), p(2), p(3)\}
\]
- Input Extensible program \(R(\) succ \()[\mathrm{n} / 1] \cup R(\) succ \()[\mathrm{n} / 2]\)

Module
\[
\begin{aligned}
\mathbb{R}_{4}\left(I\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)\right) & =\left(P_{4},\left\{\begin{array}{l}
p(0), p(4), \\
p(3), p(5)
\end{array}\right\},\left\{\begin{array}{l}
p(1), \\
p(2)
\end{array}\right\}\right) \text { where } \\
P_{4} & =\left\{\begin{array}{l}
p(1) \leftarrow p(4) ; p(1) \leftarrow \sim p(2), \sim p(3) ; \\
p(2) \leftarrow p(5) ; p(2) \leftarrow \sim p(3), \sim p(4)
\end{array}\right\} \\
E_{4} & =\{p(4), p(5)\}
\end{aligned}
\]
- Result clingo state
\[
\left(\boldsymbol{R}_{4}, \mathbb{P}_{4}, V_{4}\right)=\left(\boldsymbol{R}_{0}, \mathbb{P}_{3} \sqcup \mathbb{R}_{4}\left(I\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)\right), V_{3}\right)
\]

\section*{prg.ground([("succ", [1]), ("succ", [2])])}
- Global clingo state \(\left(R_{3}, \mathbb{P}_{3}, V_{3}\right)\), including atom base
\[
I\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)=\{p(0), p(1), p(2), p(3)\}
\]
- Input Extensible program \(R(\mathrm{succ})[\mathrm{n} / 1] \cup R(\) succ \()[\mathrm{n} / 2]\)
- Output Module
\[
\begin{aligned}
\mathbb{R}_{4}\left(I\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)\right) & =\left(\begin{array}{l}
\left.P_{4},\left\{\begin{array}{l}
p(0), p(4), \\
p(3), p(5)
\end{array}\right\},\left\{\begin{array}{l}
p(1), \\
p(2)
\end{array}\right\}\right) \text { where } \\
P_{4}
\end{array}=\left\{\begin{array}{l}
p(1) \leftarrow p(4) ; p(1) \leftarrow \sim p(2), \sim p(3) ; \\
p(2) \leftarrow p(5) ; p(2) \leftarrow \sim p(3), \sim p(4)
\end{array}\right\}\right. \\
E_{4} & =\{p(4), p(5)\}
\end{aligned}
\]
- Result clingo state
\[
\left(\boldsymbol{R}_{4}, \mathbb{P}_{4}, V_{4}\right)=\left(R_{0}, \mathbb{P}_{3} \sqcup \mathbb{R}_{4}\left(I\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)\right), V_{3}\right)
\]

\section*{prg.ground([("succ", [1]), ("succ", [2])])}
- Result clingo state
\[
\left(\boldsymbol{R}_{4}, \mathbb{P}_{4}, V_{4}\right)=\left(\boldsymbol{R}_{0}, \mathbb{P}_{3} \sqcup \mathbb{R}_{4}\left(I\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)\right), V_{3}\right)
\]
where
\[
\begin{gathered}
\left.\mathbb{P}_{4}=\left(\begin{array}{l}
\{(0) \leftarrow p(3) ; \\
p(0) \leftarrow \sim p(0) ; p(1) \leftarrow p(4) ; p(1) \leftarrow \sim p(2), \sim p(3) ; \\
p(5) ; p(2) \leftarrow \sim p(3), \sim p(4)
\end{array}\right\},\left\{\begin{array}{l}
p(4),\} \\
p(3), p(5)
\end{array}\right\},\left\{\begin{array}{l}
p(0), p(1), \\
p(2)
\end{array}\right\}\right) \\
\mathbb{P}_{3}=\left(\left\{\begin{array}{l}
p(0) \leftarrow p(3) ; \\
p(0) \leftarrow \sim p(0)
\end{array}\right\},\{p(1), p(2), p(3)\},\{p(0)\}\right) \\
\mathbb{R}_{4}\left(l\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)\right)=\left(\left\{\begin{array}{l}
p(1) \leftarrow p(4) ; p(1) \leftarrow \sim p(2), \sim p(3) ; \\
p(2) \leftarrow p(5) ; p(2) \leftarrow \sim p(3), \sim p(4)
\end{array}\right\},\left\{\begin{array}{l}
\left.p(0), p(4),\},\left\{\begin{array}{l}
p(1), \\
p(3), p(5)
\end{array}\right\},\left\{\begin{array}{l}
p(2)
\end{array}\right\}\right)
\end{array}\right.\right.
\end{gathered}
\]

\section*{prg.ground([("succ", [1]), ("succ", [2])])}
- Result clingo state
\[
\left(\boldsymbol{R}_{4}, \mathbb{P}_{4}, V_{4}\right)=\left(R_{0}, \mathbb{P}_{3} \sqcup \mathbb{R}_{4}\left(I\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)\right), V_{3}\right)
\]
where
\[
\begin{gathered}
\left.\mathbb{P}_{4}=\left(\begin{array}{l}
p(0) \leftarrow p(3) ; \\
\{p(0) \leftarrow \sim p(0) ; ~ \\
p(2) \leftarrow p(4) ; p(1) \leftarrow \sim \sim p(2), \sim p(3) ; \\
p(2) \leftarrow \sim p(3), \sim p(4)
\end{array}\right\},\left\{\begin{array}{r}
p(4),\} \\
p(3), p(5)
\end{array}\right\},\left\{\begin{array}{l}
p(0), p(1), \\
p(2)
\end{array}\right\}\right) \\
\mathbb{P}_{3}=\left(\left\{\begin{array}{l}
p(0) \leftarrow p(3) ; \\
p(0) \leftarrow \sim p(0)
\end{array}\right\},\{p(1), p(2), p(3)\},\{p(0)\}\right) \\
\mathbb{R}_{4}\left(l\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)\right)=\left(\left\{\begin{array}{l}
p(1) \leftarrow p(4) ; p(1) \leftarrow \sim p(2), \sim p(3) ; \\
p(2) \leftarrow p(5) ; p(2) \leftarrow \sim p(3), \sim p(4)
\end{array}\right\},\left\{\begin{array}{l}
p(0), p(4), \\
p(3), p(5)
\end{array}\right\},\left\{\begin{array}{l}
p(1), \\
p(2)
\end{array}\right\}\right)
\end{gathered}
\]

\section*{prg.ground([("succ", [1]), ("succ", [2])])}
- Result clingo state
\[
\left(\boldsymbol{R}_{4}, \mathbb{P}_{4}, V_{4}\right)=\left(R_{0}, \mathbb{P}_{3} \sqcup \mathbb{R}_{4}\left(I\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)\right), V_{3}\right)
\]
where
\[
\begin{aligned}
& \left.\mathbb{P}_{4}=\left(\begin{array}{ll}
\{(0) \leftarrow p(3) ; & p(1) \leftarrow p(4) ; p(1) \leftarrow \sim p(2), \sim p(3) ; \\
p(0) \leftarrow \sim p(0) ; & p(2) \leftarrow p(5) ; p(2) \leftarrow \sim p(3), \sim p(4)
\end{array}\right\},\left\{\begin{array}{c}
p(4),\} \\
p(3), p(5)
\end{array}\right\},\left\{\begin{array}{l}
p(0), p(1), \\
p(2)
\end{array}\right\}\right) \\
& \mathbb{P}_{3}=\left(\left\{\begin{array}{l}
p(0) \leftarrow p(3) ; \\
p(0) \leftarrow \sim p(0)
\end{array}\right\},\{p(1), p(2), p(3)\},\{p(0)\}\right) \\
& \mathbb{R}_{4}\left(I\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)\right)=\left(\left\{\begin{array}{l}
p(1) \leftarrow p(4) ; p(1) \leftarrow \sim p(2), \sim p(3) ; \\
p(2) \leftarrow p(5) ; p(2) \leftarrow \sim p(3), \sim p(4)
\end{array}\right\},\left\{\begin{array}{l}
p(0), p(4), \\
p(3), p(5)
\end{array}\right\},\left\{\begin{array}{l}
p(1),\} \\
p(2)
\end{array}\right\}\right)
\end{aligned}
\]

\section*{prg.ground([("succ", [1]), ("succ", [2])])}
- Result clingo state
\[
\left(\boldsymbol{R}_{4}, \mathbb{P}_{4}, V_{4}\right)=\left(R_{0}, \mathbb{P}_{3} \sqcup \mathbb{R}_{4}\left(I\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)\right), V_{3}\right)
\]
where
\[
\begin{aligned}
& \left.\mathbb{P}_{4}=\left(\begin{array}{ll}
\{(0) \leftarrow p(3) ; & p(1) \leftarrow p(4) ; p(1) \leftarrow \sim p(2), \sim p(3) ; \\
p(0) \leftarrow \sim p(0) ; & p(2) \leftarrow p(5) ; p(2) \leftarrow \sim p(3), \sim p(4)
\end{array}\right\},\left\{\begin{array}{c}
p(4),\} \\
p(3), p(5)
\end{array}\right\},\left\{\begin{array}{l}
p(0), p(1), \\
p(2)
\end{array}\right\}\right) \\
& \mathbb{P}_{3}=\left(\left\{\begin{array}{l}
p(0) \leftarrow p(3) ; \\
p(0) \leftarrow \sim p(0)
\end{array}\right\},\{p(1), p(2), p(3)\},\{p(0)\}\right) \\
& \mathbb{R}_{4}\left(I\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)\right)=\left(\left\{\begin{array}{l}
p(1) \leftarrow p(4) ; p(1) \leftarrow \sim p(2), \sim p(3) ; \\
p(2) \leftarrow p(5) ; p(2) \leftarrow \sim p(3), \sim p(4)
\end{array}\right\},\left\{\begin{array}{l}
p(0), p(4), \\
p(3), p(5)
\end{array}\right\},\left\{\begin{array}{l}
p(1),\} \\
p(2)
\end{array}\right\}\right)
\end{aligned}
\]

\section*{prg.ground([("succ", [1]), ("succ", [2])])}
- Result clingo state
\[
\left(\boldsymbol{R}_{4}, \mathbb{P}_{4}, V_{4}\right)=\left(R_{0}, \mathbb{P}_{3} \sqcup \mathbb{R}_{4}\left(I\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)\right), V_{3}\right)
\]
where
\[
\begin{aligned}
& \left.\mathbb{P}_{4}=\left(\begin{array}{ll}
\{(0) \leftarrow p(3) ; & p(1) \leftarrow p(4) ; p(1) \leftarrow \sim p(2), \sim p(3) ; \\
p(0) \leftarrow \sim p(0) ; & p(2) \leftarrow p(5) ; p(2) \leftarrow \sim p(3), \sim p(4)
\end{array}\right\},\left\{\begin{array}{c}
p(4),\} \\
p(3), p(5)
\end{array}\right\},\left\{\begin{array}{l}
p(0), p(1), \\
p(2)
\end{array}\right\}\right) \\
& \mathbb{P}_{3}=\left(\left\{\begin{array}{l}
p(0) \leftarrow p(3) ; \\
p(0) \leftarrow \sim p(0)
\end{array}\right\},\{p(1), p(2), p(3)\},\{p(0)\}\right) \\
& \mathbb{R}_{4}\left(I\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)\right)=\left(\left\{\begin{array}{l}
p(1) \leftarrow p(4) ; p(1) \leftarrow \sim p(2), \sim p(3) ; \\
p(2) \leftarrow p(5) ; p(2) \leftarrow \sim p(3), \sim p(4)
\end{array}\right\},\left\{\begin{array}{l}
p(0), p(4), \\
p(3), p(5)
\end{array}\right\},\left\{\begin{array}{l}
p(1),\} \\
p(2)
\end{array}\right\}\right)
\end{aligned}
\]

\section*{prg.ground([("succ", [1]), ("succ", [2])])}
- Result clingo state
\[
\left(\boldsymbol{R}_{4}, \mathbb{P}_{4}, V_{4}\right)=\left(R_{0}, \mathbb{P}_{3} \sqcup \mathbb{R}_{4}\left(I\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)\right), V_{3}\right)
\]
where
\[
\begin{aligned}
& \left.\mathbb{P}_{4}=\left(\begin{array}{ll}
\{(0) \leftarrow p(3) ; & p(1) \leftarrow p(4) ; p(1) \leftarrow \sim p(2), \sim p(3) ; \\
p(0) \leftarrow \sim p(0) ; & p(2) \leftarrow p(5) ; p(2) \leftarrow \sim p(3), \sim p(4)
\end{array}\right\},\left\{\begin{array}{c}
p(4),\} \\
p(3), p(5)
\end{array}\right\},\left\{\begin{array}{l}
p(0), p(1), \\
p(2)
\end{array}\right\}\right) \\
& \mathbb{P}_{3}=\left(\left\{\begin{array}{l}
p(0) \leftarrow p(3) ; \\
p(0) \leftarrow \sim p(0)
\end{array}\right\},\{p(1), p(2), p(3)\},\{p(0)\}\right) \\
& \mathbb{R}_{4}\left(I\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)\right)=\left(\left\{\begin{array}{l}
p(1) \leftarrow p(4) ; p(1) \leftarrow \sim p(2), \sim p(3) ; \\
p(2) \leftarrow p(5) ; p(2) \leftarrow \sim p(3), \sim p(4)
\end{array}\right\},\left\{\begin{array}{l}
p(0), p(4), \\
p(3), p(5)
\end{array}\right\},\left\{\begin{array}{l}
p(1),\} \\
p(2)
\end{array}\right\}\right)
\end{aligned}
\]

\section*{prg.ground([("succ", [1]), ("succ", [2])])}
- Result clingo state
\[
\left(\boldsymbol{R}_{4}, \mathbb{P}_{4}, V_{4}\right)=\left(R_{0}, \mathbb{P}_{3} \sqcup \mathbb{R}_{4}\left(I\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)\right), V_{3}\right)
\]
where
\[
\begin{aligned}
& \left.\mathbb{P}_{4}=\left(\begin{array}{ll}
\{(0) \leftarrow p(3) ; & p(1) \leftarrow p(4) ; p(1) \leftarrow \sim p(2), \sim p(3) ; \\
p(0) \leftarrow \sim p(0) ; & p(2) \leftarrow p(5) ; p(2) \leftarrow \sim p(3), \sim p(4)
\end{array}\right\},\left\{\begin{array}{c}
p(4),\} \\
p(3), p(5)
\end{array}\right\},\left\{\begin{array}{l}
p(0), p(1), \\
p(2)
\end{array}\right\}\right) \\
& \mathbb{P}_{3}=\left(\left\{\begin{array}{l}
p(0) \leftarrow p(3) ; \\
p(0) \leftarrow \sim p(0)
\end{array}\right\},\{p(1), p(2), p(3)\},\{p(0)\}\right) \\
& \mathbb{R}_{4}\left(I\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)\right)=\left(\left\{\begin{array}{l}
p(1) \leftarrow p(4) ; p(1) \leftarrow \sim p(2), \sim p(3) ; \\
p(2) \leftarrow p(5) ; p(2) \leftarrow \sim p(3), \sim p(4)
\end{array}\right\},\left\{\begin{array}{l}
p(0), p(4), \\
p(3), p(5)
\end{array}\right\},\left\{\begin{array}{l}
p(1),\} \\
p(2)
\end{array}\right\}\right)
\end{aligned}
\]

\section*{prg.ground([("succ", [1]), ("succ", [2])])}
- Result clingo state
\[
\left(\boldsymbol{R}_{4}, \mathbb{P}_{4}, V_{4}\right)=\left(R_{0}, \mathbb{P}_{3} \sqcup \mathbb{R}_{4}\left(I\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)\right), V_{3}\right)
\]
where
\[
\begin{aligned}
& \left.\mathbb{P}_{4}=\left(\begin{array}{ll}
\{(0) \leftarrow p(3) ; & p(1) \leftarrow p(4) ; p(1) \leftarrow \sim p(2), \sim p(3) ; \\
p(0) \leftarrow \sim p(0) ; & p(2) \leftarrow p(5) ; p(2) \leftarrow \sim p(3), \sim p(4)
\end{array}\right\},\left\{\begin{array}{c}
p(4),\} \\
p(3), p(5)
\end{array}\right\},\left\{\begin{array}{l}
p(0), p(1), \\
p(2)
\end{array}\right\}\right) \\
& \mathbb{P}_{3}=\left(\left\{\begin{array}{l}
p(0) \leftarrow p(3) ; \\
p(0) \leftarrow \sim p(0)
\end{array}\right\},\{p(1), p(2), p(3)\},\{p(0)\}\right) \\
& \mathbb{R}_{4}\left(I\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)\right)=\left(\left\{\begin{array}{l}
p(1) \leftarrow p(4) ; p(1) \leftarrow \sim p(2), \sim p(3) ; \\
p(2) \leftarrow p(5) ; p(2) \leftarrow \sim p(3), \sim p(4)
\end{array}\right\},\left\{\begin{array}{l}
p(0), p(4), \\
p(3), p(5)
\end{array}\right\},\left\{\begin{array}{l}
p(1),\} \\
p(2)
\end{array}\right\}\right)
\end{aligned}
\]

\section*{prg.ground([("succ", [1]), ("succ", [2])])}
- Result clingo state
\[
\left(\boldsymbol{R}_{4}, \mathbb{P}_{4}, V_{4}\right)=\left(R_{0}, \mathbb{P}_{3} \sqcup \mathbb{R}_{4}\left(I\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)\right), V_{3}\right)
\]
where
\[
\begin{aligned}
& \left.\mathbb{P}_{4}=\left(\begin{array}{ll}
\{(0) \leftarrow p(3) ; & p(1) \leftarrow p(4) ; p(1) \leftarrow \sim p(2), \sim p(3) ; \\
p(0) \leftarrow \sim p(0) ; & p(2) \leftarrow p(5) ; p(2) \leftarrow \sim p(3), \sim p(4)
\end{array}\right\},\left\{\begin{array}{c}
p(4),\} \\
p(3), p(5)
\end{array}\right\},\left\{\begin{array}{l}
p(0), p(1), \\
p(2)
\end{array}\right\}\right) \\
& \mathbb{P}_{3}=\left(\left\{\begin{array}{l}
p(0) \leftarrow p(3) ; \\
p(0) \leftarrow \sim p(0)
\end{array}\right\},\{p(1), p(2), p(3)\},\{p(0)\}\right) \\
& \mathbb{R}_{4}\left(I\left(\mathbb{P}_{3}\right) \cup O\left(\mathbb{P}_{3}\right)\right)=\left(\left\{\begin{array}{l}
p(1) \leftarrow p(4) ; p(1) \leftarrow \sim p(2), \sim p(3) ; \\
p(2) \leftarrow p(5) ; p(2) \leftarrow \sim p(3), \sim p(4)
\end{array}\right\},\left\{\begin{array}{l}
p(0), p(4), \\
p(3), p(5)
\end{array}\right\},\left\{\begin{array}{l}
p(1),\} \\
p(2)
\end{array}\right\}\right)
\end{aligned}
\]

\section*{Example}
```

\#external p(1;2;3).
p(0) :- p(3).
p(0) :- not p(0).
\#program succ(n).
\#external p(n+3).
p(n) :- p(n+3).
p(n) : - not p(n+1), not p(n+2).
\#script(python)
from clingo import Fun
def main(prg):
prg.ground([("base", [])])
prg.assign_external(Fun("p", [3]), True)
prg.solve()
prg.assign_external(Fun("p", [3]), False)
prg.solve()
prg.ground([("succ", [1]),("succ", [2])])
prg.solve()
prg.ground([("succ", [3])])
prg.solve()

```
\#end.

Torsten Schaub (KRR@UP)

\section*{Example}
```

\#external p(1;2;3).
p(0) :- p(3).
p(0) :- not p(0).
\#program succ(n).
\#external p(n+3).
p(n) :- p(n+3).
p(n) : - not p(n+1), not p(n+2).
\#script(python)
from clingo import Fun
def main(prg):
prg.ground([("base", [])])
prg.assign_external(Fun("p", [3]), True)
prg.solve()
prg.assign_external(Fun("p", [3]), False)
prg.solve()
prg.ground([("succ", [1]),("succ", [2])])
prg.solve()
prg.ground([("succ", [3])])
prg.solve()

```
\#end.

Torsten Schaub (KRR@UP)

\title{
prg.solve()
}
- Global clingo state \(\left(\boldsymbol{R}_{4}, \mathbb{P}_{4}, V_{4}\right)\)
- Input empty assignment
- Result clingo state
\(\left(\boldsymbol{R}_{4}, \mathbb{P}_{4}, V_{4}\right)=\left(\boldsymbol{R}_{0}, \mathbb{P}_{4}, V_{3}\right)\)
- Print no stable model of \(\mathbb{P}_{4}\) wrt \(V_{4}\)

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice

\section*{prg.solve()}
- Global clingo state \(\left(\boldsymbol{R}_{4}, \mathbb{P}_{4}, V_{4}\right)\)
- Input empty assignment
- Result clingo state
\[
\left(\boldsymbol{R}_{4}, \mathbb{P}_{4}, V_{4}\right)=\left(\boldsymbol{R}_{0}, \mathbb{P}_{4}, V_{3}\right)
\]
- Print no stable model of \(\mathbb{P}_{4}\) wrt \(V_{4}\)

\section*{prg.solve()}
- Global clingo state \(\left(\boldsymbol{R}_{4}, \mathbb{P}_{4}, V_{4}\right)\)
- Input empty assignment
- Result clingo state
\[
\left(\boldsymbol{R}_{4}, \mathbb{P}_{4}, V_{4}\right)=\left(\boldsymbol{R}_{0}, \mathbb{P}_{4}, V_{3}\right)
\]
- Print no stable model of \(\mathbb{P}_{4}\) wrt \(V_{4}\)

\section*{Example}
```

\#external p(1;2;3).
p(0) :- p(3).
p(0) :- not p(0).
\#program succ(n).
\#external p(n+3).
p(n) :- p(n+3).
p(n) : - not p(n+1), not p(n+2).
\#script(python)
from clingo import Fun
def main(prg):
prg.ground([("base", [])])
prg.assign_external(Fun("p", [3]), True)
prg.solve()
prg.assign_external(Fun("p", [3]), False)
prg.solve()
prg.ground([("succ", [1]),("succ", [2])])
prg.solve()
prg.ground([("succ", [3])])
prg.solve()

```
\#end.

Torsten Schaub (KRR@UP)

\section*{Example}
```

\#external p(1;2;3).
p(0) :- p(3).
p(0) :- not p(0).
\#program succ(n).
\#external p(n+3).
p(n) :- p(n+3).
p(n) : - not p(n+1), not p(n+2).
\#script(python)
from clingo import Fun
def main(prg):
prg.ground([("base", [])])
prg.assign_external(Fun("p", [3]), True)
prg.solve()
prg.assign_external(Fun("p", [3]), False)
prg.solve()
prg.ground([("succ", [1]),("succ", [2])])
prg.solve()
prg.ground([("succ", [3])])
prg.solve()

```
\#end.

Torsten Schaub (KRR@UP)

\section*{prg.ground([("succ", [3])])}

■ Global clingo state \(\left(\boldsymbol{R}_{4}, \mathbb{P}_{4}, V_{4}\right)\), including atom base
\[
I\left(\mathbb{P}_{4}\right) \cup O\left(\mathbb{P}_{4}\right)=\{p(0), p(1), p(2), p(3), p(4), p(5)\}
\]
- Input Extensible program \(R(\) succ \()[\mathrm{n} / 3]\)
- Output Module
\[
\begin{aligned}
\mathbb{R}_{5}\left(I\left(\mathbb{P}_{4}\right) \cup O\left(\mathbb{P}_{4}\right)\right) & =\left(P_{5},\left\{\begin{array}{l}
p(0), p(1), p(2), \\
p(4), p(5), p(6)
\end{array}\right\},\{p(3)\}\right) \\
\text { where } P_{5} & =\{p(3) \leftarrow p(6) ; p(3) \leftarrow \sim p(4), \sim p(5)\} \\
E_{5} & =\{p(6)\}
\end{aligned}
\]
- Result clingo state
\[
\left(R_{5}, \mathbb{P}_{5}, V_{5}\right)=\left(\mathbb{R}_{0}, \mathbb{P}_{4} \sqcup \mathbb{R}_{5}\left(/\left(\mathbb{P}_{4}\right) \cup O\left(\mathbb{P}_{4}\right)\right), V_{3}\right)
\]

\section*{prg.ground([("succ", [3])])}

■ Global clingo state \(\left(\boldsymbol{R}_{4}, \mathbb{P}_{4}, V_{4}\right)\), including atom base
\[
I\left(\mathbb{P}_{4}\right) \cup O\left(\mathbb{P}_{4}\right)=\{p(0), p(1), p(2), p(3), p(4), p(5)\}
\]
- Input Extensible program \(R(\) succ \()[\mathrm{n} / 3]\)
- Output Module
\[
\begin{aligned}
\mathbb{R}_{5}\left(I\left(\mathbb{P}_{4}\right) \cup O\left(\mathbb{P}_{4}\right)\right) & =\left(P_{5},\left\{\begin{array}{l}
p(0), p(1), p(2), \\
p(4), p(5), p(6)
\end{array}\right\},\{p(3)\}\right) \\
\text { where } P_{5} & =\{p(3) \leftarrow p(6) ; p(3) \leftarrow \sim p(4), \sim p(5)\} \\
E_{5} & =\{p(6)\}
\end{aligned}
\]
clingo state
\(\left(\boldsymbol{R}_{5}, \mathbb{P}_{5}, V_{5}\right)=\left(\boldsymbol{R}_{0}, \mathbb{P}_{4} \sqcup \mathbb{R}_{5}\left(I\left(\mathbb{P}_{4}\right) \cup O\left(\mathbb{P}_{4}\right)\right), V_{3}\right)\)

\section*{prg.ground([("succ", [3])])}
- Global clingo state \(\left(\boldsymbol{R}_{4}, \mathbb{P}_{4}, V_{4}\right)\), including atom base
\[
I\left(\mathbb{P}_{4}\right) \cup O\left(\mathbb{P}_{4}\right)=\{p(0), p(1), p(2), p(3), p(4), p(5)\}
\]
- Input Extensible program \(R(\) succ \()[\mathrm{n} / 3]\)
- Output Module
\[
\begin{aligned}
\mathbb{R}_{5}\left(I\left(\mathbb{P}_{4}\right) \cup O\left(\mathbb{P}_{4}\right)\right) & =\left(P_{5},\left\{\begin{array}{l}
p(0), p(1), p(2), \\
p(4), p(5), p(6)
\end{array}\right\},\{p(3)\}\right) \\
\text { where } P_{5} & =\{p(3) \leftarrow p(6) ; p(3) \leftarrow \sim p(4), \sim p(5)\} \\
E_{5} & =\{p(6)\}
\end{aligned}
\]
- Result clingo state
\[
\left(R_{5}, \mathbb{P}_{5}, V_{5}\right)=\left(R_{0}, \mathbb{P}_{4} \sqcup \mathbb{R}_{5}\left(I\left(\mathbb{P}_{4}\right) \cup O\left(\mathbb{P}_{4}\right)\right), V_{3}\right)
\]

\section*{prg.ground([("succ", [3])])}
- Result clingo state
\[
\left(R_{5}, \mathbb{P}_{5}, V_{5}\right)=\left(R_{0}, \mathbb{P}_{4} \sqcup \mathbb{R}_{5}\left(I\left(\mathbb{P}_{4}\right) \cup O\left(\mathbb{P}_{4}\right)\right), V_{3}\right)
\]
where
\[
\begin{aligned}
\boldsymbol{R}_{5} & =(R(\text { base }), R(\text { succ })) \\
P\left(\mathbb{P}_{5}\right) & =\left\{\begin{aligned}
& p(0) \leftarrow p(3) ; p(1) \leftarrow p(4) ; p(1) \leftarrow \sim p(2), \sim p(3) ; \\
& p(0) \leftarrow \sim p(0) ; p(2) \leftarrow p(5) ; p(2) \leftarrow \sim p(3), \sim p(4) ; \\
& p(3) \leftarrow p(6) ; p(3) \leftarrow \sim p(4), \sim p(5)
\end{aligned}\right\} \\
I\left(\mathbb{P}_{5}\right) & =\{p(4), p(5), p(6)\} \\
O\left(\mathbb{P}_{5}\right) & =\{p(0), p(1), p(2), p(3)\}
\end{aligned}
\]
\[
V_{5}=(\emptyset, \emptyset)
\]

\section*{Example}
```

\#external p(1;2;3).
p(0) :- p(3).
p(0) :- not p(0).
\#program succ(n).
\#external p(n+3).
p(n) :- p(n+3).
p(n) : - not p(n+1), not p(n+2).
\#script(python)
from clingo import Fun
def main(prg):
prg.ground([("base", [])])
prg.assign_external(Fun("p", [3]), True)
prg.solve()
prg.assign_external(Fun("p", [3]), False)
prg.solve()
prg.ground([("succ", [1]),("succ", [2])])
prg.solve()
prg.ground([("succ", [3])])
prg.solve()

```
\#end.

Torsten Schaub (KRR@UP)

\section*{Example}
```

\#external p(1;2;3).
p(0) :- p(3).
p(0) :- not p(0).
\#program succ(n).
\#external p(n+3).
p(n) :- p(n+3).
p(n) : - not p(n+1), not p(n+2).
\#script(python)
from clingo import Fun
def main(prg):
prg.ground([("base", [])])
prg.assign_external(Fun("p", [3]), True)
prg.solve()
prg.assign_external(Fun("p", [3]), False)
prg.solve()
prg.ground([("succ", [1]),("succ", [2])])
prg.solve()
prg.ground([("succ", [3])])
prg.solve()
\#end.

```

Torsten Schaub (KRR@UP)

\section*{prg.solve()}
- Global clingo state \(\left(\boldsymbol{R}_{5}, \mathbb{P}_{5}, V_{5}\right)\)
- Input empty assignment
- Result clingo state
\[
\left(\boldsymbol{R}_{5}, \mathbb{P}_{5}, V_{5}\right)=\left(\boldsymbol{R}_{0}, \mathbb{P}_{5}, V_{3}\right)
\]
\(\square\) Print stable model \(\{p(0), p(3)\}\) of \(\mathbb{P}_{5}\) wrt \(V_{5}\)

\section*{prg.solve()}
- Global clingo state \(\left(\boldsymbol{R}_{5}, \mathbb{P}_{5}, V_{5}\right)\)
- Input empty assignment
- Result clingo state
\[
\left(R_{5}, \mathbb{P}_{5}, V_{5}\right)=\left(R_{0}, \mathbb{P}_{5}, V_{3}\right)
\]
- Print stable model \(\{p(0), p(3)\}\) of \(\mathbb{P}_{5}\) wrt \(V_{5}\)

\section*{prg.solve()}
- Global clingo state \(\left(\boldsymbol{R}_{5}, \mathbb{P}_{5}, V_{5}\right)\)
- Input empty assignment
- Result clingo state
\[
\left(R_{5}, \mathbb{P}_{5}, V_{5}\right)=\left(R_{0}, \mathbb{P}_{5}, V_{3}\right)
\]
- Print stable model \(\{p(0), p(3)\}\) of \(\mathbb{P}_{5}\) wrt \(V_{5}\)

\section*{simple.lp}
```

\#external p(1;2;3).
p(0) :- p(3).
p(0) :- not p(0).
\#program succ(n).
\#external p(n+3).
p(n) :- p(n+3).
p(n) :- not p(n+1), not p(n+2).
\#script(python)
from clingo import Fun
def main(prg):
prg.ground([("base", [])])
prg.assign_external(Fun("p", [3]), True)
prg.solve()
prg.assign_external(Fun("p", [3]), False)
prg.solve()
prg.ground([("succ", [1]),("succ", [2])])
prg.solve()
prg.ground([("succ", [3])])
prg.solve()

```
\#end.

Torsten Schaub (KRR@UP)

\section*{Clingo on the run}
```

\$ clingo simple.lp
clingo version 4.5.0
Reading from simple.lp
Solving...
Answer: 1
p(3) p(0)
Solving...
Solving...
Solving...
Answer: 1
p(3) p(0)
SATISFIABLE
Models : 2+
Calls : 4
Time : 0.019s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.010s

```

\section*{Clingo on the run}
```

\$ clingo simple.lp
clingo version 4.5.0
Reading from simple.lp
Solving...
Answer: 1
p(3) p(0)
Solving...
Solving...
Solving...
Answer: 1
p(3) p(0)
SATISFIABLE
Models : 2+
Calls : 4
Time : 0.019s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.010s

```

\section*{Outline}

\section*{46 Motivation}

47 \#program and \#external declaration
48 Module composition
49 States and operations
50 Incremental reasoning
51 Boardgaming

\section*{Towers of Hanoi Instance}

```

peg(a;b;c). disk(1..7).
init_on(1,a). init_on((2;7),b). init_on((3;4;5;6),c).
goal_on((3;4),a). goal_on((1;2;5;6;7),c).

```

\section*{Towers of Hanoi Instance}

\(\operatorname{peg}(a ; b ; c) . \quad \operatorname{disk}(1 . .7)\).
init_on(1, a). init_on((2;7),b). init_on \(((3 ; 4 ; 5 ; 6), \mathrm{c})\).
goal_on((3;4),a). goal_on((1;2;5;6;7), c).

\section*{Towers of Hanoi Encoding}
\#program base.
on( \(\mathrm{D}, \mathrm{P}, 0\) ) :- init_on(D, P).

\section*{Towers of Hanoi Encoding}
\#program step(t).
1 \{ move(D,P,t) : disk(D), peg(P) \} 1.
```

moved(D,t) :- move(D,_,t).
blocked(D,P,t) :- on(D+1,P,t-1), disk(D+1).
blocked(D,P,t) :- blocked(D+1,P,t), disk(D+1).
:- move(D,P,t), blocked(D-1,P,t).
:- moved(D,t), on(D,P,t-1), blocked(D,P,t).
on(D,P,t) :- on(D,P,t-1), not moved(D,t).
on(D,P,t) :- move(D,P,t).
:- not 1 { on(D,P,t) : peg(P) } 1, disk(D).

```

\section*{Towers of Hanoi Encoding}
\#program check(t). \#external query (t).
:- goal_on(D,P), not on(D,P,t), query(t).

\section*{Incremental Solving (ASP)}
```

\#script (python)
from clingo import SolveResult, Fun
def main(prg):
ret, parts, step = SolveResult.UNSAT, [], 1
parts.append(("base", []))
while ret == SolveResult.UNSAT:
parts.append(("step", [step]))
parts.append(("check", [step]))
prg.ground(parts)
prg.release_external(Fun("query", [step-1]))
prg.assign_external(Fun("query", [step]), True)
ret, parts, step = prg.solve(), [], step+1

```
\#end.

\section*{Incremental Solving (tohCtrl.lp)}
```

\#script (python)
from clingo import SolveResult, Fun
def main(prg):
ret, parts, step = SolveResult.UNSAT, [], 1
parts.append(("base", []))
while ret == SolveResult.UNSAT:
parts.append(("step", [step]))
parts.append(("check", [step]))
prg.ground(parts)
prg.release_external(Fun("query", [step-1]))
prg.assign_external(Fun("query", [step]), True)
ret, parts, step = prg.solve(), [], step+1

```
\#end.

\section*{Incremental Solving}
```

\$ clingo toh.lp tohCtrl.lp
clingo version 4.5.0
Reading from toh.lp ...
Solving...
Solving. . .
[...]
Solving...
Answer: 1
move(7, a, 1) move(6,b,2) move(7,b,3) move(5, a, 4) move(7, c,5) move(6, a, 6)
move(7,a,7) move(4,b,8) move(7,b,9) move(6, c,10) move(7, c,11) move(5,b,12)
move(1, c, 13) move(7,a,14) move(6,b,15) move(7,b,16) move(3,a,17) move(7, c, 18)
move(6,a,19) move(7,a,20) move(5,c,21) move(7,b,22) move(6, c,23) move(7, c, 24)
move(4,a,25) move(7,a,26) move(6,b,27) move(7,b,28) move(5, a,29) move(7, c,30)
move(6,a,31) move(7,a,32) move(2,c,33) move(7, c,34) move(6,b,35) move(7,b,36)
move(5, c, 37) move(7, a,38) move(6, c, 39) move(7, c, 40)
SATISFIABLE

Models	$: 1+$
Calls	$: 40$
Time	$: 0.312 \mathrm{~s}$ (Solving: 0.22s 1st Model: 0.01s Unsat: 0.21s)
CPU Time	$: 0.300 \mathrm{~s}$

```

Torsten Schaub (KRR@UP)

\section*{Incremental Solving}
```

\$ clingo toh.lp tohCtrl.lp
clingo version 4.5.0
Reading from toh.lp ...
Solving...
Solving...
[...]
Solving...
Answer: 1
move(7,a,1) move(6,b,2) move(7,b,3) move(5,a,4) move(7, c,5) move(6,a,6)
move(7,a,7) move(4,b,8) move(7,b,9) move(6,c,10) move(7, c,11) move(5,b,12)
move(1, c,13) move(7,a,14) move(6,b,15) move(7,b,16) move(3,a,17) move(7,c,18) \
move(6,a,19) move(7,a,20) move(5,c,21) move(7,b,22) move(6,c,23) move(7,c,24) \
move(4,a,25) move(7,a,26) move(6,b,27) move(7,b,28) move(5,a,29) move(7,c,30) \
move(6,a,31) move(7,a,32) move(2,c,33) move(7,c,34) move(6,b,35) move(7,b,36) \
move(5,c,37) move(7,a,38) move(6, c,39) move(7, c,40)
SATISFIABLE

```
\begin{tabular}{ll} 
Models & \(: 1+\) \\
Calls & \(: 40\) \\
Time & \(: 0.312 \mathrm{~s}\) (Solving: 0.22s 1st Model: 0.01s Unsat: 0.21s) \\
CPU Time & \(: 0.300 \mathrm{~s}\)
\end{tabular}

\section*{Incremental Solving (Python)}
```

from sys import stdout
from clingo import SolveResult, Fun, Control
prg = Control()
prg.load("toh.lp")
ret, parts, step = SolveResult.UNSAT, [], 1
parts.append(("base", []))
while ret == SolveResult.UNSAT:
parts.append(("step", [step]))
parts.append(("check", [step]))
prg.ground(parts)
prg.release_external(Fun("query", [step-1]))
prg.assign_external(Fun("query", [step]), True)
f = lambda m: stdout.write(str(m))
ret, parts, step = prg.solve(on_model=f), [], step+1

```

\section*{Incremental Solving (tohCtrl.py)}
```

from sys import stdout
from clingo import SolveResult, Fun, Control
prg = Control()
prg.load("toh.lp")
ret, parts, step = SolveResult.UNSAT, [], 1
parts.append(("base", []))
while ret == SolveResult.UNSAT:
parts.append(("step", [step]))
parts.append(("check", [step]))
prg.ground(parts)
prg.release_external(Fun("query", [step-1]))
prg.assign_external(Fun("query", [step]), True)
f = lambda m: stdout.write(str(m))
ret, parts, step = prg.solve(on_model=f), [], step+1

```

\section*{Incremental Solving (tohCtrl.py)}
```

from sys import stdout
from clingo import SolveResult, Fun, Control
prg = Control()
prg.load("toh.lp")
ret, parts, step = SolveResult.UNSAT, [], 1
parts.append(("base", []))
while ret == SolveResult.UNSAT:
parts.append(("step", [step]))
parts.append(("check", [step]))
prg.ground(parts)
prg.release_external(Fun("query", [step-1]))
prg.assign_external(Fun("query", [step]), True)
f = lambda m: stdout.write(str(m))
ret, parts, step = prg.solve(on_model=f), [], step+1

```

\section*{Incremental Solving (tohCtrl.py)}
```

from sys import stdout
from clingo import SolveResult, Fun, Control
prg = Control()
prg.load("toh.lp")
ret, parts, step = SolveResult.UNSAT, [], 1
parts.append(("base", []))
while ret == SolveResult.UNSAT:
parts.append(("step", [step]))
parts.append(("check", [step]))
prg.ground(parts)
prg.release_external(Fun("query", [step-1]))
prg.assign_external(Fun("query", [step]), True)
f = lambda m: stdout.write(str(m))
ret, parts, step = prg.solve(on_model=f), [], step+1

```

\section*{Incremental Solving (tohCtrl.py)}
```

from sys import stdout
from clingo import SolveResult, Fun, Control
prg = Control()
prg.load("toh.lp")
ret, parts, step = SolveResult.UNSAT, [], 1
parts.append(("base", []))
while ret == SolveResult.UNSAT:
parts.append(("step", [step]))
parts.append(("check", [step]))
prg.ground(parts)
prg.release_external(Fun("query", [step-1]))
prg.assign_external(Fun("query", [step]), True)
f = lambda m: stdout.write(str(m))
ret, parts, step = prg.solve(on_model=f), [], step+1

```

\section*{Incremental Solving (Python)}

\section*{\$ python tohCtrl.py}
```

move(7, c, 40) move(7, a, 20) move(7, c, 18) move(6,a,31) move(6,b,15) move(7,b,36)
move(7, c, 24) move(7, c, 11) move (3, a, 17) move(6, a, 19) move (7,b,3) move(7, c,5)
move(7, a, 1) move(6,b,35) move(6, c,10) move(6, a,6) move(6,b,2) move(7,b,9)
move(7, a, 7) move(4,b,8) move(7, a, 38) move(7,b,16) move(5, a, 29) move(7, b, 22)
move(6, c,39) move(6, c, 23) move(5,b,12) move(4, a,25) move (1, c,13) move(5, a,4)
move(7,a,14) move(7,a,26) move(6,b,27) move(7,a,32) move(7,b,28) move(7, c,30)
move (2, c, 33) move(5, c, 21) move (7, c, 34) move(5, c, 37)

```

\section*{Incremental Solving (Python)}
```

\$ python tohCtrl.py
move(7,c,40) move(7,a,20) move(7,c,18) move(6,a,31) move(6,b,15) move(7,b,36)
move(7,c,24) move(7,c,11) move(3,a,17) move(6,a,19) move(7,b,3) move(7,c,5)
move(7,a,1) move(6,b,35) move(6,c,10) move(6,a,6) move(6,b,2) move(7,b,9)
move(7,a,7) move(4,b,8) move(7,a,38) move(7,b,16) move(5,a,29) move(7,b,22)
move(6,c,39) move(6,c,23) move(5,b,12) move(4,a,25) move(1,c,13) move(5,a,4)
move(7,a,14) move(7,a,26) move(6,b,27) move(7,a,32) move(7,b,28) move(7,c,30) \
move(2,c,33) move(5,c,21) move(7,c,34) move(5,c,37)

```

\section*{Outline}
46 Motivation
47 \#program and \#external declaration48 Module composition
40 States and operations
50 Incremental reasoning51 Boardgaming

\section*{Alex Rudolph's Ricochet Robots}

- Four robots

\section*{roaming}
- horizontally
- vertically
up to blocking objects, ricocheting (optionally)
- Goal Robot on target (sharing same color)

\section*{Alex Rudolph's Ricochet Robots}


■ Four robots roaming
- horizontally
- vertically
up to blocking objects, ricocheting (optionally)

Goal Robot on target (sharing same color)

\section*{Alex Rudolph's Ricochet Robots}


■ Four robots roaming
- horizontally
- vertically
up to blocking objects, ricocheting (optionally)
- Goal Robot on target (sharing same color)

\section*{Alex Rudolph's Ricochet Robots \\ Solving goal (13) from cornered robots}

- Four robots roaming
- horizontally
- vertically
up to blocking objects, ricocheting (optionally)
- Goal Robot on target (sharing same color)

\section*{Solving goal (13) from cornered robots (ctd)}


\section*{Solving goal(13) from cornered robots (ctd)}


\section*{Solving goal(13) from cornered robots (ctd)}


\section*{board.lp}
```

dim(1..16).
barrier(2, 1, 1, 0). barrier(13,11, 1, 0). barrier (9, 7, 0, 1).
barrier(10, 1, 1, 0). barrier(11, 12, 1, 0). barrier(11, 7, 0, 1).
barrier(4, 2, 1, 0). barrier(14,13, 1, 0). barrier(14, 7, 0, 1).
barrier(14, 2, 1, 0). barrier(6,14, 1, 0). barrier(16, 9, 0, 1).
barrier(2, 3, 1, 0). barrier(3,15, 1, 0). barrier(2,10, 0, 1).
barrier(11, 3, 1, 0). barrier(10,15, 1, 0). barrier(5,10, 0, 1).
barrier(7, 4, 1, 0). barrier(4,16, 1, 0). barrier(8,10, 0,-1).
barrier(3, 7, 1, 0). barrier(12,16, 1, 0). barrier(9,10, 0,-1).
barrier(14, 7, 1, 0). barrier(5, 1, 0, 1). barrier (9,10, 0, 1).
barrier(7, 8, 1, 0). barrier(15, 1, 0, 1). barrier(14,10, 0, 1).
barrier(10, 8,-1, 0). barrier(2, 2, 0, 1). barrier(1,12, 0, 1).
barrier(11, 8, 1, 0). barrier(12, 3, 0, 1). barrier(11, 12, 0, 1).
barrier(7, 9, 1, 0). barrier(7, 4, 0, 1). barrier(7,13, 0, 1).
barrier(10, 9,-1, 0). barrier(16, 4, 0, 1). barrier(15,13, 0, 1).
barrier(4,10, 1, 0). barrier(1, 6, 0, 1). barrier(10,14, 0, 1).
barrier(2,11, 1, 0). barrier(4, 7, 0, 1). barrier(3,15, 0, 1).
barrier(8,11, 1, 0). barrier(8, 7, 0, 1).

```

\section*{targets.lp}
```

\#external goal(1..16).
target(red, 5, 2) :- goal(1).
target(red, 15, 2) :- goal(2).
target(green, 2, 3) :- goal(3).
target(blue, 12, 3) :- goal(4).
target(yellow, 7, 4) :- goal(5).
target(blue, 4, 7) :- goal(6).
target(green, 14, 7) :- goal(7).
target(yellow,11, 8) :- goal(8).
target(yellow, 5,10) :- goal(9).
target(green, 2,11) :- goal(10).
target(red, 14,11) :- goal(11).
target(green, 11,12) :- goal(12).
target(yellow,15,13) :- goal(13).
target(blue, 7,14) :- goal(14).
target(red, 3,15) :- goal(15).
target(blue, 10,15) :- goal(16).
robot(red;green;blue;yellow).
\#external pos((red;green;blue;yellow),1..16,1..16).

```

\section*{ricochet.lp}
```

time(1..horizon).
dir(-1,0;1,0;0,-1;0,1).
stop(DX, DY,X, Y) :- barrier(X,Y,DX,DY).
stop(-DX,-DY,X+DX,Y+DY) :- stop(DX,DY,X,Y).
pos(R,X,Y,0) :- pos(R,X,Y).
1 { move(R,DX,DY,T) : robot(R), dir(DX,DY) } 1 :- time(T).
move(R,T) :- move(R,_,-,T).
halt(DX,DY,X-DX,Y-DY,T) :- pos(_,X,Y,T), dir(DX,DY), dim(X-DX), dim(Y-DY),
not stop(-DX,-DY,X,Y), T < horizon.
goto(R,DX,DY,X,Y,T) :- pos(R,X,Y,T), dir(DX,DY), T < horizon.
goto(R,DX,DY, X+DX,Y+DY,T) :- goto(R,DX,DY,X,Y,T), dim(X+DX), dim(Y+DY),
not stop(DX,DY,X,Y), not halt(DX,DY,X,Y,T).
pos(R,X,Y,T) :- move(R,DX,DY,T), goto(R,DX,DY,X,Y,T-1),
not goto(R,DX,DY,X+DX,Y+DY,T-1).
pos(R,X,Y,T) :- pos(R,X,Y,T-1), time(T), not move(R,T).
:- target(R,X,Y), not pos(R,X,Y,horizon).
\#show move/4.

```

\section*{Solving goal(13) from cornered robots}
```

\$ clingo board.lp targets.lp ricochet.lp -c horizon=9 \
<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")
clingo version 4.5.0
Reading from board.lp
Solving...
Answer: 1
move(red, 0,1,1) move(red, 1,0,2) move(red,0,1,3) move(red, -1,0,4) move(red,0,1,5) \
move(yellow, 0, -1,6) move(red, 1,0,7) move(yellow, 0, 1, 8) move(yellow, -1,0, 9)
SATISFIABLE
Models : 1+
Calls : 1
Time : 1.895s (Solving: 1.45s 1st Model: 1.45s Unsat: 0.00s)
CPU Time : 1.880s
\$ clingo board.lp targets.lp ricochet.lp -c horizon=8 \
<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")
clingo version 4.5.0
Reading from board.lp
Solving.
UNSATISFIABLE

```
```

Models : 0

```
Models : 0
Calls : 1
Calls : 1
Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)
Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)
CPU Time : 2.800s
```

CPU Time : 2.800s

```

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

\section*{Solving goal(13) from cornered robots}
```

\$ clingo board.lp targets.lp ricochet.lp -c horizon=9 \
<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")
clingo version 4.5.0
Reading from board.lp ...
Solving...
Answer: 1
move(red,0,1,1) move(red,1,0,2) move(red,0,1,3) move(red,-1,0,4) move(red,0,1,5) \
move(yellow, 0, -1,6) move(red, 1, 0,7) move(yellow, 0, 1, 8) move(yellow, -1, 0, 9)
SATISFIABLE
Models : 1+
Calls : 1
Time : 1.895s (Solving: 1.45s 1st Model: 1.45s Unsat: 0.00s)
CPU Time : 1.880s
\$ clingo board.lp targets.lp ricochet.lp -c horizon=8 \
<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")
clingo version 4.5.0
Reading from board.lp
Solving.
UNSATISFIABLE

```
```

Models : 0

```
Models : 0
Calls : 1
Calls : 1
Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)
Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)
CPU Time : 2.800s
```

CPU Time : 2.800s

```

\section*{Solving goal(13) from cornered robots}
```

\$ clingo board.lp targets.lp ricochet.lp -c horizon=9 \
<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")
clingo version 4.5.0
Reading from board.lp ...
Solving...
Answer: 1
move(red,0,1,1) move(red,1,0,2) move(red,0,1,3) move(red,-1,0,4) move(red,0,1,5) \
move(yellow, 0, -1,6) move(red, 1, 0,7) move(yellow, 0, 1, 8) move(yellow, -1, 0, 9)
SATISFIABLE
Models : 1+
Calls : 1
Time : 1.895s (Solving: 1.45s 1st Model: 1.45s Unsat: 0.00s)
CPU Time : 1.880s
\$ clingo board.lp targets.lp ricochet.lp -c horizon=8 \
<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16).ggoal(13).")
clingo version 4.5.0
Reading from board.lp ...
Solving.
UNSATISFIABLE

```
```

Models : 0

```
Models : 0
Calls : 1
Calls : 1
Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)
Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)
CPU Time : 2.800s
```

CPU Time : 2.800s

```

Torsten Schaub (KRR@UP) Answer Set Solving in Practice

February 18, 2019

\section*{Solving goal(13) from cornered robots}
```

\$ clingo board.lp targets.lp ricochet.lp -c horizon=9 \
<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")
clingo version 4.5.0
Reading from board.lp ...
Solving...
Answer: 1
move(red,0,1,1) move(red,1,0,2) move(red,0,1,3) move(red,-1,0,4) move(red,0,1,5) \
move(yellow, 0, -1,6) move(red,1,0,7) move(yellow, 0,1,8) move(yellow, -1,0, 9)
SATISFIABLE
Models : 1+
Calls : 1
Time : 1.895s (Solving: 1.45s 1st Model: 1.45s Unsat: 0.00s)
CPU Time : 1.880s
\$ clingo board.lp targets.lp ricochet.lp -c horizon=8 \
<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")
clingo version 4.5.0
Reading from board.lp ...
Solving...
UNSATISFIABLE

Models	$: 0$
Calls	$: 1$
Time	$: 2.817 \mathrm{~s}$ (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)
CPU Time	$: 2.800 \mathrm{~s}$

```

\section*{optimization.lp}
```

goon(T) :- target(R,X,Y), T = 0..horizon, not pos(R,X,Y,T).
:- move(R,DX,DY,T-1), time(T), not goon(T-1), not move(R,DX,DY,T).
\#minimize{ 1,T : goon(T) }.

```

\section*{Solving goal(13) from cornered robots}
```

\$ clingo board.lp targets.lp ricochet.lp optimization.lp -c horizon=20 --quiet=1,0 \
<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")
clingo version 4.5.0
Reading from board.lp
Solving.
Optimization: 20
Optimization: 19
Optimization: 18
Optimization: 17
Optimization: 16
Optimization: 15
Optimization: 14
Optimization: 13
Optimization: 12
Optimization: 11
Optimization: 10
Optimization: 9
Answer: }1
move(blue,0, -1, 1) move(blue, 1, 0, 2) move(yellow, 0, -1, 3) move(blue, 0, 1, 4) move(yellow, -1,0,5))
move(blue, 1,0,6) move(blue,0,-1,7) move(yellow, 1,0,8) move(yellow, 0, 1, 9) move(yellow, 0, 1, 10)
move(yellow, 0,1,11) move(yellow, 0,1,12) move(yellow, 0,1,13) move(yellow, 0, 1, 14) move(yellow, 0, 1, 15)
move(yellow, 0,1,16) move(yellow, 0,1,17) move(yellow, 0,1,18) move(yellow, 0, 1, 19) move(yellow, 0, 1, 20)
OPTIMUM FOUND
Models : 12
Optimum : yes
Optimization : 9
Calls : 1
Time : 16.145s (Solving: 15.01s 1st Model: 3.35s Unsat: 2.02s)
CPU Time : 16.080s

```

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

\section*{Solving goal(13) from cornered robots}
```

\$ clingo board.lp targets.lp ricochet.lp optimization.lp -c horizon=20 --quiet=1,0 \
<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")
clingo version 4.5.0
Reading from board.lp ...
Solving...
Optimization: 20
Optimization: 19
Optimization: }1
Optimization: 17
Optimization: 16
Optimization: 15
Optimization: 14
Optimization: 13
Optimization: 12
Optimization: 11
Optimization: 10
Optimization: 9
Answer: 12
move(blue,0,-1,1) move(blue,1,0,2) move(yellow,0,-1,3) move(blue,0,1,4) move(yellow,-1,0,5) \
move(blue,1,0,6) move(blue,0,-1,7) move(yellow,1,0,8) move(yellow,0,1,9) move(yellow,0,1,10) \
move(yellow,0,1,11) move(yellow,0,1,12) move(yellow,0,1,13) move(yellow,0,1,14) move(yellow,0,1,15)
move(yellow,0,1,16) move(yellow, 0,1,17) move(yellow,0,1,18) move(yellow,0,1,19) move(yellow,0,1,20)
OPTIMUM FOUND
Models : 12
Optimum : yes
Optimization : 9
Calls : 1
Time : 16.145s (Solving: 15.01s 1st Model: 3.35s Unsat: 2.02s)
CPU Time : 16.080s

```
```

Torsten Schaub (KRR@UP)

Playing in rounds

Round 1: goal(13)

Round 2: goal(4)

\#Potassco

Control loop

1 Create an operational clingo object
2 Load and ground the logic programs encoding Ricochet Robot (relative to some fixed horizon) within the control object

3 While there is a goal, do the following
1 Enforce the initial robot positions
2 Enforce the current goal
3 Solve the logic program contained in the control object

```
from gringo import Control, Model, Fun
``` \\ \section*{Ricochet Robot Player \\ \section*{Ricochet Robot Player \\ \\ ricochet.py} \\ \\ ricochet.py}
```

class Player:
def __init__(self, horizon, positions, files):
self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control(['-c','horizon={0}'.format(self.horizon)])
for x in files:
self.ctl.load(x)
self.ctl.ground([("base", [])])
def solve(self, goal):
for x in self.undo_external:
self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:
self.ctl.assign_external(x, True)
self.undo_external.append (x)
self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution
def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):
if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args() [:-1]))
horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),
Fun("pos", [Fun("green"), 16, 1]), Fun("pos",' [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]
player = Player(horizon, positions, encodings)
for goal in sequence:
print player.solve(goal)

```

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

\section*{Variables of interest}
- last_positions holds the starting positions of the robots for each turn
- last solution holds the last solution of a search call (Note that callbacks cannot return values directly)
holds a list containing the current goal and starting positions to be cleared upon the next step
holds the maximum number of moves to find a solution
holds the actual object providing an interface to the grounder and solver; it holds all state information necessary for multi-shot solving
\# Potassco

\section*{Variables of interest}
- last_positions holds the starting positions of the robots for each turn
- last solution holds the last solution of a search call (Note that callbacks cannot return values directly)
- undo extornal holds a list containing the current goal and starting positions to be cleared upon the next step

\section*{holds the maximum number of moves to find a solution}
holds the actual object providing an interface to the grounder and solver; it holds all state information necessary for multi-shot solving
\# Potassco

\section*{Variables of interest}
- last_positions holds the starting positions of the robots for each turn
- last_solution holds the last solution of a search call (Note that callbacks cannot return values directly)
- undo_external. holds a list containing the current goal and starting positions to be cleared upon the next step
- horizon holds the maximum number of moves to find a solution
holds the actual object providing an interface to the grounder and solver; it holds all state information necessary for multi-shot solving
\# Potassco

\section*{Variables of interest}
- last_positions holds the starting positions of the robots for each turn
- last_solution holds the last solution of a search call (Note that callbacks cannot return values directly)
- undo_external holds a list containing the current goal and starting positions to be cleared upon the next step
- horizon holds the maximum number of moves to find a solution
- ctl holds the actual object providing an interface to the grounder and solver; it holds all state information necessary for multi-shot solving

\section*{Variables of interest}
- last_positions holds the starting positions of the robots for each turn
- last_solution holds the last solution of a search call (Note that callbacks cannot return values directly)
- undo_external holds a list containing the current goal and starting positions to be cleared upon the next step
- horizon holds the maximum number of moves to find a solution
- ctil holds the actual object providing an interface to the grounder and solver; it holds all state information necessary for multi-shot solving

\section*{Variables of interest}

■ last_positions holds the starting positions of the robots for each turn
- last_solution holds the last solution of a search call (Note that callbacks cannot return values directly)
- undo_external holds a list containing the current goal and starting positions to be cleared upon the next step
- horizon holds the maximum number of moves to find a solution
- ctl holds the actual object providing an interface to the grounder and solver; it holds all state information necessary for multi-shot solving

\section*{Ricochet Robot Player Setup and control loop}

\section*{from gringo import Control, Model, Fun}
```

class Player:
def __init__(self, horizon, positions, files):
self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control(['-c', 'horizon={0}'.format(self.horizon)])
for x in files:
self.ctl.load(x)
self.ctl.ground([("base", [])])
def solve(self, goal):
Solve(self, goal):
self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:
self.ctl.assign_external(x, True)
self.undo_external.append(x)
self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution
def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):
if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))
horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),
Fun("pos", [Fun("green"), 16, 1]), Fun("pos",' [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

```
player = Player(horizon, positions, encodings)
for goal in sequence:
 print player.solve(goal)

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

\section*{Setup and control loop}
```

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]),
Fun("pos", [Fun("blue"), 1, 16]),
Fun("pos", [Fun("green"), 16, 1]),
Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]),
Fun("goal", [4]),
Fun("goal", [7])]
player = Player(horizon, positions, encodings)
for goal in sequence:
print player.solve(goal)

```
1 Initializing variables
2. Creating a player object (wrapping a clingo object)
 Playing in rounds

\section*{Setup and control loop}
```

>> horizon = 15
>> encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
>> positions = [Fun("pos", [Fun("red"), 1, 1]),
>> Fun("pos", [Fun("blue"), 1, 16]),
>> Fun("pos", [Fun("green"), 16, 1]),
>> Fun("pos", [Fun("yellow"), 16, 16])]
>> sequence = [Fun("goal", [13]),
Fun("goal", [4]),
Fun("goal", [7])]
player = Player(horizon, positions, encodings)
for goal in sequence:
print player.solve(goal)

```

1 Initializing variables
2. Creating a player object (wrapping a clingo object)

3 Playing in rounds

Torsten Schaub (KRR@UP)

\section*{Setup and control loop}
```

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]),
Fun("pos", [Fun("blue"), 1, 16]),
Fun("pos", [Fun("green"), 16, 1]),
Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]),
Fun("goal", [4]),
Fun("goal", [7])]
player = Player(horizon, positions, encodings)
for goal in sequence:
print player.solve(goal)

```

1 Initializing variables
2 Creating a player object (wrapping a clingo object)
3 Playing in rounds

Torsten Schaub (KRR@UP)

\section*{Setup and control loop}
```

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]),
Fun("pos", [Fun("blue"), 1, 16]),
Fun("pos", [Fun("green"), 16, 1]),
Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]),
Fun("goal", [4]),
Fun("goal", [7])]
player = Player(horizon, positions, encodings)
for goal in sequence:
print player.solve(goal)

```

1 Initializing variables
2 Creating a player object (wrapping a clingo object)
3 Playing in rounds

Torsten Schaub (KRR@UP)

\section*{Setup and control loop}
```

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]),
Fun("pos", [Fun("blue"), 1, 16]),
Fun("pos", [Fun("green"), 16, 1]),
Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]),
Fun("goal", [4]),
Fun("goal", [7])]
player = Player(horizon, positions, encodings)
for goal in sequence:
print player.solve(goal)

```

1 Initializing variables
2 Creating a player object (wrapping a clingo object)
3 Playing in rounds

Torsten Schaub (KRR@UP)

\section*{Ricochet Robot Player}

\section*{from gringo import Control, Model, Fun}

\section*{_init_-}
```

class Player:
def __init__(self, horizon, positions, files):
self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control(['-c',''horizon={0}'.format(self.horizon)])
for x in files:
self.ctl.load(x)
self.ctl.ground([("base", [])])
def solve(self, goal):
for x in self.undo_external:
self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:
self.ctl.assign_external(x, True)
self.undo_external.append(x)
self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution
def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms (Model.ATOMS):
if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))
horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),
Fun("pos", [Fun("green"), 16, 1]), Fun("pos",' [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]
player = Player(horizon, positions, encodings)
for goal in sequence:
print player.solve(goal)

```

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

\section*{__init_-}
```

def __init__(self, horizon, positions, files):
self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control(['-c', 'horizon={0}'.format(self.horizon)])
for x in files:
self.ctl.load(x)
self.ctl.ground([("base", [])])

```
1 Initializing variables
2. Creating clingo object
 Loading encoding and instance
 Grounding encoding and instance

Torsten Schaub (KRR@UP)

\section*{__init__}
```

def __init__(self, horizon, positions, files):
self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control(['-c', 'horizon={0}'.format(self.horizon)])
for x in files:
self.ctl.load(x)
self.ctl.ground([("base", [])])

```

1 Initializing variables
2. Creating clingo object

3 Loading encoding and instance Grounding encoding and instance

Torsten Schaub (KRR@UP)

\section*{__init_-}
```

def __init__(self, horizon, positions, files):
self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control(['-c', 'horizon={0}'.format(self.horizon)])
for x in files:
self.ctl.load(x)
self.ctl.ground([("base", [])])

```

1 Initializing variables
2 Creating clingo object
(3) Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP)
```

def __init__(self, horizon, positions, files):
self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control(['-c', 'horizon={0}'.format(self.horizon)])
for x in files:
self.ctl.load(x)
self.ctl.ground([("base", [])])

```

1 Initializing variables
2 Creating clingo object
3 Loading encoding and instance
4 Grounding encoding and instance
```

def __init__(self, horizon, positions, files):
self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control(['-c', 'horizon={0}'.format(self.horizon)])
for x in files:
self.ctl.load(x)
self.ctl.ground([("base", [])])

```

1 Initializing variables
2 Creating clingo object
3 Loading encoding and instance
4 Grounding encoding and instance
```

def __init__(self, horizon, positions, files):
self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control(['-c', 'horizon={0}'.format(self.horizon)])
for x in files:
self.ctl.load(x)
self.ctl.ground([("base", [])])

```

1 Initializing variables
2 Creating clingo object
3 Loading encoding and instance
4 Grounding encoding and instance

\section*{Ricochet Robot Player \\ solve}

\section*{from gringo import Control, Model, Fun}
```

class Player:
def __init__(self, horizon, positions, files):
self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control(['-c', 'horizon={0}'.format(self.horizon)])
for x in files:
self.ctl.load(x)
self.ctl.ground([("base", [])])
def solve(self, goal):
for x in self.undo_external:
self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:
self.ctl.assign_external(x, True)
self.undo_external.append (x)
self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution
def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):
if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))
horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),
Fun("pos", [Fun("green"), 16, 1]), Fun("pos",' [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]
player = Player(horizon, positions, encodings)
for goal in sequence:
print player.solve(goal)

```

\section*{solve}
```

def solve(self, goal):
for x in self.undo_external:
self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:
self.ctl.assign_external(x, True)
self.undo_external.append(x)
self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

```
1 Unsetting previous external atoms (viz. previous goal and positions)
2 Setting next external atoms
 (viz. next goal and positions)
 Computing next stable model
 by passing user-defined on_model method

\section*{solve}
```

def solve(self, goal):
for x in self.undo_external:
self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:
self.ctl.assign_external(x, True)
self.undo_external.append(x)
self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

```

1 Unsetting previous external atoms (viz. previous goal and positions)
2. Setting next external atoms (viz. next goal and positions)
3 Computing next stable model by passing user-defined on_model method

Torsten Schaub (KRR@UP)

\section*{solve}
```

def solve(self, goal):
for x in self.undo_external:
self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:
self.ctl.assign_external(x, True)
self.undo_external.append(x)
self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

```

1 Unsetting previous external atoms (viz. previous goal and positions)
2 Setting next external atoms (viz. next goal and positions)
3 Computing next stable model by passing user-defined on_model method

\section*{solve}
```

def solve(self, goal):
for x in self.undo_external:
self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:
self.ctl.assign_external(x, True)
self.undo_external.append(x)
self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

```

1 Unsetting previous external atoms (viz. previous goal and positions)
2 Setting next external atoms (viz. next goal and positions)
3 Computing next stable model by passing user-defined on_model method

\section*{solve}
```

def solve(self, goal):
for x in self.undo_external:
self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:
self.ctl.assign_external(x, True)
self.undo_external.append(x)
self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

```

1 Unsetting previous external atoms (viz. previous goal and positions)
2 Setting next external atoms (viz. next goal and positions)
3 Computing next stable model by passing user-defined on_model method

\section*{solve}
```

def solve(self, goal):
for x in self.undo_external:
self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:
self.ctl.assign_external(x, True)
self.undo_external.append(x)
self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

```

1 Unsetting previous external atoms (viz. previous goal and positions)
2 Setting next external atoms (viz. next goal and positions)
3 Computing next stable model by passing user-defined on_model method

\section*{Ricochet Robot Player \\ on_model}
from gringo import Control, Model, Fun
```

class Player:

```
 def __init__(self, horizon, positions, files):
 self.last_positions = positions
 self.last_solution = None
 self.undo_external = []
 self.horizon = horizon
self.ctl \(=\) Control(['-c', 'horizon=\{0\}'.format(self.horizon)])
 for \(x\) in files:
 self.ctl.load(x)
 self.ctl.ground([("base", [])])
 def solve(self, goal):
 for \(x\) in self.undo_external:
 self.ctl.assign_external(x, False)
 self.undo_external = []
 for \(x\) in self.last_positions + [goal]:
 self.ctl.assign_external(x, True)
 self.undo_external.append (\(x\))
 self.last_solution = None
 self.ctl.solve(on_model=self.on_model)
 return self.last_solution
 def on_model(self, model):
 self.last_solution \(=\) model.atoms()
 self.last_positions = []
 for atom in model.atoms (Model.ATOMS):
 if (atom.name() \(==\) "pos" and len(atom.args()) \(==4\) and atom.args()[3] == self.horizon):
 self.last_positions.append(Fun("pos", atom.args() [:-1]))
horizon \(=15\)
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions \(=\) [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),
 Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence \(=\) [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]
player = Player(horizon, positions, encodings)
for goal in sequence:
 print player.solve(goal)

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

\section*{on_model}
```

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):
if (atom.name() == "pos" and
len(atom.args()) == 4 and
atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

```

1 Storing stable model
2 Extracting atoms (viz. last robot positions) by adding pos(R,X,Y) for each pos(R, X, Y, horizon)

\section*{on_model}
```

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):
if (atom.name() == "pos" and
len(atom.args()) == 4 and
atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

```

1 Storing stable model
2 Extracting atoms (viz. last robot positions) by adding pos (R, X, Y) for each pos(R, X, Y, horizon)

Torsten Schaub (KRR@UP)

\section*{on_model}
```

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):
if (atom.name() == "pos" and
len(atom.args()) == 4 and
atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

```

1 Storing stable model
2 Extracting atoms
(viz. last robot positions) by adding pos (R, X, Y) for each pos(R, X, Y, horizon)

\section*{on_model}
```

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):
if (atom.name() == "pos" and
len(atom.args()) == 4 and
atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

```

1 Storing stable model
2 Extracting atoms (viz. last robot positions) by adding pos(R,X,Y) for each pos(R, X,Y,horizon)

\section*{on_model}
```

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):
if (atom.name() == "pos" and
len(atom.args()) == 4 and
atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

```

1 Storing stable model
2 Extracting atoms (viz. last robot positions) by adding pos(R,X,Y) for each pos(R, X, Y,horizon)

\section*{on_model}
```

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):
if (atom.name() == "pos" and
len(atom.args()) == 4 and
atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

```

1 Storing stable model
2 Extracting atoms (viz. last robot positions) by adding pos(R,X,Y) for each pos(R, X, Y,horizon)

\title{
ricochet.py
}
```

from gringo import Control, Model, Fun
class Player:
def __init__(self, horizon, positions, files):
self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control(['-c', 'horizon={0}'.format(self.horizon)])
for x in files:
self.ctl.load(x)
self.ctl.ground([("base", [])])
def solve(self, goal):
for x in self.undo_external:
self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:
self.ctl.assign_external(x, True)
self.undo_external.append(x)
self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution
def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):
if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))
horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),
Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]
player = Player(horizon, positions, encodings)
for goal in sequence:
print player.solve(goal)

```

\section*{Let's play!}

\section*{\$ python ricochet.py}
```

[move(red,0,1,1), move(yellow, -1,0,14), move(yellow, -1,0,12), move(yellow, -1,0,11)
move(yellow, -1,0,9), move(red, 1,0,7), move(red,1,0,2), move(yellow, -1,0,10),
move(yellow, -1,0,13), move(yellow, -1,0,15), move(red, -1,0,4), move(yellow, 0, -1, 6),
move(red, 0, 1, 3), move(red,0,1,5), move(yellow, 0, 1, 8)]
[move(blue,0,1,15), move(blue, 0, 1, 11), move(blue, 0, 1, 8), move(blue, 0, 1, 3),
move(blue, 1,0,2), move(blue, 0,1,9), move(blue, -1, 0,7), move(blue, 0, 1, 10),
move(blue, 0, 1, 13), move(blue, -1, 0, 4), move(blue, 0, -1, 1), move(blue, 0, -1, 6),
move(green, -1,0,5), move(blue,0,1,12), move(blue,0,1,14)]
[move(green, 1,0,15), move(green, 1,0,8), move(green, 1, 0, 5), move(green, 1, 0, 4),
move(green, 1,0,3), move(green, 1,0,10), move(green, 1,0,7), move(green, 1,0, 12),
move(green, 1,0,9), move(green, 1, 0, 2), move(green, 1,0,11), move(green, 1,0,13),
move(green, 1, 0,6), move(green, 1,0,14), move(green, 0, 1, 1)]

```
\$ python robotviz

\section*{Let's play!}
```

\$ python ricochet.py
[move(red,0,1,1), move(yellow, -1,0,14), move(yellow, -1,0,12), move(yellow, -1,0,11),
move(yellow, -1,0,9), move(red,1,0,7), move(red,1,0,2), move(yellow, -1, 0, 10),
move(yellow,-1,0,13), move(yellow,-1,0,15), move(red, -1,0,4), move(yellow,0,-1,6),
move(red,0,1,3), move(red,0,1,5), move(yellow,0,1,8)]
[move(blue,0,1,15), move(blue,0,1,11), move(blue,0,1,8), move(blue,0,1,3),
move(blue,1,0,2), move(blue,0,1,9), move(blue,-1,0,7), move(blue,0,1,10),
move(blue,0,1,13), move(blue,-1,0,4), move(blue,0,-1,1), move(blue,0,-1,6),
move(green,-1,0,5), move(blue,0,1,12), move(blue,0,1,14)]
[move(green,1,0,15), move(green,1,0,8), move(green,1,0,5), move(green, 1,0,4),
move(green,1,0,3), move(green,1,0,10), move(green,1,0,7), move(green,1,0,12),
move(green,1,0,9), move(green,1,0,2), move(green,1,0,11), move(green,1,0,13),
move(green,1,0,6), move(green,1,0,14), move(green,0,1,1)]

```
\$ python robotviz

\section*{Let's play!}
```

\$ python ricochet.py
[move(red,0,1,1), move(yellow, -1,0,14), move(yellow, -1,0,12), move(yellow, -1,0,11),
move(yellow, -1,0,9), move(red,1,0,7), move(red,1,0,2), move(yellow, -1, 0, 10),
move(yellow,-1,0,13), move(yellow,-1,0,15), move(red, -1,0,4), move(yellow,0,-1,6),
move(red,0,1,3), move(red,0,1,5), move(yellow,0,1,8)]
[move(blue,0,1,15), move(blue,0,1,11), move(blue,0,1,8), move(blue,0,1,3),
move(blue,1,0,2), move(blue,0,1,9), move(blue,-1,0,7), move(blue,0,1,10),
move(blue,0,1,13), move(blue,-1,0,4), move(blue,0,-1,1), move(blue,0,-1,6),
move(green,-1,0,5), move(blue,0,1,12), move(blue,0,1,14)]
[move(green,1,0,15), move(green,1,0,8), move(green,1,0,5), move(green, 1,0,4),
move(green,1,0,3), move(green,1,0,10), move(green,1,0,7), move(green,1,0,12),
move(green,1,0,9), move(green,1,0,2), move(green,1,0,11), move(green,1,0,13),
move(green,1,0,6), move(green,1,0,14), move(green,0,1,1)]

```
\$ python robotviz

\section*{ASP modulo theories: Overview}

52 Theory language
53 Low-level semantics
54 Intermediate Format
55 Theory propagation
56 Experiments
57 Acyclicity checking
58 Constraint Answer Set Programming

\section*{Motivation}
- Input \(\quad \mathrm{ASP}=\mathrm{DB}+\mathrm{KRR}+\mathrm{LP}+\mathrm{SAT}\)
- Output \(\quad \mathrm{ASPmT}=\mathrm{DB}+\mathrm{KRR}+\mathrm{LP}+\mathrm{S}\)

ASP solving ground | solve
\(\Rightarrow\) logic programs with elusive theory atoms

Agents, Assisted Living, Robotics, Planning, Scheduling, Bio- and Cheminformatics, etc

\section*{Motivation}
- Input \(\quad \mathrm{ASP}=\mathrm{DB}+\mathrm{KRR}+\mathrm{LP}+\mathrm{SAT}\)

Output \(\mathrm{ASPmT}=\mathrm{DB}+\mathrm{KRR}+\mathrm{LP}+\mathrm{S}\)
ASP solving ground \(\mid\) solve
\(\Rightarrow\) logic programs with elusive theory atoms

Agents, Assisted Living, Robotics, Planning, Scheduling, Bio- and Cheminformatics, etc

\section*{Motivation}
- Input \(\quad \mathrm{ASP}=\mathrm{DB}+\mathrm{KRR}+\mathrm{LP}+\mathrm{SAT}\)

■ Output \(\quad \mathrm{ASPm} T=\mathrm{DB}+\mathrm{KRR}+\mathrm{LP}+\mathrm{SMT}\)
```

ASP solving ground | solve
logic programs with elusive theory atoms

```

Agents, Assisted Living, Robotics, Planning, Scheduling, Bio- and Cheminformatics, etc

\section*{Motivation}
- Input \(\quad \mathrm{ASP}=\mathrm{DB}+\mathrm{KRR}+\mathrm{LP}+\mathrm{SAT}\)
- Output ASPmT = DB+KRR+LP+SMT - NO!

ASP solving ground | solve
\(\Rightarrow\) logic programs with elusive theory atoms

Agents, Assisted Living, Robotics, Planning, Scheduling, Bio- and Cheminformatics, etc

\section*{Motivation}
- Input \(\quad \mathrm{ASP}=\mathrm{DB}+\mathrm{KRR}+\mathrm{LP}+\mathrm{SAT}\)
- Output ASPmT \(=(\mathrm{DB}+\mathrm{KRR}+\mathrm{LP}+\mathrm{SAT}) \mathrm{mT}\)

ASP solving ground | solve
\(\Rightarrow\) logic programs with elusive theory atoms

Agents, Assisted Living, Robotics, Planning, Scheduling, Bio- and Cheminformatics, etc

\section*{Motivation}
- Input \(\quad \mathrm{ASP}=\mathrm{DB}+\mathrm{KRR}+\mathrm{LP}+\mathrm{SAT}\)
- Output \(\mathrm{ASPm} T=(\mathrm{DB}+\mathrm{KRR}+\mathrm{LP}+\mathrm{SAT}) \mathrm{mT}\)
- ASP solving ground | solve
\(\Rightarrow\) logic programs with elusive theory atoms

Agents, Assisted Living, Robotics, Planning, Scheduling, Bio- and Cheminformatics, etc

\section*{Motivation}
- Input \(\quad \mathrm{ASP}=\mathrm{DB}+\mathrm{KRR}+\mathrm{LP}+\mathrm{SAT}\)
- Output ASPmT \(=(\mathrm{DB}+\mathrm{KRR}+\mathrm{LP}+\mathrm{SAT}) \mathrm{mT}\)
- ASP solving modulo theories ground \% theories | solve \% theories
\(\Rightarrow\) logic programs with elusive theory atoms

Agents, Assisted Living, Robotics, Planning, Scheduling, Bio- and Cheminformatics, etc

\section*{Motivation}
- Input \(\quad \mathrm{ASP}=\mathrm{DB}+\mathrm{KRR}+\mathrm{LP}+\mathrm{SAT}\)
- Output ASPmT \(=(\mathrm{DB}+\mathrm{KRR}+\mathrm{LP}+\mathrm{SAT}) \mathrm{m} T\)
- ASP solving modulo theories ground \% theories | solve \% theories
\(\Rightarrow\) logic programs with elusive theory atoms

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

\section*{Motivation}
- Input \(\quad \mathrm{ASP}=\mathrm{DB}+\mathrm{KRR}+\mathrm{LP}+\mathrm{SAT}\)
- Output ASPmT \(=(\mathrm{DB}+\mathrm{KRR}+\mathrm{LP}+\mathrm{SAT}) \mathrm{m} T\)
- ASP solving modulo theories ground \% theories | solve \% theories
\(\Rightarrow\) logic programs with elusive theory atoms
- Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling, Bio- and Cheminformatics, etc

\section*{ASP solving process}

\section*{ASP solving process modulo theories}

\section*{ASP solving process modulo theories}

\section*{clingo's approach}

Torsten Schaub (KRR@UP)

\section*{Outline}

\section*{52 Theory language}

53 Low-level semantics
54 Intermediate Format
55 Theory propagation
56 Experiments
57 Acyclicity checking
58 Constraint Answer Set Programming

\section*{ASP solving process modulo theories}

\section*{ASP solving process modulo theories}

\section*{Linear constraints}
```

\#theory csp {
linear_term {
+ : 5, unary;
- : 5, unary;
* : 4, binary, left;
+ : 3, binary, left;
- : 3, binary, left
};
dom_term {
+ : 5, unary;
- : 5, unary;
.. : 1, binary, left
};
\&dom/0 : dom_term, {=}, linear_term, any;
\&sum/0 : linear_term, {<=,=,>=,<,>,!=}, linear_term, any;
\&show/0 : show_term, directive;
\&distinct/O : linear_term, any;
\&minimize/O : minimize_term, directive
}.

```

\section*{send+more=money}
\begin{tabular}{ccccc}
& \(s\) & \(e\) & \(n\) & \(d\) \\
+ & \(m\) & \(o\) & \(r\) & \(e\) \\
\hline\(m\) & \(o\) & \(n\) & \(e\) & \(y\)
\end{tabular}

> Each letter corresponds exactly to one digit and all variables have to be pairwisely distinct

The example has exactly one solution

\section*{send+more=money}
\[
\begin{array}{lllll}
& s & e & n & d \\
+ & m & o & r & e
\end{array} \quad \begin{aligned}
& \text { Each letter corresponds } \\
& \text { exactly to one digit and } \\
& \text { all variables have to be } \\
& \text { pairwisely distinct }
\end{aligned}
\]

\section*{send+more=money}
```

\#include "csp.lp".
digit(1,3,s). digit(2,3,m). digit(sum,4,m).
digit(1,2,e). digit(2,2,o). digit(sum,3,o).
digit(1,1,n). digit(2,1,r). digit(sum,2,n).
digit(1,0,d). digit(2,0,e). digit(sum,1,e).
digit(sum,0,y).
base(10).
exp(E) :- digit(_,E,_)
power(1,0).
power(B*P,E) :- base(B), power(P,E-1), exp(E), E>0.
number(N) :- digit(N,_,-), N!= sum.
high(D) :- digit(N,E,D), not digit(N,E+1,_)
\&dom {0..9} = X :- digit(_,_,X).
\&sum { M*D : digit(N,E,D), power(M,E), number(N);
-M*D : digit(sum, E,D), power(M,E) } = 0.
\&sum { D } > 0 :- high(D).
\&distinct { D : digit(_,_,D) }.
\&show { D : digit(_,_,D) }.

```

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

\section*{send+more=money}
```

\#include "csp.lp".
digit(1,3,s). digit(2,3,m). digit(sum,4,m).
digit(1,2,e). digit(2,2,o). digit(sum,3,o).
digit(1,1,n). digit(2,1,r). digit(sum,2,n).
digit(1,0,d). digit(2,0,e). digit(sum,1,e).
digit(sum,0,y).
base(10).
exp(E) :- digit(_,E,_)
power(1,0).
power(B*P,E) :- base(B), power(P,E-1), exp(E), E>0.
number(N) :- digit(N,_,_), N!= sum.
high(D) :- digit(N,E,D), not digit(N,E+1,_).
\&dom {0..9} = X :- digit(_,_,X).
\&sum { M*D : digit(N,E,D), power(M,E), number(N);
-M*D : digit(sum, E,D), power(M,E) } = 0.
\&sum { D } > 0 :- high(D).
\&distinct { D : digit(_,_,D) }.
\&show { D : digit(_,_,D) }.

```

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

\section*{send+more=money}
```

\#include "csp.lp".
digit(1,3,s). digit(2,3,m). digit(sum,4,m).
digit(1,2,e). digit(2,2,o). digit(sum,3,o).
digit(1,1,n). digit(2,1,r). digit(sum,2,n).
digit(1,0,d). digit(2,0,e). digit(sum,1,e).
digit(sum,0,y).
base(10).
exp(E) :- digit(_,E,_)
power(1,0).
power(B*P,E) :- base(B), power(P,E-1), exp(E), E>0.
number(N) :- digit(N,_,_), N!= sum.
high(D) :- digit(N,E,D), not digit(N,E+1,_).
\&dom {0..9} = X :- digit(_,_,X).
\&sum { M*D : digit(N,E,D), power(M,E), number(N);
-M*D : digit(sum,E,D), power(M,E) } = 0.
\&sum { D } > 0 :- high(D).
\&distinct { D : digit(_,_,D) }.
\&show { D : digit(_,_,D) }.

```

Torsten Schaub (KRR@UP)

\section*{send+more=money}
```

digit(1,3,s). digit(2,3,m). digit(sum,4,m).
digit(1,2,e). digit(2,2,o). digit(sum,3,o).
digit(1,1,n). digit(2,1,r). digit(sum,2,n).
digit(1,0,d). digit(2,0,e). digit(sum,1,e).
digit(sum,0,y).
base(10).
exp(0). exp(1). exp(2). exp(3). exp(4).
power(1,0).
power(10,1). power(100,2). power(1000,3). power(10000,4).
number(1). number(2).
high(s). high(m).
\&dom{0..9}=s. \&dom{0..9}=m. \&dom{0..9}=e. \&dom{0..9}=0. \&dom{0..9}=n. \&dom{0..9}=r. \&dom{0..9}=d. \&dom{0..9}
\&sum{ 1000*s; 100*e; 10*n; 1*d;
1000*m; 100*o; 10*r; 1*e;
-10000*m; -1000*o; -100*n; -10*e; -1*y } = 0.
\&sum{s} > 0. \&sum{m} > 0.
\&distinct{s; m; e; o; n; r; d; y}.
\&show{s; m; e; o; n; r; d; y}.

```

Torsten Schaub (KRR@UP)

\section*{Outline}

\section*{52 Theory language \\ 53 Low-level semantics \\ 54 Intermediate Format \\ 55 Theory propagation \\ 56 Experiments \\ 57 Acyclicity checking \\ 58 Constraint Answer Set Programming}

\section*{ASP solving process modulo theories}

\section*{ASP solving process modulo theories}

\section*{ASP modulo theories}
- We distinguish theory atoms depending upon whether they are
- defined via rules in the logic program, or
- external otherwise, or
- strict being equivalent to the associated constraint, or
non-strict only implying the associated constraint.
Informally, a set \(X \subseteq \mathcal{A} \cup \mathcal{T}\) of atoms is a \(\mathbb{T}\)-stable model of a program \(P\) if there is some \(\mathbb{T}\)-solution \(\mathcal{S}\) such that \(X\) is a (regular) stable model of the program
\[
\begin{aligned}
& P \cup\left\{a \leftarrow \mid a \in\left(\mathcal{T}_{e} \backslash h(P)\right) \cap \mathcal{S}\right\} \\
& \cup\left\{\leftarrow \sim a \mid a \in\left(\mathcal{T}_{e} \cap h(P)\right) \cap \mathcal{S}\right\} \\
& \cup\left\{\{a\} \leftarrow \mid a \in\left(\mathcal{T}_{i} \backslash h(P)\right) \cap \mathcal{S}\right\} \\
& \cup\{\leftarrow a \mid a \in(\mathcal{T} \cap h(P)) \backslash \mathcal{S}\}
\end{aligned}
\]

\section*{ASP modulo theories}
- We distinguish theory atoms depending upon whether they are
- defined via rules in the logic program, or
- external otherwise, or
- strict being equivalent to the associated constraint, or
- non-strict only implying the associated constraint.

Informally, a set \(X \subseteq \mathcal{A} \cup \mathcal{T}\) of atoms is a \(\mathbb{T}\)-stable model of a program \(P\) if there is some \(\mathbb{T}\)-solution \(\mathcal{S}\) such that \(X\) is a (regular) stable model of the program
\[
\begin{aligned}
& P \cup\left\{a \leftarrow \mid a \in\left(\mathcal{T}_{e} \backslash h(P)\right) \cap \mathcal{S}\right\} \\
& \cup\left\{\leftarrow \sim a \mid a \in\left(\mathcal{T}_{e} \cap h(P)\right) \cap \mathcal{S}\right\} \\
& \cup\left\{\{a\} \leftarrow \mid a \in\left(\mathcal{T}_{i} \backslash h(P)\right) \cap \mathcal{S}\right\} \\
& \cup\{\leftarrow a \mid a \in(\mathcal{T} \cap h(P)) \backslash \mathcal{S}\}
\end{aligned}
\]

\section*{ASP modulo theories}
- We distinguish theory atoms depending upon whether they are
- defined via rules in the logic program, or
- external otherwise, or
- strict being equivalent to the associated constraint, or
- non-strict only implying the associated constraint.
- Informally, a set \(X \subseteq \mathcal{A} \cup \mathcal{T}\) of atoms is a \(\mathbb{T}\)-stable model of a program \(P\) if there is some \(\mathbb{T}\)-solution \(\mathcal{S}\) such that \(X\) is a (regular) stable model of the program
\[
\begin{aligned}
& P \cup\left\{a \leftarrow \mid a \in\left(\mathcal{T}_{e} \backslash h(P)\right) \cap \mathcal{S}\right\} \\
& \cup\left\{\leftarrow \sim a \mid a \in\left(\mathcal{T}_{e} \cap h(P)\right) \cap \mathcal{S}\right\} \\
& \cup\left\{\{a\} \leftarrow \mid a \in\left(\mathcal{T}_{i} \backslash h(P)\right) \cap \mathcal{S}\right\} \\
& \cup\{\leftarrow a \mid a \in(\mathcal{T} \cap h(P)) \backslash \mathcal{S}\}
\end{aligned}
\]

\section*{ASP modulo theories}
- We distinguish theory atoms depending upon whether they are
- defined via rules in the logic program, or
- external otherwise, or
- strict being equivalent to the associated constraint, \(\mathcal{T}_{e}\), or
- non-strict only implying the associated constraint, \(\mathcal{T}_{i}\).
- Informally, a set \(X \subseteq \mathcal{A} \cup \mathcal{T}\) of atoms is a \(\mathbb{T}\)-stable model of a program \(P\) if there is some \(\mathbb{T}\)-solution \(\mathcal{S}\) such that \(X\) is a (regular) stable model of the program
\[
\begin{aligned}
& P \cup\left\{a \leftarrow \mid a \in\left(\mathcal{T}_{e} \backslash h(P)\right) \cap \mathcal{S}\right\} \\
& \cup\left\{\leftarrow \sim a \mid a \in\left(\mathcal{T}_{e} \cap h(P)\right) \cap \mathcal{S}\right\} \\
& \cup\left\{\{a\} \leftarrow \mid a \in\left(\mathcal{T}_{i} \backslash h(P)\right) \cap \mathcal{S}\right\} \\
& \cup\{\leftarrow a \mid a \in(\mathcal{T} \cap h(P)) \backslash \mathcal{S}\}
\end{aligned}
\]

\section*{Outline}
52 Theory language
53 I ow-level semantics
54 Intermediate Format
55 Theory propagation
56 Experiments
57 Acyelicity checking
58 Constraint Answer Set Programming

\section*{ASP solving process modulo theories}

\section*{ASP solving process modulo theories}

\section*{aspif example}
```

{a}.
b :- a.
c :- not a.

```
```

asp 100
111100
1012011
$\begin{array}{lllllll}1 & 0 & 1 & 3 & 0 & 1 & -1\end{array}$
41 a 11
41 b 12
41 c 13

```

Potassco

\section*{aspif example}
\begin{tabular}{llllllll}
\(\{\mathrm{a}\}\). & asp & 1 & 0 & 0 & & \\
\(\mathrm{~b}:-\mathrm{a}\). & 1 & 1 & 1 & 1 & 0 & 0 & \\
\(\mathrm{c}:-\) not a. & 1 & 0 & 1 & 2 & 0 & 1 & 1 \\
1 & 0 & 1 & 3 & 0 & 1 & -1 \\
4 & 1 & a & 1 & 1 & & \\
4 & 1 & b & 1 & 2 & \\
& 4 & 1 & \(c\) & 1 & 3 & & \\
0 & & & & &
\end{tabular}

\section*{aspif overview}
- Rule statements
- Minimize statements
- Projection statements

■ Output statements
- External statements
- Assumption statements

■ Heuristic statements
- Edge statements
- Theory terms and atoms

■ Comments

\section*{aspif theory example}
```

```
task(1).
```

```
task(1).
task(2).
task(2).
duration(1,200).
duration(1,200).
duration(2,400).
duration(2,400).
&dom {1..1000} = beg(1).
&dom {1..1000} = beg(1).
&dom {1..1000} = end(1).
&dom {1..1000} = end(1).
&dom {1..1000} = beg(2).
&dom {1..1000} = beg(2).
&dom {1..1000} = end(2).
&dom {1..1000} = end(2).
&diff{end(1)-beg(1)}<=200.
&diff{end(1)-beg(1)}<=200.
&diff{end(2)-beg(2)}<=400.
&diff{end(2)-beg(2)}<=400.
&show{ beg/1; end/1 }.
```

```
&show{ beg/1; end/1 }.
```

```
```

```
asp 1 0 0
```

```
asp 1 0 0
10}011100
10}011100
10
10
10
10
1
1
10}01%50
10}01%50
1014600
1014600
4 task (1) 0
4 task (1) 0
4 7 \text { task(2) 0}
4 7 \text { task(2) 0}
4 1 5 \text { duration(1,200) 0}
4 1 5 \text { duration(1,200) 0}
4 1 5 \text { duration(} 2 , 4 0 0) 0
4 1 5 \text { duration(} 2 , 4 0 0) 0
9 0 1 200
9 0 1 200
9 0 3 400
9 0 3 400
90.61
90.61
9 0 111 2
9 0 111 2
9 1 0 4 diff
9 1 0 4 diff
9 1 2 2 <=
9 1 2 2 <=
9141-
9141-
9 1 5 3 end
9 1 5 3 end
91.8 3 beg
91.8 3 beg
927516
927516
92.9816
92.9816
92104279
92104279
9 2 12 5 1 11
9 2 12 5 1 11
9 2 13 8 1 11
9 2 13 8 1 11
9 2 144212 13
9 2 144212 13
9 4 0 1 10 0
9 4 0 1 10 0
944111140
944111140
9 6.5.0 10 2 1
9 6.5.0 10 2 1
96601123
96601123
0
```

```
0
```

```

\section*{aspif theory example}
```

asp 1 0 0

```
asp 1 0 0
```

asp 1 0 0
1011100
1011100
1011100
1
1
1
1014 300
1014 300
1014 300
1}0011440
1}0011440
1}0011440
10015 0 0
10015 0 0
10015 0 0
101600
101600
101600
4 task(1) 0
4 task(1) 0
4 task(1) 0
4 task(2) 0
4 task(2) 0
4 task(2) 0
4 1 5 duration (1,200) 0
4 1 5 duration (1,200) 0
4 1 5 duration (1,200) 0
4 15 duration(2,400) 0
4 15 duration(2,400) 0
4 15 duration(2,400) 0
9 0 1 200
9 0 1 200
9 0 1 200
903400
903400
903400
9 0 6 1
9 0 6 1
9 0 6 1
90112
90112
90112
9 1 0 4 diff
9 1 0 4 diff
9 1 0 4 diff
9 1 2 2 <=
9 1 2 2 <=
9 1 2 2 <=
9 141 -
9 141 -
9 141 -
9 1 5 3 end
9 1 5 3 end
9 1 5 3 end
9 1 8 3 beg
9 1 8 3 beg
9 1 8 3 beg
927516
927516
927516
929816
929816
929816
9 2 104279
9 2 104279
9 2 104279
9 2 12 5 1 111
9 2 12 5 1 111
9 2 12 5 1 111
9 2 13 8 1 11
9 2 13 8 1 11
9 2 13 8 1 11
9}22\mp@code{14
9}22\mp@code{14
9}22\mp@code{14
9 4 0 1 10 0
9 4 0 1 10 0
9 4 0 1 10 0
9}44111114%
9}44111114%
9}44111114%
96550110 2 1
96550110 2 1
96550110 2 1
966011123
966011123
966011123
O

```
O
```

O

```
```

```
task(1).
```

```
task(1).
task(2).
task(2).
duration(1,200).
duration(1,200).
duration(2,400).
duration(2,400).
&dom {1..1000} = beg(1).
&dom {1..1000} = beg(1).
&dom {1..1000} = end(1).
&dom {1..1000} = end(1).
&dom {1..1000} = beg(2).
&dom {1..1000} = beg(2).
&dom {1..1000} = end(2).
&dom {1..1000} = end(2).
&diff{end(1)-beg(1)}<=200.
&diff{end(1)-beg(1)}<=200.
&diff{end(2)-beg(2)}<=400.
&diff{end(2)-beg(2)}<=400.
&show{ beg/1; end/1 }.
```

```
&show{ beg/1; end/1 }.
```

```
```

4 10 4 2 7

```
```

4 10 4 2 7

```
```

4 10 4 2 7

```

\section*{aspif theory example}
Only 6 (theory) atoms!
```

```
asp 1 0 0
```

asp 1 0 0

```
asp 1 0 0
10011 000
10011 000
10011 000
1
1
1
1014 300
1014 300
1014 300
1}0011440
1}0011440
1}0011440
10015 000
10015 000
10015 000
101600
101600
101600
4 task(1) 0
4 task(1) 0
4 task(1) 0
4 7 \text { task(2) 0}
4 7 \text { task(2) 0}
4 7 \text { task(2) 0}
4 1 5 \text { duration (1,200) 0}
4 1 5 \text { duration (1,200) 0}
4 1 5 \text { duration (1,200) 0}
4 15 duration(2,400) 0
4 15 duration(2,400) 0
4 15 duration(2,400) 0
9 0 1 200
9 0 1 200
9 0 1 200
9 0 3 400
9 0 3 400
9 0 3 400
9 0 6 1
9 0 6 1
9 0 6 1
90112
90112
90112
9 1 0 4 diff
9 1 0 4 diff
9 1 0 4 diff
9 1 2 2 <=
9 1 2 2 <=
9 1 2 2 <=
9141-
9141-
9141-
9 1 5 3 end
9 1 5 3 end
9 1 5 3 end
9 1 8 3 beg
9 1 8 3 beg
9 1 8 3 beg
927516
927516
927516
9 2 9 8 1 6
9 2 9 8 1 6
9 2 9 8 1 6
9 2 104279
9 2 104279
9 2 104279
9 2 12 5 1 1 11
9 2 12 5 1 1 11
9 2 12 5 1 1 11
9 2 13 8 1 11
9 2 13 8 1 11
9 2 13 8 1 11
9}22 144412 4 12 13
9}22 144412 4 12 13
9}22 144412 4 12 13
9 4 0 1 10 0
9 4 0 1 10 0
9 4 0 1 10 0
9441114140
9441114140
9441114140
9665}00110022
9665}00110022
9665}00110022
966011123
966011123
966011123
4 10 4 2 7
4 10 4 2 7
4 10 4 2 7
0
```

0

```
0
```

```
```

task(1).

```
```

task(1).
task(2).
task(2).
duration(1, 200).
duration(1, 200).
duration(2,400).
duration(2,400).
\&dom {1..1000} = beg(1).
\&dom {1..1000} = beg(1).
\&dom {1..1000} = end(1).
\&dom {1..1000} = end(1).
\&dom {1..1000} = beg(2).
\&dom {1..1000} = beg(2).
\&dom {1..1000} = end(2).
\&dom {1..1000} = end(2).
\&diff{end(1)-beg(1)}<=200.
\&diff{end(1)-beg(1)}<=200.
\&diff{end(2)-beg(2)}<=400.
\&diff{end(2)-beg(2)}<=400.
\&show{ beg/1; end/1 }.

```
&show{ beg/1; end/1 }.
```

\# Potassco

## Outline

52 Theory language
53 I ow-level semantics
54 Intermediate Format
55 Theory propagation
56 Experiments
57 Acyclicity checking
58 Constraint Answer Set Programming

## ASP solving process modulo theories



## ASP solving process modulo theories



## ASP solving process modulo theories



## Architecture of clasp



## Architecture of clasp



## Conflict-driven constraint learning modulo theories

(I) initialize // register theory propagators and initialize watches
loop
propagate completion, loop, and recorded nogoods // deterministically assign literals
if no conflict then
if all variables assigned then
(C) if some $\delta \in \Delta_{T}$ is violated for $T \in \mathbb{T}$ then record $\delta \quad / /$ theory propagator's check else return variable assignment // T-stable model found else
(P) propagate theories $T \in \mathbb{T}$ // theory propagators may record theory nogoods if no nogood recorded then decide // non-deterministically assign some literal
else
if top-level conflict then return unsatisfiable
else
analyze
backjump
// resolve conflict and record a conflict constraint
// undo assignments until conflict constraint is unit

## Propagator interface



## The dot propagator

```
#script (python)
import sys
import time
class Propagator:
 def init(self, init):
 self.sleep = .1
 for atom in init.symbolic_atoms:
 init.add_watch(init.solver_literal(atom.literal))
 def propagate(self, ctl, changes):
 for l in changes:
 sys.stdout.write(".")
 sys.stdout.flush()
 time.sleep(self.sleep)
 return True
 def undo(self, solver_id, assign, undo):
 for l in undo:
 sys.stdout.write("\b \b")
 sys.stdout.flush()
 time.sleep(self.sleep)
def main(prg):
 prg.register_propagator(Propagator())
 prg.ground([("base", [])])
 prg.solve()
 sys.stdout.write("\n")
```

\#end.

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

## Outline

52 Theory language
53 I ow-level semantics
54 Intermediate Format
55 Theory propagation
56 Experiments
57 Acyclicity checking
58 Constraint Answer Set Programming

## Difference logic propagation

Problem	\#	ASP		ASP modulo $D L$ (stateless)definedexternal				ASP modulo DL (stateful) defined external			
		T	TO								
Flow shop	120	569	110	283	40	382	70	177	30	281	50
Job shop	80	600	80	600	80	600	80	37	0	43	0
Open shop	60	405	40	214	20	213	20	2	0	2	0
Total	260	525	230	366	140	398	170	72	30	109	50

$\square$ only non-strict interpretation of theory atoms

- defined versus external amounts to the difference between
- \&diff \{ end(T)-beg(T) \} <= D :- duration(T,D).

$$
\text { :- duration(T,D), not \&diff \{ end(T)-beg(T) \} <= D. }
$$

propagation
stateless Bellman-Ford algorithm
stateful Cotton-Maler algorithm
\# Potassco

## Difference logic propagation

Problem	\#	ASP		ASP modulo $D L$ (stateless)definedexternal				ASP modulo DL (stateful) defined $\mid$ external			
		T	TO								
Flow shop	120	569	110	283	40	382	70	177	30	281	50
Job shop	80	600	80	600	80	600	80	37	0	43	0
Open shop	60	405	40	214	20	213	20	2	0	2	0
Total	260	525	230	366	140	398	170	72	30	109	50

- only non-strict interpretation of theory atoms
defined versus external amounts to the difference between
- \&diff \{ end(T)-beg(T) \} <= D :- duration(T,D).
- :- duration(T,D), not \&diff $\{\operatorname{end}(T)-\operatorname{beg}(T)\}<=D$.
- propagation
- stateless Bellman-Ford algorithm
- stateful Cotton-Maler algorithm
\# Potassco


## Difference logic propagation

Problem	\#	ASP		ASP modulo DL (stateless) defined ${ }^{\text {external }}$				ASP modulo DL (stateful) defined $\mid$ external			
		T	TO								
Flow shop	120	569	110	283	40	382	70	177	30	281	50
Job shop	80	600	80	600	80	600	80	37	0	43	0
Open shop	60	405	40	214	20	213	20	2	0	2	0
Total	260	525	230	366	140	398	170	72	30	109	50

- only non-strict interpretation of theory atoms
- defined versus external amounts to the difference between
- \&diff \{ end(T)-beg(T) \} <= D :- duration(T,D).
- :- duration(T,D), not \&diff \{ end(T)-beg(T) \} <= D.
propagation
- stateless Bellman-Ford algorithm
- stateful Cotton-Maler algorithm

Torsten Schaub (KRR@UP)

## Difference logic propagation

Problem	\#	ASP		ASP modulo DL (stateless) defined ${ }^{\text {d }}$				ASP modulo DL (stateful) defined $\mid$ external			
		T	TO								
Flow shop	120	569	110	283	40	382	70	177	30	281	50
Job shop	80	600	80	600	80	600	80	37	0	43	0
Open shop	60	405	40	214	20	213	20	2	0	2	0
Total	260	525	230	366	140	398	170	72	30	109	50

- only non-strict interpretation of theory atoms
- defined versus external amounts to the difference between
- \&diff \{ end(T)-beg(T) \} <= D :- duration(T,D).
- :- duration(T,D), not \&diff \{ end(T)-beg(T) \} <= D.
- propagation
- stateless Bellman-Ford algorithm
- stateful Cotton-Maler algorithm

Torsten Schaub (KRR@UP)

## Difference logic propagation

Problem	\#	ASP		ASP modulo DL (stateless) defined $\mid$ external				ASP modulo DL (stateful) defined $\mid$ external			
		T	TO								
Flow shop	120	569	110	283	40	382	70	177	30	281	50
Job shop	80	600	80	600	80	600	80	37	0	43	0
Open shop	60	405	40	214	20	213	20	2	0	2	0
Total	260	525	230	366	140	398	170	72	30	109	50

- only non-strict interpretation of theory atoms
- defined versus external amounts to the difference between

■ \&diff \{ end(T)-beg(T) \} <= D :- duration(T,D).

- :- duration(T,D), not \&diff \{ end(T)-beg(T) \} <= D.
- propagation
- stateless Bellman-Ford algorithm
- stateful Cotton-Maler algorithm


## Outline

52 Theory language
53 I ow-level semantics
54 Intermediate Format
55 Theory propagation
56 Experiments
57 Acyclicity checking
58 Constraint Answer Set Programming

## Builtin acyclicity checking

- Edge statement

$$
\begin{equation*}
\text { \#edge }(u, v): l_{1}, \ldots, I_{n} \text {. } \tag{3}
\end{equation*}
$$

A set $X$ of atoms is an acyclic stable of a logic program $P$, if $1 X$ is a stable model of $P$ and 2 the graph

$$
\begin{aligned}
& \quad\left(\left\{u, v \mid X \models I_{1}, \ldots, I_{n},(3) \in P\right\},\left\{(u, v) \mid X \models I_{1}, \ldots, I_{n},(3) \in P\right\}\right) \\
& \text { is acyclic }
\end{aligned}
$$

## Builtin acyclicity checking

- Edge statement

$$
\begin{equation*}
\text { \#edge }(u, v): I_{1}, \ldots, I_{n} \text {. } \tag{3}
\end{equation*}
$$

- A set $X$ of atoms is an acyclic stable of a logic program $P$, if
$1 X$ is a stable model of $P$ and
2 the graph

$$
\left(\left\{u, v \mid X \models I_{1}, \ldots, I_{n},(3) \in P\right\},\left\{(u, v) \mid X \models I_{1}, \ldots, I_{n},(3) \in P\right\}\right)
$$

is acyclic

## Outline

52 Theory language
53 I ow-level semantics
54 Intermediate Format
55 Theory propagation
56 Fxneriments
57 Acyclicity checking

58 Constraint Answer Set Programming

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

## Constraint Satisfaction Problem

- A constraint satisfaction problem (CSP) consists of
- a set $V$ of variables,
- a set $D$ of domains, and
- a set $C$ of constraints


## such that

- each variable $v \in V$ has an associated domain $\operatorname{dom}(v) \in D$;
- a constraint $c$ is a pair $(S, R)$ consisting of a $k$-ary relation $R$ on a vector $S \subseteq V^{k}$ of variables, called the scope of $R$

$$
\text { For } S=\left(v_{1}, \ldots, v_{k}\right) \text {, we have } R \subseteq \operatorname{dom}\left(v_{1}\right) \times \cdots \times \operatorname{dom}\left(v_{k}\right)
$$

## Constraint Satisfaction Problem

- A constraint satisfaction problem (CSP) consists of
- a set $V$ of variables,
- a set $D$ of domains, and
- a set $C$ of constraints
such that
- each variable $v \in V$ has an associated domain $\operatorname{dom}(v) \in D$;
- a constraint $c$ is a pair $(S, R)$ consisting of a $k$-ary relation $R$ on a vector $S \subseteq V^{k}$ of variables, called the scope of $R$

$$
\text { For } S=\left(v_{1}, \ldots, v_{k}\right) \text {, we have } R \subseteq \operatorname{dom}\left(v_{1}\right) \times \cdots \times \operatorname{dom}\left(v_{k}\right)
$$

## Constraint Satisfaction Problem

- A constraint satisfaction problem (CSP) consists of
- a set $V$ of variables,
- a set $D$ of domains, and
- a set $C$ of constraints
such that
- each variable $v \in V$ has an associated domain $\operatorname{dom}(v) \in D$;
- a constraint $c$ is a pair $(S, R)$ consisting of a $k$-ary relation $R$ on a vector $S \subseteq V^{k}$ of variables, called the scope of $R$
- Note For $S=\left(v_{1}, \ldots, v_{k}\right)$, we have $R \subseteq \operatorname{dom}\left(v_{1}\right) \times \cdots \times \operatorname{dom}\left(v_{k}\right)$


## Example

	$s$	$e$	$n$	$d$
+	$m$	$o$	$r$	$e$
$m$	$o$	$n$	$e$	$y$

Each letter corresponds exactly to one digit and all variables have to be pairwisely distinct

```
\(V=\{s, e, n, d, m, o, r, y\}\)
\(D=\{\operatorname{dom}(v)=\{0, \ldots, 9\} \mid v \in V\}\)
\(C=\{(\vec{V}, \quad\) allDistinct \((V))\),
 \((\vec{V}, \quad s \times 1000+e \times 100+n \times 10+d+\)
 \(m \times 1000+o \times 100+r \times 10+e==\)
 \(m \times 10000+o \times 1000+n \times 100+e \times 10+y)\),
 \(((m), m==1)\}\)
```


## Example

	$s$	$e$	$n$	$d$
+	$m$	$o$	$r$	$e$
$m$	$o$	$n$	$e$	$y$

Each letter corresponds exactly to one digit and all variables have to be pairwisely distinct

$$
\begin{aligned}
V= & \{s, e, n, d, m, o, r, y\} \\
D= & \{\operatorname{dom}(v)=\{0, \ldots, 9\} \mid v \in V\} \\
C= & \{(\vec{V}, \quad \text { allDistinct }(V)), \\
& \left(\vec{V}, \quad \begin{array}{l}
s \times 1000+e \times 100+n \times 10+d+ \\
\\
\\
\\
\\
\\
\\
\\
((m \times 1000+o \times 100+r \times 10+e== \\
\\
m=1)\}
\end{array}\right.
\end{aligned}
$$

## Example

$$
\begin{array}{lllll} 
& \mathrm{s} & \mathrm{e} & \mathrm{n} & \mathrm{~d} \\
+ & \mathrm{m} & \mathrm{o} & \mathrm{r} & \mathrm{e}
\end{array} \begin{aligned}
& \text { Each letter corresponds } \\
& \mathrm{m} \\
& \mathrm{exactly} \text { to one digit and } \\
& \text { all variables have to be } \\
& \text { pairwisely distinct }
\end{aligned}
$$

## Constraint satisfaction problem

- Notation We use $S(c)=S$ and $R(c)=R$ to access the scope and the relation of a constraint $c=(S, R)$

For an assignment $A: V \rightarrow \bigcup_{v \in V} \operatorname{dom}(v)$ and a constraint $(S, R)$ with scope $S=\left(v_{1}, \ldots, v_{k}\right)$, define

$$
\operatorname{sat}_{C}(A)=\{c \in C \mid A(S(c)) \in R(c)\}
$$

where $A(S)=\left(A\left(v_{1}\right), \ldots, A\left(v_{k}\right)\right)$

## Constraint satisfaction problem

- Notation We use $S(c)=S$ and $R(c)=R$ to access the scope and the relation of a constraint $c=(S, R)$
- For an assignment $A: V \rightarrow \bigcup_{v \in V} \operatorname{dom}(v)$ and a constraint $(S, R)$ with scope $S=\left(v_{1}, \ldots, v_{k}\right)$, define

$$
\operatorname{sat}_{c}(A)=\{c \in C \mid A(S(c)) \in R(c)\}
$$

where $A(S)=\left(A\left(v_{1}\right), \ldots, A\left(v_{k}\right)\right)$

## Constraint Answer Set Programming

- A constraint logic program $P$ is a logic program over an extended alphabet $\mathcal{A} \cup \mathcal{C}$ where
- $\mathcal{A}$ is a set of regular atoms and
- $\mathcal{C}$ is a set of constraint atoms, such that $h(r) \in \mathcal{A}$ for each $r \in P$
- Given a set of literals $B$ and some set $\mathcal{B}$ of atoms, we define $\left.B\right|_{\mathcal{B}}=\left(B^{+} \cap \mathcal{B}\right) \cup\left\{\sim a \mid a \in B^{-} \cap \mathcal{B}\right\}$


## Constraint Answer Set Programming

- A constraint logic program $P$ is a logic program over an extended alphabet $\mathcal{A} \cup \mathcal{C}$ where
- $\mathcal{A}$ is a set of regular atoms and
- $\mathcal{C}$ is a set of constraint atoms, such that $h(r) \in \mathcal{A}$ for each $r \in P$
- Given a set of literals $B$ and some set $\mathcal{B}$ of atoms, we define

$$
\left.B\right|_{\mathcal{B}}=\left(B^{+} \cap \mathcal{B}\right) \cup\left\{\sim a \mid a \in B^{-} \cap \mathcal{B}\right\}
$$

## Constraint Answer Set Programming

- We identify constraint atoms with constraints via a function

$$
\gamma: \mathcal{C} \rightarrow \mathcal{C}
$$

- Furthermore, $\gamma(Y)=\{\gamma(c) \mid c \in Y\}$ for any $Y \subseteq \mathcal{C}$
- Note Unlike regular atoms $\mathcal{A}$, constraint atoms $\mathcal{C}$ are not subject to the unique names assumption, eg.

$$
\gamma(x<y)=\gamma(((-y-1) \leq-(x+1)) \wedge(x \neq y))
$$

A constraint logic program $P$ is associated with a CSP as follows
$\square C[P]=\gamma(A(P) \cap C)$,

- $V[P]$ is obtained from the constraint scopes in $C[P]$,
- $D[P]$ is provided by a declaration

Torsten Schaub (KRR@UP)

## Constraint Answer Set Programming

- We identify constraint atoms with constraints via a function

$$
\gamma: \mathcal{C} \rightarrow \mathcal{C}
$$

- Furthermore, $\gamma(Y)=\{\gamma(c) \mid c \in Y\}$ for any $Y \subseteq \mathcal{C}$
- Note Unlike regular atoms $\mathcal{A}$, constraint atoms $\mathcal{C}$ are not subject to the unique names assumption, eg.

$$
\gamma(x<y)=\gamma(((-y-1) \leq-(x+1)) \wedge(x \neq y))
$$

A constraint logic program $P$ is associated with a CSP as follows
$\square C[P]=\gamma(A(P) \cap C)$,

- $V[P]$ is obtained from the constraint scopes in $C[P]$,
$\square[P]$ is provided by a declaration
Torsten Schaub (KRR@UP)


## Constraint Answer Set Programming

- We identify constraint atoms with constraints via a function

$$
\gamma: \mathcal{C} \rightarrow C
$$

- Furthermore, $\gamma(Y)=\{\gamma(c) \mid c \in Y\}$ for any $Y \subseteq \mathcal{C}$
- Note Unlike regular atoms $\mathcal{A}$, constraint atoms $\mathcal{C}$ are not subject to the unique names assumption, eg.

$$
\gamma(x<y)=\gamma(((-y-1) \leq-(x+1)) \wedge(x \neq y))
$$

- A constraint logic program $P$ is associated with a CSP as follows
- $C[P]=\gamma(A(P) \cap \mathcal{C})$,
- $V[P]$ is obtained from the constraint scopes in $C[P]$,
- $D[P]$ is provided by a declaration


## Constraint Answer Set Programming

- Let $P$ be a constraint logic program over $\mathcal{A} \cup \mathcal{C}$ and let $A: V[P] \rightarrow D[P]$ be an assignment, define the constraint reduct of as $P$ wrt $A$ as follows

$$
\begin{aligned}
P^{A}=\{h(r) \leftarrow & \left.\operatorname{body}(r)\right|_{\mathcal{A}} \mid r \in P \\
& \gamma\left(\left.\operatorname{body}(r)\right|_{\mathcal{C}^{+}}\right) \subseteq \operatorname{sat}_{C[P]}(A), \\
& \left.\gamma\left(\left.\operatorname{body}(r)\right|_{\mathcal{C}} ^{-}\right) \cap \operatorname{sat}_{C[P]}(A)=\emptyset\right\}
\end{aligned}
$$

- A set $X \subseteq \mathcal{A}$ of (regular) atoms is a constraint answer set of $P$ wrt $A$, if $X$ is an stable model of $P^{A}$.

That is, if $X$ is the $\subseteq$-smallest model of $\left(P^{A}\right)^{X}$

## Constraint Answer Set Programming

- Let $P$ be a constraint logic program over $\mathcal{A} \cup \mathcal{C}$ and let $A: V[P] \rightarrow D[P]$ be an assignment, define the constraint reduct of as $P$ wrt $A$ as follows

$$
\begin{aligned}
P^{A}=\{h(r) \leftarrow & \left.\operatorname{body}(r)\right|_{\mathcal{A}} \mid r \in P \\
& \gamma\left(\operatorname{body}(r) \mathcal{C}^{+}\right) \subseteq \operatorname{sat}_{C[P]}(A), \\
& \left.\gamma\left(\left.\operatorname{body}(r)\right|_{\mathcal{C}} ^{-}\right) \cap \operatorname{sat}_{C[P]}(A)=\emptyset\right\}
\end{aligned}
$$

- A set $X \subseteq \mathcal{A}$ of (regular) atoms is a constraint answer set of $P$ wrt $A$, if $X$ is an stable model of $P^{A}$.

That is, if $X$ is the $\subseteq$-smallest model of $\left(P^{A}\right)^{X}$

## Constraint Answer Set Programming

- Let $P$ be a constraint logic program over $\mathcal{A} \cup \mathcal{C}$ and let $A: V[P] \rightarrow D[P]$ be an assignment, define the constraint reduct of as $P$ wrt $A$ as follows

$$
\begin{aligned}
P^{A}=\{h(r) \leftarrow & \left.\operatorname{body}(r)\right|_{\mathcal{A}} \mid r \in P \\
& \gamma\left(\operatorname{body}(r) \mathcal{C}^{+}\right) \subseteq \operatorname{sat}_{C[P]}(A), \\
& \left.\gamma\left(\left.\operatorname{body}(r)\right|_{\mathcal{C}} ^{-}\right) \cap \operatorname{sat}_{C[P]}(A)=\emptyset\right\}
\end{aligned}
$$

- A set $X \subseteq \mathcal{A}$ of (regular) atoms is a constraint answer set of $P$ wrt $A$, if $X$ is an stable model of $P^{A}$.
- Note That is, if $X$ is the $\subseteq$-smallest model of $\left(P^{A}\right)^{X}$


## Some Constraint Answer Set Programming (CASP) systems

- adsolver
- extension of ASP solver smodels
- clingcon
extension of ASP system clingo (viz. gringo and clasp) lazy approach
- aspartame
translational approach (independent of ASP system) eager approach
aspmt, dlvhex, ezcsp, gasp, inca, ...


## Some Constraint Answer Set Programming (CASP) systems

- adsolver
- extension of ASP solver smodels
- clingcon
- extension of ASP system clingo (viz. gringo and clasp)
- lazy approach
aspartame
translational approach (independent of ASP system)
$\square$ eager approach
- aspmt, dlvhex, ezcsp, gasp, inca, ...


## Some Constraint Answer Set Programming (CASP) systems

■ adsolver

- extension of ASP solver smodels
- clingcon
- extension of ASP system clingo (viz. gringo and clasp)
- lazy approach
- aspartame
- translational approach (independent of ASP system)
- eager approach
- aspmt, dlvhex, ezcsp, gasp, inca, ...

Torsten Schaub (KRR@UP)

## Some Constraint Answer Set Programming (CASP) systems

■ adsolver

- extension of ASP solver smodels
- clingcon
- extension of ASP system clingo (viz. gringo and clasp)
- lazy approach
- aspartame
- translational approach (independent of ASP system)
- eager approach

■ aspmt, dlvhex, ezcsp, gasp, inca, ...

Torsten Schaub (KRR@UP)

## aspartame's eager approach



* based on order-encoding for CSPs

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

## aspartame's eager approach



* based on order-encoding for CSPs


## aspartame's eager approach



* based on order-encoding for CSPs


## clingcon's lazy approach



# - clingcon 1 <br> language extension <br> propagation via gecode <br> conflict minimization 

clingcon 3
language specification
lazy propagation*

## clingcon's lazy approach



- clingcon 1
- language extension
propagation via gecode conflict minimization
clingcon 3
language specification
lazy propagation*


## clingcon's lazy approach



- clingcon 1
- language extension
- propagation via gecode
clingcon 3
- conflict minimization


## clingcon's lazy approach



- clingcon 1
- language extension
- propagation via gecode
conflict minimization
- clingcon 3
language specification
lazy propagation*

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

## clingcon's lazy approach



- clingcon $1+2$
- language extension
- propagation via gecode
- conflict minimization
- clingcon 3
language specification
lazy propagation*


## clingcon's lazy approach



- clingcon $1+2$
- language extension
- propagation via gecode
- conflict minimization
- clingcon 3
- language specification
- lazy propagation*


## clingcon's lazy approach



- clingcon $1+2$
- language extension
- propagation via gecode
- conflict minimization
- clingcon 3
- language specification
- lazy propagation*


## clingcon's lazy approach



- clingcon $1+2$
- language extension
- propagation via gecode
- conflict minimization
- clingcon 3
- language specification
- lazy propagation*


## clingcon's approach



## clingcon instantiates clingo



Torsten Schaub (KRR@UP)

## Heuristic programming: Overview

59 Motivation
60 Heuristically modified ASP
61 Experimental results

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

## Outline

## 59 Motivation

## 60 Heuristically modified ASP

61 Experimental results

## Motivation

- Observation Sometimes it is advantageous to take a more application-oriented approach by including domain-specific information
- domain-specific knowledge can be added for improving propagation
- domain-specific heuristics can be used for making better choices

Incorporation of domain-specific heuristics by extending

- input language and/or solver options for expressing domain-specific heuristics
- solving capacities for integrating domain-specific heuristics


## Motivation

- Observation Sometimes it is advantageous to take a more application-oriented approach by including domain-specific information
- domain-specific knowledge can be added for improving propagation
- domain-specific heuristics can be used for making better choices
- Idea

Incorporation of domain-specific heuristics by extending

- input language and/or solver options for expressing domain-specific heuristics
- solving capacities for integrating domain-specific heuristics


## Motivation

- Observation Sometimes it is advantageous to take a more application-oriented approach by including domain-specific information
- domain-specific knowledge can be added for improving propagation
- domain-specific heuristics can be used for making better choices
- Idea Incorporation of domain-specific heuristics by extending
- input language and/or solver options
for expressing domain-specific heuristics
- solving capacities for integrating domain-specific heuristics


## Basic CDCL decision algorithm

## loop

propagate
// compute deterministic consequences
if no conflict then
if all variables assigned then return variable assignment
else decide // non-deterministically assign some literal
else
if top-level conflict then return unsatisfiable else
analyze // analyze conflict and add a conflict constraint backjump // undo assignments until conflict constraint is unit

## Basic CDCL decision algorithm

## loop

propagate
// compute deterministic consequences
if no conflict then
if all variables assigned then return variable assignment
else decide // non-deterministically assign some literal
else
if top-level conflict then return unsatisfiable else
analyze // analyze conflict and add a conflict constraint backjump // undo assignments until conflict constraint is unit

## Inside decide

- Basic concepts
- Atoms, $\mathcal{A}$
- Assignments, $\mathcal{A}: \mathcal{A} \rightarrow\{\mathbf{T}, \mathbf{F}\}$

$$
A^{\top}=\{a \in \mathcal{A} \mid \mathbf{T} a \in A\} \text { and } A^{\mathbf{F}}=\{a \in \mathcal{A} \mid \mathbf{F} a \in \mathcal{A}\}
$$

- Heuristic functions

$$
h: \mathcal{A} \rightarrow[0,+\infty) \quad \text { and } \quad s: \mathcal{A} \rightarrow\{\mathbf{T}, \mathbf{F}\}
$$

$$
\begin{aligned}
& 1 \quad h(a):=\alpha \times h(a)+\beta(a) \\
& U:=\mathcal{A} \backslash\left(A^{\top} \cup A^{\mathbf{F}}\right) \\
& C:=\operatorname{argmax}_{a \in U} h(a) \\
& a:=\tau(C) \\
& A:=A \cup\{a \mapsto s(a)\}
\end{aligned}
$$

## Inside decide

- Basic concepts
- Atoms, $\mathcal{A}$
- Assignments, $A: \mathcal{A} \rightarrow\{\mathbf{T}, \mathbf{F}\}$

$$
A^{\boldsymbol{T}}=\{a \in \mathcal{A} \mid \mathbf{T} a \in \mathcal{A}\} \text { and } A^{\mathbf{F}}=\{a \in \mathcal{A} \mid \mathbf{F} a \in A\}
$$

$$
h: \mathcal{A} \rightarrow[0,+\infty) \text { and } s: \mathcal{A} \rightarrow\{\mathbf{T}, \mathbf{F}\}
$$

- Algorithmic scheme

```
[1 h(a):= \alpha\timesh(a)+\beta(a)
for each a }\in\mathcal{A
2 U:=\mathcal{A \((A}\mp@subsup{}{}{\top}\cup\mp@subsup{A}{}{F})
3 C:= argmax a\inU h(a)
4 a }:=\tau(C
5 A:= A\cup{a\mapstos(a)}
```


## Inside decide

- Basic concepts
- Atoms, $\mathcal{A}$
- Assignments, $A: \mathcal{A} \rightarrow\{\mathbf{T}, \mathbf{F}\}$

$$
A^{\top}=\{a \in \mathcal{A} \mid \mathbf{T} a \in A\} \text { and } A^{\mathbf{F}}=\{a \in \mathcal{A} \mid \mathbf{F} a \in A\}
$$

- Heuristic functions

$$
h: \mathcal{A} \rightarrow[0,+\infty) \quad \text { and } \quad s: \mathcal{A} \rightarrow\{\mathbf{T}, \mathbf{F}\}
$$

$$
\begin{array}{ll}
1 & h(a):=\alpha \times h(a)+\beta(a) \\
2 & U:=\mathcal{A} \backslash\left(A^{\top} \cup A^{F}\right) \\
3 & C:=\operatorname{argmax}_{a \in U} h(a) \\
4 & a:=\tau(C) \\
5 & A:=A \cup\{a \mapsto s(a)\}
\end{array}
$$

## Inside decide

- Basic concepts
- Atoms, $\mathcal{A}$
- Assignments, $A: \mathcal{A} \rightarrow\{\mathbf{T}, \mathbf{F}\}$

$$
A^{\top}=\{a \in \mathcal{A} \mid \mathbf{T} a \in A\} \text { and } A^{\mathbf{F}}=\{a \in \mathcal{A} \mid \mathbf{F} a \in A\}
$$

- Heuristic functions

$$
h: \mathcal{A} \rightarrow[0,+\infty) \text { and } s: \mathcal{A} \rightarrow\{\mathbf{T}, \mathbf{F}\}
$$

- Algorithmic scheme
$1 h(a):=\alpha \times h(a)+\beta(a)$
$2 U:=\mathcal{A} \backslash\left(A^{\top} \cup A^{F}\right)$
$3 C:=\operatorname{argmax}_{a \in U} h(a)$
$4 a:=\tau(C)$
$5 A:=A \cup\{a \mapsto s(a)\}$


## Outline

## 59 Motivation

## 60 Heuristically modified ASP

## 61 Experimental results

## Heuristic language

- Heuristic directive

$$
\text { \#heuristic a : } l_{1}, \ldots, I_{n} .[k @ p, m]
$$

where

- $a$ is an atom, and $I_{1}, \ldots, I_{n}$ are literals
- $k$ and $p$ are integers
- $m$ is a heuristic modifier
> init for initializing the heuristic value of a with $k$ factor for amplifying the heuristic value of a by factor $k$
> level for ranking all atoms; the rank of $a$ is $k$
> sign for attributing the sign of $k$ as truth value to $a$

\#heuristic occurs(A,T) : action(A), time(T). [T, factor]

## Heuristic language

- Heuristic directive
\#heuristic a : $I_{1}, \ldots, I_{n} .[k @ p, m]$
where
- $a$ is an atom, and $I_{1}, \ldots, I_{n}$ are literals
- $k$ and $p$ are integers
- $m$ is a heuristic modifier
- Heuristic modifiers
init for initializing the heuristic value of a with $k$ factor for amplifying the heuristic value of a by factor $k$
level for ranking all atoms; the rank of $a$ is $k$
sign for attributing the sign of $k$ as truth value to a

```
#heuristic occurs(A,T) : action(A), time(T). [T, factor]
```


## Heuristic language

- Heuristic directive

$$
\text { \#heuristic a : } I_{1}, \ldots, I_{n} \cdot[k @ p, m]
$$

where

- $a$ is an atom, and $I_{1}, \ldots, I_{n}$ are literals
- $k$ and $p$ are integers
- $m$ is a heuristic modifier
- Heuristic modifiers
init for initializing the heuristic value of a with $k$ factor for amplifying the heuristic value of a by factor $k$
level for ranking all atoms; the rank of $a$ is $k$
sign for attributing the sign of $k$ as truth value to a
true/false combine level and sign
\#heuristic occurs(A,T) : action(A), time(T). [T, factor Po


## Heuristic language

- Heuristic directive

$$
\text { \#heuristic a : } l_{1}, \ldots, I_{n} \cdot[k @ p, m]
$$

where

- $a$ is an atom, and $I_{1}, \ldots, I_{n}$ are literals
- $k$ and $p$ are integers
- $m$ is a heuristic modifier
- Heuristic modifiers
init for initializing the heuristic value of a with $k$ factor for amplifying the heuristic value of a by factor $k$ level for ranking all atoms; the rank of $a$ is $k$ sign for attributing the sign of $k$ as truth value to $a$
- Example \#heuristic occurs(A,T) : action(A), time(T). [T, factor]


## Heuristic language

- Heuristic directive

$$
\text { \#heuristic a : } l_{1}, \ldots, I_{n} \cdot[k @ p, m]
$$

where

- $a$ is an atom, and $I_{1}, \ldots, I_{n}$ are literals
- $k$ and $p$ are integers
- $m$ is a heuristic modifier
- Heuristic modifiers
init for initializing the heuristic value of a with $k$ factor for amplifying the heuristic value of a by factor $k$
level for ranking all atoms; the rank of $a$ is $k$
sign for attributing the sign of $k$ as truth value to $a$
- Example
\#heuristic occurs(mv,5) : action(mv), time(5). [5, factor]


## Simple STRIPS planning

```
time(1..k).
holds(P,0) :- init(P).
{ occ(A,T) : action(A) } = 1 :- time(T).
:- occ(A,T), pre(A,F), not holds(F,T-1).
holds(F,T) :- occ(A,T), add(A,F).
holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).
:- query(F), not holds(F,k).
```


## Simple STRIPS planning

```
time(1..k).
holds(P,0) :- init(P).
{ occ(A,T) : action(A) } = 1 :- time(T).
:- occ(A,T), pre(A,F), not holds(F,T-1).
holds(F,T) :- occ(A,T), add(A,F).
holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).
:- query(F), not holds(F,k).
#heuristic occurs(A,T) : action(A), time(T). [2, factor]
```


## Simple STRIPS planning

```
time(1..k).
holds(P,0) :- init(P).
{ occ(A,T) : action(A) } = 1 :- time(T).
:- occ(A,T), pre(A,F), not holds(F,T-1).
holds(F,T) :- occ(A,T), add(A,F).
holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).
:- query(F), not holds(F,k).
#heuristic occurs(A,T) : action(A), time(T). [1, level]
```


## Simple STRIPS planning

```
time(1..k).
holds(P,0) :- init(P).
{ occ(A,T) : action(A) } = 1 :- time(T).
:- occ(A,T), pre(A,F), not holds(F,T-1).
holds(F,T) :- occ(A,T), add(A,F).
holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).
:- query(F), not holds(F,k).
#heuristic occurs(A,T) : action(A), time(T). [T, factor]
```


## Simple STRIPS planning

```
time(1..k).
holds(P,0) :- init(P).
{ occ(A,T) : action(A) } = 1 :- time(T).
:- occ(A,T), pre(A,F), not holds(F,T-1).
holds(F,T) :- occ(A,T), add(A,F).
holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).
:- query(F), not holds(F,k).
#heuristic holds(F,T-1) : holds(F,T). [t-T+1, true]
#heuristic holds(F,T-1) : not holds(F,T) [t-T+1, false]
 fluent(F), time(T).
```


## Heuristic options

■ Alternative for specifying structure-oriented heuristics in clasp

```
--dom-mod=<arg> : Default modification for
 domain heuristic
 <arg>: <mod> [,<pick>]
 <mod> : Modifier
 \(\{1=\) level \(|2=\mathrm{pos}| 3=\operatorname{true} \mid 4=\) neg \(\mid\)
 \(5=\) false \(\mid 6=\) init \(\mid 7=\) factor \(\}\)
 <pick> : Apply <mod> to
 \(\{0=\mathrm{all}|1=\operatorname{scc}| 2=\mathrm{hcc}|4=\mathrm{disj}|\)
 \(8=\min \mid 16=s h o w\}\) atoms
```

Engage heuristic modifications (in both settings!)
--heuristic=Domain

## Heuristic options

■ Alternative for specifying structure-oriented heuristics in clasp

$$
\begin{array}{r}
\text {--dom-mod=<arg> : Default modification for } \\
\text { domain heuristic } \\
\text { <arg>: <mod>[, <pick>] } \\
\text { <mod> : Modifier } \\
\quad\{1=\text { level|2=pos|3=true|4=neg| } \\
5=\text { false|6=init|7=factor\} } \\
\text { <pick> : Apply <mod> to } \\
\text { \{0=all|1=scc|2=hcc|4=disj| } \\
8=\text { min } \mid 16=\text { show atoms }
\end{array}
$$

- Engage heuristic modifications (in both settings!)
--heuristic=Domain


## Heuristic options

■ Alternative for specifying structure-oriented heuristics in clasp

$$
\left.\left.\begin{array}{rl}
\text {--dom-mod=<arg> : Default modification for } \\
& \text { domain heuristic }
\end{array}\right\} \begin{array}{rl}
\text { <arg>: <mod>[, <pick>] } \\
\text { <mod> }: ~ M o d i f i e r ~
\end{array}\right\}
$$

- Engage heuristic modifications (in both settings!)
--heuristic=Domain


## Inclusion-minimal stable models

- Consider a logic program containing a mimimize statement of form
- \#minimize $\left\{a_{1}, \ldots, a_{n}\right\}$
- Computing one inclusion-minimal stable model can be done either via
\#heuristic $a_{i}[1, f a l s e]$ for $i=1, \ldots, n$, or
- --dom-mod=5,16
- Computing all inclusion-minimal stable model can be done
- by adding --enum-mod=domRec to the two options


## Inclusion-minimal stable models

- Consider a logic program containing a mimimize statement of form
- \#minimize $\left\{a_{1}, \ldots, a_{n}\right\}$
- Computing one inclusion-minimal stable model can be done either via
- \#heuristic $a_{i}[1, \mathrm{false}] . \quad$ for $i=1, \ldots, n$, or
- --dom-mod=5,16
- Computing all inclusion-minimal stable model can be done
- by adding --enum-mod=domRec to the two options


## Inclusion-minimal stable models

- Consider a logic program containing a mimimize statement of form
- \#minimize $\left\{a_{1}, \ldots, a_{n}\right\}$
- Computing one inclusion-minimal stable model can be done either via
- \#heuristic $a_{i}[1, \mathrm{false}]$ for $i=1, \ldots, n$, or
- --dom-mod=5,16
- Computing all inclusion-minimal stable model can be done
- by adding --enum-mod=domRec to the two options


## Heuristic modifications to functions $h$ and $s$

$\square \nu_{a, m}(A)$ - "value for modifier $m$ on atom a wrt assignment $A$ "
trimit and

$$
\begin{aligned}
& d_{0}(a)=\quad \nu_{a, \text { init }}\left(A_{0}\right)+h_{0}(a) \\
& d_{i}(a)=\left\{\begin{aligned}
\nu_{a, \text { factor }}\left(A_{i}\right) \times h_{i}(a) & \text { if } V_{a, \text { factor }}\left(A_{i}\right) \neq \emptyset \\
h_{i}(a) & \text { otherwise }
\end{aligned}\right.
\end{aligned}
$$

$$
t_{i}(a)=\left\{\begin{aligned}
\mathbf{T} & \text { if } \nu_{a, \text { sign }}\left(A_{i}\right)>0 \\
\mathbf{F} & \text { if } \nu_{a, \text { sign }}\left(A_{i}\right)<0 \\
s_{i}(a) & \text { otherwise }
\end{aligned}\right.
$$

- level $\quad \ell_{A_{i}}\left(\mathcal{A}^{\prime}\right)=\operatorname{argmax}_{a \in \mathcal{A}^{\prime}} \nu_{a, \text { level }}\left(A_{i}\right) \quad \mathcal{A}^{\prime} \subseteq \mathcal{A}$


## Heuristic modifications to functions $h$ and $s$

- $\nu_{a, m}(A)$ - "value for modifier $m$ on atom a wrt assignment $A$ "
- init and

$$
\begin{aligned}
& d_{0}(a)=\quad \nu_{a, \text { init }}\left(A_{0}\right)+h_{0}(a) \\
& d_{i}(a)=\left\{\begin{aligned}
\nu_{a, \text { factor }}\left(A_{i}\right) \times h_{i}(a) & \text { if } V_{a, \text { factor }}\left(A_{i}\right) \neq \emptyset \\
h_{i}(a) & \text { otherwise }
\end{aligned}\right.
\end{aligned}
$$

$$
t_{i}(a)=\left\{\begin{aligned}
\mathbf{T} & \text { if } \nu_{a, \text { sign }}\left(A_{i}\right)>0 \\
\mathbf{F} & \text { if } \nu_{a, \text { sign }}\left(A_{i}\right)<0 \\
s_{i}(a) & \text { otherwise }
\end{aligned}\right.
$$

- level $\quad \ell_{A_{i}}\left(\mathcal{A}^{\prime}\right)=\operatorname{argmax}_{a \in \mathcal{A}^{\prime} \nu_{a, \text { level }}}\left(A_{i}\right) \quad \mathcal{A}^{\prime} \subseteq \mathcal{A}$


## Heuristic modifications to functions $h$ and $s$

- $\nu_{a, m}(A)$ - "value for modifier $m$ on atom a wrt assignment $A$ "
- init and factor

$$
\begin{aligned}
& d_{0}(a)=\begin{aligned}
& \nu_{a, \text { init }}\left(A_{0}\right)+h_{0}(a) \\
& d_{i}(a)=\left\{\begin{aligned}
\nu_{a, \text { factor }}\left(A_{i}\right) \times h_{i}(a) & \text { if } V_{a, \text { factor }}\left(A_{i}\right) \neq \emptyset \\
h_{i}(a) & \text { otherwise }
\end{aligned}\right.
\end{aligned} .
\end{aligned}
$$

- sign

$$
t_{i}(a)=\left\{\begin{aligned}
\mathbf{T} & \text { if } \nu_{a, \operatorname{sign}}\left(A_{i}\right)>0 \\
\mathbf{F} & \text { if } \nu_{a, \text { sign }}\left(A_{i}\right)<0 \\
s_{i}(a) & \text { otherwise }
\end{aligned}\right.
$$

■ level $\quad \ell_{A_{i}}\left(\mathcal{A}^{\prime}\right)=\operatorname{argmax}_{a \in \mathcal{A}^{\prime}} \nu_{a, \text { level }}\left(A_{i}\right) \quad \mathcal{A}^{\prime} \subseteq \mathcal{A}$

## Inside decide, heuristically modified

$$
\begin{aligned}
& 0 h(a):=d(a) \\
& 11 h(a):=\alpha \times h(a)+\beta(a) \\
& \text { 2 } U:=\ell_{A}\left(\mathcal{A} \backslash\left(A^{\top} \cup A^{F}\right)\right) \\
& \text { 3 } C:=\operatorname{argmax}_{a \in U} d(a) \\
& 4 \quad a:=\tau(C) \\
& 5 A:=A \cup\{a \mapsto t(a)\}
\end{aligned}
$$

## for each $a \in \mathcal{A}$

for each $a \in \mathcal{A}$

## Inside decide, heuristically modified

$0 h(a):=d(a)$
$1 h(a):=\alpha \times h(a)+\beta(a)$
$2 U:=\ell_{A}\left(\mathcal{A} \backslash\left(A^{\top} \cup A^{\mathbf{F}}\right)\right)$
$3 C:=\operatorname{argmax}_{a \in U} d(a)$
4 a $:=\tau(C)$
$5 A:=A \cup\{a \mapsto t(a)\}$
for each $a \in \mathcal{A}$ for each $a \in \mathcal{A}$

## Inside decide, heuristically modified

$0 h(a):=d(a)$
$1 h(a):=\alpha \times h(a)+\beta(a)$
$2 U:=\ell_{A}\left(\mathcal{A} \backslash\left(A^{\top} \cup A^{\mathbf{F}}\right)\right)$
$3 C:=\operatorname{argmax}_{a \in U} d(a)$
4 a $:=\tau(C)$
$5 A:=A \cup\{a \mapsto t(a)\}$
for each $a \in \mathcal{A}$ for each $a \in \mathcal{A}$

## Outline

## 59 Motivation

## 60 Heuristically-modified ASP

## 61 Experimental results

## Abductive problems with optimization

Setting	Diagnosis	Expansion	Repair (H) Repair (S)		
base configuratio	111.1s (115)	161.5s (100)	101.3s (113)	33.3s (	27)
sign, -1	324.5s (407)	7.6 s ( 3)	8.45 ( 5)	3.1s	0)
sign,-1 factor,2	310.1s (387)	7.4s ( 2)	3.5 s ( 0)	3.2	1)
sign,-1 factor,8	305.9s (376)	7.7s ( 2)	3.1s ( 0)	2.9s	0)
sign,-1 level,1	76.1 s ( 83)	6.6s ( 2)	0.8s ( 0)	2.2 s	1)
level,1	77.3s ( 86)	12.9s ( 5)	3.4s ( 0)	2.1s (	)

(abducibles subject to optimization via \#minimize statements)

## Abductive problems with optimization

Setting	Diagnosis	$\begin{aligned} & \text { Expansion } \\ & \hline \text { 161.5s (100) } \end{aligned}$	Repair (H) Repair (S)		
base configuratio	111.1s (115)		101.3s (113)	33.3s (	27)
sign, -1	324.5s (407)	7.6 s ( 3)	8.45 ( 5)	3.1s	0)
sign,-1 factor,2	310.1s (387)	7.4 s ( 2)	0)	3.2	)
sign, -1 factor, 8	305.9s (376)	7.7s ( 2)	3.1s ( 0)	2.9s	0)
sign,-1 level,1	76.1s ( 83)	6.6 s ( 2)	0.8s ( 0)	2.2	)
level,1	77.3s ( 86)	12.9s ( 5)	3.4s ( 0)	2.1s (	)

(abducibles subject to optimization via \#minimize statements)

## Planning benchmarks

```
#heuristic holds(F,T-1) : holds(F,T). [t-T+1, true]
#heuristic holds(F,T-1) : not holds(F,T), fluent(F),time(T).
[t-T+1, false]
```

Problem	base configuration		\#heuristic		base config. (SAT)	\#heu. (SAT)		
Blocks'00	134.4 s	$(180 / 61)$	$9.2 s$	$(239 / 3)$	163.2 s	$(59)$	2.6 s	$(0)$
Elevator'00	3.1 s	$(279 / 0)$	0.0 s	$(279 / 0)$	3.4 s	$(0)$	0.0 s	$(0)$
Freecell'00	288.7 s	$(147 / 115)$	184.2 s	$(194 / 74)$	226.4 s	$(47)$	52.0 s	$(0)$
Logistics'00	145.8 s	$(148 / 61)$	115.3 s	$(168 / 52)$	113.9 s	$(23)$	15.5 s	$(3)$
Depots'02	400.3 s	$(51 / 184)$	297.4 s	$(115 / 135)$	389.0 s	$(64)$	61.6 s	$(0)$
Driverlog'02	308.3 s	$(108 / 143)$	189.6 s	$(169 / 92)$	245.8 s	$(61)$	6.1 s	$(0)$
Rovers'02	245.8 s	$(138 / 112)$	165.7 s	$(179 / 79)$	162.9 s	$(41)$	5.7 s	$(0)$
Satellite'02	398.4 s	$(73 / 186)$	229.9 s	$(155 / 106)$	364.6 s	$(82)$	30.8 s	$(0)$
Zenotravel'02	350.7 s	$(101 / 169)$	239.0 s	$(154 / 116)$	224.5 s	$(53)$	6.3 s	$(0)$
Total	$252.8 \mathrm{~s}(1225 / 1031)$	$158.9 \mathrm{~s}(1652 / 657)$	187.2 s	$(430)$	17.1 s	$(3)$		

## Planning benchmarks

```
#heuristic holds(F,T-1) : holds(F,T). [t-T+1, true]
#heuristic holds(F,T-1) : not holds(F,T), fluent(F),time(T).
[t-T+1, false]
```

Problem	base configuration	\#heuristic		base config. (SAT)	\#heu. (SAT)			
Blocks'00	$134.4 s$	$(180 / 61)$	$9.2 s$	$(239 / 3)$	$163.2 s$	$(59)$	$2.6 s$	$(0)$
Elevator'00	$3.1 s$	$(279 / 0)$	$0.0 s$	$(279 / 0)$	$3.4 s$	$(0)$	$0.0 s$	$(0)$
Freecell'00	$288.7 s$	$(147 / 115)$	$184.2 s$	$(194 / 74)$	$226.4 s$	$(47)$	$52.0 s$	$(0)$
Logistics'00	$145.8 s$	$(148 / 61)$	$115.3 s$	$(168 / 52)$	$113.9 s$	$(23)$	$15.5 s$	$(3)$
Depots'02	$400.3 s$	$(51 / 184)$	$297.4 s$	$(115 / 135)$	$389.0 s$	$(64)$	$61.6 s$	$(0)$
Driverlog'02	$308.3 s$	$(108 / 143)$	$189.6 s$	$(169 / 92)$	$245.8 s$	$(61)$	$6.1 s$	$(0)$
Rovers'02	$245.8 s$	$(138 / 112)$	$165.7 s$	$(179 / 79)$	$162.9 s$	$(41)$	$5.7 s$	$(0)$
Satellite'02	$398.4 s$	$(73 / 186)$	$229.9 s$	$(155 / 106)$	$364.6 s$	$(82)$	$30.8 s$	$(0)$
Zenotravel'02	$350.7 s$	$(101 / 169)$	$239.0 s$	$(154 / 116)$	$224.5 s$	$(53)$	$6.3 s$	$(0)$
Total	$252.8 s$	$(1225 / 1031)$	$158.9 s$	$(1652 / 657)$	$187.2 s$	$(430)$	$17.1 s$	$(3)$

## Planning benchmarks

```
#heuristic holds(F,T-1) : holds(F,T). [t-T+1, true]
#heuristic holds(F,T-1) : not holds(F,T), fluent(F),time(T).
[t-T+1, false]
```

Problem	base configuration	\#heuristic		base config. (SAT)	\#heu. (SAT)			
Blocks'00	$134.4 s$	$(180 / 61)$	$9.2 s$	$(239 / 3)$	$163.2 s$	$(59)$	$2.6 s$	$(0)$
Elevator'00	$3.1 s$	$(279 / 0)$	$0.0 s$	$(279 / 0)$	$3.4 s$	$(0)$	$0.0 s$	$(0)$
Freecell'00	$288.7 s$	$(147 / 115)$	$184.2 s$	$(194 / 74)$	$226.4 s$	$(47)$	$52.0 s$	$(0)$
Logistics'00	$145.8 s$	$(148 / 61)$	$115.3 s$	$(168 / 52)$	$113.9 s$	$(23)$	$15.5 s$	$(3)$
Depots'02	$400.3 s$	$(51 / 184)$	$297.4 s$	$(115 / 135)$	$389.0 s$	$(64)$	$61.6 s$	$(0)$
Driverlog'02	$308.3 s$	$(108 / 143)$	$189.6 s$	$(169 / 92)$	$245.8 s$	$(61)$	$6.1 s$	$(0)$
Rovers'02	$245.8 s$	$(138 / 112)$	$165.7 s$	$(179 / 79)$	$162.9 s$	$(41)$	$5.7 s$	$(0)$
Satellite'02	$398.4 s$	$(73 / 186)$	$229.9 s$	$(155 / 106)$	$364.6 s$	$(82)$	$30.8 s$	$(0)$
Zenotravel'02	$350.7 s$	$(101 / 169)$	$239.0 s$	$(154 / 116)$	$224.5 s$	$(53)$	$6.3 s$	$(0)$
Total	$252.8 s$	$(1225 / 1031)$	$158.9 s$	$(1652 / 657)$	$187.2 s$	$(430)$	$17.1 s$	$(3)$

## Systems: Overview

62 Potassco<br>63 gringo<br>64 clasp<br>65 clingo<br>66 clingcon<br>67 claspfolio<br>68 clavis

## Outline

## 62 Potassco

63 gringo
64 clasp
65 clingo
66 clingcon
67 claspfolio
68 clavis

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice

## potassco.org

Potassco, the Potsdam Answer Set Solving Collection, bundles tools for ASP developed at the University of Potsdam, for instance:

- Grounder gringo, lingo,
- Solver clasp, claspfolio, claspar, aspeed
- Grounder -Solver Clingo, Clingcon, ROSoClingo
$\square$ Further Tools aspartame, aspcud, aspic, asprin, claspre, clavis, coala, fimo, insight, metasp, plasp, piclasp, etc
asparagus.cs.uni-potsdam.de
potassco.org/teaching

Torsten Schaub (KRR@UP)

## potassco.org

Potassco, the Potsdam Answer Set Solving Collection, bundles tools for ASP developed at the University of Potsdam, for instance:

■ Grounder gringo, lingo,

- Solver clasp, claspfolio, claspar, aspeed
- Grounder+Solver Clingo, Clingcon, ROSoClingo

■ Further Tools aspartame, aspcud, aspic, asprin, claspre, clavis, coala, fimo, insight, metasp, plasp, piclasp, etc

- Benchmark repository
asparagus.cs.uni-potsdam.de
potassco.org/teaching


## potassco.org

Potassco, the Potsdam Answer Set Solving Collection, bundles tools for ASP developed at the University of Potsdam, for instance:

■ Grounder gringo, lingo,

- Solver clasp, claspfolio, claspar, aspeed
- Grounder+Solver Clingo, Clingcon, ROSoClingo

■ Further Tools aspartame, aspcud, aspic, asprin, claspre, clavis, coala, fimo, insight, metasp, plasp, piclasp, etc

- Benchmark repository asparagus.cs.uni-potsdam.de

■ Teaching material potassco.org/teaching

## Outline

## 62 Potassco

63 gringo
64 clasp
65 clingo
66 clingcor
67 claspfolio
68 clavis

## gringo

- Accepts safe programs with aggregates
- Tolerates unrestricted use of function symbols (as long as it yields a finite ground instantiation :)
- Expressive power of a Turing machine
- Basic architecture of gringo:



## Selected directives

- Output
\#show. \#show $p / n$. \#show $t: I_{1}, \ldots, I_{n}$.
- Projection

$$
\text { \#project p/n. \#project a : } l_{1}, \ldots, I_{n} \text {. }
$$

$\square$ Heuristics
\#heuristic a : $I_{1}, \ldots, I_{n}$. $[k @ p, m]$
Acyclicity


Torsten Schaub (KRR@UP)

## Selected directives

- Output
\#show. \#show $p / n$. \#show $t: I_{1}, \ldots, I_{n}$.
- Projection
\#project p/n. \#project a : $l_{1}, \ldots, I_{n}$.
- Heuristics
\#heuristic a : $I_{1}, \ldots, I_{n} .[k @ p, m]$
Acyclicity

```
#edge (u,v) : / \, ,., 㫾.
```

Torsten Schaub (KRR@UP)

## Selected directives

- Output
\#show. \#show p/n. \#show $t: l_{1}, \ldots, I_{n}$.
- Projection
\#project p/n. \#project a : $l_{1}, \ldots, I_{n}$.
- Heuristics
\#heuristic a : $I_{1}, \ldots, I_{n}$. $[k @ p, m]$
- Acyclicity
\#edge $(u, v): l_{1}, \ldots, I_{n}$.

Torsten Schaub (KRR@UP)

## Selected directives

- Output
\#show. \#show $p / n$. \#show $t: l_{1}, \ldots, I_{n}$.
- Projection

$$
\text { \#project p/n. \#project a : } l_{1}, \ldots, I_{n} \text {. }
$$

- Heuristics

$$
\text { \#heuristic a : } l_{1}, \ldots, I_{n} .[k @ p, m]
$$

- Acyclicity

$$
\text { \#edge }(u, v): I_{1}, \ldots, I_{n} \text {. }
$$

## Outline

## 62 Potassco

63 gringo
64 clasp
65 clingo
66 clingcon
67 clasnfolio
68 clavis

## Outline

62 Potassco

63 gringo
64 clasp

- Features
- Parallel solving
- Configuration
- Disjunctive solving

65 clingo
66 clingcon
67 claspfolio
68 clavis

Torsten Schaub (KRR@UP)

## clasp

- clasp is a native ASP solver combining conflict-driven search with sophisticated reasoning techniques:
- advanced preprocessing, including equivalence reasoning
- lookback-based decision heuristics
- restart policies
- nogood deletion
- progress saving
- dedicated data structures for binary and ternary nogoods
- lazy data structures (watched literals) for long nogoods
- dedicated data structures for cardinality and weight constraints
- lazy unfounded set checking based on "source pointers"
- tight integration of unit propagation and unfounded set checking
- various reasoning modes
- parallel search
-...


## clasp

- clasp is a native ASP solver combining conflict-driven search with sophisticated reasoning techniques:
- advanced preprocessing, including equivalence reasoning
- lookback-based decision heuristics
- restart policies
- nogood deletion
- progress saving
- dedicated data structures for binary and ternary nogoods
- lazy data structures (watched literals) for long nogoods
- dedicated data structures for cardinality and weight constraints
- lazy unfounded set checking based on "source pointers"
- tight integration of unit propagation and unfounded set checking
- various reasoning modes
- parallel search
-...


## clasp

- clasp is a native ASP solver combining conflict-driven search with sophisticated reasoning techniques:
- advanced preprocessing, including equivalence reasoning
- lookback-based decision heuristics
- restart policies
nogood deletion
progress saving
- dedicated data structures for binary and ternary nogoods
- lazy data structures (watched literals) for long nogoods
$\square$ dedicated data structures for cardinality and weight constraints
- lazy unfounded set checking based on "source pointers"
- tight integration of unit propagation and unfounded set checking
- various reasoning modes
- parallel search

■ ...

## Reasoning modes of clasp

■ Beyond deciding (stable) model existence, clasp allows for:

- Optimization
- Enumeration (without solution recording)
- Projective enumeration
- Intersection and Union (without solution recording) (linear solution computation)
- and combinations thereof
- clasp allows for
- ASP solving (smodels format)
- MaxSAT and SAT solving (extended dimacs format)
- PB solving (opb and wbo format)


## Reasoning modes of clasp

- Beyond deciding (stable) model existence, clasp allows for:
- Optimization
- Enumeration (without solution recording)
- Projective enumeration
- Intersection and Union (without solution recording) (linear solution computation)
- and combinations thereof
- clasp allows for
- ASP solving (smodels format)
- MaxSAT and SAT solving (extended dimacs format)
- PB solving (opb and wbo format)

Torsten Schaub (KRR@UP)

## Outline

62 Potassco
63 gringo
64 clasp

- Features
- Parallel solving
- Configuration
- Disjunctive solving

65 clingo
66 clingcon
67 claspfolio
68 clavis

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

## Parallel search in clasp

- clasp
- pursues a coarse-grained, task-parallel approach to parallel search via shared memory multi-threading
- up to 64 configurable (non-hierarchic) threads
allows for parallel solving via search space splitting and/or competing strategies
- both supported by solver portfolios
features different nogood exchange policies


## Parallel search in clasp

- clasp

■ pursues a coarse-grained, task-parallel approach to parallel search via shared memory multi-threading

- up to 64 configurable (non-hierarchic) threads
allows for parallel solving via search space splitting and/or competing strategies
- both supported by solver portfolios
features different nogood exchange policies


## Parallel search in clasp

- clasp
- pursues a coarse-grained, task-parallel approach to parallel search via shared memory multi-threading
- up to 64 configurable (non-hierarchic) threads
- allows for parallel solving via search space splitting and/or competing strategies

■ both supported by solver portfolios
features different nogood exchange policies

## Parallel search in clasp

- clasp
- pursues a coarse-grained, task-parallel approach to parallel search via shared memory multi-threading
- up to 64 configurable (non-hierarchic) threads
- allows for parallel solving via search space splitting and/or competing strategies
- both supported by solver portfolios
- features different nogood exchange policies


## Sequential CDCL-style solving

## loop

propagate
// deterministically assign literals
if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal
else
if top-level conflict then return unsatisfiable else
analyze // analyze conflict and add conflict constraint backjump // unassign literals until conflict constraint is unit

## Parallel CDCL-style solving in clasp

while work available
while no (result) message to send
communicate
propagate
// exchange information with other solver // deterministically assign literals
if no conflict then
if all variables assigned then send solution
else decide // non-deterministically assign some literal
else
if root-level conflict then send unsatisfiable else if external conflict then send unsatisfiable else
analyze
backjump
communicate
// analyze conflict and add conflict constraint // unassign literals until conflict constraint is unit // exchange results (and receive work)

## Parallel CDCL-style solving in clasp

while work available
while no (result) message to send
communicate
propagate
// exchange information with other solver // deterministically assign literals
if no conflict then
if all variables assigned then send solution
else decide // non-deterministically assign some literal
else
if root-level conflict then send unsatisfiable else if external conflict then send unsatisfiable else
analyze
backjump
communicate
// analyze conflict and add conflict constraint // unassign literals until conflict constraint is unit // exchange results (and receive work)

## Parallel CDCL-style solving in clasp

while work available
while no (result) message to send
communicate
propagate
// exchange information with other solver // deterministically assign literals
if no conflict then
if all variables assigned then send solution
else decide // non-deterministically assign some literal
else
if root-level conflict then send unsatisfiable else if external conflict then send unsatisfiable else
analyze
backjump
communicate
// analyze conflict and add conflict constraint // unassign literals until conflict constraint is unit // exchange results (and receive work)

## Parallel CDCL-style solving in clasp

while work available
while no (result) message to send
communicate
propagate
// exchange information with other solver // deterministically assign literals
if no conflict then
if all variables assigned then send solution
else decide // non-deterministically assign some literal
else
if root-level conflict then send unsatisfiable else if external conflict then send unsatisfiable else
analyze
backjump
communicate
// analyze conflict and add conflict constraint // unassign literals until conflict constraint is unit // exchange results (and receive work)

## Parallel CDCL-style solving in clasp

while work available
while no (result) message to send
communicate
propagate
// exchange information with other solver // deterministically assign literals

## if no conflict then

if all variables assigned then send solution
else decide // non-deterministically assign some literal
else
if root-level conflict then send unsatisfiable else if external conflict then send unsatisfiable else
analyze
backjump
communicate
// analyze conflict and add conflict constraint // unassign literals until conflict constraint is unit // exchange results (and receive work)

## Multi-threaded architecture of clasp



## clasp in context

- Compare clasp (2.0.5) to the multi-threaded SAT solvers
- cryptominisat (2.9.2)
- manysat (1.1)
- miraxt (2009)
- plingeling (587f)
all run with four and eight threads in their default settings
- 160/300 benchmarks from crafted category at SAT'11
- all solvable by ppfolio in 1000 seconds
- crafted SAT benchmarks are closest to ASP benchmarks


## clasp in context



## Outline

62 Potassco
63 gringo
64 clasp

- Features
- Parallel solving
- Configuration
- Disjunctive solving

65 clingo
66 clingcon
67 claspfolio
68 clavis

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

## Using clasp

```
--help[=<n>],-h : Print {1=basic|2=more| 3=full} help and exit
--parallel-mode,-t <arg>: Run parallel search with given number of threads
 <arg>: <n {1..64}>[,<mode {compete|split}>]
 <n> : Number of threads to use in search
 <mode>: Run competition or splitting based search [compete]
--configuration=<arg> : Configure default configuration [frumpy]
 <arg>: {frumpyljumpy|handy|crafty|trendy|chatty}
 frumpy: Use conservative defaults
 jumpy : Use aggressive defaults
 handy : Use defaults geared towards large problems
 crafty: Use defaults geared towards crafted problems
 trendy: Use defaults geared towards industrial problems
 "-t 4": Use 4 competing threads initialized via the default portfolio
--print-portfolio,-g : Print default portfolio and exit
```

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019
$527 / 653$

## Using clasp

```
--help[=<n>],-h : Print {1=basic|2=more|3=full} help and exit
--parallel-mode,-t <arg>: Run parallel search with given number of threads
 <arg>: <n {1..64}>[,<mode {compete|split}>]
 <n> : Number of threads to use in search
 <mode>: Run competition or splitting based search [compete]
--configuration=<arg> : Configure default configuration [frumpy]
 <arg>: {frumpyljumpy|handy|crafty|trendy|chatty}
 frumpy: Use conservative defaults
 jumpy : Use aggressive defaults
 handy : Use defaults geared towarcs large problems
 crafty: Use defaults geared towards crafted problems
 trendy: Use defaults geared towards industrial problems
 "-t 4": Use 4 competing threads initialized via the default portfolio
--print-portfolio,-g : Print default portfolio and exit
```

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019
$527 / 653$

## Using clasp

```
--help[=<n>],-h
 : Print {1=basic|2=more| =full} help and exit
--parallel-mode,-t <arg>: Run parallel search with given number of threads
 <arg>: <n {1..64}>[,<mode {compete|split}>]
 <n> : Number of threads to use in search
 <mode>: Run competition or splitting based search [compete]
--configuration=<arg> : Configure default configuration [frumpy]
 <arg>: {frumpy|jumpy|handy| crafty|trendy| chatty}
 frumpy: Use conservative defaults
 jumpy : Use aggressive defaults
 handy : Use defaults geared towards large problems
 crafty: Use defaults geared towards crafted problems
 trendy: Use defaults geared towards industrial problems
 "-t 4": Use 4 competing threads initialized via the default portfolio
--print-portfolio, -g : Print default portfolio and exit
```

Torsten Schaub (KRR@UP)

## Using clasp

--help[=<n>],-h : Print \{1=basic|2=more|3=full\} help and exit
--parallel-mode,-t <arg>: Run parallel search with given number of threads <arg>: <n \{1..64\}>[,<mode \{compete|split\}>]
<n> : Number of threads to use in search
<mode>: Run competition or splitting based search [compete]
--configuration=<arg> : Configure default configuration [frumpy]
<arg>: \{frumpyljumpy|handy|crafty|trendy|chatty\}
frumpy: Use conservative defaults
jumpy : Use aggressive defaults
handy : Use defaults geared towards large problems
crafty: Use defaults geared towards crafted problems
trendy: Use defaults geared towards industrial problems
"-t 4": Use 4 competing threads initialized via the default portfolio
--print-portfolio,-g : Print default portfolio and exit

## Using clasp

```
--help[=<n>],-h : Print {1=basic|2=more|3=full} help and exit
--parallel-mode,-t <arg>: Run parallel search with given number of threads
 <arg>: <n {1..64}>[,<mode {compete|split}>]
 <n> : Number of threads to use in search
 <mode>: Run competition or splitting based search [compete]
--configuration=<arg> : Configure default configuration [frumpy]
 <arg>: {frumpyljumpy|handy|crafty|trendy|chatty}
 frumpy: Use conservative defaults
 jumpy : Use aggressive defaults
 handy : Use defaults geared towards large problems
 crafty: Use defaults geared towards crafted problems
 trendy: Use defaults geared towards industrial problems
 "-t 4": Use 4 competing threads initialized via the default portfolio
--print-portfolio,-g : Print default portfolio and exit
```


## Comparing configurations

 on queensA.lp| n | frumpy | jumpy | handy | crafty | trendy | -t 4 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 50 | 0.063 | 0.023 | 3.416 | 0.030 | 1.805 | 0.061 |
| 100 | 20.364 | 0.099 | 7.891 | 0.136 | 7.321 | 0.121 |
| 150 | 60.000 | 0.212 | 14.522 | 0.271 | 19.883 | 0.347 |
| 200 | 60.000 | 0.415 | 15.026 | 0.667 | 32.476 | 0.753 |
| 500 | 60.000 | 3.199 | 60.000 | 7.471 | 60.000 | 6.104 |

(times in seconds, cut-off at 60 seconds)

## Comparing configurations

on queensA.lp

n	frumpy	jumpy	handy	crafty	trendy	-t 4
50	0.063	0.023	3.416	0.030	1.805	0.061
100	20.364	0.099	7.891	0.136	7.321	0.121
150	60.000	0.212	14.522	0.271	19.883	0.347
200	60.000	0.415	15.026	0.667	32.476	0.753
500	60.000	3.199	60.000	7.471	60.000	6.104

(times in seconds, cut-off at 60 seconds)

## Comparing configurations

 on queensA.lp| n | frumpy | jumpy | handy | crafty | trendy | -t 4 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 50 | 0.063 | 0.023 | 3.416 | 0.030 | 1.805 | 0.061 |
| 100 | 20.364 | 0.099 | 7.891 | 0.136 | 7.321 | 0.121 |
| 150 | 60.000 | 0.212 | 14.522 | 0.271 | 19.883 | 0.347 |
| 200 | 60.000 | 0.415 | 15.026 | 0.667 | 32.476 | 0.753 |
| 500 | 60.000 | 3.199 | 60.000 | 7.471 | 60.000 | 6.104 |

(times in seconds, cut-off at 60 seconds)

## Comparing configurations

 on queensA.lp| n | frumpy | jumpy | handy | crafty | trendy | -t 4 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 50 | 0.063 | 0.023 | 3.416 | 0.030 | 1.805 | 0.061 |
| 100 | 20.364 | 0.099 | 7.891 | 0.136 | 7.321 | 0.121 |
| 150 | 60.000 | 0.212 | 14.522 | 0.271 | 19.883 | 0.347 |
| 200 | 60.000 | 0.415 | 15.026 | 0.667 | 32.476 | 0.753 |
| 500 | 60.000 | 3.199 | 60.000 | 7.471 | 60.000 | 6.104 |

(times in seconds, cut-off at 60 seconds)

## Comparing configurations

 on queensA.lp| n | frumpy | jumpy | handy | crafty | trendy | -t 4 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 50 | 0.063 | 0.023 | 3.416 | 0.030 | 1.805 | 0.061 |
| 100 | 20.364 | 0.099 | 7.891 | 0.136 | 7.321 | 0.121 |
| 150 | 60.000 | 0.212 | 14.522 | 0.271 | 19.883 | 0.347 |
| 200 | 60.000 | 0.415 | 15.026 | 0.667 | 32.476 | 0.753 |
| 500 | 60.000 | 3.199 | 60.000 | 7.471 | 60.000 | 6.104 |

(times in seconds, cut-off at 60 seconds)

# clasp's default portfolio for parallel solving 

via clasp --print-portfolio

```
[solver.0]: --heuristic=Vsids,92 --restarts=L,60 --deletion=basic,50,0 --del-max=2000000 --del-estimate=1 --del
[solver.1]: --heuristic=Vsids --restarts=D,100,0.7 --deletion=basic,50,0 --del-init=3.0,500,19500 --del-grow=1.
[solver.2]: --heuristic=Berkmin --restarts=x,100,1.5 --deletion=basic,75 --del-init=3.0,200,40000 --del-max=400
[solver.3]: --restarts=x,128,1.5 --deletion=basic,75,0 --del-init=10.0,1000,9000 --del-grow=1.1,20.0 --del-cfl=
[solver.4]: --heuristic=Vsids --restarts=L,100 --deletion=basic,75,2 --del-init=3.0,1000,20000 --del-grow=1.1,2
[solver.5]: --heuristic=Vsids --restarts=D,100,0.7 --deletion=sort,50,2 --del-max=200000 --del-init=20.0,1000,1
[solver.6]: --heuristic=Berkmin,512 --restarts=x,100,1.5 --deletion=basic,75 --del-init=3.0,200,40000 --del-max
[solver.7]: --heuristic=Vsids --reverse-arcs=1 --otfs=1 --local-restarts --save-progress=0 --contraction=250 --
[solver.8]: --heuristic=Vsids --restarts=L,256 --counter-restart=3 --strengthen=recursive --update-lbd --del-gl
[solver.9]: --heuristic=Berkmin,512 --restarts=F,16000 --lookahead=atom,50
[solver.10]: --heuristic=Vmtf --strengthen=no --contr=0 --restarts=x,100,1.3 --del-init=3.0,800,9200
[solver.11]: --heuristic=Vsids --strengthen=recursive --restarts=x,100,1.5,15 --contraction=0
[solver.12]: --heuristic=Vsids --restarts=L,128 --save-p --otfs=1 --init-w=2 --contr=0 --opt-heu=3
[solver.13]: --heuristic=Berkmin,512 --restarts=x,100,1.5,6 --local-restarts --init-w=2 --contr=0
[solver.14]: --no-lookback --heuristic=Unit --lookahead=atom --deletion=no --restarts=no
```

- clasp's portfolio is fully customizable
- configurations are assigned in a round-robin fashion to threads during parallel solving
-t 4 uses four threads with crafty, trendy, frumpy, and jumpy Potassco


# clasp's default portfolio for parallel solving 

via clasp --print-portfolio

```
[solver.0]: --heuristic=Vsids,92 --restarts=L,60 --deletion=basic,50,0 --del-max=2000000 --del-estimate=1 --del
[solver.1]: --heuristic=Vsids --restarts=D,100,0.7 --deletion=basic,50,0 --del-init=3.0,500,19500 --del-grow=1.
[solver.2]: --heuristic=Berkmin --restarts=x,100,1.5 --deletion=basic,75 --del-init=3.0,200,40000 --del-max=400
[solver.3]: --restarts=x,128,1.5 --deletion=basic,75,0 --del-init=10.0,1000,9000 --del-grow=1.1,20.0 --del-cfl=
[solver.4]: --heuristic=Vsids --restarts=L,100 --deletion=basic,75,2 --del-init=3.0,1000,20000 --del-grow=1.1,2
[solver.5]: --heuristic=Vsids --restarts=D,100,0.7 --deletion=sort,50,2 --del-max=200000 --del-init=20.0,1000,1
[solver.6]: --heuristic=Berkmin,512 --restarts=x,100,1.5 --deletion=basic,75 --del-init=3.0,200,40000 --del-max
[solver.7]: --heuristic=Vsids --reverse-arcs=1 --otfs=1 --local-restarts --save-progress=0 --contraction=250 --
[solver.8]: --heuristic=Vsids --restarts=L,256 --counter-restart=3 --strengthen=recursive --update-lbd --del-gl
[solver.9]: --heuristic=Berkmin,512 --restarts=F,16000 --lookahead=atom,50
[solver.10]: --heuristic=Vmtf --strengthen=no --contr=0 --restarts=x,100,1.3 --del-init=3.0,800,9200
[solver.11]: --heuristic=Vsids --strengthen=recursive --restarts=x,100,1.5,15 --contraction=0
[solver.12]: --heuristic=Vsids --restarts=L,128 --save-p --otfs=1 --init-w=2 --contr=0 --opt-heu=3
[solver.13]: --heuristic=Berkmin,512 --restarts=x,100,1.5,6 --local-restarts --init-w=2 --contr=0
[solver.14]: --no-lookback --heuristic=Unit --lookahead=atom --deletion=no --restarts=no
```

- clasp's portfolio is fully customizable
- configurations are assigned in a round-robin fashion to threads during parallel solving
> -t 4 uses four threads with crafty, trendy, frumpy, and jumpy Potassco


# clasp's default portfolio for parallel solving 

via clasp --print-portfolio

```
[solver.0]: --heuristic=Vsids,92 --restarts=L,60 --deletion=basic,50,0 --del-max=2000000 --del-estimate=1 --del
[solver.1]: --heuristic=Vsids --restarts=D,100,0.7 --deletion=basic,50,0 --del-init=3.0,500,19500 --del-grow=1.
[solver.2]: --heuristic=Berkmin --restarts=x,100,1.5 --deletion=basic,75 --del-init=3.0,200,40000 --del-max=400
[solver.3]: --restarts=x,128,1.5 --deletion=basic,75,0 --del-init=10.0,1000,9000 --del-grow=1.1,20.0 --del-cfl=
[solver.4]: --heuristic=Vsids --restarts=L,100 --deletion=basic,75,2 --del-init=3.0,1000,20000 --del-grow=1.1,2
[solver.5]: --heuristic=Vsids --restarts=D,100,0.7 --deletion=sort,50,2 --del-max=200000 --del-init=20.0,1000,1
[solver.6]: --heuristic=Berkmin,512 --restarts=x,100,1.5 --deletion=basic,75 --del-init=3.0,200,40000 --del-max
[solver.7]: --heuristic=Vsids --reverse-arcs=1 --otfs=1 --local-restarts --save-progress=0 --contraction=250 --
[solver.8]: --heuristic=Vsids --restarts=L,256 --counter-restart=3 --strengthen=recursive --update-lbd --del-gl
[solver.9]: --heuristic=Berkmin,512 --restarts=F,16000 --lookahead=atom,50
[solver.10]: --heuristic=Vmtf --strengthen=no --contr=0 --restarts=x,100,1.3 --del-init=3.0,800,9200
[solver.11]: --heuristic=Vsids --strengthen=recursive --restarts=x,100,1.5,15 --contraction=0
[solver.12]: --heuristic=Vsids --restarts=L,128 --save-p --otfs=1 --init-w=2 --contr=0 --opt-heu=3
[solver.13]: --heuristic=Berkmin,512 --restarts=x,100,1.5,6 --local-restarts --init-w=2 --contr=0
[solver.14]: --no-lookback --heuristic=Unit --lookahead=atom --deletion=no --restarts=no
```

- clasp's portfolio is fully customizable
- configurations are assigned in a round-robin fashion to threads during parallel solving
- -t 4 uses four threads with crafty, trendy, frumpy, and jumpy, Potassco


## Outline

62 Potassco
63 gringo
64 clasp

- Features
- Parallel solving
- Configuration
- Disjunctive solving

65 clingo
66 clingcon
67 claspfolio
68 clavis

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

## clasp

- clasp is a multi-threaded solver for disjunctive logic programs

■ aiming at an equitable interplay between "generating" and "testing" solver units

- allowing for a bidirectional dynamic information exchange between solver units for orthogonal tasks


## clasp

- clasp is a multi-threaded solver for disjunctive logic programs

■ aiming at an equitable interplay between "generating" and "testing" solver units

■ allowing for a bidirectional dynamic information exchange between solver units for orthogonal tasks


## Outline

## 62 Potassco

63 gringo
64 clasp
65 clingo
66 clingcon
67 claspfolio
68 clavis

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

## Clingo species

$$
\text { Clingo }=\text { gringo } \mid \text { clasp }
$$

Clingo - easy solving
iClingo - incremental solving
oClingo - reactive solving

Clingo - easy solving

+ incremental solving
+ reactive solving
+ complex solving
Cinge series $4=$ ASP + Control
- Multi-shot ASP solving deals with continously changing programs
- See Multi-shot ASP Solving for details


## Clingo species

- Before
- Clingo - easy solving
iClingo - incremental solving
- oClingo - reactive solving

$$
\begin{aligned}
& \text { Clingo - easy solving } \\
& \quad+\text { incremental solving } \\
& \text { + reactive solving } \\
& \text { + complex solving }
\end{aligned}
$$

$$
\text { series } 4=\mathrm{ASP}+\text { Control }
$$

deals with continously changing programs
See Multi-shot ASP Solving for details

## Clingo species

- Before
- Clingo — easy solving
iClingo - incremental solving
- oClingo - reactive solving

Clingo $=$ gringo $\mid$ clasp

Clingo - easy solving

+ incremental solving
+ reactive solving
+ complex solving
series $4=$ ASP + Control
deals with continously changing programs
See Multi-shot ASP Solving for details


## Clingo species

- Before
- Clingo - easy solving
- iClingo - incremental solving
- oClingo - reactive solving

> Clingo - easy solving + incremental solving + reactive solving + complex solving series $4=$ ASP + Control deals with continously changing programs
See Multi-shot ASP Solving for details

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice

## Clingo species

- Before
- Clingo - easy solving
- iClingo - incremental solving
- oClingo - reactive solving
- After

Clingo - easy solving

+ incremental solving
+ reactive solving
+ complex solving
series $4=$ ASP + Control
deals with continously changing programs
See Multi-shot ASP Solving for details


## Clingo species

- Before
- Clingo - easy solving
- iClingo - incremental solving
- oClingo - reactive solving
- After

Clingo $=$ gringo $\mid$ clasp

$$
\text { Clingo }=\text { gringo } \mid \text { clasp }
$$

- Clingo - easy solving
+ incremental solving
+ reactive solving
+ complex solving


## Clingo species

- Before

$$
\text { Clingo }=\text { gringo } \mid \text { clasp }
$$

- Clingo - easy solving
- iClingo - incremental solving
- oClingo - reactive solving
- After

Clingo $=$ gringo* $^{*} \mid$ clasp*

- Clingo — easy solving
+ incremental solving
+ reactive solving
+ complex solving
series $4=$ ASP + Control
deals with continously changing programs


## See Multi-shot ASP Solving for details

## Clingo species

- Before

$$
\text { Clingo }=\text { gringo } \mid \text { clasp }
$$

- Clingo - easy solving
- iClingo - incremental solving
- oClingo - reactive solving
- After

$$
\text { Clingo }=\left(\text { gringo* }^{*} \mid \text { clasp }^{*}\right)^{*}
$$

- Clingo - easy solving

See Multi-shot ASP Solving for details

## Clingo species

- Before

$$
\text { Clingo }=\text { gringo } \mid \text { clasp }
$$

- Clingo - easy solving
- iClingo - incremental solving
- oClingo - reactive solving
- After

Clingo $=\left(\text { gringo* }^{*} \mid \text { clasp }^{*}\right)^{*}$

- Clingo - easy solving
+ incremental solving
+ reactive solving
+ complex solving
- Clingo series $4=$ ASP + Control
- Multi-shot ASP solving deals with continously changing programs

See Multi-shot ASP Solving for details

## Clingo species

- Before
- Clingo - easy solving
- iClingo - incremental solving
- oClingo - reactive solving
- After

Clingo $=\left(\text { gringo* }^{*} \mid \text { clasp }^{*}\right)^{*}$

- Clingo - easy solving
+ incremental solving
- $\quad+$ reactive solving
- $\quad+$ complex solving
- Clingo series $4=$ ASP + Control
- See Multi-shot ASP Solving for details


## Clingo species

- Before

$$
\text { Clingo }=\text { gringo } \mid \text { clasp }
$$

- Clingo - easy solving
- iClingo - incremental solving
- oClingo - reactive solving
- After

Clingo $=\left(\text { gringo* }^{*} \mid \text { clasp }^{*}\right)^{*}$

- Clingo - easy solving
+ incremental solving
- $\quad+$ reactive solving
+ complex solving
- Clingo series $4=\mathrm{ASP}+$ Control
- Multi-shot ASP solving deals with continously changing programs
- See Multi-shot ASP Solving for details


## Clingo species

- Before

Clingo $=$ gringo $\mid$ clasp

- Clingo - easy solving
- iClingo - incremental solving
- oClingo - reactive solving
- After

Clingo $=\left(\text { gringo* }^{*} \mid \text { clasp }^{*}\right)^{*}$

- Clingo - easy solving
+ incremental solving
- $\quad+$ reactive solving
+ complex solving
- Clingo series $4=$ ASP + Control
- Multi-shot ASP solving deals with continously changing programs
- See Multi-shot ASP Solving for details


## Outline

## 62 Potassco

63 aringo
64 clasp
65 clingo
66 clingcon
67 claspfolio
68 clavis

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice

## clingcon

- Hybrid grounding and solving

■ Solving in hybrid domains, like Bio-Informatics

- Basic architecture of clingcon:



## Pouring Water into Buckets on a Scale

```
time(0..t).
bucket(a).
bucket(b).
$domain(0..500).
volume (a,0) $== 0.
volume(b,0) $== 100.
1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.
 1 $<= amount(B,T) :- pour (B,T), T<t.
amount(B,T) $<= 30 :- pour (B,T), T < t.
amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.
volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.
down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).
 up(B,T) :- not down(B,T), bucket(B), time(T).
 :- up(a,t).
```


## Pouring Water into Buckets on a Scale

```
time(0..t).
bucket(a).
bucket(b).
$domain(0..500).
volume (a,0) $== 0.
volume(b,0) $== 100.
1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.
 1 $<= amount(B,T) :- pour (B,T), T<t.
amount(B,T) $<= 30 :- pour (B,T), T < t.
amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.
volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.
down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).
 up(B,T) :- not down(B,T), bucket(B), time(T).
 :- up(a,t).
```


## Pouring Water into Buckets on a Scale

```
time(0..t).
bucket(a).
bucket(b).
$domain(0. .500).
volume (a,0) $== 0.
volume(b,0) $== 100.
1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.
 1 $<= amount (B,T) :- pour (B,T), T<t.
amount(B,T) $<= 30 :- pour (B,T), T < t.
amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.
volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.
down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).
 up(B,T) :- not down(B,T), bucket(B), time(T).
 :- up(a,t).
```


## Pouring Water into Buckets on a Scale

```
time(0..t).
bucket(a).
bucket(b).
$domain(0..500).
volume (a,0) $== 0.
volume(b,0) $== 100.
1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.
 1 $<= amount(B,T) :- pour(B,T), T < t.
amount(B,T) $<= 30 :- pour(B,T), T < t.
amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.
volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.
down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).
 up(B,T) :- not down(B,T), bucket(B), time(T).
 :- up(a,t).
```


## Pouring Water into Buckets on a Scale

```
time(0..t).
bucket(a).
bucket(b).
$domain(0. .500).
volume (a,0) $== 0.
volume(b,0) $== 100.
1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.
 :- pour(B,T), T < t, not (1 $<= amount(B,T)).
amount(B,T) $<= 30 :- pour (B,T), T < t.
amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.
volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.
down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).
 up(B,T) :- not down(B,T), bucket(B), time(T).
 :- up(a,t).
```


## Pouring Water into Buckets on a Scale

```
time(0..t).
bucket(a).
bucket(b).
$domain(0. .500).
volume (a,0) $== 0.
volume(b,0) $== 100.
1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.
 :- pour(B,T),T < t, 1 $> amount(B,T).
amount(B,T) $<= 30 :- pour (B,T), T < t.
amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.
volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.
down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).
 up(B,T) :- not down(B,T), bucket(B), time(T).
 :- up(a,t).
```


## Pouring Water into Buckets on a Scale

```
time(0..t).
bucket(a).
bucket(b).
$domain(0. .500).
volume (a,0) $== 0.
volume(b,0) $== 100.
1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.
 :- pour(B,T), T < t, 1 $> amount(B,T).
 :- pour(B,T), T < t, amount(B,T) $> 30.
amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.
volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.
down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).
 up(B,T) :- not down(B,T), bucket(B), time(T).
 :- up(a,t).
```


## Pouring Water into Buckets on a Scale

```
time(0..t).
bucket(a).
bucket(b).
$domain(0..500).
volume (a,0) $== 0.
volume(b,0) $== 100.
1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.
 :- pour(B,T), T < t, 1 $> amount(B,T).
 :- pour(B,T), T < t, amount(B,T) $> 30.
 :- not pour(B,T), bucket(B), time(T), T < t, amount(B,T) $!= 0.
volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.
down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).
 up(B,T) :- not down(B,T), bucket(B), time(T).
 :- up(a,t).
```


## Pouring Water into Buckets on a Scale

```
time(0. .t).
bucket(a).
bucket(b).
$domain(0..500).
volume (a,0) $== 0.
volume(b,0) $== 100.
1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.
 :- pour(B,T), T < t, 1 $> amount(B,T).
 :- pour(B,T), T < t, amount(B,T) $> 30.
 :- not pour(B,T), bucket(B), time(T), T < t, amount(B,T) $!= 0.
 :- bucket(B), time(T), T < t, volume(B,T+1) $!= volume(B,T)$+amount(B,T).
down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).
 up(B,T) :- not down(B,T), bucket(B), time(T).
 :- up(a,t).
```


## Pouring Water into Buckets on a Scale

```
$ clingcon --const t=4 balance.lp --text
```

```
time(0). ... time(4).
bucket(a).
bucket(b).
1 {\operatorname{pour}(b,0), pour(a,0) } 1.
:- pour (a,0), 1 $> amount (a,0).
:- pour(b,0), 1 $> amount (b,0).
:- pour(a,0), amount (a,0) $> 30.
:- pour(b,0), amount (b,0) $> 30.
:- not pour(a,0), amount (a,0) $!= 0.
:- not pour(b,0), amount (b,0) $!=0.
:- volume(a,1) $!= (volume(a,0) $+ amount (a,0)).
:- volume(b,1) $!= (volume(b,0) $+ amount(b,0)).
```

```
down(a,0) :- volume(a,0) $< volume (a,0).
down(a,0) :- volume(b,0) $< volume(a,0).
down(b,0) :- volume(a,0) $< volume(b,0).
down(b,0) :- volume(b,0) $< volume(b,0).
down(a,0) :- volume(a,0)
down(a,0) :- volume(a,0)
```

:- up $(a, 4)$.

```
$domain(0..500).
 :- volume(a,0) $!= 0.
 :- volume(b,0) $!= 100.
1 { pour(b,3), pour(a,3) } 1.
 - pour(a,3), 1 $> amount (a,3)
 :- pour(b, 3), 1 $> amount(b,3).
 :- pour(a,3), amount (a,3) $> 30.
 :- pour(b,3), amount(b,3) $> 30.
 :- not pour(a,3), amount (a,3) $!= 0.
 :- not pour(b,3), amount (b,3) $!= 0.
:- volume(a, 4) $!= (volume (a,3) $+ amount(a,3)).
:- volume(b,4) $!= (volume(b,3) $+ amount(b,3)).
```

```
```

down(a,4) :- volume (a,4) \$< volume (a,4)

```
```

down(a,4) :- volume (a,4) \$< volume (a,4)
... down (a,4) :- volume (b,4) \$< volume (a,4).
... down (a,4) :- volume (b,4) \$< volume (a,4).
... down(b,4) :- volume(a,4) \$< volume(b, 4).
... down(b,4) :- volume(a,4) \$< volume(b, 4).
... down(b,4) :- volume(b,4) \$< volume(b, 4).
... down(b,4) :- volume(b,4) \$< volume(b, 4).
... up (a,4) :- not down(a,4).
... up (a,4) :- not down(a,4).
... up(b,4) :- not down(b,4).

```
```

... up(b,4) :- not down(b,4).

```
```


## Pouring Water into Buckets on a Scale

```
$ clingcon --const t=4 balance.lp --text
time(0). ... time(4).
bucket(a).
bucket(b).
1 { pour(b,0), pour(a,0) } 1.
 :- pour (a,0), 1 $> amount (a,0).
 :- pour(b,0), 1 $> amount (b,0).
 :- pour(a,0), amount (a,0) $> 30.
 :- pour(b,0), amount(b,0) $> 30.
 :- not pour(a,0), amount (a,0) $!= 0.
 :- not pour(b,0), amount (b,0) $!=0.
 :- volume(a,1) $!= (volume(a,0) $+ amount (a,0)).
 :- volume(b,1) $!= (volume(b,0) $+ amount(b,0)).
```

```
down(a,0) :- volume(a,0) $< volume (a,0).
down(a,0) :- volume(b,0) $< volume (a,0).
down(b,0) :- volume(a,0) $< volume(b,0).
down(b,0) :- volume(b,0) $< volume(b,0).
down(a,0) :- volume(a,0)
down(a,0) :- volume(a,0)
```

:- up $(a, 4)$.

```
```

\$domain(0. .500).

```
```

\$domain(0. .500).
:- volume(a,0) \$!= 0.
:- volume(a,0) \$!= 0.
:- volume(b,0) \$!= 100.
:- volume(b,0) \$!= 100.
1{\operatorname{pour}(b,3),\operatorname{pour}(a,3)}}1
1{\operatorname{pour}(b,3),\operatorname{pour}(a,3)}}1
:- pour (a,3), 1 \$> amount (a,3).
:- pour (a,3), 1 \$> amount (a,3).
:- pour(b,3), 1 \$> amount(b,3).
:- pour(b,3), 1 \$> amount(b,3).
:- pour(a,3), amount (a,3) \$> 30.
:- pour(a,3), amount (a,3) \$> 30.
:- pour(b,3), amount(b,3) \$> 30.
:- pour(b,3), amount(b,3) \$> 30.
:- not pour(a,3), amount (a,3) \$!= 0.
:- not pour(a,3), amount (a,3) \$!= 0.
:- not pour(b,3), amount (b,3) \$!=0.
:- not pour(b,3), amount (b,3) \$!=0.
:- volume(a,4) \$!= (volume(a,3) \$+ amount (a,3)).
:- volume(a,4) \$!= (volume(a,3) \$+ amount (a,3)).
:- volume(b,4) \$!= (volume(b,3) \$+ amount (b,3)).

```
```

:- volume(b,4) \$!= (volume(b,3) \$+ amount (b,3)).

```
```

```
... down(a,4) :- volume (a,4) $< volume (a,4).
```

... down(a,4) :- volume (a,4) \$< volume (a,4).

```
... down(a,4) :- volume (a,4) $< volume (a,4).
... down (a,4) :- volume (b,4) $< volume (a,4).
... down (a,4) :- volume (b,4) $< volume (a,4).
... down (a,4) :- volume (b,4) $< volume (a,4).
... down(b,4) :- volume(a,4) $< volume(b, 4).
... down(b,4) :- volume(a,4) $< volume(b, 4).
... down(b,4) :- volume(a,4) $< volume(b, 4).
... down(b,4) :- volume(a,4)
... down(b,4) :- volume(a,4)
... down(b,4) :- volume(a,4)
... up(a,4) :- not down(a,4).
```

... up(a,4) :- not down(a,4).

```
... up(a,4) :- not down(a,4).
```


## Pouring Water into Buckets on a Scale

```
$ clingcon --const t=4 balance.lp --text
time(0). ... time(4).
bucket(a).
bucket(b).
1 { pour(b,0), pour(a,0) } 1.
 :- pour (a,0), 1 $> amount (a,0).
 :- pour(b,0), 1 $> amount (b,0).
 :- pour(a,0), amount (a,0) $> 30.
:- pour(b,0), amount(b,0) $> 30.
 :- not pour(a,0), amount (a,0) $!= 0.
:- not pour(b,0), amount (b,0) $!=0.
:- volume(a,1) $!= (volume (a,0) $+ amount (a,0)).
:- volume(b,1) $!= (volume(b,0) $+ amount(b,0)).
```

```
down(a,0) :- volume(a,0) $< volume (a,0).
down(a,0) :- volume(b,0) $< volume(a,0).
down(b,0) :- volume(a,0) $< volume(b,0).
down(b,0) :- volume(b,0) $< volume(b,0).
down(a,0) :- volume(a,0)
down(a,0) :- volume(a,0)
```

$:-\operatorname{up}(a, 4)$.

```
$domain(0. .500).
 :- volume(a,0) $!= 0.
 :- volume(b,0) $!= 100.
... 1 { pour(b,3), pour (a,3) } 1.
 :- pour(a,3), 1 $> amount (a,3)
 :- pour(b,3), 1 $> amount(b,3).
 :- pour(a,3), amount (a,3) $> 30.
 :- pour(b,3), amount(b,3) $> 30.
 :- not pour(a,3), amount (a,3) $!= 0.
 :- not pour(b,3), amount (b,3) $!= 0.
:- volume (a,4) $!= (volume (a,3) $+ amount (a,3)).
:- volume(b,4) $!= (volume(b,3) $+ amount(b,3)).
```

```
... down(a,4) :- volume (a,4) $< volume(a,4).
... down(a,4) :- volume(b,4) $< volume (a,4).
... down(b,4) :- volume (a,4) $< volume(b, 4).
... down(b,4) :- volume(b,4) $< volume(b,4).
... up (a,4) :- not down(a,4).
... up(b,4) :- not down(b,4).
```


## Pouring Water into Buckets on a Scale

```
$ clingcon --const t=4 balance.lp --text
time(0). ... time(4).
bucket(a).
bucket(b).
1 { pour(b,0), pour(a,0) } 1.
 :- pour(a,0), 1 $> amount (a,0).
:- pour(b,0), 1 $> amount(b,0).
:- pour(a,0), amount (a,0) $> 30.
:- pour(b,0), amount(b,0) $> 30.
:- not pour(a,0), amount (a,0) $!= 0.
:- not pour(b,0), amount(b,0) $!= 0.
:- volume(a,1) $!= (volume(a,0) $+ amount (a,0)).
:- volume(b,1) $!= (volume(b,0) $+ amount(b,0)).
```

down(a,0) :- volume(a,0) \$< volume (a,0).

```
down(a,0) :- volume(a,0) $< volume (a,0).
```

down(a,0) :- volume(a,0) \$< volume (a,0).
down(a,0) :- volume(b,0) \$< volume(a,0).
down(a,0) :- volume(b,0) \$< volume(a,0).
down(a,0) :- volume(b,0) \$< volume(a,0).
down(b,0) :- volume(a,0) \$< volume(b,0)
down(b,0) :- volume(a,0) \$< volume(b,0)
down(b,0) :- volume(a,0) \$< volume(b,0)
down(b,0) :- volume(b,0) \$< volume(b,0).
down(b,0) :- volume(b,0) \$< volume(b,0).
down(b,0) :- volume(b,0) \$< volume(b,0).
up(a,0) :- not down(a,0)
up(a,0) :- not down(a,0)
up(b,0) :- not down(b,0).

```
```

up(b,0) :- not down(b,0).

```
```

```
... down(a,4) :- volume (a,4) $< volume (a,4).
```

... down(a,4) :- volume (a,4) \$< volume (a,4).
... down(a,4) :- volume(b,4) \$< volume (a,4).
... down(a,4) :- volume(b,4) \$< volume (a,4).
... down(b,4) :- volume(a,4) \$< volume(b,4).
... down(b,4) :- volume(a,4) \$< volume(b,4).
... down(b,4) :- volume(b,4) \$< volume(b,4).
... down(b,4) :- volume(b,4) \$< volume(b,4).
... up(a,4) :- not down(a,4)
... up(a,4) :- not down(a,4)
... up(b,4) :- not down(b,4)

```
... up(b,4) :- not down(b,4)
```

$:-\operatorname{up}(a, 4)$.

Torsten Schaub (KRR@UP)

## Pouring Water into Buckets on a Scale

```
$ clingcon --const t=4 balance.lp --text
time(0). ... time(4).
bucket(a).
bucket(b).
1 {\operatorname{pour}(b,0), pour(a,0) } 1.
 :- pour(a,0), 1$> amount (a,0).
:- pour(b,0), 1 $> amount (b,0).
:- pour(a,0), amount (a,0) $> 30.
:- pour(b,0), amount(b,0) $> 30.
:- not pour(a,0), amount(a,0) $!= 0.
:- not pour(b,0), amount(b,0) $!= 0.
:- volume(a,1) $!= (volume(a,0) $+ amount (a,0)).
:- volume(b,1) $!= (volume(b,0) $+ amount(b,0)).
up(a,0) :- not down(a,0).
up(b,0) :- not down(b,0).
```

    $domain(0. .500).
    ```
 $domain(0. .500).
 :- volume(a,0) $!= 0.
 :- volume(a,0) $!= 0.
 :- volume(b,0) $!= 100.
 :- volume(b,0) $!= 100.
... 1 { pour(b,3), pour(a,3) } 1.
... 1 { pour(b,3), pour(a,3) } 1.
... :- pour(a,3), 1 $> amount (a,3).
... :- pour(a,3), 1 $> amount (a,3).
... :- pour(b,3), 1 $> amount(b,3).
... :- pour(b,3), 1 $> amount(b,3).
... :- pour(a,3), amount (a,3) $> 30.
... :- pour(a,3), amount (a,3) $> 30.
... :- pour(b,3), amount(b,3) $> 30.
... :- pour(b,3), amount(b,3) $> 30.
... :- not pour(a,3), amount (a,3) $!= 0.
... :- not pour(a,3), amount (a,3) $!= 0.
... :- not pour(b,3), amount(b,3) $!= 0.
... :- not pour(b,3), amount(b,3) $!= 0.
... :- volume(a,4) $!= (volume(a,3) $+ amount (a,3)).
... :- volume(a,4) $!= (volume(a,3) $+ amount (a,3)).
... :- volume(b,4) $!= (volume(b,3) $+ amount (b,3)).
```

... :- volume(b,4) \$!= (volume(b,3) \$+ amount (b,3)).

```
```

... down(a,4) :- volume(a,4) \$< volume (a,4).

```
... down(a,4) :- volume(a,4) $< volume (a,4).
```

... down(a,4) :- volume(a,4) \$< volume (a,4).
... down(a,4) :- volume(b,4) \$< volume(a,4).
... down(a,4) :- volume(b,4) \$< volume(a,4).
... down(a,4) :- volume(b,4) \$< volume(a,4).
... down(b,4) :- volume(a,4) \$< volume(b,4).
... down(b,4) :- volume(a,4) \$< volume(b,4).
... down(b,4) :- volume(a,4) \$< volume(b,4).
... down(b,4) :- volume(b,4) \$< volume(b,4).
... down(b,4) :- volume(b,4) \$< volume(b,4).
... down(b,4) :- volume(b,4) \$< volume(b,4).
ll
ll
ll
ll

```
```

ll

```
```

ll

```
```

```
down(a,0) :- volume(a,0) $< volume(a,0).
```

down(a,0) :- volume(a,0) \$< volume(a,0).
down(a,0) :- volume(b,0) \$< volume(a,0).
down(a,0) :- volume(b,0) \$< volume(a,0).
down(b,0) :- volume(a,0) \$< volume(b,0).
down(b,0) :- volume(a,0) \$< volume(b,0).
down(b,0) :- volume(b,0) \$< volume(b,0).

```
down(b,0) :- volume(b,0) $< volume(b,0).
```

$:-\operatorname{up}(\mathrm{a}, 4)$.

Torsten Schaub (KRR@UP)

## Pouring Water into Buckets on a Scale

```
$ clingcon --const t=4 balance.lp 0
Answer: 1
pour(a,0) pour(a,1) pour(a,2) pour (a,3)
amount (a,0)=[11..30] amount (b,0)=0
amount (a, 1)=[11..30] amount(b, 1)=0
amount (a,2)=[11..30] amount (b,2)=0
amount (a,3)=[11..30] amount (b,3)=0
volume (a,0)=0
volume (a, 1)=[11. .30]
volume (a,2)=[41..60]
volume (a,3)=[71..90] volume(b,3)=100
volume(a,4)=[101..120] volume(b,4)=100
\amount (b, 0)=0
\amount (b, 0)=0
\amount (b, 0)=0
1 $> amount(b,0) amount (a,0) $!= 0
1 $> amount(b,1) amount(a,1) $!= 0
1 $> amount (b,2) amount (a,2) $!= 0
1 $> amount (b,3) amount (a,3) $!= 0
volume(a,0) $< volume(b,0)
volume(a,1) $< volume(b,1)
volume(a,2) $< volume(b,2)
volume(a,3) $< volume(b,3)
volume(b,4) $< volume(a,4)
```


## SATISFIABLE

| Models | $: 1$ |
| :--- | :--- |
| Time | $: 0.000$ |

## Pouring Water into Buckets on a Scale

```
$ clingcon --const t=4 balance.lp 0
Answer: 1
pour(a,0) pour(a,1) pour(a,2) pour (a,3)
amount (a,0)=[11..30] }\quad\mathrm{ amount (b,0)=0
amount (a, 1)=[11..30] amount(b, 1)=0
amount (a,2)=[11..30] amount (b, 2)=0
amount (a,3)=[11..30] amount (b, 3)=0
volume (a,0)=0
volume (a, 1)=[11. .30]
volume (a,2)=[41..60]
volume (a,3)=[71..90] volume(b,3)=100
volume (a,4)=[101..120] volume(b,4)=100
1 $> amount(b,0) amount (a,0) $!= 0
1 $> amount(b,1) amount(a,1) $!= 0
1 $> amount (b,2) amount (a,2) $!= 0
1 $> amount (b,3) amount (a,3) $!= 0
volume (b, 0)=100
volume (b, 1)=100
volume (b, 2)=100
volume(a,0) $< volume(b,0)
volume(a,1) $< volume(b,1)
volume(a,2) $< volume(b,2)
volume(a,3) $< volume(b,3)
volume(b,4) $< volume(a,4)
```


## SATISFIABLE

```
\begin{tabular}{ll}
Models & \(: 1\) \\
Time & \(: 0.000\)
\end{tabular}
```


## Pouring Water into Buckets on a Scale

```
$ clingcon --const t=4 balance.lp 0
Answer: 1
pour(a,0) pour(a,1) pour(a,2) pour (a,3)
amount (a,0)=[11..30] amount (b,0)=0
1 $> amount(b,0) amount(a,0) $!= 0
amount (a,1)=[11..30] amount(b, 1)=0
amount (a,2)=[11..30] amount (b,2)=0
amount (a,3)=[11..30] amount (b, 3)=0
volume (a,0)=0
volume (a, 1)=[11. .30]
volume (a,2)=[41..60]
volume (a,3)=[71..90] volume(b,3)=100
volume (a,4)=[101..120] volume(b,4)=100
volume (b,0)=100
volume (b, 1)=100
volume(b, 2)=100
1 $> amount(b,1) amount(a,1) $!= 0
1 $> amount(b,2) amount (a,2) $!= 0
1 $> amount (b,3) amount (a,3) $!= 0
volume(a,0) $< volume(b,0)
volume(a,1) $< volume(b,1)
volume(a,2) $< volume(b,2)
volume(a,3) $< volume(b,3)
volume(b,4) $< volume(a,4)
SATISFIABLE
\begin{tabular}{ll}
Models & \(: 1\) \\
Time & \(: 0.000\)
\end{tabular}
```


## Pouring Water into Buckets on a Scale

```
$ clingcon --const t=4 balance.lp 0
Answer: 1
pour(a,0) pour(a,1) pour(a,2) pour (a,3)
amount (a,0)=[11..30] amount (b,0)=0
amount (a, 1)=[11..30] amount(b, 1)=0
amount (a,2)=[11..30] amount (b, 2)=0
amount (a,3)=[11..30] amount (b,3)=0
volume (a,0)=0
volume (a, 1)=[11. . 30]
volume (a,2)=[41..60]
volume(a,3)=[71..90] volume(b,3)=100
volume(a,4)=[101..120] volume(b,4)=100
volume (b,0)=100
volume(b, 1)=100
volume (b, 2)=100
me(b,2)=100
```

1 \$> amount (b,2) amount (a,2) \$!= 0
1 \$> amount (b,3) amount (a,3) \$!= 0
volume(a,0) \$< volume(b,0)
volume(a,1) \$< volume(b,1)
volume(a,2) \$< volume(b,2)
volume(a,3) \$< volume(b,3)
volume(b,4) \$< volume(a,4)

```

1 \$> amount (b, 0) amount (a,0) \$!=0
```

```
1 $> amount(b,1) amount(a,1) $!= 0
```

```
```

1 \$> amount(b,1) amount(a,1) \$!= 0

```

\section*{SATISFIABLE}
```

| Models | $: 1$ |
| :--- | :--- |
| Time | $: 0.000$ |

```

\section*{Pouring Water into Buckets on a Scale}
```

\$ clingcon --const t=4 balance.lp 0
Answer: 1
pour(a,0) pour(a,1) pour(a,2) pour (a,3)
amount (a,0)=[11..30] amount (b,0)=0
amount(a, 1)=[11..30] amount(b, 1)=0
amount (a,2)=[11..30] amount (b,2)=0
amount (a,3)=[11..30] amount (b, 3)=0
volume (a,0)=0
volume (a, 1)=[11. .30]
volume (a,2)=[41..60]
volume (a,3)=[71..90] volume(b,3)=100
volume (a,4)=[101..120] volume(b,4)=100
SATISFIABLE

```
Models : 1
Time : 0.000

\section*{Boolean variables}

\section*{Pouring Water into Buckets on a Scale}
```

\$ clingcon --const t=4 balance.lp 0
Answer: 1
pour(a,0) pour(a,1) pour(a,2) pour(a,3)
amount (a,0)=[11. .30]
amount (a, 1)=[11. . 30]
amount (a,2)=[11. . 30]
amount (a,3)=[11..30] amount (b,3)=0
volume (a,0)=0
volume (a, 1)=[11. .30]
volume (a,2)=[41..60]
volume(a,3)=[71..90] volume(b,3)=100
volume (a,4)=[101..120] volume(b,4)=100

```

SATISFIABLE
\begin{tabular}{ll}
Models & \(: 1\) \\
Time & \(: 0.000\)
\end{tabular}

\author{
左
}
```

1 \$> amount (b,0) amount (a,0) \$!= 0

```
\mount (b, 0)=0
```

\mount (b, 0)=0

```
\mount (b, 0)=0
```

\mount (b, 0)=0

```
\mount (b, 0)=0
```

```
1 $> amount(b,1) amount (a,1) $!= 0
```

1 \$> amount(b,1) amount (a,1) \$!= 0
1 \$> amount (b,2) amount (a,2) \$!= 0
1 \$> amount (b,2) amount (a,2) \$!= 0
1 \$> amount (b,3) amount (a,3) \$!= 0
1 \$> amount (b,3) amount (a,3) \$!= 0
volume(a,0) \$< volume(b,0)
volume(a,0) \$< volume(b,0)
volume(a,1) \$< volume(b,1)
volume(a,1) \$< volume(b,1)
volume(a,2) \$< volume(b,2)
volume(a,2) \$< volume(b,2)
volume(a,3) \$< volume(b,3)
volume(a,3) \$< volume(b,3)
volume(b,4) \$< volume(a,4)

```
volume(b,4) $< volume(a,4)
```


## Pouring Water into Buckets on a Scale

```
$ clingcon --const t=4 balance.lp --csp-num-as=1
Answer: 1
pour(a,0) pour(a,1) pour(a,2) pour (a,3)
amount (a,0)=11
amount (a, 1)=30
amount (a, 2)=30
amount (a,3)=30
volume (a,0)=0
volume (a,1)=11
volume (a, 2)=41
volume (a,3)=71
volume (a,4)=101
amount (b, 0)=0
amount (b, 1)=0
amount (b, 2)=0
amount (b,3)=0
volume (b,0)=100
volume(b, 1)=100
volume(b, 2)=100
volume(b, 3)=100
volume (b,4)=100
```

1 \$> amount (b,0) amount (a,0) \$!=0
1 \$> amount (b,1) amount (a,1) \$!= 0
1 \$> amount (b,2) amount (a,2) \$!= 0
1 \$> amount (b,3) amount (a,3) \$!=0
volume $(a, 0)$ $\$<$ volume $(b, 0)$
volume (a,1) \$< volume (b,1)
volume (a,2) \$< volume (b,2)
volume (a,3) \$< volume (b,3)
volume (b,4) \$< volume (a,4)

## SATISFIABLE

```
\begin{tabular}{ll}
Models & \(: 1+\) \\
Time & \(: 0.000\)
\end{tabular}
```


## Pouring Water into Buckets on a Scale

```
$ clingcon --const t=4 balance.lp --csp-num-as=1
Answer: 1
pour(a,0) pour(a,1) pour(a,2) pour(a,3)
amount (a,0)=11
amount (a, 1)=30
amount (a, 2)=30
amount (a,3)=30
volume (a,0)=0
volume (a, 1)=11
volume (a, 2)=41
volume (a,3)=71
volume (a,4)=101
amount (b, 0)=0
amount (b, 1)=0
amount (b, 2)=0
amount (b,3)=0
volume (b, 0)=100
volume(b, 1)=100
volume(b, 2)=100
volume(b, 3)=100
volume (b,4)=100
```

volume(a,1) \$< volume(b,1)
volume(a,2) \$< volume(b,2)
volume(a,3) \$< volume(b,3)
volume(b,4) \$< volume(a,4)

```

1 \$> amount (b,0) amount (a,0) \$!=0
1 \$> amount (b,1) amount (a,1) \$!= 0
1 \$> amount \((b, 2)\) amount \((a, 2) \$!=0\)
1 \$> amount (b,3) amount (a,3) \$!=0
```

```
volume(a,0) $< volume(b,0)
```

```
```

volume(a,0) \$< volume(b,0)

```

\section*{SATISFIABLE}
```

| Models | $: 1+$ |
| :--- | :--- |
| Time | $: 0.000$ |

```

\section*{Pouring Water into Buckets on a Scale}
```

\$ clingcon --const t=4 balance.lp --csp-num-as=1
Answer: 1
pour(a,0) pour(a,1) pour(a,2) pour(a,3)
amount (a,0)=11
amount (a, 1)=30
amount (a, 2)=30
amount (a,3)=30
volume (a,0)=0
volume (a, 1)=11
volume (a, 2)=41
volume (a,3)=71
volume (a,4)=101
amount (b, 1)=0
amount (b, 2)=0
amount (b,3)=0
volume (b, 0)=100
volume(b, 1)=100
volume(b, 2)=100
volume(b, 3)=100
volume(b,4)=100

```
```

amount (b,0)=0

```
```

amount (b,0)=0

```

1 \$> amount (b,0) amount (a,0) \$!=0
1 \$> amount (b,1) amount (a,1) \$!= 0
1 \$> amount \((b, 2) \quad \operatorname{amount}(a, 2) \$!=0\)
1 \$> amount (b,3) amount (a,3) \$!=0
volume (\(\mathrm{a}, 0\)) \(\$<\) volume \((\mathrm{b}, 0)\)
volume (a,1) \$< volume (b,1)
volume (a,2) \$< volume (b,2)
volume (a,3) \$< volume (b,3)
volume (b,4) \$< volume (a,4)

\section*{SATISFIABLE}
```

| Models | $: 1+$ |
| :--- | :--- |
| Time | $: 0.000$ |

```

\section*{Pouring Water into Buckets on a Scale}
```

\$ clingcon --const t=4 balance.lp --csp-num-as=1
Answer: 1
pour(a,0) pour(a,1) pour(a,2) pour (a,3)
amount (a,0)=11
amount (a, 1)=30
amount (a, 2)=30
amount (a,3)=30
volume (a,0)=0
volume (a,1)=11
volume (a, 2)=41
volume (a,3)=71
volume (a,4)=101
amount (b, 1)=0
amount (b, 2)=0
amount (b,3)=0
volume (b,0)=100
volume(b, 1)=100
volume(b, 2)=100
volume(b, 3)=100
volume(b,4)=100

```
amount \((b, 0)=0\)

1 \$> amount (b, 0) amount (a,0) \$!=0
1 \$> amount (b,1) amount (a,1) \$!= 0
1 \$> amount (b,2) amount \((\mathrm{a}, 2) \$!=0\)
1 \$> amount (b,3) amount (a,3) \$!=0
volume \((a, 0)\) \(\$<\) volume \((b, 0)\)
volume (a,1) \$< volume (b,1)
volume (a,2) \$< volume (b,2)
volume (a,3) \$< volume (b,3)
volume (b,4) \$< volume (a,4)

\section*{SATISFIABLE}
```

| Models | $: 1+$ |
| :--- | :--- |
| Time | $: 0.000$ |

```

\section*{Outline}

\section*{62 Potassco}

63 gringo
64 clasp
65 clingo
66 clingror
67 claspfolio
68 clavis

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

\section*{claspfolio}
- Automatic selection of some clasp configuration among several predefined ones via (learned) classifiers
- Basic architecture of claspfolio:

\section*{Instance Feature Clusters (after PCA)}

\begin{tabular}{|ll|}
\hline\(\circ \circ \circ\) & clasp/5-n1 \\
००० & clasp/14-n1 \\
\(\bullet \bullet \bullet\) & clasp/13-n1 \\
\(\circ \circ \circ\) & clasp/11-n1 \\
\(\circ \circ \circ\) & clasp/21-n1 \\
\(\bullet \bullet \bullet\) & clasp/23-n1
\end{tabular}

\section*{Solving with clasp (as usual)}
```

\$ clasp queens500 --quiet
clasp version 2.0.2
Reading from queens500
Solving...
SATISFIABLE
Models : 1+
Time : 11.445s (Solving: 10.58s 1st Model: 10.55s Unsat: 0.00s)
CPU Time : 11.410s

```

\section*{Solving with clasp (as usual)}
```

\$ clasp queens500 --quiet
clasp version 2.0.2
Reading from queens500
Solving...
SATISFIABLE

| Models | $: 1+$ |
| :--- | :--- |
| Time | $: 11.445 \mathrm{~s}$ (Solving: 10.58 s 1st Model: 10.55 s Unsat: 0.00 s ) |
| CPU Time | $: 11.410 \mathrm{~s}$ |

```

\section*{Solving with claspfolio}
```

\$ claspfolio queens500 --quiet
PRESOLVING
Reading from queens500
Solving...
claspfolio version 1.0.1 (based on clasp version 2.0.2)
Reading from queens500
Solving...
SATISFIABLE
Models : 1+
Time : 4.785s (Solving: 3.96s 1st Model: 3.92s Unsat: 0.00s)
CPU Time : 4.780s

```

\section*{Solving with claspfolio}
```

\$ claspfolio queens500 --quiet
PRESOLVING
Reading from queens500
Solving...
claspfolio version 1.0.1 (based on clasp version 2.0.2)
Reading from queens500
Solving...
SATISFIABLE
Models : 1+
Time : 4.785s (Solving: 3.96s 1st Model: 3.92s Unsat: 0.00s)
CPU Time : 4.780s

```

\section*{Solving with claspfolio}
```

\$ claspfolio queens500 --quiet
PRESOLVING
Reading from queens500
Solving...
claspfolio version 1.0.1 (based on clasp version 2.0.2)
Reading from queens500
Solving...
SATISFIABLE
Models : 1+
Time : 4.785s (Solving: 3.96s 1st Model: 3.92s Unsat: 0.00s)
CPU Time : 4.780s

```

\section*{Solving with claspfolio}
```

\$ claspfolio queens500 --quiet
PRESOLVING
Reading from queens500
Solving...
claspfolio version 1.0.1 (based on clasp version 2.0.2)
Reading from queens500
Solving...
SATISFIABLE
Models : 1+
Time : 4.785s (Solving: 3.96s 1st Model: 3.92s Unsat: 0.00s)
CPU Time : 4.780s

```

\section*{Feature-extraction with claspfolio}
```

\$ claspfolio --features queens500

```

\section*{PRESOLVING}
```

Reading from queens500

```
Solving...

\section*{UNKNOWN}
```

Features : 84998,3994,0,250000,1.020,62.594,63.844,21.281,84998,
3994, 100, 250000, 1.020, 62.594,63.844, 21.281, 84998,3994, 250, 250000,
1.020,62.594,63.844,21.281, 84998,3994,475, 250000,1.020,62.594,

```
 \(63.844,21.281,757989,757989,0,510983,506992,3990,1,0,127.066,9983\),
 \(1023958,502993,1994,518971,1,0,0,254994,0,3990,0.100,0.000,99.900\),
 \(0,270303,812,4,0,812,2223,2223,262,262,2.738,2.738,0.000,812,812\),
 2270.982,0,0.000
\$ claspfolio --list-features
maxLearnt, Constraints, LearntConstraints, FreeVars, Vars/FreeVars,
(1)Potassco

\section*{Feature-extraction with claspfolio}
```

\$ claspfolio --features queens500

```
PRESOLVING
Reading from queens500
Solving. .
UNKNOWN
Features : 84998,3994,0,250000,1.020,62.594,63.844,21.281,84998, \}
 \(3994,100,250000,1.020,62.594,63.844,21.281,84998,3994,250,250000\),
 \(1.020,62.594,63.844,21.281,84998,3994,475,250000,1.020,62.594\),
 \(63.844,21.281,757989,757989,0,510983,506992,3990,1,0,127.066,9983\),
 1023958, 502993, 1994, 518971, 1, 0, 0, 254994, 0, 3990, 0.100, 0.000, 99.900,
 \(0,270303,812,4,0,812,2223,2223,262,262,2.738,2.738,0.000,812,812\),
 2270.982, 0, 0.000
\$ claspfolio --list-features
maxLearnt, Constraints, LearntConstraints, FreeVars, Vars/FreeVars,

\section*{Feature-extraction with claspfolio}
```

\$ claspfolio --features queens500
PRESOLVING
Reading from queens500
Solving...
UNKNOWN
Features : 84998,3994,0,250000,1.020,62.594,63.844,21.281,84998,\
3994,100, 250000,1.020,62.594,63.844,21.281, 84998,3994, 250, 250000,
1.020,62.594,63.844,21.281, 84998,3994,475,250000,1.020,62.594,
63.844,21.281,757989,757989,0,510983,506992,3990,1,0,127.066,9983,
1023958,502993,1994,518971,1,0,0,254994,0,3990,0.100,0.000,99.900,
0,270303, 812,4,0, 812, 2223, 2223,262, 262,2.738,2.738,0.000, 812, 812,
2270.982,0,0.000
\$ claspfolio --list-features
maxLearnt,Constraints,LearntConstraints,FreeVars,Vars/FreeVars,

```

\section*{Prediction with claspfolio}
```

\$ claspfolio queens500 --decisionvalues
PRESOLVING
Reading from queens500
Solving...
Portfolio Decision Values:
[1] : 3.437538 [10] : 3.639444 [19] : 3.726391
[2]:3.501728 [11] : 3.483334 [20] : 3.020325
[3] : 3.784733 [12] : 3.271890 [21] : 3.220219
[4] : 3.672955 [13] : 3.344085 [22] : 3.998709
[5] : 3.557408 [14] : 3.315235 [23] : 3.961214
[6] : 3.942037 [15] : 3.620479 [24] : 3.512924
[7] : 3.335304 [16] : 3.396838 [25] : 3.078143
[8] : 3.375315 [17] : 3.238764
[9] : 3.432931 [18] : 3.403484

```

Torsten Schaub (KRR@UP)

\section*{Prediction with claspfolio}
```

\$ claspfolio queens500 --decisionvalues
PRESOLVING
Reading from queens500
Solving...
Portfolio Decision Values:
[1] : 3.437538 [10] : 3.639444 [19] : 3.726391
[2] : 3.501728 [11] : 3.483334 [20] : 3.020325
[3] : 3.784733 [12] : 3.271890 [21] : 3.220219
[4] : 3.672955 [13] : 3.344085 [22] : 3.998709
[5] : 3.557408 [14] : 3.315235 [23] : 3.961214
[6] : 3.942037 [15] : 3.620479 [24] : 3.512924
[7] : 3.335304 [16] : 3.396838 [25] : 3.078143
[8] : 3.375315 [17] : 3.238764
[9] : 3.432931 [18] : 3.403484

```
UNKNOWN

\section*{Prediction with claspfolio}
```

\$ claspfolio queens500 --decisionvalues
PRESOLVING
Reading from queens500
Solving...
Portfolio Decision Values:
[1] : 3.437538 [10] : 3.639444 [19] : 3.726391
[2] : 3.501728 [11] : 3.483334 [20] : 3.020325
[3] : 3.784733 [12] : 3.271890 [21] : 3.220219
[4] : 3.672955 [13] : 3.344085 [22] : 3.998709
[5] : 3.557408 [14] : 3.315235 [23] : 3.961214
[6] : 3.942037 [15] : 3.620479 [24] : 3.512924
[7] : 3.335304 [16] : 3.396838 [25] : 3.078143
[8] : 3.375315 [17] : 3.238764
[9] : 3.432931 [18] : 3.403484

```
UNKNOWN

\section*{Solving with claspfolio (slightly verbosely)}
```

\$ claspfolio queens500 --quiet --autoverbose=1
PRESOLVING
Reading from queens500
Solving. . .
Chosen configuration: [20]
clasp --configurations=./models/portfolio.txt
--modelpath=./models/
queens500 --quiet --autoverbose=1
--heu=VSIDS --sat-pre=20,25,120 --trans-ext=integ
claspfolio version 1.0.1 (based on clasp version 2.0.2)
Reading from queens500
Solving...
SATISFIABLE
Models : 1+
Time : 4.783s (Solving: 3.96s 1st Model: 3.93s Unsat: 0.00s)
CPU Time : 4.760s

```

\section*{Solving with claspfolio (slightly verbosely)}
```

\$ claspfolio queens500 --quiet --autoverbose=1
PRESOLVING
Reading from queens500
Solving. . .
Chosen configuration: [20]
clasp --configurations=./models/portfolio.txt
--modelpath=./models/
queens500 --quiet --autoverbose=1
--heu=VSIDS --sat-pre=20,25,120 --trans-ext=integ
claspfolio version 1.0.1 (based on clasp version 2.0.2)
Reading from queens500
Solving.
SATISFIABLE
Models : 1+
Time : 4.783s (Solving: 3.96s 1st Model: 3.93s Unsat: 0.00s)
CPU Time : 4.760s

```

\section*{Solving with claspfolio (slightly verbosely)}
```

\$ claspfolio queens500 --quiet --autoverbose=1
PRESOLVING
Reading from queens500
Solving. .
Chosen configuration: [20]
clasp --configurations=./models/portfolio.txt
--modelpath=./models/
queens500 --quiet --autoverbose=1
--heu=VSIDS --sat-pre=20,25,120 --trans-ext=integ
claspfolio version 1.0.1 (based on clasp version 2.0.2)
Reading from queens500
Solving.
SATISFIABLE
Models
Time : 4.783s (Solving: 3.96s 1st Model: 3.93s Unsat: 0.00s)
CPU Time : 4.760s

```

Torsten Schaub (KRR@UP)

\section*{Solving with claspfolio (slightly verbosely)}
```

\$ claspfolio queens500 --quiet --autoverbose=1
PRESOLVING
Reading from queens500
Solving. .
Chosen configuration: [20]
clasp --configurations=./models/portfolio.txt
--modelpath=./models/
queens500 --quiet --autoverbose=1
--heu=VSIDS --sat-pre=20,25,120 --trans-ext=integ
claspfolio version 1.0.1 (based on clasp version 2.0.2)
Reading from queens500
Solving.
SATISFIABLE
Models
Time : 4.783s (Solving: 3.96s 1st Model: 3.93s Unsat: 0.00s)
CPU Time : 4.760s

```

Torsten Schaub (KRR@UP)

\section*{Solving with claspfolio (slightly verbosely)}
```

\$ claspfolio queens500 --quiet --autoverbose=1
PRESOLVING
Reading from queens500
Solving...
Chosen configuration: [20]
clasp --configurations=./models/portfolio.txt
--modelpath=./models/
queens500 --quiet --autoverbose=1
--heu=VSIDS --sat-pre=20,25,120 --trans-ext=integ
claspfolio version 1.0.1 (based on clasp version 2.0.2)
Reading from queens500
Solving...
SATISFIABLE
Models : 1+
Time : 4.783s (Solving: 3.96s 1st Model: 3.93s Unsat: 0.00s)
CPU Time : 4.760s

```

Torsten Schaub (KRR@UP)

\section*{Outline}

\section*{62 Potassco}

63 gringo
64 clasp
65 clingo
66 clingeor
67 claspfolio
68 clavis

\section*{clavis}
- Analysis and visualization toolchain for clasp
clavis
- Event logger integrated in clasp
- Records CDCL events like propagation, conflicts, restarts, . .
- Generated logfiles readable with different backends
- Easily configurable
- Applicable to clasp variants like hclasp
- insight
- Visualization backend for clavis
- Combines information about problem structure and solving process
- Networks for structural and aggregated information
- Plots for temporal information and navigation

\section*{clavis}
- Analysis and visualization toolchain for clasp
- clavis
- Event logger integrated in clasp
- Records CDCL events like propagation, conflicts, restarts, ...
- Generated logfiles readable with different backends
- Easily configurable
- Applicable to clasp variants like hclasp
- insight
- Visualization backend for clavis
- Combines information about problem structure and solving process
- Networks for structural and aggregated information
- Plots for temporal information and navigation

\section*{clavis}
- Analysis and visualization toolchain for clasp
- clavis
- Event logger integrated in clasp
- Records CDCL events like propagation, conflicts, restarts, ...
- Generated logfiles readable with different backends
- Easily configurable
- Applicable to clasp variants like hclasp
- insight
- Visualization backend for clavis
- Combines information about problem structure and solving process
- Networks for structural and aggregated information
- Plots for temporal information and navigation

\section*{Visualization Examples}

8-Queens: program interaction graph

(\#)Potassco

\section*{Visualization Examples}

Towers of Hanoi: program interaction graph Colors showing flipped assignments

\section*{Visualization Examples}

Towers of Hanoi: flipped assignments between decisions

\section*{Visualization Examples}

Towers of Hanoi: flipped assignments between decisions (zoomed in)

\section*{Visualization Examples}

Towers of Hanoi: learned nogoods during zoomed in segment projected onto program interaction graph layout

Torsten Schaub (KRR@UP)

\section*{Visualization Examples}

Towers of Hanoi: learned nogoods during zoomed in segment compared to program interaction graph

\# Potassco

\section*{Interactive View}

- Symbol table shows additional information about variables
- Search bar and symbol table allow for dynamic change of the view

\section*{Interactive View}

■ Symbol table shows additional information about variables
- Search bar and symbol table allow for dynamic change of the view

\section*{Interactive View}

- Symbol table shows additional information about variables
- Search bar and symbol table allow for dynamic change of the view

\title{
Advanced Modeling: Overview
}

69 Tweaking \(N\)-Queens
70 Do's and Dont's
71 Hints

\section*{Anything left to worry about?}
- ASP offers
- rich yet easy modeling languages
- efficient instantiation procedures
- powerful search engines
- BUT The problem encoding (still) matters!
- Example Sort a list with 8 elements
- divide-and-conquer
- permutation guessing \(\sim 8!/ 2=20160\) "operations"

\section*{Anything left to worry about?}
- ASP offers
- rich yet easy modeling languages
- efficient instantiation procedures
- powerful search engines
- BUT The problem encoding (still) matters!
- Example Sort a list with 8 elements
\(\begin{array}{lll}\text { - divide-and-conquer } & \sim 8\left(\log _{2} 8\right)=16 \quad \text { "operations" } \\ \text { - permutation guessing } & \sim 8!/ 2=20160 \text { "operations" }\end{array}\)

\section*{Anything left to worry about?}
- ASP offers
- rich yet easy modeling languages
- efficient instantiation procedures
- powerful search engines
- BUT The problem encoding (still) matters!
- Example Sort a list with 8 elements
- divide-and-conquer
- permutation guessing
\[
\begin{aligned}
& \sim 8\left(\log _{2} 8\right)=16 \quad \text { "operations" } \\
& \sim 8!/ 2=20160 \text { "operations" }
\end{aligned}
\]

\section*{Anything left to worry about?}
- ASP offers
- rich yet easy modeling languages
- efficient instantiation procedures
- powerful search engines
- BUT The problem encoding (still) matters!
- Example Sort a list with 8 elements
- divide-and-conquer \(\sim 8\left(\log _{2} 8\right)=16 \quad\) "operations"
- permutation guessing \(\sim 8!/ 2=20160\) "operations"

\section*{Outline}

\section*{69 Tweaking \(N\)-Queens}

70 Do's and Dont's
71 Hints

\section*{\(N\)-Queens Problem}

\section*{Problem Specification}

Given an \(N \times N\) chessboard, place \(N\) queens such that they do not attack each other (neither horizontally, vertically, nor diagonally)
\(N=4\)

Chessboard

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

\section*{\(N\)-Queens Problem}

\section*{Problem Specification}

Given an \(N \times N\) chessboard, place \(N\) queens such that they do not attack each other (neither horizontally, vertically, nor diagonally)
\(N=4\)

Chessboard

Placement

\section*{A First Encoding}

1 Each square may host a queen
```

No row, column, or diagonal hosts two queens
A placement is given by instances of queen in a stable model

```
```

queens_0.lp

```
\% DOMAIN
\#const n=4. square(1..n,1..n).
\% Generate
0 \{ queen (X,Y) \} 1 :- square (X,Y).
\% TEST
:- queen \((X, Y)\), queen \(\left(X, Y^{\prime}\right), Y<Y^{\prime}\).
\% DISPLAY
\#show queen/2.

\section*{A First Encoding}

1 Each square may host a queen
2 No row, column, or diagonal hosts two queens A placement is given by instances of queen in a stable model queens_0.lp
\% DOMAIN
\#const n=4. square(1..n,1..n).
\% GENERATE
0 \{ queen(X,Y) \} 1 :- square (X,Y).
\% TEST
:- queen(X,Y), queen(X, \(\left.\mathrm{Y}^{\prime}\right), \mathrm{Y}\) < \(\mathrm{Y}^{\prime}\).
\% DISPLAY
\#show queen/2.

Torsten Schaub (KRR@UP)

\section*{A First Encoding}

1 Each square may host a queen
2 No row, column, or diagonal hosts two queens
3 A placement is given by instances of queen in a stable model
```

queens_0.lp
% DOMAIN
\#const n=4. square(1..n,1..n).
% GENERATE
0 { queen(X,Y) } 1 :- square(X,Y).
% TEST
:- queen(X,Y), queen(X',Y), X < X'.
% DISPLAY
\#show queen/2.

```

Torsten Schaub (KRR@UP)

\section*{A First Encoding}

1 Each square may host a queen
2 No row, column, or diagonal hosts two queens
3 A placement is given by instances of queen in a stable model
```

queens_0.lp
% DOMAIN
\#const n=4. square(1..n,1..n).
% GENERATE
0 { queen(X,Y) } 1 :- square(X,Y).
% TEST
:- queen(X,Y), queen(X',Y'), X < X', X'-X = |Y'-Y|.
% DISPLAY
\#show queen/2.

```

\section*{A First Encoding}

1 Each square may host a queen
2 No row, column, or diagonal hosts two queens
3 A placement is given by instances of queen in a stable model
```

queens_0.lp
% DOMAIN
\#const n=4. square(1..n,1..n).
% GENERATE
0 { queen(X,Y) } 1 :- square(X,Y).
% TEST
[...]
% DISPLAY
\#show queen/2.

```

\section*{A First Encoding}

1 Each square may host a queen
2 No row, column, or diagonal hosts two queens
3 A placement is given by instances of queen in a stable model
```

queens_0.lp
% DOMAIN
\#const n=4. square(1..n,1..n).
\% GENERATE
0 \{ queen(X,Y) \} 1 :- square (X,Y).
\% TEST
[...]
\% DISPLAY
\#show queen/2.

```

\section*{A First Encoding}

1 Each square may host a queen
2 No row, column, or diagonal hosts two queens
3 A placement is given by instances of queen in a stable model
4 We have to place (at least) \(N\) queens
```

queens_0.lp

```
\% DOMAIN
\#const n=4. square(1..n,1..n).
\% generate
0 \{ queen (X,Y) \} 1 :- square (X,Y).
\% TEST
[...]
:- not n \{ queen(X,Y) \}.
\% DISPLAY
\#show queen/2.

\section*{A First Encoding \\ Let's Place 8 Queens!}
```

gringo -c n=8 queens_0.lp | clasp --stats
Answer: 1
queen(1,6) queen(2,3) queen(3,1) queen(4,7)
queen(5,5) queen(6,8) queen(7,2) queen(8,4)
SATISFIABLE
Models : 1+
Time : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s
Choices : 18
Conflicts : 13
Restarts : 0
Variables : 793
Constraints : }72

```

\section*{A First Encoding}

Let's Place 8 Queens!
```

gringo -c n=8 queens_0.lp | clasp --stats
Answer: 1
queen(1,6) queen(2,3) queen(3,1) queen(4,7)
queen(5,5) queen(6,8) queen(7,2) queen(8,4)
SATISFIABLE

| Models | $: 1+$ |
| :--- | :--- | :--- |
| Time | $: 0.006 \mathrm{~s}$ (Solving: 0.00s 1st Model: 0.00 s Unsat: 0.00 s ) |
| CPU Time | $: 0.000 \mathrm{~s}$ |
| Choices | $: 18$ |
| Conflicts | $: 13$ |
| Restarts | $: 0$ |
|  |  |
| Variables | $: 793$ |
| Constraints | $: 729$ |

```

\section*{A First Encoding}

Let's Place 8 Queens!
```

gringo -c n=8 queens_0.lp | clasp --stats
Answer: 1
queen(1,6) queen(2,3) queen(3,1) queen(4,7)
queen(5,5) queen(6,8) queen(7,2) queen (8,4)
SATISFIABLE

| Models | $: 1+$ |  |
| :--- | :--- | :--- |
| Time | $: 0.006 s ~(S o l v i n g: ~ 0.00 s ~ 1 s t ~ M o d e l: ~ 0.00 s ~ U n s a t: ~$ | $0.00 s)$ |

```

\section*{A First Encoding}

Let's Place 8 Queens!
```

gringo -c n=8 queens_0.lp | clasp --stats
Answer: 1
queen(1,6) queen(2,3) queen(3,1) queen(4,7)
queen(5,5) queen(6,8) queen(7,2) queen(8,4)
SATISFIABLE

```


\section*{A First Encoding \\ Let's Place 22 Queens!}
```

gringo -c n=22 queens_0.lp | clasp --stats
Answer: 1
queen(1,10) queen(2,6) queen(3,16) queen(4,14) queen(5,8) ...
SATISFIABLE
Models : 1+
Time : 150.531s (Solving: 150.37s 1st Model: 150.34s Unsat: 0.00s)
CPU Time : 147.480s
Choices : 594960
Conflicts : 574565
Restarts : 19
Variables : 17271
Constraints : 16787

```

\section*{A First Encoding \\ Let's Place 22 Queens!}
```

gringo -c n=22 queens_0.lp | clasp --stats
Answer: 1
queen(1,10) queen(2,6) queen(3,16) queen(4,14) queen(5,8) ...
SATISFIABLE
Models : 1+
Time : 150.531s (Solving: 150.37s 1st Model: 150.34s Unsat: 0.00s)
CPU Time : 147.480s
Choices : 594960
Conflicts : 574565
Restarts : 19
Variables : 17271
Constraints : 16787

```

\section*{A First Refinement}

At least \(N\) queens?

\section*{Exactly one queen per row and column!}
queens_0.lp
\% domain
\#const n=4. square(1..n,1..n).
\% generate
0 \{ queen(X,Y) \} 1 :- square (X,Y).
\% TEST
:- queen(X,Y), queen(X, \(\left.\mathrm{Y}^{\prime}\right), \mathrm{Y}\) < \(\mathrm{Y}^{\prime}\).
:- queen(X,Y), queen \(\left(\mathrm{X}^{\prime}, \mathrm{Y}\right), \mathrm{X}<\mathrm{X}^{\prime}\).
:- queen(\(\mathrm{X}, \mathrm{Y}\)), queen(\(\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}\)), X < \(\mathrm{X}^{\prime}, \mathrm{X}^{\prime}-\mathrm{X}=\left|\mathrm{Y}^{\prime}-\mathrm{Y}\right|\).
:- not n \{ queen(X,Y) \}.
\% DISPLAY
\#show queen/2.

\section*{A First Refinement}

At least \(N\) queens?
queens_0.lp
\% domain
\#const n=4. square(1..n,1..n).
\% generate
0 \{ queen(X,Y) \} 1 :- square (X,Y).
\(\%\) TEST
:- \(\mathrm{X}=1 . . \mathrm{n}\), not 1 \{ queen \((\mathrm{X}, \mathrm{Y})\} 1\).
:- queen(X,Y), queen \(\left(\mathrm{X}^{\prime}, \mathrm{Y}\right), \mathrm{X}<\mathrm{X}^{\prime}\).
:- queen(X,Y), queen(\(\left.\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}\right), \mathrm{X}<\mathrm{X}^{\prime}, \mathrm{X}^{\prime}-\mathrm{X}=\left|\mathrm{Y}^{\prime}-\mathrm{Y}\right|\).
:- not n \{ queen(X,Y) \}.
\% DISPLAY
\#show queen/2.

\section*{A First Refinement}

At least \(N\) queens?
Exactly one queen per row and column!
queens_0.lp
\% domain
\#const \(\mathrm{n}=4\). square (1..n, 1..n).
\% generate
0 \{ queen(X,Y) \} 1 :- square (X,Y).
\% TEST
:- X = 1..n, not 1 \{ queen(X,Y) \} 1 .
:- \(\mathrm{Y}=1 . . \mathrm{n}\), not 1 \{ queen \((\mathrm{X}, \mathrm{Y})\} 1\).
:- queen(X,Y), queen(\(\left.\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}\right), \mathrm{X}<\mathrm{X}^{\prime}, \mathrm{X}^{\prime}-\mathrm{X}=\left|\mathrm{Y}^{\prime}-\mathrm{Y}\right|\).
:- not n \{ queen(X,Y) \}.
\% DISPLAY
\#show queen/2.

\section*{A First Refinement}

At least \(N\) queens? queens_1.lp
\% DOMAIN
```

\#const n=4. square(1..n,1..n).

```
\% generate
0 \{ queen (X, Y) \} 1 :- square (X,Y).
\% TEST
:- X = 1..n, not 1 \{ queen(X,Y) \} 1 .
:- \(\mathrm{Y}=1 . . \mathrm{n}\), not 1 \{ queen \((\mathrm{X}, \mathrm{Y})\} 1\).
:- queen(X,Y), queen(\(\left.\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}\right), \mathrm{X}<\mathrm{X}^{\prime}, \mathrm{X}^{\prime}-\mathrm{X}=\left|\mathrm{Y}^{\prime}-\mathrm{Y}\right|\).
\% DISPLAY
\#show queen/2.

\section*{A First Refinement Let's Place 22 Queens!}
```

gringo -c n=22 queens_1.lp | clasp --stats
Answer: 1
queen(1,18) queen(2,10) queen(3,21) queen (4,3) queen (5,5) ....
SATISFIABLE
Models : 1+
Time : 0.113s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.020s
Choices : 132
Conflicts : 105
Restarts : 1
Variables : 7238
Constraints : }671

```

\section*{A First Refinement Let's Place 22 Queens!}
```

gringo -c n=22 queens_1.lp | clasp --stats
Answer: 1
queen(1,18) queen(2,10) queen(3,21) queen(4,3) queen(5,5) ...
SATISFIABLE
Models : 1+
Time : 0.113s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.020s
Choices : 132
Conflicts : 105
Restarts : 1
Variables : 7238
Constraints : 6710

```

\section*{A First Refinement \\ Let's Place 122 Queens!}
```

gringo -c n=122 queens_1.lp | clasp --stats
Answer: 1
queen(1,24) queen(2,52) queen(3,37) queen(4,60) queen(5,76) ...
SATISFIABLE
Models : 1+
Time : 79.475s (Solving: 1.06s 1st Model: 1.06s Unsat: 0.00s)
CPU Time : 6.930s
Choices : }137
Conflicts : 845
Restarts : 4
Variables : }121133
Constraints : }119621

```

\section*{A First Refinement \\ Let's Place 122 Queens!}
```

gringo -c n=122 queens_1.lp | clasp --stats
Answer: 1
queen(1,24) queen(2,52) queen(3,37) queen(4,60) queen(5,76) ...
SATISFIABLE
Models : 1+
Time : 79.475s (Solving: 1.06s 1st Model: 1.06s Unsat: 0.00s)
CPU Time : 6.930s
Choices : 1373
Conflicts : 845
Restarts : 4
Variables : 1211338
Constraints : 1196210

```

\section*{A First Refinement \\ Let's Place 122 Queens!}
```

gringo -c n=122 queens_1.lp | clasp --stats
Answer: 1
queen(1,24) queen(2,52) queen(3,37) queen(4,60) queen(5,76) ...
SATISFIABLE
Models : 1+
Time : 79.475s (Solving: 1.06s 1st Model: 1.06s Unsat: 0.00s)
CPU Time : 6.930s
Choices : 1373
Conflicts : 845
Restarts : 4
Variables : 1211338
Constraints : 1196210

```

\title{
A First Refinement Where Time Has Gone
}
gringo -c n=122 queens_1.lp | clasp --stats
```

real 1m15.468s
user 1m15.980s
sys 0m0.090s

```
1241358740272424950848

Torsten Schaub (KRR@UP)

\title{
A First Refinement \\ Where Time Has Gone
}
```

gringo -c n=122 queens_1.lp
1241358740272424950848
real 1m15.468s
user 1m15.980s
sys 0m0.090s

```

\title{
A First Refinement \\ Where Time Has Gone
}
```

time(gringo -c n=122 queens_1.lp | wc)
1241358740272424950848
real 1m15.468s
user 1m15.980s
sys 0m0.090s

```

\section*{A First Refinement} Where Time Has Gone
```

time(gringo -c n=122 queens_1.lp | wc)
1241358740272424950848
real 1m15.468s
user 1m15.980s
sys 0m0.090s

```

\section*{A First Refinement}

\section*{Grounding Time \(\sim\) Space}
```

queens_1.lp
% DOMAIN
\#const n=4. square(1..n,1..n).
% GENERATE
{ queen(X,Y) } :- square(X,Y).
% TEST
:- X := 1..n, not 1 \#count{ queen(X,Y) } 1.
:- Y := 1..n, not 1 \#count{ queen(X,Y) } 1.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
\% DISPLAY
\#show queen/2.

```

\section*{A First Refinement}

\section*{Grounding Time \(\sim\) Space}
```

queens_1.lp
% DOMAIN
\#const n=4. square(1..n,1..n).
O(n\timesn)
% GENERATE
{ queen(X,Y) } :- square(X,Y).
% TEST
:- X := 1..n, not 1 \#count{ queen(X,Y) } 1.
:- Y := 1..n, not 1 \#count{ queen(X,Y) } 1.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
% DISPLAY
\#show queen/2.

```

\section*{A First Refinement}

\section*{Grounding Time \(\sim\) Space}
```

queens_1.lp
% DOMAIN
\#const n=4. square(1..n,1..n).
O(n\timesn)
% GENERATE
{ queen(X,Y) } :- square(X,Y).
% TEST
:- X := 1..n, not 1 \#count{ queen(X,Y) } 1.
:- Y := 1..n, not 1 \#count{ queen(X,Y) } 1.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
% DISPLAY
\#show queen/2.

```

\section*{A First Refinement}

\section*{Grounding Time \(\sim\) Space}
```

queens_1.lp
% DOMAIN
\#const n=4. square(1..n,1..n).
O(n\timesn)
% GENERATE
{ queen(X,Y) } :- square(X,Y).
% TEST
:- X := 1..n, not 1 \#count{ queen(X,Y) } 1.
O(n\timesn)
:- Y := 1..n, not 1 \#count{ queen(X,Y) } 1.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
% DISPLAY
\#show queen/2.

```

\section*{A First Refinement}

\section*{Grounding Time \(\sim\) Space}
```

queens_1.lp
% DOMAIN
\#const n=4. square(1..n,1..n).
O(n\timesn)
% GENERATE
{ queen(X,Y) } :- square(X,Y).
O(n\timesn)
% TEST
:- X := 1..n, not 1 \#count{ queen(X,Y) } 1.
:- Y := 1..n, not 1 \#count{ queen(X,Y) } 1.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
\% DISPLAY
\#show queen/2.

```

\section*{A First Refinement}

\section*{Grounding Time \(\sim\) Space}
```

queens_1.lp
% DOMAIN
\#const n=4. square(1..n,1..n).
O(n\timesn)
% GENERATE
{ queen(X,Y) } :- square(X,Y).
O(n\timesn)
% TEST
:- X := 1..n, not 1 \#count{ queen(X,Y) } 1.
:- Y := 1..n, not 1 \#count{ queen(X,Y) } 1.
O(n\timesn)
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
% DISPLAY
\#show queen/2.

```

\section*{A First Refinement}

\section*{Grounding Time \(\sim\) Space}
```

queens_1.lp
% DOMAIN
\#const n=4. square(1..n,1..n).
O(n\timesn)
% GENERATE
{ queen(X,Y) } :- square(X,Y).
O(n\timesn)
% TEST
:- X := 1..n, not 1 \#count{ queen(X,Y) } 1. O(n\timesn)
:- Y := 1..n, not 1 \#count{ queen(X,Y) } 1.
O(n\timesn)
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
O(n
% DISPLAY
\#show queen/2.

```

\section*{A First Refinement}

\section*{Grounding Time \(\sim\) Space}
```

queens_1.lp
% DOMAIN
\#const n=4. square(1..n,1..n).
O(n\timesn)
% GENERATE
{ queen(X,Y) } :- square(X,Y).
O(n\timesn)
% TEST
:- X := 1..n, not 1 \#count{ queen(X,Y) } 1.
:- X := 1..n, not 1 \#count{ queen(X,Y) } 1.
:- X := 1..n, not 1 \#count{ queen(X,Y) } 1.
O(n\timesn)
O(n
% DISPLAY
\#show queen/2.

```

\section*{A First Refinement}

\section*{Grounding Time \(\sim\) Space}
```

queens_1.lp
% DOMAIN
\#const n=4. square(1..n,1..n).
O(n\timesn)
% GENERATE
{ queen(X,Y) } :- square(X,Y).
O(n\timesn)
% TEST
:- X := 1..n, not 1 \#count{ queen(X,Y) } 1.
:- Y := 1..n, not 1 \#count{ queen(X,Y) } 1.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
O(n\timesn)
O(n' }\mp@subsup{\textrm{n}}{}{2}\mp@subsup{\textrm{n}}{}{2}
% DISPLAY
\#show queen/2.

```

\section*{A First Refinement}

\section*{Grounding Time \(\sim\) Space}
```

queens_1.lp
% DOMAIN
\#const n=4. square(1..n,1..n).
O(n\timesn)
% GENERATE
{ queen(X,Y) } :- square(X,Y).
O(n\timesn)
% TEST
:- X := 1..n, not 1 \#count{ queen(X,Y) } 1.
:- Y := 1..n, not 1 \#count{ queen(X,Y) } 1.
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
O(n\timesn)
O(n
% DISPLAY
\#show queen/2.

```

\section*{A First Refinement}

\section*{Grounding Time \(\sim\) Space}
```

queens_1.lp
% DOMAIN
\#const n=4. square(1..n,1..n).
O(n\timesn)
% genERATE
{ queen(X,Y) } :- square(X,Y).
O(n\timesn)
% TEST
:- X := 1..n, not 1 \#count{ queen(X,Y) } 1.
O(n\timesn)
:- Y := 1..n, not 1 \#count{ queen(X,Y) } 1.
O(n\timesn)
:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.
O(n
% DISPLAY
\#show queen/2.

## Enumerating Diagonals

$$
N=4
$$


\#diagonal ${ }_{1}=$
(\#row + \#column) - 1

\#diagonal $2=$
$(\#$ row $-\#$ column $)+N$

For each $N$, indexes $1, \ldots,(2 * N)-1$ refer to squares on \#diagonal ${ }_{1 / 2}$
© Potassco

## Enumerating Diagonals

$$
N=4
$$



- Note For each $N$, indexes $1, \ldots,(2 * N)-1$ refer to squares on \#diagonal ${ }_{1 / 2}$


## Enumerating Diagonals

$$
N=4
$$


\#diagonal ${ }_{1}=$
(\#row + \#column) - 1

\#diagonal ${ }_{2}=$
$(\#$ row $-\#$ column $)+N$

- Note For each $N$, indexes $1, \ldots,(2 * N)-1$ refer to squares on \#diagonal ${ }_{1 / 2}$


## Enumerating Diagonals

$$
N=4
$$


\#diagonal ${ }_{1}=$
(\#row + \#column) - 1

\#diagonal $2=$
$(\#$ row $-\#$ column $)+N$

- Note For each $N$, indexes $1, \ldots,(2 * N)-1$ refer to squares on \#diagonal ${ }_{1 / 2}$

Torsten Schaub (KRR@UP)

# A Second Refinement 

## Let's go for Diagonals!

```
queens_1.lp
% DOMAIN
#const n=4. square(1..n,1..n).
% GENERATE
0 { queen(X,Y) } 1 :- square(X,Y).
% TEST
:- X = 1..n, not 1 { queen(X,Y) } 1.
:- Y = 1..n, not 1 { queen(X,Y) } 1.
:- queen(X,Y), queen(X',Y'), X < X', X'-X = |Y'-Y|.
```

\% DISPLAY
\#show queen/2.

## A Second Refinement

## Let's go for Diagonals!

```
queens_1.lp
% DOMAIN
#const n=4. square(1..n,1..n).
% GENERATE
0 { queen(X,Y) } 1 :- square(X,Y).
% TEST
 :- X = 1..n, not 1 { queen(X,Y) } 1.
:- Y = 1..n, not 1 { queen(X,Y) } 1.
:- D = 1..2*n-1, 2 { queen(X,Y) : D = (X+Y)-1 }. % Diagonal 1
```

\% DISPLAY
\#show queen/2.

## A Second Refinement

## Let's go for Diagonals!

```
queens_1.lp
% DOMAIN
#const n=4. square(1..n,1..n).
% generate
0 { queen(X,Y) } 1 :- square(X,Y).
% TEST
:- X = 1..n, not 1 { queen(X,Y) } 1.
:- Y = 1..n, not 1 { queen(X,Y) } 1.
:- D = 1.. 2*n-1, 2 { queen(X,Y) : D = (X+Y)-1 }. % Diagonal 1
:- D = 1.. 2*n-1, 2 { queen(X,Y) : D = (X-Y) +n }. % Diagonal 2
% DISPLAY
#show queen/2.
```


## A Second Refinement

## Let's go for Diagonals!

```
queens_2.lp
% DOMAIN
#const n=4. square(1..n,1..n).
% genERATE
0 { queen(X,Y) } 1 :- square(X,Y).
% TEST
:- X = 1..n, not 1 { queen(X,Y) } 1.
:- Y = 1..n, not 1 { queen(X,Y) } 1.
:- D = 1..2*n-1, 2 { queen(X,Y) : D = (X+Y)-1 }. % Diagonal 1
:- D = 1..2*n-1, 2 { queen(X,Y) : D = (X-Y)+n }. % Diagonal 2
% DISPLAY
#show queen/2.
```


## A Second Refinement <br> Let's Place 122 Queens!

```
gringo -c n=122 queens_2.lp | clasp --stats
Answer: 1
queen(1,98) queen(2,54) queen(3,89) queen(4,83) queen(5,59) ...
SATISFIABLE
Models : 1+
Time : 2.211s (Solving: 0.13s 1st Model: 0.13s Unsat: 0.00s)
CPU Time : 0.210s
Choices : 11036
Conflicts : 499
Restarts : 3
Variables : 16098
Constraints : }97
```


## A Second Refinement

## Let's Place 122 Queens!

```
gringo -c n=122 queens_2.lp | clasp --stats
Answer: 1
queen(1,98) queen(2,54) queen(3,89) queen(4,83) queen(5,59) ...
SATISFIABLE
Models : 1+
Time : 2.211s (Solving: 0.13s 1st Model: 0.13s Unsat: 0.00s)
CPU Time : 0.210s
Choices : 11036
Conflicts : 499
Restarts : 3
Variables : 16098
Constraints : 970
```


## A Second Refinement

## Let's Place 122 Queens!

```
gringo -c n=122 queens_2.lp | clasp --stats
Answer: 1
queen(1,98) queen(2,54) queen(3,89) queen(4,83) queen(5,59) ...
SATISFIABLE
Models : 1+
Time : 2.211s (Solving: 0.13s 1st Model: 0.13s Unsat: 0.00s)
CPU Time : 0.210s
Choices : 11036
Conflicts : 499
Restarts : 3
Variables : 16098
Constraints : 970
```


## A Second Refinement Let's Place 300 Queens!

```
gringo -c n=300 queens_2.lp | clasp --stats
Answer: 1
queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...
SATISFIABLE
Models : 1+
Time : 35.450s (Solving: 6.69s 1st Model: 6.68s Unsat: 0.00s)
CPU Time : 7.250s
Choices : 141445
Conflicts : }748
Restarts : 9
Variables : 92994
Constraints : 2394
```


## A Second Refinement <br> Let's Place 300 Queens!

```
gringo -c n=300 queens_2.lp | clasp --stats
Answer: 1
queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...
SATISFIABLE
Models : 1+
Time : 35.450s (Solving: 6.69s 1st Model: 6.68s Unsat: 0.00s)
CPU Time : 7.250s
Choices : 141445
Conflicts : 7488
Restarts : 9
Variables : 92994
Constraints : 2394
```


## A Second Refinement <br> Let's Place 300 Queens!

```
gringo -c n=300 queens_2.lp | clasp --stats
Answer: 1
queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...
SATISFIABLE
Models : 1+
Time : 35.450s (Solving: 6.69s 1st Model: 6.68s Unsat: 0.00s)
CPU Time : 7.250s
Choices : 141445
Conflicts : 7488
Restarts : 9
Variables : 92994
Constraints : 2394
```


## A Third Refinement

Let's Precalculate Indexes!

```
queens_2.lp
% DOMAIN
#const n=4. square(1..n,1..n).
diag1(X,Y,(X+Y)-1) :- square(X,Y). diag2(X,Y,(X-Y)+n) :- square(X,Y).
% GENERATE
0 { queen(X,Y) } 1 :- square(X,Y).
% TEST
 :- X = 1..n, not 1 { queen(X,Y) } 1.
:- Y = 1..n, not 1 { queen(X,Y) } 1.
:- D = 1..2*n-1, 2 { queen(X,Y) : D = (X+Y)-1 }. % Diagonal 1
:- D = 1..2*n-1, 2 { queen(X,Y) : D = (X-Y)+n }. % Diagonal 2
% DISPLAY
#show queen/2.
```


## A Third Refinement

Let's Precalculate Indexes!

```
queens_2.lp
% DOMAIN
#const n=4. square(1..n,1..n).
diag1(X,Y,(X+Y)-1) :- square(X,Y). diag2(X,Y,(X-Y)+n) :- square(X,Y).
% GENERATE
0 { queen(X,Y) } 1 :- square(X,Y).
% TEST
 :- X = 1..n, not 1 { queen(X,Y) } 1.
:- Y = 1..n, not 1 { queen(X,Y) } 1.
:- D = 1..2*n-1, 2 { queen(X,Y) : D = (X+Y)-1 }. % Diagonal 1
:- D = 1..2*n-1, 2 { queen(X,Y) : D = (X-Y)+n }. % Diagonal 2
% DISPLAY
#show queen/2.
```


## A Third Refinement

Let's Precalculate Indexes!

```
queens_2.lp
% DOMAIN
#const n=4. square(1..n,1..n).
diag1(X,Y,(X+Y)-1) :- square(X,Y). diag2(X,Y,(X-Y)+n) :- square(X,Y).
% GENERATE
0 { queen(X,Y) } 1 :- square(X,Y).
% TEST
 :- X = 1..n, not 1 { queen(X,Y) } 1.
 :- Y = 1..n, not 1 { queen(X,Y) } 1.
 :- D = 1..2*n-1, 2 { queen(X,Y) : diag1(X,Y,D) }. % Diagonal 1
 :- D = 1..2*n-1, 2 { queen(X,Y) : diag2(X,Y,D) }. % Diagonal 2
% DISPLAY
#show queen/2.
```


## A Third Refinement

Let's Precalculate Indexes!

```
queens_3.lp
% DOMAIN
#const n=4. square(1..n,1..n).
diag1(X,Y,(X+Y)-1) :- square(X,Y). diag2(X,Y,(X-Y)+n) :- square(X,Y).
% GENERATE
0 { queen(X,Y) } 1 :- square(X,Y).
% TEST
 :- X = 1..n, not 1 { queen(X,Y) } 1.
:- Y = 1..n, not 1 { queen(X,Y) } 1.
:- D = 1..2*n-1, 2 { queen(X,Y) : diag1(X,Y,D) }. % Diagonal 1
:- D = 1..2*n-1, 2 { queen(X,Y) : diag2(X,Y,D) }. % Diagonal 2
% DISPLAY
#show queen/2.
```


## A Third Refinement Let's Place 300 Queens!

```
gringo -c n=300 queens_3.lp | clasp --stats
Answer: 1
queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...
SATISFIABLE
Models : 1+
Time : 8.889s (Solving: 6.61s 1st Model: 6.60s Unsat: 0.00s)
CPU Time : 7.320s
Choices : 141445
Conflicts : }748
Restarts : 9
Variables : 92994
Constraints : 2394
```


## A Third Refinement <br> Let's Place 300 Queens!

```
gringo -c n=300 queens_3.lp | clasp --stats
Answer: 1
queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...
SATISFIABLE
\begin{tabular}{ll}
Models & \(: 1+\) \\
Time & \(: 8.889 \mathrm{~s}\) (Solving: 6.61s 1st Model: 6.60 s Unsat: 0.00 s) \\
CPU Time & \(: 7.320 \mathrm{~s}\) \\
Choices & \(: 141445\) \\
Conflicts & \(: 7488\) \\
Restarts & \(: 9\) \\
& \\
Variables \(\quad: 92994\) \\
Constraints \(: 2394\)
\end{tabular}
Constraints : 2394
```


## A Third Refinement <br> Let's Place 300 Queens!

```
gringo -c n=300 queens_3.lp | clasp --stats
Answer: 1
queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...
SATISFIABLE
Models : 1+
Time : 8.889s (Solving: 6.61s 1st Model: 6.60s Unsat: 0.00s)
CPU Time : 7.320s
Choices : 141445
Conflicts : 7488
Restarts : 9
Variables : 92994
Constraints : 2394
```


## A Third Refinement <br> Let's Place 600 Queens!

```
gringo -c n=600 queens_3.lp | clasp --stats
Answer: 1
queen(1,477) queen (2,365) queen(3,455) queen (4,470) queen (5,237) ...
SATISFIABLE
Models : 1+
Time : 76.798s (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s)
CPU Time : 68.620s
Choices : 869379
Conflicts : 25746
Restarts : 12
Variables : 365994
Constraints : 4794
```


## A Third Refinement <br> Let's Place 600 Queens!

```
gringo -c n=600 queens_3.lp | clasp --stats
Answer: 1
queen(1,477) queen(2,365) queen(3,455) queen(4,470) queen(5,237) ...
SATISFIABLE
Models : 1+
Time : 76.798s (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s)
CPU Time : 68.620s
Choices : 869379
Conflicts : 25746
Restarts : 12
Variables : 365994
Constraints : 4794
```


## A Case for Oracles <br> Let's Place 600 Queens!

```
gringo -c n=600 queens_3.lp | clasp --stats
--heuristic=vsids --trans-ext=dynamic
Answer: 1
queen(1,477) queen(2,365) queen(3,455) queen(4,470) queen(5,237) ...
SATISFIABLE
\begin{tabular}{ll}
Models & \(: 1+\) \\
Time & \(: 76.798 \mathrm{~s}\) (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s) \\
CPU Time & \(: 68.620 \mathrm{~s}\) \\
Choices & \(: 869379\) \\
Conflicts & \(: 25746\) \\
Restarts & \(: 12\) \\
& \\
Variables & \(: 365994\) \\
Constraints & \(: 4794\)
\end{tabular}
```


# A Case for Oracles <br> Let's Place 600 Queens! 

```
gringo -c n=600 queens_3.lp | clasp --stats
--heuristic=vsids --trans-ext=dynamic
Answer: 1
queen(1,477) queen(2,365) queen(3,455) queen(4,470) queen(5,237) ...
SATISFIABLE
```

```
Models : 1+
```

Models : 1+
Time : 76.798s (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s)
Time : 76.798s (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s)
CPU Time : 68.620s
CPU Time : 68.620s
Choices : 869379
Choices : 869379
Conflicts : 25746
Conflicts : 25746
Restarts : 12
Restarts : 12
Variables : 365994
Variables : 365994
Constraints : 4794

```
Constraints : 4794
```


## A Case for Oracles <br> Let's Place 600 Queens!

```
gringo -c n=600 queens_3.lp | clasp --stats
--heuristic=vsids --trans-ext=dynamic
Answer: 1
queen(1,422) queen(2,458) queen(3,224) queen(4,408) queen(5,405) ...
SATISFIABLE
\begin{tabular}{ll}
Models & \(: 1+\) \\
Time & \(: 37.454 \mathrm{~s}\) (Solving: 26.38s 1st Model: 26.26s Unsat: 0.00s) \\
CPU Time & \(: 29.580 \mathrm{~s}\) \\
Choices & \(: 961315\) \\
Conflicts & \(: 3222\) \\
Restarts & \(: 7\) \\
& \\
Variables & \(: 365994\) \\
Constraints & \(: 4794\)
\end{tabular}
```


## A Case for Oracles <br> Let's Place 600 Queens!

```
gringo -c n=600 queens_3.lp | clasp --stats
--heuristic=vsids --trans-ext=dynamic
Answer: 1
queen(1,422) queen(2,458) queen(3,224) queen(4,408) queen(5,405) ...
SATISFIABLE
```

```
Models : 1+
```

Models : 1+
Time : 37.454s (Solving: 26.38s 1st Model: 26.26s Unsat: 0.00s)
Time : 37.454s (Solving: 26.38s 1st Model: 26.26s Unsat: 0.00s)
CPU Time : 29.580s
CPU Time : 29.580s
Choices : 961315
Choices : 961315
Conflicts : 3222
Conflicts : 3222
Restarts : 7
Restarts : 7
Variables : 365994
Variables : 365994
Constraints : 4794

```
Constraints : 4794
```


## A Case for Oracles <br> Let's Place 600 Queens!

```
gringo -c n=600 queens_3.lp | clasp --stats
--heuristic=vsids --trans-ext=dynamic
Answer: 1
queen(1,90) queen(2,452) queen(3,494) queen(4,145) queen(5,84) ...
SATISFIABLE
\begin{tabular}{ll}
Models & \(: 1+\) \\
Time & \(: 22.654 \mathrm{~s}\) (Solving: 10.53s 1st Model: 10.47 s Unsat: 0.00 s) \\
CPU Time & \(: 15.750 \mathrm{~s}\) \\
Choices & \(: 1058729\) \\
Conflicts & \(: 2128\) \\
Restarts & \(: 6\) \\
& \\
Variables & \(: 403123\) \\
Constraints & \(: 49636\)
\end{tabular}
```


## Outline

## 69 Tweaking $N$-Queens

## 70 Do's and Dont's

71 Hints

## Implementing Universal Quantification

Goal: identify objects such that ALL properties from a "list" hold

1 check all properties explicitly use variable-sized conjunction (via ':') use negation of complement
obsolete if properties change
adapts to changing facts
adapts to changing facts

Example: vegetables to buy

```
veg(asparagus). veg(cucumber).
pro(asparagus,cheap). pro(cucumber,cheap).
pro(asparagus,fresh). pro(cucumber,fresh).
pro(asparagus,tasty). pro(cucumber,tasty).
```


## Implementing Universal Quantification

Goal: identify objects such that ALL properties from a "list" hold

1 check all properties explicitly
2 use variable-sized conjunction (via ':')
use negation of complement
obsolete if properties change
adapts to changing facts
adapts to changing facts

Example: vegetables to buy

```
veg(asparagus). veg(cucumber).
pro(asparagus,cheap). pro(cucumber,cheap).
pro(asparagus,fresh). pro(cucumber,fresh).
pro(asparagus,tasty). pro(cucumber,tasty).
```

buy (X) :- veg(X), pro(X,cheap), pro(X,fresh), pro(X,tasty).

## Implementing Universal Quantification

Goal: identify objects such that ALL properties from a "list" hold
1 check all properties explicitly ... obsolete if properties change
2 use variable-sized conjunction (via ':')
adapts to changing facts
use negation of complement
adapts to changing facts

Example: vegetables to buy

```
veg(asparagus). veg(cucumber).
pro(asparagus,cheap). pro(cucumber,cheap).
pro(asparagus,fresh). pro(cucumber,fresh).
pro(asparagus,tasty). pro(cucumber,tasty).
pro(asparagus,clean).
```

buy(X) :- veg(X), pro(X,cheap), pro(X,fresh), pro(X,tasty), pro(X,clean).
(HIOTASSCo

## Implementing Universal Quantification

Goal: identify objects such that ALL properties from a "list" hold
1 check all properties explicitly ... obsolete if properties change
2 use variable-sized conjunction (via ':') ... adapts to changing facts
use negation of complement
adapts to changing facts

Example: vegetables to buy

```
veg(asparagus). veg(cucumber).
pro(asparagus,cheap). pro(cucumber,cheap).
pro(asparagus,fresh). pro(cucumber,fresh).
pro(asparagus,tasty). pro(cucumber,tasty).
pro(asparagus,clean).
```


## Implementing Universal Quantification

Goal: identify objects such that ALL properties from a "list" hold
1 check all properties explicitly ... obsolete if properties change
2 use variable-sized conjunction (via ':') ... adapts to changing facts
3 use negation of complement
adapts to changing facts

Example: vegetables to buy

```
veg(asparagus). veg(cucumber).
pro(asparagus, cheap). pro(cucumber,cheap). pre(cheap).
pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).
pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).
pro(asparagus,clean).
buy(X) :- veg(X), pro(X,P) : pre(P).
```


## Implementing Universal Quantification

Goal: identify objects such that ALL properties from a "list" hold

1 check all properties explicitly ... obsolete if properties change
2 use variable-sized conjunction (via ':') ... adapts to changing facts
3 use negation of complement
adapts to changing facts

Example: vegetables to buy

```
veg(asparagus). veg(cucumber).
pro(asparagus, cheap). pro(cucumber, cheap). pre(cheap).
pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).
pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).
pro(asparagus,clean). pre(clean).
buy(X) :- veg(X), pro(X,P) : pre(P).
```


## Implementing Universal Quantification

Goal: identify objects such that ALL properties from a "list" hold
1 check all properties explicitly ... obsolete if properties change
2 use variable-sized conjunction (via ':') ... adapts to changing facts
3 use negation of complement

Example: vegetables to buy

```
veg(asparagus). veg(cucumber).
pro(asparagus, cheap). pro(cucumber,cheap). pre(cheap).
pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).
pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).
pro(asparagus,clean).
```


## Implementing Universal Quantification

Goal: identify objects such that ALL properties from a "list" hold

1 check all properties explicitly ... obsolete if properties change
2 use variable-sized conjunction (via ':') ... adapts to changing facts
3 use negation of complement
adapts to changing facts

Example: vegetables to buy

```
veg(asparagus). veg(cucumber).
pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).
pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).
pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).
pro(asparagus,clean).
```

buy (X) :- veg(X), not bye(X). bye(X) :- veg(X), pre(P), not pro(X,P).
, Hotassco

## Implementing Universal Quantification

Goal: identify objects such that ALL properties from a "list" hold
1 check all properties explicitly ... obsolete if properties change
2 use variable-sized conjunction (via ':') ... adapts to changing facts
3 use negation of complement ... adapts to changing facts

Example: vegetables to buy

```
veg(asparagus). veg(cucumber).
pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).
pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).
pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).
pro(asparagus,clean).
pre(clean).
```

buy (X) :- $\operatorname{veg}(\mathrm{X})$, not bye(X). bye(X) :- veg(X), pre(P), not pro(X,P).

## Implementing Universal Quantification

Goal: identify objects such that ALL properties from a "list" hold
1 check all properties explicitly ... obsolete if properties change
2 use variable-sized conjunction (via ' $:$ ') ... adapts to changing facts
3 use negation of complement ... adapts to changing facts

Example: vegetables to buy

```
veg(asparagus). veg(cucumber).
pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).
pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).
pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).
pro(asparagus,clean).
pre(clean).
```

buy (X) :- veg(X), not bye(X). bye(X) :- veg(X), pre(P), not pro(X,P).

## Running Example: Latin Square

Given: an $N \times N$ board

represented by facts:
square $(1,1)$. ... square $(1,6)$.
square $(2,1)$. ... square $(2,6)$.
square $(3,1)$. ... square $(3,6)$.
square $(4,1)$. ... square $(4,6)$.
square $(5,1)$. ... square $(5,6)$.
square $(6,1)$. ... square $(6,6)$.

represented by atoms:

```
num(1,1,1) num(1,2,2) ... num(1,6,6)
num(2,1,2) num(2,2,3) ... num(2,6,1)
num(3,1,3) num(3,2,4) ... num(3,6,2)
num(4,1,4) num(4,2,5) ... num(4,6,3)
num(5,1,5) num(5,2,6) ... num(5,6,4)
num(6,1,6) num(6,2,1) ... num(6,6.5)
```


## Running Example: Latin Square

Given: an $N \times N$ board

represented by facts:
square $(1,1)$. ... square $(1,6)$.
square $(2,1)$. ... square $(2,6)$.
square $(3,1)$. ... square $(3,6)$.
square $(4,1)$. ... square $(4,6)$.
square $(5,1)$. ... square $(5,6)$.
square $(6,1)$. ... square $(6,6)$.

Wanted: assignment of $1, \ldots, N$

| 1 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 2 | 3 | 4 | 5 | 6 | 1 |
| 3 | 3 | 4 | 5 | 6 | 1 | 2 |
| 4 | 4 | 5 | 6 | 1 | 2 | 3 |
| 5 | 5 | 6 | 1 | 2 | 3 | 4 |
| 6 | 6 | 1 | 2 | 3 | 4 | 5 |
| 1 | 2 | 3 | 4 | 5 | 6 |  |

represented by atoms:

```
num(1,1,1) num(1,2,2) ... num(1,6,6)
num(2,1,2) num(2,2,3) ... num(2,6,1)
num(3,1,3) num(3,2,4) ... num(3,6,2)
num(4,1,4) num(4,2,5) ... num(4,6,3)
num(5,1,5) num(5,2,6) ... num(5,6,4)
num(6,1,6) num(6,2,1) ... num(6,6.5)
```


## Projecting Irrelevant Details Out

```
A Latin square encoding
% DOMATN
#const n=32. square(1..n,1..n).
% GENERATE
1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).
% TEST
:- square(X,Y), N = 1..n, not num(X,Y',N) : square(X,Y').
:- square(X,Y), N = 1..n, not num(X',Y,N) : square(X',Y).
```

unreused "singleton variables"

## Projecting Irrelevant Details Out

```
A Latin square encoding
% DOMAIN
#const n=32. square(1..n,1..n).
% GENERATE
1 { num(X,Y,N) :N = 1..n } 1 :- square(X,Y).
% TEST
:- square(X,Y), N = 1..n, not num(X,Y',N) : square(X,Y').
:- square(X,Y), N = 1..n, not num(X',Y,N) : square(X',Y).
```

■ Note unreused "singleton variables"

## Projecting Irrelevant Details Out

```
A Latin square encoding
% DOMAIN
#const n=32. square(1..n,1..n).
% GENERATE
1 { num(X,Y,N) :N = 1..n } 1 :- square(X,Y).
% TEST
:- square(X,Y), N = 1..n, not num(X,Y',N) : square(X,Y').
:- square(X,Y), N = 1..n, not num(X',Y,N) : square(X',Y).
```

■ Note unreused "singleton variables"
gringo latin_0.lp | wc
105480255898414005258

## Projecting Irrelevant Details Out

A Latin square encoding
\% domain
\#const n=32. square(1..n,1..n).
squareX(X) :- square(X,Y). squareY(Y) :- square(X,Y).
\% GENERATE
1 \{ $\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}): \mathbb{N}=1 . . \mathrm{n}\} 1$ :- square $(\mathrm{X}, \mathrm{Y})$.
\% TEST
:- squareX(X), N = 1..n, not num (X, $\mathrm{Y}^{\prime}, \mathrm{N}$ ) : square(X, $\left.\mathrm{Y}^{\prime}\right)$.
:- squareY(Y), N = 1..n, not num( $\left.\mathrm{X}^{\prime}, \mathrm{Y}, \mathrm{N}\right)$ : square( $\left.\mathrm{X}^{\prime}, \mathrm{Y}\right)$.

- Note unreused "singleton variables"
gringo latin_O.lp | wc
105480255898414005258


## Projecting Irrelevant Details Out

## A Latin square encoding

\% DOMAIN
\#const n=32. square(1..n,1..n).
squareX (X) :- square (X,Y). squareY(Y) :- square(X,Y).
\% GENERATE
1 \{ $\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}): \mathrm{N}=1 . . \mathrm{n}\} 1$ :- square (X,Y).
\% TEST
:- squareX(X), N = 1..n, not num(X, $\left.\mathrm{Y}^{\prime}, \mathrm{N}\right)$ : square(X, $\left.\mathrm{Y}^{\prime}\right)$.
:- squareY(Y), N = 1..n, not num( $\left.\mathrm{X}^{\prime}, \mathrm{Y}, \mathrm{N}\right)$ : square( $\left.\mathrm{X}^{\prime}, \mathrm{Y}\right)$.
unreused "singleton variables"

| gringo latin_0.lp \| wc | gringo latin_1.lp \| wc |
| :--- | :--- |
| 105480255898414005258 | 420562736721690522 |

## Unraveling Symmetric Inequalities

Another Latin square encoding
\% domain
\#const n=32. square(1..n,1..n).
\% Generate
1 \{ num $(\mathrm{X}, \mathrm{Y}, \mathrm{N}): \mathrm{N}=1 . . \mathrm{n}\} 1$ :- square (X, Y$)$.
\% TEST
:- num (X,Y,N), num $\left(\mathrm{X}, \mathrm{Y}^{\prime}, \mathrm{N}\right), \mathrm{Y}$ != $\mathrm{Y}^{\prime}$.
$:-\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}), \operatorname{num}\left(\mathrm{X}^{\prime}, \mathrm{Y}, \mathrm{N}\right), \mathrm{X}!=\mathrm{X}^{\prime}$.

- Note duplicate ground rules (swapping $\mathrm{Y} / \mathrm{Y}$ ' and $\mathrm{X} / \mathrm{X}$ ' gives the "same")


## Unraveling Symmetric Inequalities

Another Latin square encoding
\% domain
\#const n=32. square(1..n,1..n).
\% Generate
1 \{ $\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}): \mathrm{N}=1 . . \mathrm{n}\} 1$ :- $\operatorname{square}(\mathrm{X}, \mathrm{Y})$.
\% TEST
:- num $(\mathrm{X}, \mathrm{Y}, \mathrm{N}), \operatorname{num}\left(\mathrm{X}, \mathrm{Y}^{\prime}, \mathrm{N}\right), \mathrm{Y}!=\mathrm{Y}^{\prime}$.
$:-\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}), \operatorname{num}\left(\mathrm{X}^{\prime}, \mathrm{Y}, \mathrm{N}\right), \mathrm{X}$ != $\mathrm{X}^{\prime}$.

- Note duplicate ground rules (swapping $Y / Y$ ' and $X / X$ ' gives the "same")


## Unraveling Symmetric Inequalities

Another Latin square encoding
\% domain
\#const n=32. square(1..n,1..n).
\% Generate
1 \{ $\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}): \mathrm{N}=1 . . \mathrm{n}\} 1$ :- square (X,Y).
\% TEST
:- num $(\mathrm{X}, \mathrm{Y}, \mathrm{N}), \operatorname{num}\left(\mathrm{X}, \mathrm{Y}^{\prime}, \mathrm{N}\right), \mathrm{Y}!=\mathrm{Y}^{\prime}$.
$:-\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}), \operatorname{num}\left(\mathrm{X}^{\prime}, \mathrm{Y}, \mathrm{N}\right), \mathrm{X}$ != $\mathrm{X}^{\prime}$.

- Note duplicate ground rules (swapping $\mathrm{Y} / \mathrm{Y}$ ' and $\mathrm{X} / \mathrm{X}$ ' gives the "same")
gringo latin_2.lp | wc
20715601238938440906946


## Unraveling Symmetric Inequalities

Another Latin square encoding
\% domain
\#const n=32. square(1..n,1..n).
\% Generate
1 \{ $\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}): \mathrm{N}=1 . . \mathrm{n}\} 1$ :- $\operatorname{square}(\mathrm{X}, \mathrm{Y})$.
\% TEST
:- num $(\mathrm{X}, \mathrm{Y}, \mathrm{N}), \operatorname{num}\left(\mathrm{X}, \mathrm{Y}^{\prime}, \mathrm{N}\right), \mathrm{Y}<\mathrm{Y}^{\prime}$.
$:-\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}), \operatorname{num}\left(\mathrm{X}^{\prime}, \mathrm{Y}, \mathrm{N}\right), \mathrm{X}<\mathrm{X}^{\prime}$.

- Note duplicate ground rules (swapping $Y / Y$ ' and $X / X$ ' gives the "same")
gringo latin_2.lp | wc
20715601238938440906946
1055752629453621099558
Torsten Schaub (KRR@UP)
Answer Set Solving in Practice


## Unraveling Symmetric Inequalities

Another Latin square encoding
\% domain
\#const n=32. square(1..n,1..n).
\% Generate
1 \{ $\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}): \mathrm{N}=1 . . \mathrm{n}\} 1$ :- $\operatorname{square}(\mathrm{X}, \mathrm{Y})$.
\% TEST
:- num $(\mathrm{X}, \mathrm{Y}, \mathrm{N}), \operatorname{num}\left(\mathrm{X}, \mathrm{Y}^{\prime}, \mathrm{N}\right), \mathrm{Y}<\mathrm{Y}^{\prime}$.
$:-\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}), \operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}), \mathrm{X}<\mathrm{X}^{\prime}$.
duplicate ground rules
(swapping $\mathrm{Y} / \mathrm{Y}$ ' and $\mathrm{X} / \mathrm{X}$ ' gives the "same")
gringo latin_2.lp | wc gringo latin_3.lp | wc
207156012389384409069461055752629453621099558

## Linearizing Existence Tests

```
Still another Latin square encoding
% DOMAIN
#const n=32. square(1..n,1..n).
% GENERATE
1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).
% TEST
:- num(X,Y,N), num(X,Y',N), Y < Y'.
:- num(X,Y,N), num(X',Y,N), X < X'.
```


## uniqueness of $N$ in a row/column checked by enumerating pairs!

## Linearizing Existence Tests

```
Still another Latin square encoding
% DOMAIN
#const n=32. square(1..n,1..n).
% GENERATE
1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).
% TEST
:- num(X,Y,N), num(X,Y',N), Y < Y'.
:- num(X,Y,N), num(X',Y,N), X < X'.
```

- Note uniqueness of N in a row/column checked by enumerating pairs!


## Linearizing Existence Tests

```
Still another Latin square encoding
% DOMAIN
#const n=32. square(1..n,1..n).
% GENERATE
1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).
% TEST
:- num(X,Y,N), num(X,Y',N), Y < Y'.
:- num(X,Y,N), num(X',Y,N), X < X'.
```

- Note uniqueness of N in a row/column checked by enumerating pairs!


## Linearizing Existence Tests

## Still another Latin square encoding

## \% DOMAIN

\#const n=32. square(1..n,1..n).
\% GENERATE
1 \{ num $(\mathrm{X}, \mathrm{Y}, \mathrm{N}): \mathrm{N}=1 . . \mathrm{n}\} 1$ :- $\operatorname{square}(\mathrm{X}, \mathrm{Y})$.
\% DEFINE + TEST
$\operatorname{gtX}(\mathrm{X}-1, \mathrm{Y}, \mathrm{N}):-\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}), 1<\mathrm{X} . \quad \operatorname{gty}(\mathrm{X}, \mathrm{Y}-1, \mathrm{~N}):-\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}), 1<\mathrm{Y}$.
$\operatorname{gtX}(\mathrm{X}-1, \mathrm{Y}, \mathrm{N}):-\operatorname{gtX}(\mathrm{X}, \mathrm{Y}, \mathrm{N}), 1<\mathrm{X} . \operatorname{gtY}(\mathrm{X}, \mathrm{Y}-1, \mathrm{~N}):-\operatorname{gtY}(\mathrm{X}, \mathrm{Y}, \mathrm{N}), 1<\mathrm{Y}$.
$:-\operatorname{num}(X, Y, N), \operatorname{gtX}(X, Y, \mathbb{N})$. $:-\operatorname{num}(X, Y, \mathbb{N}), \operatorname{gty}(X, Y, \mathbb{N})$.

## - Note uniqueness of N in a row/column checked by enumerating pairs!

gringo latin_3.lp | wc
1055752629453621099558
22836012052564780744

## Linearizing Existence Tests

## Still another Latin square encoding

```
% DOMAIN
```

\#const n=32. square(1..n,1..n).
\% Generate
1 \{ num $(\mathrm{X}, \mathrm{Y}, \mathrm{N}): \mathrm{N}=1 . . \mathrm{n}\} 1$ :- square (X,Y).
\% DEFINE + TEST
$\operatorname{gtX}(\mathrm{X}-1, \mathrm{Y}, \mathrm{N}):-\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}), 1<\mathrm{X} . \quad \operatorname{gty}(\mathrm{X}, \mathrm{Y}-1, \mathrm{~N}):-\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}), 1<\mathrm{Y}$.
$\operatorname{gtX}(\mathrm{X}-1, \mathrm{Y}, \mathrm{N}):-\operatorname{gtX}(\mathrm{X}, \mathrm{Y}, \mathrm{N}), 1<\mathrm{X} . \operatorname{gtY}(\mathrm{X}, \mathrm{Y}-1, \mathrm{~N}):-\operatorname{gtY}(\mathrm{X}, \mathrm{Y}, \mathrm{N}), 1<\mathrm{Y}$.
$:-\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}), \operatorname{gtX}(\mathrm{X}, \mathrm{Y}, \mathrm{N})$. $:-\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}), \operatorname{gty}(\mathrm{X}, \mathrm{Y}, \mathrm{N})$.

## uniqueness of $\mathbb{N}$ in a row/column checked by enumerating pairs!

gringo latin_3.lp | wc
1055752629453621099558
22836012052564780744

## Linearizing Existence Tests

## Still another Latin square encoding

```
% DOMAIN
```

\#const n=32. square(1..n,1..n).
\% generate

```
1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).
```

\% DEFINE + TEST
$\operatorname{gtX}(\mathrm{X}-1, \mathrm{Y}, \mathrm{N}):-\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}), 1<\mathrm{X} . \quad \operatorname{gtY}(\mathrm{X}, \mathrm{Y}-1, \mathrm{~N}):-\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}), 1<\mathrm{Y}$.
$\operatorname{gtX}(\mathrm{X}-1, \mathrm{Y}, \mathrm{N}):-\operatorname{gtX}(\mathrm{X}, \mathrm{Y}, \mathrm{N}), 1<\mathrm{X} . \operatorname{gtY}(\mathrm{X}, \mathrm{Y}-1, \mathrm{~N}):-\operatorname{gtY}(\mathrm{X}, \mathrm{Y}, \mathrm{N}), 1<\mathrm{Y}$.
$:-\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}), \operatorname{gtX}(\mathrm{X}, \mathrm{Y}, \mathrm{N})$. $:-\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}), \operatorname{gtY}(\mathrm{X}, \mathrm{Y}, \mathrm{N})$.

## uniqueness of $\mathbb{N}$ in a row/column checked by enumerating pairs!

| gringo latin_3.lp \| wc | gringo latin_4.lp \| wc |
| :--- | :--- |
| 1055752629453621099558 | 22836012052564780744 |

## Assigning Aggregate Values

Yet another Latin square encoding

## \% DOMAIN

\#const n=32. square(1..n,1..n).
sigma(S) :- S = \#sum \{ X:square (X,n) \}.
\% Generate
1 \{ $\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}): \mathrm{N}=1 \ldots \mathrm{n}\} 1:-\operatorname{square}(\mathrm{X}, \mathrm{Y})$.
\% DEFINE + TEST
$\operatorname{occX}(\mathrm{X}, \mathrm{N}, \mathrm{C}):-\mathrm{X}=1 \ldots \mathrm{n}, \mathrm{N}=1 \ldots \mathrm{n}, \mathrm{C}=\{\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N})\}$.
$\operatorname{occY}(Y, N, C):-Y=1 \ldots n, N=1 \ldots n, C=\{\operatorname{num}(X, Y, N)\}$.
$:-\operatorname{occX}(X, N, C), C \quad!=1 . \quad:-\operatorname{occY}(Y, N, C), C!=1$.
\% DISPLAY
\#show num/3. \#show sigma/1.

## Assigning Aggregate Values

Yet another Latin square encoding

```
% DOMAIN
#const n=32. square(1..n,1..n).
sigma(S) :- S = #sum { X:square(X,n) }.
% GENERATE
1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).
% DEFINE + TEST
occX(X,N,C) :- X = 1..n, N = 1..n, C = { num(X,Y,N) }.
occY(Y,N,C) :- Y = 1..n, N = 1..n, C = { num(X,Y,N) }.
:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.
% DISPLAY
#show num/3. #show sigma/1.
```


## Assigning Aggregate Values

Yet another Latin square encoding

```
% DOMAIN
#const n=32. square(1..n,1..n).
sigma(S) :- S = #sum { X:square(X,n) }.
% GENERATE
1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).
% DEFINE + TEST
occX(X,N,C) :- X = 1..n, N = 1..n, C = { num(X,Y,N) }.
occY(Y,N,C) :- Y = 1..n, N = 1..n, C = { num(X,Y,N) }.
:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.
% DISPLAY
#show num/3. #show sigma/1.
```


## Assigning Aggregate Values

Yet another Latin square encoding
\% DOMAIN
\#const n=32. square(1..n,1..n).
sigma(S) :- $\mathrm{S}=$ \#sum $\{\mathrm{X}:$ square $(\mathrm{X}, \mathrm{n})$ \}.
\% Generate
1 \{ $\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}): \mathrm{N}=1 \ldots \mathrm{n}\} 1:-\operatorname{square}(\mathrm{X}, \mathrm{Y})$.
\% DEFINE + TEST
$\operatorname{occX}(\mathrm{X}, \mathrm{N}, \mathrm{C}):-\mathrm{X}=1 \ldots \mathrm{n}, \mathrm{N}=1 \ldots \mathrm{n}, \mathrm{C}=\{\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N})\}$.
$\operatorname{occY}(\mathrm{Y}, \mathrm{N}, \mathrm{C}):-\mathrm{Y}=1 . . \mathrm{n}, \mathrm{N}=1 . . \mathrm{n}, \mathrm{C}=\{\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N})\}$.
:- $\operatorname{occX}(\mathrm{X}, \mathrm{N}, \mathrm{C}), \mathrm{C}$ != 1. :- $\operatorname{occY}(\mathrm{Y}, \mathrm{N}, \mathrm{C}), \mathrm{C}!=1$.
\% DISPLAY
\#show num/3. \#show sigma/1.

## Assigning Aggregate Values

Yet another Latin square encoding

```
% DOMAIN
```

\#const n=32. square(1..n,1..n).
sigma(S) :- S = \#sum \{ X:square (X,n) \}.
\% Generate
1 \{ num $(\mathrm{X}, \mathrm{Y}, \mathrm{N}): \mathrm{N}=1 . . \mathrm{n}\} 1$ :- square (X,Y).
\% DEFINE + TEST
$\operatorname{occX}(\mathrm{X}, \mathrm{N}, \mathrm{C}):-\mathrm{X}=1 . . \mathrm{n}, \mathrm{N}=1 . . \mathrm{n}, \mathrm{C}\{\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N})\} \mathrm{C}, \mathrm{C}=0 . \mathrm{n}$.
$\operatorname{occY}(\mathrm{Y}, \mathrm{N}, \mathrm{C}):-\mathrm{Y}=1 . . \mathrm{n}, \mathrm{N}=1 . . \mathrm{n}, \mathrm{C}\{\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N})\} \mathrm{C}, \mathrm{C}=0 . . \mathrm{n}$.
:- $\operatorname{occX}(\mathrm{X}, \mathrm{N}, \mathrm{C}), \mathrm{C}$ != 1. :- $\operatorname{occY}(\mathrm{Y}, \mathrm{N}, \mathrm{C}), \mathrm{C}!=1$.
\% DISPLAY
\#show num/3. \#show sigma/1.

- Note internal transformation by gringo


## Assigning Aggregate Values

Yet another Latin square encoding

## \% DOMAIN

\#const n=32. square(1..n,1..n).
sigma(S) :- S = \#sum \{ X:square (X,n) \}.
\% Generate
1 \{ $\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}): \mathrm{N}=1 \ldots \mathrm{n}\} 1:-\operatorname{square}(\mathrm{X}, \mathrm{Y})$.
\% DEFINE + TEST
$\operatorname{occX}(\mathrm{X}, \mathrm{N}, \mathrm{C}):-\mathrm{X}=1 \ldots \mathrm{n}, \mathrm{N}=1 \ldots \mathrm{n}, \mathrm{C}=\{\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N})\}$.
$\operatorname{occY}(Y, N, C):-Y=1 \ldots n, N=1 \ldots n, C=\{\operatorname{num}(X, Y, N)\}$.
$:-\operatorname{occX}(X, N, C), C \quad!=1 . \quad:-\operatorname{occY}(Y, N, C), C!=1$.
\% DISPLAY
\#show num/3. \#show sigma/1.

## Assigning Aggregate Values

Yet another Latin square encoding

## \% DOMAIN

\#const n=32. square(1..n, 1..n).
\% Generate
1 \{ num (X, Y, N) : N = 1..n \} 1 :- square (X, Y).
\% DEFINE + TEST
$\operatorname{occX}(\mathrm{X}, \mathrm{N}, \mathrm{C}):-\mathrm{X}=1 . . \mathrm{n}, \mathrm{N}=1 . . \mathrm{n}, \mathrm{C}=\{\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N})\}$.
$\operatorname{occY}(\mathrm{Y}, \mathrm{N}, \mathrm{C}):-\mathrm{Y}=1 . . \mathrm{n}, \mathrm{N}=1 . . \mathrm{n}, \mathrm{C}=\{\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N})\}$.
:- $\operatorname{occX}(\mathrm{X}, \mathrm{N}, \mathrm{C}), \mathrm{C}$ != 1. :- occY(Y,N,C), C != 1 .
\% DISPLAY
\#show num/3.
gringo latin_5.lp | wc

## Assigning Aggregate Values

Yet another Latin square encoding

## \% DOMAIN

```
#const n=32. square(1..n,1..n).
```

\% generate
1 \{ num $(\mathrm{X}, \mathrm{Y}, \mathrm{N}): \mathrm{N}=1 . . \mathrm{n}\} 1$ :- square (X,Y).
\% DEFINE + TEST
$\operatorname{occX}(\mathrm{X}, \mathrm{N}, \mathrm{C}):-\mathrm{X}=1 . . \mathrm{n}, \mathrm{N}=1 . . \mathrm{n}, \mathrm{C}=\{\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N})\}$.
$\operatorname{occY}(\mathrm{Y}, \mathrm{N}, \mathrm{C}):-\mathrm{Y}=1 . . \mathrm{n}, \mathrm{N}=1 . . \mathrm{n}, \mathrm{C}=\{\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N})\}$.
:- $\operatorname{occX}(\mathrm{X}, \mathrm{N}, \mathrm{C}), \mathrm{C}$ != 1. :- occY(Y,N,C), C != 1 .
\% DISPLAY
\#show num/3.
gringo latin_5.lp | wc
304136577844030252505

## Assigning Aggregate Values

Yet another Latin square encoding

## \% DOMAIN

\#const n=32. square(1..n, 1..n).
\% generate
1 \{ num (X,Y, N) : N = 1..n \} 1 :- square (X, Y).
\% TEST
:- $\mathrm{X}=1 . . \mathrm{n}, \mathrm{N}=1 . . \mathrm{n}, \operatorname{not} 1\{\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N})\} 1$.
$:-\mathrm{Y}=1 . . \mathrm{n}, \mathrm{N}=1 . . \mathrm{n}$, not 1 \{num(X,Y,N) \} 1 .
\% DISPLAY
\#show num/3.
gringo latin_5.lp | wc
gringo latin_6.lp | wc
304136577844030252505

## Assigning Aggregate Values

Yet another Latin square encoding

## \% DOMAIN

\#const n=32. square(1..n, 1..n).
\% Generate
1 \{ num (X,Y, N) : N = 1..n \} 1 :- square (X, Y).
\% TEST
$:-\mathrm{X}=1 . . \mathrm{n}, \mathrm{N}=1 . . \mathrm{n}, \operatorname{not} 1$ \{num(X,Y,N) \} 1 .
$:-\mathrm{Y}=1 . . \mathrm{n}, \mathrm{N}=1 . . \mathrm{n}$, not 1 \{num(X,Y,N) \} 1 .
\% DISPLAY
\#show num/3.
gringo latin_5.lp | wc
gringo latin_6.lp | wc
304136577844030252505
481363737682185042

## Breaking Symmetries

## The ultimate Latin square encoding?

## \% DOMAIN

\#const n=32. square(1..n,1..n).
\% GENERATE
1 \{ $\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}): \mathrm{N}=1 . . \mathrm{n}\} 1$ :- square (X,Y).
\% TEST
:- $\mathrm{X}=1 . . \mathrm{n}, \mathrm{N}=1 . . \mathrm{n}$, not 1 \{ $\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N})\} 1$.
$:-\mathrm{Y}=1 . . \mathrm{n}, \mathrm{N}=1 . . \mathrm{n}, \operatorname{not} 1\{\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N})\} 1$.
\% DISPLAY
\#show num/3.

## Breaking Symmetries

The ultimate Latin square encoding?
\% DOMAIN
\#const n=32. square(1..n,1..n).
\% Generate
1 \{ num (X,Y, N) : N = 1..n \} 1 :- square (X, Y).
\% TEST
$:-\mathrm{X}=1 . . \mathrm{n}, \mathrm{N}=1 . . \mathrm{n}, \operatorname{not} 1\{\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N})\} 1$.
$:-\mathrm{Y}=1 . . \mathrm{n}, \mathrm{N}=1 . . \mathrm{n}$, not 1 \{num(X,Y,N) \} 1 .
\% DISPLAY
\#show num/3.

- Note many symmetric solutions (mirroring, rotation, value permutation)

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice

## Breaking Symmetries

```
The ultimate Latin square encoding?
% DOMAIN
#const n=32. square(1..n,1..n).
% GENERATE
1 { num(X,Y,N) :N = 1..n } 1 :- square(X,Y).
% TEST
:- X = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.
:- Y = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.
```

\% DISPLAY
\#show num/3.

- Note easy and safe to fix a full row/column!


## Breaking Symmetries

```
The ultimate Latin square encoding?
% DOMAIN
#const n=32. square(1..n,1..n).
% GENERATE
1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).
% TEST
:- X = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.
:- Y = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.
:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking
% DISPLAY
#show num/3.
```

- Note easy and safe to fix a full row/column!


## Breaking Symmetries

```
The ultimate Latin square encoding?
% DOMAIN
#const n=32. square(1..n,1..n).
% GENERATE
1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).
% TEST
:- X = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.
:- Y = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.
:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking
% DISPLAY
#show num/3.
```

- Note Let's compare enumeration speed!


## Breaking Symmetries

The ultimate Latin square encoding?
\% DOMAIN
\#const n=32. square(1..n,1..n).
\% GENERATE
1 \{ $\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}): \mathrm{N}=1 . . \mathrm{n}\} 1$ :- square (X,Y).
\% TEST
:- $\mathrm{X}=1 . . \mathrm{n}, \mathrm{N}=1 . . \mathrm{n}$, not 1 \{ $\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N})\} 1$.
$:-\mathrm{Y}=1 . . \mathrm{n}, \mathrm{N}=1 . . \mathrm{n}, \operatorname{not} 1\{\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N})\} 1$.
\% DISPLAY
\#show num/3.
gringo -c n=5 latin_6.lp | clasp -q 0

IFI I Ulassしo

## Breaking Symmetries

The ultimate Latin square encoding?
\% DOMAIN
\#const n=32. square(1..n,1..n).
\% GENERATE
1 \{ $\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N}): \mathrm{N}=1 . . \mathrm{n}\} 1$ :- square (X,Y).
\% TEST
:- $\mathrm{X}=1 . . \mathrm{n}, \mathrm{N}=1 . . \mathrm{n}$, not 1 \{ $\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N})\} 1$.
$:-\mathrm{Y}=1 . . \mathrm{n}, \mathrm{N}=1 . . \mathrm{n}, \operatorname{not} 1\{\operatorname{num}(\mathrm{X}, \mathrm{Y}, \mathrm{N})\} 1$.
\% DISPLAY
\#show num/3.
gringo -c n=5 latin_6.lp | clasp -q 0
Models : 161280 Time : 2.078s
17n I Ulassしo

## Breaking Symmetries

```
The ultimate Latin square encoding?
% DOMAIN
#const n=32. square(1..n,1..n).
% GENERATE
1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).
% TEST
:- X = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.
:- Y = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.
:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking
% DISPLAY
#show num/3.
gringo -c n=5 latin_7.lp | clasp -q 0
Models : 161280 Time : 2.078s
```


## Breaking Symmetries

```
The ultimate Latin square encoding?
% DOMAIN
#const n=32. square(1..n,1..n).
% GENERATE
1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).
% TEST
:- X = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.
:- Y = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.
:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking
% DISPLAY
#show num/3.
gringo -c n=5 latin_7.lp | clasp -q 0
Models : 1344 Time : 0.024s
```


## Outline

## 69 Tweaking $N$-Queens

## 70 De's and Dont's

## 71 Hints

## Encode With Care!

1 Create a working encoding
Q1: Do you need to modify the encoding if the facts change? Are all variables significant (or statically functionally dependent)? Can there be (many) identic ground rules?
Do you enumerate pairs of values (to test uniqueness)?
Do you assign dynamic aggregate values (to check a fixed bound)?
Do you admit (obvious) symmetric solutions?
Do you have additional domain knowledge simplifying the problem?
Are you aware of anything else that, if encoded, would reduce grounding and/or solving efforts?
2 Revise until no "Yes" answer!
If the format of facts makes encoding painful (for instance, abusing grounding for "scientific calculations"), revise the fact format as well.
\# Potassco

## Encode With Care!

1 Create a working encoding
Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Do you have additional domain knowledge simplifying the problem? Are you aware of anything else that, if encoded, would reduce grounding and/or solving efforts?
2 Revise until no "Yes" answer!
If the format of facts makes encoding painful (for instance, abusing grounding for "scientific calculations"), revise the fact format as well.

## Encode With Care!

1 Create a working encoding
Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Are you aware of anything else that, if encoded, would reduce grounding and/or solving efforts?
2 Revise until no "Yes" answer!
If the format of facts makes encoding painful (for instance, abusing grounding for "scientific calculations"), revise the fact format as well.

## Encode With Care!

1 Create a working encoding
Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce grounding and/or solving efforts?
2 Revise until no "Yes" answer!

> If the format of facts makes encoding painful (for instance, abusing grounding for "scientific calculations"), revise the fact format as well.

## Encode With Care!

1 Create a working encoding
Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce grounding and/or solving efforts?
2 Revise until no "Yes" answer!

> Note If the format of facts makes encoding painful (for instance, abusing grounding for "scientific calculations"), revise the fact format as well.

## Encode With Care!

1 Create a working encoding
Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce grounding and/or solving efforts?
2 Revise until no "Yes" answer!

- Note If the format of facts makes encoding painful (for instance, abusing grounding for "scientific calculations"), revise the fact format as well.


## Some Hints on (Preventing) Debugging

Kinds of errors

- syntactic
- semantic


## ... follow error messages by the grounder . . (most likely) encoding/intention mismatch

develop and test incrementally
prepare toy instances with "interesting features"
build the encoding bottom-up and verify additions (eg. new predicates)
compare the encoded to the intended meaning
check whether the grounding fits (use gringo --text)
if stable models are unintended, investigate conditions that fail to hold
if stable models are missing, examine integrity constraints (add heads)
ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)

## Some Hints on (Preventing) Debugging

Kinds of errors
■ syntactic

- semantic
... follow error messages by the grounder (most likely) encoding/intention mismatch
develop and test incrementally prepare toy instances with "interesting features" build the encoding bottom-up and verify additions (eg. new predicates)
compare the encoded to the intended meaning
check whether the grounding fits (use gringo --text)
if stable models are unintended, investigate conditions that fail to hold
if stable models are missing, examine integrity constraints (add heads)
ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)


## Some Hints on (Preventing) Debugging

Kinds of errors

- syntactic
- semantic
... follow error messages by the grounder ... (most likely) encoding/intention mismatch
develop and test incrementally
prepare toy instances with "interesting features"
build the encoding bottom-up and verify additions (eg. new predicates)
compare the encoded to the intended meaning
check whether the grounding fits (use gringo --text)
if stable models are unintended, investigate conditions that fail to hold
if stable models are missing, examine integrity constraints (add heads)
ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)


## Some Hints on (Preventing) Debugging

Kinds of errors

- syntactic
- semantic
... follow error messages by the grounder ... (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)
1 develop and test incrementally

- prepare toy instances with "interesting features"
- build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

- check whether the grounding fits (use gringo --text)
- if stable models are unintended, investigate conditions that fail to hold
- if stable models are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)

## Some Hints on (Preventing) Debugging

Kinds of errors
■ syntactic
... follow error messages by the grounder

- semantic ... (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)
1 develop and test incrementally

- prepare toy instances with "interesting features"
- build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

- check whether the grounding fits (use gringo --text)
- if stable models are unintended, investigate conditions that fail to hold
- if stable models are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)

## Some Hints on (Preventing) Debugging

Kinds of errors

- syntactic
... follow error messages by the grounder
- semantic ... (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)
1 develop and test incrementally

- prepare toy instances with "interesting features"
- build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

- check whether the grounding fits (use gringo --text)
- if stable models are unintended, investigate conditions that fail to hold
- if stable models are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)

## Overcoming Performance Bottlenecks

Grounding

- monitor time spent by and output size of gringo

1 system tools (eg. time (gringo [...] | wc))
2 grounding info (eg. gringo --text)

- Note once identified, reformulate "critical" logic program parts
- check solving statistics (use clasp --stats)

```
 if great search efforts (Conflicts/Choices/Restarts), then
 try prefabricated settings (using clasp option '--configuration')
 try auto-configuration (offered by claspfolio or accclingo)
 try manual fine-tuning (requires expert knowledge!)
 if possible, reformulate the problem or add domain knowledge
 ("redundant" constraints) to help the solver
```


## Overcoming Performance Bottlenecks

Grounding

- monitor time spent by and output size of gringo

1 system tools (eg. time (gringo [...] | wc))
2 grounding info (eg. gringo --text)
■ Note once identified, reformulate "critical" logic program parts

- check solving statistics (use clasp --stats) if great search efforts (Conflicts/Choices/Restarts), then
try prefabricated settings (using clasp option '--configuration')
try auto-configuration (offered by claspfolio or accclingo)
try manual fine-tuning (requires expert knowledge!)
if possible, reformulate the problem or add domain knowledge
("redundant" constraints) to help the solver


## Overcoming Performance Bottlenecks

Grounding

- monitor time spent by and output size of gringo 1 system tools (eg. time (gringo [...] | wc))
2 grounding info (eg. gringo --text)
■ Note once identified, reformulate "critical" logic program parts

Solving

- check solving statistics (use clasp --stats)

```
 if great search efforts(Conflicts/Choices/Restarts), then
 try prefabricated settings (using clasp option '--configuration')
try auto-configuration (offered by claspfolio or accclingo)
try manual fine-tuning (requires expert knowledge!)
if possible, reformulate the problem or add domain knowledge
("redundant" constraints) to help the solver
```


## Overcoming Performance Bottlenecks

Grounding

- monitor time spent by and output size of gringo

1 system tools (eg. time (gringo [...] | wc))
2 grounding info (eg. gringo --text)
■ Note once identified, reformulate "critical" logic program parts

Solving

- check solving statistics (use clasp --stats)
- Note if great search efforts (Conflicts/Choices/Restarts), then

1 try prefabricated settings (using clasp option '--configuration')
try auto-configuration (offered by claspfolio or accclingo)
try manual fine-tuning (requires expert knowledge!)
if possible, reformulate the problem or add domain knowledge ("redundant" constraints) to help the solver

## Overcoming Performance Bottlenecks

## Grounding

- monitor time spent by and output size of gringo

1 system tools (eg. time (gringo [...] | wc))
2 grounding info (eg. gringo --text)
■ Note once identified, reformulate "critical" logic program parts

Solving

- check solving statistics (use clasp --stats)
- Note if great search efforts (Conflicts/Choices/Restarts), then

1 try prefabricated settings (using clasp option '--configuration')
2 try auto-configuration (offered by claspfolio or accclingo)
3 try manual fine-tuning (requires expert knowledge!)
4 if possible, reformulate the problem or add domain knowledge ("redundant" constraints) to help the solver

## Overcoming Performance Bottlenecks

## Grounding

- monitor time spent by and output size of gringo

1 system tools (eg. time (gringo [...] | wc))
2 grounding info (eg. gringo --text)
■ Note once identified, reformulate "critical" logic program parts

Solving

- check solving statistics (use clasp --stats)
- Note if great search efforts (Conflicts/Choices/Restarts), then

1 try prefabricated settings (using clasp option '--configuration')
2 try auto-configuration (offered by claspfolio or accclingo)
3 try manual fine-tuning (requires expert knowledge!)
4 if possible, reformulate the problem or add domain knowledge ( "redundant" constraints) to help the solver

## Preferences and optimization: Overview

72 Motivation
73 The asprin framework
74 Preliminaries
75 Language
76 Implementation
77 Summary

## Outline

72 Motivation
73 The asprin framework
74 Preliminaries
75 Language
76 Implementation
77 Summary

## Motivation

- Preferences are pervasive
- The identification of preferred, or optimal, solutions is often indispensable in real-world applications
In many cases, this also involves the combination of various qualitative and quantitative preferences
- Only optimization statements representing objective functions using sum or count aggregates are established components of ASP systems

$$
\text { \#minimize }\{40 \text { : sauna, } 70 \text { : dive }\}
$$

## Motivation

- Preferences are pervasive
- The identification of preferred, or optimal, solutions is often indispensable in real-world applications
In many cases, this also involves the combination of various qualitative and quantitative preferences
- Only optimization statements representing objective functions using sum or count aggregates are established components of ASP systems
- Example \#minimize\{40 : sauna, 70 : dive $\}$


## Motivation

- Preferences are pervasive
- The identification of preferred, or optimal, solutions is often indispensable in real-world applications
In many cases, this also involves the combination of various qualitative and quantitative preferences
- Only optimization statements representing objective functions using sum or count aggregates are established components of ASP systems
- Example \#minimize\{40 : sauna, 70 : dive $\}$


## Motivation

- Preferences are pervasive
- The identification of preferred, or optimal, solutions is often indispensable in real-world applications
In many cases, this also involves the combination of various qualitative and quantitative preferences
- Only optimization statements representing objective functions using sum or count aggregates are established components of ASP systems

■ Example \#minimize\{40 : sauna, 70 : dive $\}$

## Outline

## 72 Motivation

73 The asprin framework
74 Preliminaries
75 Language
76 Implementation
77 Summary

## Approach

- asprin is a framework for handling preferences among the stable models of logic programs
g general because it captures numerous existing approaches to preference from the literature
- flexible because it allows for an easy implementation of new or extended existing approaches
a asprin builds upon advanced control capacities for incremental and meta solving, allowing for
without any modifications to the
ASP solver
significantly reducing
redundancies
via an implementation through ordinary ASP
encodings


## Approach

- asprin is a framework for handling preferences among the stable models of logic programs
- general because it captures numerous existing approaches to preference from the literature
- flexible because it allows for an easy implementation of new or extended existing approaches
builds upon advanced control capacities for incremental and meta solving, allowing for
without any modifications to the
ASP solver
significantly reducing
redundancies
via an implementation through ordinary ASP
encodings


## Approach

- asprin is a framework for handling preferences among the stable models of logic programs
- general because it captures numerous existing approaches to preference from the literature
- flexible because it allows for an easy implementation of new or extended existing approaches
- asprin builds upon advanced control capacities for incremental and meta solving, allowing for
without any modifications to the


## ASP solver

significantly reducing
redundancies
via an implementation through ordinary ASP
encodings

## Approach

- asprin is a framework for handling preferences among the stable models of logic programs
- general because it captures numerous existing approaches to preference from the literature
- flexible because it allows for an easy implementation of new or extended existing approaches
■ asprin builds upon advanced control capacities for incremental and meta solving, allowing for
- search for specific preferred solutions without any modifications to the ASP solver
- continuous integrated solving process significantly reducing redundancies
- high customizability via an implementation through ordinary ASP encodings


## Example

\#preference(costs, less(weight)) 40 : sauna, 70 : dive $\}$
\#preference(fun, superset)\{sauna, dive, hike, ~bunji\}
\#preference(temps, aso) $\{$ dive $>$ sauna $\|$ hot, sauna $>$ dive $\| \neg h o t\}$
\#preference(all, pareto) \{name(costs), name(fun), name(temps)\}
\#optimize(all)

## Outline

## 72 Motivation

## 73 The asprin framework

74 Preliminaries
75 Language
76 Implementation
77 Summany

## Preference

- A strict partial order $\succ$ on the stable models of a logic program

> That is, $X \succ Y$ means that $X$ is preferred to $Y$
> A stable model $X$ is $\succ$-preferred, if there is no other stable model $Y$ such that $Y \succ X$

A preference type is a (parametric) class of preference relations

## Preference

- A strict partial order $\succ$ on the stable models of a logic program That is, $X \succ Y$ means that $X$ is preferred to $Y$
- A stable model $X$ is $\succ$-preferred, if there is no other stable model $Y$ such that $Y \succ X$
- A preference type is a (parametric) class of preference relations


## Preference

- A strict partial order $\succ$ on the stable models of a logic program That is, $X \succ Y$ means that $X$ is preferred to $Y$
- A stable model $X$ is $\succ$-preferred, if there is no other stable model $Y$ such that $Y \succ X$
$\square$ A preference type is a (parametric) class of preference relations


## Preference

- A strict partial order $\succ$ on the stable models of a logic program That is, $X \succ Y$ means that $X$ is preferred to $Y$
- A stable model $X$ is $\succ$-preferred, if there is no other stable model $Y$ such that $Y \succ X$
- A preference type is a (parametric) class of preference relations


## Outline

## 72 Motivation

## 73 The asprin framework

74 Preliminaries
75 Language
76 Implementation
77 Summary

## Language

- weighted formula $w_{1}, \ldots, w_{l}: \phi$
where each $w_{i}$ is a term and $\phi$ is a Boolean formula
- naming atom name(s)
where $s$ is the name of a preference
- preference element $\Phi_{1}>\cdots>\Phi_{m} \| \Phi$ where each $\Phi_{r}$ is a set of weighted formulas and $\Phi$ is a non-weighted formula
- preference statement \#preference $(s, t)\left\{e_{1}, \ldots, e_{n}\right\}$ where $s$ and $t$ represent the preference statement and its type and each $e_{j}$ is a preference element
- optimization directive \#optimize(s) where $s$ is the name of a preference
is a set $S$ of preference statements and a directive \#optimize(s) such that $S$ is an acyclic, closed, and $s \in S$

Torsten Schaub (KRR@UP)

## Language

- weighted formula $w_{1}, \ldots, w_{l}: \phi$
where each $w_{i}$ is a term and $\phi$ is a Boolean formula
- naming atom name(s)
where $s$ is the name of a preference
- preference element $\Phi_{1}>\cdots>\Phi_{m} \| \Phi$ where each $\Phi_{r}$ is a set of weighted formulas and $\Phi$ is a non-weighted formula
- preference statement \#preference $(s, t)\left\{e_{1}, \ldots, e_{n}\right\}$ where $s$ and $t$ represent the preference statement and its type and each $e_{j}$ is a preference element
- optimization directive \#optimize(s) where $s$ is the name of a preference
is a set $S$ of preference statements and a directive \#optimize(s) such that $S$ is an acyclic, closed, and $s \in S$


## Language

- weighted formula $w_{1}, \ldots, w_{l}: \phi$
where each $w_{i}$ is a term and $\phi$ is a Boolean formula
- naming atom name(s)
where $s$ is the name of a preference
- preference element $\Phi_{1}>\cdots>\Phi_{m} \| \Phi$ where each $\Phi_{r}$ is a set of weighted formulas and $\Phi$ is a non-weighted formula
- preference statement \#preference $(s, t)\left\{e_{1}, \ldots, e_{n}\right\}$ where $s$ and $t$ represent the preference statement and its type and each $e_{j}$ is a preference element
- optimization directive \#optimize(s) where $s$ is the name of a preference
- preference specification is a set $S$ of preference statements and a directive \#optimize(s) such that $S$ is an acyclic, closed, and $s \in S$


## Preference type

- A preference type $t$ is a function mapping a set of preference elements, $E$, to a (strict) preference relation, $t(E)$, on sets of atoms
- The domain of $t$, $\operatorname{dom}(t)$, fixes its admissible preference elements
- Example less(cardinality)
$(X, Y) \in \operatorname{less}($ cardinality $)(E)$ if $|\{|\in E| X|=|\}|<|\{|\in E| Y \mid=I\}|$
$\operatorname{dom}(\operatorname{less}($ cardinality $))=\mathcal{P}(\{a, \neg a \mid a \in \mathcal{A}\})$ (where $\mathcal{P}(X)$ denotes the power set of $X$ )


## Preference type

- A preference type $t$ is a function mapping a set of preference elements, $E$, to a (strict) preference relation, $t(E)$, on sets of atoms
- The domain of $t, \operatorname{dom}(t)$, fixes its admissible preference elements

```
 less(cardinality)
```



```
 if }|{I\inE|X|I}|<|{I\inE|Y|=I}
dom(less(cardinality))}=\mathcal{P}({a,\nega|a\in\mathcal{A}}
(where }\mathcal{P}(X)\mathrm{ denotes the power set of }X\mathrm{)
```


## Preference type

- A preference type $t$ is a function mapping a set of preference elements, $E$, to a (strict) preference relation, $t(E)$, on sets of atoms
- The domain of $t, \operatorname{dom}(t)$, fixes its admissible preference elements
- Example less(cardinality)

```
\((X, Y) \in\) less \((\) cardinality \()(E)\)
 if \(|\{I \in E|X|=I\}|<|\{I \in E|Y|=I\}|\)
\(\operatorname{dom}(\) less \((\) cardinality \())=\mathcal{P}(\{a, \neg a \mid a \in \mathcal{A}\})\)
(where \(\mathcal{P}(X)\) denotes the power set of \(X\))
```


## Preference type

- A preference type $t$ is a function mapping a set of preference elements, $E$, to a (strict) preference relation, $t(E)$, on sets of atoms
- The domain of $t, \operatorname{dom}(t)$, fixes its admissible preference elements
- Example less(cardinality)
- $(X, Y) \in \operatorname{less}($ cardinality $)(E)$

$$
\text { if }|\{I \in E|X|=I\}|<|\{I \in E|Y|=I\}|
$$

- dom(less $($ cardinality $))=\mathcal{P}(\{a, \neg a \mid a \in \mathcal{A}\})$ (where $\mathcal{P}(X)$ denotes the power set of $X$ )


## Preference type

- A preference type $t$ is a function mapping a set of preference elements, $E$, to a (strict) preference relation, $t(E)$, on sets of atoms
- The domain of $t, \operatorname{dom}(t)$, fixes its admissible preference elements
- Example less(cardinality)
- $(X, Y) \in \operatorname{less}($ cardinality $)(E)$

$$
\text { if }|\{I \in E|X|=I\}|<|\{I \in E|Y|=I\}|
$$

- dom(less (cardinality) $)=\mathcal{P}(\{a, \neg a \mid a \in \mathcal{A}\})$ (where $\mathcal{P}(X)$ denotes the power set of $X$ )


## More examples

- more(weight) is defined as
- $(X, Y) \in \operatorname{more}($ weight $)(E)$ if $\sum_{(w: I) \in E, X \models l} w>\sum_{(w: I) \in E, Y \models I} w$
- $\operatorname{dom}($ more $(w e i g h t))=\mathcal{P}(\{w: a, w: \neg a \mid w \in \mathbb{Z}, a \in \mathcal{A}\})$; and
- subset is defined as
- $(X, Y) \in \operatorname{subset}(E)$ if $\{I \in E|X|=I\} \subset\{I \in E \mid Y \models I\}$
- dom(less $($ cardinality $))=\mathcal{P}(\{a, \neg a \mid a \in \mathcal{A}\})$.
- pareto is defined as

■ $(X, Y) \in \operatorname{pareto}(E)$ if $\bigwedge_{\text {name }(s) \in E}\left(X \succeq_{s} Y\right) \wedge \bigvee_{\text {name }(s) \in E}\left(X \succ_{s} Y\right)$

- $\operatorname{dom}($ pareto $)=\mathcal{P}(\{n \mid n \in N\})$;
- lexico is defined as
- $(X, Y) \in$ lexico $(E)$ if $\bigvee_{w: n a m e(s) \in E}\left(\left(X \succ_{s} Y\right) \wedge_{v: n a m e\left(s^{\prime}\right) \in E, v<w}\left(X=s_{s^{\prime}} Y\right)\right)$
- $\operatorname{dom}($ lexico $)=\mathcal{P}(\{w: n \mid w \in \mathbb{Z}, n \in N\})$.


## Preference relation

- A preference relation is obtained by applying a preference type to an admissible set of preference elements
\#preference $(s, t) E$ declares preference relation $t(E)$ denoted by $\succ_{s}$
\#preference(1, less(cardinality)) $\{a, \neg b, c\}$ ) declares

$$
X \succ_{1} Y \text { as }|\{i \in\{a, \neg b, c\}|X|=\mid\}|<|\{|\in\{a, \neg b, c\}| Y|=|\}|
$$

where $\succ_{1}$ stands for less $($ cardinality $)(\{a, \neg b, c\})$

## Preference relation

- A preference relation is obtained by applying a preference type to an admissible set of preference elements
- \#preference $(s, t) E$ declares preference relation $t(E)$ denoted by $\succ_{s}$
- Example \#preference(1, less(cardinality)) $\{a, \neg b, c\}$ ) declares

$$
X \succ_{1} Y \text { as }|\{I \in\{a, \neg b, c\}|X|=I\}|<|\{I \in\{a, \neg b, c\}|Y|=I\}|
$$

where $\succ_{1}$ stands for less(cardinality) $(\{a, \neg b, c\})$

## Preference relation

- A preference relation is obtained by applying a preference type to an admissible set of preference elements
- \#preference $(s, t) E$ declares preference relation $t(E)$ denoted by $\succ_{s}$
- Example \#preference(1, less(cardinality)) $\{a, \neg b, c\}$ ) declares

$$
X \succ_{1} Y \text { as }|\{I \in\{a, \neg b, c\} \mid X \models I\}|<|\{I \in\{a, \neg b, c\} \mid Y \models I\}|
$$

where $\succ_{1}$ stands for less(cardinality) $(\{a, \neg b, c\})$

## Outline

## 72 Motivation

## 73 The asprin framework <br> 74 Preliminaries <br> 75 Language

76 Implementation
77 Summary

## Preference program

- Reification $H_{X}=\{$ holds(a) $\mid a \in X\}$ and $H_{X}^{\prime}=\{$ holds'(a) $\mid a \in X\}$
- Preference program Let $s$ be a preference statement declaring $\succ_{s}$ and let $P_{s}$ be a logic program

We define $P_{s}$ as a preference program for $s$, if for all sets $X, Y \subseteq \mathcal{A}$, we have
$X \succ_{s} Y$ iff $P_{s} \cup H_{X} \cup H_{Y}^{\prime}$ is satisfiable
$\square$ Note $P_{s}$ usually consists of an encoding $E_{t_{s}}$ of $t_{s}$, facts $F_{s}$ representing the preference statement, and auxiliary rules $A$

Dynamic versions of $H_{X}$ and $H_{Y}$ must be used for optimization
\# Potassco

## Preference program

- Reification $H_{X}=\{$ holds(a) $\mid a \in X\}$ and $H_{X}^{\prime}=\{$ holds'(a) $\mid a \in X\}$
- Preference program Let $s$ be a preference statement declaring $\succ_{s}$ and let $P_{s}$ be a logic program

We define $P_{s}$ as a preference program for $s$, if for all sets $X, Y \subseteq \mathcal{A}$, we have
$X \succ_{s} Y$ iff $P_{s} \cup H_{X} \cup H_{Y}^{\prime}$ is satisfiable
$\square$ Note $P_{s}$ usually consists of an encoding $E_{t_{s}}$ of $t_{s}$, facts $F_{s}$ representing the preference statement, and auxiliary rules $A$ Dynamic versions of $H_{X}$ and $H_{Y}$ must be used for optimization

Potassco

## Preference program

- Reification $H_{X}=\{$ holds(a) $\mid a \in X\}$ and $H_{X}^{\prime}=\{$ holds' $(a) \mid a \in X\}$
- Preference program Let $s$ be a preference statement declaring $\succ_{s}$ and let $P_{s}$ be a logic program

We define $P_{s}$ as a preference program for $s$, if for all sets $X, Y \subseteq \mathcal{A}$, we have

$$
X \succ_{s} Y \text { iff } P_{s} \cup H_{X} \cup H_{Y}^{\prime} \text { is satisfiable }
$$

■ Note $P_{s}$ usually consists of an encoding $E_{t_{s}}$ of $t_{s}$, facts $F_{s}$ representing the preference statement, and auxiliary rules $A$

Dynamic versions of $H_{X}$ and $H_{Y}$ must be used for optimization
(1)Potassco

## Preference program

- Reification $H_{X}=\{$ holds(a) $\mid a \in X\}$ and $H_{X}^{\prime}=\{$ holds' $(a) \mid a \in X\}$
- Preference program Let $s$ be a preference statement declaring $\succ_{s}$ and let $P_{s}$ be a logic program

We define $P_{s}$ as a preference program for $s$, if for all sets $X, Y \subseteq \mathcal{A}$, we have

$$
X \succ_{s} Y \text { iff } P_{s} \cup H_{X} \cup H_{Y}^{\prime} \text { is satisfiable }
$$

■ Note $P_{s}$ usually consists of an encoding $E_{t_{s}}$ of $t_{s}$, facts $F_{s}$ representing the preference statement, and auxiliary rules $A$

- Note Dynamic versions of $H_{X}$ and $H_{Y}$ must be used for optimization


## \#preference(3, subset) $\{a, \neg b, c\}$

$$
\begin{aligned}
& H_{\{a, b\}}=\{\operatorname{holds}(a) . \operatorname{holds}(\mathrm{b}) . \\
& H_{\{a\}}^{\prime}=\{\text { holds'(a). }
\end{aligned}
$$



```
We get a stable model containing better(3) indicating that
{a,b}}\mp@subsup{\succ}{3}{}{a},\mathrm{ or }{a}\subset{a,\negb
```

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

## \#preference(3, subset) $\{a, \neg b, c\}$

$$
\begin{aligned}
& H_{\{a, b\}}=\left\{\begin{array}{l}
\text { nolds (a). nolds(b) } .
\end{array}\right. \\
& H_{\{a\}}^{\prime}=\left\{\text { noldes }^{\prime}(\mathrm{a})\right. \text {. }
\end{aligned}
$$



We get a stable model containing better (3) indicating that $\{a, b\} \succ_{3}\{a\}$, or $\{a\} \subset\{a, \neg b\}$

## Basic algorithm solveOpt $(P, s)$

```
 Input : A program \(P\) over \(\mathcal{A}\) and preference statement \(s\)
 Output : A \(\succ_{s}\)-preferred stable model of \(P\), if \(P\) is satisfiable, and \(\perp\)
 otherwise
 \(Y \leftarrow\) solve \((P)\)
 if \(Y=\perp\) then return \(\perp\)
 repeat
 \(X \leftarrow Y\)
 \(Y \leftarrow \operatorname{solve}\left(P \cup E_{t_{s}} \cup F_{s} \cup R_{\mathcal{A}} \cup H_{X}^{\prime}\right) \cap \mathcal{A}\)
 until \(Y=\perp\)
 return \(X\)
```

where $R_{X}=\{$ holds $(a) \leftarrow a \mid a \in X\}$

## Sketched Python Implementation

```
#script (python)
from gringo import *
holds = []
def getHolds():
 global holds
 return holds
def onModel(model):
 global holds
 holds = []
 for a in model.atoms():
 if (a.name() == "_holds"): holds.append(a.args()[0])
def main(prg):
 step = 1
 prg.ground([("base", [])])
 while True:
 if step > 1: prg.ground([("doholds",[step-1]),("preference",[0,step-1])]
 ret = prg.solve(on_model=onModel)
 if ret == SolveResult.UNSAT: break
 step = step+1
#end.
#program base. #program doholds(m).
#show _holds(X,0) : _holds(X,0). _holds(X,m) :- X = @getHolds().
```

\#end.

Torsten Schaub (KRR@UP)

## Sketched Python Implementation

```
#script (python)
from gringo import *
holds = []
def getHolds():
 global holds
 return holds
def onModel(model):
 global holds
 holds = []
 for a in model.atoms():
 if (a.name() == "_holds"): holds.append(a.args()[0])
def main(prg):
 step = 1
 prg.ground([("base", [])])
 while True:
 if step > 1: prg.ground([("doholds",[step-1]),("preference",[0,step-1])]
 ret = prg.solve(on_model=onModel)
 if ret == SolveResult.UNSAT: break
 step = step+1
#end.
#program base. #program doholds(m).
#show _holds(X,0) : _holds(X,0). _holds(X,m) :- X = @getHolds().
```

\#end.

Torsten Schaub (KRR@UP)

## Vanilla minimize statements

- Emulating the minimize statement

```
#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.
```

in asprin amounts to

```
#preference(myminimize,less(weight))
 { C,(X,Y) :: cycle(X,Y) : cost(X,Y,C) }.
#optimize(myminimize).
```

asprin separates the declaration of preferences from the actual optimization directive

## Vanilla minimize statements

- Emulating the minimize statement

```
#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.
```

in asprin amounts to

```
#preference(myminimize,less(weight))
 { C,(X,Y) :: cycle(X,Y) : cost(X,Y,C) }.
#optimize(myminimize).
```

- Note asprin separates the declaration of preferences from the actual optimization directive


## Example

in asprin's input language

```
#preference(costs,less(weight)){
 C :: sauna : cost(sauna,C);
 C :: dive : cost(dive,C)
}.
#preference(fun,superset){ sauna; dive; hike; not bunji }.
#preference(temps,aso){
 dive > sauna || hot;
 sauna > dive || not hot
}.
#preference(all,pareto){name(costs); name(fun); name(temps)}.
#optimize(all).
```


## asprin's library

- Basic preference types
- subset and superset

■ less (cardinality) and more(cardinality)

- less (weight) and more (weight)
- aso (Answer Set Optimization)

■ poset (Qualitative Preferences)
neg

- and
- pareto
- lexico

See Potassco Guide on how to define further types

## asprin's library

- Basic preference types
- subset and superset

■ less (cardinality) and more(cardinality)

- less (weight) and more (weight)
- aso (Answer Set Optimization)
- poset (Qualitative Preferences)
- Composite preference types
- neg
- and
- pareto

■ lexico
See Potassco Guide on how to define further types

## asprin's library

- Basic preference types
- subset and superset

■ less (cardinality) and more(cardinality)

- less (weight) and more (weight)
- aso (Answer Set Optimization)
- poset (Qualitative Preferences)
- Composite preference types
- neg
- and
- pareto

■ lexico

- See Potassco Guide on how to define further types


## Outline

## 72 Motivation

73 The asprin fvamework
74 Preliminaries
75 Language
76 Implementation
77 Summary

## Summary

- asprin stands for "ASP for Preference handling"
- asprin is a general, flexible, and extendable framework for preference handling in ASP
- asprin caters to
- off-the-shelf users using the preference relations in asprin's library
$\square$ preference engineers customizing their own preference relations


## Summary

- asprin stands for "ASP for Preference handling"
- asprin is a general, flexible, and extendable framework for preference handling in ASP
- asprin caters to
- off-the-shelf users using the preference relations in asprin's library
- preference engineers customizing their own preference relations

Torsten Schaub (KRR@UP)

## Summary

- asprin stands for "ASP for Preference handling"
- asprin is a general, flexible, and extendable framework for preference handling in ASP
- asprin caters to
- off-the-shelf users using the preference relations in asprin's library
- preference engineers customizing their own preference relations

Torsten Schaub (KRR@UP)

## Grounding: Overview

78 Background<br>79 Bottom Up Grounding<br>80 Semi-naive Evaluation Based Grounding<br>81 On-the-fly Simplifications<br>82 Rule Instantiation

Torsten Schaub (KRR@UP)

## Outline

## 78 Background

79 Bottom Up Grounding
80 Semi-naive Evaluation Based Grounding
81 On-the-fly Simplifications
82 Rule Instantiation

## Introduction



- some grounders (in chronological order)
- Iparse (grounding using domain predicates)
- dlv (semi-naive evaluation based grounding)
- gringo (semi-naive evaluation based since version 3)


## Hamiltonian Cycle Instance

```
% vertices
node(a). node(b).
node(c). node(d).
% edges
edge(a,b). edge(a,c).
edge(b,c). edge(b,d).
edge(c,a). edge(c,d).
edge(d,a).
```


\% starting point (for presentation purposes)
start(a).

## Hamiltonian Cycle Encoding

```
% generate path
path(X,Y) :- not omit(X,Y), edge(X,Y).
omit(X,Y) :- not path(X,Y), edge(X,Y).
% at most one incoming/outgoing edge
:- path(X,Y), path(X',Y), X < X'.
:- path(X,Y), path(X,Y'), Y < Y'.
% at least one incoming/outgoing edge
on_path(Y) :- path(X,Y), path(Y,Z).
:- node(X), not on_path(X).
% connectedness
reach(X) :- start(X).
reach(Y) :- reach(X), path(X,Y).
:- node(X), not reach(X).
```


## Grounding

- Safety
- each variable has to occur in a positive body element
- consider: $\mathrm{p}(\mathrm{X})$ :- not $\mathrm{q}(\mathrm{X})$.
- Herbrand universe
- all constants in program and all functions over function symbols in program
- Herbrand base
- all atoms over predicates in program with terms from Herbrand universe
- Instance of a rule
- all variables replaced with elements from Herbrand universe
- Grounding of a program
- ground $(P)$ is the union of all instances of rules in $P$

Torsten Schaub (KRR@UP)

## Example: Size of Grounding

\% Herbrand Universe: \{a, b, c, d\}
12 facts from instance
\% path(X,Y) :- not omit(X,Y), edge(X,Y).
\% omit(X,Y) :- not path(X,Y), edge(X,Y).
\% reach(Y) :- reach(X), path(X,Y).
16 rules +16 rules +16 rules
\% on_path(Y) :- path(X,Y), path(Y,Z).
\% :- path(X,Y), path(X', Y), X < X'.
\% :- path(X,Y), path(X,Y'), Y < Y'.
64 rules + 64 rules + 64 rules
\% reach (X) :- start (X).
\% :- node(X), not on_path(X).
\% :- node(X), not reach(X).
4 rules +4 rules +4 rules
\# Potassco

## Example: Unnecessary Rules I


\# Potassco

## Example: Unnecessary Rules II

```
% :- path(X,Y), path(X',Y), X < X'.
:- path(a,a), path(a,a), a < a.
:- path(a,b), path(a,b), a < a.
:- path(a,c), path(a,c), a < a.
:- path(a,d), path(a,d), a < a.
:- path(a,a), path(b,a), a < b.
:- path(a,b), path(b,b), a < b.
:- path(a,c), path(b,c), a < b.
:- path(a,d), path(b,d), a < b.
\vdots
:- path(d,d), path(d,d), d < d.
:- path(a,b), path(b,b), a < b. :- \(\operatorname{path}(\mathrm{a}, \mathrm{c}), \operatorname{path}(\mathrm{b}, \mathrm{c}), \mathrm{a}<\mathrm{b}\).
:- path(d,d), path(d,d), d < d.
```



## Outline

## 78 Background

79 Bottom Up Grounding
80 Semi-naive Evaluation Based Grounding
81 On-the-fly Simplifications
82 Rule Instantiation

## Bottom Up Grounding

■ ground relevant rules by incrementally extending the Herbrand base

- $\operatorname{ground}_{D}(P)=\left\{r \in \operatorname{ground}(P) \mid B(r)^{+} \subseteq D\right.$, all comparison literals in $\operatorname{body}(r)$ are satisfied $\}$

```
function GROUND_BOTTOM_UP(P,D)
 G}\leftarrow\mp@subsup{\operatorname{ground}}{D}{}(P
 if head(G)}\not\subseteqDD then
 return GROUND_BOTTOM_UP(P,D \ head(G))
 return G
```

- given safe program $P$ and set of ground facts / (typically corresponds to encoding and instance), $P \cup I$ is equivalent to GROUND_BOTTOM_UP $(P$, head $(I)) \cup I$


## Example: Bottom Up Grounding Step 1

```
% Step 1
path(a,b) :- not omit(a,b), edge(a,b).
 \vdots % }7\mathrm{ rules total
path(d,a) :- not omit(d,a), edge(d,a).
omit(a,b) :- not path(a,b), edge(a,b).
 \vdots % 7 rules total
omit(d,a) :- not path(d,a), edge(d,a).
:- node(a), not on_path(a). :- node(b), not on_path(b).
:- node(c), not on_path(c). :- node(d), not on_path(d).
:- node(a), not reach(a). :- node(b), not reach(b).
:- node(c), not reach(c). :- node(d), not reach(d).
```

reach (a) :- start (a).

## Example: Bottom Up Grounding Step 2

```
% Step 2 and rules of Step 1
:- path(a,c), path(b,c), a < b.
:- path(b,d), path(c,d), b < c.
:- path(c,a), path(d,a), c < d.
:- path(a,b), path(a,c), b < c.
:- path(c,a), path(c,d), a < d.
:- path(b,c), path(b,d), c < d.
on_path(a) :- path(a,b), path(c,a).
 : % 12 rules total
on_path(d) :- path(d,a), path(c,d).
reach(b) :- reach(a), path(a,b).
reach(c) :- reach(a), path(a,c).
```


## Example: Bottom Up Grounding Step 3 and 4

```
% Step 3 and rules of Step 2
reach(c) :- reach(b), path(b,c).
reach(d) :- reach(b), path(b,d).
reach(a) :- reach(c), path(c,a).
reach(d) :- reach(c), path(c,d).
% Step 4 and rules of Step 3
reach(a) :- reach(d), path(d,a).
```


## Properties of Bottom Up Grounding

- grounds only relevant rules
- each positive body literal has a non-cyclic derivation (ignoring negative literals)
- regrounds rules from previous steps

```
function GROUND_BOTTOM_UP \((P, D)\)
 \(G \leftarrow \operatorname{ground}_{D}(P)\)
 if head \((G) \nsubseteq D\) then
 return GROUND_BOTTOM_UP \((P, D \cup\) head \((G))\)
 return G
```

- does not perform simplifications


## Improving Bottom Up Grounding

- use dependencies to focus grounding
- begin with partial Herbrand base given by facts
- use rule dependency graph of program to obtain components that can be grounded successively
- adapt semi-naive evaluation put forward in the database field
- avoids redundancies when grounding
- perform simplifications during grounding
- remove literals from rule bodies if possible
- omit rules if body cannot be satisfied


## Program Dependencies

- dependency graph of program $P$
- rule $r_{2}$ depends on rule $r_{1}$ if $b \in B\left(r_{2}\right)^{+} \cup B\left(r_{2}\right)^{-}$unifies with $h \in$ head $\left(r_{1}\right)$
- $G_{P}=(P, E)$ where $E=\left\{\left(r_{1}, r_{2}\right) \mid r_{2}\right.$ depends on $\left.r_{1}\right\}$
- positive dependency graph of program $P$
- rule $r_{2}$ positively depends on rule $r_{1}$ if $b \in B\left(r_{2}\right)^{+}$unifies with $h \in$ head $\left(r_{1}\right)$
- $G_{P}^{+}=(P, E)$ where $E=\left\{\left(r_{1}, r_{2}\right) \mid r_{2}\right.$ positively depends on $\left.r_{1}\right\}$
- let $L_{P}=\left(C_{1,1}, \ldots, C_{1, m_{1}}, \ldots, C_{n, 1}, \ldots, C_{n, m_{n}}\right)$ where
- $\left(C_{1}, \ldots, C_{n}\right)$ is a topological ordering of $G_{P}$
- $\left(C_{i, 1}, \ldots, C_{i, m_{i}}\right)$ is a topological ordering of each $G_{C_{i}}^{+}$


## Example: Dependencies



## Grounding With Dependencies

## function GROUND_WITH_DEPENDENCIES $(P, D)$

$G \leftarrow \emptyset$ foreach $C$ in $L_{P}$ do $G^{\prime} \leftarrow$ GROUND_BOTTOM_UP $(C, D)$ $(G, D) \leftarrow\left(G \cup G^{\prime}, D \cup\right.$ head $\left.\left(G^{\prime}\right)\right)$
return $G$

- given safe program $P$ and set of facts $I, P \cup I$ is equivalent to GROUND_WITH_DEPENDENCIES $(P$, head $(I)) \cup I$


## Example: Grounding with Dependencies

```
% Component
omit(a,b) :- not path(a,b), edge(a,b).
 \vdots % 7 rules total
omit(d,a) :- not path(d,a), edge(d,a).
% Component 1,2
path(a,b) :- not omit(a,b), edge(a,b).
 \vdots % 7 rules total
path(d,a) :- not omit(d,a), edge(d,a).
```

- no regrounding if there is no positive recursion in a component


## Example: Grounding Component ${ }_{7,1}$

```
% Step 1
reach(b) :- reach(a), path(a,b).
reach(c) :- reach(a), path(a,c).
% Step 2 and rules of Step 1
reach(c) :- reach(b), path(b,c).
reach(d) :- reach(b), path(b,d).
reach(a) :- reach(c), path(c,a).
reach(d) :- reach(c), path(c,d).
% Step 3 and rules of Step 2
reach(a) :- reach(d), path(d,a).
% less regrounding but still...
```


## Outline

## 78 Background

## 70 Bottom Up Grounding

80 Semi-naive Evaluation Based Grounding
81 On-the-fly Simplifications
82 Rule Instantiation

## Recursive Atoms

- given $L_{P}=\left(C_{1}, \ldots, C_{n}\right)$, an atom $a_{1}$ is recursive in component $C_{i}$ if $a_{1}$ unifies $a_{2}$ such that
- $r_{1} \in C_{i}$ and $r_{2} \in C_{j}$ with $i \leq j$,
- $a_{1} \in B\left(r_{1}\right)^{+} \cup B\left(r_{1}\right)^{-}$, and
- $a_{2} \in \operatorname{head}\left(r_{2}\right)$


## Example: Recursive Atoms



## Preparing Components

- the set of prepared rules for $r \in C$ is

$$
\begin{aligned}
& \left\{\begin{array}{ccc}
h:-n\left(b_{1}\right), a\left(b_{2}\right), a\left(b_{3}\right), \ldots, a\left(b_{i-2}\right), a\left(b_{i-1}\right), & a\left(b_{i}\right), B \\
h:-o\left(b_{1}\right), n\left(b_{2}\right), a\left(b_{3}\right), \ldots, a\left(b_{i-2}\right), a\left(b_{i-1}\right), & a\left(b_{i}\right), & B \\
\vdots & \vdots & \vdots \\
h:-o\left(b_{1}\right), o\left(b_{2}\right), o\left(b_{3}\right), \ldots, o\left(b_{i-2}\right), & n\left(b_{i-1}\right), a\left(b_{i}\right), B \\
h:-o\left(b_{1}\right), o\left(b_{2}\right), o\left(b_{3}\right), \ldots, o\left(b_{i-2}\right), o\left(b_{i-1}\right), & n\left(b_{i}\right), B
\end{array}\right\} \\
& \text { or }\left\{h:-n\left(b_{i+1}\right), \ldots, n\left(b_{j}\right), b_{j+1}, \ldots, b_{n}\right\} \text { if } i=0 \\
& \text { where } \operatorname{body}(r)=\left\{b_{1}, \ldots, b_{i}, b_{i+1} \ldots, b_{j}, b_{j+1}, \ldots, b_{n}\right\} \text {, } \\
& b_{k} \in B(r)^{+} \text {for } 1 \leq k \leq i \text { is recursive, } \\
& b_{k} \in B(r)^{+} \text {for } i<k \leq j \text { is not recursive, and } \\
& B=a\left(b_{i+1}\right), \ldots, a\left(b_{j}\right), b_{j+1}, \ldots, b_{n}
\end{aligned}
$$

- a prepared component is the union of all its prepared rules


## Example: Preparing Components

```
% prepared Component }\mp@subsup{}{1,1}{
omit(X,Y) :- n(edge(X,Y)), not path(X,Y).
% prepared Component (,2
path(X,Y) :- n(edge(X,Y)), not omit(X,Y).
% prepared Component 2,1
:- n(path(X,Y)), n(path(X',Y)), X < X'.
% prepared Component7,1
reach(Y) :- n(reach(X)), a(path(X,Y)).
```


## Semi-naive Evaluation-based Grounding

function GROUND_SEMI_NAIVE $(P, A)$
$G \leftarrow \emptyset$
foreach $C$ in $L_{P}$ do $(O, N) \leftarrow(\emptyset, A)$
repeat
let $D_{p}=\{p(a) \mid a \in D\}$ for set $D$ of atoms
$G^{\prime} \leftarrow$ ground $_{O_{\circ} \cup N_{n} \cup A_{a}}$ (prepared C)
$N \leftarrow \operatorname{head}\left(G^{\prime}\right) \backslash A$
$(G, O, A) \leftarrow\left(G \cup G^{\prime}, A, N \cup A\right)$
until $N=\emptyset$
return $G$ with $o / 1, n / 1$, a/1 stripped from positive bodies

- given safe program $P$ and set of facts $I, P \cup I$ is equivalent to GROUND_SEMI_NAIVE $(P$, head $(I)) \cup I$


## Example: Grounding Component ${ }_{7,1}$

```
% grounding of
% reach(Y) :- n(reach(X)), a(path(X,Y)).
% Step 1 with N = A from previous step (reach(a) \in A)
reach(b) :- n(reach(a)), a(path(a,b)).
reach(c) :- n(reach(a)), a(path(a,c)).
% Step 2 with N = { reach(b), reach(c) }
reach(c) :- n(reach(b)), a(path(b,c)).
reach(d) :- n(reach(b)), a(path(b,d)).
reach(a) :- n(reach(c)), a(path(c,a)).
reach(d) :- n(reach(c)), a(path(c,d)).
% Step 3 with N = { reach(d) }
reach(a) :- n(reach(d)), a(path(d,a)).
```


## Example: Grounding Component ${ }_{7,1}$

```
% grounding of
% reach(Y) :- n(reach(X)), a(path(X,Y)).
% Step 1 with N = A from previous step (reach(a) \in A)
reach(b) :- reach(a), path(a,b).
reach(c) :- reach(a), path(a,c).
% Step 2 with N = { reach(b), reach(c) }
reach(c) :- reach(b), path(b,c).
reach(d) :- reach(b), path(b,d).
reach(a) :- reach(c), path(c,a).
reach(d) :- reach(c), path(c,d).
% Step 3 with N = { reach(d) }
reach(a) :- reach(d), path(d,a).
```

\% without $\mathrm{n} / 1$ and a/1 of course

## Example: Nonlinear Programs

```
trans(U,V) :- edge(U,V).
trans(U,W) :- trans(U,V), trans(V,W).
```

\% prepared Component 1:
trans(U,V) :- n(edge (U,V)).
\% prepared Component 2:
trans(U,W) :- n(trans(U,V)), a(trans(V,W)).
trans(U,W) :- o(trans(U,V)), n(trans(V,W)).

## Example: Nonlinear Programs

```
trans(U,V) :- edge(U,V).
% trans(U,W) :- trans(U,V), trans(V,W).
% better written as:
trans(U,W) :- trans(U,V), edge(V,W).
% prepared Component 1:
trans(U,V) :- n(edge(U,V)).
% prepared Component 2:
trans(U,W) :- n(trans(U,V)), a(edge(V,W)).
```


## Outline

## 78 Background

## 70 Bottom IIn Grounding

80 Semi-naive Evaluation Based Grounding

## 81 On-the-fly Simplifications

82 Rule Instantiation

Torsten Schaub (KRR@UP)
Answer Set Solving in Practice
February 18, 2019

## Propagation of Facts

■ simplifications are performed on-the-fly (rules are printed immediately but not stored in gringo)

- maintain a set of fact atoms
- remove facts from positive body
- discard rules with negative literals over a fact
- discard rules whenever the head is a fact
$\square$ gather new facts whenever a rule body is empty


## Example: Propagation of Facts

path( $\mathrm{a}, \mathrm{b}$ ) : - not omit( $\mathrm{a}, \mathrm{b})$, edge $(\mathrm{a}, \mathrm{b})$.
reach(a) :- start(a).

## Example: Propagation of Facts

path(a,b) :- not omit(a,b).
reach(a). \% reach(a) is added as fact

## Example: Propagation of Facts

path(a,b) :- not omit(a,b).
reach(a). \% reach(a) is added as fact
:- node(a), not reach(a).

## Example: Propagation of Facts

path(a,b) :- not omit(a,b).
reach(a). \% reach(a) is added as fact
$\div$ node $(a)$, not reach(a). \% rule is discarded

## Propagation of Negative Literals

- non-recursive negative literals not in the current base $A$ can be removed from rule bodies
- stratified logic programs are completely evaluated during grounding
- consider the instance where node d is not reachable



## Example: Propagation of Negative Literals

```
path(a,b) :- not omit(a,b).
path(a,c) :- not omit(a,c).
path(b,c) :- not omit(b,c).
path(c,a) :- not omit(c,a).
path(d,a) :- not omit(d,a).
reach(a).
reach(b) :- path(a,b).
reach(c) :- path(a,c).
reach(c) :- path(b,c), reach(b).
```


\% reach(X) is not recursive and reach(d) $\notin A$
:- not reach(b).
:- not reach(c).
:- not reach(d). \% remove not reach(d) from body

## Example: Propagation of Negative Literals

```
path(a,b) :- not omit(a,b).
path(a,c) :- not omit(a,c).
path(b,c) :- not omit(b,c).
path(c,a) :- not omit(c,a).
path(d,a) :- not omit(d,a).
reach(a).
reach(b) :- path(a,b).
reach(c) :- path(a,c).
reach(c) :- path(b,c), reach(b).
```


\% reach(X) is not recursive and reach(d) $\notin A$
:- not reach(b).
:- not reach(c).
:- . \% inconsistency detected during grounding

## Conclusion/Summary

- grounding algorithms for normal logic programs (with integrity constraints)
- language features not covered here
- (recursive) aggregates
- conditional literals
- optimization statements
- disjunctions
- arithmetic functions
- syntactic sugar to write more compact encodings
- safety of = relation (for aggregates and terms)
- python/lua integration
- external functions
- control over grounding and solving


## Outline

## 78 Background

79 Bottom IJp Grounding
80 Semi-naive Evaluation Based Grounding
81 On-the-fly Simplifications
82 Rule Instantiation

## Rule Instantiation

- the following slides show how to ground individual rules

■ I am probably not going to show them

Torsten Schaub (KRR@UP)

## Safe Body Order

- given safe rule $r$, the tuple $\left(b_{1}, \ldots, b_{n}\right)$ is a safe body order if
- $\left\{b_{1}, \ldots, b_{n}\right\}=\operatorname{body}(r)$
- the body $\left\{b_{1}, \ldots, b_{i}\right\}$ is safe for each $i$
for example given rule :- node(X), not reach(X).
- (node (X), not reach (X)) is a safe body order
$\square$ (not reach (X), node (X)) is not a safe body order


## Safe Body Order

- given safe rule $r$, the tuple $\left(b_{1}, \ldots, b_{n}\right)$ is a safe body order if
- $\left\{b_{1}, \ldots, b_{n}\right\}=\operatorname{body}(r)$
- the body $\left\{b_{1}, \ldots, b_{i}\right\}$ is safe for each $i$
- for example given rule :- node(X), not reach(X).
- (node (X), not reach (X)) is a safe body order
- (not reach (X), node(X)) is not a safe body order


## Matching Body Literals

- match $_{F, D}(\sigma, b)$ is the set of all matches for literal $b$
- $\sigma$ is a substitution
- $F$ are facts (set of ground atoms)
- $D$ is the domain (set of ground atoms)
- $\sigma^{\prime} \in$ match $_{F, D}(\sigma, b)$ if

■ $\sigma \subseteq \sigma^{\prime}$ and $\operatorname{vars}(b) \subseteq \operatorname{vars}\left(\sigma^{\prime}\right) \subseteq \operatorname{vars}(b) \cup \operatorname{vars}(\sigma)$,

- $b \sigma^{\prime}$ holds if $b$ is a comparison literal,
- $b \sigma^{\prime} \in D$ if $b$ is an atom, and
- $a \sigma^{\prime} \notin F$ if $b$ is a symbolic literal of form not $a$
- for example given body: $p(X), q(X, Y)$, not $r(Y)$

```
\squareF={r(3)} and D={p(1),q(1, 2),q(1,3),r(3)}
|match}\mp@subsup{\mp@code{F,D}}{(\emptyset,p(X))={{X\mapsto1}}}{
match}\mp@subsup{\mp@code{F,D}}{~}{({X\mapsto1},q(X,Y))={{X\mapsto1,Y\mapsto2},{X\mapsto1,Y\mapsto3}}
\square match}\mp@subsup{\mp@code{F,D}}{}{({X\mapsto1,Y\mapsto2},not r(Y))}={{X\mapsto1,Y\mapsto2}
|match}\mp@subsup{F}{F,D}{}({X\mapsto1,Y\mapsto3},\mathrm{ not r(Y))=Ø
```


## Matching Body Literals

- match $_{F, D}(\sigma, b)$ is the set of all matches for literal $b$
- $\sigma$ is a substitution
- $F$ are facts (set of ground atoms)
- $D$ is the domain (set of ground atoms)
- $\sigma^{\prime} \in$ match $_{F, D}(\sigma, b)$ if
- $\sigma \subseteq \sigma^{\prime}$ and $\operatorname{vars}(b) \subseteq \operatorname{vars}\left(\sigma^{\prime}\right) \subseteq \operatorname{vars}(b) \cup \operatorname{vars}(\sigma)$,
- $b \sigma^{\prime}$ holds if $b$ is a comparison literal,
- $b \sigma^{\prime} \in D$ if $b$ is an atom, and
- $a \sigma^{\prime} \notin F$ if $b$ is a symbolic literal of form not $a$
- for example given body: $\mathrm{p}(\mathrm{X}), \mathrm{q}(\mathrm{X}, \mathrm{Y})$, not $\mathrm{r}(\mathrm{Y})$
- $F=\{r(3)\}$ and $D=\{p(1), q(1,2), q(1,3), r(3)\}$
- $\operatorname{match}_{F, D}(\emptyset, \mathrm{p}(\mathrm{X}))=\{\{X \mapsto 1\}\}$
- $\operatorname{match}_{F, D}(\{X \mapsto 1\}, q(X, Y))=\{\{X \mapsto 1, Y \mapsto 2\},\{X \mapsto 1, Y \mapsto 3\}\}$
- $\operatorname{match}_{F, D}(\{X \mapsto 1, Y \mapsto 2\}$, not $r(Y))=\{\{X \mapsto 1, Y \mapsto 2\}\}$
- match $_{F, D}(\{X \mapsto 1, Y \mapsto 3\}$, not $r(Y))=\emptyset$


## Rule Grounding by Backtracking

function GROUND_BACKTRACK ${ }_{r, R, D}\left(\sigma, F,\left(b_{1}, \ldots, b_{n}\right)\right)$
if $n=0$ then
let $H=h e a d(r \sigma)$

$$
B=B(r \sigma)^{+} \backslash F \cup
$$

$$
\left\{\text { not } a \sigma \mid a \in B(r)^{-} \backslash R, a \in D\right\} \cup
$$

$$
\left\{\text { not } a \sigma \mid a \in B(r)^{-} \cap R\right\}
$$

if $B=\emptyset$ then $F \leftarrow F \cup H$
return $\left(\left\{H:-B \mid B^{-} \cap F=\emptyset, H \cap F=\emptyset\right\}, F\right)$
else
$G \leftarrow \emptyset$
foreach $\sigma^{\prime} \in \operatorname{match}_{F, D}\left(\sigma, b_{1}\right)$ do
$(G, F) \leftarrow(G, F) \sqcup$ GROUND_BACKTRACK $_{r, R, D}\left(\sigma^{\prime}, F,\left(b_{2}, \ldots, b_{n}\right)\right)$
return $(G, F)$

## Outline

## 83 Summary

## Summary

- ASP is a viable tool for Knowledge Representation and Reasoning
- ASP offers efficient and versatile off-the-shelf solving technology
- ASP offers an expanding functionality and ease of use
- Rapid application development tool
- ASP has a growing range of applications


## Summary

- ASP is a viable tool for Knowledge Representation and Reasoning
- ASP offers efficient and versatile off-the-shelf solving technology
- ASP offers an expanding functionality and ease of use
- Rapid application development tool
- ASP has a growing range of applications


## $\mathrm{ASP}=\mathrm{DB}+\mathrm{LP}+\mathrm{KR}+\mathrm{SAT}$

## Summary

- ASP is a viable tool for Knowledge Representation and Reasoning
- ASP offers efficient and versatile off-the-shelf solving technology
- ASP offers an expanding functionality and ease of use
- Rapid application development tool
- ASP has a growing range of applications


## $\mathrm{ASP}=\mathrm{DB}+\mathrm{LP}+\mathrm{KR}+\mathrm{SMT}$

## Summary

- ASP is a viable tool for Knowledge Representation and Reasoning
- ASP offers efficient and versatile off-the-shelf solving technology
- ASP offers an expanding functionality and ease of use
- Rapid application development tool
- ASP has a growing range of applications
http: //potassco.org

