
Answer Set Solving in Practice

Torsten Schaub
University of Potsdam

torsten@cs.uni-potsdam.de

Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0 Unported License.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 1 / 653

Rough Roadmap

1 Motivation
2 Introduction
3 Modeling
4 Language
5 Grounding
6 Foundations
7 Solving
8 Multi-shot solving
9 Theory solving
10 Heuristic programming
11 Systems
12 Advanced modeling
13 Preferences and Optimization
14 Applications
15 Summary

Bibliography

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 2 / 653

Resources

Course material

http://potassco.org/teaching

Systems

clasp http://potassco.org

clingo http://potassco.org

dlv http://www.dlvsystem.com

smodels http://www.tcs.hut.fi/Software/smodels

wasp https://www.mat.unical.it/ricca/wasp

gringo http://potassco.org

lparse http://www.tcs.hut.fi/Software/smodels

asparagus http://asparagus.cs.uni-potsdam.de

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 3 / 653

http://potassco.org/teaching
http://potassco.org
http://potassco.org
http://www.dlvsystem.com
 http://www.tcs.hut.fi/Software/smodels
https://www.mat.unical.it/ricca/wasp
http://potassco.org
http://www.tcs.hut.fi/Software/smodels
 http://asparagus.cs.uni-potsdam.de

The Potassco Book

1. Motivation
2. Introduction
3. Basic modeling
4. Grounding
5. Characterizations
6. Solving
7. Systems
8. Advanced modeling
9. Conclusions

Answer Set Solving in Practice

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub
University of Potsdam

SYNTHESIS LECTURES ON SAMPLE SERIES #1

C
M
&

cLaypoolMorgan publishers&

Resources

http://potassco.org/book

http://potassco.org/teaching

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 4 / 653

http://potassco.org/book
http://potassco.org/teaching

The Potassco Book and Guide

1. Motivation
2. Introduction
3. Basic modeling
4. Grounding
5. Characterizations
6. Solving
7. Systems
8. Advanced modeling
9. Conclusions

Answer Set Solving in Practice

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub
University of Potsdam

SYNTHESIS LECTURES ON SAMPLE SERIES #1

C
M
&

cLaypoolMorgan publishers&

Martin Gebser
Roland Kaminski
Benjamin Kaufmann
Marius Lindauer
Max Ostrowski
Javier Romero
Torsten Schaub
Sven Thiele

University of Potsdam

Resources

http://potassco.org/book

http://potassco.org/teaching

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 4 / 653

http://potassco.org/book
http://potassco.org/teaching

The Potassco Book and Guide

1. Motivation
2. Introduction
3. Basic modeling
4. Grounding
5. Characterizations
6. Solving
7. Systems
8. Advanced modeling
9. Conclusions

Answer Set Solving in Practice

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub
University of Potsdam

SYNTHESIS LECTURES ON SAMPLE SERIES #1

C
M
&

cLaypoolMorgan publishers&

Martin Gebser
Roland Kaminski
Benjamin Kaufmann
Marius Lindauer
Max Ostrowski
Javier Romero
Torsten Schaub
Sven Thiele

University of Potsdam

Resources

http://potassco.org/book

http://potassco.org/teaching

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 4 / 653

http://potassco.org/book
http://potassco.org/teaching

Literature

Books [?], [?], [?], [?]

Surveys [?], [?], [?], [?]

Articles [?], [?], [?], [?], [?], [?], [?], [?], etc.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 5 / 653

Motivation: Overview

1 Motivation

2 Nutshell

3 Evolution

4 Foundation

5 Workflow

6 Engine

7 Usage

8 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 6 / 653

Motivation

Outline

1 Motivation

2 Nutshell

3 Evolution

4 Foundation

5 Workflow

6 Engine

7 Usage

8 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 7 / 653

Motivation

Informatics

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 8 / 653

Motivation

Informatics

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 8 / 653

Motivation

Traditional programming

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 8 / 653

Motivation

Traditional programming

“What is the problem?” versus “How to solve the problem?”

Problem

Program

Solution

Output
?

-

6

Programming Interpreting

Executing

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 8 / 653

Motivation

Declarative problem solving

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

Interpreting

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 8 / 653

Motivation

Declarative problem solving

“What is the problem?” versus “How to solve the problem?”

Problem

Representation

Solution

Output
?

-

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 8 / 653

Motivation

Declarative problem solving

“What is the problem?” versus “How to solve the problem?”

Problem

Representation

Solution

Output
?

-

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 8 / 653

Motivation

Traditional Software

��
��

User

Program

Computer

?

P
ro

b
lem

S
o

lvin
g

��
��

User

Knowledge

Solver

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 9 / 653

Motivation

Traditional Software

��
��

User

Program

Computer

?

P
ro

b
lem

S
o

lvin
g

��
��

User

Knowledge

Solver

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 9 / 653

Motivation

Traditional Software

��
��

User

Program

Computer

?

P
ro

b
lem

S
o

lvin
g

��
��

User

Knowledge

Solver

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 9 / 653

Motivation

Traditional Software

��
��

User

Program

Computer

?

P
ro

b
lem

S
o

lvin
g

Programmer

��
��

User

Knowledge

Solver

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 9 / 653

Motivation

Traditional Software

��
��

User

How?

Computer

?

P
ro

b
lem

S
o

lvin
g

Programmer

��
��

User

Knowledge

Solver

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 9 / 653

Motivation

Knowledge-driven Software

��
��

User

Program

Computer

?

P
ro

b
lem

S
o

lvin
g

��
��

User

Knowledge

Solver

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 9 / 653

Motivation

Knowledge-driven Software

��
��

User

Program

Computer

?

P
ro

b
lem

S
o

lvin
g

��
��

User

Knowledge

Solver

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 9 / 653

Motivation

Knowledge-driven Software

��
��

User

How?

Computer

?

P
ro

b
lem

S
o

lvin
g

��
��

User

Knowledge

Solver

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 9 / 653

Motivation

Knowledge-driven Software

��
��

User

How?

Computer

?

P
ro

b
lem

S
o

lvin
g

��
��

User

What?

How!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 9 / 653

Motivation

Knowledge-driven Software

��
��

User

How?

How!

?

P
ro

b
lem

S
o

lvin
g

��
��

User

What?

How!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 9 / 653

Motivation

Knowledge-driven Software

��
��

User

Program

Computer

?

P
ro

b
lem

S
o

lvin
g

Programmer

��
��

User

Knowledge

Solver

Expert

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 9 / 653

Motivation

What is the benefit?

Knowledge

Solver

Expert
+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 10 / 653

Motivation

What is the benefit?

Knowledge

Solver

Expert
+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 10 / 653

Motivation

What is the benefit?

Knowledge

Solver

Expert
+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 10 / 653

Motivation

What is the benefit?

Knowledge

Solver

Expert
+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 10 / 653

Motivation

What is the benefit?

Knowledge

Solver

Expert
+ Transparency
+ Flexibility
+ Maintainability
+ Reliability

+ Generality
+ Efficiency
+ Optimality
+ Availability

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 10 / 653

Nutshell

Outline

1 Motivation

2 Nutshell

3 Evolution

4 Foundation

5 Workflow

6 Engine

7 Usage

8 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 11 / 653

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 12 / 653

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

Where is ASP from?

Databases
Logic programming
Knowledge representation and reasoning
Satisfiability solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 12 / 653

Nutshell

Answer Set Programming (ASP)

What is ASP? ASP = DB+LP+KR+SAT !
ASP is an approach for declarative problem solving

Where is ASP from?

Databases
Logic programming
Knowledge representation and reasoning
Satisfiability solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 12 / 653

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 12 / 653

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?
Problems consisting of (many) decisions and constraints

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 12 / 653

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?
Problems consisting of (many) decisions and constraints

Examples Sudoku, Configuration, Diagnosis, Music composition,
Planning, System design, Time tabling, etc.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 12 / 653

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this? — And industrial ones ?
Problems consisting of (many) decisions and constraints

Examples Sudoku, Configuration, Diagnosis, Music composition,
Planning, System design, Time tabling, etc.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 12 / 653

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this? — And industrial ones ?

Debian, Ubuntu: Linux package configuration
Exeura: Call routing
Fcc: Radio frequency auction
Gioia Tauro: Workforce management
Nasa: Decision support for Space Shuttle
Siemens: Partner units configuration
Variantum: Product configuration

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 12 / 653

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this? — And industrial ones ?

Debian, Ubuntu: Linux package configuration
Exeura: Call routing
Fcc: Radio frequency auction
Gioia Tauro: Workforce management
Nasa: Decision support for Space Shuttle
Siemens: Partner units configuration
Variantum: Product configuration

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 12 / 653

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this? — And industrial ones ?

Debian, Ubuntu: Linux package configuration
Exeura: Call routing
Fcc: Radio frequency auction ��

Gioia Tauro: Workforce management
Nasa: Decision support for Space Shuttle
Siemens: Partner units configuration
Variantum: Product configuration

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 12 / 653

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?
Problems consisting of (many) decisions and constraints

What are ASP’s distinguishing features?

High level, versatile modeling language
High performance solvers
Qualitative and quantitative optimization

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 12 / 653

Nutshell

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?
Problems consisting of (many) decisions and constraints

What are ASP’s distinguishing features?

High level, versatile modeling language
High performance solvers
Qualitative and quantitative optimization

Any industrial impact?

ASP Tech companies: DLV Systems and Potassco Solutions
Increasing interest in (large) companies

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 12 / 653

Evolution

Outline

1 Motivation

2 Nutshell

3 Evolution

4 Foundation

5 Workflow

6 Engine

7 Usage

8 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 13 / 653

Evolution

Some biased moments in time

’70/’80 Capturing incomplete information

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 14 / 653

Evolution

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 14 / 653

Evolution

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Axiomatic characterization

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 14 / 653

Evolution

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Axiomatic characterization

Logic programming Negation as failure

Herbrand interpretations
Fix-point characterizations

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 14 / 653

Evolution

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Axiomatic characterization

Logic programming Negation as failure

Herbrand interpretations
Fix-point characterizations

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

Extensions of first-order logic
Modalities, fix-points, second-order logic

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 14 / 653

Evolution

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 14 / 653

Evolution

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

ASP solving
“Stable models = Well-founded semantics + Branch”

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 14 / 653

Evolution

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

Stable models semantics derived from non-monotonic logics
Alternating fix-point theory

ASP solving
“Stable models = Well-founded semantics + Branch”

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 14 / 653

Evolution

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

Stable models semantics derived from non-monotonic logics
Alternating fix-point theory

ASP solving
“Stable models = Well-founded semantics + Branch”

Modeling — Grounding — Solving
Icebreakers: lparse and smodels

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 14 / 653

Evolution

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 14 / 653

Evolution

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries
Growing dissemination Decision Support for Space Shuttle

Constructive logics Equilibrium Logic

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 14 / 653

Evolution

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries
Growing dissemination Decision Support for Space Shuttle

Bio-informatics, Linux Package Configuration, Music composition,
Robotics, System Design, etc

Constructive logics Equilibrium Logic

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 14 / 653

Evolution

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries
Growing dissemination Decision Support for Space Shuttle

Constructive logics Equilibrium Logic

Roots: Logic of Here-and-There , G3

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 14 / 653

Evolution

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries
Growing dissemination Decision Support for Space Shuttle

Constructive logics Equilibrium Logic

’10 Integration

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 14 / 653

Evolution

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries
Growing dissemination Decision Support for Space Shuttle

Constructive logics Equilibrium Logic

’10 Integration — let’s see . . .

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 14 / 653

Evolution

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries
Growing dissemination Decision Support for Space Shuttle

Constructive logics Equilibrium Logic

’10 Integration

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 14 / 653

Evolution

Paradigm shift

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Automated planning, Kautz and Selman (ECAI’92)

Represent planning problems as propositional theories so that
models not proofs describe solutions

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 15 / 653

Evolution

Paradigm shift

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Automated planning, Kautz and Selman (ECAI’92)

Represent planning problems as propositional theories so that
models not proofs describe solutions

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 15 / 653

Evolution

Paradigm shift

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Automated planning, Kautz and Selman (ECAI’92)

Represent planning problems as propositional theories so that
models not proofs describe solutions

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 15 / 653

Evolution

Paradigm shift

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Automated planning, Kautz and Selman (ECAI’92)

Represent planning problems as propositional theories so that
models not proofs describe solutions

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 15 / 653

Evolution

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models

SAT

propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 16 / 653

Evolution

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models

SAT

propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 16 / 653

Evolution

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models SAT
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 16 / 653

Evolution

Paradigm shift

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 17 / 653

Evolution

Paradigm shift

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 17 / 653

Evolution

LP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries

?- above(a,c).

true.

?- above(c,a).

no.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 18 / 653

Evolution

LP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries

?- above(a,c).

true.

?- above(c,a).

no.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 18 / 653

Evolution

LP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries

?- above(a,c).

true.

?- above(c,a).

no.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 18 / 653

Evolution

LP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries (testing entailment)

?- above(a,c).

true.

?- above(c,a).

no.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 18 / 653

Evolution

LP-style playing with blocks

Shuffled Prolog program

on(a,b).

on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries

?- above(a,c).

Fatal Error: local stack overflow.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 19 / 653

Evolution

LP-style playing with blocks

Shuffled Prolog program

on(a,b).

on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries

?- above(a,c).

Fatal Error: local stack overflow.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 19 / 653

Evolution

LP-style playing with blocks

Shuffled Prolog program

on(a,b).

on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries (answered via fixed execution)

?- above(a,c).

Fatal Error: local stack overflow.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 19 / 653

Evolution

Paradigm shift

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 20 / 653

Evolution

Paradigm shift

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 20 / 653

Evolution

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y)→ above(X ,Y))
∧ (on(X ,Z) ∧ above(Z ,Y)→ above(X ,Y))

Herbrand model{
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 21 / 653

Evolution

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y)→ above(X ,Y))
∧ (on(X ,Z) ∧ above(Z ,Y)→ above(X ,Y))

Herbrand model{
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 21 / 653

Evolution

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y)→ above(X ,Y))
∧ (on(X ,Z) ∧ above(Z ,Y)→ above(X ,Y))

Herbrand model{
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 21 / 653

Evolution

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y)→ above(X ,Y))
∧ (on(X ,Z) ∧ above(Z ,Y)→ above(X ,Y))

Herbrand model{
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 21 / 653

Evolution

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y)→ above(X ,Y))
∧ (on(X ,Z) ∧ above(Z ,Y)→ above(X ,Y))

Herbrand model (among 426!){
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 21 / 653

Evolution

Paradigm shift

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 22 / 653

Evolution

Paradigm shift

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

å Answer Set Programming (ASP)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 22 / 653

Evolution

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 23 / 653

Evolution

Answer Set Programming at large

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 23 / 653

Evolution

Answer Set Programming commonly

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 23 / 653

Evolution

Answer Set Programming in practice

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 23 / 653

Evolution

Answer Set Programming in practice

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

first-order programs stable Herbrand models

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 23 / 653

Evolution

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 24 / 653

Evolution

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 24 / 653

Evolution

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model (and no others)

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 24 / 653

Evolution

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- above(Z,Y), on(X,Z).

above(X,Y) :- on(X,Y).

Stable Herbrand model (and no others)

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 24 / 653

Evolution

ASP versus LP

ASP Prolog

Model generation Query orientation

Bottom-up Top-down

Modeling language Programming language

Rule-based format

Instantiation Unification
Flat terms Nested terms

(Turing +) NP(NP) Turing

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 25 / 653

Evolution

ASP versus SAT

ASP SAT

Model generation

Bottom-up

Constructive Logic Classical Logic

Closed (and open) Open world reasoning
world reasoning

Modeling language —

Complex reasoning modes Satisfiability testing

Satisfiability Satisfiability
Enumeration/Projection —
Intersection/Union —
Optimization —

(Turing +) NP(NP) NP

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 26 / 653

Foundation

Outline

1 Motivation

2 Nutshell

3 Evolution

4 Foundation

5 Workflow

6 Engine

7 Usage

8 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 27 / 653

Foundation

Propositional Normal Logic Programs

A logic program P is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,¬c1, . . . ,¬cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ¬ denote if, and, and negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
models of P justifying each true atom by some rule in P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 28 / 653

Foundation

Logic Programs

A logic program P is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,¬c1, . . . ,¬cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ¬ denote if, and, and negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
models of P justifying each true atom by some rule in P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 28 / 653

Foundation

Logic Programs

A logic program P is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,¬c1, . . . ,¬cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ¬ denote if, and, and negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
models of P justifying each true atom by some rule in P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 28 / 653

Foundation

Normal Logic Programs

A logic program P is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,¬c1, . . . ,¬cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ¬ denote if, and, and negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
models of P justifying each true atom by some rule in P

Disclaimer The following formalities apply to normal logic programs

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 28 / 653

Foundation

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 29 / 653

Foundation

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F (¬F→ F) ∧ (F→ F)
F F T (¬F→ F) ∧ (F→ T)
F T F (¬T→ F) ∧ (T→ F)
F T T (¬T→ F) ∧ (T→ T)
T F F (¬F→ T) ∧ (F→ F)
T F T (¬F→ T) ∧ (F→ T)
T T F (¬T→ T) ∧ (T→ F)
T T T (¬T→ T) ∧ (T→ T)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 29 / 653

Foundation

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F (T→ F) ∧ (F→ F)
F F T (T→ F) ∧ (F→ T)
F T F (F→ F) ∧ (T→ F)
F T T (F→ F) ∧ (T→ T)
T F F (T→ T) ∧ (F→ F)
T F T (T→ T) ∧ (F→ T)
T T F (F→ T) ∧ (T→ F)
T T T (F→ T) ∧ (T→ T)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 29 / 653

Foundation

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F (T→ F) ∧ (F→ F)
F F T (T→ F) ∧ (F→ T)
F T F (F→ F) ∧ (T→ F)
F T T (F→ F) ∧ (T→ T)
T F F (T→ T) ∧ (F→ F)
T F T (T→ T) ∧ (F→ T)
T T F (F→ T) ∧ (T→ F)
T T T (F→ T) ∧ (T→ T)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 29 / 653

Foundation

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F F ∧ (F→ F)
F F T F ∧ (F→ T)
F T F (F→ F) ∧ F
F T T (F→ F) ∧ (T→ T)
T F F (T→ T) ∧ (F→ F)
T F T (T→ T) ∧ (F→ T)
T T F (F→ T) ∧ F
T T T (F→ T) ∧ (T→ T)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 29 / 653

Foundation

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F F ∧ (F→ F)
F F T F ∧ (F→ T)
F T F (F→ F) ∧ F
F T T (F→ F) ∧ (T→ T)
T F F (T→ T) ∧ (F→ F)
T F T (T→ T) ∧ (F→ T)
T T F (F→ T) ∧ F
T T T (F→ T) ∧ (T→ T)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 29 / 653

Foundation

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F F ∧ T
F F T F ∧ T
F T F T ∧ F
F T T T ∧ T
T F F T ∧ T
T F T T ∧ T
T T F T ∧ F
T T T T ∧ T

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 29 / 653

Foundation

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F F
F F T F
F T F F
F T T T
T F F T
T F T T
T T F F
T T T T

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 29 / 653

Foundation

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F F
F F T F
F T F F
F T T T
T F F T
T F T T
T T F F
T T T T

We get four models: {b, c}, {a}, {a, c}, and {a, b, c}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 29 / 653

Foundation

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 30 / 653

Foundation

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F (¬F→ a) ∧ (b → c)
F F T (¬F→ a) ∧ (b → c)
F T F (¬T→ a) ∧ (b → c)
F T T (¬T→ a) ∧ (b → c)
T F F (¬F→ a) ∧ (b → c)
T F T (¬F→ a) ∧ (b → c)
T T F (¬T→ a) ∧ (b → c)
T T T (¬T→ a) ∧ (b → c)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 30 / 653

Foundation

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F (T→ a) ∧ (b → c)
F F T (T→ a) ∧ (b → c)
F T F (F→ a) ∧ (b → c)
F T T (F→ a) ∧ (b → c)
T F F (T→ a) ∧ (b → c)
T F T (T→ a) ∧ (b → c)
T T F (F→ a) ∧ (b → c)
T T T (F→ a) ∧ (b → c)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 30 / 653

Foundation

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (F→ a) ∧ (b → c)
F T T (F→ a) ∧ (b → c)
T F F a ∧ (b → c)
T F T a ∧ (b → c)
T T F (F→ a) ∧ (b → c)
T T T (F→ a) ∧ (b → c)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 30 / 653

Foundation

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (F→ a) ∧ (b → c)
F T T (F→ a) ∧ (b → c)
T F F a ∧ (b → c)
T F T a ∧ (b → c)
T T F (F→ a) ∧ (b → c)
T T T (F→ a) ∧ (b → c)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 30 / 653

Foundation

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F T ∧ (b → c)
F T T T ∧ (b → c)
T F F a ∧ (b → c)
T F T a ∧ (b → c)
T T F T ∧ (b → c)
T T T T ∧ (b → c)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 30 / 653

Foundation

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (b → c)
F T T (b → c)
T F F a ∧ (b → c)
T F T a ∧ (b → c)
T T F (b → c)
T T T (b → c)

Reduct

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 30 / 653

Foundation

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (b → c)
F T T (b → c)
T F F a ∧ (b → c)
T F T a ∧ (b → c)
T T F (b → c)
T T T (b → c)

Reduct

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 30 / 653

Foundation

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (b → c)
F T T (b → c) |=
T F F a ∧ (b → c) |= a
T F T a ∧ (b → c) |= a
T T F (b → c)
T T T (b → c) |=

Reduct

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 30 / 653

Foundation

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (b → c)
F T T (b → c) |=
T F F a ∧ (b → c) |= a
T F T a ∧ (b → c) |= a
T T F (b → c)
T T T (b → c) |=

Reduct

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 30 / 653

Foundation

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c) |= a
F F T a ∧ (b → c) |= a
F T F (b → c) |=
F T T (b → c) |=
T F F a ∧ (b → c) |= a
T F T a ∧ (b → c) |= a
T T F (b → c) |=
T T T (b → c) |=

Reduct

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 30 / 653

Foundation

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (b → c)
F T T (b → c)
T F F a ∧ (b → c) |= a Stable model
T F T a ∧ (b → c)
T T F (b → c)
T T T (b → c)

Reduct

We get one stable model: {a}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 30 / 653

Foundation

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (b → c)
F T T (b → c)
T F F a ∧ (b → c) |= a Stable model
T F T a ∧ (b → c)
T T F (b → c)
T T T (b → c)

Reduct

We get one stable model: {a}
Stable models = Smallest models of (respective) reducts

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 30 / 653

Workflow

Outline

1 Motivation

2 Nutshell

3 Evolution

4 Foundation

5 Workflow

6 Engine

7 Usage

8 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 31 / 653

Workflow

ASP modeling, grounding, and solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 32 / 653

Workflow

SAT solving

Problem

Formula
(CNF) Solver Classical

Models

Solution

- -

?

6

Programming Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 33 / 653

Workflow

Rooting ASP solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 34 / 653

Workflow

Rooting ASP solving

Problem

Logic
Program

LP

Grounder

DB

Solver

SAT

Stable
Models

DB+KR+LP

Solution

- - -

?

6

Modeling KR Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 34 / 653

Engine

Outline

1 Motivation

2 Nutshell

3 Evolution

4 Foundation

5 Workflow

6 Engine

7 Usage

8 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 35 / 653

Engine

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 36 / 653

Engine

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 36 / 653

Engine

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 36 / 653

Engine

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 36 / 653

Engine

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 36 / 653

Engine

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 36 / 653

Usage

Outline

1 Motivation

2 Nutshell

3 Evolution

4 Foundation

5 Workflow

6 Engine

7 Usage

8 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 37 / 653

Usage

Two sides of a coin

ASP as High-level Language

Express problem instance as sets of facts
Encode problem class as a set of rules
Read off solutions from stable models of facts and rules

ASP as Low-level Language

Compile a problem into a set of facts and rules
Solve the original problem by solving its compilation

ASP and Imperative language

Control continuously changing logic programs

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 38 / 653

Usage

Two sides of a coin

ASP as High-level Language

Express problem instance as sets of facts
Encode problem class as a set of rules
Read off solutions from stable models of facts and rules

ASP as Low-level Language

Compile a problem into a set of facts and rules
Solve the original problem by solving its compilation

ASP and Imperative language

Control continuously changing logic programs

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 38 / 653

Usage

Two sides of a coin

ASP as High-level Language

Express problem instance as sets of facts
Encode problem class as a set of rules
Read off solutions from stable models of facts and rules

ASP as Low-level Language

Compile a problem into a set of facts and rules
Solve the original problem by solving its compilation

ASP and Imperative language

Control continuously changing logic programs

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 38 / 653

Usage

Two sides of a coin

ASP as High-level Language

Express problem instance as sets of facts
Encode problem class as a set of rules
Read off solutions from stable models of facts and rules

ASP as “Low-level” Language

Compile a problem instance into a set of facts
Encode problem class as a set of rules
Solve the original problem by solving its compilation

ASP and Imperative language

Control continuously changing logic programs

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 38 / 653

Usage

Two and a half sides of a coin

ASP as High-level Language

Express problem instance as sets of facts
Encode problem class as a set of rules
Read off solutions from stable models of facts and rules

ASP as “Low-level” Language

Compile a problem instance into a set of facts
Encode problem class as a set of rules
Solve the original problem by solving its compilation

ASP and Imperative language

Control continuously changing logic programs

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 38 / 653

Summary

Outline

1 Motivation

2 Nutshell

3 Evolution

4 Foundation

5 Workflow

6 Engine

7 Usage

8 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 39 / 653

Summary

Upcoming experience

ASP is a viable tool for Knowledge Representation and Reasoning

Integration of DB, LP, KR, and SAT techniques
Combinatorial search problems in the realm of NP and NPNP

Succinct, elaboration-tolerant problem representations

rapid application development tool

Easy handling of knowledge-intensive applications

data, defaults, exceptions, frame axioms, reachability etc

ASP offers efficient and versatile off-the-shelf solving technology

http://potassco.org

winning ASP, CASC, MISC, PB, and SAT competitions

ASP has a growing range of applications, and its’s good fun!

ASP = DB+LP+KR+SAT

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 40 / 653

http://potassco.org

Summary

Upcoming experience

ASP is a viable tool for Knowledge Representation and Reasoning

Integration of DB, LP, KR, and SAT techniques
Combinatorial search problems in the realm of NP and NPNP

Succinct, elaboration-tolerant problem representations

rapid application development tool

Easy handling of knowledge-intensive applications

data, defaults, exceptions, frame axioms, reachability etc

ASP offers efficient and versatile off-the-shelf solving technology

http://potassco.org

winning ASP, CASC, MISC, PB, and SAT competitions

ASP has a growing range of applications, and its’s good fun!

ASP = DB+LP+KR+SAT

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 40 / 653

http://potassco.org

Summary

Upcoming experience

ASP is a viable tool for Knowledge Representation and Reasoning

Integration of DB, LP, KR, and SAT techniques
Combinatorial search problems in the realm of NP and NPNP

Succinct, elaboration-tolerant problem representations

rapid application development tool

Easy handling of knowledge-intensive applications

data, defaults, exceptions, frame axioms, reachability etc

ASP offers efficient and versatile off-the-shelf solving technology

http://potassco.org

winning ASP, CASC, MISC, PB, and SAT competitions

ASP has a growing range of applications, and its’s good fun!

ASP = DB+LP+KR+SMTn

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 40 / 653

http://potassco.org

Introduction: Overview

9 Syntax

10 Semantics

11 Examples

12 Reasoning

13 Language

14 Variables

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 41 / 653

Syntax

Outline

9 Syntax

10 Semantics

11 Examples

12 Reasoning

13 Language

14 Variables

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 42 / 653

Syntax

Syntax

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 43 / 653

Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

h(r) = a0

B(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
B(r)+ = {a1, . . . , am}
B(r)− = {am+1, . . . , an}

A literal is an atom or a negated atom

A program P is positive if B(r)− = ∅ for all r ∈ P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 44 / 653

Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 :- a1, . . . , am, not am+1, . . . , not an.

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

h(r) = a0

B(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
B(r)+ = {a1, . . . , am}
B(r)− = {am+1, . . . , an}

A literal is an atom or a negated atom

A program P is positive if B(r)− = ∅ for all r ∈ P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 44 / 653

Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

h(r) = a0

B(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
B(r)+ = {a1, . . . , am}
B(r)− = {am+1, . . . , an}

A literal is an atom or a negated atom

A program P is positive if B(r)− = ∅ for all r ∈ P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 44 / 653

Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules
A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an
where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n
Notation

h(r) = a0

B(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
B(r)+ = {a1, . . . , am}
B(r)− = {am+1, . . . , an}
A(P) =

⋃
r∈P

(
{h(r)} ∪ B(r)+ ∪ B(r)−

)
B(P) = {B(r) | r ∈ P}
h(P) = {h(r) | r ∈ P}

A literal is an atom or a negated atom
A program P is positive if B(r)− = ∅ for all r ∈ P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 44 / 653

Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

h(r) = a0

B(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
B(r)+ = {a1, . . . , am}
B(r)− = {am+1, . . . , an}

A literal is an atom or a negated atom

A program P is positive if B(r)− = ∅ for all r ∈ P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 44 / 653

Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

h(r) = a0

B(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
B(r)+ = {a1, . . . , am}
B(r)− = {am+1, . . . , an}

A literal is an atom or a negated atom

A program P is positive if B(r)− = ∅ for all r ∈ P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 44 / 653

Syntax

Examples

Example rules

a← b,∼c
a← ∼c , b

a←
a← b
a← ∼c

bachelor(joe)← male(joe),∼married(joe)

Example literals

a, b, c , bachelor(joe),male(joe),married(joe)

∼c ,∼married(joe)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 45 / 653

Syntax

Examples

Example rules

a← b,∼c
a← ∼c , b

a←
a← b
a← ∼c

bachelor(joe)← male(joe),∼married(joe)

Example literals

a, b, c , bachelor(joe),male(joe),married(joe)

∼c ,∼married(joe)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 45 / 653

Syntax

Examples

Example rules

a← b,∼c
a← ∼c , b

a←
a← b
a← ∼c

bachelor(joe)← male(joe),∼married(joe)

Example literals

a, b, c , bachelor(joe),male(joe),married(joe)

∼c ,∼married(joe)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 45 / 653

Syntax

Examples

Example rules

a← b,∼c
a← ∼c , b

a←
a← b
a← ∼c

bachelor(joe)← male(joe),∼married(joe)

Example literals

a, b, c , bachelor(joe),male(joe),married(joe)

∼c ,∼married(joe)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 45 / 653

Syntax

Notational convention

We sometimes use the following notation interchangeably
in order to stress the respective view:

default classical
true, false if and or iff negation negation

source code :- , ; not -

logic program ← , ; ∼ ¬
formula ⊥,> → ∧ ∨ ↔ ∼ ¬

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 46 / 653

Semantics

Outline

9 Syntax

10 Semantics

11 Examples

12 Reasoning

13 Language

14 Variables

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 47 / 653

Semantics

Semantics

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 48 / 653

Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, h(r) ∈ X whenever B(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 49 / 653

Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, h(r) ∈ X whenever B(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 49 / 653

Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, h(r) ∈ X whenever B(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 49 / 653

Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, h(r) ∈ X whenever B(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 49 / 653

Semantics

Some “logical” remarks

Positive rules are also referred to as definite clauses

Definite clauses are disjunctions with exactly one positive atom:

a0 ∨ ¬a1 ∨ · · · ∨ ¬am

A set of definite clauses has a (unique) smallest model

Horn clauses are clauses with at most one positive atom

Every definite clause is a Horn clause but not vice versa
Non-definite Horn clauses can be regarded as integrity constraints

A set of Horn clauses has a smallest model or none

This smallest model is the intended semantics of such sets of clauses

Given a positive program P, Cn(P) corresponds to the smallest model
of the set of definite clauses corresponding to P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 50 / 653

Semantics

Some “logical” remarks

Positive rules are also referred to as definite clauses

Definite clauses are disjunctions with exactly one positive atom:

a0 ∨ ¬a1 ∨ · · · ∨ ¬am

A set of definite clauses has a (unique) smallest model

Horn clauses are clauses with at most one positive atom

Every definite clause is a Horn clause but not vice versa
Non-definite Horn clauses can be regarded as integrity constraints

A set of Horn clauses has a smallest model or none

This smallest model is the intended semantics of such sets of clauses

Given a positive program P, Cn(P) corresponds to the smallest model
of the set of definite clauses corresponding to P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 50 / 653

Semantics

Some “logical” remarks

Positive rules are also referred to as definite clauses

Definite clauses are disjunctions with exactly one positive atom:

a0 ∨ ¬a1 ∨ · · · ∨ ¬am

A set of definite clauses has a (unique) smallest model

Horn clauses are clauses with at most one positive atom

Every definite clause is a Horn clause but not vice versa
Non-definite Horn clauses can be regarded as integrity constraints

A set of Horn clauses has a smallest model or none

This smallest model is the intended semantics of such sets of clauses

Given a positive program P, Cn(P) corresponds to the smallest model
of the set of definite clauses corresponding to P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 50 / 653

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 51 / 653

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 51 / 653

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 51 / 653

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 51 / 653

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 51 / 653

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 51 / 653

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 51 / 653

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 51 / 653

Semantics

Formal definition
Stable models of normal programs

The reduct, PX , of a program P relative to a set X of atoms is
defined by

PX = {h(r)← B(r)+ | r ∈ P and B(r)− ∩ X = ∅}

A set X of atoms is a stable model of a program P, if Cn(PX) = X

Remarks

Cn(PX) is the ⊆–smallest (classical) model of PX

Each atom in X is justified by an “applying rule from P”
Set X is stable under “applying rules from P”

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 52 / 653

Semantics

Formal definition
Stable models of normal programs

The reduct, PX , of a program P relative to a set X of atoms is
defined by

PX = {h(r)← B(r)+ | r ∈ P and B(r)− ∩ X = ∅}

A set X of atoms is a stable model of a program P, if Cn(PX) = X

Remarks

Cn(PX) is the ⊆–smallest (classical) model of PX

Each atom in X is justified by an “applying rule from P”
Set X is stable under “applying rules from P”

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 52 / 653

Semantics

Formal definition
Stable models of normal programs

The reduct, PX , of a program P relative to a set X of atoms is
defined by

PX = {h(r)← B(r)+ | r ∈ P and B(r)− ∩ X = ∅}

A set X of atoms is a stable model of a program P, if Cn(PX) = X

Remarks

Cn(PX) is the ⊆–smallest (classical) model of PX

Each atom in X is justified by an “applying rule from P”
Set X is stable under “applying rules from P”

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 52 / 653

Semantics

Formal definition
Stable models of normal programs

The reduct, PX , of a program P relative to a set X of atoms is
defined by

PX = {h(r)← B(r)+ | r ∈ P and B(r)− ∩ X = ∅}

A set X of atoms is a stable model of a program P, if Cn(PX) = X

Remarks

Cn(PX) is the ⊆–smallest (classical) model of PX

Each atom in X is justified by an “applying rule from P”
Set X is stable under “applying rules from P”

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 52 / 653

Semantics

A closer look at PX

Alternatively, given a set X of atoms from P,

PX is obtained from P by deleting

1 each rule having ∼a in its body with a ∈ X
and then

2 all negative atoms of the form ∼a
in the bodies of the remaining rules

Note Only negative body literals are evaluated

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 53 / 653

Semantics

A closer look at PX

Alternatively, given a set X of atoms from P,

PX is obtained from P by deleting

1 each rule having ∼a in its body with a ∈ X
and then

2 all negative atoms of the form ∼a
in the bodies of the remaining rules

Note Only negative body literals are evaluated

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 53 / 653

Examples

Outline

9 Syntax

10 Semantics

11 Examples

12 Reasoning

13 Language

14 Variables

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 54 / 653

Examples

Example one

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 55 / 653

Examples

Example one

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 55 / 653

Examples

Example one

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 55 / 653

Examples

Example one

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 55 / 653

Examples

Example one

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 55 / 653

Examples

Example one

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 55 / 653

Examples

Example one

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 55 / 653

Examples

Example one

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 55 / 653

Examples

Example one

P = {p ← p, q ← ¬p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 4

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 55 / 653

Examples

Example two

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 56 / 653

Examples

Example two

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 56 / 653

Examples

Example two

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 56 / 653

Examples

Example two

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 56 / 653

Examples

Example two

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 56 / 653

Examples

Example two

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 56 / 653

Examples

Example two

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅ 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 56 / 653

Examples

Example two

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅ 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 56 / 653

Examples

Example two

P = {p ← ¬q, q ← ¬p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅ 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 56 / 653

Examples

Example three

P = {p ← ∼p}

X PX Cn(PX)

{ } p ← {p} 8

{p} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 57 / 653

Examples

Example three

P = {p ← ∼p}

X PX Cn(PX)

{ } p ← {p} 8

{p} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 57 / 653

Examples

Example three

P = {p ← ∼p}

X PX Cn(PX)

{ } p ← {p} 8

{p} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 57 / 653

Examples

Example three

P = {p ← ∼p}

X PX Cn(PX)

{ } p ← {p} 8

{p} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 57 / 653

Examples

Example three

P = {p ← ∼p}

X PX Cn(PX)

{ } p ← {p} 8

{p} ∅ 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 57 / 653

Examples

Example three

P = {p ← ∼p}

X PX Cn(PX)

{ } p ← {p} 8

{p} ∅ 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 57 / 653

Examples

Example three

P = {p ← ¬p}

X PX Cn(PX)

{ } p ← {p} 8

{p} ∅ 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 57 / 653

Examples

Some properties

A logic program may have zero, one, or multiple stable models

If X is a stable model of a logic program P,
then X ⊆ h(P)

If X is a stable model of a logic program P,
then X is a (classical) model of P

If X and Y are stable models of a normal program P,
then X 6⊂ Y

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 58 / 653

Examples

Some properties

A logic program may have zero, one, or multiple stable models

If X is a stable model of a logic program P,
then X ⊆ h(P)

If X is a stable model of a logic program P,
then X is a (classical) model of P

If X and Y are stable models of a normal program P,
then X 6⊂ Y

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 58 / 653

Examples

Some properties

A logic program may have zero, one, or multiple stable models

If X is a stable model of a logic program P,
then X ⊆ h(P)

If X is a stable model of a logic program P,
then X is a (classical) model of P

If X and Y are stable models of a normal program P,
then X 6⊂ Y

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 58 / 653

Examples

Some properties

A logic program may have zero, one, or multiple stable models

If X is a stable model of a logic program P,
then X ⊆ h(P)

If X is a stable model of a logic program P,
then X is a (classical) model of P

If X and Y are stable models of a normal program P,
then X 6⊂ Y

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 58 / 653

Examples

Exemplars

Logic program Answer sets

a. {a}
a :- b. {}
a :- b. b. {a,b}
a :- b. b :- a. {}
a :- not c. {a}
a :- not c. c. {c}
a :- not c. c :- not a. {a}, {c}
a :- not a.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 59 / 653

Reasoning

Outline

9 Syntax

10 Semantics

11 Examples

12 Reasoning

13 Language

14 Variables

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 60 / 653

Reasoning

Reasoning modes

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 61 / 653

Reasoning

Reasoning modes

Satisfiability

Enumeration†

Projection†

Intersection‡

Union‡

Optimization

and combinations of them

† without solution recording
‡ without solution enumeration

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 62 / 653

Language

Outline

9 Syntax

10 Semantics

11 Examples

12 Reasoning

13 Language

14 Variables

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 63 / 653

Language

Extended syntax

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 64 / 653

Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 65 / 653

Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 65 / 653

Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 65 / 653

Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 65 / 653

Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 65 / 653

Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 65 / 653

Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 65 / 653

Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 65 / 653

Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 65 / 653

Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 65 / 653

Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Multi-objective optimization

Weak constraints :∼ q(X), p(X,C) [C@42]

Statements #minimize { C@42 : q(X), p(X,C) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 65 / 653

Variables

Outline

9 Syntax

10 Semantics

11 Examples

12 Reasoning

13 Language

14 Variables

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 66 / 653

Variables

Example

d(a)
d(c)
d(d)

p(a, b)
p(b, c)
p(c , d)
p(X ,Z)← p(X ,Y), p(Y ,Z)

q(a)
q(b)
q(X)← ∼r(X), d(X)

r(X)← ∼q(X), d(X)

s(X)← ∼r(X), p(X ,Y), q(Y)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 67 / 653

Variables

Example

d(a)
d(c)
d(d)

p(a, b)
p(b, c)
p(c , d)
p(X ,Z)← p(X ,Y), p(Y ,Z)

q(a)
q(b)
q(X)← ∼r(X), d(X)

r(X)← ∼q(X), d(X)

s(X)← ∼r(X), p(X ,Y), q(Y)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 67 / 653

Variables

Grounding instantiation

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructible from T

A variable-free atom is also called ground

Ground instances of r ∈ P : Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground instantiation of P : ground(P) =
⋃

r∈P ground(r)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 68 / 653

Variables

Grounding instantiation

Let P be a logic program

Let T be a set of

(

variable-free

)

terms (also called Herbrand universe)

Let A be a set of (variable-free) atoms constructible from T
(also called alphabet or Herbrand base)

A variable-free atom is also called ground

Ground instances of r ∈ P : Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground instantiation of P : ground(P) =
⋃

r∈P ground(r)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 68 / 653

Variables

Grounding instantiation

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructible from T

A variable-free atom is also called ground

Ground instances of r ∈ P : Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground instantiation of P : ground(P) =
⋃

r∈P ground(r)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 68 / 653

Variables

Grounding instantiation

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructible from T

A variable-free atom is also called ground

Ground instances of r ∈ P : Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground instantiation of P : ground(P) =
⋃

r∈P ground(r)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 68 / 653

Variables

Grounding instantiation

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructible from T

A variable-free atom is also called ground

Ground instances of r ∈ P : Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground instantiation of P : ground(P) =
⋃

r∈P ground(r)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 68 / 653

Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y)← r(X ,Y) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =

r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)

Grounding aims at reducing the ground instantiation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 69 / 653

Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y)← r(X ,Y) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =

r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)

Grounding aims at reducing the ground instantiation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 69 / 653

Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y)← r(X ,Y) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =

r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)

Grounding aims at reducing the ground instantiation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 69 / 653

Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y)← r(X ,Y) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =

r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← , t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)

Grounding aims at reducing the ground instantiation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 69 / 653

Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y)← r(X ,Y) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =

r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← , t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)

Grounding aims at reducing the ground instantiation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 69 / 653

Variables

Safety

A normal rule is safe, if each of its variables also occurs in some
positive body literal

A normal program is safe, if all of its rules are safe

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 70 / 653

Variables

Example

d(a)
d(c)
d(d)

p(a, b)
p(b, c)
p(c , d)
p(X ,Z)← p(X ,Y), p(Y ,Z)

q(a)
q(b)
q(X)← ∼r(X)

r(X)← ∼q(X), d(X)
s(X)← ∼r(X), p(X ,Y), q(Y)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 71 / 653

Variables

Example

Safe ?
d(a)
d(c)
d(d)

p(a, b)
p(b, c)
p(c , d)
p(X ,Z)← p(X ,Y), p(Y ,Z)

q(a)
q(b)
q(X)← ∼r(X)

r(X)← ∼q(X), d(X)
s(X)← ∼r(X), p(X ,Y), q(Y)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 71 / 653

Variables

Example

Safe ?
d(a) 4

d(c) 4

d(d) 4

p(a, b) 4

p(b, c) 4

p(c , d) 4

p(X ,Z)← p(X ,Y), p(Y ,Z)

q(a) 4

q(b) 4

q(X)← ∼r(X)

r(X)← ∼q(X), d(X)
s(X)← ∼r(X), p(X ,Y), q(Y)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 71 / 653

Variables

Example

Safe ?
d(a) 4

d(c) 4

d(d) 4

p(a, b) 4

p(b, c) 4

p(c , d) 4

p(X ,Z)← p(X ,Y), p(Y ,Z)

q(a) 4

q(b) 4

q(X)← ∼r(X)

r(X)← ∼q(X), d(X)
s(X)← ∼r(X), p(X ,Y), q(Y)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 71 / 653

Variables

Example

Safe ?
d(a) 4

d(c) 4

d(d) 4

p(a, b) 4

p(b, c) 4

p(c , d) 4

p(X ,Z)← p(X ,Y), p(Y ,Z) 4

q(a) 4

q(b) 4

q(X)← ∼r(X)

r(X)← ∼q(X), d(X)
s(X)← ∼r(X), p(X ,Y), q(Y)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 71 / 653

Variables

Example

Safe ?
d(a) 4

d(c) 4

d(d) 4

p(a, b) 4

p(b, c) 4

p(c , d) 4

p(X ,Z)← p(X ,Y), p(Y ,Z) 4

q(a) 4

q(b) 4

q(X)← ∼r(X) 8

r(X)← ∼q(X), d(X)
s(X)← ∼r(X), p(X ,Y), q(Y)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 71 / 653

Variables

Example

Safe ?
d(a) 4

d(c) 4

d(d) 4

p(a, b) 4

p(b, c) 4

p(c , d) 4

p(X ,Z)← p(X ,Y), p(Y ,Z) 4

q(a) 4

q(b) 4

q(X)← ∼r(X), d(X) 4

r(X)← ∼q(X), d(X)
s(X)← ∼r(X), p(X ,Y), q(Y)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 71 / 653

Variables

Example

Safe ?
d(a) 4

d(c) 4

d(d) 4

p(a, b) 4

p(b, c) 4

p(c , d) 4

p(X ,Z)← p(X ,Y), p(Y ,Z) 4

q(a) 4

q(b) 4

q(X)← ∼r(X), d(X) 4

r(X)← ∼q(X), d(X)
s(X)← ∼r(X), p(X ,Y), q(Y)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 71 / 653

Variables

Example

Safe ?
d(a) 4

d(c) 4

d(d) 4

p(a, b) 4

p(b, c) 4

p(c , d) 4

p(X ,Z)← p(X ,Y), p(Y ,Z) 4

q(a) 4

q(b) 4

q(X)← ∼r(X), d(X) 4

r(X)← ∼q(X), d(X) 4

s(X)← ∼r(X), p(X ,Y), q(Y)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 71 / 653

Variables

Example

Safe ?
d(a) 4

d(c) 4

d(d) 4

p(a, b) 4

p(b, c) 4

p(c , d) 4

p(X ,Z)← p(X ,Y), p(Y ,Z) 4

q(a) 4

q(b) 4

q(X)← ∼r(X), d(X) 4

r(X)← ∼q(X), d(X) 4

s(X)← ∼r(X), p(X ,Y), q(Y)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 71 / 653

Variables

Example

Safe ?
d(a) 4

d(c) 4

d(d) 4

p(a, b) 4

p(b, c) 4

p(c , d) 4

p(X ,Z)← p(X ,Y), p(Y ,Z) 4

q(a) 4

q(b) 4

q(X)← ∼r(X), d(X) 4

r(X)← ∼q(X), d(X) 4

s(X)← ∼r(X), p(X ,Y), q(Y) 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 71 / 653

Variables

Stable models of programs with Variables

Let P be a normal logic program with variables

A set X of (ground) atoms is a stable model of P,

if Cn(ground(P)X) = X

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 72 / 653

Variables

Stable models of programs with Variables

Let P be a normal logic program with variables

A set X of (ground) atoms is a stable model of P,

if Cn(ground(P)X) = X

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 72 / 653

Basic Modeling: Overview

15 Elaboration tolerance

16 ASP solving process

17 Methodology

18 Case studies

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 73 / 653

Modeling and Interpreting

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 74 / 653

Elaboration tolerance

Outline

15 Elaboration tolerance

16 ASP solving process

17 Methodology

18 Case studies

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 75 / 653

Elaboration tolerance

Guiding principle

Elaboration Tolerance (McCarthy, 1998)

“A formalism is elaboration tolerant [if] it is convenient
to modify a set of facts expressed in the formalism
to take into account new phenomena or changed circumstances.”

Uniform problem representation

For solving a problem instance I of a problem class C,

I is represented as a set of facts PI,
C is represented as a set of rules PC, and

PC can be used to solve all problem instances in C

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 76 / 653

Elaboration tolerance

Guiding principle

Elaboration Tolerance (McCarthy, 1998)

“A formalism is elaboration tolerant [if] it is convenient
to modify a set of facts expressed in the formalism
to take into account new phenomena or changed circumstances.”

Uniform problem representation

For solving a problem instance I of a problem class C,

I is represented as a set of facts PI,
C is represented as a set of rules PC, and

PC can be used to solve all problem instances in C

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 76 / 653

ASP solving process

Outline

15 Elaboration tolerance

16 ASP solving process

17 Methodology

18 Case studies

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 77 / 653

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 78 / 653

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 78 / 653

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 78 / 653

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 78 / 653

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 78 / 653

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 78 / 653

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving6

Elaborating

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 78 / 653

ASP solving process

A case-study: Graph coloring

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 79 / 653

ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 80 / 653

ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 80 / 653

ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

1 2

3

4

5

6

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 80 / 653

ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

1 2

3

4

5

6

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 80 / 653

ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

facts formed by predicate color/1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 80 / 653

ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

facts formed by predicate color/1

Problem class Assign each node one color such that no two nodes
connected by an edge have the same color

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 80 / 653

ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

facts formed by predicate color/1

Problem class Assign each node one color such that no two nodes
connected by an edge have the same color

In other words,

1 Each node has one color
2 Two connected nodes must not have the same color

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 80 / 653

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 81 / 653

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).

Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 82 / 653

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).

Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 82 / 653

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).

Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 82 / 653

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).

Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 82 / 653

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).

Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 82 / 653

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).

Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 82 / 653

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).

Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 82 / 653

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).

Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 82 / 653

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).

Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 82 / 653

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).

graph.lp

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 color.lp

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 82 / 653

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 83 / 653

ASP solving process

Graph coloring: Grounding
$ gringo --text graph.lp color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge(5,3). edge(6,2).

edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge(5,4). edge(6,3).

edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge(6,5).

color(r). color(b). color(g).

{ assign(1,r), assign(1,b), assign(1,g) } = 1. { assign(4,r), assign(4,b), assign(4,g) } = 1.

{ assign(2,r), assign(2,b), assign(2,g) } = 1. { assign(5,r), assign(5,b), assign(5,g) } = 1.

{ assign(3,r), assign(3,b), assign(3,g) } = 1. { assign(6,r), assign(6,b), assign(6,g) } = 1.

:- assign(1,r), assign(2,r). :- assign(2,r), assign(4,r). [...] :- assign(6,r), assign(2,r).

:- assign(1,b), assign(2,b). :- assign(2,b), assign(4,b). :- assign(6,b), assign(2,b).

:- assign(1,g), assign(2,g). :- assign(2,g), assign(4,g). :- assign(6,g), assign(2,g).

:- assign(1,r), assign(3,r). :- assign(2,r), assign(5,r). :- assign(6,r), assign(3,r).

:- assign(1,b), assign(3,b). :- assign(2,b), assign(5,b). :- assign(6,b), assign(3,b).

:- assign(1,g), assign(3,g). :- assign(2,g), assign(5,g). :- assign(6,g), assign(3,g).

:- assign(1,r), assign(4,r). :- assign(2,r), assign(6,r). :- assign(6,r), assign(5,r).

:- assign(1,b), assign(4,b). :- assign(2,b), assign(6,b). :- assign(6,b), assign(5,b).

:- assign(1,g), assign(4,g). :- assign(2,g), assign(6,g). :- assign(6,g), assign(5,g).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 84 / 653

ASP solving process

Graph coloring: Grounding
$ gringo --text graph.lp color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge(5,3). edge(6,2).

edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge(5,4). edge(6,3).

edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge(6,5).

color(r). color(b). color(g).

{ assign(1,r), assign(1,b), assign(1,g) } = 1. { assign(4,r), assign(4,b), assign(4,g) } = 1.

{ assign(2,r), assign(2,b), assign(2,g) } = 1. { assign(5,r), assign(5,b), assign(5,g) } = 1.

{ assign(3,r), assign(3,b), assign(3,g) } = 1. { assign(6,r), assign(6,b), assign(6,g) } = 1.

:- assign(1,r), assign(2,r). :- assign(2,r), assign(4,r). [...] :- assign(6,r), assign(2,r).

:- assign(1,b), assign(2,b). :- assign(2,b), assign(4,b). :- assign(6,b), assign(2,b).

:- assign(1,g), assign(2,g). :- assign(2,g), assign(4,g). :- assign(6,g), assign(2,g).

:- assign(1,r), assign(3,r). :- assign(2,r), assign(5,r). :- assign(6,r), assign(3,r).

:- assign(1,b), assign(3,b). :- assign(2,b), assign(5,b). :- assign(6,b), assign(3,b).

:- assign(1,g), assign(3,g). :- assign(2,g), assign(5,g). :- assign(6,g), assign(3,g).

:- assign(1,r), assign(4,r). :- assign(2,r), assign(6,r). :- assign(6,r), assign(5,r).

:- assign(1,b), assign(4,b). :- assign(2,b), assign(6,b). :- assign(6,b), assign(5,b).

:- assign(1,g), assign(4,g). :- assign(2,g), assign(6,g). :- assign(6,g), assign(5,g).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 84 / 653

ASP solving process

Graph coloring: Grounding
$ gringo --text graph.lp color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge(5,3). edge(6,2).

edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge(5,4). edge(6,3).

edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge(6,5).

color(r). color(b). color(g).

{ assign(1,r), assign(1,b), assign(1,g) } = 1. { assign(4,r), assign(4,b), assign(4,g) } = 1.

{ assign(2,r), assign(2,b), assign(2,g) } = 1. { assign(5,r), assign(5,b), assign(5,g) } = 1.

{ assign(3,r), assign(3,b), assign(3,g) } = 1. { assign(6,r), assign(6,b), assign(6,g) } = 1.

:- assign(1,r), assign(2,r). :- assign(2,r), assign(4,r). [...] :- assign(6,r), assign(2,r).

:- assign(1,b), assign(2,b). :- assign(2,b), assign(4,b). :- assign(6,b), assign(2,b).

:- assign(1,g), assign(2,g). :- assign(2,g), assign(4,g). :- assign(6,g), assign(2,g).

:- assign(1,r), assign(3,r). :- assign(2,r), assign(5,r). :- assign(6,r), assign(3,r).

:- assign(1,b), assign(3,b). :- assign(2,b), assign(5,b). :- assign(6,b), assign(3,b).

:- assign(1,g), assign(3,g). :- assign(2,g), assign(5,g). :- assign(6,g), assign(3,g).

:- assign(1,r), assign(4,r). :- assign(2,r), assign(6,r). :- assign(6,r), assign(5,r).

:- assign(1,b), assign(4,b). :- assign(2,b), assign(6,b). :- assign(6,b), assign(5,b).

:- assign(1,g), assign(4,g). :- assign(2,g), assign(6,g). :- assign(6,g), assign(5,g).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 84 / 653

ASP solving process

Graph coloring: Grounding
$ gringo --text graph.lp color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge(5,3). edge(6,2).

edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge(5,4). edge(6,3).

edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge(6,5).

color(r). color(b). color(g).

{ assign(1,r), assign(1,b), assign(1,g) } = 1. { assign(4,r), assign(4,b), assign(4,g) } = 1.

{ assign(2,r), assign(2,b), assign(2,g) } = 1. { assign(5,r), assign(5,b), assign(5,g) } = 1.

{ assign(3,r), assign(3,b), assign(3,g) } = 1. { assign(6,r), assign(6,b), assign(6,g) } = 1.

:- assign(1,r), assign(2,r). :- assign(2,r), assign(4,r). [...] :- assign(6,r), assign(2,r).

:- assign(1,b), assign(2,b). :- assign(2,b), assign(4,b). :- assign(6,b), assign(2,b).

:- assign(1,g), assign(2,g). :- assign(2,g), assign(4,g). :- assign(6,g), assign(2,g).

:- assign(1,r), assign(3,r). :- assign(2,r), assign(5,r). :- assign(6,r), assign(3,r).

:- assign(1,b), assign(3,b). :- assign(2,b), assign(5,b). :- assign(6,b), assign(3,b).

:- assign(1,g), assign(3,g). :- assign(2,g), assign(5,g). :- assign(6,g), assign(3,g).

:- assign(1,r), assign(4,r). :- assign(2,r), assign(6,r). :- assign(6,r), assign(5,r).

:- assign(1,b), assign(4,b). :- assign(2,b), assign(6,b). :- assign(6,b), assign(5,b).

:- assign(1,g), assign(4,g). :- assign(2,g), assign(6,g). :- assign(6,g), assign(5,g).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 84 / 653

ASP solving process

Graph coloring: Grounding
$ clingo --text graph.lp color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(2,4). edge(3,1). edge(4,1). edge(5,3). edge(6,2).

edge(1,3). edge(2,5). edge(3,4). edge(4,2). edge(5,4). edge(6,3).

edge(1,4). edge(2,6). edge(3,5). edge(5,6). edge(6,5).

color(r). color(b). color(g).

{ assign(1,r), assign(1,b), assign(1,g) } = 1. { assign(4,r), assign(4,b), assign(4,g) } = 1.

{ assign(2,r), assign(2,b), assign(2,g) } = 1. { assign(5,r), assign(5,b), assign(5,g) } = 1.

{ assign(3,r), assign(3,b), assign(3,g) } = 1. { assign(6,r), assign(6,b), assign(6,g) } = 1.

:- assign(1,r), assign(2,r). :- assign(2,r), assign(4,r). [...] :- assign(6,r), assign(2,r).

:- assign(1,b), assign(2,b). :- assign(2,b), assign(4,b). :- assign(6,b), assign(2,b).

:- assign(1,g), assign(2,g). :- assign(2,g), assign(4,g). :- assign(6,g), assign(2,g).

:- assign(1,r), assign(3,r). :- assign(2,r), assign(5,r). :- assign(6,r), assign(3,r).

:- assign(1,b), assign(3,b). :- assign(2,b), assign(5,b). :- assign(6,b), assign(3,b).

:- assign(1,g), assign(3,g). :- assign(2,g), assign(5,g). :- assign(6,g), assign(3,g).

:- assign(1,r), assign(4,r). :- assign(2,r), assign(6,r). :- assign(6,r), assign(5,r).

:- assign(1,b), assign(4,b). :- assign(2,b), assign(6,b). :- assign(6,b), assign(5,b).

:- assign(1,g), assign(4,g). :- assign(2,g), assign(6,g). :- assign(6,g), assign(5,g).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 84 / 653

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 85 / 653

ASP solving process

Graph coloring: Solving
$ gringo graph.lp color.lp | clasp 0

clasp version 2.1.0

Reading from stdin

Solving...

Answer: 1

node(1) [...] assign(6,b) assign(5,g) assign(4,b) assign(3,r) assign(2,r) assign(1,g)

Answer: 2

node(1) [...] assign(6,r) assign(5,g) assign(4,r) assign(3,b) assign(2,b) assign(1,g)

Answer: 3

node(1) [...] assign(6,g) assign(5,b) assign(4,g) assign(3,r) assign(2,r) assign(1,b)

Answer: 4

node(1) [...] assign(6,r) assign(5,b) assign(4,r) assign(3,g) assign(2,g) assign(1,b)

Answer: 5

node(1) [...] assign(6,g) assign(5,r) assign(4,g) assign(3,b) assign(2,b) assign(1,r)

Answer: 6

node(1) [...] assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)

SATISFIABLE

Models : 6

Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 86 / 653

ASP solving process

Graph coloring: Solving
$ gringo graph.lp color.lp | clasp 0

clasp version 2.1.0

Reading from stdin

Solving...

Answer: 1

node(1) [...] assign(6,b) assign(5,g) assign(4,b) assign(3,r) assign(2,r) assign(1,g)

Answer: 2

node(1) [...] assign(6,r) assign(5,g) assign(4,r) assign(3,b) assign(2,b) assign(1,g)

Answer: 3

node(1) [...] assign(6,g) assign(5,b) assign(4,g) assign(3,r) assign(2,r) assign(1,b)

Answer: 4

node(1) [...] assign(6,r) assign(5,b) assign(4,r) assign(3,g) assign(2,g) assign(1,b)

Answer: 5

node(1) [...] assign(6,g) assign(5,r) assign(4,g) assign(3,b) assign(2,b) assign(1,r)

Answer: 6

node(1) [...] assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)

SATISFIABLE

Models : 6

Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 86 / 653

ASP solving process

Graph coloring: Solving
$ clingo graph.lp color.lp 0

clasp version 2.1.0

Reading from stdin

Solving...

Answer: 1

node(1) [...] assign(6,b) assign(5,g) assign(4,b) assign(3,r) assign(2,r) assign(1,g)

Answer: 2

node(1) [...] assign(6,r) assign(5,g) assign(4,r) assign(3,b) assign(2,b) assign(1,g)

Answer: 3

node(1) [...] assign(6,g) assign(5,b) assign(4,g) assign(3,r) assign(2,r) assign(1,b)

Answer: 4

node(1) [...] assign(6,r) assign(5,b) assign(4,r) assign(3,g) assign(2,g) assign(1,b)

Answer: 5

node(1) [...] assign(6,g) assign(5,r) assign(4,g) assign(3,b) assign(2,b) assign(1,r)

Answer: 6

node(1) [...] assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)

SATISFIABLE

Models : 6

Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 86 / 653

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 87 / 653

ASP solving process

A coloring

Answer: 6

node(1) [...] \

assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)

1 2

3

4

5

6

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 88 / 653

ASP solving process

A coloring

Answer: 6

node(1) [...] \

assign(6,b) assign(5,r) assign(4,b) assign(3,g) assign(2,g) assign(1,r)

1 2

3

4

5

6

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 88 / 653

Methodology

Outline

15 Elaboration tolerance

16 ASP solving process

17 Methodology

18 Case studies

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 89 / 653

Methodology

Basic methodology

Methodology

Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell

Logic program = Data + Generator + Tester (+ Optimizer)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 90 / 653

Methodology

Basic methodology

Methodology

Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell

Logic program = Data + Generator + Tester (+ Optimizer)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 90 / 653

Methodology

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).

Problem
instance

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 91 / 653

Methodology

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).

Data

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Problem
encoding

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 91 / 653

Methodology

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

color(r). color(b). color(g).

Data

{ assign(N,C) : color(C) } = 1 :- node(N).

:- edge(N,M), assign(N,C), assign(M,C).

 Generator

Tester

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 91 / 653

Case studies

Outline

15 Elaboration tolerance

16 ASP solving process

17 Methodology

18 Case studies

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 92 / 653

Case studies Satisfiability

Outline

15 Elaboration tolerance

16 ASP solving process

17 Methodology

18 Case studies
Satisfiability
Queens
Traveling salesperson
Reviewer Assignment
Planning

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 93 / 653

Case studies Satisfiability

Satisfiability testing

Problem Instance A propositional formula φ in CNF

Problem Class Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program

Generator Tester Stable models
{ a } ←
{ b } ←

← ∼a, b
← a,∼b

X1 = {a, b}
X2 = {}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 94 / 653

Case studies Satisfiability

Satisfiability testing

Problem Instance A propositional formula φ in CNF

Problem Class Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program

Generator Tester Stable models
{ a } ←
{ b } ←

← ∼a, b
← a,∼b

X1 = {a, b}
X2 = {}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 94 / 653

Case studies Satisfiability

Satisfiability testing

Problem Instance A propositional formula φ in CNF

Problem Class Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program

Generator Tester Stable models
{ a } ←
{ b } ←

← ∼a, b
← a,∼b

X1 = {a, b}
X2 = {}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 94 / 653

Case studies Satisfiability

Satisfiability testing

Problem Instance A propositional formula φ in CNF

Problem Class Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program

Generator Tester Stable models
{ a } ←
{ b } ←

← ∼a, b
← a,∼b

X1 = {a, b}
X2 = {}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 94 / 653

Case studies Satisfiability

Satisfiability testing

Problem Instance A propositional formula φ in CNF

Problem Class Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program

Generator Tester Stable models
{ a } ←
{ b } ←

← ∼a, b
← a,∼b

X1 = {a, b}
X2 = {}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 94 / 653

Case studies Queens

Outline

15 Elaboration tolerance

16 ASP solving process

17 Methodology

18 Case studies
Satisfiability
Queens
Traveling salesperson
Reviewer Assignment
Planning

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 95 / 653

Case studies Queens

The n-queens problem

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5

Place n queens on an n × n chess board

Queens must not attack one another

Q Q Q

Q Q

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 96 / 653

Case studies Queens

Defining the field

queens.lp

row(1..n).

col(1..n).

Create file queens.lp

Define the field

n rows
n columns

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 97 / 653

Case studies Queens

Defining the field

Running . . .

$ clingo queens.lp --const n=5

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5)

SATISFIABLE

Models : 1

Time : 0.000

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 98 / 653

Case studies Queens

Placing some queens

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I), col(J) }.

Guess a solution candidate

by placing some queens on the board

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 99 / 653

Case studies Queens

Placing some queens

Running . . .

$ clingo queens.lp --const n=5 3

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5)

Answer: 2

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) queen(1,1)

Answer: 3

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) queen(2,1)

SATISFIABLE

Models : 3+

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 100 / 653

Case studies Queens

Placing some queens

Answer: 1

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 101 / 653

Case studies Queens

Placing some queens

Answer: 2

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 L0Z0Z

1 2 3 4 5

Answer: 2

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(1,1)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 102 / 653

Case studies Queens

Placing some queens

Answer: 3

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 QZ0Z0
1 Z0Z0Z

1 2 3 4 5

Answer: 3

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(2,1)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 103 / 653

Case studies Queens

Placing n queens

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I), col(J) }.

:- { queen(I,J) } != n.

Place exactly n queens on the board

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 104 / 653

Case studies Queens

Placing n queens

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I), col(J) }.

:- not { queen(I,J) } = n.

Place exactly n queens on the board

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 104 / 653

Case studies Queens

Placing n queens

Running . . .

$ clingo queens.lp --const n=5 2

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(5,1) queen(4,1) queen(3,1) queen(2,1) queen(1,1)

Answer: 2

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(1,2) queen(4,1) queen(3,1) queen(2,1) queen(1,1)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 105 / 653

Case studies Queens

Placing n queens

Answer: 1

5 L0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 L0Z0Z

1 2 3 4 5

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(5,1) queen(4,1) queen(3,1) queen(2,1)

queen(1,1)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 106 / 653

Case studies Queens

Placing n queens

Answer: 2

5 Z0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 LQZ0Z

1 2 3 4 5

Answer: 2

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(1,2) queen(4,1) queen(3,1) queen(2,1)

queen(1,1)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 107 / 653

Case studies Queens

Horizontal and vertical attack

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I), col(J) }.

:- { queen(I,J) } != n.

:- queen(I,J), queen(I,J’), J != J’.

:- queen(I,J), queen(I’,J), I != I’.

Forbid horizontal attacks

Forbid vertical attacks

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 108 / 653

Case studies Queens

Horizontal and vertical attack

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I), col(J) }.

:- { queen(I,J) } != n.

:- queen(I,J), queen(I,J’), J != J’.

:- queen(I,J), queen(I’,J), I != I’.

Forbid horizontal attacks

Forbid vertical attacks

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 108 / 653

Case studies Queens

Horizontal and vertical attack

Running . . .

$ clingo queens.lp --const n=5

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(5,5) queen(4,4) queen(3,3) queen(2,2) queen(1,1)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 109 / 653

Case studies Queens

Horizontal and vertical attack

Answer: 1

5 Z0Z0L
4 0Z0L0
3 Z0L0Z
2 0L0Z0
1 L0Z0Z

1 2 3 4 5

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(5,5) queen(4,4) queen(3,3) queen(2,2)

queen(1,1)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 110 / 653

Case studies Queens

Diagonal attack

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I), col(J) }.

:- { queen(I,J) } != n.

:- queen(I,J), queen(I,J’), J != J’.

:- queen(I,J), queen(I’,J), I != I’.

:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I-J == I’-J’.

:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I+J == I’+J’.

Forbid diagonal attacks

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 111 / 653

Case studies Queens

Diagonal attack

Running . . .

$ clingo queens.lp --const n=5

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(4,5) queen(1,4) queen(3,3) queen(5,2) queen(2,1)

SATISFIABLE

Models : 1+

Time : 0.000

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 112 / 653

Case studies Queens

Diagonal attack

Answer: 1

5 ZQZ0Z
4 0Z0ZQ
3 Z0L0Z
2 QZ0Z0
1 Z0ZQZ

1 2 3 4 5

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(4,5) queen(1,4) queen(3,3) queen(5,2)

queen(2,1)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 113 / 653

Case studies Queens

Optimizing

queens-opt.lp

{ queen(I,1..n) } = 1 :- I = 1..n.

{ queen(1..n,J) } = 1 :- J = 1..n.

:- { queen(D-J,J) } > 1, D = 2..2*n.

:- { queen(D+J,J) } > 1, D = 1-n..n-1.

Encoding can be optimized

Much faster to solve

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 114 / 653

Case studies Queens

And sometimes it rocks
$ clingo -c n=5000 queens-opt-diag.lp --config=jumpy -q --stats=2

clingo version 4.1.0

Solving...

SATISFIABLE

Models : 1+

Time : 3758.143s (Solving: 1905.22s 1st Model: 1896.20s Unsat: 0.00s)

CPU Time : 3758.320s

Choices : 288594554

Conflicts : 3442 (Analyzed: 3442)

Restarts : 17 (Average: 202.47 Last: 3442)

Model-Level : 7594728.0

Problems : 1 (Average Length: 0.00 Splits: 0)

Lemmas : 3442 (Deleted: 0)

Binary : 0 (Ratio: 0.00%)

Ternary : 0 (Ratio: 0.00%)

Conflict : 3442 (Average Length: 229056.5 Ratio: 100.00%)

Loop : 0 (Average Length: 0.0 Ratio: 0.00%)

Other : 0 (Average Length: 0.0 Ratio: 0.00%)

Atoms : 75084857 (Original: 75069989 Auxiliary: 14868)

Rules : 100129956 (1: 50059992/100090100 2: 39990/29856 3: 10000/10000)

Bodies : 25090103

Equivalences : 125029999 (Atom=Atom: 50009999 Body=Body: 0 Other: 75020000)

Tight : Yes

Variables : 25024868 (Eliminated: 11781 Frozen: 25000000)

Constraints : 66664 (Binary: 35.6% Ternary: 0.0% Other: 64.4%)

Backjumps : 3442 (Average: 681.19 Max: 169512 Sum: 2344658)

Executed : 3442 (Average: 681.19 Max: 169512 Sum: 2344658 Ratio: 100.00%)

Bounded : 0 (Average: 0.00 Max: 0 Sum: 0 Ratio: 0.00%)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 115 / 653

Case studies Queens

And sometimes it rocks
$ clingo -c n=5000 queens-opt-diag.lp --config=jumpy -q --stats=2

clingo version 4.1.0

Solving...

SATISFIABLE

Models : 1+

Time : 3758.143s (Solving: 1905.22s 1st Model: 1896.20s Unsat: 0.00s)

CPU Time : 3758.320s

Choices : 288594554

Conflicts : 3442 (Analyzed: 3442)

Restarts : 17 (Average: 202.47 Last: 3442)

Model-Level : 7594728.0

Problems : 1 (Average Length: 0.00 Splits: 0)

Lemmas : 3442 (Deleted: 0)

Binary : 0 (Ratio: 0.00%)

Ternary : 0 (Ratio: 0.00%)

Conflict : 3442 (Average Length: 229056.5 Ratio: 100.00%)

Loop : 0 (Average Length: 0.0 Ratio: 0.00%)

Other : 0 (Average Length: 0.0 Ratio: 0.00%)

Atoms : 75084857 (Original: 75069989 Auxiliary: 14868)

Rules : 100129956 (1: 50059992/100090100 2: 39990/29856 3: 10000/10000)

Bodies : 25090103

Equivalences : 125029999 (Atom=Atom: 50009999 Body=Body: 0 Other: 75020000)

Tight : Yes

Variables : 25024868 (Eliminated: 11781 Frozen: 25000000)

Constraints : 66664 (Binary: 35.6% Ternary: 0.0% Other: 64.4%)

Backjumps : 3442 (Average: 681.19 Max: 169512 Sum: 2344658)

Executed : 3442 (Average: 681.19 Max: 169512 Sum: 2344658 Ratio: 100.00%)

Bounded : 0 (Average: 0.00 Max: 0 Sum: 0 Ratio: 0.00%)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 115 / 653

Case studies Traveling salesperson

Outline

15 Elaboration tolerance

16 ASP solving process

17 Methodology

18 Case studies
Satisfiability
Queens
Traveling salesperson
Reviewer Assignment
Planning

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 116 / 653

Case studies Traveling salesperson

The traveling salesperson problem (TSP)

Problem Instance A set of cities and distances among them,
or simply a weighted graph

Problem Class What is the shortest possible route visiting each city
once and returning to the city of origin?

Note

TSP extends the Hamiltonian cycle problem:
Is there a cycle in a graph visiting each node exactly once

TSP is relevant to applications in logistics, planning, chip design, and
the core of the vehicle routing problem

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 117 / 653

Case studies Traveling salesperson

The traveling salesperson problem (TSP)

Problem Instance A set of cities and distances among them,
or simply a weighted graph

Problem Class What is the shortest possible route visiting each city
once and returning to the city of origin?

Note

TSP extends the Hamiltonian cycle problem:
Is there a cycle in a graph visiting each node exactly once

TSP is relevant to applications in logistics, planning, chip design, and
the core of the vehicle routing problem

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 117 / 653

Case studies Traveling salesperson

Traveling salesperson

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).

edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

cost(1,2,2). cost(1,3,3). cost(1,4,1).

cost(2,4,2). cost(2,5,2). cost(2,6,4).

cost(3,1,3). cost(3,4,2). cost(3,5,2).

cost(4,1,1). cost(4,2,2).

cost(5,3,2). cost(5,4,2). cost(5,6,1).

cost(6,2,4). cost(6,3,3). cost(6,5,1).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 118 / 653

Case studies Traveling salesperson

Traveling salesperson

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).

edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

cost(1,2,2). cost(1,3,3). cost(1,4,1).

cost(2,4,2). cost(2,5,2). cost(2,6,4).

cost(3,1,3). cost(3,4,2). cost(3,5,2).

cost(4,1,1). cost(4,2,2).

cost(5,3,2). cost(5,4,2). cost(5,6,1).

cost(6,2,4). cost(6,3,3). cost(6,5,1).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 118 / 653

Case studies Traveling salesperson

Traveling salesperson

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).

edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

cost(1,2,2). cost(1,3,3). cost(1,4,1).

cost(2,4,2). cost(2,5,2). cost(2,6,4).

cost(3,1,3). cost(3,4,2). cost(3,5,2).

cost(4,1,1). cost(4,2,2).

cost(5,3,2). cost(5,4,2). cost(5,6,1).

cost(6,2,4). cost(6,3,3). cost(6,5,1).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 118 / 653

Case studies Traveling salesperson

Traveling salesperson

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).

edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

cost(1,2,2). cost(1,3,3). cost(1,4,1).

cost(2,4,2). cost(2,5,2). cost(2,6,4).

cost(3,1,3). cost(3,4,2). cost(3,5,2).

cost(4,1,1). cost(4,2,2).

cost(5,3,2). cost(5,4,2). cost(5,6,1).

cost(6,2,4). cost(6,3,3). cost(6,5,1).

edge(X,Y) :- cost(X,Y,_).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 118 / 653

Case studies Traveling salesperson

Traveling salesperson

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).

edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

cost(1,2,2). cost(1,3,3). cost(1,4,1).

cost(2,4,2). cost(2,5,2). cost(2,6,4).

cost(3,1,3). cost(3,4,2). cost(3,5,2).

cost(4,1,1). cost(4,2,2).

cost(5,3,2). cost(5,4,2). cost(5,6,1).

cost(6,2,4). cost(6,3,3). cost(6,5,1).

edge(X,Y) :- cost(X,Y,_).

node(X) :- cost(X,_,_). node(Y) :- cost(_,Y,_).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 118 / 653

Case studies Traveling salesperson

Traveling salesperson

{ cycle(X,Y) : edge(X,Y) } = 1 :- node(X).

{ cycle(X,Y) : edge(X,Y) } = 1 :- node(Y).

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 119 / 653

Case studies Traveling salesperson

Traveling salesperson

{ cycle(X,Y) : edge(X,Y) } = 1 :- node(X).

{ cycle(X,Y) : edge(X,Y) } = 1 :- node(Y).

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 119 / 653

Case studies Traveling salesperson

Traveling salesperson

{ cycle(X,Y) : edge(X,Y) } = 1 :- node(X).

{ cycle(X,Y) : edge(X,Y) } = 1 :- node(Y).

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 119 / 653

Case studies Traveling salesperson

Traveling salesperson

{ cycle(X,Y) : edge(X,Y) } = 1 :- node(X).

{ cycle(X,Y) : edge(X,Y) } = 1 :- node(Y).

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 119 / 653

Case studies Reviewer Assignment

Outline

15 Elaboration tolerance

16 ASP solving process

17 Methodology

18 Case studies
Satisfiability
Queens
Traveling salesperson
Reviewer Assignment
Planning

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 120 / 653

Case studies Reviewer Assignment

Reviewer Assignment

Problem Instance A set of papers and a set of reviewers along with
their first and second choices of papers and conflict of interests

Problem Class A nice assignment of three reviewers to each paper

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 121 / 653

Case studies Reviewer Assignment

Reviewer Assignment

Problem Instance A set of papers and a set of reviewers along with
their first and second choices of papers and conflict of interests

Problem Class A “nice” assignment of three reviewers to each paper

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 121 / 653

Case studies Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

paper(p1). reviewer(r1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

paper(p2). reviewer(r2). classA(r2,p3). classB(r2,p4). coi(r2,p6).

[...]

{ assigned(P,R) : reviewer(R) } = 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 122 / 653

Case studies Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

paper(p1). reviewer(r1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

paper(p2). reviewer(r2). classA(r2,p3). classB(r2,p4). coi(r2,p6).

[...]

{ assigned(P,R) : reviewer(R) } = 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 122 / 653

Case studies Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

paper(p1). reviewer(r1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

paper(p2). reviewer(r2). classA(r2,p3). classB(r2,p4). coi(r2,p6).

[...]

{ assigned(P,R) : reviewer(R) } = 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 122 / 653

Case studies Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

paper(p1). reviewer(r1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

paper(p2). reviewer(r2). classA(r2,p3). classB(r2,p4). coi(r2,p6).

[...]

{ assigned(P,R) : reviewer(R) } = 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 122 / 653

Case studies Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

paper(p1). reviewer(r1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

paper(p2). reviewer(r2). classA(r2,p3). classB(r2,p4). coi(r2,p6).

[...]

{ assigned(P,R) : reviewer(R) } = 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 122 / 653

Case studies Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

[...]

#count { P,R : assigned(P,R) : reviewer(R) } = 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 <= #count { P,R : assigned(P,R), paper(P) } <= 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 <= #count { P,R : assignedB(P,R), paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 123 / 653

Case studies Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

[...]

#count { P,R : assigned(P,R) : reviewer(R) } = 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 <= #count { P,R : assigned(P,R), paper(P) } <= 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 <= #count { P,R : assignedB(P,R), paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 123 / 653

Case studies Planning

Outline

15 Elaboration tolerance

16 ASP solving process

17 Methodology

18 Case studies
Satisfiability
Queens
Traveling salesperson
Reviewer Assignment
Planning

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 124 / 653

Case studies Planning

Simplified STRIPS1 Planning

Problem Instance
set of fluents
initial and goal state
set of actions, consisting of pre- and postconditions
number k of allowed actions

Problem Class Find a plan, that is, a sequence of k actions leading
from the initial state to the goal state

Example
fluents {p, q, r}
initial state {p}
goal state {r}
actions a = ({p}, {q,¬p}) and b = ({q}, {r ,¬q})
length 2

plan 〈a, b〉

1Stanford Research Institute Problem Solver, 1971
Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 125 / 653

Case studies Planning

Simplified STRIPS1 Planning

Problem Instance
set of fluents
initial and goal state
set of actions, consisting of pre- and postconditions
number k of allowed actions

Problem Class Find a plan, that is, a sequence of k actions leading
from the initial state to the goal state

Example
fluents {p, q, r}
initial state {p}
goal state {r}
actions a = ({p}, {q,¬p}) and b = ({q}, {r ,¬q})
length 2

plan 〈a, b〉

1Stanford Research Institute Problem Solver, 1971
Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 125 / 653

Case studies Planning

Simplified STRIPS1 Planning

Problem Instance
set of fluents
initial and goal state
set of actions, consisting of pre- and postconditions
number k of allowed actions

Problem Class Find a plan, that is, a sequence of k actions leading
from the initial state to the goal state

Example
fluents {p, q, r}
initial state {p}
goal state {r}
actions a = ({p}, {q,¬p}) and b = ({q}, {r ,¬q})
length 2

plan 〈a, b〉

1Stanford Research Institute Problem Solver, 1971
Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 125 / 653

Case studies Planning

Simplified STRIPS1 Planning

Problem Instance
set of fluents
initial and goal state
set of actions, consisting of pre- and postconditions
number k of allowed actions

Problem Class Find a plan, that is, a sequence of k actions leading
from the initial state to the goal state

Example
fluents {p, q, r}
initial state {p}
goal state {r}
actions a = ({p}, {q,¬p}) and b = ({q}, {r ,¬q})
length 2

plan 〈a, b〉

1Stanford Research Institute Problem Solver, 1971
Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 125 / 653

Case studies Planning

Simplistic STRIPS Planning

time(1..k).

fluent(p). action(a). action(b). init(p).

fluent(q). pre(a,p). pre(b,q).

fluent(r). add(a,q). add(b,r). query(r).

del(a,p). del(b,q).

holds(P,0) :- init(P).

{ occ(A,T) : action(A) } = 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).

:- query(F), not holds(F,k).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 126 / 653

Case studies Planning

Simplistic STRIPS Planning

time(1..k).

fluent(p). action(a). action(b). init(p).

fluent(q). pre(a,p). pre(b,q).

fluent(r). add(a,q). add(b,r). query(r).

del(a,p). del(b,q).

holds(P,0) :- init(P).

{ occ(A,T) : action(A) } = 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).

:- query(F), not holds(F,k).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 126 / 653

Case studies Planning

Simplistic STRIPS Planning

time(1..k).

fluent(p). action(a). action(b). init(p).

fluent(q). pre(a,p). pre(b,q).

fluent(r). add(a,q). add(b,r). query(r).

del(a,p). del(b,q).

holds(P,0) :- init(P).

{ occ(A,T) : action(A) } = 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).

:- query(F), not holds(F,k).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 126 / 653

Case studies Planning

Simplistic STRIPS Planning

time(1..k).

fluent(p). action(a). action(b). init(p).

fluent(q). pre(a,p). pre(b,q).

fluent(r). add(a,q). add(b,r). query(r).

del(a,p). del(b,q).

holds(P,0) :- init(P).

{ occ(A,T) : action(A) } = 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).

:- query(F), not holds(F,k).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 126 / 653

Language: Overview

19 Motivation

20 Core language

21 Extended language

22 Intermediate formats

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 127 / 653

Motivation

Outline

19 Motivation

20 Core language

21 Extended language

22 Intermediate formats

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 128 / 653

Motivation

Basic language extensions

The expressiveness of a language can be enhanced by introducing
new constructs

To this end, we must address the following issues:

What is the syntax of the new language construct?
What is the semantics of the new language construct?
How to implement the new language construct?

A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation

This translation might also be used for implementing the language
extension

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 129 / 653

Motivation

Basic language extensions

The expressiveness of a language can be enhanced by introducing
new constructs

To this end, we must address the following issues:

What is the syntax of the new language construct?
What is the semantics of the new language construct?
How to implement the new language construct?

A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation

This translation might also be used for implementing the language
extension

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 129 / 653

Motivation

Basic language extensions

The expressiveness of a language can be enhanced by introducing
new constructs

To this end, we must address the following issues:

What is the syntax of the new language construct?
What is the semantics of the new language construct?
How to implement the new language construct?

A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation

This translation might also be used for implementing the language
extension

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 129 / 653

Core language

Outline

19 Motivation

20 Core language

21 Extended language

22 Intermediate formats

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 130 / 653

Core language Integrity constraint

Outline

19 Motivation

20 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

21 Extended language
Conditional literal
Optimization statement

22 Intermediate formats
smodels format
aspif format

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 131 / 653

Core language Integrity constraint

Integrity constraint

Idea Eliminate unwanted solution candidates

Syntax An integrity constraint is of the form

← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n

Example

:- edge(3,7), color(3,red), color(7,red).

Example programs

{ a← ∼b, b ← ∼a }
{ a← ∼b, b ← ∼a } ∪ { ← a }
{ a← ∼b, b ← ∼a } ∪ { ← ∼a }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 132 / 653

Core language Integrity constraint

Integrity constraint

Idea Eliminate unwanted solution candidates

Syntax An integrity constraint is of the form

← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n

Example

:- edge(3,7), color(3,red), color(7,red).

Example programs

{ a← ∼b, b ← ∼a }
{ a← ∼b, b ← ∼a } ∪ { ← a }
{ a← ∼b, b ← ∼a } ∪ { ← ∼a }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 132 / 653

Core language Integrity constraint

Integrity constraint

Idea Eliminate unwanted solution candidates

Syntax An integrity constraint is of the form

← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n

Example

:- edge(3,7), color(3,red), color(7,red).

Example programs

{ a← ∼b, b ← ∼a }
{ a← ∼b, b ← ∼a } ∪ { ← a }
{ a← ∼b, b ← ∼a } ∪ { ← ∼a }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 132 / 653

Core language Integrity constraint

Embedding in normal rules

An integrity constraint of form

← a1, . . . , am,∼am+1, . . . ,∼an

can be translated into the normal rule

x ← a1, . . . , am,∼am+1, . . . ,∼an,∼x

where x is a new symbol

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 133 / 653

Core language Integrity constraint

Embedding in normal rules

An integrity constraint of form

← a1, . . . , am,∼am+1, . . . ,∼an

can be translated into the normal rule

x ← a1, . . . , am,∼am+1, . . . ,∼an,∼x

where x is a new symbol

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 133 / 653

Core language Choice rule

Outline

19 Motivation

20 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

21 Extended language
Conditional literal
Optimization statement

22 Intermediate formats
smodels format
aspif format

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 134 / 653

Core language Choice rule

Choice rule

Idea Choices over subsets of literals

Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

Example

{ buy(pizza);buy(wine);buy(corn) } :- at(grocery).

Example program

{ {a} ← b, b ← }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 135 / 653

Core language Choice rule

Choice rule

Idea Choices over subsets of literals

Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

Example

{ buy(pizza);buy(wine);buy(corn) } :- at(grocery).

Example program

{ {a} ← b, b ← }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 135 / 653

Core language Choice rule

Choice rule

Idea Choices over subsets of literals

Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

Example

{ buy(pizza);buy(wine);buy(corn) } :- at(grocery).

Example program

{ {a} ← b, b ← }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 135 / 653

Core language Choice rule

Choice rule

Idea Choices over subsets of literals

Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

Example

{ buy(pizza);buy(wine);buy(corn) } :- at(grocery).

Example program

{ {a} ← b, b ← }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 135 / 653

Core language Choice rule

Embedding in normal rules

A choice rule of form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

can be translated into 2m + 1 normal rules

b ← am+1, . . . , an,∼an+1, . . . ,∼ao
a1 ← b,∼a′1 . . . am ← b,∼a′m
a′1 ← ∼a1 . . . a′m ← ∼am

by introducing new atoms b, a′1, . . . , a
′
m

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 136 / 653

Core language Choice rule

Embedding in normal rules

A choice rule of form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

can be translated into 2m + 1 normal rules

b ← am+1, . . . , an,∼an+1, . . . ,∼ao
a1 ← b,∼a′1 . . . am ← b,∼a′m
a′1 ← ∼a1 . . . a′m ← ∼am

by introducing new atoms b, a′1, . . . , a
′
m

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 136 / 653

Core language Choice rule

Embedding in normal rules

A choice rule of form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

can be translated into 2m + 1 normal rules

b ← am+1, . . . , an,∼an+1, . . . ,∼ao
a1 ← b,∼a′1 . . . am ← b,∼a′m
a′1 ← ∼a1 . . . a′m ← ∼am

by introducing new atoms b, a′1, . . . , a
′
m

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 136 / 653

Core language Cardinality rule

Outline

19 Motivation

20 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

21 Extended language
Conditional literal
Optimization statement

22 Intermediate formats
smodels format
aspif format

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 137 / 653

Core language Cardinality rule

Cardinality rule

Idea Control (lower) cardinality of subsets of literals
Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }
where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer (acting as a lower bound on the body)

Informal meaning The head atom belongs to the stable model,
if at least l positive/negative body literals are in/excluded in the
stable model

Example

pass(c42) :- 2 { pass(a1); pass(a2); pass(a3) }.

Example program

{ a← 1 {b, c}, b ← }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 138 / 653

Core language Cardinality rule

Cardinality rule

Idea Control (lower) cardinality of subsets of literals
Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }
where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer (acting as a lower bound on the body)

Informal meaning The head atom belongs to the stable model,
if at least l positive/negative body literals are in/excluded in the
stable model

Example

pass(c42) :- 2 { pass(a1); pass(a2); pass(a3) }.

Example program

{ a← 1 {b, c}, b ← }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 138 / 653

Core language Cardinality rule

Cardinality rule

Idea Control (lower) cardinality of subsets of literals
Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }
where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer (acting as a lower bound on the body)

Informal meaning The head atom belongs to the stable model,
if at least l positive/negative body literals are in/excluded in the
stable model

Example

pass(c42) :- 2 { pass(a1); pass(a2); pass(a3) }.

Example program

{ a← 1 {b, c}, b ← }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 138 / 653

Core language Cardinality rule

Cardinality rule

Idea Control (lower) cardinality of subsets of literals
Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }
where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer (acting as a lower bound on the body)

Informal meaning The head atom belongs to the stable model,
if at least l positive/negative body literals are in/excluded in the
stable model

Example

pass(c42) :- 2 { pass(a1); pass(a2); pass(a3) }.

Example program

{ a← 1 {b, c}, b ← }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 138 / 653

Core language Cardinality rule

Embedding in normal rules

A cardinality rule of form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

is translated into the normal rule a0 ← ctr(1, l) and

The atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 139 / 653

Core language Cardinality rule

Embedding in normal rules

A cardinality rule of form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

is translated into the normal rule a0 ← ctr(1, l) and

The atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 139 / 653

Core language Cardinality rule

Embedding in normal rules

A cardinality rule of form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

is translated into the normal rule a0 ← ctr(1, l) and

The atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 139 / 653

Core language Cardinality rule

Embedding in normal rules

A cardinality rule of form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

is translated into the normal rule a0 ← ctr(1, l) and

for 0 ≤ k ≤ l the rules

ctr(i , k+1) ← ctr(i + 1, k), ai
ctr(i , k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j , k+1) ← ctr(j + 1, k),∼aj
ctr(j , k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

The atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 139 / 653

Core language Cardinality rule

Embedding in normal rules

A cardinality rule of form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

is translated into the normal rule a0 ← ctr(1, l) and

for 0 ≤ k ≤ l the rules

ctr(i , k+1) ← ctr(i + 1, k), ai
ctr(i , k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j , k+1) ← ctr(j + 1, k),∼aj
ctr(j , k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

The atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 139 / 653

Core language Cardinality rule

Embedding in normal rules

A cardinality rule of form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

is translated into the normal rule a0 ← ctr(1, l) and

for 0 ≤ k ≤ l the rules

ctr(i , k+1) ← ctr(i + 1, k), ai
ctr(i , k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j , k+1) ← ctr(j + 1, k),∼aj
ctr(j , k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

The atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 139 / 653

Core language Cardinality rule

Embedding in normal rules

A cardinality rule of form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

is translated into the normal rule a0 ← ctr(1, l) and

for 0 ≤ k ≤ l the rules

ctr(i , k+1) ← ctr(i + 1, k), ai
ctr(i , k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j , k+1) ← ctr(j + 1, k),∼aj
ctr(j , k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

The atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 139 / 653

Core language Cardinality rule

An example

Program {a←, c ← 1 {a, b}} has the stable model {a, c}
Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}
Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 140 / 653

Core language Cardinality rule

An example

Program {a←, c ← 1 {a, b}} has the stable model {a, c}
Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}
Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 140 / 653

Core language Cardinality rule

. . . and vice versa

A normal rule

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

can be represented by the cardinality rule

a0 ← n {a1, . . . , am,∼am+1, . . . ,∼an}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 141 / 653

Core language Cardinality rule

Cardinality rules with upper bounds

A rule of the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an } u (1)

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

stands for

a0 ← b,∼c
b ← l { a1, . . . , am,∼am+1, . . . ,∼an }
c ← u+1 { a1, . . . , am,∼am+1, . . . ,∼an }

where b and c are new symbols

Note The expression in the body of the cardinality rule (1) is referred
to as a cardinality constraint with lower and upper bound l and u

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 142 / 653

Core language Cardinality rule

Cardinality rules with upper bounds

A rule of the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an } u (1)

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

stands for

a0 ← b,∼c
b ← l { a1, . . . , am,∼am+1, . . . ,∼an }
c ← u+1 { a1, . . . , am,∼am+1, . . . ,∼an }

where b and c are new symbols

Note The expression in the body of the cardinality rule (1) is referred
to as a cardinality constraint with lower and upper bound l and u

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 142 / 653

Core language Cardinality rule

Cardinality rules with upper bounds

A rule of the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an } u (1)

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

stands for

a0 ← b,∼c
b ← l { a1, . . . , am,∼am+1, . . . ,∼an }
c ← u+1 { a1, . . . , am,∼am+1, . . . ,∼an }

where b and c are new symbols

Note The expression in the body of the cardinality rule (1) is referred
to as a cardinality constraint with lower and upper bound l and u

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 142 / 653

Core language Cardinality rule

Cardinality constraints

Syntax A cardinality constraint is of the form

l { a1, . . . , am,∼am+1, . . . ,∼an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

Informal meaning A cardinality constraint is satisfied by a stable
model X , if the number of its contained literals satisfied by X is
between l and u (inclusive)

In other words, if

l ≤ | ({a1, . . . , am} ∩ X) ∪ ({am+1, . . . , an} \ X) | ≤ u

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 143 / 653

Core language Cardinality rule

Cardinality constraints

Syntax A cardinality constraint is of the form

l { a1, . . . , am,∼am+1, . . . ,∼an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

Informal meaning A cardinality constraint is satisfied by a stable
model X , if the number of its contained literals satisfied by X is
between l and u (inclusive)

In other words, if

l ≤ | ({a1, . . . , am} ∩ X) ∪ ({am+1, . . . , an} \ X) | ≤ u

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 143 / 653

Core language Cardinality rule

Cardinality constraints

Syntax A cardinality constraint is of the form

l { a1, . . . , am,∼am+1, . . . ,∼an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

Informal meaning A cardinality constraint is satisfied by a stable
model X , if the number of its contained literals satisfied by X is
between l and u (inclusive)

In other words, if

l ≤ | ({a1, . . . , am} ∩ X) ∪ ({am+1, . . . , an} \ X) | ≤ u

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 143 / 653

Core language Cardinality rule

Cardinality constraints as heads

A rule of the form

l {a1, . . . , am,∼am+1, . . . ,∼an} u ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p;
l and u are non-negative integers stands for

b ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap
{a1, . . . , am} ← b

c ← l {a1, . . . , am, ,∼am+1, . . . ,∼an} u
← b,∼c

where b and c are new symbols

Example

1{color(v42,red);color(v42,green);color(v42,blue)}1.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 144 / 653

Core language Cardinality rule

Cardinality constraints as heads

A rule of the form

l {a1, . . . , am,∼am+1, . . . ,∼an} u ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p;
l and u are non-negative integers stands for

b ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap
{a1, . . . , am} ← b

c ← l {a1, . . . , am, ,∼am+1, . . . ,∼an} u
← b,∼c

where b and c are new symbols

Example

1{color(v42,red);color(v42,green);color(v42,blue)}1.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 144 / 653

Core language Cardinality rule

Cardinality constraints as heads

A rule of the form

l {a1, . . . , am,∼am+1, . . . ,∼an} u ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p;
l and u are non-negative integers stands for

b ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap
{a1, . . . , am} ← b

c ← l {a1, . . . , am, ,∼am+1, . . . ,∼an} u
← b,∼c

where b and c are new symbols

Example

1{color(v42,red);color(v42,green);color(v42,blue)}1.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 144 / 653

Core language Cardinality rule

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

where each li Si ui is a cardinality constraint for 0 ≤ i ≤ n

stands for

a ← b1, . . . , bn,∼c1, . . . ,∼cn

S0
+ ← a
← a,∼b0 bi ← li Si
← a, c0 ci ← ui+1 Si

where a, bi , ci are new symbols (and ·+ is defined as on Slide 44)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 145 / 653

Core language Cardinality rule

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

where each li Si ui is a cardinality constraint for 0 ≤ i ≤ n

stands for

a ← b1, . . . , bn,∼c1, . . . ,∼cn

S0
+ ← a
← a,∼b0 bi ← li Si
← a, c0 ci ← ui+1 Si

where a, bi , ci are new symbols (and ·+ is defined as on Slide 44)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 145 / 653

Core language Cardinality rule

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

where each li Si ui is a cardinality constraint for 0 ≤ i ≤ n

stands for

a ← b1, . . . , bn,∼c1, . . . ,∼cn

S0
+ ← a
← a,∼b0 bi ← li Si
← a, c0 ci ← ui+1 Si

where a, bi , ci are new symbols (and ·+ is defined as on Slide 44)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 145 / 653

Core language Cardinality rule

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

where each li Si ui is a cardinality constraint for 0 ≤ i ≤ n

stands for

a ← b1, . . . , bn,∼c1, . . . ,∼cn

S0
+ ← a
← a,∼b0 bi ← li Si
← a, c0 ci ← ui+1 Si

where a, bi , ci are new symbols (and ·+ is defined as on Slide 44)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 145 / 653

Core language Cardinality rule

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

where each li Si ui is a cardinality constraint for 0 ≤ i ≤ n

stands for

a ← b1, . . . , bn,∼c1, . . . ,∼cn

S0
+ ← a
← a,∼b0 bi ← li Si
← a, c0 ci ← ui+1 Si

where a, bi , ci are new symbols (and ·+ is defined as on Slide 44)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 145 / 653

Core language Cardinality rule

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

where each li Si ui is a cardinality constraint for 0 ≤ i ≤ n

stands for

a ← b1, . . . , bn,∼c1, . . . ,∼cn

S0
+ ← a
← a,∼b0 bi ← li Si
← a, c0 ci ← ui+1 Si

where a, bi , ci are new symbols (and ·+ is defined as on Slide 44)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 145 / 653

Core language Weight rule

Outline

19 Motivation

20 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

21 Extended language
Conditional literal
Optimization statement

22 Intermediate formats
smodels format
aspif format

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 146 / 653

Core language Weight rule

Weight rule

Idea Bound (lower) sum of subsets of literal weights

Syntax A weighted literal w : k associates the weight w with literal k

Syntax A weight rule is the form

a0 ← l { w1 : a1, . . . ,wm : am,wm+1 : ∼am+1, . . . ,wn : ∼an }

where 0 ≤ m ≤ n and each ai is an atom;
l and wi are integers for 1 ≤ i ≤ n

Informal meaning The head atom belongs to the stable model,
if the sum of weights associated with positive/negative body literals
in/excluded in the stable model is at least l

Note A cardinality rule is a weight rule where wi = 1 for 0 ≤ i ≤ n

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 147 / 653

Core language Weight rule

Weight rule

Idea Bound (lower) sum of subsets of literal weights

Syntax A weighted literal w : k associates the weight w with literal k

Syntax A weight rule is the form

a0 ← l { w1 : a1, . . . ,wm : am,wm+1 : ∼am+1, . . . ,wn : ∼an }

where 0 ≤ m ≤ n and each ai is an atom;
l and wi are integers for 1 ≤ i ≤ n

Informal meaning The head atom belongs to the stable model,
if the sum of weights associated with positive/negative body literals
in/excluded in the stable model is at least l

Note A cardinality rule is a weight rule where wi = 1 for 0 ≤ i ≤ n

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 147 / 653

Core language Weight rule

Weight rule

Idea Bound (lower) sum of subsets of literal weights

Syntax A weighted literal w : k associates the weight w with literal k

Syntax A weight rule is the form

a0 ← l { w1 : a1, . . . ,wm : am,wm+1 : ∼am+1, . . . ,wn : ∼an }

where 0 ≤ m ≤ n and each ai is an atom;
l and wi are integers for 1 ≤ i ≤ n

Informal meaning The head atom belongs to the stable model,
if the sum of weights associated with positive/negative body literals
in/excluded in the stable model is at least l

Note A cardinality rule is a weight rule where wi = 1 for 0 ≤ i ≤ n

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 147 / 653

Core language Weight rule

Weight constraints

Syntax A weight constraint is of the form

l { w1 : a1, . . . ,wm : am,wm+1 : ∼am+1, . . . ,wn : ∼an } u

where 0 ≤ m ≤ n and each ai is an atom;
l , u and wi are integers for 1 ≤ i ≤ n

Meaning A weight constraint is satisfied by a stable model X , if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

Note (Cardinality and) weight constraints amount to constraints on
(count and) sum aggregate functions

Example

5 { 4:course(db); 6:course(ai); 3:course(xml) } 10

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 148 / 653

Core language Weight rule

Weight constraints

Syntax A weight constraint is of the form

l { w1 : a1, . . . ,wm : am,wm+1 : ∼am+1, . . . ,wn : ∼an } u

where 0 ≤ m ≤ n and each ai is an atom;
l , u and wi are integers for 1 ≤ i ≤ n

Meaning A weight constraint is satisfied by a stable model X , if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

Note (Cardinality and) weight constraints amount to constraints on
(count and) sum aggregate functions

Example

5 { 4:course(db); 6:course(ai); 3:course(xml) } 10

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 148 / 653

Core language Weight rule

Weight constraints

Syntax A weight constraint is of the form

l { w1 : a1, . . . ,wm : am,wm+1 : ∼am+1, . . . ,wn : ∼an } u

where 0 ≤ m ≤ n and each ai is an atom;
l , u and wi are integers for 1 ≤ i ≤ n

Meaning A weight constraint is satisfied by a stable model X , if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

Note (Cardinality and) weight constraints amount to constraints on
(count and) sum aggregate functions

Example

5 { 4:course(db); 6:course(ai); 3:course(xml) } 10

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 148 / 653

Core language Weight rule

Weight constraints

Syntax A weight constraint is of the form

l { w1 : a1, . . . ,wm : am,wm+1 : ∼am+1, . . . ,wn : ∼an } u

where 0 ≤ m ≤ n and each ai is an atom;
l , u and wi are integers for 1 ≤ i ≤ n

Meaning A weight constraint is satisfied by a stable model X , if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

Note (Cardinality and) weight constraints amount to constraints on
(count and) sum aggregate functions

Example

5 { 4:course(db); 6:course(ai); 3:course(xml) } 10

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 148 / 653

Extended language

Outline

19 Motivation

20 Core language

21 Extended language

22 Intermediate formats

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 149 / 653

Extended language Conditional literal

Outline

19 Motivation

20 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

21 Extended language
Conditional literal
Optimization statement

22 Intermediate formats
smodels format
aspif format

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 150 / 653

Extended language Conditional literal

Conditional literals

Syntax A conditional literal is of the form

l : l1, . . . , ln

where l and li are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {l | l1, . . . , ln}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1..3). q(2).’

r(X) : p(X), not q(X) :- r(X) : p(X), not q(X); 1 { r(X) : p(X), not q(X) }.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1); r(3) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 151 / 653

Extended language Conditional literal

Conditional literals

Syntax A conditional literal is of the form

l : l1, . . . , ln

where l and li are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {l | l1, . . . , ln}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1..3). q(2).’

r(X) : p(X), not q(X) :- r(X) : p(X), not q(X); 1 { r(X) : p(X), not q(X) }.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1); r(3) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 151 / 653

Extended language Conditional literal

Conditional literals

Syntax A conditional literal is of the form

l : l1, . . . , ln

where l and li are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {l | l1, . . . , ln}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1..3). q(2).’

r(X) : p(X), not q(X) :- r(X) : p(X), not q(X); 1 { r(X) : p(X), not q(X) }.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1); r(3) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 151 / 653

Extended language Conditional literal

Conditional literals

Syntax A conditional literal is of the form

l : l1, . . . , ln

where l and li are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {l | l1, . . . , ln}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1..3). q(2).’

r(X) : p(X), not q(X) :- r(X) : p(X), not q(X); 1 { r(X) : p(X), not q(X) }.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1); r(3) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 151 / 653

Extended language Conditional literal

Conditional literals

Syntax A conditional literal is of the form

l : l1, . . . , ln

where l and li are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {l | l1, . . . , ln}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1..3). q(2).’

r(X) : p(X), not q(X) :- r(X) : p(X), not q(X); 1 { r(X) : p(X), not q(X) }.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1); r(3) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 151 / 653

Extended language Conditional literal

Conditional literals

Syntax A conditional literal is of the form

l : l1, . . . , ln

where l and li are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {l | l1, . . . , ln}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1..3). q(2).’

r(X) : p(X), not q(X) :- r(X) : p(X), not q(X); 1 { r(X) : p(X), not q(X) }.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1); r(3) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 151 / 653

Extended language Conditional literal

Conditional literals

Syntax A conditional literal is of the form

l : l1, . . . , ln

where l and li are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {l | l1, . . . , ln}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1..3). q(2).’

r(X) : p(X), not q(X) :- r(X) : p(X), not q(X); 1 { r(X) : p(X), not q(X) }.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 { r(1); r(3) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 151 / 653

Extended language Optimization statement

Outline

19 Motivation

20 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

21 Extended language
Conditional literal
Optimization statement

22 Intermediate formats
smodels format
aspif format

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 152 / 653

Extended language Optimization statement

Optimization statement

Idea Express (multiple) cost functions subject to minimization
and/or maximization

Syntax A minimize statement is of the form

minimize { w1@p1 : l11 , . . . , lm1 ; . . . ;wn@pn : l1n , . . . , lmn }.

where each lji is a literal; and wi and pi are integers for 1 ≤ i ≤ n

Priority levels, pi , allow for representing lexicographically ordered
minimization objectives

Meaning A minimize statement is a directive that instructs the ASP
solver to compute optimal stable models by minimizing a weighted
sum of elements

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 153 / 653

Extended language Optimization statement

Optimization statement

Idea Express (multiple) cost functions subject to minimization
and/or maximization

Syntax A minimize statement is of the form

minimize { w1@p1 : l11 , . . . , lm1 ; . . . ;wn@pn : l1n , . . . , lmn }.

where each lji is a literal; and wi and pi are integers for 1 ≤ i ≤ n

Priority levels, pi , allow for representing lexicographically ordered
minimization objectives

Meaning A minimize statement is a directive that instructs the ASP
solver to compute optimal stable models by minimizing a weighted
sum of elements

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 153 / 653

Extended language Optimization statement

Optimization statement

Idea Express (multiple) cost functions subject to minimization
and/or maximization

Syntax A minimize statement is of the form

minimize { w1@p1 : l11 , . . . , lm1 ; . . . ;wn@pn : l1n , . . . , lmn }.

where each lji is a literal; and wi and pi are integers for 1 ≤ i ≤ n

Priority levels, pi , allow for representing lexicographically ordered
minimization objectives

Meaning A minimize statement is a directive that instructs the ASP
solver to compute optimal stable models by minimizing a weighted
sum of elements

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 153 / 653

Extended language Optimization statement

Optimization statement

A maximize statement of the form

maximize { w1@p1 : l1, . . . ,wn@pn : ln }

stands for minimize { −w1@p1 : l1, . . . ,−wn@pn : ln }

Example When configuring a computer, we may want to maximize
hard disk capacity, while minimizing price

#maximize { 250@1:hd(1); 500@1:hd(2); 750@1:hd(3); 1000@1:hd(4) }.

#minimize { 30@2:hd(1); 40@2:hd(2); 60@2:hd(3); 80@2:hd(4) }.

The priority levels indicate that (minimizing) price is more important
than (maximizing) capacity

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 154 / 653

Extended language Optimization statement

Optimization statement

A maximize statement of the form

maximize { w1@p1 : l1, . . . ,wn@pn : ln }

stands for minimize { −w1@p1 : l1, . . . ,−wn@pn : ln }

Example When configuring a computer, we may want to maximize
hard disk capacity, while minimizing price

#maximize { 250@1:hd(1); 500@1:hd(2); 750@1:hd(3); 1000@1:hd(4) }.

#minimize { 30@2:hd(1); 40@2:hd(2); 60@2:hd(3); 80@2:hd(4) }.

The priority levels indicate that (minimizing) price is more important
than (maximizing) capacity

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 154 / 653

Extended language Optimization statement

Optimization statement

A maximize statement of the form

maximize { w1@p1 : l1, . . . ,wn@pn : ln }

stands for minimize { −w1@p1 : l1, . . . ,−wn@pn : ln }

Example When configuring a computer, we may want to maximize
hard disk capacity, while minimizing price

#maximize { P@1:hd(I,P,C) }.

#minimize { C@2:hd(I,P,C) }.

The priority levels indicate that (minimizing) price is more important
than (maximizing) capacity

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 154 / 653

Extended language Optimization statement

Weak constraints

Weak constraints are an alternative to minimize statements

Syntax � l1, . . . , ln [w@l]

where each li is a literal for 1 ≤ i ≤ n; and w and p are integers

Example

:~ hd(1). [30@2]

:~ hd(2). [40@2]

:~ hd(3). [60@2]

:~ hd(4). [80@2]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 155 / 653

Extended language Optimization statement

Weak constraints

Weak constraints are an alternative to minimize statements

Syntax � l1, . . . , ln [w@l]

where each li is a literal for 1 ≤ i ≤ n; and w and p are integers

Example

:~ hd(1). [30@2]

:~ hd(2). [40@2]

:~ hd(3). [60@2]

:~ hd(4). [80@2]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 155 / 653

Extended language Optimization statement

Weak constraints

Weak constraints are an alternative to minimize statements

Syntax � l1, . . . , ln [w@l]

where each li is a literal for 1 ≤ i ≤ n; and w and p are integers

Example

:~ hd(1). [30@2]

:~ hd(2). [40@2]

:~ hd(3). [60@2]

:~ hd(4). [80@2]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 155 / 653

Extended language Optimization statement

Weak constraints

Weak constraints are an alternative to minimize statements

Syntax � l1, . . . , ln [w@l]

where each li is a literal for 1 ≤ i ≤ n; and w and p are integers

Example

:~ hd(I,P,C). [C@2]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 155 / 653

Intermediate formats

Outline

19 Motivation

20 Core language

21 Extended language

22 Intermediate formats

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 156 / 653

Intermediate formats smodels format

Outline

19 Motivation

20 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

21 Extended language
Conditional literal
Optimization statement

22 Intermediate formats
smodels format
aspif format

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 157 / 653

Intermediate formats smodels format

smodels format

The smodels format consists of

normal rules
choice rules
cardinality rules
weight rules
minimization statements

Block-oriented format

Note Minimization statements are not part of the logic program

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 158 / 653

Intermediate formats smodels format

smodels format

The smodels format consists of

normal rules
choice rules
cardinality rules
weight rules
minimization statements

Block-oriented format

Note Minimization statements are not part of the logic program

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 158 / 653

Intermediate formats smodels format

smodels format in detail

Type/Format

Normal rule Slide 158
1 ι(a0) n n−m ι(am+1) . . . ι(an) ι(a1) . . . ι(am)

Cardinality rule Slide 400
2 ι(a0) n n−m l ι(am+1) . . . ι(an) ι(a1) . . . ι(am)

Choice rule Slide 392
3 m ι(a1) . . . ι(am) o−m o−n ι(an+1) . . . ι(ao) ι(am+1) . . . ι(an)

Weight rule Slide 430
5 ι(a0) l n n−m ι(am+1) . . . ι(an) ι(a1) . . . ι(am) wm+1 . . . wn w1 . . . wm

Minimize statement2Slide 447
6 0 n n−m ι(am+1) . . . ι(an) ι(a1) . . . ι(am) wm+1 . . . wn w1 . . . wm

Disjunctive rule Slide 502
8 m ι(a1) . . . ι(am) o−m o−n ι(an+1) . . . ι(ao) ι(am+1) . . . ι(an)

The function ι represents a mapping of atoms to numbers

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 159 / 653

Intermediate formats aspif format

Outline

19 Motivation

20 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

21 Extended language
Conditional literal
Optimization statement

22 Intermediate formats
smodels format
aspif format

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 160 / 653

Intermediate formats aspif format

aspif format

The aspif format consists of

rule statements
minimize statements
projection statements
output statements
external statements
assumption statements
heuristic statements
edge statements
theory terms and atoms
comments

Line-oriented format

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 161 / 653

Intermediate formats aspif format

Rule statements

Rule statements have the form 1 H B

Head H has form h m a1 . . . am
h ∈ {0, 1} determines whether
the head is a disjunction or choice,
m ≥ 0 is the number of head elements, and
each ai is a positive literal

Heads are disjunctions or choices, including the special case of
singular disjunctions for representing normal rules.

Body B has one of two forms
normal bodies have form 0 n l1 . . . ln

n ≥ 0 is the length of the rule body, and
each li is a literal.

weight bodies have form 1 l n l1 w1 . . . ln wn

l is a positive integer to denote the lower bound,
n ≥ 0 is the number of literals in the rule body, and
each li and wi are a literal and a positive integer

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 162 / 653

Intermediate formats aspif format

Rule statements

Rule statements have the form 1 H B

Head H has form h m a1 . . . am
h ∈ {0, 1} determines whether
the head is a disjunction or choice,
m ≥ 0 is the number of head elements, and
each ai is a positive literal

Heads are disjunctions or choices, including the special case of
singular disjunctions for representing normal rules.

Body B has one of two forms
normal bodies have form 0 n l1 . . . ln

n ≥ 0 is the length of the rule body, and
each li is a literal.

weight bodies have form 1 l n l1 w1 . . . ln wn

l is a positive integer to denote the lower bound,
n ≥ 0 is the number of literals in the rule body, and
each li and wi are a literal and a positive integer

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 162 / 653

Intermediate formats aspif format

Rule statements

Rule statements have the form 1 H B

Head H has form h m a1 . . . am
h ∈ {0, 1} determines whether
the head is a disjunction or choice,
m ≥ 0 is the number of head elements, and
each ai is a positive literal

Heads are disjunctions or choices, including the special case of
singular disjunctions for representing normal rules.

Body B has one of two forms
normal bodies have form 0 n l1 . . . ln

n ≥ 0 is the length of the rule body, and
each li is a literal.

weight bodies have form 1 l n l1 w1 . . . ln wn

l is a positive integer to denote the lower bound,
n ≥ 0 is the number of literals in the rule body, and
each li and wi are a literal and a positive integer

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 162 / 653

Intermediate formats aspif format

Example

{a}.

b :- a.

c :- not a.

asp 1 0 0

1 1 1 1 0 0

1 0 1 2 0 1 1

1 0 1 3 0 1 -1

4 1 a 1 1

4 1 b 1 2

4 1 c 1 3

0

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 163 / 653

Intermediate formats aspif format

Example

{a}.

b :- a.

c :- not a.

asp 1 0 0

1 1 1 1 0 0

1 0 1 2 0 1 1

1 0 1 3 0 1 -1

4 1 a 1 1

4 1 b 1 2

4 1 c 1 3

0

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 163 / 653

Language Extensions: Overview

23 Two kinds of negation

24 Disjunctive logic programs

25 Propositional theories

26 Aggregates

27 Gringo language

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 164 / 653

Two kinds of negation

Outline

23 Two kinds of negation

24 Disjunctive logic programs

25 Propositional theories

26 Aggregates

27 Gringo language

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 165 / 653

Two kinds of negation

Motivation

Classical versus default negation

Symbol ¬ and ∼
Idea

¬a ≈ ¬a ∈ X
∼a ≈ a /∈ X

Example

cross ← ¬train
cross ← ∼train

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 166 / 653

Two kinds of negation

Motivation

Classical versus default negation

Symbol ¬ and ∼
Idea

¬a ≈ ¬a ∈ X
∼a ≈ a /∈ X

Example

cross ← ¬train
cross ← ∼train

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 166 / 653

Two kinds of negation

Motivation

Classical versus default negation

Symbol ¬ and ∼
Idea

¬a ≈ ¬a ∈ X
∼a ≈ a /∈ X

Example

cross ← ¬train
cross ← ∼train

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 166 / 653

Two kinds of negation

Classical negation

We consider logic programs in negation normal form

That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that
A ∩A = ∅
Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 167 / 653

Two kinds of negation

Classical negation

We consider logic programs in negation normal form

That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that
A ∩A = ∅
Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 167 / 653

Two kinds of negation

Classical negation

We consider logic programs in negation normal form

That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that
A ∩A = ∅
Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 167 / 653

Two kinds of negation

Classical negation

We consider logic programs in negation normal form

That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that
A ∩A = ∅
Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 167 / 653

Two kinds of negation

An example

The program

P = {a← ∼b, b ← ∼a} ∪ {c ← b, ¬c ← b}

induces

P¬ =

a ← a,¬a a ← b,¬b a ← c ,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c
b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c ,¬c
c ← a,¬a c ← b,¬b c ← c ,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c ,¬c

The stable models of P are given by the ones of P ∪ P¬, viz {a}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 168 / 653

Two kinds of negation

An example

The program

P = {a← ∼b, b ← ∼a} ∪ {c ← b, ¬c ← b}

induces

P¬ =

a ← a,¬a a ← b,¬b a ← c ,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c
b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c ,¬c
c ← a,¬a c ← b,¬b c ← c ,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c ,¬c

The stable models of P are given by the ones of P ∪ P¬, viz {a}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 168 / 653

Two kinds of negation

An example

The program

P = {a← ∼b, b ← ∼a} ∪ {c ← b, ¬c ← b}

induces

P¬ =

a ← a,¬a a ← b,¬b a ← c ,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c
b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c ,¬c
c ← a,¬a c ← b,¬b c ← c ,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c ,¬c

The stable models of P are given by the ones of P ∪ P¬, viz {a}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 168 / 653

Two kinds of negation

Properties

The only inconsistent stable “model” is X = A ∪A
Strictly speaking, an inconsistemt set like A ∪A is not a model

For a logic program P over A ∪A, exactly one of the following two
cases applies:

1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 169 / 653

Two kinds of negation

Properties

The only inconsistent stable “model” is X = A ∪A
Strictly speaking, an inconsistemt set like A ∪A is not a model

For a logic program P over A ∪A, exactly one of the following two
cases applies:

1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 169 / 653

Two kinds of negation

Properties

The only inconsistent stable “model” is X = A ∪A
Strictly speaking, an inconsistemt set like A ∪A is not a model

For a logic program P over A ∪A, exactly one of the following two
cases applies:

1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 169 / 653

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 170 / 653

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 170 / 653

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 170 / 653

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 170 / 653

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 170 / 653

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 170 / 653

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 170 / 653

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 170 / 653

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 170 / 653

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 170 / 653

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 170 / 653

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 170 / 653

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 170 / 653

Two kinds of negation

Default negation in rule heads

We consider logic programs with default negation in rule heads

Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that
A ∩ Ã = ∅
Given a program P over A, consider the program

P̃ = {r ∈ P | h(r) 6= ∼a}
∪ {← B(r) ∪ {∼ã} | r ∈ P and h(r) = ∼a}
∪ {ã← ∼a | r ∈ P and h(r) = ∼a}

A set X of atoms is a stable model of a program P (with default
negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 171 / 653

Two kinds of negation

Default negation in rule heads

We consider logic programs with default negation in rule heads

Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that
A ∩ Ã = ∅
Given a program P over A, consider the program

P̃ = {r ∈ P | h(r) 6= ∼a}
∪ {← B(r) ∪ {∼ã} | r ∈ P and h(r) = ∼a}
∪ {ã← ∼a | r ∈ P and h(r) = ∼a}

A set X of atoms is a stable model of a program P (with default
negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 171 / 653

Two kinds of negation

Default negation in rule heads

We consider logic programs with default negation in rule heads

Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that
A ∩ Ã = ∅
Given a program P over A, consider the program

P̃ = {r ∈ P | h(r) 6= ∼a}
∪ {← B(r) ∪ {∼ã} | r ∈ P and h(r) = ∼a}
∪ {ã← ∼a | r ∈ P and h(r) = ∼a}

A set X of atoms is a stable model of a program P (with default
negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 171 / 653

Two kinds of negation

Default negation in rule heads

We consider logic programs with default negation in rule heads

Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that
A ∩ Ã = ∅
Given a program P over A, consider the program

P̃ = {r ∈ P | h(r) 6= ∼a}
∪ {← B(r) ∪ {∼ã} | r ∈ P and h(r) = ∼a}
∪ {ã← ∼a | r ∈ P and h(r) = ∼a}

A set X of atoms is a stable model of a program P (with default
negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 171 / 653

Disjunctive logic programs

Outline

23 Two kinds of negation

24 Disjunctive logic programs

25 Propositional theories

26 Aggregates

27 Gringo language

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 172 / 653

Disjunctive logic programs

Disjunctive logic programs

A disjunctive rule, r , is of the form

a1 ; . . . ; am ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

A disjunctive logic program is a finite set of disjunctive rules

Notation

H(r) = {a1, . . . , am}
B(r) = {am+1, . . . , an,∼an+1, . . . ,∼ao}

B(r)+ = {am+1, . . . , an}
B(r)− = {an+1, . . . , ao}
A(P) =

⋃
r∈P

(
H(r) ∪ B(r)+ ∪ B(r)−

)
B(P) = {B(r) | r ∈ P}

A program is called positive if B(r)− = ∅ for all its rules

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 173 / 653

Disjunctive logic programs

Disjunctive logic programs

A disjunctive rule, r , is of the form

a1 ; . . . ; am ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

A disjunctive logic program is a finite set of disjunctive rules

Notation

H(r) = {a1, . . . , am}
B(r) = {am+1, . . . , an,∼an+1, . . . ,∼ao}

B(r)+ = {am+1, . . . , an}
B(r)− = {an+1, . . . , ao}
A(P) =

⋃
r∈P

(
H(r) ∪ B(r)+ ∪ B(r)−

)
B(P) = {B(r) | r ∈ P}

A program is called positive if B(r)− = ∅ for all its rules

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 173 / 653

Disjunctive logic programs

Disjunctive logic programs

A disjunctive rule, r , is of the form

a1 ; . . . ; am ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

A disjunctive logic program is a finite set of disjunctive rules

Notation

H(r) = {a1, . . . , am}
B(r) = {am+1, . . . , an,∼an+1, . . . ,∼ao}

B(r)+ = {am+1, . . . , an}
B(r)− = {an+1, . . . , ao}
A(P) =

⋃
r∈P

(
H(r) ∪ B(r)+ ∪ B(r)−

)
B(P) = {B(r) | r ∈ P}

A program is called positive if B(r)− = ∅ for all its rules

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 173 / 653

Disjunctive logic programs

Stable models

Positive programs

A set X of atoms is closed under a positive program P iff
for any r ∈ P, H(r) ∩ X 6= ∅ whenever B(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The set of all ⊆-minimal sets of atoms being closed under a positive
program P is denoted by min⊆(P)

min⊆(P) corresponds to the ⊆-minimal models of P (ditto)

Disjunctive programs

The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {H(r)← B(r)+ | r ∈ P and B(r)− ∩ X = ∅}

A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 174 / 653

Disjunctive logic programs

Stable models

Positive programs

A set X of atoms is closed under a positive program P iff
for any r ∈ P, H(r) ∩ X 6= ∅ whenever B(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The set of all ⊆-minimal sets of atoms being closed under a positive
program P is denoted by min⊆(P)

min⊆(P) corresponds to the ⊆-minimal models of P (ditto)

Disjunctive programs

The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {H(r)← B(r)+ | r ∈ P and B(r)− ∩ X = ∅}

A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 174 / 653

Disjunctive logic programs

Stable models

Positive programs

A set X of atoms is closed under a positive program P iff
for any r ∈ P, H(r) ∩ X 6= ∅ whenever B(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The set of all ⊆-minimal sets of atoms being closed under a positive
program P is denoted by min⊆(P)

min⊆(P) corresponds to the ⊆-minimal models of P (ditto)

Disjunctive programs

The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {H(r)← B(r)+ | r ∈ P and B(r)− ∩ X = ∅}

A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 174 / 653

Disjunctive logic programs

A “positive” example

P =

{
a ←
b ; c ← a

}

The sets {a, b}, {a, c}, and {a, b, c} are closed under P

We have min⊆(P) = {{a, b}, {a, c}}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 175 / 653

Disjunctive logic programs

A “positive” example

P =

{
a ←
b ; c ← a

}

The sets {a, b}, {a, c}, and {a, b, c} are closed under P

We have min⊆(P) = {{a, b}, {a, c}}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 175 / 653

Disjunctive logic programs

A “positive” example

P =

{
a ←
b ; c ← a

}

The sets {a, b}, {a, c}, and {a, b, c} are closed under P

We have min⊆(P) = {{a, b}, {a, c}}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 175 / 653

Disjunctive logic programs

Graph coloring (reloaded)

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).

edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

assign(X,r) ; assign(X,b) ; assign(X,g) :- node(X).

:- edge(X,Y), assign(X,C), assign(Y,C).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 176 / 653

Disjunctive logic programs

Graph coloring (reloaded)

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).

edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

color(r). color(b). color(g).

assign(X,C) : color(C) :- node(X).

:- edge(X,Y), assign(X,C), assign(Y,C).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 176 / 653

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 177 / 653

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 177 / 653

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 177 / 653

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 177 / 653

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 177 / 653

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 177 / 653

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 177 / 653

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 177 / 653

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 177 / 653

Disjunctive logic programs

Some properties

A disjunctive logic program may have zero, one, or multiple stable
models

If X is a stable model of a disjunctive logic program P,
then X is a model of P (seen as a formula)

If X and Y are stable models of a disjunctive logic program P,
then X 6⊂ Y

If a ∈ X for some stable model X of a disjunctive logic program P,
then there is a rule r ∈ P such that
B(r)+ ⊆ X , B(r)− ∩ X = ∅, and H(r) ∩ X = {a}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 178 / 653

Disjunctive logic programs

Some properties

A disjunctive logic program may have zero, one, or multiple stable
models

If X is a stable model of a disjunctive logic program P,
then X is a model of P (seen as a formula)

If X and Y are stable models of a disjunctive logic program P,
then X 6⊂ Y

If a ∈ X for some stable model X of a disjunctive logic program P,
then there is a rule r ∈ P such that
B(r)+ ⊆ X , B(r)− ∩ X = ∅, and H(r) ∩ X = {a}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 178 / 653

Disjunctive logic programs

An example with variables

P =

{
a(1, 2) ←
b(X) ; c(Y) ← a(X ,Y),∼c(Y)

}

ground(P) =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)

For every stable model X of P, we have

a(1, 2) ∈ X and

{a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 179 / 653

Disjunctive logic programs

An example with variables

P =

{
a(1, 2) ←
b(X) ; c(Y) ← a(X ,Y),∼c(Y)

}

ground(P) =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)

For every stable model X of P, we have

a(1, 2) ∈ X and

{a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 179 / 653

Disjunctive logic programs

An example with variables

P =

{
a(1, 2) ←
b(X) ; c(Y) ← a(X ,Y),∼c(Y)

}

ground(P) =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)

For every stable model X of P, we have

a(1, 2) ∈ X and

{a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 179 / 653

Disjunctive logic programs

An example with variables

ground(P)X =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)

Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 180 / 653

Disjunctive logic programs

An example with variables

ground(P)X =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)

Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 180 / 653

Disjunctive logic programs

An example with variables

ground(P)X =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)

Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 180 / 653

Disjunctive logic programs

An example with variables

ground(P)X =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)

Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 180 / 653

Disjunctive logic programs

An example with variables

ground(P)X =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)

Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 180 / 653

Disjunctive logic programs

An example with variables

ground(P)X =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)

Consider X = {a(1, 2), c(2)}
We get min⊆(ground(P)X) = { {a(1, 2)} }
X is no stable model of P because X 6∈ min⊆(ground(P)X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 181 / 653

Disjunctive logic programs

An example with variables

ground(P)X =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)

Consider X = {a(1, 2), c(2)}
We get min⊆(ground(P)X) = { {a(1, 2)} }
X is no stable model of P because X 6∈ min⊆(ground(P)X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 181 / 653

Disjunctive logic programs

An example with variables

ground(P)X =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)

Consider X = {a(1, 2), c(2)}
We get min⊆(ground(P)X) = { {a(1, 2)} }
X is no stable model of P because X 6∈ min⊆(ground(P)X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 181 / 653

Disjunctive logic programs

An example with variables

ground(P)X =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)

Consider X = {a(1, 2), c(2)}
We get min⊆(ground(P)X) = { {a(1, 2)} }
X is no stable model of P because X 6∈ min⊆(ground(P)X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 181 / 653

Disjunctive logic programs

An example with variables

ground(P)X =

a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)

Consider X = {a(1, 2), c(2)}
We get min⊆(ground(P)X) = { {a(1, 2)} }
X is no stable model of P because X 6∈ min⊆(ground(P)X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 181 / 653

Disjunctive logic programs

Default negation in rule heads

Consider disjunctive rules of the form

a1 ; . . . ; am ;∼am+1 ; . . . ;∼an ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

Given a program P over A, consider the program

P̃ = {H(r)+ ← B(r) ∪ {∼ã | a ∈ H(r)−} | r ∈ P}
∪ {ã← ∼a | r ∈ P and a ∈ H(r)−}

A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 182 / 653

Disjunctive logic programs

Default negation in rule heads

Consider disjunctive rules of the form

a1 ; . . . ; am ;∼am+1 ; . . . ;∼an ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

Given a program P over A, consider the program

P̃ = {H(r)+ ← B(r) ∪ {∼ã | a ∈ H(r)−} | r ∈ P}
∪ {ã← ∼a | r ∈ P and a ∈ H(r)−}

A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 182 / 653

Disjunctive logic programs

Default negation in rule heads

Consider disjunctive rules of the form

a1 ; . . . ; am ;∼am+1 ; . . . ;∼an ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

Given a program P over A, consider the program

P̃ = {H(r)+ ← B(r) ∪ {∼ã | a ∈ H(r)−} | r ∈ P}
∪ {ã← ∼a | r ∈ P and a ∈ H(r)−}

A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 182 / 653

Disjunctive logic programs

An example

The program

P = {a ; ∼a←}

yields

P̃ = {a← ∼ã} ∪ {ã← ∼a}

P̃ has two stable models, {a} and {ã}
This induces the stable models {a} and ∅ of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 183 / 653

Disjunctive logic programs

An example

The program

P = {a ; ∼a←}

yields

P̃ = {a← ∼ã} ∪ {ã← ∼a}

P̃ has two stable models, {a} and {ã}
This induces the stable models {a} and ∅ of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 183 / 653

Disjunctive logic programs

An example

The program

P = {a ; ∼a←}

yields

P̃ = {a← ∼ã} ∪ {ã← ∼a}

P̃ has two stable models, {a} and {ã}
This induces the stable models {a} and ∅ of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 183 / 653

Disjunctive logic programs

An example

The program

P = {a ; ∼a←}

yields

P̃ = {a← ∼ã} ∪ {ã← ∼a}

P̃ has two stable models, {a} and {ã}
This induces the stable models {a} and ∅ of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 183 / 653

Propositional theories

Outline

23 Two kinds of negation

24 Disjunctive logic programs

25 Propositional theories

26 Aggregates

27 Gringo language

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 184 / 653

Propositional theories

Propositional theories

Formulas are formed from

atoms in A
⊥

using

conjunction (∧)
disjunction (∨)
implication (→)

Notation

> = (⊥ → ⊥)

∼φ = (φ→ ⊥)

A propositional theory is a finite set of formulas

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 185 / 653

Propositional theories

Propositional theories

Formulas are formed from

atoms in A
⊥

using

conjunction (∧)
disjunction (∨)
implication (→)

Notation

> = (⊥ → ⊥)

∼φ = (φ→ ⊥)

A propositional theory is a finite set of formulas

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 185 / 653

Propositional theories

Propositional theories

Formulas are formed from

atoms in A
⊥

using

conjunction (∧)
disjunction (∨)
implication (→)

Notation

> = (⊥ → ⊥)

∼φ = (φ→ ⊥)

A propositional theory is a finite set of formulas

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 185 / 653

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is defined
recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ ϕX) if X |= φ and φ = (ψ ◦ ϕ) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 186 / 653

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is defined
recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ ϕX) if X |= φ and φ = (ψ ◦ ϕ) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 186 / 653

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is defined
recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ ϕX) if X |= φ and φ = (ψ ◦ ϕ) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 186 / 653

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is defined
recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ ϕX) if X |= φ and φ = (ψ ◦ ϕ) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 186 / 653

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is defined
recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ ϕX) if X |= φ and φ = (ψ ◦ ϕ) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 186 / 653

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is defined
recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ ϕX) if X |= φ and φ = (ψ ◦ ϕ) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 186 / 653

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is defined
recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ ϕX) if X |= φ and φ = (ψ ◦ ϕ) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 186 / 653

Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX)

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 187 / 653

Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX)

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 187 / 653

Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX)

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 187 / 653

Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX)

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 187 / 653

Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX)

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 187 / 653

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 188 / 653

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 188 / 653

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 188 / 653

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 188 / 653

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 188 / 653

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 188 / 653

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 188 / 653

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 188 / 653

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 188 / 653

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 188 / 653

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 188 / 653

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 188 / 653

Propositional theories

Relationship to logic programs

The translation, τ [(φ← ψ)], of a rule (φ← ψ) is defined as follows:

τ [(φ← ψ)] = (τ [ψ]→ τ [φ])
τ [⊥] = ⊥
τ [>] = >
τ [φ] = φ if φ is an atom
τ [∼φ] = ∼τ [φ]
τ [(φ, ψ)] = (τ [φ] ∧ τ [ψ])
τ [(φ;ψ)] = (τ [φ] ∨ τ [ψ])

The translation of a logic program P is τ [P] = {τ [r] | r ∈ P}

Given a logic program P and a set X of atoms,
X is a stable model of P iff X is a stable model of τ [P]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 189 / 653

Propositional theories

Relationship to logic programs

The translation, τ [(φ← ψ)], of a rule (φ← ψ) is defined as follows:

τ [(φ← ψ)] = (τ [ψ]→ τ [φ])
τ [⊥] = ⊥
τ [>] = >
τ [φ] = φ if φ is an atom
τ [∼φ] = ∼τ [φ]
τ [(φ, ψ)] = (τ [φ] ∧ τ [ψ])
τ [(φ;ψ)] = (τ [φ] ∨ τ [ψ])

The translation of a logic program P is τ [P] = {τ [r] | r ∈ P}

Given a logic program P and a set X of atoms,
X is a stable model of P iff X is a stable model of τ [P]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 189 / 653

Propositional theories

Relationship to logic programs

The translation, τ [(φ← ψ)], of a rule (φ← ψ) is defined as follows:

τ [(φ← ψ)] = (τ [ψ]→ τ [φ])
τ [⊥] = ⊥
τ [>] = >
τ [φ] = φ if φ is an atom
τ [∼φ] = ∼τ [φ]
τ [(φ, ψ)] = (τ [φ] ∧ τ [ψ])
τ [(φ;ψ)] = (τ [φ] ∨ τ [ψ])

The translation of a logic program P is τ [P] = {τ [r] | r ∈ P}

Given a logic program P and a set X of atoms,
X is a stable model of P iff X is a stable model of τ [P]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 189 / 653

Propositional theories

Relationship to logic programs

The translation, τ [(φ← ψ)], of a rule (φ← ψ) is defined as follows:

τ [(φ← ψ)] = (τ [ψ]→ τ [φ])
τ [⊥] = ⊥
τ [>] = >
τ [φ] = φ if φ is an atom
τ [∼φ] = ∼τ [φ]
τ [(φ, ψ)] = (τ [φ] ∧ τ [ψ])
τ [(φ;ψ)] = (τ [φ] ∨ τ [ψ])

The translation of a logic program P is τ [P] = {τ [r] | r ∈ P}

Given a logic program P and a set X of atoms,
X is a stable model of P iff X is a stable model of τ [P]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 189 / 653

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 190 / 653

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 190 / 653

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 190 / 653

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 190 / 653

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 190 / 653

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 190 / 653

Aggregates

Outline

23 Two kinds of negation

24 Disjunctive logic programs

25 Propositional theories

26 Aggregates

27 Gringo language

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 191 / 653

Aggregates

Motivation

Aggregates provide a general way to obtain a single value from a
collection of input values

Popular aggregate (functions)

average
count
maximum
minimum
sum

Cardinality and weight constraints rely on count and sum aggregates

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 192 / 653

Aggregates

Syntax

An aggregate has the form:

α {w1 : a1, . . . ,wm : am,wm+1 : ∼am+1, . . . ,wn : ∼an} ≺ k

where for 1 ≤ i ≤ n

α stands for a function mapping multisets over Z to Z ∪ {+∞,−∞}
≺ stands for a relation between Z ∪ {+∞,−∞} and Z
k ∈ Z
ai are atoms and
wi are integers

Example sum {30 : hd(a), . . . , 50 : hd(m)} ≤ 300

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 193 / 653

Aggregates

Semantics

A (positive) aggregate α {w1 : a1, . . . ,wn : an} ≺ k
can be represented by the formula:

∧
I⊆{1,...,n},α{wi |i∈I}6≺k

∧
i∈I

ai →
∨
i∈I

ai

where I = {1, . . . , n} \ I and 6≺ is the complement of ≺
Then, α {w1 : a1, . . . ,wn : an} ≺ k is true in X iff
the above formula is true in X

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 194 / 653

Aggregates

Example

Consider sum{1 : p, 1 : q} 6= 1
That is, a1 = p, a2 = q and w1 = 1, w2 = 1

Calculemus!

I {wi | i ∈ I}
∑
{wi | i ∈ I}

∑
{wi | i ∈ I} = 1

∅ {} 0 false
{1} {1} 1 true
{2} {1} 1 true
{1, 2} {1, 1} 2 false

We get (p → q) ∧ (q → p)

Analogously, we obtain (p ∨ q) ∧ ¬(p ∧ q) for sum{1 : p, 1 : q} = 1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 195 / 653

Aggregates

Example

Consider sum{1 : p, 1 : q} 6= 1
That is, a1 = p, a2 = q and w1 = 1, w2 = 1

Calculemus!

I {wi | i ∈ I}
∑
{wi | i ∈ I}

∑
{wi | i ∈ I} = 1

∅ {} 0 false
{1} {1} 1 true
{2} {1} 1 true
{1, 2} {1, 1} 2 false

We get (p → q) ∧ (q → p)

Analogously, we obtain (p ∨ q) ∧ ¬(p ∧ q) for sum{1 : p, 1 : q} = 1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 195 / 653

Aggregates

Example

Consider sum{1 : p, 1 : q} 6= 1
That is, a1 = p, a2 = q and w1 = 1, w2 = 1

Calculemus!

I {wi | i ∈ I}
∑
{wi | i ∈ I}

∑
{wi | i ∈ I} = 1

∅ {} 0 false
{1} {1} 1 true
{2} {1} 1 true
{1, 2} {1, 1} 2 false

We get (p → q) ∧ (q → p)

Analogously, we obtain (p ∨ q) ∧ ¬(p ∧ q) for sum{1 : p, 1 : q} = 1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 195 / 653

Aggregates

Monotonicity

Monotone aggregates
For instance,

B(r)+

sum{1 : p, 1 : q} > 1 amounts to p ∧ q

We get a simpler characterization:
∧

I⊆{1,...,n},α{wi |i∈I}6≺k
∨

i∈I ai

Anti-monotone aggregates
For instance,

B(r)−

sum{1 : p, 1 : q} < 1 amounts to ¬p ∧ ¬q
We get a simpler characterization:

∧
I⊆{1,...,n},α{wi |i∈I}6≺k ¬

∧
i∈I ai

Non-monotone aggregates

For instance, sum{1 : p, 1 : q} 6= 1 is non-monotone.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 196 / 653

Aggregates

Monotonicity

Monotone aggregates
For instance,

B(r)+

sum{1 : p, 1 : q} > 1 amounts to p ∧ q

We get a simpler characterization:
∧

I⊆{1,...,n},α{wi |i∈I}6≺k
∨

i∈I ai

Anti-monotone aggregates
For instance,

B(r)−

sum{1 : p, 1 : q} < 1 amounts to ¬p ∧ ¬q
We get a simpler characterization:

∧
I⊆{1,...,n},α{wi |i∈I}6≺k ¬

∧
i∈I ai

Non-monotone aggregates

For instance, sum{1 : p, 1 : q} 6= 1 is non-monotone.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 196 / 653

Gringo language

Outline

23 Two kinds of negation

24 Disjunctive logic programs

25 Propositional theories

26 Aggregates

27 Gringo language

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 197 / 653

Gringo language

Gringo language

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

aspif formatgringo format

aspif format is a machine-oriented standard for ground programs

gringo format is a user-oriented language for (non-ground) programs
extending the ASP language standard ASP-Core-2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 198 / 653

Gringo language

Gringo language

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

aspif formatgringo format

aspif format is a machine-oriented standard for ground programs

gringo format is a user-oriented language for (non-ground) programs
extending the ASP language standard ASP-Core-2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 198 / 653

Gringo language

Gringo language

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

aspif formatgringo format

aspif format is a machine-oriented standard for ground programs

gringo format is a user-oriented language for (non-ground) programs
extending the ASP language standard ASP-Core-2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 198 / 653

Gringo language

Gringo language

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

aspif formatgringo format

aspif format is a machine-oriented standard for ground programs

gringo format is a user-oriented language for (non-ground) programs
extending the ASP language standard ASP-Core-2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 198 / 653

Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t are formed from
constant symbols, eg c, d, . . .
function symbols, eg f, g, . . .
numeric symbols, eg 1, 2, . . .
variable symbols, eg X, Y, . . . ,
parentheses (,)
tuple delimiters 〈, 〉 (omitted whenever possible)

Tuples t
Atoms a, ¬a
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t are formed from
constants, eg c, d, . . .
functions, eg f, g, . . .
numerics, eg 1, 2, . . .
variables, eg X, Y, . . . ,
parentheses (,)
tuple delimiters 〈, 〉

Tuples t
Atoms a, ¬a
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t are formed from
constants, eg c, d, . . .
functions, eg f, g, . . .
numerics, eg 1, 2, . . .
variables, eg X, Y, . . . ,
parentheses (,)
tuple delimiters 〈, 〉

eg f(3,c,Z), g(42, ,), or f((3,c),X)
Tuples t
Atoms a, ¬a
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t

Tuples t of terms

Atoms a, ¬a
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t

Tuples t
(Negated) Atoms a, ¬a are formed from

predicate symbols, eg p, q, . . .
parentheses (,)
tuples of terms

Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a are formed from

predicates, eg p, q, . . .
parentheses (,)
tuples of terms

Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a are formed from

predicates, eg p, q, . . .
parentheses (,)
tuples of terms

eg -p(f(3,c,Z),g(42, ,)) or q() written as q

Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a, ⊥, >
viz #false and #true

Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
eg p(a,X), ‘not p(a,X)’, ‘not not p(a,X)’

Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2 where

t1 and t2 are terms
≺ is a comparison symbol

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2 where

t1 and t2 are terms
≺ is a comparison symbol

eg 3<1 or f(42)=X

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t

Tuples t, L of literals

Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L where

l is a symbolic or arithmetic literal
L is a tuple of symbol or arithmetic literals

Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L where

l is a symbolic or arithmetic literal
L is a tuple of symbol or arithmetic literals
l : L is written as l whenever L is empty

Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L where

l is a symbolic or arithmetic literal
L is a tuple of symbol or arithmetic literals

eg ‘p(X,Y):q(X),r(Y)’ or p(42) or ‘#false:q’

Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2 where

α is an aggregate name
t1 : L1, . . . , tn : Ln are conditional literals
≺1 and ≺2 are comparison symbols
s1 and s2 are terms

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2 where

α is an aggregate name
t1 : L1, . . . , tn : Ln are conditional literals
≺1 and ≺2 are comparison symbols
s1 and s2 are terms
one (or both) of ‘s1 ≺1’ and ‘≺2 s2’ can be omitted

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2 where

α is an aggregate name
t1 : L1, . . . , tn : Ln are conditional literals
≺1 and ≺2 are comparison symbols
s1 and s2 are terms
omitting ≺1 or ≺2 defaults to ≤

Aggregate literals a, ∼a, ∼∼a
Literals are conditional or aggregate literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2 where

α is an aggregate name
t1 : L1, . . . , tn : Ln are conditional literals
≺1 and ≺2 are comparison symbols
s1 and s2 are terms

eg 10 <= #sum {6,C:course(C); 3,S:seminar(S)} <= 20

Aggregate literals a, ∼a, ∼∼a
Literals are conditional or aggregate literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2 where

α is an aggregate name
t1 : L1, . . . , tn : Ln are conditional literals
≺1 and ≺2 are comparison symbols
s1 and s2 are terms

eg 10 #sum {6,C:course(C); 3,S:seminar(S)} 20
Aggregate literals a, ∼a, ∼∼a
Literals are conditional or aggregate literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a where

a is an aggregate atom

Literals are conditional or aggregate literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a where

a is an aggregate atom

eg not 10 #sum {6,C:course(C); 3,S:seminar(S)} 20
Literals are conditional or aggregate literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals are conditional or aggregate literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals are conditional or aggregate literals

For a detailed account please consult the user’s guide!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 199 / 653

Gringo language

Rules

Rules are of the form

l1 ; . . . ; lm ← lm+1, . . . , ln (2)

where

li is a conditional literal for 1 ≤ i ≤ m and
li is a literal for m + 1 ≤ i ≤ n

Note Semicolons ‘;’ must be used in (2) instead of commas ‘,’
whenever some li is a (genuine) conditional literal for 1 ≤ i ≤ n

Example a(X) :- b(X) : c(X), d(X); e(x).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 200 / 653

Gringo language

Rules

Rules are of the form

l1 ; . . . ; lm ← lm+1, . . . , ln (2)

where

li is a conditional literal for 1 ≤ i ≤ m and
li is a literal for m + 1 ≤ i ≤ n

Note Semicolons ‘;’ must be used in (2) instead of commas ‘,’
whenever some li is a (genuine) conditional literal for 1 ≤ i ≤ n

Example a(X) :- b(X) : c(X), d(X); e(x).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 200 / 653

Gringo language

Rules

Rules are of the form

l1 ; . . . ; lm ← lm+1, . . . , ln (2)

where

li is a conditional literal for 1 ≤ i ≤ m and
li is a literal for m + 1 ≤ i ≤ n

Note Semicolons ‘;’ must be used in (2) instead of commas ‘,’
whenever some li is a (genuine) conditional literal for 1 ≤ i ≤ n

Example a(X) :- b(X) : c(X), d(X); e(x).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 200 / 653

Gringo language

Shortcuts

A rule of the form

s1 ≺1 α{t1 : l1 : L1; . . . ; tk : lk : Lk} ≺2 s2 ← lm+1, . . . , ln

where

α, ≺i , si , t j are as given above for i = 1, 2 and 1 ≤ j ≤ k
lj : Lj is a conditional literal for 1 ≤ j ≤ k
li is a literal for m + 1 ≤ i ≤ n (as in (2))

is a shorthand for the following k + 1 rules

{lj} ← lm+1, . . . , ln,Lj for 1 ≤ j ≤ k

← lm+1, . . . , ln,∼ s1 ≺1 α{t1 : l1,L1; . . . ; tk : lk ,Lk} ≺2 s2

Example 10 < #sum { C,X,Y : edge(X,Y) : cost(X,Y,C) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 201 / 653

Gringo language

Shortcuts

A rule of the form

s1 ≺1 α{t1 : l1 : L1; . . . ; tk : lk : Lk} ≺2 s2 ← lm+1, . . . , ln

where

α, ≺i , si , t j are as given above for i = 1, 2 and 1 ≤ j ≤ k
lj : Lj is a conditional literal for 1 ≤ j ≤ k
li is a literal for m + 1 ≤ i ≤ n (as in (2))

is a shorthand for the following k + 1 rules

{lj} ← lm+1, . . . , ln,Lj for 1 ≤ j ≤ k

← lm+1, . . . , ln,∼ s1 ≺1 α{t1 : l1,L1; . . . ; tk : lk ,Lk} ≺2 s2

Example 10 < #sum { C,X,Y : edge(X,Y) : cost(X,Y,C) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 201 / 653

Gringo language

Shortcuts

A rule of the form

s1 ≺1 α{t1 : l1 : L1; . . . ; tk : lk : Lk} ≺2 s2 ← lm+1, . . . , ln

where

α, ≺i , si , t j are as given above for i = 1, 2 and 1 ≤ j ≤ k
lj : Lj is a conditional literal for 1 ≤ j ≤ k
li is a literal for m + 1 ≤ i ≤ n (as in (2))

is a shorthand for the following k + 1 rules

{lj} ← lm+1, . . . , ln,Lj for 1 ≤ j ≤ k

← lm+1, . . . , ln,∼ s1 ≺1 α{t1 : l1,L1; . . . ; tk : lk ,Lk} ≺2 s2

Example 10 < #sum { C,X,Y : edge(X,Y) : cost(X,Y,C) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 201 / 653

Gringo language

Shortcuts

The expression

s1 {l1 : L1; . . . ; lk : Lk} s2

is a shortcut for

s1 ≤ count{t1 : l1 : L1; . . . ; tk : lk : Lk} ≤ s2

if it appears in the head of a rule and

s1 ≤ count{t1 : l1,L1; . . . ; tk : lk ,Lk} ≤ s2

if it appears in the body of a rule

where ti 6= tj whenever Li 6= Lj for i 6= j and 1 ≤ i , j ≤ k

Note one (or both) of s1 and s2 can be omitted

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 202 / 653

Gringo language

Shortcuts

The expression

s1 {l1 : L1; . . . ; lk : Lk} s2

is a shortcut for

s1 ≤ count{t1 : l1 : L1; . . . ; tk : lk : Lk} ≤ s2

if it appears in the head of a rule and

s1 ≤ count{t1 : l1,L1; . . . ; tk : lk ,Lk} ≤ s2

if it appears in the body of a rule

where ti 6= tj whenever Li 6= Lj for i 6= j and 1 ≤ i , j ≤ k

Note one (or both) of s1 and s2 can be omitted

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 202 / 653

Gringo language

Examples

{a; b}

$ gringo --text <(echo "{a;b}.")

#count{1,0,a:a;1,0,b:b}.

gringo generates two distinct term tuples 1,0,a and 1,0,b

1 = { q(X,Y): p(X), p(Y), X < Y; q(X,X): p(X) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 203 / 653

Gringo language

Examples

{a; b}

$ gringo --text <(echo "{a;b}.")

#count{1,0,a:a;1,0,b:b}.

gringo generates two distinct term tuples 1,0,a and 1,0,b

1 = { q(X,Y): p(X), p(Y), X < Y; q(X,X): p(X) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 203 / 653

Gringo language

Examples

{a; b}

$ gringo --text <(echo "{a;b}.")

#count{1,0,a:a;1,0,b:b}.

gringo generates two distinct term tuples 1,0,a and 1,0,b

1 = { q(X,Y): p(X), p(Y), X < Y; q(X,X): p(X) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 203 / 653

Gringo language

Examples

{a; b}

$ gringo --text <(echo "{a;b}.")

#count{1,0,a:a;1,0,b:b}.

gringo generates two distinct term tuples 1,0,a and 1,0,b

1 = { q(X,Y): p(X), p(Y), X < Y; q(X,X): p(X) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 203 / 653

Gringo language

Examples

{a; b}

$ gringo --text <(echo "{a;b}.")

#count{1,0,a:a;1,0,b:b}.

gringo generates two distinct term tuples 1,0,a and 1,0,b

1 = { q(X,Y): p(X), p(Y), X < Y; q(X,X): p(X) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 203 / 653

Gringo language

Weak constraints

Syntax A weak constraint is of the form

� l1, . . . , ln. [w@p, t1, . . . , tm]

where
l1, . . . , ln are literals
t1, . . . , tm, w , and p are terms

w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)

Example The weak constraint

� hd(I,P,C). [C@2,I]

amounts to the minimize statement

#minimize{ C@2,I : hd(I,P,C) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 204 / 653

Gringo language

Weak constraints

Syntax A weak constraint is of the form

� l1, . . . , ln. [w@p, t1, . . . , tm]

where
l1, . . . , ln are literals
t1, . . . , tm, w , and p are terms

w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)

Example The weak constraint

� hd(I,P,C). [C@2,I]

amounts to the minimize statement

#minimize{ C@2,I : hd(I,P,C) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 204 / 653

Gringo language

Weak constraints

Syntax A weak constraint is of the form

� l1, . . . , ln. [w@p, t1, . . . , tm]

where
l1, . . . , ln are literals
t1, . . . , tm, w , and p are terms

w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)

Example The weak constraint

� hd(I,P,C). [C@2,I]

amounts to the minimize statement

#minimize{ C@2,I : hd(I,P,C) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 204 / 653

Gringo language

Weak constraints

Syntax A weak constraint is of the form

� l1, . . . , ln. [w@p, t1, . . . , tm]

where
l1, . . . , ln are literals
t1, . . . , tm, w , and p are terms

w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)

Example The weak constraint

� hd(I,P,C). [C@2,I]

amounts to the minimize statement

#minimize{ C@2,I : hd(I,P,C) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 204 / 653

Gringo language

Some more directives

Output

#show. #show p/n. #show t : l1, . . . , ln.

Projection

#project p/n. #project a : l1, . . . , ln.

Heuristics

#heuristic a : l1, . . . , ln. [k@p,m]

Acyclicity

#edge (u, v) : l1, . . . , ln.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 205 / 653

Gringo language

Some more directives

Output

#show. #show p/n. #show t : l1, . . . , ln.

Projection

#project p/n. #project a : l1, . . . , ln.

Heuristics

#heuristic a : l1, . . . , ln. [k@p,m]

Acyclicity

#edge (u, v) : l1, . . . , ln.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 205 / 653

Gringo language

Some more directives

Output

#show. #show p/n. #show t : l1, . . . , ln.

Projection

#project p/n. #project a : l1, . . . , ln.

Heuristics

#heuristic a : l1, . . . , ln. [k@p,m]

Acyclicity

#edge (u, v) : l1, . . . , ln.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 205 / 653

Gringo language

Some more directives

Output

#show. #show p/n. #show t : l1, . . . , ln.

Projection

#project p/n. #project a : l1, . . . , ln.

Heuristics

#heuristic a : l1, . . . , ln. [k@p,m]

Acyclicity

#edge (u, v) : l1, . . . , ln.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 205 / 653

Gringo language

gringo 3 versus 4/5

The input language of gringo series 4/5 comprises

ASP-Core-2
concepts from lparse and gringo 3

Example The gringo 3 rule

r(X) : p(X) : not q(X) :- r(X) : p(X) : not q(X),

1 { r(X) : p(X) : not q(X) }.

can be written as follows in the language of gringo 4/5:

r(X) : p(X), not q(X) :- r(X) : p(X), not q(X);

Note Directives #compute, #domain, and #hide are discontinued

Attention

The languages of gringo 3 and 4/5 are not fully compatible
Many example programs in the literature are written for gringo 3

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 206 / 653

Gringo language

gringo 3 versus 4/5

The input language of gringo series 4/5 comprises

ASP-Core-2
concepts from lparse and gringo 3

Example The gringo 3 rule

r(X) : p(X) : not q(X) :- r(X) : p(X) : not q(X),

1 { r(X) : p(X) : not q(X) }.

can be written as follows in the language of gringo 4/5:

r(X) : p(X), not q(X) :- r(X) : p(X), not q(X);

Note Directives #compute, #domain, and #hide are discontinued

Attention

The languages of gringo 3 and 4/5 are not fully compatible
Many example programs in the literature are written for gringo 3

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 206 / 653

Gringo language

gringo 3 versus 4/5

The input language of gringo series 4/5 comprises

ASP-Core-2
concepts from lparse and gringo 3

Example The gringo 3 rule

r(X) : p(X) : not q(X) :- r(X) : p(X) : not q(X),

1 { r(X) : p(X) : not q(X) }.

can be written as follows in the language of gringo 4/5:

r(X) : p(X), not q(X) :- r(X) : p(X), not q(X);

1 <= #count { 1,r(X) : r(X), p(X), not q(X) }.

Note Directives #compute, #domain, and #hide are discontinued

Attention

The languages of gringo 3 and 4/5 are not fully compatible
Many example programs in the literature are written for gringo 3

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 206 / 653

Gringo language

gringo 3 versus 4/5

The input language of gringo series 4/5 comprises

ASP-Core-2
concepts from lparse and gringo 3

Example The gringo 3 rule

r(X) : p(X) : not q(X) :- r(X) : p(X) : not q(X),

1 { r(X) : p(X) : not q(X) }.

can be written as follows in the language of gringo 4/5:

r(X) : p(X), not q(X) :- r(X) : p(X), not q(X);

1 { r(X) : p(X), not q(X) }.

Note Directives #compute, #domain, and #hide are discontinued

Attention

The languages of gringo 3 and 4/5 are not fully compatible
Many example programs in the literature are written for gringo 3

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 206 / 653

Gringo language

gringo 3 versus 4/5

The input language of gringo series 4/5 comprises

ASP-Core-2
concepts from lparse and gringo 3

Example The gringo 3 rule

r(X) : p(X) : not q(X) :- r(X) : p(X) : not q(X),

1 { r(X) : p(X) : not q(X) }.

can be written as follows in the language of gringo 4/5:

r(X) : p(X), not q(X) :- r(X) : p(X), not q(X);

1 { r(X) : p(X), not q(X) }.

Note Directives #compute, #domain, and #hide are discontinued

Attention

The languages of gringo 3 and 4/5 are not fully compatible
Many example programs in the literature are written for gringo 3

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 206 / 653

Gringo language

gringo 3 versus 4/5

The input language of gringo series 4/5 comprises

ASP-Core-2
concepts from lparse and gringo 3

Example The gringo 3 rule

r(X) : p(X) : not q(X) :- r(X) : p(X) : not q(X),

1 { r(X) : p(X) : not q(X) }.

can be written as follows in the language of gringo 4/5:

r(X) : p(X), not q(X) :- r(X) : p(X), not q(X);

1 { r(X) : p(X), not q(X) }.

Note Directives #compute, #domain, and #hide are discontinued

Attention

The languages of gringo 3 and 4/5 are not fully compatible
Many example programs in the literature are written for gringo 3

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 206 / 653

Computational Aspects: Overview

28 Consequence operator

29 Computation from first principles

30 Complexity

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 207 / 653

Consequence operator

Outline

28 Consequence operator

29 Computation from first principles

30 Complexity

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 208 / 653

Consequence operator

Consequence operator

Let P be a positive program and X a set of atoms

The consequence operator TP is defined as follows:

TPX = {h(r) | r ∈ P and B(r) ⊆ X}

Iterated applications of TP are written as T j
P for j ≥ 0,

where

T 0
PX = X and

T i
PX = TPT

i−1
P X for i ≥ 1

For any positive program P, we have

Cn(P) =
⋃

i≥0 T
i
P∅

X ⊆ Y implies TPX ⊆ TPY

Cn(P) is the smallest fixpoint of TP

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 209 / 653

Consequence operator

Consequence operator

Let P be a positive program and X a set of atoms

The consequence operator TP is defined as follows:

TPX = {h(r) | r ∈ P and B(r) ⊆ X}

Iterated applications of TP are written as T j
P for j ≥ 0,

where

T 0
PX = X and

T i
PX = TPT

i−1
P X for i ≥ 1

For any positive program P, we have

Cn(P) =
⋃

i≥0 T
i
P∅

X ⊆ Y implies TPX ⊆ TPY

Cn(P) is the smallest fixpoint of TP

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 209 / 653

Consequence operator

Consequence operator

Let P be a positive program and X a set of atoms

The consequence operator TP is defined as follows:

TPX = {h(r) | r ∈ P and B(r) ⊆ X}

Iterated applications of TP are written as T j
P for j ≥ 0,

where

T 0
PX = X and

T i
PX = TPT

i−1
P X for i ≥ 1

For any positive program P, we have

Cn(P) =
⋃

i≥0 T
i
P∅

X ⊆ Y implies TPX ⊆ TPY

Cn(P) is the smallest fixpoint of TP

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 209 / 653

Consequence operator

An example

Consider the program

P = {p ←, q ←, r ← p, s ← q, t, t ← r , u ← v}

We get

T 0
P∅ = ∅

T 1
P∅ = {p, q} = TPT

0
P∅ = TP∅

T 2
P∅ = {p, q, r} = TPT

1
P∅ = TP{p, q}

T 3
P∅ = {p, q, r , t} = TPT

2
P∅ = TP{p, q, r}

T 4
P∅ = {p, q, r , t, s} = TPT

3
P∅ = TP{p, q, r , t}

T 5
P∅ = {p, q, r , t, s} = TPT

4
P∅ = TP{p, q, r , t, s}

T 6
P∅ = {p, q, r , t, s} = TPT

5
P∅ = TP{p, q, r , t, s}

Cn(P) = {p, q, r , t, s} is the smallest fixpoint of TP because
TP{p, q, r , t, s} = {p, q, r , t, s} and
TPX 6= X for each X ⊂ {p, q, r , t, s}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 210 / 653

Consequence operator

An example

Consider the program

P = {p ←, q ←, r ← p, s ← q, t, t ← r , u ← v}

We get

T 0
P∅ = ∅

T 1
P∅ = {p, q} = TPT

0
P∅ = TP∅

T 2
P∅ = {p, q, r} = TPT

1
P∅ = TP{p, q}

T 3
P∅ = {p, q, r , t} = TPT

2
P∅ = TP{p, q, r}

T 4
P∅ = {p, q, r , t, s} = TPT

3
P∅ = TP{p, q, r , t}

T 5
P∅ = {p, q, r , t, s} = TPT

4
P∅ = TP{p, q, r , t, s}

T 6
P∅ = {p, q, r , t, s} = TPT

5
P∅ = TP{p, q, r , t, s}

Cn(P) = {p, q, r , t, s} is the smallest fixpoint of TP because
TP{p, q, r , t, s} = {p, q, r , t, s} and
TPX 6= X for each X ⊂ {p, q, r , t, s}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 210 / 653

Consequence operator

An example

Consider the program

P = {p ←, q ←, r ← p, s ← q, t, t ← r , u ← v}

We get

T 0
P∅ = ∅

T 1
P∅ = {p, q} = TPT

0
P∅ = TP∅

T 2
P∅ = {p, q, r} = TPT

1
P∅ = TP{p, q}

T 3
P∅ = {p, q, r , t} = TPT

2
P∅ = TP{p, q, r}

T 4
P∅ = {p, q, r , t, s} = TPT

3
P∅ = TP{p, q, r , t}

T 5
P∅ = {p, q, r , t, s} = TPT

4
P∅ = TP{p, q, r , t, s}

T 6
P∅ = {p, q, r , t, s} = TPT

5
P∅ = TP{p, q, r , t, s}

Cn(P) = {p, q, r , t, s} is the smallest fixpoint of TP because
TP{p, q, r , t, s} = {p, q, r , t, s} and
TPX 6= X for each X ⊂ {p, q, r , t, s}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 210 / 653

Computation from first principles

Outline

28 Consequence operator

29 Computation from first principles

30 Complexity

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 211 / 653

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 212 / 653

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 212 / 653

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 212 / 653

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 212 / 653

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 212 / 653

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 212 / 653

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 212 / 653

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 212 / 653

Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY) ⊆ Cn(PX)

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 212 / 653

Computation from first principles

Approximating stable models

Second Idea

repeat
replace L by L ∪ Cn(PU)
replace U by U ∩ Cn(PL)

until L and U do not change anymore

Observations
At each iteration step

L becomes larger (or equal)
U becomes smaller (or equal)

L ⊆ X ⊆ U is invariant for every stable model X of P

If L 6⊆ U, then P has no stable model

If L = U, then L is a stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 213 / 653

Computation from first principles

Approximating stable models

Second Idea

repeat
replace L by L ∪ Cn(PU)
replace U by U ∩ Cn(PL)

until L and U do not change anymore

Observations
At each iteration step

L becomes larger (or equal)
U becomes smaller (or equal)

L ⊆ X ⊆ U is invariant for every stable model X of P

If L 6⊆ U, then P has no stable model

If L = U, then L is a stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 213 / 653

Computation from first principles

Approximating stable models

Second Idea

repeat
replace L by L ∪ Cn(PU)
replace U by U ∩ Cn(PL)

until L and U do not change anymore

Observations
At each iteration step

L becomes larger (or equal)
U becomes smaller (or equal)

L ⊆ X ⊆ U is invariant for every stable model X of P

If L 6⊆ U, then P has no stable model

If L = U, then L is a stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 213 / 653

Computation from first principles

Approximating stable models

Second Idea

repeat
replace L by L ∪ Cn(PU)
replace U by U ∩ Cn(PL)

until L and U do not change anymore

Observations
At each iteration step

L becomes larger (or equal)
U becomes smaller (or equal)

L ⊆ X ⊆ U is invariant for every stable model X of P

If L 6⊆ U, then P has no stable model

If L = U, then L is a stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 213 / 653

Computation from first principles

The simplistic expand algorithm

expandP(L,U)
repeat

L′ ← L
U ′ ← U

L← L′ ∪ Cn(PU′)
U ← U ′ ∩ Cn(PL′)

if L 6⊆ U then return

until L = L′ and U = U ′

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 214 / 653

Computation from first principles

An example

P =

a←
b ← a,∼c
d ← b,∼e
e ← ∼d

L′ Cn(PU′) L U ′ Cn(PL′) U

1 ∅ {a} {a} {a, b, c , d , e} {a, b, d , e} {a, b, d , e}
2 {a} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}
3 {a, b} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}

Note We have {a, b} ⊆ X and (A \ {a, b, d , e}) ∩ X = ({c} ∩ X) = ∅
for every stable model X of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 215 / 653

Computation from first principles

An example

P =

a←
b ← a,∼c
d ← b,∼e
e ← ∼d

L′ Cn(PU′) L U ′ Cn(PL′) U

1 ∅ {a} {a} {a, b, c , d , e} {a, b, d , e} {a, b, d , e}
2 {a} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}
3 {a, b} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}

Note We have {a, b} ⊆ X and (A \ {a, b, d , e}) ∩ X = ({c} ∩ X) = ∅
for every stable model X of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 215 / 653

Computation from first principles

An example

P =

a←
b ← a,∼c
d ← b,∼e
e ← ∼d

L′ Cn(PU′) L U ′ Cn(PL′) U

1 ∅ {a} {a} {a, b, c , d , e} {a, b, d , e} {a, b, d , e}
2 {a} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}
3 {a, b} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}

Note We have {a, b} ⊆ X and (A \ {a, b, d , e}) ∩ X = ({c} ∩ X) = ∅
for every stable model X of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 215 / 653

Computation from first principles

The simplistic expand algorithm

expandP

tightens the approximation on stable models
is stable model preserving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 216 / 653

Computation from first principles

Let’s expand with d !

P =

a←
b ← a,∼c
d ← b,∼e
e ← ∼d

L′ Cn(PU′) L U ′ Cn(PL′) U

1 {d} {a} {a, d} {a, b, c , d , e} {a, b, d} {a, b, d}
2 {a, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}
3 {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}

Note {a, b, d} is a stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 217 / 653

Computation from first principles

Let’s expand with d !

P =

a←
b ← a,∼c
d ← b,∼e
e ← ∼d

L′ Cn(PU′) L U ′ Cn(PL′) U

1 {d} {a} {a, d} {a, b, c , d , e} {a, b, d} {a, b, d}
2 {a, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}
3 {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}

Note {a, b, d} is a stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 217 / 653

Computation from first principles

Let’s expand with d !

P =

a←
b ← a,∼c
d ← b,∼e
e ← ∼d

L′ Cn(PU′) L U ′ Cn(PL′) U

1 {d} {a} {a, d} {a, b, c , d , e} {a, b, d} {a, b, d}
2 {a, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}
3 {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}

Note {a, b, d} is a stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 217 / 653

Computation from first principles

Let’s expand with ∼d !

P =

a←
b ← a,∼c
d ← b,∼e
e ← ∼d

L′ Cn(PU′) L U ′ Cn(PL′) U

1 ∅ {a, e} {a, e} {a, b, c , e} {a, b, d , e} {a, b, e}
2 {a, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}
3 {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}

Note {a, b, e} is a stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 218 / 653

Computation from first principles

Let’s expand with ∼d !

P =

a←
b ← a,∼c
d ← b,∼e
e ← ∼d

L′ Cn(PU′) L U ′ Cn(PL′) U

1 ∅ {a, e} {a, e} {a, b, c , e} {a, b, d , e} {a, b, e}
2 {a, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}
3 {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}

Note {a, b, e} is a stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 218 / 653

Computation from first principles

Let’s expand with ∼d !

P =

a←
b ← a,∼c
d ← b,∼e
e ← ∼d

L′ Cn(PU′) L U ′ Cn(PL′) U

1 ∅ {a, e} {a, e} {a, b, c , e} {a, b, d , e} {a, b, e}
2 {a, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}
3 {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}

Note {a, b, e} is a stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 218 / 653

Computation from first principles

A simplistic solving algorithm

solveP(L,U)

(L,U)← expandP(L,U) // propagation

if L 6⊆ U then failure // failure

if L = U then output L // success

else choose a ∈ U \ L // choice

solveP(L ∪ {a},U)

solveP(L,U \ {a})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 219 / 653

Computation from first principles

A simplistic solving algorithm

Close to the approach taken by the ASP solver smodels, inspired by
the Davis-Putman-Logemann-Loveland (DPLL) procedure

Backtracking search building a binary search tree
A node in the search tree corresponds to a three-valued interpretation

The search space is pruned by

deriving deterministic consequences and detecting conflicts (expand)
making one choice at a time by appeal to a heuristic (choose)

Heuristic choices are made on atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 220 / 653

Computation from first principles

A simplistic solving algorithm

Close to the approach taken by the ASP solver smodels, inspired by
the Davis-Putman-Logemann-Loveland (DPLL) procedure

Backtracking search building a binary search tree
A node in the search tree corresponds to a three-valued interpretation

The search space is pruned by

deriving deterministic consequences and detecting conflicts (expand)
making one choice at a time by appeal to a heuristic (choose)

Heuristic choices are made on atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 220 / 653

Computation from first principles

A simplistic solving algorithm

Close to the approach taken by the ASP solver smodels, inspired by
the Davis-Putman-Logemann-Loveland (DPLL) procedure

Backtracking search building a binary search tree
A node in the search tree corresponds to a three-valued interpretation

The search space is pruned by

deriving deterministic consequences and detecting conflicts (expand)
making one choice at a time by appeal to a heuristic (choose)

Heuristic choices are made on atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 220 / 653

Computation from first principles

A simplistic solving algorithm

Close to the approach taken by the ASP solver smodels, inspired by
the Davis-Putman-Logemann-Loveland (DPLL) procedure

Backtracking search building a binary search tree
A node in the search tree corresponds to a three-valued interpretation

The search space is pruned by

deriving deterministic consequences and detecting conflicts (expand)
making one choice at a time by appeal to a heuristic (choose)

Heuristic choices are made on atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 220 / 653

Complexity

Outline

28 Consequence operator

29 Computation from first principles

30 Complexity

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 221 / 653

Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive normal logic program P:

Deciding whether X is the stable model of P is P-complete
Deciding whether a is in the stable model of P is P-complete

For a normal logic program P:

Deciding whether X is a stable model of P is P-complete
Deciding whether a is in a stable model of P is NP-complete

For a normal logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is co-NP-complete
Deciding whether a is in an optimal stable model of P is ∆p

2-complete

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 222 / 653

Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive normal logic program P:

Deciding whether X is the stable model of P is P-complete
Deciding whether a is in the stable model of P is P-complete

For a normal logic program P:

Deciding whether X is a stable model of P is P-complete
Deciding whether a is in a stable model of P is NP-complete

For a normal logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is co-NP-complete
Deciding whether a is in an optimal stable model of P is ∆p

2-complete

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 222 / 653

Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive normal logic program P:

Deciding whether X is the stable model of P is P-complete
Deciding whether a is in the stable model of P is P-complete

For a normal logic program P:

Deciding whether X is a stable model of P is P-complete
Deciding whether a is in a stable model of P is NP-complete

For a normal logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is co-NP-complete
Deciding whether a is in an optimal stable model of P is ∆p

2-complete

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 222 / 653

Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive normal logic program P:

Deciding whether X is the stable model of P is P-complete
Deciding whether a is in the stable model of P is P-complete

For a normal logic program P:

Deciding whether X is a stable model of P is P-complete
Deciding whether a is in a stable model of P is NP-complete

For a normal logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is co-NP-complete
Deciding whether a is in an optimal stable model of P is ∆p

2-complete

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 222 / 653

Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive disjunctive logic program P:

Deciding whether X is a stable model of P is co-NP-complete
Deciding whether a is in a stable model of P is NPNP -complete

For a disjunctive logic program P:

Deciding whether X is a stable model of P is co-NP-complete
Deciding whether a is in a stable model of P is NPNP -complete

For a disjunctive logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is
co-NPNP -complete
Deciding whether a is in an optimal stable model of P is ∆p

3-complete

For a propositional theory Φ:

Deciding whether X is a stable model of Φ is co-NP-complete
Deciding whether a is in a stable model of Φ is NPNP -complete

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 223 / 653

Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive disjunctive logic program P:

Deciding whether X is a stable model of P is co-NP-complete
Deciding whether a is in a stable model of P is NPNP -complete

For a disjunctive logic program P:

Deciding whether X is a stable model of P is co-NP-complete
Deciding whether a is in a stable model of P is NPNP -complete

For a disjunctive logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is
co-NPNP -complete
Deciding whether a is in an optimal stable model of P is ∆p

3-complete

For a propositional theory Φ:

Deciding whether X is a stable model of Φ is co-NP-complete
Deciding whether a is in a stable model of Φ is NPNP -complete

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 223 / 653

Axiomatic Characterization: Overview

31 Completion

32 Tightness

33 Loops and Loop Formulas

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 224 / 653

Completion

Outline

31 Completion

32 Tightness

33 Loops and Loop Formulas

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 225 / 653

Completion

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Although each atom is defined through a set of rules,
each such rule provides only a sufficient condition for its head atom

Idea The idea of program completion is to turn such implications into
a definition by adding the corresponding necessary counterpart

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 226 / 653

Completion

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Although each atom is defined through a set of rules,
each such rule provides only a sufficient condition for its head atom

Idea The idea of program completion is to turn such implications into
a definition by adding the corresponding necessary counterpart

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 226 / 653

Completion

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Although each atom is defined through a set of rules,
each such rule provides only a sufficient condition for its head atom

Idea The idea of program completion is to turn such implications into
a definition by adding the corresponding necessary counterpart

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 226 / 653

Completion

Program completion

Let P be a normal logic program

The completion CF (P) of P is defined as follows

CF (P) =
{
a↔

∨
r∈P,h(r)=aBF (B(r)) | a ∈ A(P)

}
where

BF (B(r)) =
∧

a∈B(r)+a ∧
∧

a∈B(r)−¬a

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 227 / 653

Completion

An example

P =

a←
b ← ∼a
c ← a,∼d
d ← ∼c,∼e
e ← b,∼f
e ← e

CF (P) =

a↔ >
b ↔ ¬a
c ↔ a ∧ ¬d
d ↔ ¬c ∧ ¬e
e ↔ (b ∧ ¬f) ∨ e
f ↔ ⊥

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 228 / 653

Completion

An example

P =

a←
b ← ∼a
c ← a,∼d
d ← ∼c,∼e
e ← b,∼f
e ← e

CF (P) =

a↔ >
b ↔ ¬a
c ↔ a ∧ ¬d
d ↔ ¬c ∧ ¬e
e ↔ (b ∧ ¬f) ∨ e
f ↔ ⊥

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 228 / 653

Completion

A closer look

CF (P) is logically equivalent to
←−
CF (P) ∪

−→
CF (P), where

←−
CF (P) =

{
a←

∨
B∈BP(a)BF (B) | a ∈ A(P)

}
−→
CF (P) =

{
a→

∨
B∈BP(a)BF (B) | a ∈ A(P)

}
BP(a) = {B(r) | r ∈ P and h(r) = a}

←−
CF (P) characterizes the classical models of P
−→
CF (P) completes P by adding necessary conditions for all atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 229 / 653

Completion

A closer look

CF (P) is logically equivalent to
←−
CF (P) ∪

−→
CF (P), where

←−
CF (P) =

{
a←

∨
B∈BP(a)BF (B) | a ∈ A(P)

}
−→
CF (P) =

{
a→

∨
B∈BP(a)BF (B) | a ∈ A(P)

}
BP(a) = {B(r) | r ∈ P and h(r) = a}

←−
CF (P) characterizes the classical models of P
−→
CF (P) completes P by adding necessary conditions for all atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 229 / 653

Completion

A closer look

P =

a←
b ← ∼a
c ← a,∼d
d ← ∼c,∼e
e ← b,∼f
e ← e

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 230 / 653

Completion

A closer look

P =

a←
b ← ∼a
c ← a,∼d
d ← ∼c,∼e
e ← b,∼f
e ← e

←−
CF (P) =

a← >
b ← ¬a
c ← a ∧ ¬d
d ← ¬c ∧ ¬e
e ← (b ∧ ¬f) ∨ e
f ← ⊥

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 230 / 653

Completion

A closer look

←−
CF (P) =

a← >
b ← ¬a
c ← a ∧ ¬d
d ← ¬c ∧ ¬e
e ← (b ∧ ¬f) ∨ e
f ← ⊥

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 230 / 653

Completion

A closer look

←−
CF (P) =

a← >
b ← ¬a
c ← a ∧ ¬d
d ← ¬c ∧ ¬e
e ← (b ∧ ¬f) ∨ e
f ← ⊥

a→ >
b → ¬a
c → a ∧ ¬d
d → ¬c ∧ ¬e
e → (b ∧ ¬f) ∨ e
f → ⊥

=
−→
CF (P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 230 / 653

Completion

A closer look

←−
CF (P) =

a← >
b ← ¬a
c ← a ∧ ¬d
d ← ¬c ∧ ¬e
e ← (b ∧ ¬f) ∨ e
f ← ⊥

a→ >
b → ¬a
c → a ∧ ¬d
d → ¬c ∧ ¬e
e → (b ∧ ¬f) ∨ e
f → ⊥

=
−→
CF (P)

CF (P) =

a↔ >
b ↔ ¬a
c ↔ a ∧ ¬d
d ↔ ¬c ∧ ¬e
e ↔ (b ∧ ¬f) ∨ e
f ↔ ⊥

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 230 / 653

Completion

A closer look

←−
CF (P) =

a← >
b ← ¬a
c ← a ∧ ¬d
d ← ¬c ∧ ¬e
e ← (b ∧ ¬f) ∨ e
f ← ⊥

a→ >
b → ¬a
c → a ∧ ¬d
d → ¬c ∧ ¬e
e → (b ∧ ¬f) ∨ e
f → ⊥

=
−→
CF (P)

CF (P) =

a↔ >
b ↔ ¬a
c ↔ a ∧ ¬d
d ↔ ¬c ∧ ¬e
e ↔ (b ∧ ¬f) ∨ e
f ↔ ⊥

↔

←−
CF (P) ∪

−→
CF (P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 230 / 653

Completion

Supported models

Every stable model of P is a model of CF (P), but not vice versa

Models of CF (P) are called the supported models of P

In other words, every stable model of P is a supported model of P

By definition, every supported model of P is also a model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 231 / 653

Completion

Supported models

Every stable model of P is a model of CF (P), but not vice versa

Models of CF (P) are called the supported models of P

In other words, every stable model of P is a supported model of P

By definition, every supported model of P is also a model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 231 / 653

Completion

Supported models

Every stable model of P is a model of CF (P), but not vice versa

Models of CF (P) are called the supported models of P

In other words, every stable model of P is a supported model of P

By definition, every supported model of P is also a model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 231 / 653

Completion

Supported models

Every stable model of P is a model of CF (P), but not vice versa

Models of CF (P) are called the supported models of P

In other words, every stable model of P is a supported model of P

By definition, every supported model of P is also a model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 231 / 653

Completion

An example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has 21 models, including {a, c}, {a, d}, but also {a, b, c , d , e, f }
P has 3 supported models, namely {a, c}, {a, d}, and {a, c , e}
P has 2 stable models, namely {a, c} and {a, d}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 232 / 653

Completion

An example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has 21 models, including {a, c}, {a, d}, but also {a, b, c , d , e, f }
P has 3 supported models, namely {a, c}, {a, d}, and {a, c , e}
P has 2 stable models, namely {a, c} and {a, d}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 232 / 653

Completion

An example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has 21 models, including {a, c}, {a, d}, but also {a, b, c , d , e, f }
P has 3 supported models, namely {a, c}, {a, d}, and {a, c , e}
P has 2 stable models, namely {a, c} and {a, d}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 232 / 653

Completion

An example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has 21 models, including {a, c}, {a, d}, but also {a, b, c , d , e, f }
P has 3 supported models, namely {a, c}, {a, d}, and {a, c , e}
P has 2 stable models, namely {a, c} and {a, d}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 232 / 653

Tightness

Outline

31 Completion

32 Tightness

33 Loops and Loop Formulas

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 233 / 653

Tightness

The mismatch

Question What causes the mismatch between supported
and stable models?

Hint Consider the unstable yet supported model {a, c , e} of P !

Answer The mismatch between supported and stable models
is caused by cyclic derivations

Atoms in a stable model can be “derived” from a program in a finite
number of steps

Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps

Note But such atoms do not contradict the completion of a program
and do thus not eliminate an unstable supported model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 234 / 653

Tightness

The mismatch

Question What causes the mismatch between supported
and stable models?

Hint Consider the unstable yet supported model {a, c , e} of P !

Answer The mismatch between supported and stable models
is caused by cyclic derivations

Atoms in a stable model can be “derived” from a program in a finite
number of steps

Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps

Note But such atoms do not contradict the completion of a program
and do thus not eliminate an unstable supported model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 234 / 653

Tightness

The mismatch

Question What causes the mismatch between supported
and stable models?

Hint Consider the unstable yet supported model {a, c , e} of P !

Answer The mismatch between supported and stable models
is caused by cyclic derivations

Atoms in a stable model can be “derived” from a program in a finite
number of steps

Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps

Note But such atoms do not contradict the completion of a program
and do thus not eliminate an unstable supported model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 234 / 653

Tightness

The mismatch

Question What causes the mismatch between supported
and stable models?

Hint Consider the unstable yet supported model {a, c , e} of P !

Answer The mismatch between supported and stable models
is caused by cyclic derivations

Atoms in a stable model can be “derived” from a program in a finite
number of steps

Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps

Note But such atoms do not contradict the completion of a program
and do thus not eliminate an unstable supported model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 234 / 653

Tightness

The mismatch

Question What causes the mismatch between supported
and stable models?

Hint Consider the unstable yet supported model {a, c , e} of P !

Answer The mismatch between supported and stable models
is caused by cyclic derivations

Atoms in a stable model can be “derived” from a program in a finite
number of steps

Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps

Note But such atoms do not contradict the completion of a program
and do thus not eliminate an unstable supported model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 234 / 653

Tightness

The mismatch

Question What causes the mismatch between supported
and stable models?

Hint Consider the unstable yet supported model {a, c , e} of P !

Answer The mismatch between supported and stable models
is caused by cyclic derivations

Atoms in a stable model can be “derived” from a program in a finite
number of steps

Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps

Note But such atoms do not contradict the completion of a program
and do thus not eliminate an unstable supported model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 234 / 653

Tightness

Non-cyclic derivations

Let X be a stable model of normal logic program P

For every atom a ∈ X , there is a finite sequence of positive rules

〈r1, . . . , rn〉

such that

1 h(r1) = a
2 B(ri)

+ ⊆ {h(rj) | i < j ≤ n} for 1 ≤ i ≤ n
3 ri ∈ PX for 1 ≤ i ≤ n

That is, each atom of X has a non-cyclic derivation from PX

Example There is no finite sequence of rules providing a derivation
for e from P{a,c,e}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 235 / 653

Tightness

Non-cyclic derivations

Let X be a stable model of normal logic program P

For every atom a ∈ X , there is a finite sequence of positive rules

〈r1, . . . , rn〉

such that

1 h(r1) = a
2 B(ri)

+ ⊆ {h(rj) | i < j ≤ n} for 1 ≤ i ≤ n
3 ri ∈ PX for 1 ≤ i ≤ n

That is, each atom of X has a non-cyclic derivation from PX

Example There is no finite sequence of rules providing a derivation
for e from P{a,c,e}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 235 / 653

Tightness

Non-cyclic derivations

Let X be a stable model of normal logic program P

For every atom a ∈ X , there is a finite sequence of positive rules

〈r1, . . . , rn〉

such that

1 h(r1) = a
2 B(ri)

+ ⊆ {h(rj) | i < j ≤ n} for 1 ≤ i ≤ n
3 ri ∈ PX for 1 ≤ i ≤ n

That is, each atom of X has a non-cyclic derivation from PX

Example There is no finite sequence of rules providing a derivation
for e from P{a,c,e}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 235 / 653

Tightness

Positive atom dependency graph

The origin of (potential) circular derivations can be read off the
positive atom dependency graph G (P) of a logic program P given by

(A(P), {(a, b) | r ∈ P, a ∈ B(r)+, h(r) = b})

A logic program P is called tight, if G (P) is acyclic

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 236 / 653

Tightness

Positive atom dependency graph

The origin of (potential) circular derivations can be read off the
positive atom dependency graph G (P) of a logic program P given by

(A(P), {(a, b) | r ∈ P, a ∈ B(r)+, h(r) = b})

A logic program P is called tight, if G (P) is acyclic

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 236 / 653

Tightness

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}
G (P) = ({a, b, c , d , e, f }, {(a, c), (b, e), (e, e)})

a c d

b e f

P has supported models: {a, c}, {a, d}, and {a, c , e}
P has stable models: {a, c} and {a, d}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 237 / 653

Tightness

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}
G (P) = ({a, b, c , d , e, f }, {(a, c), (b, e), (e, e)})

a c d

b e f

P has supported models: {a, c}, {a, d}, and {a, c , e}
P has stable models: {a, c} and {a, d}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 237 / 653

Tightness

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}
G (P) = ({a, b, c , d , e, f }, {(a, c), (b, e), (e, e)})

a c d

b e f

P has supported models: {a, c}, {a, d}, and {a, c , e}
P has stable models: {a, c} and {a, d}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 237 / 653

Tightness

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}
G (P) = ({a, b, c , d , e, f }, {(a, c), (b, e), (e, e)})

a c d

b e f

P has supported models: {a, c}, {a, d}, and {a, c , e}
P has stable models: {a, c} and {a, d}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 237 / 653

Tightness

Tight programs

A logic program P is called tight, if G (P) is acyclic

For tight programs, stable and supported models coincide:

Fages’ Theorem

Let P be a tight normal logic program and X ⊆ A(P)
Then, X is a stable model of P iff X |= CF (P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 238 / 653

Tightness

Tight programs

A logic program P is called tight, if G (P) is acyclic

For tight programs, stable and supported models coincide:

Fages’ Theorem

Let P be a tight normal logic program and X ⊆ A(P)
Then, X is a stable model of P iff X |= CF (P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 238 / 653

Tightness

Tight programs

A logic program P is called tight, if G (P) is acyclic

For tight programs, stable and supported models coincide:

Fages’ Theorem

Let P be a tight normal logic program and X ⊆ A(P)
Then, X is a stable model of P iff X |= CF (P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 238 / 653

Tightness

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}
G (P) = ({a, b, c , d , e}, {(a, c), (a, d), (b, c), (b, d), (c, d), (d , c)})

d a c e

b

P has supported models: {a, c, d}, {b}, and {b, c , d}
P has stable models: {a, c , d} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 239 / 653

Tightness

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}
G (P) = ({a, b, c , d , e}, {(a, c), (a, d), (b, c), (b, d), (c, d), (d , c)})

d a c e

b

P has supported models: {a, c, d}, {b}, and {b, c , d}
P has stable models: {a, c , d} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 239 / 653

Tightness

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}
G (P) = ({a, b, c , d , e}, {(a, c), (a, d), (b, c), (b, d), (c, d), (d , c)})

d a c e

b

P has supported models: {a, c, d}, {b}, and {b, c , d}
P has stable models: {a, c , d} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 239 / 653

Tightness

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}
G (P) = ({a, b, c , d , e}, {(a, c), (a, d), (b, c), (b, d), (c, d), (d , c)})

d a c e

b

P has supported models: {a, c, d}, {b}, and {b, c , d}
P has stable models: {a, c , d} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 239 / 653

Loops and Loop Formulas

Outline

31 Completion

32 Tightness

33 Loops and Loop Formulas

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 240 / 653

Loops and Loop Formulas

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms
holding in the supported models of the program

Idea Add formulas prohibiting circular support of sets of atoms

Note Circular support between atoms a and b is possible,
if a has a path to b and b has a path to a
in the program’s positive atom dependency graph

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 241 / 653

Loops and Loop Formulas

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms
holding in the supported models of the program

Idea Add formulas prohibiting circular support of sets of atoms

Note Circular support between atoms a and b is possible,
if a has a path to b and b has a path to a
in the program’s positive atom dependency graph

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 241 / 653

Loops and Loop Formulas

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms
holding in the supported models of the program

Idea Add formulas prohibiting circular support of sets of atoms

Note Circular support between atoms a and b is possible,
if a has a path to b and b has a path to a
in the program’s positive atom dependency graph

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 241 / 653

Loops and Loop Formulas

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms
holding in the supported models of the program

Idea Add formulas prohibiting circular support of sets of atoms

Note Circular support between atoms a and b is possible,
if a has a path to b and b has a path to a
in the program’s positive atom dependency graph

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 241 / 653

Loops and Loop Formulas

Loops

Let P be a normal logic program, and
let G (P) = (A(P),E) be the positive atom dependency graph of P

A set ∅ ⊂ L ⊆ A(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G (P)

That is, each pair of atoms in L is connected by a path of non-zero
length in (L,E ∩ (L× L))

We denote the set of all loops of P by loop(P)

Note A program P is tight iff loop(P) = ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 242 / 653

Loops and Loop Formulas

Loops

Let P be a normal logic program, and
let G (P) = (A(P),E) be the positive atom dependency graph of P

A set ∅ ⊂ L ⊆ A(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G (P)

That is, each pair of atoms in L is connected by a path of non-zero
length in (L,E ∩ (L× L))

We denote the set of all loops of P by loop(P)

Note A program P is tight iff loop(P) = ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 242 / 653

Loops and Loop Formulas

Loops

Let P be a normal logic program, and
let G (P) = (A(P),E) be the positive atom dependency graph of P

A set ∅ ⊂ L ⊆ A(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G (P)

That is, each pair of atoms in L is connected by a path of non-zero
length in (L,E ∩ (L× L))

We denote the set of all loops of P by loop(P)

Note A program P is tight iff loop(P) = ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 242 / 653

Loops and Loop Formulas

Loops

Let P be a normal logic program, and
let G (P) = (A(P),E) be the positive atom dependency graph of P

A set ∅ ⊂ L ⊆ A(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G (P)

That is, each pair of atoms in L is connected by a path of non-zero
length in (L,E ∩ (L× L))

We denote the set of all loops of P by loop(P)

Note A program P is tight iff loop(P) = ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 242 / 653

Loops and Loop Formulas

Loops

Let P be a normal logic program, and
let G (P) = (A(P),E) be the positive atom dependency graph of P

A set ∅ ⊂ L ⊆ A(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G (P)

That is, each pair of atoms in L is connected by a path of non-zero
length in (L,E ∩ (L× L))

We denote the set of all loops of P by loop(P)

Note A program P is tight iff loop(P) = ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 242 / 653

Loops and Loop Formulas

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

a c d

b e f

loop(P) = {{e}}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 243 / 653

Loops and Loop Formulas

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

a c d

b e f

loop(P) = {{e}}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 243 / 653

Loops and Loop Formulas

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}

d a c e

b

loop(P) = {{c , d}}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 244 / 653

Loops and Loop Formulas

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}

d a c e

b

loop(P) = {{c , d}}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 244 / 653

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 245 / 653

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 245 / 653

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 245 / 653

Loops and Loop Formulas

Loop formulas

Let P be a normal logic program

For L ⊆ A(P), define the external supports of L for P as

ESP(L) = {r ∈ P | h(r) ∈ L and B(r)+ ∩ L = ∅}

Define the external bodies of L in P as EBP(L) = B(ESP(L))

The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

a∈La
)
→
(∨

B∈EBP(L)BF (B)
)

↔
(∧

B∈EBP(L)¬BF (B)
)
→
(∧

a∈L¬a
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

Define LF (P) = {LFP(L) | L ∈ loop(P)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 246 / 653

Loops and Loop Formulas

Loop formulas

Let P be a normal logic program

For L ⊆ A(P), define the external supports of L for P as

ESP(L) = {r ∈ P | h(r) ∈ L and B(r)+ ∩ L = ∅}

Define the external bodies of L in P as EBP(L) = B(ESP(L))

The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

a∈La
)
→
(∨

B∈EBP(L)BF (B)
)

↔
(∧

B∈EBP(L)¬BF (B)
)
→
(∧

a∈L¬a
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

Define LF (P) = {LFP(L) | L ∈ loop(P)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 246 / 653

Loops and Loop Formulas

Loop formulas

Let P be a normal logic program

For L ⊆ A(P), define the external supports of L for P as

ESP(L) = {r ∈ P | h(r) ∈ L and B(r)+ ∩ L = ∅}

Define the external bodies of L in P as EBP(L) = B(ESP(L))

The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

a∈La
)
→
(∨

B∈EBP(L)BF (B)
)

↔
(∧

B∈EBP(L)¬BF (B)
)
→
(∧

a∈L¬a
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

Define LF (P) = {LFP(L) | L ∈ loop(P)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 246 / 653

Loops and Loop Formulas

Loop formulas

Let P be a normal logic program

For L ⊆ A(P), define the external supports of L for P as

ESP(L) = {r ∈ P | h(r) ∈ L and B(r)+ ∩ L = ∅}

Define the external bodies of L in P as EBP(L) = B(ESP(L))

The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

a∈La
)
→
(∨

B∈EBP(L)BF (B)
)

↔
(∧

B∈EBP(L)¬BF (B)
)
→
(∧

a∈L¬a
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

Define LF (P) = {LFP(L) | L ∈ loop(P)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 246 / 653

Loops and Loop Formulas

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

a c d

b e f

loop(P) = {{e}}
LF (P) = {e → b ∧ ¬f }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 247 / 653

Loops and Loop Formulas

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

a c d

b e f

loop(P) = {{e}}
LF (P) = {e → b ∧ ¬f }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 247 / 653

Loops and Loop Formulas

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}

d a c e

b

loop(P) = {{c , d}}
LF (P) = {c ∨ d → (a ∧ b) ∨ a}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 248 / 653

Loops and Loop Formulas

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}

d a c e

b

loop(P) = {{c , d}}
LF (P) = {c ∨ d → (a ∧ b) ∨ a}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 248 / 653

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

LF (P) =

c ∨ d → a ∨ e
d ∨ e → (b ∧ c) ∨ (b ∧ ¬a)
c ∨ d ∨ e → a ∨ (b ∧ ¬a)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 249 / 653

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

LF (P) =

c ∨ d → a ∨ e
d ∨ e → (b ∧ c) ∨ (b ∧ ¬a)
c ∨ d ∨ e → a ∨ (b ∧ ¬a)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 249 / 653

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

LF (P) =

c ∨ d → a ∨ e
d ∨ e → (b ∧ c) ∨ (b ∧ ¬a)
c ∨ d ∨ e → a ∨ (b ∧ ¬a)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 249 / 653

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

LF (P) =

c ∨ d → a ∨ e
d ∨ e → (b ∧ c) ∨ (b ∧ ¬a)
c ∨ d ∨ e → a ∨ (b ∧ ¬a)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 249 / 653

Loops and Loop Formulas

Yet another example

P =

{
a← ∼b c ← a d ← b, c e ← b,∼a
b ← ∼a c ← b, d d ← e e ← c, d

}

b

a c d e

loop(P) = {{c , d}, {d , e}, {c , d , e}}

LF (P) =

c ∨ d → a ∨ e
d ∨ e → (b ∧ c) ∨ (b ∧ ¬a)
c ∨ d ∨ e → a ∨ (b ∧ ¬a)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 249 / 653

Loops and Loop Formulas

Lin-Zhao Theorem

Theorem

Let P be a normal logic program and X ⊆ A(P)
Then, X is a stable model of P iff X |= CF (P) ∪ LF (P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 250 / 653

Loops and Loop Formulas

Loops and loop formulas: Properties

Let X be a supported model of normal logic program P

Then, X is a stable model of P iff

X |= {LFP(U) | U ⊆ A(P)}
X |= {LFP(U) | U ⊆ X}
X |= {LFP(L) | L ∈ loop(P)}, that is, X |= LF (P)
X |= {LFP(L) | L ∈ loop(P) and L ⊆ X}

Note If X is not a stable model of P,
then there is a loop L ⊆ X \ Cn(PX) such that X 6|= LFP(L)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 251 / 653

Loops and Loop Formulas

Loops and loop formulas: Properties

Let X be a supported model of normal logic program P

Then, X is a stable model of P iff

X |= {LFP(U) | U ⊆ A(P)}
X |= {LFP(U) | U ⊆ X}
X |= {LFP(L) | L ∈ loop(P)}, that is, X |= LF (P)
X |= {LFP(L) | L ∈ loop(P) and L ⊆ X}

Note If X is not a stable model of P,
then there is a loop L ⊆ X \ Cn(PX) such that X 6|= LFP(L)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 251 / 653

Loops and Loop Formulas

Loops and loop formulas: Properties

Let X be a supported model of normal logic program P

Then, X is a stable model of P iff

X |= {LFP(U) | U ⊆ A(P)}
X |= {LFP(U) | U ⊆ X}
X |= {LFP(L) | L ∈ loop(P)}, that is, X |= LF (P)
X |= {LFP(L) | L ∈ loop(P) and L ⊆ X}

Note If X is not a stable model of P,
then there is a loop L ⊆ X \ Cn(PX) such that X 6|= LFP(L)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 251 / 653

Loops and Loop Formulas

Loops and loop formulas: Properties (ctd)

Result If P 6⊆ NC1/poly ,3 then there is no translation T from logic
programs to propositional formulas such that, for each normal logic
program P, both of the following conditions hold:

1 The propositional variables in T [P] are a subset of A(P)
2 The size of T [P] is polynomial in the size of P

Note Every vocabulary-preserving translation from normal logic
programs to propositional formulas must be exponential
(in the worst case)

Observations

Translation CF (P) ∪ LF (P) preserves the vocabulary of P
The number of loops in loop(P) may be exponential in |A(P)|

3A conjecture from complexity theory that is believed to be true
Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 252 / 653

Loops and Loop Formulas

Loops and loop formulas: Properties (ctd)

Result If P 6⊆ NC1/poly ,3 then there is no translation T from logic
programs to propositional formulas such that, for each normal logic
program P, both of the following conditions hold:

1 The propositional variables in T [P] are a subset of A(P)
2 The size of T [P] is polynomial in the size of P

Note Every vocabulary-preserving translation from normal logic
programs to propositional formulas must be exponential
(in the worst case)

Observations

Translation CF (P) ∪ LF (P) preserves the vocabulary of P
The number of loops in loop(P) may be exponential in |A(P)|

3A conjecture from complexity theory that is believed to be true
Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 252 / 653

Loops and Loop Formulas

Loops and loop formulas: Properties (ctd)

Result If P 6⊆ NC1/poly ,3 then there is no translation T from logic
programs to propositional formulas such that, for each normal logic
program P, both of the following conditions hold:

1 The propositional variables in T [P] are a subset of A(P)
2 The size of T [P] is polynomial in the size of P

Note Every vocabulary-preserving translation from normal logic
programs to propositional formulas must be exponential
(in the worst case)

Observations

Translation CF (P) ∪ LF (P) preserves the vocabulary of P
The number of loops in loop(P) may be exponential in |A(P)|

3A conjecture from complexity theory that is believed to be true
Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 252 / 653

Operational Characterization: Overview

34 Partial Interpretations

35 Fitting Operator

36 Unfounded Sets

37 Well-Founded Operator

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 253 / 653

Partial Interpretations

Outline

34 Partial Interpretations

35 Fitting Operator

36 Unfounded Sets

37 Well-Founded Operator

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 254 / 653

Partial Interpretations

Interlude: Partial interpretations
or: 3-valued interpretations

A partial interpretation maps atoms onto truth values true, false,
and unknown

Representation 〈T ,F 〉, where

T is the set of all true atoms and
F is the set of all false atoms
Truth of atoms in A \ (T ∪ F) is unknown

Properties

〈T ,F 〉 is conflicting if T ∩ F 6= ∅
〈T ,F 〉 is total if T ∪ F = A and T ∩ F = ∅

Definition For 〈T1,F1〉 and 〈T2,F2〉, define

〈T1,F1〉 v 〈T2,F2〉 iff T1 ⊆ T2 and F1 ⊆ F2

〈T1,F1〉 t 〈T2,F2〉 = 〈T1 ∪ T2,F1 ∪ F2〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 255 / 653

Partial Interpretations

Interlude: Partial interpretations
or: 3-valued interpretations

A partial interpretation maps atoms onto truth values true, false,
and unknown

Representation 〈T ,F 〉, where

T is the set of all true atoms and
F is the set of all false atoms
Truth of atoms in A \ (T ∪ F) is unknown

Properties

〈T ,F 〉 is conflicting if T ∩ F 6= ∅
〈T ,F 〉 is total if T ∪ F = A and T ∩ F = ∅

Definition For 〈T1,F1〉 and 〈T2,F2〉, define

〈T1,F1〉 v 〈T2,F2〉 iff T1 ⊆ T2 and F1 ⊆ F2

〈T1,F1〉 t 〈T2,F2〉 = 〈T1 ∪ T2,F1 ∪ F2〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 255 / 653

Partial Interpretations

Interlude: Partial interpretations
or: 3-valued interpretations

A partial interpretation maps atoms onto truth values true, false,
and unknown

Representation 〈T ,F 〉, where

T is the set of all true atoms and
F is the set of all false atoms
Truth of atoms in A \ (T ∪ F) is unknown

Properties

〈T ,F 〉 is conflicting if T ∩ F 6= ∅
〈T ,F 〉 is total if T ∪ F = A and T ∩ F = ∅

Definition For 〈T1,F1〉 and 〈T2,F2〉, define

〈T1,F1〉 v 〈T2,F2〉 iff T1 ⊆ T2 and F1 ⊆ F2

〈T1,F1〉 t 〈T2,F2〉 = 〈T1 ∪ T2,F1 ∪ F2〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 255 / 653

Partial Interpretations

Interlude: Partial interpretations
or: 3-valued interpretations

A partial interpretation maps atoms onto truth values true, false,
and unknown

Representation 〈T ,F 〉, where

T is the set of all true atoms and
F is the set of all false atoms
Truth of atoms in A \ (T ∪ F) is unknown

Properties

〈T ,F 〉 is conflicting if T ∩ F 6= ∅
〈T ,F 〉 is total if T ∪ F = A and T ∩ F = ∅

Definition For 〈T1,F1〉 and 〈T2,F2〉, define

〈T1,F1〉 v 〈T2,F2〉 iff T1 ⊆ T2 and F1 ⊆ F2

〈T1,F1〉 t 〈T2,F2〉 = 〈T1 ∪ T2,F1 ∪ F2〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 255 / 653

Fitting Operator

Outline

34 Partial Interpretations

35 Fitting Operator

36 Unfounded Sets

37 Well-Founded Operator

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 256 / 653

Fitting Operator

Basic idea

Idea Extend TP to normal logic programs

Logical background The idea is to turn a program’s completion
into an operator such that

the head atom of a rule must be true
if the rule’s body is true
an atom must be false
if the body of each rule having it as head is false

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 257 / 653

Fitting Operator

Definition

Let P be a normal logic program

Define

ΦP〈T ,F 〉 = 〈TP〈T ,F 〉,FP〈T ,F 〉〉

where

TP〈T ,F 〉 = {h(r) | r ∈ P,B(r)+ ⊆ T ,B(r)− ⊆ F}
FP〈T ,F 〉 = {a ∈ A(P) |

B(r)+ ∩ F 6= ∅ or B(r)− ∩ T 6= ∅
for each r ∈ P such that h(r) = a }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 258 / 653

Fitting Operator

Definition

Let P be a normal logic program

Define

ΦP〈T ,F 〉 = 〈TP〈T ,F 〉,FP〈T ,F 〉〉

where

TP〈T ,F 〉 = {h(r) | r ∈ P,B(r)+ ⊆ T ,B(r)− ⊆ F}
FP〈T ,F 〉 = {a ∈ A(P) |

B(r)+ ∩ F 6= ∅ or B(r)− ∩ T 6= ∅
for each r ∈ P such that h(r) = a }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 258 / 653

Fitting Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Let’s iterate ΦP on 〈{a}, {d}〉:

ΦP〈{a}, {d}〉 = 〈{a, c}, {b, f }〉
ΦP〈{a, c}, {b, f }〉 = 〈{a}, {b, d , f }〉
ΦP〈{a}, {b, d , f }〉 = 〈{a, c}, {b, f }〉

...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 259 / 653

Fitting Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Let’s iterate ΦP on 〈{a}, {d}〉:

ΦP〈{a}, {d}〉 = 〈{a, c}, {b, f }〉
ΦP〈{a, c}, {b, f }〉 = 〈{a}, {b, d , f }〉
ΦP〈{a}, {b, d , f }〉 = 〈{a, c}, {b, f }〉

...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 259 / 653

Fitting Operator

Fitting semantics

Define the iterative variant of ΦP analogously to TP :

Φ0
P〈T ,F 〉 = 〈T ,F 〉 Φi+1

P 〈T ,F 〉 = ΦPΦi
P〈T ,F 〉

Define the Fitting semantics of a normal logic program P
as the partial interpretation:⊔

i≥0Φi
P〈∅, ∅〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 260 / 653

Fitting Operator

Fitting semantics

Define the iterative variant of ΦP analogously to TP :

Φ0
P〈T ,F 〉 = 〈T ,F 〉 Φi+1

P 〈T ,F 〉 = ΦPΦi
P〈T ,F 〉

Define the Fitting semantics of a normal logic program P
as the partial interpretation:⊔

i≥0Φi
P〈∅, ∅〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 260 / 653

Fitting Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Φ0〈∅, ∅〉 = 〈∅, ∅〉
Φ1〈∅, ∅〉 = Φ〈∅, ∅〉 = 〈{a}, {f }〉
Φ2〈∅, ∅〉 = Φ〈{a}, {f }〉 = 〈{a}, {b, f }〉
Φ3〈∅, ∅〉 = Φ〈{a}, {b, f }〉 = 〈{a}, {b, f }〉⊔

i≥0 Φi 〈∅, ∅〉 = 〈{a}, {b, f }〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 261 / 653

Fitting Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Φ0〈∅, ∅〉 = 〈∅, ∅〉
Φ1〈∅, ∅〉 = Φ〈∅, ∅〉 = 〈{a}, {f }〉
Φ2〈∅, ∅〉 = Φ〈{a}, {f }〉 = 〈{a}, {b, f }〉
Φ3〈∅, ∅〉 = Φ〈{a}, {b, f }〉 = 〈{a}, {b, f }〉⊔

i≥0 Φi 〈∅, ∅〉 = 〈{a}, {b, f }〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 261 / 653

Fitting Operator

Properties

Let P be a normal logic program

ΦP〈∅, ∅〉 is monotonic
That is, Φi

P〈∅, ∅〉 v Φi+1
P 〈∅, ∅〉

The Fitting semantics of P is

not conflicting,
and generally not total

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 262 / 653

Fitting Operator

Fitting fixpoints

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Define 〈T ,F 〉 as a Fitting fixpoint of P if ΦP〈T ,F 〉 = 〈T ,F 〉

The Fitting semantics is the v-least Fitting fixpoint of P
Any other Fitting fixpoint extends the Fitting semantics
Total Fitting fixpoints correspond to supported models

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 263 / 653

Fitting Operator

Fitting fixpoints

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Define 〈T ,F 〉 as a Fitting fixpoint of P if ΦP〈T ,F 〉 = 〈T ,F 〉

The Fitting semantics is the v-least Fitting fixpoint of P
Any other Fitting fixpoint extends the Fitting semantics
Total Fitting fixpoints correspond to supported models

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 263 / 653

Fitting Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has three total Fitting fixpoints:

1 〈{a, c}, {b, d , e, f }〉
2 〈{a, d}, {b, c , e, f }〉
3 〈{a, c , e}, {b, d , f }〉

P has three supported models, two of them are stable models

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 264 / 653

Fitting Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has three total Fitting fixpoints:

1 〈{a, c}, {b, d , e, f }〉
2 〈{a, d}, {b, c , e, f }〉
3 〈{a, c , e}, {b, d , f }〉

P has three supported models, two of them are stable models

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 264 / 653

Fitting Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has three total Fitting fixpoints:

1 〈{a, c}, {b, d , e, f }〉
2 〈{a, d}, {b, c , e, f }〉
3 〈{a, c , e}, {b, d , f }〉

P has three supported models, two of them are stable models

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 264 / 653

Fitting Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has three total Fitting fixpoints:

1 〈{a, c}, {b, d , e, f }〉
2 〈{a, d}, {b, c , e, f }〉
3 〈{a, c , e}, {b, d , f }〉

P has three supported models, two of them are stable models

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 264 / 653

Fitting Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΦP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΦP is stable model preserving

Hence, ΦP can be used for approximating stable models and so for
propagation in ASP-solvers

However, ΦP is still insufficient, because total fixpoints correspond to
supported models, not necessarily stable models

Note The problem is the same as with program completion

The missing piece is non-circularity of derivations !

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 265 / 653

Fitting Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΦP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΦP is stable model preserving

Hence, ΦP can be used for approximating stable models and so for
propagation in ASP-solvers

However, ΦP is still insufficient, because total fixpoints correspond to
supported models, not necessarily stable models

Note The problem is the same as with program completion

The missing piece is non-circularity of derivations !

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 265 / 653

Fitting Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΦP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΦP is stable model preserving

Hence, ΦP can be used for approximating stable models and so for
propagation in ASP-solvers

However, ΦP is still insufficient, because total fixpoints correspond to
supported models, not necessarily stable models

Note The problem is the same as with program completion

The missing piece is non-circularity of derivations !

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 265 / 653

Fitting Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΦP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΦP is stable model preserving

Hence, ΦP can be used for approximating stable models and so for
propagation in ASP-solvers

However, ΦP is still insufficient, because total fixpoints correspond to
supported models, not necessarily stable models

Note The problem is the same as with program completion

The missing piece is non-circularity of derivations !

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 265 / 653

Fitting Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΦP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΦP is stable model preserving

Hence, ΦP can be used for approximating stable models and so for
propagation in ASP-solvers

However, ΦP is still insufficient, because total fixpoints correspond to
supported models, not necessarily stable models

Note The problem is the same as with program completion

The missing piece is non-circularity of derivations !

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 265 / 653

Fitting Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΦP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΦP is stable model preserving

Hence, ΦP can be used for approximating stable models and so for
propagation in ASP-solvers

However, ΦP is still insufficient, because total fixpoints correspond to
supported models, not necessarily stable models

Note The problem is the same as with program completion

The missing piece is non-circularity of derivations !

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 265 / 653

Fitting Operator

Example

P =

{
a ← b
b ← a

}

Φ0
P〈∅, ∅〉 = 〈∅, ∅〉

Φ1
P〈∅, ∅〉 = 〈∅, ∅〉

That is, Fitting semantics cannot assign false to a and b,
although they can never become true !

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 266 / 653

Fitting Operator

Example

P =

{
a ← b
b ← a

}

Φ0
P〈∅, ∅〉 = 〈∅, ∅〉

Φ1
P〈∅, ∅〉 = 〈∅, ∅〉

That is, Fitting semantics cannot assign false to a and b,
although they can never become true !

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 266 / 653

Fitting Operator

Example

P =

{
a ← b
b ← a

}

Φ0
P〈∅, ∅〉 = 〈∅, ∅〉

Φ1
P〈∅, ∅〉 = 〈∅, ∅〉

That is, Fitting semantics cannot assign false to a and b,
although they can never become true !

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 266 / 653

Unfounded Sets

Outline

34 Partial Interpretations

35 Fitting Operator

36 Unfounded Sets

37 Well-Founded Operator

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 267 / 653

Unfounded Sets

Unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

A set U ⊆ A(P) is an unfounded set of P wrt 〈T ,F 〉,
if for each rule r ∈ P such that h(r) ∈ U, we have that

1 B(r)+ ∩ F 6= ∅ or B(r)− ∩ T 6= ∅ or
2 B(r)+ ∩ U 6= ∅

Intuitively, 〈T ,F 〉 is what we already know about P

Rules satisfying Condition 1 are not usable for further derivations

Condition 2 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 268 / 653

Unfounded Sets

Unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

A set U ⊆ A(P) is an unfounded set of P wrt 〈T ,F 〉,
if for each rule r ∈ P such that h(r) ∈ U, we have that

1 B(r)+ ∩ F 6= ∅ or B(r)− ∩ T 6= ∅ or
2 B(r)+ ∩ U 6= ∅

Intuitively, 〈T ,F 〉 is what we already know about P

Rules satisfying Condition 1 are not usable for further derivations

Condition 2 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 268 / 653

Unfounded Sets

Unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

A set U ⊆ A(P) is an unfounded set of P wrt 〈T ,F 〉,
if for each rule r ∈ P such that h(r) ∈ U, we have that

1 B(r)+ ∩ F 6= ∅ or B(r)− ∩ T 6= ∅ or
2 B(r)+ ∩ U 6= ∅

Intuitively, 〈T ,F 〉 is what we already know about P

Rules satisfying Condition 1 are not usable for further derivations

Condition 2 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 268 / 653

Unfounded Sets

Unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

A set U ⊆ A(P) is an unfounded set of P wrt 〈T ,F 〉,
if for each rule r ∈ P such that h(r) ∈ U, we have that

1 B(r)+ ∩ F 6= ∅ or B(r)− ∩ T 6= ∅ or
2 B(r)+ ∩ U 6= ∅

Intuitively, 〈T ,F 〉 is what we already know about P

Rules satisfying Condition 1 are not usable for further derivations

Condition 2 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 268 / 653

Unfounded Sets

Unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

A set U ⊆ A(P) is an unfounded set of P wrt 〈T ,F 〉,
if for each rule r ∈ P such that h(r) ∈ U, we have that

1 B(r)+ ∩ F 6= ∅ or B(r)− ∩ T 6= ∅ or
2 B(r)+ ∩ U 6= ∅

Intuitively, 〈T ,F 〉 is what we already know about P

Rules satisfying Condition 1 are not usable for further derivations

Condition 2 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 268 / 653

Unfounded Sets

Unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

A set U ⊆ A(P) is an unfounded set of P wrt 〈T ,F 〉,
if for each rule r ∈ P such that h(r) ∈ U, we have that

1 B(r)+ ∩ F 6= ∅ or B(r)− ∩ T 6= ∅ or
2 B(r)+ ∩ U 6= ∅

Intuitively, 〈T ,F 〉 is what we already know about P

Rules satisfying Condition 1 are not usable for further derivations

Condition 2 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 268 / 653

Unfounded Sets

Unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

A set U ⊆ A(P) is an unfounded set of P wrt 〈T ,F 〉,
if for each rule r ∈ P such that h(r) ∈ U, we have that

1 B(r)+ ∩ F 6= ∅ or B(r)− ∩ T 6= ∅ or
2 B(r)+ ∩ U 6= ∅

Intuitively, 〈T ,F 〉 is what we already know about P

Rules satisfying Condition 1 are not usable for further derivations

Condition 2 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 268 / 653

Unfounded Sets

Unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

A set U ⊆ A(P) is an unfounded set of P wrt 〈T ,F 〉,
if for each rule r ∈ P such that h(r) ∈ U, we have that

1 B(r)+ ∩ F 6= ∅ or B(r)− ∩ T 6= ∅ or
2 B(r)+ ∩ U 6= ∅

Intuitively, 〈T ,F 〉 is what we already know about P

Rules satisfying Condition 1 are not usable for further derivations

Condition 2 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 268 / 653

Unfounded Sets

Unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

A set U ⊆ A(P) is an unfounded set of P wrt 〈T ,F 〉,
if for each rule r ∈ P such that h(r) ∈ U, we have that

1 B(r)+ ∩ F 6= ∅ or B(r)− ∩ T 6= ∅ or
2 B(r)+ ∩ U 6= ∅

Intuitively, 〈T ,F 〉 is what we already know about P

Rules satisfying Condition 1 are not usable for further derivations

Condition 2 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 268 / 653

Unfounded Sets

Example

P =

{
a ← b
b ← a

}

∅ is an unfounded set (by definition)

{a} is not an unfounded set of P wrt 〈∅, ∅〉
{a} is an unfounded set of P wrt 〈∅, {b}〉
{a} is not an unfounded set of P wrt 〈{b}, ∅〉

Analogously for {b}

{a, b} is an unfounded set of P wrt 〈∅, ∅〉
{a, b} is an unfounded set of P wrt any partial interpretation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 269 / 653

Unfounded Sets

Example

P =

{
a ← b
b ← a

}

∅ is an unfounded set (by definition)

{a} is not an unfounded set of P wrt 〈∅, ∅〉
{a} is an unfounded set of P wrt 〈∅, {b}〉
{a} is not an unfounded set of P wrt 〈{b}, ∅〉

Analogously for {b}

{a, b} is an unfounded set of P wrt 〈∅, ∅〉
{a, b} is an unfounded set of P wrt any partial interpretation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 269 / 653

Unfounded Sets

Example

P =

{
a ← b
b ← a

}

∅ is an unfounded set (by definition)

{a} is not an unfounded set of P wrt 〈∅, ∅〉
{a} is an unfounded set of P wrt 〈∅, {b}〉
{a} is not an unfounded set of P wrt 〈{b}, ∅〉

Analogously for {b}

{a, b} is an unfounded set of P wrt 〈∅, ∅〉
{a, b} is an unfounded set of P wrt any partial interpretation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 269 / 653

Unfounded Sets

Example

P =

{
a ← b
b ← a

}

∅ is an unfounded set (by definition)

{a} is not an unfounded set of P wrt 〈∅, ∅〉
{a} is an unfounded set of P wrt 〈∅, {b}〉
{a} is not an unfounded set of P wrt 〈{b}, ∅〉

Analogously for {b}

{a, b} is an unfounded set of P wrt 〈∅, ∅〉
{a, b} is an unfounded set of P wrt any partial interpretation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 269 / 653

Unfounded Sets

Example

P =

{
a ← b
b ← a

}

∅ is an unfounded set (by definition)

{a} is not an unfounded set of P wrt 〈∅, ∅〉
{a} is an unfounded set of P wrt 〈∅, {b}〉
{a} is not an unfounded set of P wrt 〈{b}, ∅〉

Analogously for {b}

{a, b} is an unfounded set of P wrt 〈∅, ∅〉
{a, b} is an unfounded set of P wrt any partial interpretation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 269 / 653

Unfounded Sets

Example

P =

{
a ← b
b ← a

}

∅ is an unfounded set (by definition)

{a} is not an unfounded set of P wrt 〈∅, ∅〉
{a} is an unfounded set of P wrt 〈∅, {b}〉
{a} is not an unfounded set of P wrt 〈{b}, ∅〉

Analogously for {b}

{a, b} is an unfounded set of P wrt 〈∅, ∅〉
{a, b} is an unfounded set of P wrt any partial interpretation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 269 / 653

Unfounded Sets

Example

P =

{
a ← b
b ← a

}

∅ is an unfounded set (by definition)

{a} is not an unfounded set of P wrt 〈∅, ∅〉
{a} is an unfounded set of P wrt 〈∅, {b}〉
{a} is not an unfounded set of P wrt 〈{b}, ∅〉

Analogously for {b}

{a, b} is an unfounded set of P wrt 〈∅, ∅〉
{a, b} is an unfounded set of P wrt any partial interpretation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 269 / 653

Unfounded Sets

Example

P =

{
a ← b
b ← a

}

∅ is an unfounded set (by definition)

{a} is not an unfounded set of P wrt 〈∅, ∅〉
{a} is an unfounded set of P wrt 〈∅, {b}〉
{a} is not an unfounded set of P wrt 〈{b}, ∅〉

Analogously for {b}

{a, b} is an unfounded set of P wrt 〈∅, ∅〉
{a, b} is an unfounded set of P wrt any partial interpretation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 269 / 653

Unfounded Sets

Greatest unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation The union of two unfounded sets is an unfounded set

The greatest unfounded set of P wrt 〈T ,F 〉 is the union of all
unfounded sets of P wrt 〈T ,F 〉
It is denoted by UP〈T ,F 〉
Alternatively, we may define

UP〈T ,F 〉 = A(P) \ Cn({r ∈ P | B(r)+ ∩ F = ∅}T)

Note Cn({r ∈ P | B(r)+ ∩ F = ∅}T) contains all non-circularly
derivable atoms from P wrt 〈T ,F 〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 270 / 653

Unfounded Sets

Greatest unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation The union of two unfounded sets is an unfounded set

The greatest unfounded set of P wrt 〈T ,F 〉 is the union of all
unfounded sets of P wrt 〈T ,F 〉
It is denoted by UP〈T ,F 〉
Alternatively, we may define

UP〈T ,F 〉 = A(P) \ Cn({r ∈ P | B(r)+ ∩ F = ∅}T)

Note Cn({r ∈ P | B(r)+ ∩ F = ∅}T) contains all non-circularly
derivable atoms from P wrt 〈T ,F 〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 270 / 653

Unfounded Sets

Greatest unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation The union of two unfounded sets is an unfounded set

The greatest unfounded set of P wrt 〈T ,F 〉 is the union of all
unfounded sets of P wrt 〈T ,F 〉
It is denoted by UP〈T ,F 〉
Alternatively, we may define

UP〈T ,F 〉 = A(P) \ Cn({r ∈ P | B(r)+ ∩ F = ∅}T)

Note Cn({r ∈ P | B(r)+ ∩ F = ∅}T) contains all non-circularly
derivable atoms from P wrt 〈T ,F 〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 270 / 653

Unfounded Sets

Greatest unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation The union of two unfounded sets is an unfounded set

The greatest unfounded set of P wrt 〈T ,F 〉 is the union of all
unfounded sets of P wrt 〈T ,F 〉
It is denoted by UP〈T ,F 〉
Alternatively, we may define

UP〈T ,F 〉 = A(P) \ Cn({r ∈ P | B(r)+ ∩ F = ∅}T)

Note Cn({r ∈ P | B(r)+ ∩ F = ∅}T) contains all non-circularly
derivable atoms from P wrt 〈T ,F 〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 270 / 653

Unfounded Sets

Greatest unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation The union of two unfounded sets is an unfounded set

The greatest unfounded set of P wrt 〈T ,F 〉 is the union of all
unfounded sets of P wrt 〈T ,F 〉
It is denoted by UP〈T ,F 〉
Alternatively, we may define

UP〈T ,F 〉 = A(P) \ Cn({r ∈ P | B(r)+ ∩ F = ∅}T)

Note Cn({r ∈ P | B(r)+ ∩ F = ∅}T) contains all non-circularly
derivable atoms from P wrt 〈T ,F 〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 270 / 653

Unfounded Sets

Greatest unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation The union of two unfounded sets is an unfounded set

The greatest unfounded set of P wrt 〈T ,F 〉 is the union of all
unfounded sets of P wrt 〈T ,F 〉
It is denoted by UP〈T ,F 〉
Alternatively, we may define

UP〈T ,F 〉 = A(P) \ Cn({r ∈ P | B(r)+ ∩ F = ∅}T)

Note Cn({r ∈ P | B(r)+ ∩ F = ∅}T) contains all non-circularly
derivable atoms from P wrt 〈T ,F 〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 270 / 653

Well-Founded Operator

Outline

34 Partial Interpretations

35 Fitting Operator

36 Unfounded Sets

37 Well-Founded Operator

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 271 / 653

Well-Founded Operator

Well-founded operator

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation Condition 1 (in the definition of an unfounded set)
corresponds to FP〈T ,F 〉 of Fitting’s ΦP〈T ,F 〉
Idea Extend (negative part of) Fitting’s operator ΦP

That is,

keep definition of TP〈T ,F 〉 from ΦP〈T ,F 〉 and
replace FP〈T ,F 〉 from ΦP〈T ,F 〉 by UP〈T ,F 〉

In words, an atom must be false
if it belongs to the greatest unfounded set

Definition ΩP〈T ,F 〉 = 〈TP〈T ,F 〉,UP〈T ,F 〉〉
Property ΦP〈T ,F 〉 v ΩP〈T ,F 〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 272 / 653

Well-Founded Operator

Well-founded operator

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation Condition 1 (in the definition of an unfounded set)
corresponds to FP〈T ,F 〉 of Fitting’s ΦP〈T ,F 〉
Idea Extend (negative part of) Fitting’s operator ΦP

That is,

keep definition of TP〈T ,F 〉 from ΦP〈T ,F 〉 and
replace FP〈T ,F 〉 from ΦP〈T ,F 〉 by UP〈T ,F 〉

In words, an atom must be false
if it belongs to the greatest unfounded set

Definition ΩP〈T ,F 〉 = 〈TP〈T ,F 〉,UP〈T ,F 〉〉
Property ΦP〈T ,F 〉 v ΩP〈T ,F 〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 272 / 653

Well-Founded Operator

Well-founded operator

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation Condition 1 (in the definition of an unfounded set)
corresponds to FP〈T ,F 〉 of Fitting’s ΦP〈T ,F 〉
Idea Extend (negative part of) Fitting’s operator ΦP

That is,

keep definition of TP〈T ,F 〉 from ΦP〈T ,F 〉 and
replace FP〈T ,F 〉 from ΦP〈T ,F 〉 by UP〈T ,F 〉

In words, an atom must be false
if it belongs to the greatest unfounded set

Definition ΩP〈T ,F 〉 = 〈TP〈T ,F 〉,UP〈T ,F 〉〉
Property ΦP〈T ,F 〉 v ΩP〈T ,F 〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 272 / 653

Well-Founded Operator

Well-founded operator

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation Condition 1 (in the definition of an unfounded set)
corresponds to FP〈T ,F 〉 of Fitting’s ΦP〈T ,F 〉
Idea Extend (negative part of) Fitting’s operator ΦP

That is,

keep definition of TP〈T ,F 〉 from ΦP〈T ,F 〉 and
replace FP〈T ,F 〉 from ΦP〈T ,F 〉 by UP〈T ,F 〉

In words, an atom must be false
if it belongs to the greatest unfounded set

Definition ΩP〈T ,F 〉 = 〈TP〈T ,F 〉,UP〈T ,F 〉〉
Property ΦP〈T ,F 〉 v ΩP〈T ,F 〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 272 / 653

Well-Founded Operator

Well-founded operator

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation Condition 1 (in the definition of an unfounded set)
corresponds to FP〈T ,F 〉 of Fitting’s ΦP〈T ,F 〉
Idea Extend (negative part of) Fitting’s operator ΦP

That is,

keep definition of TP〈T ,F 〉 from ΦP〈T ,F 〉 and
replace FP〈T ,F 〉 from ΦP〈T ,F 〉 by UP〈T ,F 〉

In words, an atom must be false
if it belongs to the greatest unfounded set

Definition ΩP〈T ,F 〉 = 〈TP〈T ,F 〉,UP〈T ,F 〉〉
Property ΦP〈T ,F 〉 v ΩP〈T ,F 〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 272 / 653

Well-Founded Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Let’s iterate ΩP1 on 〈{c}, ∅〉:

ΩP〈{c}, ∅〉 = 〈{a}, {d , f }〉
ΩP〈{a}, {d , f }〉 = 〈{a, c}, {b, e, f }〉

ΩP〈{a, c}, {b, e, f }〉 = 〈{a}, {b, d , e, f }〉
ΩP〈{a}, {b, d , e, f }〉 = 〈{a, c}, {b, e, f }〉

...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 273 / 653

Well-Founded Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Let’s iterate ΩP1 on 〈{c}, ∅〉:

ΩP〈{c}, ∅〉 = 〈{a}, {d , f }〉
ΩP〈{a}, {d , f }〉 = 〈{a, c}, {b, e, f }〉

ΩP〈{a, c}, {b, e, f }〉 = 〈{a}, {b, d , e, f }〉
ΩP〈{a}, {b, d , e, f }〉 = 〈{a, c}, {b, e, f }〉

...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 273 / 653

Well-Founded Operator

Well-founded semantics

Define the iterative variant of ΩP analogously to ΦP :

Ω0
P〈T ,F 〉 = 〈T ,F 〉 Ωi+1

P 〈T ,F 〉 = ΩPΩi
P〈T ,F 〉

Define the well-founded semantics of a normal logic program P
as the partial interpretation:⊔

i≥0Ωi
P〈∅, ∅〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 274 / 653

Well-Founded Operator

Well-founded semantics

Define the iterative variant of ΩP analogously to ΦP :

Ω0
P〈T ,F 〉 = 〈T ,F 〉 Ωi+1

P 〈T ,F 〉 = ΩPΩi
P〈T ,F 〉

Define the well-founded semantics of a normal logic program P
as the partial interpretation:⊔

i≥0Ωi
P〈∅, ∅〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 274 / 653

Well-Founded Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Ω0〈∅, ∅〉 = 〈∅, ∅〉
Ω1〈∅, ∅〉 = Ω〈∅, ∅〉 = 〈{a}, {f }〉
Ω2〈∅, ∅〉 = Ω〈{a}, {f }〉 = 〈{a}, {b, e, f }〉
Ω3〈∅, ∅〉 = Ω〈{a}, {b, e, f }〉 = 〈{a}, {b, e, f }〉⊔

i≥0 Ωi 〈∅, ∅〉 = 〈{a}, {b, e, f }〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 275 / 653

Well-Founded Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Ω0〈∅, ∅〉 = 〈∅, ∅〉
Ω1〈∅, ∅〉 = Ω〈∅, ∅〉 = 〈{a}, {f }〉
Ω2〈∅, ∅〉 = Ω〈{a}, {f }〉 = 〈{a}, {b, e, f }〉
Ω3〈∅, ∅〉 = Ω〈{a}, {b, e, f }〉 = 〈{a}, {b, e, f }〉⊔

i≥0 Ωi 〈∅, ∅〉 = 〈{a}, {b, e, f }〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 275 / 653

Well-Founded Operator

Properties

Let P be a normal logic program

ΩP〈∅, ∅〉 is monotonic
That is, Ωi

P〈∅, ∅〉 v Ωi+1
P 〈∅, ∅〉

The well-founded semantics of P is

not conflicting,
and generally not total

We have
⊔

i≥0 Φi
P〈∅, ∅〉 v

⊔
i≥0 Ωi

P〈∅, ∅〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 276 / 653

Well-Founded Operator

Well-founded fixpoints

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Define 〈T ,F 〉 as a well-founded fixpoint of P if ΩP〈T ,F 〉 = 〈T ,F 〉

The well-founded semantics is the v-least well-founded fixpoint of P
Any other well-founded fixpoint extends the well-founded semantics
Total well-founded fixpoints correspond to stable models

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 277 / 653

Well-Founded Operator

Well-founded fixpoints

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Define 〈T ,F 〉 as a well-founded fixpoint of P if ΩP〈T ,F 〉 = 〈T ,F 〉

The well-founded semantics is the v-least well-founded fixpoint of P
Any other well-founded fixpoint extends the well-founded semantics
Total well-founded fixpoints correspond to stable models

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 277 / 653

Well-Founded Operator

Well-founded fixpoints: Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has two total well-founded fixpoints:

1 〈{a, c}, {b, d , e, f }〉
2 〈{a, d}, {b, c , e, f }〉

Both of them represent stable models

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 278 / 653

Well-Founded Operator

Well-founded fixpoints: Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has two total well-founded fixpoints:

1 〈{a, c}, {b, d , e, f }〉
2 〈{a, d}, {b, c , e, f }〉

Both of them represent stable models

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 278 / 653

Well-Founded Operator

Well-founded fixpoints: Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has two total well-founded fixpoints:

1 〈{a, c}, {b, d , e, f }〉
2 〈{a, d}, {b, c , e, f }〉

Both of them represent stable models

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 278 / 653

Well-Founded Operator

Well-founded fixpoints: Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has two total well-founded fixpoints:

1 〈{a, c}, {b, d , e, f }〉
2 〈{a, d}, {b, c , e, f }〉

Both of them represent stable models

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 278 / 653

Well-Founded Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΩP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΩP is stable model preserving

Hence, ΩP can be used for approximating stable models and so for
propagation in ASP-solvers

In contrast to ΦP , operator ΩP is sufficient for propagation because
total fixpoints correspond to stable models

Note In addition to ΩP , most ASP-solvers apply backward
propagation, originating from program completion
(although this is unnecessary from a formal point of view)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 279 / 653

Well-Founded Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΩP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΩP is stable model preserving

Hence, ΩP can be used for approximating stable models and so for
propagation in ASP-solvers

In contrast to ΦP , operator ΩP is sufficient for propagation because
total fixpoints correspond to stable models

Note In addition to ΩP , most ASP-solvers apply backward
propagation, originating from program completion
(although this is unnecessary from a formal point of view)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 279 / 653

Well-Founded Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΩP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΩP is stable model preserving

Hence, ΩP can be used for approximating stable models and so for
propagation in ASP-solvers

In contrast to ΦP , operator ΩP is sufficient for propagation because
total fixpoints correspond to stable models

Note In addition to ΩP , most ASP-solvers apply backward
propagation, originating from program completion
(although this is unnecessary from a formal point of view)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 279 / 653

Well-Founded Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΩP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΩP is stable model preserving

Hence, ΩP can be used for approximating stable models and so for
propagation in ASP-solvers

In contrast to ΦP , operator ΩP is sufficient for propagation because
total fixpoints correspond to stable models

Note In addition to ΩP , most ASP-solvers apply backward
propagation, originating from program completion
(although this is unnecessary from a formal point of view)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 279 / 653

Well-Founded Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΩP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΩP is stable model preserving

Hence, ΩP can be used for approximating stable models and so for
propagation in ASP-solvers

In contrast to ΦP , operator ΩP is sufficient for propagation because
total fixpoints correspond to stable models

Note In addition to ΩP , most ASP-solvers apply backward
propagation, originating from program completion
(although this is unnecessary from a formal point of view)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 279 / 653

Proof-theoretic Characterization:
Overview

38 Tableau Calculi

39 Tableau Calculi for ASP

40 Tableau Calculi characterizing ASP solvers

41 Proof complexity

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 280 / 653

Tableau Calculi

Outline

38 Tableau Calculi

39 Tableau Calculi for ASP

40 Tableau Calculi characterizing ASP solvers

41 Proof complexity

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 281 / 653

Tableau Calculi

Motivation

Goal Analyze computations in ASP solvers

Wanted A declarative and fine-grained instrument for
characterizing operations as well as strategies of ASP solvers

Idea View stable model computations as derivations in
an inference system

Consider Tableau-based proof systems for analyzing ASP solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 282 / 653

Tableau Calculi

Motivation

Goal Analyze computations in ASP solvers

Wanted A declarative and fine-grained instrument for
characterizing operations as well as strategies of ASP solvers

Idea View stable model computations as derivations in
an inference system

Consider Tableau-based proof systems for analyzing ASP solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 282 / 653

Tableau Calculi

Motivation

Goal Analyze computations in ASP solvers

Wanted A declarative and fine-grained instrument for
characterizing operations as well as strategies of ASP solvers

Idea View stable model computations as derivations in
an inference system

Consider Tableau-based proof systems for analyzing ASP solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 282 / 653

Tableau Calculi

Tableau calculi

Traditionally, tableau calculi are used for

automated theorem proving and
proof theoretical analysis

in classical as well as non-classical logics

General idea Given an input, prove some property by decomposition
Decomposition is done by applying deduction rules

For details, see Handbook of Tableau Methods, Kluwer, 1999

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 283 / 653

Tableau Calculi

General definitions

A tableau is a (mostly binary) tree

A branch in a tableau is a path from the root to a leaf

A branch containing γ1, . . . , γm can be extended by applying
tableau rules of form

γ1, . . . , γm
α1
...
αn

γ1, . . . , γm
β1 | . . . | βn

Rules of the former format append entries α1, . . . , αn to the branch

Rules of the latter format create multiple sub-branches for β1, . . . , βn

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 284 / 653

Tableau Calculi

General definitions

A tableau is a (mostly binary) tree

A branch in a tableau is a path from the root to a leaf

A branch containing γ1, . . . , γm can be extended by applying
tableau rules of form

γ1, . . . , γm
α1
...
αn

γ1, . . . , γm
β1 | . . . | βn

Rules of the former format append entries α1, . . . , αn to the branch

Rules of the latter format create multiple sub-branches for β1, . . . , βn

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 284 / 653

Tableau Calculi

General definitions

A tableau is a (mostly binary) tree

A branch in a tableau is a path from the root to a leaf

A branch containing γ1, . . . , γm can be extended by applying
tableau rules of form

γ1, . . . , γm
α1
...
αn

γ1, . . . , γm
β1 | . . . | βn

Rules of the former format append entries α1, . . . , αn to the branch

Rules of the latter format create multiple sub-branches for β1, . . . , βn

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 284 / 653

Tableau Calculi

Example

A simple tableau calculus for proving unsatisfiability of propositional
formulas, composed from ¬, ∧, and ∨, consists of rules

¬¬α
α

α1 ∧ α2

α1
α2

β1 ∨ β2

β1 | β2

All rules are semantically valid, when interpreting entries in a branch
conjunctively and distinct (sub-)branches as connected disjunctively

A propositional formula ϕ is unsatisfiable iff there is a tableau with
ϕ as the root node such that

1 all other entries can be produced by tableau rules and
2 every branch contains some formulas α and ¬α

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 285 / 653

Tableau Calculi

Example

A simple tableau calculus for proving unsatisfiability of propositional
formulas, composed from ¬, ∧, and ∨, consists of rules

¬¬α
α

α1 ∧ α2

α1
α2

β1 ∨ β2

β1 | β2

All rules are semantically valid, when interpreting entries in a branch
conjunctively and distinct (sub-)branches as connected disjunctively

A propositional formula ϕ is unsatisfiable iff there is a tableau with
ϕ as the root node such that

1 all other entries can be produced by tableau rules and
2 every branch contains some formulas α and ¬α

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 285 / 653

Tableau Calculi

Example

A simple tableau calculus for proving unsatisfiability of propositional
formulas, composed from ¬, ∧, and ∨, consists of rules

¬¬α
α

α1 ∧ α2

α1
α2

β1 ∨ β2

β1 | β2

All rules are semantically valid, when interpreting entries in a branch
conjunctively and distinct (sub-)branches as connected disjunctively

A propositional formula ϕ is unsatisfiable iff there is a tableau with
ϕ as the root node such that

1 all other entries can be produced by tableau rules and
2 every branch contains some formulas α and ¬α

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 285 / 653

Tableau Calculi

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 286 / 653

Tableau Calculi

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 286 / 653

Tableau Calculi

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 286 / 653

Tableau Calculi

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 286 / 653

Tableau Calculi

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 286 / 653

Tableau Calculi

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 286 / 653

Tableau Calculi

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 286 / 653

Tableau Calculi

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 286 / 653

Tableau Calculi

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 286 / 653

Tableau Calculi

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 286 / 653

Tableau Calculi

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 286 / 653

Tableau Calculi for ASP

Outline

38 Tableau Calculi

39 Tableau Calculi for ASP

40 Tableau Calculi characterizing ASP solvers

41 Proof complexity

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 287 / 653

Tableau Calculi for ASP

Tableaux and ASP

A tableau rule captures an elementary inference scheme in an
ASP solver

A branch in a tableau corresponds to a successful or unsuccessful
computation of a stable model

An entire tableau represents a traversal of the search space

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 288 / 653

Tableau Calculi for ASP

Tableaux and ASP

A tableau rule captures an elementary inference scheme in an
ASP solver

A branch in a tableau corresponds to a successful or unsuccessful
computation of a stable model

An entire tableau represents a traversal of the search space

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 288 / 653

Tableau Calculi for ASP

Tableaux and ASP

A tableau rule captures an elementary inference scheme in an
ASP solver

A branch in a tableau corresponds to a successful or unsuccessful
computation of a stable model

An entire tableau represents a traversal of the search space

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 288 / 653

Tableau Calculi for ASP

ASP-specific definitions

A (signed) tableau for a logic program P is a binary tree such that

the root node of the tree consists of the rules in P;
the other nodes in the tree are entries of the form Tv or Fv , called
signed literals, where v is a variable,
generated by extending a tableau using deduction rules (given below)

An entry Tv (Fv) reflects that variable v is true (false) in a
corresponding variable assignment

A set of signed literals constitutes a partial assignment

For a normal logic program P,

atoms of P in A(P) and
bodies of P in B(P)

can occur as variables in signed literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 289 / 653

Tableau Calculi for ASP

ASP-specific definitions

A (signed) tableau for a logic program P is a binary tree such that

the root node of the tree consists of the rules in P;
the other nodes in the tree are entries of the form Tv or Fv , called
signed literals, where v is a variable,
generated by extending a tableau using deduction rules (given below)

An entry Tv (Fv) reflects that variable v is true (false) in a
corresponding variable assignment

A set of signed literals constitutes a partial assignment

For a normal logic program P,

atoms of P in A(P) and
bodies of P in B(P)

can occur as variables in signed literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 289 / 653

Tableau Calculi for ASP

ASP-specific definitions

A (signed) tableau for a logic program P is a binary tree such that

the root node of the tree consists of the rules in P;
the other nodes in the tree are entries of the form Tv or Fv , called
signed literals, where v is a variable,
generated by extending a tableau using deduction rules (given below)

An entry Tv (Fv) reflects that variable v is true (false) in a
corresponding variable assignment

A set of signed literals constitutes a partial assignment

For a normal logic program P,

atoms of P in A(P) and
bodies of P in B(P)

can occur as variables in signed literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 289 / 653

Tableau Calculi for ASP

Tableau rules for ASP at a glance

(FTB)
p ← l1, . . . , ln

tl1, . . . , tln
T{l1, . . . , ln}

(BFB)
F{l1, . . . , li , . . . , ln}

tl1, . . . , tli−1, tli+1, . . . , tln
f li

(FTA)
p ← l1, . . . , ln
T{l1, . . . , ln}

Tp
(BFA)

p ← l1, . . . , ln
Fp

F{l1, . . . , ln}

(FFB)
p ← l1, . . . , li , . . . , ln

f li
F{l1, . . . , li , . . . , ln}

(BTB)
T{l1, . . . , li , . . . , ln}

tli

(FFA)
FB1, . . . ,FBm

Fp (§)
(BTA)

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

TBi
(§)

(WFN)
FB1, . . . ,FBm

Fp (†)
(WFJ)

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

TBi
(†)

(FL)
FB1, . . . ,FBm

Fp (‡)
(BL)

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

TBi
(‡)

(Cut[X])
Tv | Fv (][X])

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 290 / 653

Tableau Calculi for ASP

More concepts

A tableau calculus is a set of tableau rules

A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v

A branch in a tableau is total for a program P,
if it contains either Tv or Fv for each v ∈ A(P) ∪ B(P)

A branch in a tableau of some calculus T is closed,
if no rule in T other than Cut can produce any new entries

A branch in a tableau is complete,
if it is either conflicting or both total and closed

A tableau is complete, if all its branches are complete

A tableau of some calculus T is a refutation of T for a program P,
if every branch in the tableau is conflicting

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 291 / 653

Tableau Calculi for ASP

More concepts

A tableau calculus is a set of tableau rules

A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v

A branch in a tableau is total for a program P,
if it contains either Tv or Fv for each v ∈ A(P) ∪ B(P)

A branch in a tableau of some calculus T is closed,
if no rule in T other than Cut can produce any new entries

A branch in a tableau is complete,
if it is either conflicting or both total and closed

A tableau is complete, if all its branches are complete

A tableau of some calculus T is a refutation of T for a program P,
if every branch in the tableau is conflicting

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 291 / 653

Tableau Calculi for ASP

More concepts

A tableau calculus is a set of tableau rules

A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v

A branch in a tableau is total for a program P,
if it contains either Tv or Fv for each v ∈ A(P) ∪ B(P)

A branch in a tableau of some calculus T is closed,
if no rule in T other than Cut can produce any new entries

A branch in a tableau is complete,
if it is either conflicting or both total and closed

A tableau is complete, if all its branches are complete

A tableau of some calculus T is a refutation of T for a program P,
if every branch in the tableau is conflicting

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 291 / 653

Tableau Calculi for ASP

More concepts

A tableau calculus is a set of tableau rules

A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v

A branch in a tableau is total for a program P,
if it contains either Tv or Fv for each v ∈ A(P) ∪ B(P)

A branch in a tableau of some calculus T is closed,
if no rule in T other than Cut can produce any new entries

A branch in a tableau is complete,
if it is either conflicting or both total and closed

A tableau is complete, if all its branches are complete

A tableau of some calculus T is a refutation of T for a program P,
if every branch in the tableau is conflicting

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 291 / 653

Tableau Calculi for ASP

More concepts

A tableau calculus is a set of tableau rules

A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v

A branch in a tableau is total for a program P,
if it contains either Tv or Fv for each v ∈ A(P) ∪ B(P)

A branch in a tableau of some calculus T is closed,
if no rule in T other than Cut can produce any new entries

A branch in a tableau is complete,
if it is either conflicting or both total and closed

A tableau is complete, if all its branches are complete

A tableau of some calculus T is a refutation of T for a program P,
if every branch in the tableau is conflicting

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 291 / 653

Tableau Calculi for ASP

More concepts

A tableau calculus is a set of tableau rules

A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v

A branch in a tableau is total for a program P,
if it contains either Tv or Fv for each v ∈ A(P) ∪ B(P)

A branch in a tableau of some calculus T is closed,
if no rule in T other than Cut can produce any new entries

A branch in a tableau is complete,
if it is either conflicting or both total and closed

A tableau is complete, if all its branches are complete

A tableau of some calculus T is a refutation of T for a program P,
if every branch in the tableau is conflicting

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 291 / 653

Tableau Calculi for ASP

More concepts

A tableau calculus is a set of tableau rules

A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v

A branch in a tableau is total for a program P,
if it contains either Tv or Fv for each v ∈ A(P) ∪ B(P)

A branch in a tableau of some calculus T is closed,
if no rule in T other than Cut can produce any new entries

A branch in a tableau is complete,
if it is either conflicting or both total and closed

A tableau is complete, if all its branches are complete

A tableau of some calculus T is a refutation of T for a program P,
if every branch in the tableau is conflicting

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 291 / 653

Tableau Calculi for ASP

Example

Consider the program

P =

a←
c ← ∼b,∼d
d ← a,∼c

having stable models {a, c} and {a, d}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 292 / 653

Tableau Calculi for ASP

(Previewed) Example

a←
c ← ∼b,∼d
d ← a,∼c

(FTB) T∅
(FTA) Ta
(FFA) Fb

(Cut[A(P)]) Tc Fc
(BTA) T{∼b,∼d} (BFA) F{∼b,∼d}
(BTB) Fd (BFB) Td
(FFB) F{a,∼c} (FTB) T{a,∼c}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 293 / 653

Tableau Calculi for ASP

(Previewed) Example

a←
c ← ∼b,∼d
d ← a,∼c

(FTB) T∅
(FTA) Ta
(FFA) Fb

(Cut[A(P)]) Tc Fc
(BTA) T{∼b,∼d} (BFA) F{∼b,∼d}
(BTB) Fd (BFB) Td
(FFB) F{a,∼c} (FTB) T{a,∼c}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 293 / 653

Tableau Calculi for ASP

(Previewed) Example

a←
c ← ∼b,∼d
d ← a,∼c

(FTB) T∅
(FTA) Ta
(FFA) Fb

(Cut[A(P)]) Tc Fc
(BTA) T{∼b,∼d} (BFA) F{∼b,∼d}
(BTB) Fd (BFB) Td
(FFB) F{a,∼c} (FTB) T{a,∼c}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 293 / 653

Tableau Calculi for ASP

(Previewed) Example

a←
c ← ∼b,∼d
d ← a,∼c

(FTB) T∅
(FTA) Ta
(FFA) Fb

(Cut[A(P)]) Tc Fc
(BTA) T{∼b,∼d} (BFA) F{∼b,∼d}
(BTB) Fd (BFB) Td
(FFB) F{a,∼c} (FTB) T{a,∼c}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 293 / 653

Tableau Calculi for ASP

(Previewed) Example

a←
c ← ∼b,∼d
d ← a,∼c

(FTB) T∅
(FTA) Ta
(FFA) Fb

(Cut[A(P)]) Tc Fc
(BTA) T{∼b,∼d} (BFA) F{∼b,∼d}
(BTB) Fd (BFB) Td
(FFB) F{a,∼c} (FTB) T{a,∼c}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 293 / 653

Tableau Calculi for ASP

(Previewed) Example

a←
c ← ∼b,∼d
d ← a,∼c

(FTB) T∅
(FTA) Ta
(FFA) Fb

(Cut[A(P)]) Tc Fc
(BTA) T{∼b,∼d} (BFA) F{∼b,∼d}
(BTB) Fd (BFB) Td
(FFB) F{a,∼c} (FTB) T{a,∼c}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 293 / 653

Tableau Calculi for ASP

Auxiliary definitions

For a literal l , define conjugation functions t and f as follows

tl =

{
Tl if l is an atom
Fa if l = ∼a for an atom a

f l =

{
Fl if l is an atom
Ta if l = ∼a for an atom a

Examples ta = Ta, fa = Fa, t∼a = Fa, and f∼a = Ta

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 294 / 653

Tableau Calculi for ASP

Auxiliary definitions

For a literal l , define conjugation functions t and f as follows

tl =

{
Tl if l is an atom
Fa if l = ∼a for an atom a

f l =

{
Fl if l is an atom
Ta if l = ∼a for an atom a

Examples ta = Ta, fa = Fa, t∼a = Fa, and f∼a = Ta

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 294 / 653

Tableau Calculi for ASP

Auxiliary definitions

Some tableau rules require conditions for their application

Such conditions are specified as provisos

prerequisites
(proviso)

consequence
proviso: some condition(s)

Note All tableau rules given in the sequel are stable model preserving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 295 / 653

Tableau Calculi for ASP

Forward true body (FTB)

Prerequisites All of a body’s literals are true

Consequence The body is true

Tableau Rule FTB

p ← l1, . . . , ln
tl1, . . . , tln

T{l1, . . . , ln}

Example

a← b,∼c
Tb
Fc

T{b,∼c}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 296 / 653

Tableau Calculi for ASP

Forward true body (FTB)

Prerequisites All of a body’s literals are true

Consequence The body is true

Tableau Rule FTB

p ← l1, . . . , ln
tl1, . . . , tln

T{l1, . . . , ln}

Example

a← b,∼c
Tb
Fc

T{b,∼c}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 296 / 653

Tableau Calculi for ASP

Backward false body (BFB)

Prerequisites A body is false, and all its literals except for one are true

Consequence The residual body literal is false

Tableau Rule BFB

F{l1, . . . , li , . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li

Examples

F{b,∼c}
Tb

Tc

F{b,∼c}
Fc
Fb

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 297 / 653

Tableau Calculi for ASP

Backward false body (BFB)

Prerequisites A body is false, and all its literals except for one are true

Consequence The residual body literal is false

Tableau Rule BFB

F{l1, . . . , li , . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li

Examples

F{b,∼c}
Tb

Tc

F{b,∼c}
Fc
Fb

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 297 / 653

Tableau Calculi for ASP

Forward false body (FFB)

Prerequisites Some literal of a body is false

Consequence The body is false

Tableau Rule FFB

p ← l1, . . . , li , . . . , ln
f li

F{l1, . . . , li , . . . , ln}

Examples

a← b,∼c
Fb

F{b,∼c}

a← b,∼c
Tc

F{b,∼c}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 298 / 653

Tableau Calculi for ASP

Forward false body (FFB)

Prerequisites Some literal of a body is false

Consequence The body is false

Tableau Rule FFB

p ← l1, . . . , li , . . . , ln
f li

F{l1, . . . , li , . . . , ln}

Examples

a← b,∼c
Fb

F{b,∼c}

a← b,∼c
Tc

F{b,∼c}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 298 / 653

Tableau Calculi for ASP

Backward true body (BTB)

Prerequisites A body is true

Consequence The body’s literals are true

Tableau Rule BTB

T{l1, . . . , li , . . . , ln}
tli

Examples

T{b,∼c}
Tb

T{b,∼c}
Fc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 299 / 653

Tableau Calculi for ASP

Backward true body (BTB)

Prerequisites A body is true

Consequence The body’s literals are true

Tableau Rule BTB

T{l1, . . . , li , . . . , ln}
tli

Examples

T{b,∼c}
Tb

T{b,∼c}
Fc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 299 / 653

Tableau Calculi for ASP

Tableau rules for bodies

Consider rule body B = {l1, . . . , ln}

Rules FTB and BFB amount to implication

l1 ∧ · · · ∧ ln → B

Rules FFB and BTB amount to implication

B → l1 ∧ · · · ∧ ln

Together they yield

B ↔ l1 ∧ · · · ∧ ln

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 300 / 653

Tableau Calculi for ASP

Tableau rules for bodies

Consider rule body B = {l1, . . . , ln}

Rules FTB and BFB amount to implication

l1 ∧ · · · ∧ ln → B

Rules FFB and BTB amount to implication

B → l1 ∧ · · · ∧ ln

Together they yield

B ↔ l1 ∧ · · · ∧ ln

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 300 / 653

Tableau Calculi for ASP

Tableau rules for bodies

Consider rule body B = {l1, . . . , ln}

Rules FTB and BFB amount to implication

l1 ∧ · · · ∧ ln → B

Rules FFB and BTB amount to implication

B → l1 ∧ · · · ∧ ln

Together they yield

B ↔ l1 ∧ · · · ∧ ln

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 300 / 653

Tableau Calculi for ASP

Forward true atom (FTA)

Prerequisites Some of an atom’s bodies is true

Consequence The atom is true

Tableau Rule FTA

p ← l1, . . . , ln
T{l1, . . . , ln}

Tp

Examples

a← b,∼c
T{b,∼c}

Ta

a← d ,∼e
T{d ,∼e}

Ta

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 301 / 653

Tableau Calculi for ASP

Forward true atom (FTA)

Prerequisites Some of an atom’s bodies is true

Consequence The atom is true

Tableau Rule FTA

p ← l1, . . . , ln
T{l1, . . . , ln}

Tp

Examples

a← b,∼c
T{b,∼c}

Ta

a← d ,∼e
T{d ,∼e}

Ta

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 301 / 653

Tableau Calculi for ASP

Backward false atom (BFA)

Prerequisites An atom is false

Consequence The bodies of all rules with the atom as head are false

Tableau Rule BFA

p ← l1, . . . , ln
Fp

F{l1, . . . , ln}

Examples

a← b,∼c
Fa

F{b,∼c}

a← d ,∼e
Fa

F{d ,∼e}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 302 / 653

Tableau Calculi for ASP

Backward false atom (BFA)

Prerequisites An atom is false

Consequence The bodies of all rules with the atom as head are false

Tableau Rule BFA

p ← l1, . . . , ln
Fp

F{l1, . . . , ln}

Examples

a← b,∼c
Fa

F{b,∼c}

a← d ,∼e
Fa

F{d ,∼e}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 302 / 653

Tableau Calculi for ASP

Forward false atom (FFA)

Prerequisites For some atom, the bodies of all rules with the atom as
head are false

Consequence The atom is false

Tableau Rule FFA

FB1, . . . ,FBm
(BP(p) = {B1, . . . ,Bm})Fp

Example

F{b,∼c}
F{d ,∼e}

(BP(a) = {{b,∼c}, {d ,∼e}})Fa

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 303 / 653

Tableau Calculi for ASP

Forward false atom (FFA)

Prerequisites For some atom, the bodies of all rules with the atom as
head are false

Consequence The atom is false

Tableau Rule FFA

FB1, . . . ,FBm
(BP(p) = {B1, . . . ,Bm})Fp

Example

F{b,∼c}
F{d ,∼e}

(BP(a) = {{b,∼c}, {d ,∼e}})Fa

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 303 / 653

Tableau Calculi for ASP

Backward true atom (BTA)

Prerequisites An atom is true, and the bodies of all rules with the
atom as head except for one are false

Consequence The residual body is true

Tableau Rule BTA

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(BP(p) = {B1, . . . ,Bm})TBi

Examples

Ta
F{b,∼c}

(∗)T{d ,∼e}

Ta
F{d ,∼e}

(∗)T{b,∼c}

(∗) BP(a) = {{b,∼c}, {d ,∼e}}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 304 / 653

Tableau Calculi for ASP

Backward true atom (BTA)

Prerequisites An atom is true, and the bodies of all rules with the
atom as head except for one are false

Consequence The residual body is true

Tableau Rule BTA

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(BP(p) = {B1, . . . ,Bm})TBi

Examples

Ta
F{b,∼c}

(∗)T{d ,∼e}

Ta
F{d ,∼e}

(∗)T{b,∼c}

(∗) BP(a) = {{b,∼c}, {d ,∼e}}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 304 / 653

Tableau Calculi for ASP

Tableau rules for atoms

Consider an atom p such that BP(p) = {B1, . . . ,Bm}

Rules FTA and BFA amount to implication

B1 ∨ · · · ∨ Bm → p

Rules FFA and BTA amount to implication

p → B1 ∨ · · · ∨ Bm

Together they yield

p ↔ B1 ∨ · · · ∨ Bm

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 305 / 653

Tableau Calculi for ASP

Tableau rules for atoms

Consider an atom p such that BP(p) = {B1, . . . ,Bm}

Rules FTA and BFA amount to implication

B1 ∨ · · · ∨ Bm → p

Rules FFA and BTA amount to implication

p → B1 ∨ · · · ∨ Bm

Together they yield

p ↔ B1 ∨ · · · ∨ Bm

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 305 / 653

Tableau Calculi for ASP

Tableau rules for atoms

Consider an atom p such that BP(p) = {B1, . . . ,Bm}

Rules FTA and BFA amount to implication

B1 ∨ · · · ∨ Bm → p

Rules FFA and BTA amount to implication

p → B1 ∨ · · · ∨ Bm

Together they yield

p ↔ B1 ∨ · · · ∨ Bm

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 305 / 653

Tableau Calculi for ASP

Relationship with program completion

Let P be a normal logic program

The eight tableau rules introduced so far essentially provide
(straightforward) inferences from CF (P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 306 / 653

Tableau Calculi for ASP

Preliminaries for unfounded sets

Let P be a normal logic program

For P ′ ⊆ P, define the greatest unfounded set of P wrt P ′ as

UP(P ′) = A(P) \ Cn((P ′)∅)

For a loop L ∈ loop(P), define the external bodies of L as

EBP(L) = {B(r) | r ∈ P, h(r) ∈ L,B(r)+ ∩ L = ∅}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 307 / 653

Tableau Calculi for ASP

Preliminaries for unfounded sets

Let P be a normal logic program

For P ′ ⊆ P, define the greatest unfounded set of P wrt P ′ as

UP(P ′) = A(P) \ Cn((P ′)∅)

For a loop L ∈ loop(P), define the external bodies of L as

EBP(L) = {B(r) | r ∈ P, h(r) ∈ L,B(r)+ ∩ L = ∅}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 307 / 653

Tableau Calculi for ASP

Well-founded negation (WFN)

Prerequisites An atom is in the greatest unfounded set wrt rules
whose bodies are false

Consequence The atom is false

Tableau Rule WFN

FB1, . . . ,FBm
(p ∈ UP({r ∈ P | B(r) 6∈ {B1, . . . ,Bm}}))Fp

Examples

a← ∼b
F{∼b}

(∗)Fa

a← a
a← ∼b
F{∼b}

(∗)Fa

(∗) a ∈ UP(P \ {a← ∼b})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 308 / 653

Tableau Calculi for ASP

Well-founded negation (WFN)

Prerequisites An atom is in the greatest unfounded set wrt rules
whose bodies are false

Consequence The atom is false

Tableau Rule WFN

FB1, . . . ,FBm
(p ∈ UP({r ∈ P | B(r) 6∈ {B1, . . . ,Bm}}))Fp

Examples

a← ∼b
F{∼b}

(∗)Fa

a← a
a← ∼b
F{∼b}

(∗)Fa

(∗) a ∈ UP(P \ {a← ∼b})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 308 / 653

Tableau Calculi for ASP

Well-founded justification (WFJ)

Prerequisites A true atom is in the greatest unfounded set wrt rules
whose bodies are false, if a particular body is made false
Consequence The respective body is true
Tableau Rule WFJ

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(p ∈ UP({r ∈ P | B(r) 6∈ {B1, . . . ,Bm}}))TBi

Examples

a← ∼b
Ta

(∗)T{∼b}

a← a
a← ∼b

Ta
(∗)T{∼b}

(∗) a ∈ UP(P \ {a← ∼b})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 309 / 653

Tableau Calculi for ASP

Well-founded justification (WFJ)

Prerequisites A true atom is in the greatest unfounded set wrt rules
whose bodies are false, if a particular body is made false
Consequence The respective body is true
Tableau Rule WFJ

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(p ∈ UP({r ∈ P | B(r) 6∈ {B1, . . . ,Bm}}))TBi

Examples

a← ∼b
Ta

(∗)T{∼b}

a← a
a← ∼b

Ta
(∗)T{∼b}

(∗) a ∈ UP(P \ {a← ∼b})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 309 / 653

Tableau Calculi for ASP

Well-founded tableau rules

Tableau rules WFN and WFJ ensure non-circular support for true
atoms

Note

1 WFN subsumes falsifying atoms via FFA,
2 WFJ can be viewed as “backward propagation” for unfounded sets,
3 WFJ subsumes backward propagation of true atoms via BTA

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 310 / 653

Tableau Calculi for ASP

Well-founded tableau rules

Tableau rules WFN and WFJ ensure non-circular support for true
atoms

Note

1 WFN subsumes falsifying atoms via FFA,
2 WFJ can be viewed as “backward propagation” for unfounded sets,
3 WFJ subsumes backward propagation of true atoms via BTA

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 310 / 653

Tableau Calculi for ASP

Relationship with well-founded operator

Let P be a normal logic program, 〈T ,F 〉 a partial interpretation, and
P ′ = {r ∈ P | B(r)+ ∩ F = ∅ and B(r)− ∩ T = ∅}.

The following conditions are equivalent

1 p ∈ UP〈T ,F 〉
2 p ∈ UP(P ′)

Hence, the well-founded operator Ω and WFN coincide

Note In contrast to Ω, WFN does not necessarily require a rule body
to contain a false literal for the rule being inapplicable

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 311 / 653

Tableau Calculi for ASP

Relationship with well-founded operator

Let P be a normal logic program, 〈T ,F 〉 a partial interpretation, and
P ′ = {r ∈ P | B(r)+ ∩ F = ∅ and B(r)− ∩ T = ∅}.

The following conditions are equivalent

1 p ∈ UP〈T ,F 〉
2 p ∈ UP(P ′)

Hence, the well-founded operator Ω and WFN coincide

Note In contrast to Ω, WFN does not necessarily require a rule body
to contain a false literal for the rule being inapplicable

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 311 / 653

Tableau Calculi for ASP

Relationship with well-founded operator

Let P be a normal logic program, 〈T ,F 〉 a partial interpretation, and
P ′ = {r ∈ P | B(r)+ ∩ F = ∅ and B(r)− ∩ T = ∅}.

The following conditions are equivalent

1 p ∈ UP〈T ,F 〉
2 p ∈ UP(P ′)

Hence, the well-founded operator Ω and WFN coincide

Note In contrast to Ω, WFN does not necessarily require a rule body
to contain a false literal for the rule being inapplicable

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 311 / 653

Tableau Calculi for ASP

Relationship with well-founded operator

Let P be a normal logic program, 〈T ,F 〉 a partial interpretation, and
P ′ = {r ∈ P | B(r)+ ∩ F = ∅ and B(r)− ∩ T = ∅}.

The following conditions are equivalent

1 p ∈ UP〈T ,F 〉
2 p ∈ UP(P ′)

Hence, the well-founded operator Ω and WFN coincide

Note In contrast to Ω, WFN does not necessarily require a rule body
to contain a false literal for the rule being inapplicable

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 311 / 653

Tableau Calculi for ASP

Forward loop (FL)

Prerequisites The external bodies of a loop are false

Consequence The atoms in the loop are false

Tableau Rule FL

FB1, . . . ,FBm
(p ∈ L, L ∈ loop(P),EBP(L) = {B1, . . . ,Bm})Fp

Example

a← a
a← ∼b
F{∼b}

(EBP({a}) = {{∼b}})Fa

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 312 / 653

Tableau Calculi for ASP

Forward loop (FL)

Prerequisites The external bodies of a loop are false

Consequence The atoms in the loop are false

Tableau Rule FL

FB1, . . . ,FBm
(p ∈ L, L ∈ loop(P),EBP(L) = {B1, . . . ,Bm})Fp

Example

a← a
a← ∼b
F{∼b}

(EBP({a}) = {{∼b}})Fa

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 312 / 653

Tableau Calculi for ASP

Backward loop (BL)

Prerequisites An atom of a loop is true, and all external bodies except
for one are false

Consequence The residual external body is true

Tableau Rule BL

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(p ∈ L, L ∈ loop(P),EBP(L) = {B1, . . . ,Bm})TBi

Example

a← a
a← ∼b

Ta
(EBP({a}) = {{∼b}})T{∼b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 313 / 653

Tableau Calculi for ASP

Backward loop (BL)

Prerequisites An atom of a loop is true, and all external bodies except
for one are false

Consequence The residual external body is true

Tableau Rule BL

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(p ∈ L, L ∈ loop(P),EBP(L) = {B1, . . . ,Bm})TBi

Example

a← a
a← ∼b

Ta
(EBP({a}) = {{∼b}})T{∼b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 313 / 653

Tableau Calculi for ASP

Tableau rules for loops

Tableau rules FL and BL ensure non-circular support for true atoms

For a loop L such that EBP(L) = {B1, . . . ,Bm},
they amount to implications of form∨

p∈L p → B1 ∨ · · · ∨ Bm

Comparison to well-founded tableau rules yields

FL (plus FFA and FFB) is equivalent to WFN (plus FFB),
BL cannot simulate inferences via WFJ

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 314 / 653

Tableau Calculi for ASP

Tableau rules for loops

Tableau rules FL and BL ensure non-circular support for true atoms

For a loop L such that EBP(L) = {B1, . . . ,Bm},
they amount to implications of form∨

p∈L p → B1 ∨ · · · ∨ Bm

Comparison to well-founded tableau rules yields

FL (plus FFA and FFB) is equivalent to WFN (plus FFB),
BL cannot simulate inferences via WFJ

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 314 / 653

Tableau Calculi for ASP

Tableau rules for loops

Tableau rules FL and BL ensure non-circular support for true atoms

For a loop L such that EBP(L) = {B1, . . . ,Bm},
they amount to implications of form∨

p∈L p → B1 ∨ · · · ∨ Bm

Comparison to well-founded tableau rules yields

FL (plus FFA and FFB) is equivalent to WFN (plus FFB),
BL cannot simulate inferences via WFJ

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 314 / 653

Tableau Calculi for ASP

Relationship with loop formulas

Tableau rules FL and BL essentially provide (straightforward)
inferences from loop formulas

Impractical to precompute exponentially many loop formulas

In practice, ASP solvers such as smodels and clasp

exploit strongly connected components of positive atom
dependency graphs

can be viewed as an interpolation of FL

do not directly implement BL (and neither WFJ)

probably difficult to do efficiently

could simulate BL via FL/WFN by means of failed-literal detection
(lookahead)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 315 / 653

Tableau Calculi for ASP

Relationship with loop formulas

Tableau rules FL and BL essentially provide (straightforward)
inferences from loop formulas

Impractical to precompute exponentially many loop formulas

In practice, ASP solvers such as smodels and clasp

exploit strongly connected components of positive atom
dependency graphs

can be viewed as an interpolation of FL

do not directly implement BL (and neither WFJ)

probably difficult to do efficiently

could simulate BL via FL/WFN by means of failed-literal detection
(lookahead)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 315 / 653

Tableau Calculi for ASP

Relationship with loop formulas

Tableau rules FL and BL essentially provide (straightforward)
inferences from loop formulas

Impractical to precompute exponentially many loop formulas

In practice, ASP solvers such as smodels and clasp

exploit strongly connected components of positive atom
dependency graphs

can be viewed as an interpolation of FL

do not directly implement BL (and neither WFJ)

probably difficult to do efficiently

could simulate BL via FL/WFN by means of failed-literal detection
(lookahead)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 315 / 653

Tableau Calculi for ASP

Relationship with loop formulas

Tableau rules FL and BL essentially provide (straightforward)
inferences from loop formulas

Impractical to precompute exponentially many loop formulas

In practice, ASP solvers such as smodels and clasp

exploit strongly connected components of positive atom
dependency graphs

can be viewed as an interpolation of FL

do not directly implement BL (and neither WFJ)

probably difficult to do efficiently

could simulate BL via FL/WFN by means of failed-literal detection
(lookahead)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 315 / 653

Tableau Calculi for ASP

Case analysis by Cut

Up to now, all tableau rules are deterministic

That is, rules extend a single branch but cannot create sub-branches

In general, closing a branch leads to a partial assignment

Case analysis is done by Cut[C] where C ⊆ A(P) ∪ B(P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 316 / 653

Tableau Calculi for ASP

Case analysis by Cut

Up to now, all tableau rules are deterministic

That is, rules extend a single branch but cannot create sub-branches

In general, closing a branch leads to a partial assignment

Case analysis is done by Cut[C] where C ⊆ A(P) ∪ B(P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 316 / 653

Tableau Calculi for ASP

Case analysis by Cut

Up to now, all tableau rules are deterministic

That is, rules extend a single branch but cannot create sub-branches

In general, closing a branch leads to a partial assignment

Case analysis is done by Cut[C] where C ⊆ A(P) ∪ B(P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 316 / 653

Tableau Calculi for ASP

Case analysis by Cut

Prerequisites None

Consequence Two alternative (complementary) entries

Tableau Rule Cut[C]

(v ∈ C)Tv | Fv

Examples

a← ∼b
b ← ∼a

(C = A(P))Ta | Fa

a← ∼b
b ← ∼a

(C = B(P))T{∼b} | F{∼b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 317 / 653

Tableau Calculi for ASP

Case analysis by Cut

Prerequisites None

Consequence Two alternative (complementary) entries

Tableau Rule Cut[C]

(v ∈ C)Tv | Fv

Examples

a← ∼b
b ← ∼a

(C = A(P))Ta | Fa

a← ∼b
b ← ∼a

(C = B(P))T{∼b} | F{∼b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 317 / 653

Tableau Calculi for ASP

Well-known tableau calculi

Fitting’s operator Φ applies forward propagation without
sophisticated unfounded set checks

TΦ = {FTB,FTA,FFB,FFA}

Well-founded operator Ω replaces negation of single atoms with
negation of unfounded sets

TΩ = {FTB,FTA,FFB,WFN}

“Local” propagation via a program’s completion can be determined
by elementary inferences on atoms and rule bodies

Tcompletion = {FTB,FTA,FFB,FFA,BTB,BTA,BFB,BFA}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 318 / 653

Tableau Calculi for ASP

Well-known tableau calculi

Fitting’s operator Φ applies forward propagation without
sophisticated unfounded set checks

TΦ = {FTB,FTA,FFB,FFA}

Well-founded operator Ω replaces negation of single atoms with
negation of unfounded sets

TΩ = {FTB,FTA,FFB,WFN}

“Local” propagation via a program’s completion can be determined
by elementary inferences on atoms and rule bodies

Tcompletion = {FTB,FTA,FFB,FFA,BTB,BTA,BFB,BFA}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 318 / 653

Tableau Calculi for ASP

Well-known tableau calculi

Fitting’s operator Φ applies forward propagation without
sophisticated unfounded set checks

TΦ = {FTB,FTA,FFB,FFA}

Well-founded operator Ω replaces negation of single atoms with
negation of unfounded sets

TΩ = {FTB,FTA,FFB,WFN}

“Local” propagation via a program’s completion can be determined
by elementary inferences on atoms and rule bodies

Tcompletion = {FTB,FTA,FFB,FFA,BTB,BTA,BFB,BFA}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 318 / 653

Tableau Calculi characterizing ASP solvers

Outline

38 Tableau Calculi

39 Tableau Calculi for ASP

40 Tableau Calculi characterizing ASP solvers

41 Proof complexity

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 319 / 653

Tableau Calculi characterizing ASP solvers

Tableau calculi characterizing ASP solvers

ASP solvers combine propagation with case analysis

We obtain the following tableau calculi characterizing

Tcmodels-1 = Tcompletion ∪ {Cut[A(P) ∪ B(P)]}
Tassat = Tcompletion ∪ {FL} ∪ {Cut[A(P) ∪ B(P)]}
Tsmodels = Tcompletion ∪ {WFN} ∪ {Cut[A(P)]}
TnoMoRe = Tcompletion ∪ {WFN} ∪ {Cut[B(P)]}
Tnomore++ = Tcompletion ∪ {WFN} ∪ {Cut[A(P) ∪ B(P)]}

SAT-based ASP solvers, assat and cmodels,
incrementally add loop formulas to a program’s completion

Native ASP solvers, smodels, dlv, noMoRe, and nomore++,
essentially differ only in their Cut rules

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 320 / 653

Tableau Calculi characterizing ASP solvers

Tableau calculi characterizing ASP solvers

ASP solvers combine propagation with case analysis

We obtain the following tableau calculi characterizing

Tcmodels-1 = Tcompletion ∪ {Cut[A(P) ∪ B(P)]}
Tassat = Tcompletion ∪ {FL} ∪ {Cut[A(P) ∪ B(P)]}
Tsmodels = Tcompletion ∪ {WFN} ∪ {Cut[A(P)]}
TnoMoRe = Tcompletion ∪ {WFN} ∪ {Cut[B(P)]}
Tnomore++ = Tcompletion ∪ {WFN} ∪ {Cut[A(P) ∪ B(P)]}

SAT-based ASP solvers, assat and cmodels,
incrementally add loop formulas to a program’s completion

Native ASP solvers, smodels, dlv, noMoRe, and nomore++,
essentially differ only in their Cut rules

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 320 / 653

Tableau Calculi characterizing ASP solvers

Tableau calculi characterizing ASP solvers

ASP solvers combine propagation with case analysis

We obtain the following tableau calculi characterizing

Tcmodels-1 = Tcompletion ∪ {Cut[A(P) ∪ B(P)]}
Tassat = Tcompletion ∪ {FL} ∪ {Cut[A(P) ∪ B(P)]}
Tsmodels = Tcompletion ∪ {WFN} ∪ {Cut[A(P)]}
TnoMoRe = Tcompletion ∪ {WFN} ∪ {Cut[B(P)]}
Tnomore++ = Tcompletion ∪ {WFN} ∪ {Cut[A(P) ∪ B(P)]}

SAT-based ASP solvers, assat and cmodels,
incrementally add loop formulas to a program’s completion

Native ASP solvers, smodels, dlv, noMoRe, and nomore++,
essentially differ only in their Cut rules

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 320 / 653

Tableau Calculi characterizing ASP solvers

Tableau calculi characterizing ASP solvers

ASP solvers combine propagation with case analysis

We obtain the following tableau calculi characterizing

Tcmodels-1 = Tcompletion ∪ {Cut[A(P) ∪ B(P)]}
Tassat = Tcompletion ∪ {FL} ∪ {Cut[A(P) ∪ B(P)]}
Tsmodels = Tcompletion ∪ {WFN} ∪ {Cut[A(P)]}
TnoMoRe = Tcompletion ∪ {WFN} ∪ {Cut[B(P)]}
Tnomore++ = Tcompletion ∪ {WFN} ∪ {Cut[A(P) ∪ B(P)]}

SAT-based ASP solvers, assat and cmodels,
incrementally add loop formulas to a program’s completion

Native ASP solvers, smodels, dlv, noMoRe, and nomore++,
essentially differ only in their Cut rules

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 320 / 653

Proof complexity

Outline

38 Tableau Calculi

39 Tableau Calculi for ASP

40 Tableau Calculi characterizing ASP solvers

41 Proof complexity

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 321 / 653

Proof complexity

Proof complexity

Proof complexity is used for describing the relative efficiency of
different proof systems

It compares proof systems based on minimal refutations
It is independent of heuristics

A proof system T polynomially simulates a proof system T ′, if every
refutation of T ′ can be polynomially mapped to a refutation of T
Otherwise, T does not polynomially simulate T ′

For showing that proof system T does not polynomially simulate T ′,
we have to provide an infinite witnessing family of programs such that
minimal refutations of T asymptotically are exponentially larger than
minimal refutations of T ′

The size of tableaux is simply the number of their entries

We do not need to know the precise number of entries:
Counting required Cut applications is sufficient !

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 322 / 653

Proof complexity

Proof complexity

Proof complexity is used for describing the relative efficiency of
different proof systems

It compares proof systems based on minimal refutations
It is independent of heuristics

A proof system T polynomially simulates a proof system T ′, if every
refutation of T ′ can be polynomially mapped to a refutation of T
Otherwise, T does not polynomially simulate T ′

For showing that proof system T does not polynomially simulate T ′,
we have to provide an infinite witnessing family of programs such that
minimal refutations of T asymptotically are exponentially larger than
minimal refutations of T ′

The size of tableaux is simply the number of their entries

We do not need to know the precise number of entries:
Counting required Cut applications is sufficient !

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 322 / 653

Proof complexity

Proof complexity

Proof complexity is used for describing the relative efficiency of
different proof systems

It compares proof systems based on minimal refutations
It is independent of heuristics

A proof system T polynomially simulates a proof system T ′, if every
refutation of T ′ can be polynomially mapped to a refutation of T
Otherwise, T does not polynomially simulate T ′

For showing that proof system T does not polynomially simulate T ′,
we have to provide an infinite witnessing family of programs such that
minimal refutations of T asymptotically are exponentially larger than
minimal refutations of T ′

The size of tableaux is simply the number of their entries

We do not need to know the precise number of entries:
Counting required Cut applications is sufficient !

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 322 / 653

Proof complexity

Proof complexity

Proof complexity is used for describing the relative efficiency of
different proof systems

It compares proof systems based on minimal refutations
It is independent of heuristics

A proof system T polynomially simulates a proof system T ′, if every
refutation of T ′ can be polynomially mapped to a refutation of T
Otherwise, T does not polynomially simulate T ′

For showing that proof system T does not polynomially simulate T ′,
we have to provide an infinite witnessing family of programs such that
minimal refutations of T asymptotically are exponentially larger than
minimal refutations of T ′

The size of tableaux is simply the number of their entries

We do not need to know the precise number of entries:
Counting required Cut applications is sufficient !

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 322 / 653

Proof complexity

Proof complexity

Proof complexity is used for describing the relative efficiency of
different proof systems

It compares proof systems based on minimal refutations
It is independent of heuristics

A proof system T polynomially simulates a proof system T ′, if every
refutation of T ′ can be polynomially mapped to a refutation of T
Otherwise, T does not polynomially simulate T ′

For showing that proof system T does not polynomially simulate T ′,
we have to provide an infinite witnessing family of programs such that
minimal refutations of T asymptotically are exponentially larger than
minimal refutations of T ′

The size of tableaux is simply the number of their entries

We do not need to know the precise number of entries:
Counting required Cut applications is sufficient !

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 322 / 653

Proof complexity

Tsmodels versus TnoMoRe

Tsmodels restricts Cut to A(P) and TnoMoRe to B(P)
Are both approaches similar or is one of them superior to the other?

Let {Pn
a }, {Pn

b}, and {Pn
c } be infinite families of programs where

Pn
a =

x ← ∼x
x ← a1, b1

...
x ← an, bn

 Pn
b =

x ← c1, . . . , cn,∼x
c1 ← a1 c1 ← b1

...
...

cn ← an cn ← bn

 Pn
c =

a1 ← ∼b1

b1 ← ∼a1

...
an ← ∼bn
bn ← ∼an

In minimal refutations for Pn

a ∪ Pn
c , the number of applications of

Cut[B(Pn
a ∪ Pn

c)] with TnoMoRe is linear in n, whereas Tsmodels requires
exponentially many applications of Cut[A(Pn

a ∪ Pn
c)]

Vice versa, minimal refutations for Pn
b ∪ Pn

c require linearly many
applications of Cut[A(Pn

b ∪ Pn
c)] with Tsmodels and exponentially many

applications of Cut[B(Pn
b ∪ Pn

c)] with TnoMoRe

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 323 / 653

Proof complexity

Tsmodels versus TnoMoRe

Tsmodels restricts Cut to A(P) and TnoMoRe to B(P)
Are both approaches similar or is one of them superior to the other?

Let {Pn
a }, {Pn

b}, and {Pn
c } be infinite families of programs where

Pn
a =

x ← ∼x
x ← a1, b1

...
x ← an, bn

 Pn
b =

x ← c1, . . . , cn,∼x
c1 ← a1 c1 ← b1

...
...

cn ← an cn ← bn

 Pn
c =

a1 ← ∼b1

b1 ← ∼a1

...
an ← ∼bn
bn ← ∼an

In minimal refutations for Pn

a ∪ Pn
c , the number of applications of

Cut[B(Pn
a ∪ Pn

c)] with TnoMoRe is linear in n, whereas Tsmodels requires
exponentially many applications of Cut[A(Pn

a ∪ Pn
c)]

Vice versa, minimal refutations for Pn
b ∪ Pn

c require linearly many
applications of Cut[A(Pn

b ∪ Pn
c)] with Tsmodels and exponentially many

applications of Cut[B(Pn
b ∪ Pn

c)] with TnoMoRe

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 323 / 653

Proof complexity

Tsmodels versus TnoMoRe

Tsmodels restricts Cut to A(P) and TnoMoRe to B(P)
Are both approaches similar or is one of them superior to the other?

Let {Pn
a }, {Pn

b}, and {Pn
c } be infinite families of programs where

Pn
a =

x ← ∼x
x ← a1, b1

...
x ← an, bn

 Pn
b =

x ← c1, . . . , cn,∼x
c1 ← a1 c1 ← b1

...
...

cn ← an cn ← bn

 Pn
c =

a1 ← ∼b1

b1 ← ∼a1

...
an ← ∼bn
bn ← ∼an

In minimal refutations for Pn

a ∪ Pn
c , the number of applications of

Cut[B(Pn
a ∪ Pn

c)] with TnoMoRe is linear in n, whereas Tsmodels requires
exponentially many applications of Cut[A(Pn

a ∪ Pn
c)]

Vice versa, minimal refutations for Pn
b ∪ Pn

c require linearly many
applications of Cut[A(Pn

b ∪ Pn
c)] with Tsmodels and exponentially many

applications of Cut[B(Pn
b ∪ Pn

c)] with TnoMoRe

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 323 / 653

Proof complexity

Tsmodels versus TnoMoRe

Tsmodels restricts Cut to A(P) and TnoMoRe to B(P)
Are both approaches similar or is one of them superior to the other?

Let {Pn
a }, {Pn

b}, and {Pn
c } be infinite families of programs where

Pn
a =

x ← ∼x
x ← a1, b1

...
x ← an, bn

 Pn
b =

x ← c1, . . . , cn,∼x
c1 ← a1 c1 ← b1

...
...

cn ← an cn ← bn

 Pn
c =

a1 ← ∼b1

b1 ← ∼a1

...
an ← ∼bn
bn ← ∼an

In minimal refutations for Pn

a ∪ Pn
c , the number of applications of

Cut[B(Pn
a ∪ Pn

c)] with TnoMoRe is linear in n, whereas Tsmodels requires
exponentially many applications of Cut[A(Pn

a ∪ Pn
c)]

Vice versa, minimal refutations for Pn
b ∪ Pn

c require linearly many
applications of Cut[A(Pn

b ∪ Pn
c)] with Tsmodels and exponentially many

applications of Cut[B(Pn
b ∪ Pn

c)] with TnoMoRe

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 323 / 653

Proof complexity

Tsmodels versus TnoMoRe

Tsmodels restricts Cut to A(P) and TnoMoRe to B(P)
Are both approaches similar or is one of them superior to the other?

Let {Pn
a }, {Pn

b}, and {Pn
c } be infinite families of programs where

Pn
a =

x ← ∼x
x ← a1, b1

...
x ← an, bn

 Pn
b =

x ← c1, . . . , cn,∼x
c1 ← a1 c1 ← b1

...
...

cn ← an cn ← bn

 Pn
c =

a1 ← ∼b1

b1 ← ∼a1

...
an ← ∼bn
bn ← ∼an

In minimal refutations for Pn

a ∪ Pn
c , the number of applications of

Cut[B(Pn
a ∪ Pn

c)] with TnoMoRe is linear in n, whereas Tsmodels requires
exponentially many applications of Cut[A(Pn

a ∪ Pn
c)]

Vice versa, minimal refutations for Pn
b ∪ Pn

c require linearly many
applications of Cut[A(Pn

b ∪ Pn
c)] with Tsmodels and exponentially many

applications of Cut[B(Pn
b ∪ Pn

c)] with TnoMoRe

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 323 / 653

Proof complexity

Tsmodels versus TnoMoRe

Tsmodels restricts Cut to A(P) and TnoMoRe to B(P)
Are both approaches similar or is one of them superior to the other?

Let {Pn
a }, {Pn

b}, and {Pn
c } be infinite families of programs where

Pn
a =

x ← ∼x
x ← a1, b1

...
x ← an, bn

 Pn
b =

x ← c1, . . . , cn,∼x
c1 ← a1 c1 ← b1

...
...

cn ← an cn ← bn

 Pn
c =

a1 ← ∼b1

b1 ← ∼a1

...
an ← ∼bn
bn ← ∼an

In minimal refutations for Pn

a ∪ Pn
c , the number of applications of

Cut[B(Pn
a ∪ Pn

c)] with TnoMoRe is linear in n, whereas Tsmodels requires
exponentially many applications of Cut[A(Pn

a ∪ Pn
c)]

Vice versa, minimal refutations for Pn
b ∪ Pn

c require linearly many
applications of Cut[A(Pn

b ∪ Pn
c)] with Tsmodels and exponentially many

applications of Cut[B(Pn
b ∪ Pn

c)] with TnoMoRe

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 323 / 653

Proof complexity

Tsmodels versus TnoMoRe

Tsmodels restricts Cut to A(P) and TnoMoRe to B(P)
Are both approaches similar or is one of them superior to the other?

Let {Pn
a }, {Pn

b}, and {Pn
c } be infinite families of programs where

Pn
a =

x ← ∼x
x ← a1, b1

...
x ← an, bn

 Pn
b =

x ← c1, . . . , cn,∼x
c1 ← a1 c1 ← b1

...
...

cn ← an cn ← bn

 Pn
c =

a1 ← ∼b1

b1 ← ∼a1

...
an ← ∼bn
bn ← ∼an

In minimal refutations for Pn

a ∪ Pn
c , the number of applications of

Cut[B(Pn
a ∪ Pn

c)] with TnoMoRe is linear in n, whereas Tsmodels requires
exponentially many applications of Cut[A(Pn

a ∪ Pn
c)]

Vice versa, minimal refutations for Pn
b ∪ Pn

c require linearly many
applications of Cut[A(Pn

b ∪ Pn
c)] with Tsmodels and exponentially many

applications of Cut[B(Pn
b ∪ Pn

c)] with TnoMoRe

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 323 / 653

Proof complexity

Tsmodels versus TnoMoRe

Tsmodels restricts Cut to A(P) and TnoMoRe to B(P)
Are both approaches similar or is one of them superior to the other?

Let {Pn
a }, {Pn

b}, and {Pn
c } be infinite families of programs where

Pn
a =

x ← ∼x
x ← a1, b1

...
x ← an, bn

 Pn
b =

x ← c1, . . . , cn,∼x
c1 ← a1 c1 ← b1

...
...

cn ← an cn ← bn

 Pn
c =

a1 ← ∼b1

b1 ← ∼a1

...
an ← ∼bn
bn ← ∼an

In minimal refutations for Pn

a ∪ Pn
c , the number of applications of

Cut[B(Pn
a ∪ Pn

c)] with TnoMoRe is linear in n, whereas Tsmodels requires
exponentially many applications of Cut[A(Pn

a ∪ Pn
c)]

Vice versa, minimal refutations for Pn
b ∪ Pn

c require linearly many
applications of Cut[A(Pn

b ∪ Pn
c)] with Tsmodels and exponentially many

applications of Cut[B(Pn
b ∪ Pn

c)] with TnoMoRe

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 323 / 653

Proof complexity

Relative efficiency

As witnessed by {Pn
a ∪ Pn

c } and {Pn
b ∪ Pn

c }, respectively,
Tsmodels and TnoMoRe do not polynomially simulate one another

Any refutation of Tsmodels or TnoMoRe is a refutation of Tnomore++

(but not vice versa)

Hence

both Tsmodels and TnoMoRe are polynomially simulated by Tnomore++ and
Tnomore++ is polynomially simulated by neither Tsmodels nor TnoMoRe

More generally, the proof system obtained with Cut[A(P) ∪ B(P)] is
exponentially stronger than
the ones with either Cut[A(P)] or Cut[B(P)]

Case analyses (at least) on atoms and bodies are mandatory in
powerful ASP solvers

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 324 / 653

Proof complexity

Relative efficiency

As witnessed by {Pn
a ∪ Pn

c } and {Pn
b ∪ Pn

c }, respectively,
Tsmodels and TnoMoRe do not polynomially simulate one another

Any refutation of Tsmodels or TnoMoRe is a refutation of Tnomore++

(but not vice versa)

Hence

both Tsmodels and TnoMoRe are polynomially simulated by Tnomore++ and
Tnomore++ is polynomially simulated by neither Tsmodels nor TnoMoRe

More generally, the proof system obtained with Cut[A(P) ∪ B(P)] is
exponentially stronger than
the ones with either Cut[A(P)] or Cut[B(P)]

Case analyses (at least) on atoms and bodies are mandatory in
powerful ASP solvers

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 324 / 653

Proof complexity

Relative efficiency

As witnessed by {Pn
a ∪ Pn

c } and {Pn
b ∪ Pn

c }, respectively,
Tsmodels and TnoMoRe do not polynomially simulate one another

Any refutation of Tsmodels or TnoMoRe is a refutation of Tnomore++

(but not vice versa)

Hence

both Tsmodels and TnoMoRe are polynomially simulated by Tnomore++ and
Tnomore++ is polynomially simulated by neither Tsmodels nor TnoMoRe

More generally, the proof system obtained with Cut[A(P) ∪ B(P)] is
exponentially stronger than
the ones with either Cut[A(P)] or Cut[B(P)]

Case analyses (at least) on atoms and bodies are mandatory in
powerful ASP solvers

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 324 / 653

Proof complexity

Relative efficiency

As witnessed by {Pn
a ∪ Pn

c } and {Pn
b ∪ Pn

c }, respectively,
Tsmodels and TnoMoRe do not polynomially simulate one another

Any refutation of Tsmodels or TnoMoRe is a refutation of Tnomore++

(but not vice versa)

Hence

both Tsmodels and TnoMoRe are polynomially simulated by Tnomore++ and
Tnomore++ is polynomially simulated by neither Tsmodels nor TnoMoRe

More generally, the proof system obtained with Cut[A(P) ∪ B(P)] is
exponentially stronger than
the ones with either Cut[A(P)] or Cut[B(P)]

Case analyses (at least) on atoms and bodies are mandatory in
powerful ASP solvers

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 324 / 653

Proof complexity

Relative efficiency

As witnessed by {Pn
a ∪ Pn

c } and {Pn
b ∪ Pn

c }, respectively,
Tsmodels and TnoMoRe do not polynomially simulate one another

Any refutation of Tsmodels or TnoMoRe is a refutation of Tnomore++

(but not vice versa)

Hence

both Tsmodels and TnoMoRe are polynomially simulated by Tnomore++ and
Tnomore++ is polynomially simulated by neither Tsmodels nor TnoMoRe

More generally, the proof system obtained with Cut[A(P) ∪ B(P)] is
exponentially stronger than
the ones with either Cut[A(P)] or Cut[B(P)]

Case analyses (at least) on atoms and bodies are mandatory in
powerful ASP solvers

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 324 / 653

Proof complexity

Tsmodels: Example tableau

(r1) a← ∼b (r2) b ← d ,∼a (r3) c ← b, d
(r4) c ← g (r5) d ← c (r6) d ← g
(r7) e ← f ,∼c (r8) f ← ∼g (r9) g ← ∼a,∼f

(1) Ta [Cut]
(2) T{∼b} [BTA: r1, 1]
(3) Fb [BTB: 2]
(4) F{d,∼a} [BFA: r2, 3]
(5) F{∼a,∼f } [FFB: r9, 1]
(6) Fg [FFA: r9, 5]
(7) T{∼g} [FTB: r8, 6]
(8) Tf [FTA: r8, 7]
(9) F{b, d} [FFB: r3, 3]
(10) F{g} [FFB: r4, r6, 6]
(11) Fc [FFA: r3, r4, 9, 10]
(12) F{c} [FFB: r5, 11]
(13) Fd [FFA: r5, r6, 10, 12]
(14) T{f ,∼c} [FTB: r7, 8, 11]
(15) Te [FTA: r7, 14]

(16) Fa [Cut]
(17) F{∼b} [BFA: r1, 16]
(18) Tb [BFB: 17]
(19) T{d,∼a} [BTA: r2, 18]
(20) Td [BTB: 19]
(21) T{b, d} [FTB: r3, 18, 20]
(22) Tc [FTA: r3, 21]
(23) F{f ,∼c} [FFB: r7, 22]
(24) Fe [FFA: r7, 23]
(25) T{c} [FTB: r5, 22]

(26) Tf [Cut]
(27) F{∼a,∼f } [FFB: r9, 26]
(28) Fc [WFN: 27]

(29) Ff [Cut]
(30) T{∼a,∼f } [FTB: r9, 16, 29]
(31) Tg [FTA: r9, 30]
(32) T{g} [FTB: r4, r6, 31]
(33) F{∼g} [FFB: r8, 31]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 325 / 653

Proof complexity

TnoMoRe: Example tableau

(r1) a← ∼b (r2) b ← d ,∼a (r3) c ← b, d
(r4) c ← g (r5) d ← c (r6) d ← g
(r7) e ← f ,∼c (r8) f ← ∼g (r9) g ← ∼a,∼f

(1) T{∼b} [Cut]
(2) Ta [FTA: r1, 1]
(3) Fb [BTB: 1]
(4) F{d,∼a} [BFA: r2, 3]
(5) F{∼a,∼f } [FFB: r9, 2]
(6) Fg [FFA: r9, 5]
(7) T{∼g} [FTB: r8, 6]
(8) Tf [FTA: r8, 7]
(9) F{b, d} [FFB: r3, 3]
(10) F{g} [FFB: r4, r6, 6]
(11) Fc [FFA: r3, r4, 9, 10]
(12) F{c} [FFB: r5, 11]
(13) Fd [FFA: r5, r6, 10, 12]
(14) T{f ,∼c} [FTB: r7, 8, 11]
(15) Te [FTA: r7, 14]

(16) F{∼b} [Cut]
(17) Fa [FFA: r1, 16]
(18) Tb [BFB: 16]
(19) T{d,∼a} [BTA: r2, 18]
(20) Td [BTB: 19]
(21) T{b, d} [FTB: r3, 18, 20]
(22) Tc [FTA: r3, 21]
(23) F{f ,∼c} [FFB: r7, 22]
(24) Fe [FFA: r7, 23]
(25) T{c} [FTB: r5, 22]

(26) T{∼g} [Cut]
(27) Fg [BTB: 26]
(28) F{g} [FFB: r4, r6, 27]
(29) Fc [WFN: 28]

(30) F{∼g} [Cut]
(31) Tg [BFB: 30]
(32) T{g} [FTB: r4, r6, 31]
(33) Ff [FFA: r8, 30]
(34) T{∼a,∼f } [FTB: r9, 17, 33]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 326 / 653

Proof complexity

Tnomore++: Example tableau

(r1) a← ∼b (r2) b ← d ,∼a (r3) c ← b, d
(r4) c ← g (r5) d ← c (r6) d ← g
(r7) e ← f ,∼c (r8) f ← ∼g (r9) g ← ∼a,∼f

(1) Ta [Cut]
(2) T{∼b} [BTA: r1, 1]
(3) Fb [BTB: 2]
(4) F{d,∼a} [BFA: r2, 3]
(5) F{∼a,∼f } [FFB: r9, 1]
(6) Fg [FFA: r9, 5]
(7) T{∼g} [FTB: r8, 6]
(8) Tf [FTA: r8, 7]
(9) F{b, d} [FFB: r3, 3]
(10) F{g} [FFB: r4, r6, 6]
(11) Fc [FFA: r3, r4, 9, 10]
(12) F{c} [FFB: r5, 11]
(13) Fd [FFA: r5, r6, 10, 12]
(14) T{f ,∼c} [FTB: r7, 8, 11]
(15) Te [FTA: r7, 14]

(16) Fa [Cut]
(17) F{∼b} [BFA: r1, 16]
(18) Tb [BFB: 17]
(19) T{d,∼a} [BTA: r2, 18]
(20) Td [BTB: 19]
(21) T{b, d} [FTB: r3, 18, 20]
(22) Tc [FTA: r3, 21]
(23) F{f ,∼c} [FFB: r7, 22]
(24) Fe [FFA: r7, 23]
(25) T{c} [FTB: r5, 22]

(26) T{∼g} [Cut]
(27) Fg [BTB: 26]
(28) F{g} [FFB: r4, r6, 27]
(29) Fc [WFN: 28]

(30) F{∼g} [Cut]
(31) Tg [BFB: 30]
(32) T{g} [FTB: r4, r6, 31]
(33) Ff [FFA: r8, 30]
(34) T{∼a,∼f } [FTB: r9, 16, 33]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 327 / 653

Conflict-driven ASP Solving: Overview

42 Motivation

43 Boolean constraints

44 Nogoods from logic programs

45 Conflict-driven nogood learning

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 328 / 653

Motivation

Outline

42 Motivation

43 Boolean constraints

44 Nogoods from logic programs

45 Conflict-driven nogood learning

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 329 / 653

Motivation

Motivation

Goal Approach to computing stable models of logic programs,
based on concepts from

Constraint Processing (CP) and
Satisfiability Testing (SAT)

Idea View inferences in ASP as unit propagation on nogoods

Benefits

A uniform constraint-based framework for different
kinds of inferences in ASP
Advanced techniques from the areas of CP and SAT
Highly competitive implementation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 330 / 653

Boolean constraints

Outline

42 Motivation

43 Boolean constraints

44 Nogoods from logic programs

45 Conflict-driven nogood learning

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 331 / 653

Boolean constraints

Assignments

An assignment A over dom(A) = A(P) ∪ B(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 332 / 653

Boolean constraints

Assignments

An assignment A over dom(A) = A(P) ∪ B(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 332 / 653

Boolean constraints

Assignments

An assignment A over dom(A) = A(P) ∪ B(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 332 / 653

Boolean constraints

Assignments

An assignment A over dom(A) = A(P) ∪ B(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 332 / 653

Boolean constraints

Assignments

An assignment A over dom(A) = A(P) ∪ B(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 332 / 653

Boolean constraints

Assignments

An assignment A over dom(A) = A(P) ∪ B(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 332 / 653

Boolean constraints

Assignments

An assignment A over dom(A) = A(P) ∪ B(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 332 / 653

Boolean constraints

Nogoods, solutions, and unit propagation

A nogood is a set {σ1, . . . , σn} of signed literals,
expressing a constraint violated by any assignment
containing σ1, . . . , σn

An assignment A such that AT ∪ AF = dom(A) and AT ∩ AF = ∅
is a solution for a set ∆ of nogoods, if δ 6⊆ A for all δ ∈ ∆

For a nogood δ, a literal σ ∈ δ, and an assignment A, we say that
σ is unit-resulting for δ wrt A, if

1 δ \ A = {σ} and
2 σ 6∈ A

For a set ∆ of nogoods and an assignment A, unit propagation is the
iterated process of extending A with unit-resulting literals until no
further literal is unit-resulting for any nogood in ∆

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 333 / 653

Boolean constraints

Nogoods, solutions, and unit propagation

A nogood is a set {σ1, . . . , σn} of signed literals,
expressing a constraint violated by any assignment
containing σ1, . . . , σn

An assignment A such that AT ∪ AF = dom(A) and AT ∩ AF = ∅
is a solution for a set ∆ of nogoods, if δ 6⊆ A for all δ ∈ ∆

For a nogood δ, a literal σ ∈ δ, and an assignment A, we say that
σ is unit-resulting for δ wrt A, if

1 δ \ A = {σ} and
2 σ 6∈ A

For a set ∆ of nogoods and an assignment A, unit propagation is the
iterated process of extending A with unit-resulting literals until no
further literal is unit-resulting for any nogood in ∆

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 333 / 653

Boolean constraints

Nogoods, solutions, and unit propagation

A nogood is a set {σ1, . . . , σn} of signed literals,
expressing a constraint violated by any assignment
containing σ1, . . . , σn

An assignment A such that AT ∪ AF = dom(A) and AT ∩ AF = ∅
is a solution for a set ∆ of nogoods, if δ 6⊆ A for all δ ∈ ∆

For a nogood δ, a literal σ ∈ δ, and an assignment A, we say that
σ is unit-resulting for δ wrt A, if

1 δ \ A = {σ} and
2 σ 6∈ A

For a set ∆ of nogoods and an assignment A, unit propagation is the
iterated process of extending A with unit-resulting literals until no
further literal is unit-resulting for any nogood in ∆

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 333 / 653

Boolean constraints

Nogoods, solutions, and unit propagation

A nogood is a set {σ1, . . . , σn} of signed literals,
expressing a constraint violated by any assignment
containing σ1, . . . , σn

An assignment A such that AT ∪ AF = dom(A) and AT ∩ AF = ∅
is a solution for a set ∆ of nogoods, if δ 6⊆ A for all δ ∈ ∆

For a nogood δ, a literal σ ∈ δ, and an assignment A, we say that
σ is unit-resulting for δ wrt A, if

1 δ \ A = {σ} and
2 σ 6∈ A

For a set ∆ of nogoods and an assignment A, unit propagation is the
iterated process of extending A with unit-resulting literals until no
further literal is unit-resulting for any nogood in ∆

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 333 / 653

Nogoods from logic programs

Outline

42 Motivation

43 Boolean constraints

44 Nogoods from logic programs

45 Conflict-driven nogood learning

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 334 / 653

Nogoods from logic programs Nogoods from program completion

Outline

42 Motivation

43 Boolean constraints

44 Nogoods from logic programs
Nogoods from program completion
Nogoods from loop formulas

45 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 335 / 653

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

The completion of a logic program P can be defined as follows:

{vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an |
B ∈ B(P) and B = {a1, . . . , am,∼am+1, . . . ,∼an}}

∪ {a↔ vB1 ∨ · · · ∨ vBk
|

a ∈ A(P) and BP(a) = {B1, . . . ,Bk}} ,

where BP(a) = {B(r) | r ∈ P and h(r) = a}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 336 / 653

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

The (body-oriented) equivalence

vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

can be decomposed into two implications:

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 337 / 653

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

The (body-oriented) equivalence

vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

can be decomposed into two implications:

1 vB → a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an
is equivalent to the conjunction of

¬vB ∨ a1, . . . , ¬vB ∨ am, ¬vB ∨ ¬am+1, . . . , ¬vB ∨ ¬an

and induces the set of nogoods

∆(B) = { {TB,Fa1}, . . . , {TB,Fam}, {TB,Tam+1}, . . . , {TB,Tan} }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 337 / 653

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

The (body-oriented) equivalence

vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

can be decomposed into two implications:

2 a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an → vB

gives rise to the nogood

δ(B) = {FB,Ta1, . . . ,Tam,Fam+1, . . . ,Fan}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 337 / 653

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

Analogously, the (atom-oriented) equivalence

a↔ vB1 ∨ · · · ∨ vBk

yields the nogoods

1 ∆(a) = { {Fa,TB1}, . . . , {Fa,TBk} } and

2 δ(a) = {Ta,FB1, . . . ,FBk}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 338 / 653

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where BP(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with B(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 339 / 653

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where BP(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with B(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 339 / 653

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where BP(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with B(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 339 / 653

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where BP(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with B(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 339 / 653

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where BP(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with B(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 339 / 653

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where BP(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with B(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 339 / 653

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where BP(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with B(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 339 / 653

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where BP(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with B(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 339 / 653

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where BP(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with B(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 339 / 653

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where BP(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with B(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 339 / 653

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where BP(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with B(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 339 / 653

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where BP(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with B(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 339 / 653

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where BP(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with B(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 339 / 653

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where BP(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with B(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 339 / 653

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
body-oriented nogoods

For a body B = {a1, . . . , am,∼am+1, . . . ,∼an}, we get

{FB,Ta1, . . . ,Tam,Fam+1, . . . ,Fan}
{ {TB,Fa1}, . . . , {TB,Fam}, {TB,Tam+1}, . . . , {TB,Tan} }

Example Given Body {x ,∼y}, we obtain

. . .← x ,∼y...

. . .← x ,∼y

{F{x ,∼y},Tx ,Fy}
{ {T{x ,∼y},Fx}, {T{x ,∼y},Ty} }

For nogood δ({x ,∼y}) = {F{x ,∼y},Tx ,Fy}, the signed literal

T{x ,∼y} is unit-resulting wrt assignment (Tx ,Fy) and
Ty is unit-resulting wrt assignment (F{x ,∼y},Tx)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 340 / 653

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
body-oriented nogoods

For a body B = {a1, . . . , am,∼am+1, . . . ,∼an}, we get

{FB,Ta1, . . . ,Tam,Fam+1, . . . ,Fan}
{ {TB,Fa1}, . . . , {TB,Fam}, {TB,Tam+1}, . . . , {TB,Tan} }

Example Given Body {x ,∼y}, we obtain

. . .← x ,∼y...

. . .← x ,∼y

{F{x ,∼y},Tx ,Fy}
{ {T{x ,∼y},Fx}, {T{x ,∼y},Ty} }

For nogood δ({x ,∼y}) = {F{x ,∼y},Tx ,Fy}, the signed literal

T{x ,∼y} is unit-resulting wrt assignment (Tx ,Fy) and
Ty is unit-resulting wrt assignment (F{x ,∼y},Tx)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 340 / 653

Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
body-oriented nogoods

For a body B = {a1, . . . , am,∼am+1, . . . ,∼an}, we get

{FB,Ta1, . . . ,Tam,Fam+1, . . . ,Fan}
{ {TB,Fa1}, . . . , {TB,Fam}, {TB,Tam+1}, . . . , {TB,Tan} }

Example Given Body {x ,∼y}, we obtain

. . .← x ,∼y...

. . .← x ,∼y

{F{x ,∼y},Tx ,Fy}
{ {T{x ,∼y},Fx}, {T{x ,∼y},Ty} }

For nogood δ({x ,∼y}) = {F{x ,∼y},Tx ,Fy}, the signed literal

T{x ,∼y} is unit-resulting wrt assignment (Tx ,Fy) and
Ty is unit-resulting wrt assignment (F{x ,∼y},Tx)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 340 / 653

Nogoods from logic programs Nogoods from program completion

Characterization of stable models
for tight logic programs

Let P be a logic program and

∆P = {δ(a) | a ∈ A(P)} ∪ {δ ∈ ∆(a) | a ∈ A(P)}
∪ {δ(B) | B ∈ B(P)} ∪ {δ ∈ ∆(B) | B ∈ B(P)}

Theorem

Let P be a tight logic program. Then,
X ⊆ A(P) is a stable model of P iff
X = AT ∩ A(P) for a (unique) solution A for ∆P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 341 / 653

Nogoods from logic programs Nogoods from program completion

Characterization of stable models
for tight logic programs

Let P be a logic program and

∆P = {δ(a) | a ∈ A(P)} ∪ {δ ∈ ∆(a) | a ∈ A(P)}
∪ {δ(B) | B ∈ B(P)} ∪ {δ ∈ ∆(B) | B ∈ B(P)}

Theorem

Let P be a tight logic program. Then,
X ⊆ A(P) is a stable model of P iff
X = AT ∩ A(P) for a (unique) solution A for ∆P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 341 / 653

Nogoods from logic programs Nogoods from program completion

Characterization of stable models
for tight logic programs, ie. free of positive recursion

Let P be a logic program and

∆P = {δ(a) | a ∈ A(P)} ∪ {δ ∈ ∆(a) | a ∈ A(P)}
∪ {δ(B) | B ∈ B(P)} ∪ {δ ∈ ∆(B) | B ∈ B(P)}

Theorem

Let P be a tight logic program. Then,
X ⊆ A(P) is a stable model of P iff
X = AT ∩ A(P) for a (unique) solution A for ∆P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 341 / 653

Nogoods from logic programs Nogoods from loop formulas

Outline

42 Motivation

43 Boolean constraints

44 Nogoods from logic programs
Nogoods from program completion
Nogoods from loop formulas

45 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 342 / 653

Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
via loop formulas

Let P be a normal logic program and recall that:

For L ⊆ A(P), the external supports of L for P are

ESP(L) = {r ∈ P | h(r) ∈ L and B(r)+ ∩ L = ∅}
The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

A∈LA
)
→
(∨

r∈ESP(L)B(r)
)

↔
(∧

r∈ESP(L)¬B(r)
)
→
(∧

A∈L¬A
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

The external bodies of L for P are

EBP(L) = {B(r) | r ∈ ESP(L)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 343 / 653

Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
via loop formulas

Let P be a normal logic program and recall that:

For L ⊆ A(P), the external supports of L for P are

ESP(L) = {r ∈ P | h(r) ∈ L and B(r)+ ∩ L = ∅}
The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

A∈LA
)
→
(∨

r∈ESP(L)B(r)
)

↔
(∧

r∈ESP(L)¬B(r)
)
→
(∧

A∈L¬A
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

The external bodies of L for P are

EBP(L) = {B(r) | r ∈ ESP(L)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 343 / 653

Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
via loop formulas

Let P be a normal logic program and recall that:

For L ⊆ A(P), the external supports of L for P are

ESP(L) = {r ∈ P | h(r) ∈ L and B(r)+ ∩ L = ∅}
The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

A∈LA
)
→
(∨

r∈ESP(L)B(r)
)

↔
(∧

r∈ESP(L)¬B(r)
)
→
(∧

A∈L¬A
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

The external bodies of L for P are

EBP(L) = {B(r) | r ∈ ESP(L)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 343 / 653

Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
loop nogoods

For a logic program P and some ∅ ⊂ U ⊆ A(P),
define the loop nogood of an atom a ∈ U as

λ(a,U) = {Ta,FB1, . . . ,FBk}
where EBP(U) = {B1, . . . ,Bk}

We get the following set of loop nogoods for P:

ΛP =
⋃
∅⊂U⊆A(P){λ(a,U) | a ∈ U}

The set ΛP of loop nogoods denies cyclic support among true atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 344 / 653

Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
loop nogoods

For a logic program P and some ∅ ⊂ U ⊆ A(P),
define the loop nogood of an atom a ∈ U as

λ(a,U) = {Ta,FB1, . . . ,FBk}
where EBP(U) = {B1, . . . ,Bk}

We get the following set of loop nogoods for P:

ΛP =
⋃
∅⊂U⊆A(P){λ(a,U) | a ∈ U}

The set ΛP of loop nogoods denies cyclic support among true atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 344 / 653

Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
loop nogoods

For a logic program P and some ∅ ⊂ U ⊆ A(P),
define the loop nogood of an atom a ∈ U as

λ(a,U) = {Ta,FB1, . . . ,FBk}
where EBP(U) = {B1, . . . ,Bk}

We get the following set of loop nogoods for P:

ΛP =
⋃
∅⊂U⊆A(P){λ(a,U) | a ∈ U}

The set ΛP of loop nogoods denies cyclic support among true atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 344 / 653

Nogoods from logic programs Nogoods from loop formulas

Example

Consider the program x ← ∼y
y ← ∼x

u ← x
u ← v
v ← u, y

For u in the set {u, v}, we obtain the loop nogood:

λ(u, {u, v}) = {Tu,F{x}}
Similarly for v in {u, v}, we get:

λ(v , {u, v}) = {Tv ,F{x}}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 345 / 653

Nogoods from logic programs Nogoods from loop formulas

Example

Consider the program x ← ∼y
y ← ∼x

u ← x
u ← v
v ← u, y

For u in the set {u, v}, we obtain the loop nogood:

λ(u, {u, v}) = {Tu,F{x}}
Similarly for v in {u, v}, we get:

λ(v , {u, v}) = {Tv ,F{x}}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 345 / 653

Nogoods from logic programs Nogoods from loop formulas

Example

Consider the program x ← ∼y
y ← ∼x

u ← x
u ← v
v ← u, y

For u in the set {u, v}, we obtain the loop nogood:

λ(u, {u, v}) = {Tu,F{x}}
Similarly for v in {u, v}, we get:

λ(v , {u, v}) = {Tv ,F{x}}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 345 / 653

Nogoods from logic programs Nogoods from loop formulas

Characterization of stable models

Theorem

Let P be a logic program. Then,
X ⊆ A(P) is a stable model of P iff
X = AT ∩ A(P) for a (unique) solution A for ∆P ∪ ΛP

Some remarks

Nogoods in ΛP augment ∆P with conditions checking
for unfounded sets, in particular, those being loops
While |∆P | is linear in the size of P, ΛP may contain
exponentially many (non-redundant) loop nogoods

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 346 / 653

Nogoods from logic programs Nogoods from loop formulas

Characterization of stable models

Theorem

Let P be a logic program. Then,
X ⊆ A(P) is a stable model of P iff
X = AT ∩ A(P) for a (unique) solution A for ∆P ∪ ΛP

Some remarks

Nogoods in ΛP augment ∆P with conditions checking
for unfounded sets, in particular, those being loops
While |∆P | is linear in the size of P, ΛP may contain
exponentially many (non-redundant) loop nogoods

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 346 / 653

Conflict-driven nogood learning

Outline

42 Motivation

43 Boolean constraints

44 Nogoods from logic programs

45 Conflict-driven nogood learning

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 347 / 653

Conflict-driven nogood learning

Towards conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:

Traditional DPLL-style approach
(DPLL stands for ‘Davis-Putnam-Logemann-Loveland’)

(Unit) propagation
(Chronological) backtracking

in ASP, eg smodels

Modern CDCL-style approach
(CDCL stands for ‘Conflict-Driven Constraint Learning’)

(Unit) propagation
Conflict analysis (via resolution)
Learning + Backjumping + Assertion

in ASP, eg clasp

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 348 / 653

Conflict-driven nogood learning

DPLL-style solving

loop

propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

backtrack // unassign literals propagated after last decision
flip // assign complement of last decision literal

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 349 / 653

Conflict-driven nogood learning

CDCL-style solving

loop

propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 350 / 653

Conflict-driven nogood learning CDNL-ASP Algorithm

Outline

42 Motivation

43 Boolean constraints

44 Nogoods from logic programs
Nogoods from program completion
Nogoods from loop formulas

45 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 351 / 653

Conflict-driven nogood learning CDNL-ASP Algorithm

Outline of CDNL-ASP algorithm

Keep track of deterministic consequences by unit propagation on:

Program completion [∆P]
Loop nogoods, determined and recorded on demand [ΛP]
Dynamic nogoods, derived from conflicts and unfounded sets [∇]

When a nogood in ∆P ∪∇ becomes violated:

Analyze the conflict by resolution
(until reaching a Unique Implication Point, short: UIP)
Learn the derived conflict nogood δ
Backjump to the earliest (heuristic) choice such that the
complement of the UIP is unit-resulting for δ
Assert the complement of the UIP and proceed
(by unit propagation)

Terminate when either:

Finding a stable model (a solution for ∆P ∪ ΛP)
Deriving a conflict independently of (heuristic) choices

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 352 / 653

Conflict-driven nogood learning CDNL-ASP Algorithm

Outline of CDNL-ASP algorithm

Keep track of deterministic consequences by unit propagation on:

Program completion [∆P]
Loop nogoods, determined and recorded on demand [ΛP]
Dynamic nogoods, derived from conflicts and unfounded sets [∇]

When a nogood in ∆P ∪∇ becomes violated:

Analyze the conflict by resolution
(until reaching a Unique Implication Point, short: UIP)
Learn the derived conflict nogood δ
Backjump to the earliest (heuristic) choice such that the
complement of the UIP is unit-resulting for δ
Assert the complement of the UIP and proceed
(by unit propagation)

Terminate when either:

Finding a stable model (a solution for ∆P ∪ ΛP)
Deriving a conflict independently of (heuristic) choices

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 352 / 653

Conflict-driven nogood learning CDNL-ASP Algorithm

Outline of CDNL-ASP algorithm

Keep track of deterministic consequences by unit propagation on:

Program completion [∆P]
Loop nogoods, determined and recorded on demand [ΛP]
Dynamic nogoods, derived from conflicts and unfounded sets [∇]

When a nogood in ∆P ∪∇ becomes violated:

Analyze the conflict by resolution
(until reaching a Unique Implication Point, short: UIP)
Learn the derived conflict nogood δ
Backjump to the earliest (heuristic) choice such that the
complement of the UIP is unit-resulting for δ
Assert the complement of the UIP and proceed
(by unit propagation)

Terminate when either:

Finding a stable model (a solution for ∆P ∪ ΛP)
Deriving a conflict independently of (heuristic) choices

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 352 / 653

Conflict-driven nogood learning CDNL-ASP Algorithm

Algorithm 1: CDNL-ASP

Input : A normal program P
Output : A stable model of P or “no stable model”

A := ∅ // assignment over A(P) ∪ B(P)
∇ := ∅ // set of recorded nogoods
dl := 0 // decision level

loop
(A,∇) := NogoodPropagation(P,∇,A)
if ε ⊆ A for some ε ∈ ∆P ∪∇ then // conflict

if max({dlevel(σ) | σ ∈ ε} ∪ {0}) = 0 then return no stable model

(δ, dl) := ConflictAnalysis(ε,P,∇,A)
∇ := ∇∪ {δ} // (temporarily) record conflict nogood
A := A \ {σ ∈ A | dl < dlevel(σ)} // backjumping

else if AT ∪ AF = A(P) ∪ B(P) then // stable model
return AT ∩ A(P)

else
σd := Select(P,∇,A) // decision
dl := dl + 1
dlevel(σd) := dl
A := A ◦ σd

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 353 / 653

Conflict-driven nogood learning CDNL-ASP Algorithm

Observations

Decision level dl , initially set to 0, is used to count the number of
heuristically chosen literals in assignment A

For a heuristically chosen literal σd = Ta or σd = Fa, respectively, we
require a ∈ (A(P) ∪ B(P)) \ (AT ∪ AF)

For any literal σ ∈ A, dl(σ) denotes the decision level of σ, viz. the
value dl had when σ was assigned

A conflict is detected from violation of a nogood ε ⊆ ∆P ∪∇
A conflict at decision level 0 (where A contains no heuristically
chosen literals) indicates non-existence of stable models

A nogood δ derived by conflict analysis is asserting, that is,
some literal is unit-resulting for δ at a decision level k < dl

After learning δ and backjumping to decision level k,
at least one literal is newly derivable by unit propagation
No explicit flipping of heuristically chosen literals !

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 354 / 653

Conflict-driven nogood learning CDNL-ASP Algorithm

Observations

Decision level dl , initially set to 0, is used to count the number of
heuristically chosen literals in assignment A

For a heuristically chosen literal σd = Ta or σd = Fa, respectively, we
require a ∈ (A(P) ∪ B(P)) \ (AT ∪ AF)

For any literal σ ∈ A, dl(σ) denotes the decision level of σ, viz. the
value dl had when σ was assigned

A conflict is detected from violation of a nogood ε ⊆ ∆P ∪∇
A conflict at decision level 0 (where A contains no heuristically
chosen literals) indicates non-existence of stable models

A nogood δ derived by conflict analysis is asserting, that is,
some literal is unit-resulting for δ at a decision level k < dl

After learning δ and backjumping to decision level k,
at least one literal is newly derivable by unit propagation
No explicit flipping of heuristically chosen literals !

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 354 / 653

Conflict-driven nogood learning CDNL-ASP Algorithm

Observations

Decision level dl , initially set to 0, is used to count the number of
heuristically chosen literals in assignment A

For a heuristically chosen literal σd = Ta or σd = Fa, respectively, we
require a ∈ (A(P) ∪ B(P)) \ (AT ∪ AF)

For any literal σ ∈ A, dl(σ) denotes the decision level of σ, viz. the
value dl had when σ was assigned

A conflict is detected from violation of a nogood ε ⊆ ∆P ∪∇
A conflict at decision level 0 (where A contains no heuristically
chosen literals) indicates non-existence of stable models

A nogood δ derived by conflict analysis is asserting, that is,
some literal is unit-resulting for δ at a decision level k < dl

After learning δ and backjumping to decision level k,
at least one literal is newly derivable by unit propagation
No explicit flipping of heuristically chosen literals !

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 354 / 653

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu

2 F{∼x ,∼y}
Fw {Tw ,F{∼x ,∼y}} = δ(w)

3 F{∼y}
Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 355 / 653

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu

2 F{∼x ,∼y}
Fw {Tw ,F{∼x ,∼y}} = δ(w)

3 F{∼y}
Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 355 / 653

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu

2 F{∼x ,∼y}
Fw {Tw ,F{∼x ,∼y}} = δ(w)

3 F{∼y}
Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 355 / 653

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu

2 F{∼x ,∼y}
Fw {Tw ,F{∼x ,∼y}} = δ(w)

3 F{∼y}
Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 355 / 653

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu

2 F{∼x ,∼y}
Fw {Tw ,F{∼x ,∼y}} = δ(w)

3 F{∼y}
Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 355 / 653

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu

2 F{∼x ,∼y}
Fw {Tw ,F{∼x ,∼y}} = δ(w)

3 F{∼y}
Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 355 / 653

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu

2 F{∼x ,∼y}
Fw {Tw ,F{∼x ,∼y}} = δ(w)

3 F{∼y}
Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 355 / 653

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu
Tx {Tu,Fx} ∈ ∇
...

...
Tv {Fv ,T{x}} ∈ ∆(v)
Fy {Ty ,F{∼x}} = δ(y)
Fw {Tw ,F{∼x ,∼y}} = δ(w)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 356 / 653

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu
Tx {Tu,Fx} ∈ ∇
...

...
Tv {Fv ,T{x}} ∈ ∆(v)
Fy {Ty ,F{∼x}} = δ(y)
Fw {Tw ,F{∼x ,∼y}} = δ(w)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 356 / 653

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu
Tx {Tu,Fx} ∈ ∇
...

...
Tv {Fv ,T{x}} ∈ ∆(v)
Fy {Ty ,F{∼x}} = δ(y)
Fw {Tw ,F{∼x ,∼y}} = δ(w)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 356 / 653

Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu
Tx {Tu,Fx} ∈ ∇
...

...
Tv {Fv ,T{x}} ∈ ∆(v)
Fy {Ty ,F{∼x}} = δ(y)
Fw {Tw ,F{∼x ,∼y}} = δ(w)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 356 / 653

Conflict-driven nogood learning Nogood Propagation

Outline

42 Motivation

43 Boolean constraints

44 Nogoods from logic programs
Nogoods from program completion
Nogoods from loop formulas

45 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 357 / 653

Conflict-driven nogood learning Nogood Propagation

Outline of NogoodPropagation

Derive deterministic consequences via:
Unit propagation on ∆P and ∇;
Unfounded sets U ⊆ A(P)

Note that U is unfounded if EBP(U) ⊆ AF

Note For any a ∈ U, we have (λ(a,U) \ {Ta}) ⊆ A

An “interesting” unfounded set U satisfies:

∅ ⊂ U ⊆ (A(P) \ AF)

Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of P

Note Tight programs do not yield “interesting” unfounded sets !

Given an unfounded set U and some a ∈ U, adding λ(a,U) to ∇
triggers a conflict or further derivations by unit propagation

Note Add loop nogoods atom by atom to eventually falsify all a ∈ U

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 358 / 653

Conflict-driven nogood learning Nogood Propagation

Outline of NogoodPropagation

Derive deterministic consequences via:
Unit propagation on ∆P and ∇;
Unfounded sets U ⊆ A(P)

Note that U is unfounded if EBP(U) ⊆ AF

Note For any a ∈ U, we have (λ(a,U) \ {Ta}) ⊆ A

An “interesting” unfounded set U satisfies:

∅ ⊂ U ⊆ (A(P) \ AF)

Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of P

Note Tight programs do not yield “interesting” unfounded sets !

Given an unfounded set U and some a ∈ U, adding λ(a,U) to ∇
triggers a conflict or further derivations by unit propagation

Note Add loop nogoods atom by atom to eventually falsify all a ∈ U

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 358 / 653

Conflict-driven nogood learning Nogood Propagation

Outline of NogoodPropagation

Derive deterministic consequences via:
Unit propagation on ∆P and ∇;
Unfounded sets U ⊆ A(P)

Note that U is unfounded if EBP(U) ⊆ AF

Note For any a ∈ U, we have (λ(a,U) \ {Ta}) ⊆ A

An “interesting” unfounded set U satisfies:

∅ ⊂ U ⊆ (A(P) \ AF)

Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of P

Note Tight programs do not yield “interesting” unfounded sets !

Given an unfounded set U and some a ∈ U, adding λ(a,U) to ∇
triggers a conflict or further derivations by unit propagation

Note Add loop nogoods atom by atom to eventually falsify all a ∈ U

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 358 / 653

Conflict-driven nogood learning Nogood Propagation

Outline of NogoodPropagation

Derive deterministic consequences via:
Unit propagation on ∆P and ∇;
Unfounded sets U ⊆ A(P)

Note that U is unfounded if EBP(U) ⊆ AF

Note For any a ∈ U, we have (λ(a,U) \ {Ta}) ⊆ A

An “interesting” unfounded set U satisfies:

∅ ⊂ U ⊆ (A(P) \ AF)

Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of P

Note Tight programs do not yield “interesting” unfounded sets !

Given an unfounded set U and some a ∈ U, adding λ(a,U) to ∇
triggers a conflict or further derivations by unit propagation

Note Add loop nogoods atom by atom to eventually falsify all a ∈ U

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 358 / 653

Conflict-driven nogood learning Nogood Propagation

Algorithm 2: NogoodPropagation

Input : A normal program P, a set ∇ of nogoods, and an assignment A.
Output : An extended assignment and set of nogoods.

U := ∅ // unfounded set

loop
repeat

if δ ⊆ A for some δ ∈ ∆P ∪ ∇ then return (A,∇) // conflict

Σ := {δ ∈ ∆P ∪ ∇ | δ \ A = {σ}, σ /∈ A} // unit-resulting nogoods
if Σ 6= ∅ then let σ ∈ δ \ A for some δ ∈ Σ in

dlevel(σ) := max({dlevel(ρ) | ρ ∈ δ \ {σ}} ∪ {0})
A := A ◦ σ

until Σ = ∅
if loop(P) = ∅ then return (A,∇)

U := U \ AF

if U = ∅ then U := UnfoundedSet(P, A)

if U = ∅ then return (A,∇) // no unfounded set ∅ ⊂ U ⊆ A(P) \ AF

let a ∈ U in
∇ := ∇ ∪ {{Ta} ∪ {FB | B ∈ EBP (U)}} // record loop nogood

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 359 / 653

Conflict-driven nogood learning Nogood Propagation

Requirements for UnfoundedSet

Implementations of UnfoundedSet must guarantee the following
for a result U

1 U ⊆ (A(P) \ AF)
2 EBP(U) ⊆ AF

3 U = ∅ iff there is no nonempty unfounded subset of (A(P) \ AF)

Beyond that, there are various alternatives, such as:

Calculating the greatest unfounded set
Calculating unfounded sets within strongly connected components of
the positive atom dependency graph of P

Usually, the latter option is implemented in ASP solvers

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 360 / 653

Conflict-driven nogood learning Nogood Propagation

Requirements for UnfoundedSet

Implementations of UnfoundedSet must guarantee the following
for a result U

1 U ⊆ (A(P) \ AF)
2 EBP(U) ⊆ AF

3 U = ∅ iff there is no nonempty unfounded subset of (A(P) \ AF)

Beyond that, there are various alternatives, such as:

Calculating the greatest unfounded set
Calculating unfounded sets within strongly connected components of
the positive atom dependency graph of P

Usually, the latter option is implemented in ASP solvers

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 360 / 653

Conflict-driven nogood learning Nogood Propagation

Example: NogoodPropagation

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu

2 F{∼x ,∼y}
Fw {Tw ,F{∼x ,∼y}} = δ(w)

3 F{∼y}
Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 361 / 653

Conflict-driven nogood learning Conflict Analysis

Outline

42 Motivation

43 Boolean constraints

44 Nogoods from logic programs
Nogoods from program completion
Nogoods from loop formulas

45 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 362 / 653

Conflict-driven nogood learning Conflict Analysis

Outline of ConflictAnalysis

Conflict analysis is triggered whenever some nogood δ ∈ ∆P ∪∇
becomes violated, viz. δ ⊆ A, at a decision level dl > 0

Note that all but the first literal assigned at dl have been unit-resulting
for nogoods ε ∈ ∆P ∪∇
If σ ∈ δ has been unit-resulting for ε, we obtain a new violated nogood
by resolving δ and ε as follows:

(δ \ {σ}) ∪ (ε \ {σ})

Resolution is directed by resolving first over the literal σ ∈ δ derived
last, viz. (δ \ A[σ]) = {σ}

Iterated resolution progresses in inverse order of assignment

Iterated resolution stops as soon as it generates a nogood δ
containing exactly one literal σ assigned at decision level dl

This literal σ is called First Unique Implication Point (First-UIP)
All literals in (δ \ {σ}) are assigned at decision levels smaller than dl

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 363 / 653

Conflict-driven nogood learning Conflict Analysis

Outline of ConflictAnalysis

Conflict analysis is triggered whenever some nogood δ ∈ ∆P ∪∇
becomes violated, viz. δ ⊆ A, at a decision level dl > 0

Note that all but the first literal assigned at dl have been unit-resulting
for nogoods ε ∈ ∆P ∪∇
If σ ∈ δ has been unit-resulting for ε, we obtain a new violated nogood
by resolving δ and ε as follows:

(δ \ {σ}) ∪ (ε \ {σ})

Resolution is directed by resolving first over the literal σ ∈ δ derived
last, viz. (δ \ A[σ]) = {σ}

Iterated resolution progresses in inverse order of assignment

Iterated resolution stops as soon as it generates a nogood δ
containing exactly one literal σ assigned at decision level dl

This literal σ is called First Unique Implication Point (First-UIP)
All literals in (δ \ {σ}) are assigned at decision levels smaller than dl

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 363 / 653

Conflict-driven nogood learning Conflict Analysis

Outline of ConflictAnalysis

Conflict analysis is triggered whenever some nogood δ ∈ ∆P ∪∇
becomes violated, viz. δ ⊆ A, at a decision level dl > 0

Note that all but the first literal assigned at dl have been unit-resulting
for nogoods ε ∈ ∆P ∪∇
If σ ∈ δ has been unit-resulting for ε, we obtain a new violated nogood
by resolving δ and ε as follows:

(δ \ {σ}) ∪ (ε \ {σ})

Resolution is directed by resolving first over the literal σ ∈ δ derived
last, viz. (δ \ A[σ]) = {σ}

Iterated resolution progresses in inverse order of assignment

Iterated resolution stops as soon as it generates a nogood δ
containing exactly one literal σ assigned at decision level dl

This literal σ is called First Unique Implication Point (First-UIP)
All literals in (δ \ {σ}) are assigned at decision levels smaller than dl

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 363 / 653

Conflict-driven nogood learning Conflict Analysis

Algorithm 3: ConflictAnalysis

Input : A non-empty violated nogood δ, a normal program P, a set ∇ of
nogoods, and an assignment A.

Output : A derived nogood and a decision level.

loop
let σ ∈ δ such that δ \ A[σ] = {σ} in

k := max({dlevel(ρ) | ρ ∈ δ \ {σ}} ∪ {0})
if k = dlevel(σ) then

let ε ∈ ∆P ∪∇ such that ε \ A[σ] = {σ} in
δ := (δ \ {σ}) ∪ (ε \ {σ}) // resolution

else return (δ, k)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 364 / 653

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 365 / 653

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 365 / 653

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 365 / 653

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 365 / 653

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 365 / 653

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 365 / 653

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 365 / 653

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 365 / 653

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 365 / 653

Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 365 / 653

Conflict-driven nogood learning Conflict Analysis

Remarks

There always is a First-UIP at which conflict analysis terminates

In the worst, resolution stops at the heuristically chosen literal
assigned at decision level dl

The nogood δ containing First-UIP σ is violated by A, viz. δ ⊆ A

We have k = max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) < dl

After recording δ in ∇ and backjumping to decision level k,
σ is unit-resulting for δ !
Such a nogood δ is called asserting

Asserting nogoods direct conflict-driven search into a different region
of the search space than traversed before,
without explicitly flipping any heuristically chosen literal !

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 366 / 653

Conflict-driven nogood learning Conflict Analysis

Remarks

There always is a First-UIP at which conflict analysis terminates

In the worst, resolution stops at the heuristically chosen literal
assigned at decision level dl

The nogood δ containing First-UIP σ is violated by A, viz. δ ⊆ A

We have k = max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) < dl

After recording δ in ∇ and backjumping to decision level k,
σ is unit-resulting for δ !
Such a nogood δ is called asserting

Asserting nogoods direct conflict-driven search into a different region
of the search space than traversed before,
without explicitly flipping any heuristically chosen literal !

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 366 / 653

Conflict-driven nogood learning Conflict Analysis

Remarks

There always is a First-UIP at which conflict analysis terminates

In the worst, resolution stops at the heuristically chosen literal
assigned at decision level dl

The nogood δ containing First-UIP σ is violated by A, viz. δ ⊆ A

We have k = max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) < dl

After recording δ in ∇ and backjumping to decision level k,
σ is unit-resulting for δ !
Such a nogood δ is called asserting

Asserting nogoods direct conflict-driven search into a different region
of the search space than traversed before,
without explicitly flipping any heuristically chosen literal !

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 366 / 653

Conflict-driven nogood learning Conflict Analysis

Remarks

There always is a First-UIP at which conflict analysis terminates

In the worst, resolution stops at the heuristically chosen literal
assigned at decision level dl

The nogood δ containing First-UIP σ is violated by A, viz. δ ⊆ A

We have k = max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) < dl

After recording δ in ∇ and backjumping to decision level k,
σ is unit-resulting for δ !
Such a nogood δ is called asserting

Asserting nogoods direct conflict-driven search into a different region
of the search space than traversed before,
without explicitly flipping any heuristically chosen literal !

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 366 / 653

Multi-shot ASP Solving: Overview

46 Motivation

47 #program and #external declaration

48 Module composition

49 States and operations

50 Incremental reasoning

51 Boardgaming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 367 / 653

Motivation

Outline

46 Motivation

47 #program and #external declaration

48 Module composition

49 States and operations

50 Incremental reasoning

51 Boardgaming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 368 / 653

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: ground | solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 369 / 653

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: ground | solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 369 / 653

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: ground | solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 369 / 653

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: ground | solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 369 / 653

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: ground∗ | solve∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 369 / 653

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: (ground∗ | solve∗)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 369 / 653

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: (input | ground∗ | solve∗)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 369 / 653

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: (input | ground∗ | solve∗| theory)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 369 / 653

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 369 / 653

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 369 / 653

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 369 / 653

Motivation

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

C, Lua, and Prolog embeddings are available too

Integration

in ASP: embedded scripting language (#script)
in Python: library import (import clingo)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 370 / 653

Motivation

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

C, Lua, and Prolog embeddings are available too

Integration

in ASP: embedded scripting language (#script)
in Python: library import (import clingo)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 370 / 653

Motivation

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

C, Lua, and Prolog embeddings are available too

Integration

in ASP: embedded scripting language (#script)
in Python: library import (import clingo)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 370 / 653

Motivation

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

C, Lua, and Prolog embeddings are available too

Integration

in ASP: embedded scripting language (#script)
in Python: library import (import clingo)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 370 / 653

Motivation

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

C, Lua, and Prolog embeddings are available too

Integration

in ASP: embedded scripting language (#script)
in Python: library import (import clingo)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 370 / 653

Motivation

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

C, Lua, and Prolog embeddings are available too

Integration

in ASP: embedded scripting language (#script)
in Python: library import (import clingo)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 370 / 653

Motivation

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

C, Lua, and Prolog embeddings are available too

Integration

in ASP: embedded scripting language (#script)
in Python: library import (import clingo)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 370 / 653

Motivation

Vanilla clingo

#script (python)

def main(prg):

parts = []

parts.append(("base", []))

prg.ground(parts)

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 371 / 653

Motivation

Vanilla clingo

#script (python)

def main(prg):

parts = []

parts.append(("base", []))

prg.ground(parts)

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 371 / 653

Motivation

Vanilla clingo

#script (python)

def main(prg):

parts = []

parts.append(("base", []))

prg.ground(parts)

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 371 / 653

Motivation

Hello world!

#script (python)

def main(prg):

print("Hello world!")

#end.

$ clingo hello.lp

clingo version 4.5.0

Reading from hello.lp

Hello world!

UNKNOWN

Models : 0+

Calls : 1

Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 372 / 653

Motivation

Hello world!

#script (python)

def main(prg):

print("Hello world!")

#end.

$ clingo hello.lp

clingo version 4.5.0

Reading from hello.lp

Hello world!

UNKNOWN

Models : 0+

Calls : 1

Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 372 / 653

Motivation

Hello world!

#script (python)

def main(prg):

print("Hello world!")

#end.

$ clingo hello.lp

clingo version 4.5.0

Reading from hello.lp

Hello world!

UNKNOWN

Models : 0+

Calls : 1

Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 372 / 653

Motivation

Hello world!

#script (python)

def main(prg):

print("Hello world!")

#end.

$ clingo hello.lp

clingo version 4.5.0

Reading from hello.lp

Hello world!

UNKNOWN

Models : 0+

Calls : 1

Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 372 / 653

Motivation

Preview on incremental solving

#program base.

p(0).

#program step (t).

p(t) :- p(t-1).

#program check (t).

#external plug(t).

:- not p(42), plug(t).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 373 / 653

Motivation

Preview on incremental solving

#program base.

p(0).

#program step (t).

p(t) :- p(t-1).

#program check (t).

#external plug(t).

:- not p(42), plug(t).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 373 / 653

Motivation

Preview on incremental solving

#program base.

p(0).

#program step (t).

p(t) :- p(t-1).

#program check (t).

#external plug(t).

:- not p(42), plug(t).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 373 / 653

Motivation

Preview on incremental solving

#program base.

p(0).

#program step (t).

p(t) :- p(t-1).

#program check (t).

#external plug(t).

:- not p(42), plug(t).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 373 / 653

#program and #external declaration

Outline

46 Motivation

47 #program and #external declaration

48 Module composition

49 States and operations

50 Incremental reasoning

51 Boardgaming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 374 / 653

#program and #external declaration

#program declaration

A program declaration is of form

#program n (p1, . . . , pk)

where n, p1, . . . , pk are non-integer constants

We call n the name of the declaration and p1, . . . , pk its parameters

Convention Different occurrences of program declarations with the
same name share the same parameters

Example #program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 375 / 653

#program and #external declaration

#program declaration

A program declaration is of form

#program n (p1, . . . , pk)

where n, p1, . . . , pk are non-integer constants

We call n the name of the declaration and p1, . . . , pk its parameters

Convention Different occurrences of program declarations with the
same name share the same parameters

Example #program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 375 / 653

#program and #external declaration

#program declaration

A program declaration is of form

#program n (p1, . . . , pk)

where n, p1, . . . , pk are non-integer constants

We call n the name of the declaration and p1, . . . , pk its parameters

Convention Different occurrences of program declarations with the
same name share the same parameters

Example #program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 375 / 653

#program and #external declaration

#program declaration

A program declaration is of form

#program n (p1, . . . , pk)

where n, p1, . . . , pk are non-integer constants

We call n the name of the declaration and p1, . . . , pk its parameters

Convention Different occurrences of program declarations with the
same name share the same parameters

Example #program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 375 / 653

#program and #external declaration

#program declaration

A program declaration is of form

#program n (p1, . . . , pk)

where n, p1, . . . , pk are non-integer constants

We call n the name of the declaration and p1, . . . , pk its parameters

Convention Different occurrences of program declarations with the
same name share the same parameters

Example #program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 375 / 653

#program and #external declaration

Scope of #program declarations

The scope of an occurrence of a program declaration in a list of rules
and declarations consists of the set of all rules and non-program
declarations appearing between the occurrence and the next
occurrence of a program declaration or the end of the list

Rules and non-program declarations outside the scope of any program
declaration are implicitly preceded by a base program declaration

Example a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 376 / 653

#program and #external declaration

Scope of #program declarations

The scope of an occurrence of a program declaration in a list of rules
and declarations consists of the set of all rules and non-program
declarations appearing between the occurrence and the next
occurrence of a program declaration or the end of the list

Rules and non-program declarations outside the scope of any program
declaration are implicitly preceded by a base program declaration

Example a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 376 / 653

#program and #external declaration

Scope of #program declarations

The scope of an occurrence of a program declaration in a list of rules
and declarations consists of the set of all rules and non-program
declarations appearing between the occurrence and the next
occurrence of a program declaration or the end of the list

Rules and non-program declarations outside the scope of any program
declaration are implicitly preceded by a base program declaration

Example a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 376 / 653

#program and #external declaration

Scope of #program declarations

The scope of an occurrence of a program declaration in a list of rules
and declarations consists of the set of all rules and non-program
declarations appearing between the occurrence and the next
occurrence of a program declaration or the end of the list

Rules and non-program declarations outside the scope of any program
declaration are implicitly preceded by a base program declaration

Example a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 376 / 653

#program and #external declaration

Scope of #program declarations

The scope of an occurrence of a program declaration in a list of rules
and declarations consists of the set of all rules and non-program
declarations appearing between the occurrence and the next
occurrence of a program declaration or the end of the list

Rules and non-program declarations outside the scope of any program
declaration are implicitly preceded by a base program declaration

Example a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 376 / 653

#program and #external declaration

Scope of #program declarations

Given a list R of (non-ground) rules and declarations and a name n,
we define R(n) as the set of all rules and non-program declarations in
the scope of all occurrences of program declarations with name n

We often refer to R(n) as a subprogram of R

Example

R(base) = {a(1), a(2)}
R(acid) = {b(k), c(X , k)← a(X)}

Given a name n with associated parameters (p1, . . . , pk), the
instantiation of R(n) with a term tuple (t1, . . . , tk) results in the set

R(n)[p1/t1, . . . , pk/tk]

obtained by replacing in R(n) each occurrence of pi by ti

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 377 / 653

#program and #external declaration

Scope of #program declarations

Given a list R of (non-ground) rules and declarations and a name n,
we define R(n) as the set of all rules and non-program declarations in
the scope of all occurrences of program declarations with name n

We often refer to R(n) as a subprogram of R

Example

R(base) = {a(1), a(2)}
R(acid) = {b(k), c(X , k)← a(X)}

Given a name n with associated parameters (p1, . . . , pk), the
instantiation of R(n) with a term tuple (t1, . . . , tk) results in the set

R(n)[p1/t1, . . . , pk/tk]

obtained by replacing in R(n) each occurrence of pi by ti

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 377 / 653

#program and #external declaration

Scope of #program declarations

Given a list R of (non-ground) rules and declarations and a name n,
we define R(n) as the set of all rules and non-program declarations in
the scope of all occurrences of program declarations with name n

We often refer to R(n) as a subprogram of R

Example

R(base) = {a(1), a(2)}
R(acid) = {b(k), c(X , k)← a(X)}

Given a name n with associated parameters (p1, . . . , pk), the
instantiation of R(n) with a term tuple (t1, . . . , tk) results in the set

R(n)[p1/t1, . . . , pk/tk]

obtained by replacing in R(n) each occurrence of pi by ti

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 377 / 653

#program and #external declaration

Scope of #program declarations

Given a list R of (non-ground) rules and declarations and a name n,
we define R(n) as the set of all rules and non-program declarations in
the scope of all occurrences of program declarations with name n

We often refer to R(n) as a subprogram of R

Example

R(base) = {a(1), a(2)}
R(acid) = {b(k), c(X , k)← a(X)}

Given a name n with associated parameters (p1, . . . , pk), the
instantiation of R(n) with a term tuple (t1, . . . , tk) results in the set

R(n)[p1/t1, . . . , pk/tk]

obtained by replacing in R(n) each occurrence of pi by ti

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 377 / 653

#program and #external declaration

Scope of #program declarations

Given a list R of (non-ground) rules and declarations and a name n,
we define R(n) as the set of all rules and non-program declarations in
the scope of all occurrences of program declarations with name n

We often refer to R(n) as a subprogram of R

Example

R(base) = {a(1), a(2)}
R(acid)[k/42] = {b(k), c(X , k)← a(X)}[k/42]

Given a name n with associated parameters (p1, . . . , pk), the
instantiation of R(n) with a term tuple (t1, . . . , tk) results in the set

R(n)[p1/t1, . . . , pk/tk]

obtained by replacing in R(n) each occurrence of pi by ti

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 377 / 653

#program and #external declaration

Scope of #program declarations

Given a list R of (non-ground) rules and declarations and a name n,
we define R(n) as the set of all rules and non-program declarations in
the scope of all occurrences of program declarations with name n

We often refer to R(n) as a subprogram of R

Example

R(base) = {a(1), a(2)}
R(acid)[k/42] = {b(42), c(X , 42)← a(X)}

Given a name n with associated parameters (p1, . . . , pk), the
instantiation of R(n) with a term tuple (t1, . . . , tk) results in the set

R(n)[p1/t1, . . . , pk/tk]

obtained by replacing in R(n) each occurrence of pi by ti

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 377 / 653

#program and #external declaration

Contextual grounding

Rules are grounded relative to a set of atoms, called atom base

Given a set R of (non-ground) rules and two sets C ,D of ground
atoms, we define an instantiation of R relative to C as a ground
program groundC (R) over D subject to the following conditions:

C ⊆ D ⊆ C ∪ h(groundC (R))

groundC (R) ⊆ {h(r)← B(r)+ ∪ {∼a | a ∈ B(r)− ∩ D}
| r ∈ ground(R),B(r)+ ⊆ D}

Example Given R = { a(X)← f (X), e(X); b(X)← f (X),∼e(X) }
and C = {f (1), f (2), e(1)}, we obtain

groundC (R) =

{
a(1)← f (1), e(1); b(1)← f (1),∼e(1)

b(2)← f (2)

}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 378 / 653

#program and #external declaration

Contextual grounding

Rules are grounded relative to a set of atoms, called atom base

Given a set R of (non-ground) rules and two sets C ,D of ground
atoms, we define an instantiation of R relative to C as a ground
program groundC (R) over D subject to the following conditions:

C ⊆ D ⊆ C ∪ h(groundC (R))

groundC (R) ⊆ {h(r)← B(r)+ ∪ {∼a | a ∈ B(r)− ∩ D}
| r ∈ ground(R),B(r)+ ⊆ D}

Example Given R = { a(X)← f (X), e(X); b(X)← f (X),∼e(X) }
and C = {f (1), f (2), e(1)}, we obtain

groundC (R) =

{
a(1)← f (1), e(1); b(1)← f (1),∼e(1)

b(2)← f (2)

}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 378 / 653

#program and #external declaration

Contextual grounding

Rules are grounded relative to a set of atoms, called atom base

Given a set R of (non-ground) rules and two sets C ,D of ground
atoms, we define an instantiation of R relative to C as a ground
program groundC (R) over D subject to the following conditions:

C ⊆ D ⊆ C ∪ h(groundC (R))

groundC (R) ⊆ {h(r)← B(r)+ ∪ {∼a | a ∈ B(r)− ∩ D}
| r ∈ ground(R),B(r)+ ⊆ D}

Example Given R = { a(X)← f (X), e(X); b(X)← f (X),∼e(X) }
and C = {f (1), f (2), e(1)}, we obtain

groundC (R) =

{
a(1)← f (1), e(1); b(1)← f (1),∼e(1)

b(2)← f (2)

}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 378 / 653

#program and #external declaration

#external declaration

An external declaration is of form

#external a : B

where a is an atom and B a rule body

A logic program with external declarations is said to be extensible

Example #external e(X) : f(X), X < 2.

f(1..2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 379 / 653

#program and #external declaration

#external declaration

An external declaration is of form

#external a : B

where a is an atom and B a rule body

A logic program with external declarations is said to be extensible

Example #external e(X) : f(X), X < 2.

f(1..2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 379 / 653

#program and #external declaration

#external declaration

An external declaration is of form

#external a : B

where a is an atom and B a rule body

A logic program with external declarations is said to be extensible

Example #external e(X) : f(X), X < 2.

f(1..2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 379 / 653

#program and #external declaration

Grounding extensible logic programs

Given an extensible program R, we define

Q = {a← B, ε | (#external a : B) ∈ R}
R ′ = {a← B ∈ R}

Note An external declaration is treated as a rule a← B, ε
where ε is a ground marking atom

Given an atom base C , the ground instantiation of an extensible logic
program R is defined as a (ground) logic program P with externals E
where

P = {r ∈ groundC∪{ε}(R
′ ∪ Q) | ε /∈ B(r)}

E = {h(r) | r ∈ groundC∪{ε}(R
′ ∪ Q), ε ∈ B(r)}

Note The marking atom ε appears neither in P nor E , respectively,
and P is a logic program over C ∪ E ∪ h(P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 380 / 653

#program and #external declaration

Grounding extensible logic programs

Given an extensible program R, we define

Q = {a← B, ε | (#external a : B) ∈ R}
R ′ = {a← B ∈ R}

Note An external declaration is treated as a rule a← B, ε
where ε is a ground marking atom

Given an atom base C , the ground instantiation of an extensible logic
program R is defined as a (ground) logic program P with externals E
where

P = {r ∈ groundC∪{ε}(R
′ ∪ Q) | ε /∈ B(r)}

E = {h(r) | r ∈ groundC∪{ε}(R
′ ∪ Q), ε ∈ B(r)}

Note The marking atom ε appears neither in P nor E , respectively,
and P is a logic program over C ∪ E ∪ h(P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 380 / 653

#program and #external declaration

Grounding extensible logic programs

Given an extensible program R, we define

Q = {a← B, ε | (#external a : B) ∈ R}
R ′ = {a← B ∈ R}

Note An external declaration is treated as a rule a← B, ε
where ε is a ground marking atom

Given an atom base C , the ground instantiation of an extensible logic
program R is defined as a (ground) logic program P with externals E
where

P = {r ∈ groundC∪{ε}(R
′ ∪ Q) | ε /∈ B(r)}

E = {h(r) | r ∈ groundC∪{ε}(R
′ ∪ Q), ε ∈ B(r)}

Note The marking atom ε appears neither in P nor E , respectively,
and P is a logic program over C ∪ E ∪ h(P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 380 / 653

#program and #external declaration

Grounding extensible logic programs

Given an extensible program R, we define

Q = {a← B, ε | (#external a : B) ∈ R}
R ′ = {a← B ∈ R}

Note An external declaration is treated as a rule a← B, ε
where ε is a ground marking atom

Given an atom base C , the ground instantiation of an extensible logic
program R is defined as a (ground) logic program P with externals E
where

P = {r ∈ groundC∪{ε}(R
′ ∪ Q) | ε /∈ B(r)}

E = {h(r) | r ∈ groundC∪{ε}(R
′ ∪ Q), ε ∈ B(r)}

Note The marking atom ε appears neither in P nor E , respectively,
and P is a logic program over C ∪ E ∪ h(P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 380 / 653

#program and #external declaration

Example

Extensible program

#external e(X) : f(X), g(X).

f(1). f(2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 381 / 653

#program and #external declaration

Example

Extensible program

e(X) :- f(X), g(X), ε.
f(1). f(2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 381 / 653

#program and #external declaration

Example

Extensible program

e(1) :- f(1), g(1), ε. e(2) :- f(2), g(2), ε.
f(1). f(2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 381 / 653

#program and #external declaration

Example

Extensible program

e(1) :- f(1), g(1), ε. e(2) :- f(2), g(2), ε.
f(1). f(2).

a(1) :- f(1), e(1). a(2) :- f(2), e(2).

b(1) :- f(1), not e(1). b(2) :- f(2), not e(2).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 381 / 653

#program and #external declaration

Example

Extensible program

e(1) :- f(1), g(1), ε. e(2) :- f(2), g(2), ε.
f(1). f(2).

a(1) :- f(1), e(1). a(2) :- f(2), e(2).

b(1) :- f(1), not e(1). b(2) :- f(2), not e(2).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 381 / 653

#program and #external declaration

Example

Extensible program

e(1) :- f(1), g(1), ε. e(2) :- f(2), g(2), ε.
f(1). f(2).

a(1) :- f(1), e(1). a(2) :- f(2), e(2).

b(1) :- f(1), not e(1). b(2) :- f(2), not e(2).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 381 / 653

#program and #external declaration

Example

Extensible program

e(1) :- f(1), g(1), ε. e(2) :- f(2), g(2), ε.
f(1). f(2).

a(1) :- f(1), e(1). a(2) :- f(2), e(2).

b(1) :- f(1), not e(1). b(2) :- f(2), not e(2).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 381 / 653

#program and #external declaration

Example

Extensible program

e(1) :- f(1), g(1), ε.
f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 381 / 653

#program and #external declaration

Example

Extensible program

e(1) :- f(1), g(1), ε.
f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 381 / 653

#program and #external declaration

Example

Extensible program

e(1) :- f(1), g(1), ε.
f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- e(1).

b(1) :- not e(1). b(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 381 / 653

Module composition

Outline

46 Motivation

47 #program and #external declaration

48 Module composition

49 States and operations

50 Incremental reasoning

51 Boardgaming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 382 / 653

Module composition

Module

The assembly of subprograms can be characterized
by means of modules:

A module P is a triple (P, I ,O) consisting of

a (ground) program P over ground(A) and
sets I ,O ⊆ ground(A) such that

I ∩ O = ∅,
A(P) ⊆ I ∪ O, and
h(P) ⊆ O

The elements of I and O are called input and output atoms

denoted by I (P) and O(P)

Similarly, we refer to (ground) program P by P(P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 383 / 653

Module composition

Module

The assembly of subprograms can be characterized
by means of modules:

A module P is a triple (P, I ,O) consisting of

a (ground) program P over ground(A) and
sets I ,O ⊆ ground(A) such that

I ∩ O = ∅,
A(P) ⊆ I ∪ O, and
h(P) ⊆ O

The elements of I and O are called input and output atoms

denoted by I (P) and O(P)

Similarly, we refer to (ground) program P by P(P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 383 / 653

Module composition

Module

The assembly of subprograms can be characterized
by means of modules:

A module P is a triple (P, I ,O) consisting of

a (ground) program P over ground(A) and
sets I ,O ⊆ ground(A) such that

I ∩ O = ∅,
A(P) ⊆ I ∪ O, and
h(P) ⊆ O

The elements of I and O are called input and output atoms

denoted by I (P) and O(P)

Similarly, we refer to (ground) program P by P(P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 383 / 653

Module composition

Module

The assembly of subprograms can be characterized
by means of modules:

A module P is a triple (P, I ,O) consisting of

a (ground) program P over ground(A) and
sets I ,O ⊆ ground(A) such that

I ∩ O = ∅,
A(P) ⊆ I ∪ O, and
h(P) ⊆ O

The elements of I and O are called input and output atoms

denoted by I (P) and O(P)

Similarly, we refer to (ground) program P by P(P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 383 / 653

Module composition

Module

The assembly of subprograms can be characterized
by means of modules:

A module P is a triple (P, I ,O) consisting of

a (ground) program P over ground(A) and
sets I ,O ⊆ ground(A) such that

I ∩ O = ∅,
A(P) ⊆ I ∪ O, and
h(P) ⊆ O

The elements of I and O are called input and output atoms

denoted by I (P) and O(P)

Similarly, we refer to (ground) program P by P(P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 383 / 653

Module composition

Composing modules

Two modules P and Q are compositional, if

O(P) ∩ O(Q) = ∅ and

O(P) ∩ S = ∅ or O(Q) ∩ S = ∅
for every strongly connected component S of P(P) ∪ P(Q)

Note

Recursion between two modules to be joined is disallowed

Recursion within each module is allowed

The join, P tQ, of two modules P and Q is defined as the module

(P(P) ∪ P(Q) , (I (P) \ O(Q)) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q))

provided that P and Q are compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 384 / 653

Module composition

Composing modules

Two modules P and Q are compositional, if

O(P) ∩ O(Q) = ∅ and

O(P) ∩ S = ∅ or O(Q) ∩ S = ∅
for every strongly connected component S of P(P) ∪ P(Q)

Note

Recursion between two modules to be joined is disallowed

Recursion within each module is allowed

The join, P tQ, of two modules P and Q is defined as the module

(P(P) ∪ P(Q) , (I (P) \ O(Q)) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q))

provided that P and Q are compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 384 / 653

Module composition

Composing modules

Two modules P and Q are compositional, if

O(P) ∩ O(Q) = ∅ and

O(P) ∩ S = ∅ or O(Q) ∩ S = ∅
for every strongly connected component S of P(P) ∪ P(Q)

Note

Recursion between two modules to be joined is disallowed

Recursion within each module is allowed

The join, P tQ, of two modules P and Q is defined as the module

(P(P) ∪ P(Q) , (I (P) \ O(Q)) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q))

provided that P and Q are compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 384 / 653

Module composition

Composing modules

Two modules P and Q are compositional, if

O(P) ∩ O(Q) = ∅ and

O(P) ∩ S = ∅ or O(Q) ∩ S = ∅
for every strongly connected component S of P(P) ∪ P(Q)

Note

Recursion between two modules to be joined is disallowed

Recursion within each module is allowed

The join, P tQ, of two modules P and Q is defined as the module

(P(P) ∪ P(Q) , (I (P) \ O(Q)) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q))

provided that P and Q are compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 384 / 653

Module composition

Composing modules

Two modules P and Q are compositional, if

O(P) ∩ O(Q) = ∅ and

O(P) ∩ S = ∅ or O(Q) ∩ S = ∅
for every strongly connected component S of P(P) ∪ P(Q)

Note

Recursion between two modules to be joined is disallowed

Recursion within each module is allowed

The join, P tQ, of two modules P and Q is defined as the module

(P(P) ∪ P(Q) , (I (P) \ O(Q)) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q))

provided that P and Q are compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 384 / 653

Module composition

Composing modules

Two modules P and Q are compositional, if

O(P) ∩ O(Q) = ∅ and

O(P) ∩ S = ∅ or O(Q) ∩ S = ∅
for every strongly connected component S of P(P) ∪ P(Q)

Note

Recursion between two modules to be joined is disallowed

Recursion within each module is allowed

The join, P tQ, of two modules P and Q is defined as the module

(P(P) ∪ P(Q) , (I (P) \ O(Q)) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q))

provided that P and Q are compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 384 / 653

Module composition

Composing modules

Two modules P and Q are compositional, if

O(P) ∩ O(Q) = ∅ and

O(P) ∩ S = ∅ or O(Q) ∩ S = ∅
for every strongly connected component S of P(P) ∪ P(Q)

Note

Recursion between two modules to be joined is disallowed

Recursion within each module is allowed

The join, P tQ, of two modules P and Q is defined as the module

(P(P) ∪ P(Q) , (I (P) \ O(Q)) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q))

provided that P and Q are compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 384 / 653

Module composition

Composing logic programs with externals

Idea Each ground instruction induces a module to be joined
with the module representing the current program state

Given an atom base C , a (non-ground) extensible program R
induces the module

R(C) = (P, (C ∪ E) \ h(P), h(P))

via the ground program P with externals E obtained from R and C

Note E \ h(P) consists of atoms stemming from non-overwritten
external declarations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 385 / 653

Module composition

Composing logic programs with externals

Idea Each ground instruction induces a module to be joined
with the module representing the current program state

Given an atom base C , a (non-ground) extensible program R
induces the module

R(C) = (P, (C ∪ E) \ h(P), h(P))

via the ground program P with externals E obtained from R and C

Note E \ h(P) consists of atoms stemming from non-overwritten
external declarations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 385 / 653

Module composition

Composing logic programs with externals

Idea Each ground instruction induces a module to be joined
with the module representing the current program state

Given an atom base C , a (non-ground) extensible program R
induces the module

R(C) = (P, (C ∪ E) \ h(P), h(P))

via the ground program P with externals E obtained from R and C

Note E \ h(P) consists of atoms stemming from non-overwritten
external declarations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 385 / 653

Module composition

Example

Atom base C = {g(1)}
Extensible program R

#external e(X) : f(X), g(X)

f(1). f(2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).

Module R(C) = (P, (C ∪ E) \ h(P), h(P))

=

f (1), f (2),
a(1)← f (1), e(1),
b(1)← f (1),∼e(1),
b(2)← f (2)

 ,

{
g(1),
e(1)

}
,

f (1), f (2),
a(1),
b(1), b(2)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 386 / 653

Module composition

Example

Atom base C = {g(1)}
Ground program P

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals E = {e(1)}
Module R(C) = (P, (C ∪ E) \ h(P), h(P))

=

f (1), f (2),
a(1)← f (1), e(1),
b(1)← f (1),∼e(1),
b(2)← f (2)

 ,

{
g(1),
e(1)

}
,

f (1), f (2),
a(1),
b(1), b(2)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 386 / 653

Module composition

Example

Atom base C = {g(1)}
Ground program P

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals E = {e(1)}
Module R(C) = (P, (C ∪ E) \ h(P), h(P))

=

f (1), f (2),
a(1)← f (1), e(1),
b(1)← f (1),∼e(1),
b(2)← f (2)

 ,

{
g(1),
e(1)

}
,

f (1), f (2),
a(1),
b(1), b(2)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 386 / 653

Module composition

Example

Atom base C = {g(1)}
Extensible program R

#external e(X) : f(X), g(X)

f(1). f(2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).

Module R(C) = (P, (C ∪ E) \ h(P), h(P))

=

f (1), f (2),
a(1)← f (1), e(1),
b(1)← f (1),∼e(1),
b(2)← f (2)

 ,

{
g(1),
e(1)

}
,

f (1), f (2),
a(1),
b(1), b(2)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 386 / 653

Module composition

Capturing program states by modules

Each program state is captured by a module

The input and output atoms of each module provide the atom base

The initial program state is given by the empty module

P0 = (∅, ∅, ∅)

The program state succeeding Pi is captured by the module

Pi+1 = Pi t Ri+1(I (Pi) ∪ O(Pi))

where Ri+1(I (Pi) ∪ O(Pi)) captures the result of grounding an
extensible program R relative to atom base I (Pi) ∪ O(Pi)

Note The join leading to Pi+1 can be undefined in case the
constituent modules are non-compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 387 / 653

Module composition

Capturing program states by modules

Each program state is captured by a module

The input and output atoms of each module provide the atom base

The initial program state is given by the empty module

P0 = (∅, ∅, ∅)

The program state succeeding Pi is captured by the module

Pi+1 = Pi t Ri+1(I (Pi) ∪ O(Pi))

where Ri+1(I (Pi) ∪ O(Pi)) captures the result of grounding an
extensible program R relative to atom base I (Pi) ∪ O(Pi)

Note The join leading to Pi+1 can be undefined in case the
constituent modules are non-compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 387 / 653

Module composition

Capturing program states by modules

Each program state is captured by a module

The input and output atoms of each module provide the atom base

The initial program state is given by the empty module

P0 = (∅, ∅, ∅)

The program state succeeding Pi is captured by the module

Pi+1 = Pi t Ri+1(I (Pi) ∪ O(Pi))

where Ri+1(I (Pi) ∪ O(Pi)) captures the result of grounding an
extensible program R relative to atom base I (Pi) ∪ O(Pi)

Note The join leading to Pi+1 can be undefined in case the
constituent modules are non-compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 387 / 653

Module composition

Capturing program states by modules

Each program state is captured by a module

The input and output atoms of each module provide the atom base

The initial program state is given by the empty module

P0 = (∅, ∅, ∅)

The program state succeeding Pi is captured by the module

Pi+1 = Pi t Ri+1(I (Pi) ∪ O(Pi))

where Ri+1(I (Pi) ∪ O(Pi)) captures the result of grounding an
extensible program R relative to atom base I (Pi) ∪ O(Pi)

Note The join leading to Pi+1 can be undefined in case the
constituent modules are non-compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 387 / 653

Module composition

Capturing program states by modules

Each program state is captured by a module

The input and output atoms of each module provide the atom base

The initial program state is given by the empty module

P0 = (∅, ∅, ∅)

The program state succeeding Pi is captured by the module

Pi+1 = Pi t Ri+1(I (Pi) ∪ O(Pi))

where Ri+1(I (Pi) ∪ O(Pi)) captures the result of grounding an
extensible program R relative to atom base I (Pi) ∪ O(Pi)

Note The join leading to Pi+1 can be undefined in case the
constituent modules are non-compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 387 / 653

Module composition

Capturing program states by modules

Let (Ri)i>0 be a sequence of (non-ground) extensible programs, and
let Pi+1 be the ground program with externals Ei+1 obtained from
Ri+1 and I (Pi) ∪ O(Pi)

If
⊔

i≥0 Pi is compositional, then

1 P(
⊔

i≥0 Pi) =
⋃

i>0 Pi

2 I (
⊔

i≥0 Pi) =
⋃

i>0 Ei \
⋃

i>0 h(Pi)

3 O(
⊔

i≥0 Pi) =
⋃

i>0 h(Pi)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 388 / 653

Module composition

Capturing program states by modules

Let (Ri)i>0 be a sequence of (non-ground) extensible programs, and
let Pi+1 be the ground program with externals Ei+1 obtained from
Ri+1 and I (Pi) ∪ O(Pi)

If
⊔

i≥0 Pi is compositional, then

1 P(
⊔

i≥0 Pi) =
⋃

i>0 Pi

2 I (
⊔

i≥0 Pi) =
⋃

i>0 Ei \
⋃

i>0 h(Pi)

3 O(
⊔

i≥0 Pi) =
⋃

i>0 h(Pi)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 388 / 653

States and operations

Outline

46 Motivation

47 #program and #external declaration

48 Module composition

49 States and operations

50 Incremental reasoning

51 Boardgaming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 389 / 653

States and operations

Clingo state

A clingo state is a triple

(R,P,V)

where

R is a collection of extensible (non-ground) logic programs

P is a module

V is a three-valued assignment over I (P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 390 / 653

States and operations

Clingo state

A clingo state is a triple

(R,P,V)

where

R = (Rc)c∈C is a collection of extensible (non-ground) logic
programs where C is the set of all non-integer constants

P is a module

V is a three-valued assignment over I (P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 390 / 653

States and operations

Clingo state

A clingo state is a triple

(R,P,V)

where

R = (Rc)c∈C is a collection of extensible (non-ground) logic
programs where C is the set of all non-integer constants

P is a module

V = (V t ,V u) is a three-valued assignment over I (P)
where V f = I (P) \ (V t ∪ V u)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 390 / 653

States and operations

Clingo state

A clingo state is a triple

(R,P,V)

where

R = (Rc)c∈C is a collection of extensible (non-ground) logic
programs where C is the set of all non-integer constants

P is a module

V = (V t ,V u) is a three-valued assignment over I (P)
where V f = I (P) \ (V t ∪ V u)

Note Input atoms in I (P) are taken to be false by default

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 390 / 653

States and operations

create

create(R) : 7→ (R,P,V)

for a list R of (non-ground) rules and declarations where

R = (R(c))c∈C
P = (∅, ∅, ∅)
V = (∅, ∅)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 391 / 653

States and operations

create

create(R) : 7→ (R,P,V)

for a list R of (non-ground) rules and declarations where

R = (R(c))c∈C
P = (∅, ∅, ∅)
V = (∅, ∅)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 391 / 653

States and operations

add

add(R) : (R1,P,V) 7→ (R2,P,V)

for a list R of (non-ground) rules and declarations where

R1 = (Rc)c∈C and R2 = (Rc ∪ R(c))c∈C

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 392 / 653

States and operations

add

add(R) : (R1,P,V) 7→ (R2,P,V)

for a list R of (non-ground) rules and declarations where

R1 = (Rc)c∈C and R2 = (Rc ∪ R(c))c∈C

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 392 / 653

States and operations

ground

ground((n,pn)n∈N) : (R,P1,V1) 7→ (R,P2,V2)

for a collection (n,pn)n∈N such that N ⊆ C and pn ∈ T k for some k
where

P2 = P1 t R(I (P1) ∪ O(P1))

and R(I (P1) ∪ O(P1)) is the module obtained from

extensible program
⋃

n∈N Rn[p/pn] and
atom base I (P1) ∪ O(P1)

for (Rc)c∈C = R
V t

2 = {a ∈ I (P2) | V1(a) = t }
V u

2 = {a ∈ I (P2) | V1(a) = u}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 393 / 653

States and operations

ground

ground((n,pn)n∈N) : (R,P1,V1) 7→ (R,P2,V2)

for a collection (n,pn)n∈N such that N ⊆ C and pn ∈ T k for some k
where

P2 = P1 t R(I (P1) ∪ O(P1))

and R(I (P1) ∪ O(P1)) is the module obtained from

extensible program
⋃

n∈N Rn[p/pn] and
atom base I (P1) ∪ O(P1)

for (Rc)c∈C = R
V t

2 = {a ∈ I (P2) | V1(a) = t }
V u

2 = {a ∈ I (P2) | V1(a) = u}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 393 / 653

States and operations

ground

Notes

The external status of an atom is eliminated once it becomes
defined by a rule in some added program
This is accomplished by module composition, namely, the
elimination of output atoms from input atoms

Jointly grounded subprograms are treated as a single subprogram

ground((n,p), (n,p))(s) = ground((n,p))(s) while
ground((n,p))(ground((n,p))(s)) leads to two
non-compositional modules whenever h(Rn) 6= ∅
Inputs stemming from added external declarations are set to false

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 394 / 653

States and operations

ground

Notes

The external status of an atom is eliminated once it becomes
defined by a rule in some added program
This is accomplished by module composition, namely, the
elimination of output atoms from input atoms

Jointly grounded subprograms are treated as a single subprogram

ground((n,p), (n,p))(s) = ground((n,p))(s) while
ground((n,p))(ground((n,p))(s)) leads to two
non-compositional modules whenever h(Rn) 6= ∅
Inputs stemming from added external declarations are set to false

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 394 / 653

States and operations

ground

Notes

The external status of an atom is eliminated once it becomes
defined by a rule in some added program
This is accomplished by module composition, namely, the
elimination of output atoms from input atoms

Jointly grounded subprograms are treated as a single subprogram

ground((n,p), (n,p))(s) = ground((n,p))(s) while
ground((n,p))(ground((n,p))(s)) leads to two
non-compositional modules whenever h(Rn) 6= ∅
Inputs stemming from added external declarations are set to false

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 394 / 653

States and operations

ground

Notes

The external status of an atom is eliminated once it becomes
defined by a rule in some added program
This is accomplished by module composition, namely, the
elimination of output atoms from input atoms

Jointly grounded subprograms are treated as a single subprogram

ground((n,p), (n,p))(s) = ground((n,p))(s) while
ground((n,p))(ground((n,p))(s)) leads to two
non-compositional modules whenever h(Rn) 6= ∅
Inputs stemming from added external declarations are set to false

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 394 / 653

States and operations

assignExternal

assignExternal(a, v) : (R,P,V1) 7→ (R,P,V2)

for a ground atom a and v ∈ {t, u, f } where

if v = t

V t
2 = V t

1 ∪ {a} if a ∈ I (P), and V t
2 = V t

1 otherwise
V u

2 = V u
1 \ {a}

if v = u

V t
2 = V t

1 \ {a}
V u

2 = V u
1 ∪ {a} if a ∈ I (P), and V u

2 = V u
1 otherwise

if v = f

V t
2 = V t

1 \ {a}
V u

2 = V u
1 \ {a}

Note Only input atoms, that is, non-overwritten externals are affected

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 395 / 653

States and operations

assignExternal

assignExternal(a, v) : (R,P,V1) 7→ (R,P,V2)

for a ground atom a and v ∈ {t, u, f } where

if v = t

V t
2 = V t

1 ∪ {a} if a ∈ I (P), and V t
2 = V t

1 otherwise
V u

2 = V u
1 \ {a}

if v = u

V t
2 = V t

1 \ {a}
V u

2 = V u
1 ∪ {a} if a ∈ I (P), and V u

2 = V u
1 otherwise

if v = f

V t
2 = V t

1 \ {a}
V u

2 = V u
1 \ {a}

Note Only input atoms, that is, non-overwritten externals are affected

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 395 / 653

States and operations

assignExternal

assignExternal(a, v) : (R,P,V1) 7→ (R,P,V2)

for a ground atom a and v ∈ {t, u, f } where

if v = t

V t
2 = V t

1 ∪ {a} if a ∈ I (P), and V t
2 = V t

1 otherwise
V u

2 = V u
1 \ {a}

if v = u

V t
2 = V t

1 \ {a}
V u

2 = V u
1 ∪ {a} if a ∈ I (P), and V u

2 = V u
1 otherwise

if v = f

V t
2 = V t

1 \ {a}
V u

2 = V u
1 \ {a}

Note Only input atoms, that is, non-overwritten externals are affected

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 395 / 653

States and operations

releaseExternal

releaseExternal(a) : (R,P1,V1) 7→ (R,P2,V2)

for a ground atom a where

P2 = (P(P1), I (P1) \ {a},O(P1) ∪ {a}) if a ∈ I (P1), and
P2 = P1 otherwise
V t

2 = V t
1 \ {a}

V u
2 = V u

1 \ {a}
Notes

releaseExternal only affects input atoms; defined atoms remain
unaffected
A released atom can never be re-defined, neither by a rule nor an
external declaration
A released (input) atom is made permanently false, since it is neither
defined by any rule nor part of the input atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 396 / 653

States and operations

releaseExternal

releaseExternal(a) : (R,P1,V1) 7→ (R,P2,V2)

for a ground atom a where

P2 = (P(P1), I (P1) \ {a},O(P1) ∪ {a}) if a ∈ I (P1), and
P2 = P1 otherwise
V t

2 = V t
1 \ {a}

V u
2 = V u

1 \ {a}
Notes

releaseExternal only affects input atoms; defined atoms remain
unaffected
A released atom can never be re-defined, neither by a rule nor an
external declaration
A released (input) atom is made permanently false, since it is neither
defined by any rule nor part of the input atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 396 / 653

States and operations

releaseExternal

releaseExternal(a) : (R,P1,V1) 7→ (R,P2,V2)

for a ground atom a where

P2 = (P(P1), I (P1) \ {a},O(P1) ∪ {a}) if a ∈ I (P1), and
P2 = P1 otherwise
V t

2 = V t
1 \ {a}

V u
2 = V u

1 \ {a}
Notes

releaseExternal only affects input atoms; defined atoms remain
unaffected
A released atom can never be re-defined, neither by a rule nor an
external declaration
A released (input) atom is made permanently false, since it is neither
defined by any rule nor part of the input atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 396 / 653

States and operations

releaseExternal

releaseExternal(a) : (R,P1,V1) 7→ (R,P2,V2)

for a ground atom a where

P2 = (P(P1), I (P1) \ {a},O(P1) ∪ {a}) if a ∈ I (P1), and
P2 = P1 otherwise
V t

2 = V t
1 \ {a}

V u
2 = V u

1 \ {a}
Notes

releaseExternal only affects input atoms; defined atoms remain
unaffected
A released atom can never be re-defined, neither by a rule nor an
external declaration
A released (input) atom is made permanently false, since it is neither
defined by any rule nor part of the input atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 396 / 653

States and operations

releaseExternal

releaseExternal(a) : (R,P1,V1) 7→ (R,P2,V2)

for a ground atom a where

P2 = (P(P1), I (P1) \ {a},O(P1) ∪ {a}) if a ∈ I (P1), and
P2 = P1 otherwise
V t

2 = V t
1 \ {a}

V u
2 = V u

1 \ {a}
Notes

releaseExternal only affects input atoms; defined atoms remain
unaffected
A released atom can never be re-defined, neither by a rule nor an
external declaration
A released (input) atom is made permanently false, since it is neither
defined by any rule nor part of the input atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 396 / 653

States and operations

solve

solve((At ,Af)) : (R,P,V) 7→ (R,P,V) prints the set

{X | X is a stable model of P wrt V st At ⊆ X and Af ∩X = ∅}

where the stable models of a module P wrt an assignment V
are given by the stable models of the program

P(P) ∪ {a← | a ∈ V t} ∪ {{a} ← | a ∈ V u}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 397 / 653

States and operations

solve

solve((At ,Af)) : (R,P,V) 7→ (R,P,V) prints the set

{X | X is a stable model of P wrt V st At ⊆ X and Af ∩X = ∅}

where the stable models of a module P wrt an assignment V
are given by the stable models of the program

P(P) ∪ {a← | a ∈ V t} ∪ {{a} ← | a ∈ V u}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 397 / 653

States and operations

#script declaration

A script declaration is of form

#script(python) P #end

where P is a Python program

Analogously for Lua

main routine exercises control (from within clingo, not from Python)

Example

#script(python)

def main(prg):

prg.ground([("base",[])])

prg.solve()

#end.

#script(python)

def main(prg):

prg.ground([("acid",[42])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 398 / 653

States and operations

#script declaration

A script declaration is of form

#script(python) P #end

where P is a Python program

Analogously for Lua

main routine exercises control (from within clingo, not from Python)

Example

#script(python)

def main(prg):

prg.ground([("base",[])])

prg.solve()

#end.

#script(python)

def main(prg):

prg.ground([("acid",[42])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 398 / 653

States and operations

#script declaration

A script declaration is of form

#script(python) P #end

where P is a Python program

Analogously for Lua

main routine exercises control (from within clingo, not from Python)

Example

#script(python)

def main(prg):

prg.ground([("base",[])])

prg.solve()

#end.

#script(python)

def main(prg):

prg.ground([("acid",[42])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 398 / 653

States and operations

#script declaration

A script declaration is of form

#script(python) P #end

where P is a Python program

Analogously for Lua

main routine exercises control (from within clingo, not from Python)

Example

#script(python)

def main(prg):

prg.ground([("base",[])])

prg.solve()

#end.

#script(python)

def main(prg):

prg.ground([("acid",[42])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 398 / 653

States and operations

#script declaration

A script declaration is of form

#script(python) P #end

where P is a Python program

Analogously for Lua

main routine exercises control (from within clingo, not from Python)

Example

#script(python)

def main(prg):

prg.ground([("base",[])])

prg.solve()

#end.

#script(python)

def main(prg):

prg.ground([("acid",[42])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 398 / 653

States and operations

#script declaration

A script declaration is of form

#script(python) P #end

where P is a Python program

Analogously for Lua

main routine exercises control (from within clingo, not from Python)

Example

#script(python)

def main(prg):

prg.ground([("base",[])])

prg.solve()

#end.

#script(python)

def main(prg):

prg.ground([("acid",[42])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 398 / 653

States and operations

#script declaration

A script declaration is of form

#script(python) P #end

where P is a Python program

Analogously for Lua

main routine exercises control (from within clingo, not from Python)

Examples

#script(python)

def main(prg):

prg.ground([("base",[])])

prg.solve()

#end.

#script(python)

def main(prg):

prg.ground([("acid",[42])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 398 / 653

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from clingo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 399 / 653

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from clingo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 399 / 653

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from clingo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 399 / 653

States and operations

Extensible programs

Initial clingo state

(R0,P0,V0) = ((R(base),R(succ)), (∅, ∅, ∅), (∅, ∅))

where

R(base) =

#external p(1) p(0)← p(3)
#external p(2) p(0)← ∼p(0)
#external p(3)

R(succ) =

#external p(n + 3)
p(n)← p(n + 3)
p(n)← ∼p(n + 1),∼p(n + 2)

Initial atom base I (P0) ∪ O(P0) = ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 400 / 653

States and operations

Extensible programs

Initial clingo state

(R0,P0,V0) = ((R(base),R(succ)), (∅, ∅, ∅), (∅, ∅))

where

R(base) =

#external p(1) p(0)← p(3)
#external p(2) p(0)← ∼p(0)
#external p(3)

R(succ) =

#external p(n + 3)
p(n)← p(n + 3)
p(n)← ∼p(n + 1),∼p(n + 2)

Initial atom base I (P0) ∪ O(P0) = ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 400 / 653

States and operations

Extensible programs

Initial clingo state, or more precisely, state of clingo object ‘prg’

(R0,P0,V0) = ((R(base),R(succ)), (∅, ∅, ∅), (∅, ∅))

where

R(base) =

#external p(1) p(0)← p(3)
#external p(2) p(0)← ∼p(0)
#external p(3)

R(succ) =

#external p(n + 3)
p(n)← p(n + 3)
p(n)← ∼p(n + 1),∼p(n + 2)

Initial atom base I (P0) ∪ O(P0) = ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 400 / 653

States and operations

Extensible programs

Initial clingo state, or more precisely, state of clingo object ‘prg’

create(R) = ((R(base),R(succ)), (∅, ∅, ∅), (∅, ∅))

where R is the list of rules and declarations in Line 1-8 and

R(base) =

#external p(1) p(0)← p(3)
#external p(2) p(0)← ∼p(0)
#external p(3)

R(succ) =

#external p(n + 3)
p(n)← p(n + 3)
p(n)← ∼p(n + 1),∼p(n + 2)

Initial atom base I (P0) ∪ O(P0) = ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 400 / 653

States and operations

Extensible programs

Initial clingo state, or more precisely, state of clingo object ‘prg’

create(R) = ((R(base),R(succ)), (∅, ∅, ∅), (∅, ∅))

where R is the list of rules and declarations in Line 1-8 and

R(base) =

#external p(1) p(0)← p(3)
#external p(2) p(0)← ∼p(0)
#external p(3)

R(succ) =

#external p(n + 3)
p(n)← p(n + 3)
p(n)← ∼p(n + 1),∼p(n + 2)

Initial atom base I (P0) ∪ O(P0) = ∅
Note create(R) is invoked implicitly to create clingo object ‘prg’

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 400 / 653

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from clingo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 401 / 653

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from clingo import Fun

def main(prg):

>> prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 401 / 653

States and operations

prg.ground([("base", [])])

Global clingo state (R0,P0,V0), including atom base ∅
Input Extensible program R(base)

Output Module

R1(∅) = (P1,E1, {p(0)}) where

P1 = {p(0)← p(3); p(0)← ∼p(0)}
E1 = {p(1), p(2), p(3)}

Result clingo state

(R1,P1,V1) = (R0,P0 t R1(∅),V0)

where

P1 = P0 t R1(∅) = (∅, ∅, ∅) t (P1,E1, {p(0)})
= ({p(0)← p(3); p(0)← ∼p(0)}, {p(1), p(2), p(3)}, {p(0)})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 402 / 653

States and operations

prg.ground([("base", [])])

Global clingo state (R0,P0,V0), including atom base ∅
Input Extensible program R(base)

Output Module

R1(∅) = (P1,E1, {p(0)}) where

P1 = {p(0)← p(3); p(0)← ∼p(0)}
E1 = {p(1), p(2), p(3)}

Result clingo state

(R1,P1,V1) = (R0,P0 t R1(∅),V0)

where

P1 = P0 t R1(∅) = (∅, ∅, ∅) t (P1,E1, {p(0)})
= ({p(0)← p(3); p(0)← ∼p(0)}, {p(1), p(2), p(3)}, {p(0)})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 402 / 653

States and operations

prg.ground([("base", [])])

Global clingo state (R0,P0,V0), including atom base ∅
Input Extensible program R(base)

Output Module

R1(∅) = (P1,E1, {p(0)}) where

P1 = {p(0)← p(3); p(0)← ∼p(0)}
E1 = {p(1), p(2), p(3)}

Result clingo state

(R1,P1,V1) = (R0,P0 t R1(∅),V0)

where

P1 = P0 t R1(∅) = (∅, ∅, ∅) t (P1,E1, {p(0)})
= ({p(0)← p(3); p(0)← ∼p(0)}, {p(1), p(2), p(3)}, {p(0)})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 402 / 653

States and operations

prg.ground([("base", [])])

Global clingo state (R0,P0,V0), including atom base ∅
Input Extensible program R(base)

Output Module

R1(∅) = (P1,E1, {p(0)}) where

P1 = {p(0)← p(3); p(0)← ∼p(0)}
E1 = {p(1), p(2), p(3)}

Result clingo state

(R1,P1,V1) = (R0,P0 t R1(∅),V0)

where

P1 = P0 t R1(∅) = (∅, ∅, ∅) t (P1,E1, {p(0)})
= ({p(0)← p(3); p(0)← ∼p(0)}, {p(1), p(2), p(3)}, {p(0)})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 402 / 653

States and operations

prg.ground([("base", [])])

Global clingo state (R0,P0,V0), including atom base ∅
Input Extensible program R(base)

Output Module

R1(∅) = (P1,E1, {p(0)}) where

P1 = {p(0)← p(3); p(0)← ∼p(0)}
E1 = {p(1), p(2), p(3)}

Result clingo state

(R1,P1,V1) = (R0,P0 t R1(∅),V0)

where

P1 = P0 t R1(∅) = (∅, ∅, ∅) t (P1,E1, {p(0)})
= ({p(0)← p(3); p(0)← ∼p(0)}, {p(1), p(2), p(3)}, {p(0)})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 402 / 653

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from clingo import Fun

def main(prg):

>> prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 403 / 653

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from clingo import Fun

def main(prg):

prg.ground([("base", [])])

>> prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 403 / 653

States and operations

prg.assign external(Fun("p",[3]),True)

Global clingo state (R1,P1,V1)

Input assignment p(3) 7→ t

Result clingo state

(R2,P2,V2) = (R0,P1, ({p(3)}, ∅))

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 404 / 653

States and operations

prg.assign external(Fun("p",[3]),True)

Global clingo state (R1,P1,V1)

Input assignment p(3) 7→ t

Result clingo state

(R2,P2,V2) = (R0,P1, ({p(3)}, ∅))

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 404 / 653

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from clingo import Fun

def main(prg):

prg.ground([("base", [])])

>> prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 405 / 653

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from clingo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

>> prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 405 / 653

States and operations

prg.solve()

Global clingo state (R2,P2,V2)

Input empty assignment

Result clingo state

(R2,P2,V2) = (R0,P1, ({p(3)}, ∅))

Print stable model {p(0), p(3)} of P2 wrt V2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 406 / 653

States and operations

prg.solve()

Global clingo state (R2,P2,V2)

Input empty assignment

Result clingo state

(R2,P2,V2) = (R0,P1, ({p(3)}, ∅))

Print stable model {p(0), p(3)} of P2 wrt V2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 406 / 653

States and operations

prg.solve()

Global clingo state (R2,P2,V2)

Input empty assignment

Result clingo state

(R2,P2,V2) = (R0,P1, ({p(3)}, ∅))

Print stable model {p(0), p(3)} of P2 wrt V2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 406 / 653

States and operations

prg.solve()

Global clingo state (R2,P2,V2)

Input empty assignment

Result clingo state

(R2,P2,V2) = (R0,P1, ({p(3)}, ∅))

Print stable model {p(0), p(3)} of P2 wrt V2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 406 / 653

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from clingo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

>> prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 407 / 653

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from clingo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

>> prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 407 / 653

States and operations

prg.assign external(Fun("p",[3]),False)

Global clingo state (R2,P2,V2)

Input assignment p(3) 7→ f

Result clingo state

(R3,P3,V3) = (R0,P1, (∅, ∅))

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 408 / 653

States and operations

prg.assign external(Fun("p",[3]),False)

Global clingo state (R2,P2,V2)

Input assignment p(3) 7→ f

Result clingo state

(R3,P3,V3) = (R0,P1, (∅, ∅))

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 408 / 653

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from clingo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

>> prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 409 / 653

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from clingo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

>> prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 409 / 653

States and operations

prg.solve()

Global clingo state (R3,P3,V3)

Input empty assignment

Result clingo state

(R3,P3,V3) = (R0,P1, (∅, ∅))

Print no stable model of P3 wrt V3

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 410 / 653

States and operations

prg.solve()

Global clingo state (R3,P3,V3)

Input empty assignment

Result clingo state

(R3,P3,V3) = (R0,P1, (∅, ∅))

Print no stable model of P3 wrt V3

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 410 / 653

States and operations

prg.solve()

Global clingo state (R3,P3,V3)

Input empty assignment

Result clingo state

(R3,P3,V3) = (R0,P1, (∅, ∅))

Print no stable model of P3 wrt V3

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 410 / 653

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from clingo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

>> prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 411 / 653

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from clingo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

>> prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 411 / 653

States and operations

prg.ground([("succ",[1]),("succ",[2])])

Global clingo state (R3,P3,V3), including atom base
I (P3) ∪ O(P3) = {p(0), p(1), p(2), p(3)}

Input Extensible program R(succ)[n/1] ∪ R(succ)[n/2]

Output Module

R4(I (P3) ∪ O(P3)) =

(
P4,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})
where

P4 =

{
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
E4 = {p(4), p(5)}

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 412 / 653

States and operations

prg.ground([("succ",[1]),("succ",[2])])

Global clingo state (R3,P3,V3), including atom base
I (P3) ∪ O(P3) = {p(0), p(1), p(2), p(3)}

Input Extensible program R(succ)[n/1] ∪ R(succ)[n/2]

Output Module

R4(I (P3) ∪ O(P3)) =

(
P4,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})
where

P4 =

{
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
E4 = {p(4), p(5)}

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 412 / 653

States and operations

prg.ground([("succ",[1]),("succ",[2])])

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)

where

P4 =

({
p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(4),

p(3), p(5)

}
,

{
p(0), p(1),

p(2)

})

P3 =

({
p(0)← p(3);
p(0)← ∼p(0)

}
, {p(1), p(2), p(3)}, {p(0)}

)

R4(I (P3) ∪ O(P3)) =

({
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 413 / 653

States and operations

prg.ground([("succ",[1]),("succ",[2])])

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)

where

P4 =

({
p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(4),

p(3), p(5)

}
,

{
p(0), p(1),

p(2)

})

P3 =

({
p(0)← p(3);
p(0)← ∼p(0)

}
, {p(1), p(2), p(3)}, {p(0)}

)

R4(I (P3) ∪ O(P3)) =

({
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 413 / 653

States and operations

prg.ground([("succ",[1]),("succ",[2])])

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)

where

P4 =

({
p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(4),

p(3), p(5)

}
,

{
p(0), p(1),

p(2)

})

P3 =

({
p(0)← p(3);
p(0)← ∼p(0)

}
, {p(1), p(2), p(3)}, {p(0)}

)

R4(I (P3) ∪ O(P3)) =

({
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 413 / 653

States and operations

prg.ground([("succ",[1]),("succ",[2])])

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)

where

P4 =

({
p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(4),

p(3), p(5)

}
,

{
p(0), p(1),

p(2)

})

P3 =

({
p(0)← p(3);
p(0)← ∼p(0)

}
, {p(1), p(2), p(3)}, {p(0)}

)

R4(I (P3) ∪ O(P3)) =

({
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 413 / 653

States and operations

prg.ground([("succ",[1]),("succ",[2])])

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)

where

P4 =

({
p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(4),

p(3), p(5)

}
,

{
p(0), p(1),

p(2)

})

P3 =

({
p(0)← p(3);
p(0)← ∼p(0)

}
, {p(1), p(2), p(3)}, {p(0)}

)

R4(I (P3) ∪ O(P3)) =

({
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 413 / 653

States and operations

prg.ground([("succ",[1]),("succ",[2])])

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)

where

P4 =

({
p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(4),

p(3), p(5)

}
,

{
p(0), p(1),

p(2)

})

P3 =

({
p(0)← p(3);
p(0)← ∼p(0)

}
, {p(1), p(2), p(3)}, {p(0)}

)

R4(I (P3) ∪ O(P3)) =

({
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 413 / 653

States and operations

prg.ground([("succ",[1]),("succ",[2])])

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)

where

P4 =

({
p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(4),

p(3), p(5)

}
,

{
p(0), p(1),

p(2)

})

P3 =

({
p(0)← p(3);
p(0)← ∼p(0)

}
, {p(1), p(2), p(3)}, {p(0)}

)

R4(I (P3) ∪ O(P3)) =

({
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 413 / 653

States and operations

prg.ground([("succ",[1]),("succ",[2])])

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)

where

P4 =

({
p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(4),

p(3), p(5)

}
,

{
p(0), p(1),

p(2)

})

P3 =

({
p(0)← p(3);
p(0)← ∼p(0)

}
, {p(1), p(2), p(3)}, {p(0)}

)

R4(I (P3) ∪ O(P3)) =

({
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 413 / 653

States and operations

prg.ground([("succ",[1]),("succ",[2])])

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)

where

P4 =

({
p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(4),

p(3), p(5)

}
,

{
p(0), p(1),

p(2)

})

P3 =

({
p(0)← p(3);
p(0)← ∼p(0)

}
, {p(1), p(2), p(3)}, {p(0)}

)

R4(I (P3) ∪ O(P3)) =

({
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 413 / 653

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from clingo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

>> prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 414 / 653

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from clingo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

>> prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 414 / 653

States and operations

prg.solve()

Global clingo state (R4,P4,V4)

Input empty assignment

Result clingo state

(R4,P4,V4) = (R0,P4,V3)

Print no stable model of P4 wrt V4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 415 / 653

States and operations

prg.solve()

Global clingo state (R4,P4,V4)

Input empty assignment

Result clingo state

(R4,P4,V4) = (R0,P4,V3)

Print no stable model of P4 wrt V4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 415 / 653

States and operations

prg.solve()

Global clingo state (R4,P4,V4)

Input empty assignment

Result clingo state

(R4,P4,V4) = (R0,P4,V3)

Print no stable model of P4 wrt V4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 415 / 653

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from clingo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

>> prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 416 / 653

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from clingo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

>> prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 416 / 653

States and operations

prg.ground([("succ", [3])])

Global clingo state (R4,P4,V4), including atom base
I (P4) ∪ O(P4) = {p(0), p(1), p(2), p(3), p(4), p(5)}

Input Extensible program R(succ)[n/3]

Output Module

R5(I (P4) ∪ O(P4)) =

(
P5,

{
p(0), p(1), p(2),
p(4), p(5), p(6)

}
, {p(3)}

)
where P5 = {p(3)← p(6); p(3)← ∼p(4),∼p(5)}

E5 = {p(6)}

Result clingo state

(R5,P5,V5) = (R0,P4 t R5(I (P4) ∪ O(P4)),V3)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 417 / 653

States and operations

prg.ground([("succ", [3])])

Global clingo state (R4,P4,V4), including atom base
I (P4) ∪ O(P4) = {p(0), p(1), p(2), p(3), p(4), p(5)}

Input Extensible program R(succ)[n/3]

Output Module

R5(I (P4) ∪ O(P4)) =

(
P5,

{
p(0), p(1), p(2),
p(4), p(5), p(6)

}
, {p(3)}

)
where P5 = {p(3)← p(6); p(3)← ∼p(4),∼p(5)}

E5 = {p(6)}

Result clingo state

(R5,P5,V5) = (R0,P4 t R5(I (P4) ∪ O(P4)),V3)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 417 / 653

States and operations

prg.ground([("succ", [3])])

Global clingo state (R4,P4,V4), including atom base
I (P4) ∪ O(P4) = {p(0), p(1), p(2), p(3), p(4), p(5)}

Input Extensible program R(succ)[n/3]

Output Module

R5(I (P4) ∪ O(P4)) =

(
P5,

{
p(0), p(1), p(2),
p(4), p(5), p(6)

}
, {p(3)}

)
where P5 = {p(3)← p(6); p(3)← ∼p(4),∼p(5)}

E5 = {p(6)}

Result clingo state

(R5,P5,V5) = (R0,P4 t R5(I (P4) ∪ O(P4)),V3)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 417 / 653

States and operations

prg.ground([("succ", [3])])

Result clingo state

(R5,P5,V5) = (R0,P4 t R5(I (P4) ∪ O(P4)),V3)

where

R5 = (R(base),R(succ))

P(P5) =

p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4);

p(3)← p(6); p(3)← ∼p(4),∼p(5)

I (P5) = {p(4), p(5), p(6)}
O(P5) = {p(0), p(1), p(2), p(3)}

V5 = (∅, ∅)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 418 / 653

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from clingo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

>> prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 419 / 653

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from clingo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

>> prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 419 / 653

States and operations

prg.solve()

Global clingo state (R5,P5,V5)

Input empty assignment

Result clingo state

(R5,P5,V5) = (R0,P5,V3)

Print stable model {p(0), p(3)} of P5 wrt V5

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 420 / 653

States and operations

prg.solve()

Global clingo state (R5,P5,V5)

Input empty assignment

Result clingo state

(R5,P5,V5) = (R0,P5,V3)

Print stable model {p(0), p(3)} of P5 wrt V5

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 420 / 653

States and operations

prg.solve()

Global clingo state (R5,P5,V5)

Input empty assignment

Result clingo state

(R5,P5,V5) = (R0,P5,V3)

Print stable model {p(0), p(3)} of P5 wrt V5

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 420 / 653

States and operations

simple.lp
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from clingo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 421 / 653

States and operations

Clingo on the run

$ clingo simple.lp

clingo version 4.5.0

Reading from simple.lp

Solving...

Answer: 1

p(3) p(0)

Solving...

Solving...

Solving...

Answer: 1

p(3) p(0)

SATISFIABLE

Models : 2+

Calls : 4

Time : 0.019s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.010s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 422 / 653

States and operations

Clingo on the run

$ clingo simple.lp

clingo version 4.5.0

Reading from simple.lp

Solving...

Answer: 1

p(3) p(0)

Solving...

Solving...

Solving...

Answer: 1

p(3) p(0)

SATISFIABLE

Models : 2+

Calls : 4

Time : 0.019s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.010s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 422 / 653

Incremental reasoning

Outline

46 Motivation

47 #program and #external declaration

48 Module composition

49 States and operations

50 Incremental reasoning

51 Boardgaming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 423 / 653

Incremental reasoning

Towers of Hanoi Instance

1

a

2

7

b

3

4

5

6

c

peg(a;b;c). disk(1..7).

init_on(1,a). init_on((2;7),b). init_on((3;4;5;6),c).

goal_on((3;4),a). goal_on((1;2;5;6;7),c).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 424 / 653

Incremental reasoning

Towers of Hanoi Instance

1

a

2

7

b

3

4

5

6

c

peg(a;b;c). disk(1..7).

init_on(1,a). init_on((2;7),b). init_on((3;4;5;6),c).

goal_on((3;4),a). goal_on((1;2;5;6;7),c).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 424 / 653

Incremental reasoning

Towers of Hanoi Encoding

#program base.

on(D,P,0) :- init_on(D,P).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 425 / 653

Incremental reasoning

Towers of Hanoi Encoding

#program step(t).

1 { move(D,P,t) : disk(D), peg(P) } 1.

moved(D,t) :- move(D,_,t).

blocked(D,P,t) :- on(D+1,P,t-1), disk(D+1).

blocked(D,P,t) :- blocked(D+1,P,t), disk(D+1).

:- move(D,P,t), blocked(D-1,P,t).

:- moved(D,t), on(D,P,t-1), blocked(D,P,t).

on(D,P,t) :- on(D,P,t-1), not moved(D,t).

on(D,P,t) :- move(D,P,t).

:- not 1 { on(D,P,t) : peg(P) } 1, disk(D).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 426 / 653

Incremental reasoning

Towers of Hanoi Encoding

#program check(t).

#external query(t).

:- goal_on(D,P), not on(D,P,t), query(t).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 427 / 653

Incremental reasoning

Incremental Solving (ASP)

#script (python)

from clingo import SolveResult, Fun

def main(prg):

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("step", [step]))

parts.append(("check", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
ret, parts, step = prg.solve(), [], step+1

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 428 / 653

Incremental reasoning

Incremental Solving (tohCtrl.lp)

#script (python)

from clingo import SolveResult, Fun

def main(prg):

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("step", [step]))

parts.append(("check", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
ret, parts, step = prg.solve(), [], step+1

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 428 / 653

Incremental reasoning

Incremental Solving

$ clingo toh.lp tohCtrl.lp

clingo version 4.5.0

Reading from toh.lp ...

Solving...

Solving...

[...]

Solving...

Answer: 1

move(7,a,1) move(6,b,2) move(7,b,3) move(5,a,4) move(7,c,5) move(6,a,6) \

move(7,a,7) move(4,b,8) move(7,b,9) move(6,c,10) move(7,c,11) move(5,b,12) \

move(1,c,13) move(7,a,14) move(6,b,15) move(7,b,16) move(3,a,17) move(7,c,18) \

move(6,a,19) move(7,a,20) move(5,c,21) move(7,b,22) move(6,c,23) move(7,c,24) \

move(4,a,25) move(7,a,26) move(6,b,27) move(7,b,28) move(5,a,29) move(7,c,30) \

move(6,a,31) move(7,a,32) move(2,c,33) move(7,c,34) move(6,b,35) move(7,b,36) \

move(5,c,37) move(7,a,38) move(6,c,39) move(7,c,40)

SATISFIABLE

Models : 1+

Calls : 40

Time : 0.312s (Solving: 0.22s 1st Model: 0.01s Unsat: 0.21s)

CPU Time : 0.300s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 429 / 653

Incremental reasoning

Incremental Solving

$ clingo toh.lp tohCtrl.lp

clingo version 4.5.0

Reading from toh.lp ...

Solving...

Solving...

[...]

Solving...

Answer: 1

move(7,a,1) move(6,b,2) move(7,b,3) move(5,a,4) move(7,c,5) move(6,a,6) \

move(7,a,7) move(4,b,8) move(7,b,9) move(6,c,10) move(7,c,11) move(5,b,12) \

move(1,c,13) move(7,a,14) move(6,b,15) move(7,b,16) move(3,a,17) move(7,c,18) \

move(6,a,19) move(7,a,20) move(5,c,21) move(7,b,22) move(6,c,23) move(7,c,24) \

move(4,a,25) move(7,a,26) move(6,b,27) move(7,b,28) move(5,a,29) move(7,c,30) \

move(6,a,31) move(7,a,32) move(2,c,33) move(7,c,34) move(6,b,35) move(7,b,36) \

move(5,c,37) move(7,a,38) move(6,c,39) move(7,c,40)

SATISFIABLE

Models : 1+

Calls : 40

Time : 0.312s (Solving: 0.22s 1st Model: 0.01s Unsat: 0.21s)

CPU Time : 0.300s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 429 / 653

Incremental reasoning

Incremental Solving (Python)

from sys import stdout

from clingo import SolveResult, Fun, Control

prg = Control()

prg.load("toh.lp")

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("step", [step]))

parts.append(("check", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
f = lambda m: stdout.write(str(m))

ret, parts, step = prg.solve(on_model=f), [], step+1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 430 / 653

Incremental reasoning

Incremental Solving (tohCtrl.py)

from sys import stdout

from clingo import SolveResult, Fun, Control

prg = Control()

prg.load("toh.lp")

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("step", [step]))

parts.append(("check", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
f = lambda m: stdout.write(str(m))

ret, parts, step = prg.solve(on_model=f), [], step+1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 430 / 653

Incremental reasoning

Incremental Solving (tohCtrl.py)

from sys import stdout

from clingo import SolveResult, Fun, Control

prg = Control()

prg.load("toh.lp")

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("step", [step]))

parts.append(("check", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
f = lambda m: stdout.write(str(m))

ret, parts, step = prg.solve(on_model=f), [], step+1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 430 / 653

Incremental reasoning

Incremental Solving (tohCtrl.py)

from sys import stdout

from clingo import SolveResult, Fun, Control

prg = Control()

prg.load("toh.lp")

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("step", [step]))

parts.append(("check", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
f = lambda m: stdout.write(str(m))

ret, parts, step = prg.solve(on_model=f), [], step+1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 430 / 653

Incremental reasoning

Incremental Solving (tohCtrl.py)

from sys import stdout

from clingo import SolveResult, Fun, Control

prg = Control()

prg.load("toh.lp")

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("step", [step]))

parts.append(("check", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
f = lambda m: stdout.write(str(m))

ret, parts, step = prg.solve(on_model=f), [], step+1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 430 / 653

Incremental reasoning

Incremental Solving (Python)

$ python tohCtrl.py

move(7,c,40) move(7,a,20) move(7,c,18) move(6,a,31) move(6,b,15) move(7,b,36) \

move(7,c,24) move(7,c,11) move(3,a,17) move(6,a,19) move(7,b,3) move(7,c,5) \

move(7,a,1) move(6,b,35) move(6,c,10) move(6,a,6) move(6,b,2) move(7,b,9) \

move(7,a,7) move(4,b,8) move(7,a,38) move(7,b,16) move(5,a,29) move(7,b,22) \

move(6,c,39) move(6,c,23) move(5,b,12) move(4,a,25) move(1,c,13) move(5,a,4) \

move(7,a,14) move(7,a,26) move(6,b,27) move(7,a,32) move(7,b,28) move(7,c,30) \

move(2,c,33) move(5,c,21) move(7,c,34) move(5,c,37)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 431 / 653

Incremental reasoning

Incremental Solving (Python)

$ python tohCtrl.py

move(7,c,40) move(7,a,20) move(7,c,18) move(6,a,31) move(6,b,15) move(7,b,36) \

move(7,c,24) move(7,c,11) move(3,a,17) move(6,a,19) move(7,b,3) move(7,c,5) \

move(7,a,1) move(6,b,35) move(6,c,10) move(6,a,6) move(6,b,2) move(7,b,9) \

move(7,a,7) move(4,b,8) move(7,a,38) move(7,b,16) move(5,a,29) move(7,b,22) \

move(6,c,39) move(6,c,23) move(5,b,12) move(4,a,25) move(1,c,13) move(5,a,4) \

move(7,a,14) move(7,a,26) move(6,b,27) move(7,a,32) move(7,b,28) move(7,c,30) \

move(2,c,33) move(5,c,21) move(7,c,34) move(5,c,37)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 431 / 653

Boardgaming

Outline

46 Motivation

47 #program and #external declaration

48 Module composition

49 States and operations

50 Incremental reasoning

51 Boardgaming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 432 / 653

Boardgaming

Alex Rudolph’s Ricochet Robots
Solving goal(13) from cornered robots

Four robots

roaming

horizontally
vertically

up to blocking objects,

ricocheting (optionally)

Goal Robot on target
(sharing same color)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 433 / 653

Boardgaming

Alex Rudolph’s Ricochet Robots
Solving goal(13) from cornered robots

Four robots

roaming

horizontally
vertically

up to blocking objects,

ricocheting (optionally)

Goal Robot on target
(sharing same color)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 433 / 653

Boardgaming

Alex Rudolph’s Ricochet Robots
Solving goal(13) from cornered robots

Four robots

roaming

horizontally
vertically

up to blocking objects,

ricocheting (optionally)

Goal Robot on target
(sharing same color)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 433 / 653

Boardgaming

Alex Rudolph’s Ricochet Robots
Solving goal(13) from cornered robots

Four robots

roaming

horizontally
vertically

up to blocking objects,

ricocheting (optionally)

Goal Robot on target
(sharing same color)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 433 / 653

Boardgaming

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 434 / 653

Boardgaming

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 434 / 653

Boardgaming

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 434 / 653

Boardgaming

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 434 / 653

Boardgaming

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 434 / 653

Boardgaming

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 434 / 653

Boardgaming

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 434 / 653

Boardgaming

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 434 / 653

Boardgaming

board.lp

dim(1..16).

barrier(2, 1, 1, 0). barrier(13,11, 1, 0). barrier(9, 7, 0, 1).

barrier(10, 1, 1, 0). barrier(11,12, 1, 0). barrier(11, 7, 0, 1).

barrier(4, 2, 1, 0). barrier(14,13, 1, 0). barrier(14, 7, 0, 1).

barrier(14, 2, 1, 0). barrier(6,14, 1, 0). barrier(16, 9, 0, 1).

barrier(2, 3, 1, 0). barrier(3,15, 1, 0). barrier(2,10, 0, 1).

barrier(11, 3, 1, 0). barrier(10,15, 1, 0). barrier(5,10, 0, 1).

barrier(7, 4, 1, 0). barrier(4,16, 1, 0). barrier(8,10, 0,-1).

barrier(3, 7, 1, 0). barrier(12,16, 1, 0). barrier(9,10, 0,-1).

barrier(14, 7, 1, 0). barrier(5, 1, 0, 1). barrier(9,10, 0, 1).

barrier(7, 8, 1, 0). barrier(15, 1, 0, 1). barrier(14,10, 0, 1).

barrier(10, 8,-1, 0). barrier(2, 2, 0, 1). barrier(1,12, 0, 1).

barrier(11, 8, 1, 0). barrier(12, 3, 0, 1). barrier(11,12, 0, 1).

barrier(7, 9, 1, 0). barrier(7, 4, 0, 1). barrier(7,13, 0, 1).

barrier(10, 9,-1, 0). barrier(16, 4, 0, 1). barrier(15,13, 0, 1).

barrier(4,10, 1, 0). barrier(1, 6, 0, 1). barrier(10,14, 0, 1).

barrier(2,11, 1, 0). barrier(4, 7, 0, 1). barrier(3,15, 0, 1).

barrier(8,11, 1, 0). barrier(8, 7, 0, 1).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 435 / 653

Boardgaming

targets.lp

#external goal(1..16).

target(red, 5, 2) :- goal(1).

target(red, 15, 2) :- goal(2).

target(green, 2, 3) :- goal(3).

target(blue, 12, 3) :- goal(4).

target(yellow, 7, 4) :- goal(5).

target(blue, 4, 7) :- goal(6).

target(green, 14, 7) :- goal(7).

target(yellow,11, 8) :- goal(8).

target(yellow, 5,10) :- goal(9).

target(green, 2,11) :- goal(10).

target(red, 14,11) :- goal(11).

target(green, 11,12) :- goal(12).

target(yellow,15,13) :- goal(13).

target(blue, 7,14) :- goal(14).

target(red, 3,15) :- goal(15).

target(blue, 10,15) :- goal(16).

robot(red;green;blue;yellow).

#external pos((red;green;blue;yellow),1..16,1..16).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 436 / 653

Boardgaming

ricochet.lp

time(1..horizon).

dir(-1,0;1,0;0,-1;0,1).

stop(DX, DY,X, Y) :- barrier(X,Y,DX,DY).

stop(-DX,-DY,X+DX,Y+DY) :- stop(DX,DY,X,Y).

pos(R,X,Y,0) :- pos(R,X,Y).

1 { move(R,DX,DY,T) : robot(R), dir(DX,DY) } 1 :- time(T).

move(R,T) :- move(R,_,_,T).

halt(DX,DY,X-DX,Y-DY,T) :- pos(_,X,Y,T), dir(DX,DY), dim(X-DX), dim(Y-DY),

not stop(-DX,-DY,X,Y), T < horizon.

goto(R,DX,DY,X,Y,T) :- pos(R,X,Y,T), dir(DX,DY), T < horizon.

goto(R,DX,DY,X+DX,Y+DY,T) :- goto(R,DX,DY,X,Y,T), dim(X+DX), dim(Y+DY),

not stop(DX,DY,X,Y), not halt(DX,DY,X,Y,T).

pos(R,X,Y,T) :- move(R,DX,DY,T), goto(R,DX,DY,X,Y,T-1),

not goto(R,DX,DY,X+DX,Y+DY,T-1).

pos(R,X,Y,T) :- pos(R,X,Y,T-1), time(T), not move(R,T).

:- target(R,X,Y), not pos(R,X,Y,horizon).

#show move/4.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 437 / 653

Boardgaming

Solving goal(13) from cornered robots

$ clingo board.lp targets.lp ricochet.lp -c horizon=9 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Answer: 1

move(red,0,1,1) move(red,1,0,2) move(red,0,1,3) move(red,-1,0,4) move(red,0,1,5) \

move(yellow,0,-1,6) move(red,1,0,7) move(yellow,0,1,8) move(yellow,-1,0,9)

SATISFIABLE

Models : 1+

Calls : 1

Time : 1.895s (Solving: 1.45s 1st Model: 1.45s Unsat: 0.00s)

CPU Time : 1.880s

$ clingo board.lp targets.lp ricochet.lp -c horizon=8 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

UNSATISFIABLE

Models : 0

Calls : 1

Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)

CPU Time : 2.800s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 438 / 653

Boardgaming

Solving goal(13) from cornered robots

$ clingo board.lp targets.lp ricochet.lp -c horizon=9 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Answer: 1

move(red,0,1,1) move(red,1,0,2) move(red,0,1,3) move(red,-1,0,4) move(red,0,1,5) \

move(yellow,0,-1,6) move(red,1,0,7) move(yellow,0,1,8) move(yellow,-1,0,9)

SATISFIABLE

Models : 1+

Calls : 1

Time : 1.895s (Solving: 1.45s 1st Model: 1.45s Unsat: 0.00s)

CPU Time : 1.880s

$ clingo board.lp targets.lp ricochet.lp -c horizon=8 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

UNSATISFIABLE

Models : 0

Calls : 1

Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)

CPU Time : 2.800s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 438 / 653

Boardgaming

Solving goal(13) from cornered robots

$ clingo board.lp targets.lp ricochet.lp -c horizon=9 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Answer: 1

move(red,0,1,1) move(red,1,0,2) move(red,0,1,3) move(red,-1,0,4) move(red,0,1,5) \

move(yellow,0,-1,6) move(red,1,0,7) move(yellow,0,1,8) move(yellow,-1,0,9)

SATISFIABLE

Models : 1+

Calls : 1

Time : 1.895s (Solving: 1.45s 1st Model: 1.45s Unsat: 0.00s)

CPU Time : 1.880s

$ clingo board.lp targets.lp ricochet.lp -c horizon=8 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

UNSATISFIABLE

Models : 0

Calls : 1

Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)

CPU Time : 2.800s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 438 / 653

Boardgaming

Solving goal(13) from cornered robots

$ clingo board.lp targets.lp ricochet.lp -c horizon=9 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Answer: 1

move(red,0,1,1) move(red,1,0,2) move(red,0,1,3) move(red,-1,0,4) move(red,0,1,5) \

move(yellow,0,-1,6) move(red,1,0,7) move(yellow,0,1,8) move(yellow,-1,0,9)

SATISFIABLE

Models : 1+

Calls : 1

Time : 1.895s (Solving: 1.45s 1st Model: 1.45s Unsat: 0.00s)

CPU Time : 1.880s

$ clingo board.lp targets.lp ricochet.lp -c horizon=8 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

UNSATISFIABLE

Models : 0

Calls : 1

Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)

CPU Time : 2.800s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 438 / 653

Boardgaming

optimization.lp

goon(T) :- target(R,X,Y), T = 0..horizon, not pos(R,X,Y,T).

:- move(R,DX,DY,T-1), time(T), not goon(T-1), not move(R,DX,DY,T).

#minimize{ 1,T : goon(T) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 439 / 653

Boardgaming

Solving goal(13) from cornered robots
$ clingo board.lp targets.lp ricochet.lp optimization.lp -c horizon=20 --quiet=1,0 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Optimization: 20

Optimization: 19

Optimization: 18

Optimization: 17

Optimization: 16

Optimization: 15

Optimization: 14

Optimization: 13

Optimization: 12

Optimization: 11

Optimization: 10

Optimization: 9

Answer: 12

move(blue,0,-1,1) move(blue,1,0,2) move(yellow,0,-1,3) move(blue,0,1,4) move(yellow,-1,0,5) \

move(blue,1,0,6) move(blue,0,-1,7) move(yellow,1,0,8) move(yellow,0,1,9) move(yellow,0,1,10) \

move(yellow,0,1,11) move(yellow,0,1,12) move(yellow,0,1,13) move(yellow,0,1,14) move(yellow,0,1,15) \

move(yellow,0,1,16) move(yellow,0,1,17) move(yellow,0,1,18) move(yellow,0,1,19) move(yellow,0,1,20)

OPTIMUM FOUND

Models : 12

Optimum : yes

Optimization : 9

Calls : 1

Time : 16.145s (Solving: 15.01s 1st Model: 3.35s Unsat: 2.02s)

CPU Time : 16.080s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 440 / 653

Boardgaming

Solving goal(13) from cornered robots
$ clingo board.lp targets.lp ricochet.lp optimization.lp -c horizon=20 --quiet=1,0 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Optimization: 20

Optimization: 19

Optimization: 18

Optimization: 17

Optimization: 16

Optimization: 15

Optimization: 14

Optimization: 13

Optimization: 12

Optimization: 11

Optimization: 10

Optimization: 9

Answer: 12

move(blue,0,-1,1) move(blue,1,0,2) move(yellow,0,-1,3) move(blue,0,1,4) move(yellow,-1,0,5) \

move(blue,1,0,6) move(blue,0,-1,7) move(yellow,1,0,8) move(yellow,0,1,9) move(yellow,0,1,10) \

move(yellow,0,1,11) move(yellow,0,1,12) move(yellow,0,1,13) move(yellow,0,1,14) move(yellow,0,1,15) \

move(yellow,0,1,16) move(yellow,0,1,17) move(yellow,0,1,18) move(yellow,0,1,19) move(yellow,0,1,20)

OPTIMUM FOUND

Models : 12

Optimum : yes

Optimization : 9

Calls : 1

Time : 16.145s (Solving: 15.01s 1st Model: 3.35s Unsat: 2.02s)

CPU Time : 16.080s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 440 / 653

Boardgaming

Playing in rounds

Round 1: goal(13)

Round 2: goal(4)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 441 / 653

Boardgaming

Control loop

1 Create an operational clingo object

2 Load and ground the logic programs encoding Ricochet Robot
(relative to some fixed horizon) within the control object

3 While there is a goal, do the following

1 Enforce the initial robot positions
2 Enforce the current goal
3 Solve the logic program contained in the control object

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 442 / 653

Boardgaming

Ricochet Robot Player
ricochet.py

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 443 / 653

Boardgaming

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 444 / 653

Boardgaming

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 444 / 653

Boardgaming

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 444 / 653

Boardgaming

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 444 / 653

Boardgaming

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 444 / 653

Boardgaming

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 444 / 653

Boardgaming

Ricochet Robot Player
Setup and control loop

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 445 / 653

Boardgaming

Setup and control loop

horizon = 15

encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

positions = [Fun("pos", [Fun("red"), 1, 1]),

Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]),

Fun("pos", [Fun("yellow"), 16, 16])]

sequence = [Fun("goal", [13]),

Fun("goal", [4]),

Fun("goal", [7])]

player = Player(horizon, positions, encodings)

for goal in sequence:

print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 446 / 653

Boardgaming

Setup and control loop

>> horizon = 15

>> encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

>> positions = [Fun("pos", [Fun("red"), 1, 1]),

>> Fun("pos", [Fun("blue"), 1, 16]),

>> Fun("pos", [Fun("green"), 16, 1]),

>> Fun("pos", [Fun("yellow"), 16, 16])]

>> sequence = [Fun("goal", [13]),

>> Fun("goal", [4]),

>> Fun("goal", [7])]

player = Player(horizon, positions, encodings)

for goal in sequence:

print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 446 / 653

Boardgaming

Setup and control loop

horizon = 15

encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

positions = [Fun("pos", [Fun("red"), 1, 1]),

Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]),

Fun("pos", [Fun("yellow"), 16, 16])]

sequence = [Fun("goal", [13]),

Fun("goal", [4]),

Fun("goal", [7])]

>> player = Player(horizon, positions, encodings)

for goal in sequence:

print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 446 / 653

Boardgaming

Setup and control loop

horizon = 15

encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

positions = [Fun("pos", [Fun("red"), 1, 1]),

Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]),

Fun("pos", [Fun("yellow"), 16, 16])]

sequence = [Fun("goal", [13]),

Fun("goal", [4]),

Fun("goal", [7])]

player = Player(horizon, positions, encodings)

>> for goal in sequence:

>> print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 446 / 653

Boardgaming

Setup and control loop

horizon = 15

encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

positions = [Fun("pos", [Fun("red"), 1, 1]),

Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]),

Fun("pos", [Fun("yellow"), 16, 16])]

sequence = [Fun("goal", [13]),

Fun("goal", [4]),

Fun("goal", [7])]

player = Player(horizon, positions, encodings)

for goal in sequence:

print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 446 / 653

Boardgaming

Ricochet Robot Player
init

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 447 / 653

Boardgaming

init

def __init__(self, horizon, positions, files):

self.last_positions = positions

self.last_solution = None

self.undo_external = []

self.horizon = horizon

self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

for x in files:

self.ctl.load(x)

self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 448 / 653

Boardgaming

init

def __init__(self, horizon, positions, files):

>> self.last_positions = positions

>> self.last_solution = None

>> self.undo_external = []

>> self.horizon = horizon

self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

for x in files:

self.ctl.load(x)

self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 448 / 653

Boardgaming

init

def __init__(self, horizon, positions, files):

self.last_positions = positions

self.last_solution = None

self.undo_external = []

self.horizon = horizon

>> self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

for x in files:

self.ctl.load(x)

self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 448 / 653

Boardgaming

init

def __init__(self, horizon, positions, files):

self.last_positions = positions

self.last_solution = None

self.undo_external = []

self.horizon = horizon

self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

>> for x in files:

>> self.ctl.load(x)

self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 448 / 653

Boardgaming

init

def __init__(self, horizon, positions, files):

self.last_positions = positions

self.last_solution = None

self.undo_external = []

self.horizon = horizon

self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

for x in files:

self.ctl.load(x)

>> self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 448 / 653

Boardgaming

init

def __init__(self, horizon, positions, files):

self.last_positions = positions

self.last_solution = None

self.undo_external = []

self.horizon = horizon

self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

for x in files:

self.ctl.load(x)

self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 448 / 653

Boardgaming

Ricochet Robot Player
solve

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 449 / 653

Boardgaming

solve

def solve(self, goal):

for x in self.undo_external:

self.ctl.assign_external(x, False)

self.undo_external = []

for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)

self.undo_external.append(x)

self.last_solution = None

self.ctl.solve(on_model=self.on_model)

return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 450 / 653

Boardgaming

solve

def solve(self, goal):

>> for x in self.undo_external:

>> self.ctl.assign_external(x, False)

self.undo_external = []

for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)

self.undo_external.append(x)

self.last_solution = None

self.ctl.solve(on_model=self.on_model)

return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 450 / 653

Boardgaming

solve

def solve(self, goal):

for x in self.undo_external:

self.ctl.assign_external(x, False)

>> self.undo_external = []

>> for x in self.last_positions + [goal]:

>> self.ctl.assign_external(x, True)

>> self.undo_external.append(x)

self.last_solution = None

self.ctl.solve(on_model=self.on_model)

return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 450 / 653

Boardgaming

solve

def solve(self, goal):

for x in self.undo_external:

self.ctl.assign_external(x, False)

self.undo_external = []

for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)

self.undo_external.append(x)

>> self.last_solution = None

>> self.ctl.solve(on_model=self.on_model)

>> return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 450 / 653

Boardgaming

solve

def solve(self, goal):

for x in self.undo_external:

self.ctl.assign_external(x, False)

self.undo_external = []

for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)

self.undo_external.append(x)

self.last_solution = None

self.ctl.solve(on_model=self.on_model)

return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 450 / 653

Boardgaming

solve

def solve(self, goal):

for x in self.undo_external:

self.ctl.assign_external(x, False)

self.undo_external = []

for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)

self.undo_external.append(x)

self.last_solution = None

self.ctl.solve(on_model=self.on_model)

return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 450 / 653

Boardgaming

Ricochet Robot Player
on model

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 451 / 653

Boardgaming

on model

def on_model(self, model):

self.last_solution = model.atoms()

self.last_positions = []

for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and

len(atom.args()) == 4 and

atom.args()[3] == self.horizon):

self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 452 / 653

Boardgaming

on model

def on_model(self, model):

>> self.last_solution = model.atoms()

self.last_positions = []

for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and

len(atom.args()) == 4 and

atom.args()[3] == self.horizon):

self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 452 / 653

Boardgaming

on model

def on_model(self, model):

self.last_solution = model.atoms()

>> self.last_positions = []

>> for atom in model.atoms(Model.ATOMS):

>> if (atom.name() == "pos" and

>> len(atom.args()) == 4 and

>> atom.args()[3] == self.horizon):

>> self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 452 / 653

Boardgaming

on model

def on_model(self, model):

self.last_solution = model.atoms()

>> self.last_positions = []

>> for atom in model.atoms(Model.ATOMS):

>> if (atom.name() == "pos" and

>> len(atom.args()) == 4 and

>> atom.args()[3] == self.horizon):

>> self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 452 / 653

Boardgaming

on model

def on_model(self, model):

self.last_solution = model.atoms()

self.last_positions = []

for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and

len(atom.args()) == 4 and

atom.args()[3] == self.horizon):

self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 452 / 653

Boardgaming

on model

def on_model(self, model):

self.last_solution = model.atoms()

self.last_positions = []

for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and

len(atom.args()) == 4 and

atom.args()[3] == self.horizon):

self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 452 / 653

Boardgaming

ricochet.py
from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 453 / 653

Boardgaming

Let’s play!

$ python ricochet.py

[move(red,0,1,1), move(yellow,-1,0,14), move(yellow,-1,0,12), move(yellow,-1,0,11),

move(yellow,-1,0,9), move(red,1,0,7), move(red,1,0,2), move(yellow,-1,0,10),

move(yellow,-1,0,13), move(yellow,-1,0,15), move(red,-1,0,4), move(yellow,0,-1,6),

move(red,0,1,3), move(red,0,1,5), move(yellow,0,1,8)]

[move(blue,0,1,15), move(blue,0,1,11), move(blue,0,1,8), move(blue,0,1,3),

move(blue,1,0,2), move(blue,0,1,9), move(blue,-1,0,7), move(blue,0,1,10),

move(blue,0,1,13), move(blue,-1,0,4), move(blue,0,-1,1), move(blue,0,-1,6),

move(green,-1,0,5), move(blue,0,1,12), move(blue,0,1,14)]

[move(green,1,0,15), move(green,1,0,8), move(green,1,0,5), move(green,1,0,4),

move(green,1,0,3), move(green,1,0,10), move(green,1,0,7), move(green,1,0,12),

move(green,1,0,9), move(green,1,0,2), move(green,1,0,11), move(green,1,0,13),

move(green,1,0,6), move(green,1,0,14), move(green,0,1,1)]

$ python robotviz

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 454 / 653

Boardgaming

Let’s play!

$ python ricochet.py

[move(red,0,1,1), move(yellow,-1,0,14), move(yellow,-1,0,12), move(yellow,-1,0,11),

move(yellow,-1,0,9), move(red,1,0,7), move(red,1,0,2), move(yellow,-1,0,10),

move(yellow,-1,0,13), move(yellow,-1,0,15), move(red,-1,0,4), move(yellow,0,-1,6),

move(red,0,1,3), move(red,0,1,5), move(yellow,0,1,8)]

[move(blue,0,1,15), move(blue,0,1,11), move(blue,0,1,8), move(blue,0,1,3),

move(blue,1,0,2), move(blue,0,1,9), move(blue,-1,0,7), move(blue,0,1,10),

move(blue,0,1,13), move(blue,-1,0,4), move(blue,0,-1,1), move(blue,0,-1,6),

move(green,-1,0,5), move(blue,0,1,12), move(blue,0,1,14)]

[move(green,1,0,15), move(green,1,0,8), move(green,1,0,5), move(green,1,0,4),

move(green,1,0,3), move(green,1,0,10), move(green,1,0,7), move(green,1,0,12),

move(green,1,0,9), move(green,1,0,2), move(green,1,0,11), move(green,1,0,13),

move(green,1,0,6), move(green,1,0,14), move(green,0,1,1)]

$ python robotviz

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 454 / 653

Boardgaming

Let’s play!

$ python ricochet.py

[move(red,0,1,1), move(yellow,-1,0,14), move(yellow,-1,0,12), move(yellow,-1,0,11),

move(yellow,-1,0,9), move(red,1,0,7), move(red,1,0,2), move(yellow,-1,0,10),

move(yellow,-1,0,13), move(yellow,-1,0,15), move(red,-1,0,4), move(yellow,0,-1,6),

move(red,0,1,3), move(red,0,1,5), move(yellow,0,1,8)]

[move(blue,0,1,15), move(blue,0,1,11), move(blue,0,1,8), move(blue,0,1,3),

move(blue,1,0,2), move(blue,0,1,9), move(blue,-1,0,7), move(blue,0,1,10),

move(blue,0,1,13), move(blue,-1,0,4), move(blue,0,-1,1), move(blue,0,-1,6),

move(green,-1,0,5), move(blue,0,1,12), move(blue,0,1,14)]

[move(green,1,0,15), move(green,1,0,8), move(green,1,0,5), move(green,1,0,4),

move(green,1,0,3), move(green,1,0,10), move(green,1,0,7), move(green,1,0,12),

move(green,1,0,9), move(green,1,0,2), move(green,1,0,11), move(green,1,0,13),

move(green,1,0,6), move(green,1,0,14), move(green,0,1,1)]

$ python robotviz

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 454 / 653

ASP modulo theories: Overview

52 Theory language

53 Low-level semantics

54 Intermediate Format

55 Theory propagation

56 Experiments

57 Acyclicity checking

58 Constraint Answer Set Programming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 455 / 653

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = DB+KRR+LP+S

ASP solving ground | solve

å logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 456 / 653

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = DB+KRR+LP+S

ASP solving ground | solve

å logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 456 / 653

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = DB+KRR+LP+SMT

ASP solving ground | solve

å logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 456 / 653

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = DB+KRR+LP+SMT — NO!

ASP solving ground | solve

å logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 456 / 653

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = (DB+KRR+LP+SAT)mT

ASP solving ground | solve

å logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 456 / 653

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = (DB+KRR+LP+SAT)mT

ASP solving ground | solve

å logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 456 / 653

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = (DB+KRR+LP+SAT)mT

ASP solving modulo theories ground % theories | solve % theories

å logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 456 / 653

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = (DB+KRR+LP+SAT)mT

ASP solving modulo theories ground % theories | solve % theories

å logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 456 / 653

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = (DB+KRR+LP+SAT)mT

ASP solving modulo theories ground % theories | solve % theories

å logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 456 / 653

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 457 / 653

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 457 / 653

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

�

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 457 / 653

clingo’s approach

T-ASP
Program

gringo clasp
T T

T-ASP
Solution

-- -

Theory T
Grammar

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 458 / 653

Theory language

Outline

52 Theory language

53 Low-level semantics

54 Intermediate Format

55 Theory propagation

56 Experiments

57 Acyclicity checking

58 Constraint Answer Set Programming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 459 / 653

Theory language

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 460 / 653

Theory language

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 460 / 653

Theory language

Linear constraints

#theory csp {

linear_term { show_term {

+ : 5, unary; / : 1, binary, left

- : 5, unary; };

* : 4, binary, left;

+ : 3, binary, left;

- : 3, binary, left minimize_term {

}; + : 5, unary;

- : 5, unary;

dom_term { * : 4, binary, left;

+ : 5, unary; + : 3, binary, left;

- : 5, unary; - : 3, binary, left;

.. : 1, binary, left @ : 0, binary, left

}; };

&dom/0 : dom_term, {=}, linear_term, any;

&sum/0 : linear_term, {<=,=,>=,<,>,!=}, linear_term, any;

&show/0 : show_term, directive;

&distinct/0 : linear_term, any;

&minimize/0 : minimize_term, directive

}.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 461 / 653

Theory language

send+more=money

s e n d
+ m o r e

m o n e y

Each letter corresponds
exactly to one digit and
all variables have to be
pairwisely distinct

9 5 6 7
+ 1 0 8 5

1 0 6 5 2

The example has exactly
one solution

{ s 7→ 9, e 7→ 5, n 7→ 6, d 7→ 7,m 7→ 1, o 7→ 0, r 7→ 8, y 7→ 2 }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 462 / 653

Theory language

send+more=money

s e n d
+ m o r e

m o n e y

Each letter corresponds
exactly to one digit and
all variables have to be
pairwisely distinct

9 5 6 7
+ 1 0 8 5

1 0 6 5 2

The example has exactly
one solution

{ s 7→ 9, e 7→ 5, n 7→ 6, d 7→ 7,m 7→ 1, o 7→ 0, r 7→ 8, y 7→ 2 }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 462 / 653

Theory language

send+more=money

#include "csp.lp".

digit(1,3,s). digit(2,3,m). digit(sum,4,m).

digit(1,2,e). digit(2,2,o). digit(sum,3,o).

digit(1,1,n). digit(2,1,r). digit(sum,2,n).

digit(1,0,d). digit(2,0,e). digit(sum,1,e).

digit(sum,0,y).

base(10).

exp(E) :- digit(_,E,_).

power(1,0).

power(B*P,E) :- base(B), power(P,E-1), exp(E), E>0.

number(N) :- digit(N,_,_), N!= sum.

high(D) :- digit(N,E,D), not digit(N,E+1,_).

&dom {0..9} = X :- digit(_,_,X).

&sum { M*D : digit(N,E,D), power(M,E), number(N);

-M*D : digit(sum,E,D), power(M,E) } = 0.

&sum { D } > 0 :- high(D).

&distinct { D : digit(_,_,D) }.

&show { D : digit(_,_,D) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 463 / 653

Theory language

send+more=money

#include "csp.lp".

digit(1,3,s). digit(2,3,m). digit(sum,4,m).

digit(1,2,e). digit(2,2,o). digit(sum,3,o).

digit(1,1,n). digit(2,1,r). digit(sum,2,n).

digit(1,0,d). digit(2,0,e). digit(sum,1,e).

digit(sum,0,y).

base(10).

exp(E) :- digit(_,E,_).

power(1,0).

power(B*P,E) :- base(B), power(P,E-1), exp(E), E>0.

number(N) :- digit(N,_,_), N!= sum.

high(D) :- digit(N,E,D), not digit(N,E+1,_).

&dom {0..9} = X :- digit(_,_,X).

&sum { M*D : digit(N,E,D), power(M,E), number(N);

-M*D : digit(sum,E,D), power(M,E) } = 0.

&sum { D } > 0 :- high(D).

&distinct { D : digit(_,_,D) }.

&show { D : digit(_,_,D) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 463 / 653

Theory language

send+more=money

#include "csp.lp".

digit(1,3,s). digit(2,3,m). digit(sum,4,m).

digit(1,2,e). digit(2,2,o). digit(sum,3,o).

digit(1,1,n). digit(2,1,r). digit(sum,2,n).

digit(1,0,d). digit(2,0,e). digit(sum,1,e).

digit(sum,0,y).

base(10).

exp(E) :- digit(_,E,_).

power(1,0).

power(B*P,E) :- base(B), power(P,E-1), exp(E), E>0.

number(N) :- digit(N,_,_), N!= sum.

high(D) :- digit(N,E,D), not digit(N,E+1,_).

&dom {0..9} = X :- digit(_,_,X).

&sum { M*D : digit(N,E,D), power(M,E), number(N);

-M*D : digit(sum,E,D), power(M,E) } = 0.

&sum { D } > 0 :- high(D).

&distinct { D : digit(_,_,D) }.

&show { D : digit(_,_,D) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 463 / 653

Theory language

send+more=money

digit(1,3,s). digit(2,3,m). digit(sum,4,m).

digit(1,2,e). digit(2,2,o). digit(sum,3,o).

digit(1,1,n). digit(2,1,r). digit(sum,2,n).

digit(1,0,d). digit(2,0,e). digit(sum,1,e).

digit(sum,0,y).

base(10).

exp(0). exp(1). exp(2). exp(3). exp(4).

power(1,0).

power(10,1). power(100,2). power(1000,3). power(10000,4).

number(1). number(2).

high(s). high(m).

&dom{0..9}=s. &dom{0..9}=m. &dom{0..9}=e. &dom{0..9}=o. &dom{0..9}=n. &dom{0..9}=r. &dom{0..9}=d. &dom{0..9}=y.

&sum{ 1000*s; 100*e; 10*n; 1*d;

1000*m; 100*o; 10*r; 1*e;

-10000*m; -1000*o; -100*n; -10*e; -1*y } = 0.

&sum{s} > 0. &sum{m} > 0.

&distinct{s; m; e; o; n; r; d; y}.

&show{s; m; e; o; n; r; d; y}.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 464 / 653

Low-level semantics

Outline

52 Theory language

53 Low-level semantics

54 Intermediate Format

55 Theory propagation

56 Experiments

57 Acyclicity checking

58 Constraint Answer Set Programming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 465 / 653

Low-level semantics

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 466 / 653

Low-level semantics

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 466 / 653

Low-level semantics

ASP modulo theories

We distinguish theory atoms depending upon whether they are

defined via rules in the logic program, or
external otherwise, or

strict being equivalent to the associated constraint, or
non-strict only implying the associated constraint.

Informally, a set X ⊆ A ∪ T of atoms is a T-stable model of a
program P if there is some T-solution S such that X is a (regular)
stable model of the program

P ∪ {a← | a ∈ (Te \ h(P)) ∩ S}
∪ {← ∼a | a ∈ (Te ∩ h(P)) ∩ S}
∪ {{a} ← | a ∈ (Ti \ h(P)) ∩ S}
∪ {← a | a ∈ (T ∩ h(P)) \ S}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 467 / 653

Low-level semantics

ASP modulo theories

We distinguish theory atoms depending upon whether they are

defined via rules in the logic program, or
external otherwise, or

strict being equivalent to the associated constraint, or
non-strict only implying the associated constraint.

Informally, a set X ⊆ A ∪ T of atoms is a T-stable model of a
program P if there is some T-solution S such that X is a (regular)
stable model of the program

P ∪ {a← | a ∈ (Te \ h(P)) ∩ S}
∪ {← ∼a | a ∈ (Te ∩ h(P)) ∩ S}
∪ {{a} ← | a ∈ (Ti \ h(P)) ∩ S}
∪ {← a | a ∈ (T ∩ h(P)) \ S}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 467 / 653

Low-level semantics

ASP modulo theories

We distinguish theory atoms depending upon whether they are

defined via rules in the logic program, or
external otherwise, or

strict being equivalent to the associated constraint, or
non-strict only implying the associated constraint.

Informally, a set X ⊆ A ∪ T of atoms is a T-stable model of a
program P if there is some T-solution S such that X is a (regular)
stable model of the program

P ∪ {a← | a ∈ (Te \ h(P)) ∩ S}
∪ {← ∼a | a ∈ (Te ∩ h(P)) ∩ S}
∪ {{a} ← | a ∈ (Ti \ h(P)) ∩ S}
∪ {← a | a ∈ (T ∩ h(P)) \ S}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 467 / 653

Low-level semantics

ASP modulo theories

We distinguish theory atoms depending upon whether they are

defined via rules in the logic program, or
external otherwise, or

strict being equivalent to the associated constraint, Te , or
non-strict only implying the associated constraint, Ti .

Informally, a set X ⊆ A ∪ T of atoms is a T-stable model of a
program P if there is some T-solution S such that X is a (regular)
stable model of the program

P ∪ {a← | a ∈ (Te \ h(P)) ∩ S}
∪ {← ∼a | a ∈ (Te ∩ h(P)) ∩ S}
∪ {{a} ← | a ∈ (Ti \ h(P)) ∩ S}
∪ {← a | a ∈ (T ∩ h(P)) \ S}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 467 / 653

Intermediate Format

Outline

52 Theory language

53 Low-level semantics

54 Intermediate Format

55 Theory propagation

56 Experiments

57 Acyclicity checking

58 Constraint Answer Set Programming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 468 / 653

Intermediate Format

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 469 / 653

Intermediate Format

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 469 / 653

Intermediate Format

aspif example

{a}.

b :- a.

c :- not a.

asp 1 0 0

1 1 1 1 0 0

1 0 1 2 0 1 1

1 0 1 3 0 1 -1

4 1 a 1 1

4 1 b 1 2

4 1 c 1 3

0

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 470 / 653

Intermediate Format

aspif example

{a}.

b :- a.

c :- not a.

asp 1 0 0

1 1 1 1 0 0

1 0 1 2 0 1 1

1 0 1 3 0 1 -1

4 1 a 1 1

4 1 b 1 2

4 1 c 1 3

0

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 470 / 653

Intermediate Format

aspif overview

Rule statements

Minimize statements

Projection statements

Output statements

External statements

Assumption statements

Heuristic statements

Edge statements

Theory terms and atoms

Comments

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 471 / 653

Intermediate Format

aspif theory example

task(1).

task(2).

duration(1,200).

duration(2,400).

&dom {1..1000} = beg(1).

&dom {1..1000} = end(1).

&dom {1..1000} = beg(2).

&dom {1..1000} = end(2).

&diff{end(1)-beg(1)}<=200.

&diff{end(2)-beg(2)}<=400.

&show{ beg/1; end/1 }.

asp 1 0 0
1 0 1 1 0 0
1 0 1 2 0 0
1 0 1 3 0 0
1 0 1 4 0 0
1 0 1 5 0 0
1 0 1 6 0 0
4 7 task(1) 0
4 7 task(2) 0
4 15 duration(1,200) 0
4 15 duration(2,400) 0
9 0 1 200
9 0 3 400
9 0 6 1
9 0 11 2
9 1 0 4 diff
9 1 2 2 <=
9 1 4 1 -
9 1 5 3 end
9 1 8 3 beg
9 2 7 5 1 6
9 2 9 8 1 6
9 2 10 4 2 7 9
9 2 12 5 1 11
9 2 13 8 1 11
9 2 14 4 2 12 13
9 4 0 1 10 0
9 4 1 1 14 0
9 6 5 0 1 0 2 1
9 6 6 0 1 1 2 3
0

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 472 / 653

Intermediate Format

aspif theory example

task(1).

task(2).

duration(1,200).

duration(2,400).

&dom {1..1000} = beg(1).

&dom {1..1000} = end(1).

&dom {1..1000} = beg(2).

&dom {1..1000} = end(2).

&diff{end(1)-beg(1)}<=200.

&diff{end(2)-beg(2)}<=400.

&show{ beg/1; end/1 }.

asp 1 0 0
1 0 1 1 0 0
1 0 1 2 0 0
1 0 1 3 0 0
1 0 1 4 0 0
1 0 1 5 0 0
1 0 1 6 0 0
4 7 task(1) 0
4 7 task(2) 0
4 15 duration(1,200) 0
4 15 duration(2,400) 0
9 0 1 200
9 0 3 400
9 0 6 1
9 0 11 2
9 1 0 4 diff
9 1 2 2 <=
9 1 4 1 -
9 1 5 3 end
9 1 8 3 beg
9 2 7 5 1 6
9 2 9 8 1 6
9 2 10 4 2 7 9
9 2 12 5 1 11
9 2 13 8 1 11
9 2 14 4 2 12 13
9 4 0 1 10 0
9 4 1 1 14 0
9 6 5 0 1 0 2 1
9 6 6 0 1 1 2 3
0

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 472 / 653

Intermediate Format

aspif theory example

task(1).

task(2).

duration(1,200).

duration(2,400).

&dom {1..1000} = beg(1).

&dom {1..1000} = end(1).

&dom {1..1000} = beg(2).

&dom {1..1000} = end(2).

&diff{end(1)-beg(1)}<=200.

&diff{end(2)-beg(2)}<=400.

&show{ beg/1; end/1 }.

Only 6 (theory) atoms!

asp 1 0 0
1 0 1 1 0 0
1 0 1 2 0 0
1 0 1 3 0 0
1 0 1 4 0 0
1 0 1 5 0 0
1 0 1 6 0 0
4 7 task(1) 0
4 7 task(2) 0
4 15 duration(1,200) 0
4 15 duration(2,400) 0
9 0 1 200
9 0 3 400
9 0 6 1
9 0 11 2
9 1 0 4 diff
9 1 2 2 <=
9 1 4 1 -
9 1 5 3 end
9 1 8 3 beg
9 2 7 5 1 6
9 2 9 8 1 6
9 2 10 4 2 7 9
9 2 12 5 1 11
9 2 13 8 1 11
9 2 14 4 2 12 13
9 4 0 1 10 0
9 4 1 1 14 0
9 6 5 0 1 0 2 1
9 6 6 0 1 1 2 3
0

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 472 / 653

Theory propagation

Outline

52 Theory language

53 Low-level semantics

54 Intermediate Format

55 Theory propagation

56 Experiments

57 Acyclicity checking

58 Constraint Answer Set Programming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 473 / 653

Theory propagation

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 474 / 653

Theory propagation

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 474 / 653

Theory propagation

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

�

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 474 / 653

Theory propagation

Architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 475 / 653

Theory propagation

Architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 475 / 653

Theory propagation

Conflict-driven constraint learning
modulo theories

(I) initialize // register theory propagators and initialize watches
loop

propagate completion, loop, and recorded nogoods // deterministically assign literals
if no conflict then

if all variables assigned then
(C) if some δ ∈ ∆T is violated for T ∈ T then record δ // theory propagator’s check

else return variable assignment // T-stable model found
else

(P) propagate theories T ∈ T // theory propagators may record theory nogoods
if no nogood recorded then decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // resolve conflict and record a conflict constraint
(U) backjump // undo assignments until conflict constraint is unit

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 476 / 653

Theory propagation

Propagator interface

clingo

SymbolicAtom

+ symbol
+ literal

TheoryAtom

+ name
+ elements
+ guard
+ literal

PropagateInit

+ num threads
+ symbolic atoms
+ theory atoms

+ add watch(lit)
+ solver literal(lit)

�interface�
Propagator

+ init(init)
+ propagate(control, changes)
+ undo(thread id, assignment, changes)
+ check(control)

PropagateControl

+ thread id
+ assignment

+ add nogood(nogood, tag, lock)
+ propagate()

Assignment

+ decision level
+ has conflict

+ value(lit)
+ level(lit)
+ ...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 477 / 653

Theory propagation

The dot propagator
#script (python)

import sys

import time

class Propagator:

def init(self, init):

self.sleep = .1

for atom in init.symbolic_atoms:

init.add_watch(init.solver_literal(atom.literal))

def propagate(self, ctl, changes):

for l in changes:

sys.stdout.write(".")

sys.stdout.flush()

time.sleep(self.sleep)

return True

def undo(self, solver_id, assign, undo):

for l in undo:

sys.stdout.write("\b \b")

sys.stdout.flush()

time.sleep(self.sleep)

def main(prg):

prg.register_propagator(Propagator())

prg.ground([("base", [])])

prg.solve()

sys.stdout.write("\n")

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 478 / 653

Experiments

Outline

52 Theory language

53 Low-level semantics

54 Intermediate Format

55 Theory propagation

56 Experiments

57 Acyclicity checking

58 Constraint Answer Set Programming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 479 / 653

Experiments

Difference logic propagation

ASP ASP modulo DL (stateless) ASP modulo DL (stateful)
defined external defined external

Problem # T TO T TO T TO T TO T TO
Flow shop 120 569 110 283 40 382 70 177 30 281 50
Job shop 80 600 80 600 80 600 80 37 0 43 0
Open shop 60 405 40 214 20 213 20 2 0 2 0

Total 260 525 230 366 140 398 170 72 30 109 50

only non-strict interpretation of theory atoms
defined versus external amounts to the difference between

&diff { end(T)-beg(T) } <= D :- duration(T,D).

:- duration(T,D), not &diff { end(T)-beg(T) } <= D.

propagation

stateless Bellman-Ford algorithm
stateful Cotton-Maler algorithm

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 480 / 653

Experiments

Difference logic propagation

ASP ASP modulo DL (stateless) ASP modulo DL (stateful)
defined external defined external

Problem # T TO T TO T TO T TO T TO
Flow shop 120 569 110 283 40 382 70 177 30 281 50
Job shop 80 600 80 600 80 600 80 37 0 43 0
Open shop 60 405 40 214 20 213 20 2 0 2 0

Total 260 525 230 366 140 398 170 72 30 109 50

only non-strict interpretation of theory atoms
defined versus external amounts to the difference between

&diff { end(T)-beg(T) } <= D :- duration(T,D).

:- duration(T,D), not &diff { end(T)-beg(T) } <= D.

propagation

stateless Bellman-Ford algorithm
stateful Cotton-Maler algorithm

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 480 / 653

Experiments

Difference logic propagation

ASP ASP modulo DL (stateless) ASP modulo DL (stateful)
defined external defined external

Problem # T TO T TO T TO T TO T TO
Flow shop 120 569 110 283 40 382 70 177 30 281 50
Job shop 80 600 80 600 80 600 80 37 0 43 0
Open shop 60 405 40 214 20 213 20 2 0 2 0

Total 260 525 230 366 140 398 170 72 30 109 50

only non-strict interpretation of theory atoms
defined versus external amounts to the difference between

&diff { end(T)-beg(T) } <= D :- duration(T,D).

:- duration(T,D), not &diff { end(T)-beg(T) } <= D.

propagation

stateless Bellman-Ford algorithm
stateful Cotton-Maler algorithm

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 480 / 653

Experiments

Difference logic propagation

ASP ASP modulo DL (stateless) ASP modulo DL (stateful)
defined external defined external

Problem # T TO T TO T TO T TO T TO
Flow shop 120 569 110 283 40 382 70 177 30 281 50
Job shop 80 600 80 600 80 600 80 37 0 43 0
Open shop 60 405 40 214 20 213 20 2 0 2 0

Total 260 525 230 366 140 398 170 72 30 109 50

only non-strict interpretation of theory atoms
defined versus external amounts to the difference between

&diff { end(T)-beg(T) } <= D :- duration(T,D).

:- duration(T,D), not &diff { end(T)-beg(T) } <= D.

propagation

stateless Bellman-Ford algorithm
stateful Cotton-Maler algorithm

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 480 / 653

Experiments

Difference logic propagation

ASP ASP modulo DL (stateless) ASP modulo DL (stateful)
defined external defined external

Problem # T TO T TO T TO T TO T TO
Flow shop 120 569 110 283 40 382 70 177 30 281 50
Job shop 80 600 80 600 80 600 80 37 0 43 0
Open shop 60 405 40 214 20 213 20 2 0 2 0

Total 260 525 230 366 140 398 170 72 30 109 50

only non-strict interpretation of theory atoms
defined versus external amounts to the difference between

&diff { end(T)-beg(T) } <= D :- duration(T,D).

:- duration(T,D), not &diff { end(T)-beg(T) } <= D.

propagation

stateless Bellman-Ford algorithm
stateful Cotton-Maler algorithm

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 480 / 653

Acyclicity checking

Outline

52 Theory language

53 Low-level semantics

54 Intermediate Format

55 Theory propagation

56 Experiments

57 Acyclicity checking

58 Constraint Answer Set Programming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 481 / 653

Acyclicity checking

Builtin acyclicity checking

Edge statement

#edge (u, v) : l1, . . . , ln. (3)

A set X of atoms is an acyclic stable of a logic program P, if

1 X is a stable model of P and
2 the graph

({u, v | X |= l1, . . . , ln, (3) ∈ P}, {(u, v) | X |= l1, . . . , ln, (3) ∈ P})

is acyclic

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 482 / 653

Acyclicity checking

Builtin acyclicity checking

Edge statement

#edge (u, v) : l1, . . . , ln. (3)

A set X of atoms is an acyclic stable of a logic program P, if

1 X is a stable model of P and
2 the graph

({u, v | X |= l1, . . . , ln, (3) ∈ P}, {(u, v) | X |= l1, . . . , ln, (3) ∈ P})

is acyclic

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 482 / 653

Constraint Answer Set Programming

Outline

52 Theory language

53 Low-level semantics

54 Intermediate Format

55 Theory propagation

56 Experiments

57 Acyclicity checking

58 Constraint Answer Set Programming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 483 / 653

Constraint Answer Set Programming

Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) consists of

a set V of variables,
a set D of domains, and
a set C of constraints

such that

each variable v ∈ V has an associated domain dom(v) ∈ D;
a constraint c is a pair (S ,R) consisting of a k-ary relation R on a
vector S ⊆ V k of variables, called the scope of R

Note For S = (v1, . . . , vk), we have R ⊆ dom(v1)× · · · × dom(vk)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 484 / 653

Constraint Answer Set Programming

Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) consists of

a set V of variables,
a set D of domains, and
a set C of constraints

such that

each variable v ∈ V has an associated domain dom(v) ∈ D;
a constraint c is a pair (S ,R) consisting of a k-ary relation R on a
vector S ⊆ V k of variables, called the scope of R

Note For S = (v1, . . . , vk), we have R ⊆ dom(v1)× · · · × dom(vk)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 484 / 653

Constraint Answer Set Programming

Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) consists of

a set V of variables,
a set D of domains, and
a set C of constraints

such that

each variable v ∈ V has an associated domain dom(v) ∈ D;
a constraint c is a pair (S ,R) consisting of a k-ary relation R on a
vector S ⊆ V k of variables, called the scope of R

Note For S = (v1, . . . , vk), we have R ⊆ dom(v1)× · · · × dom(vk)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 484 / 653

Constraint Answer Set Programming

Example

s e n d
+ m o r e

m o n e y

Each letter corresponds
exactly to one digit and
all variables have to be
pairwisely distinct

V = {s, e, n, d ,m, o, r , y}
D = {dom(v) = {0, . . . , 9} | v ∈ V }

C = { (~V , allDistinct(V)),

(~V , s × 1000 + e × 100 + n × 10 + d+
m × 1000 + o × 100 + r × 10 + e ==
m × 10000 + o × 1000 + n × 100 + e × 10 + y),

((m),m == 1) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 485 / 653

Constraint Answer Set Programming

Example

s e n d
+ m o r e

m o n e y

Each letter corresponds
exactly to one digit and
all variables have to be
pairwisely distinct

V = {s, e, n, d ,m, o, r , y}
D = {dom(v) = {0, . . . , 9} | v ∈ V }

C = { (~V , allDistinct(V)),

(~V , s × 1000 + e × 100 + n × 10 + d+
m × 1000 + o × 100 + r × 10 + e ==
m × 10000 + o × 1000 + n × 100 + e × 10 + y),

((m),m == 1) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 485 / 653

Constraint Answer Set Programming

Example

s e n d
+ m o r e

m o n e y

Each letter corresponds
exactly to one digit and
all variables have to be
pairwisely distinct

9 5 6 7
+ 1 0 8 5

1 0 6 5 2

The example has exactly
one solution

{ s 7→ 9, e 7→ 5, n 7→ 6, d 7→ 7,m 7→ 1, o 7→ 0, r 7→ 8, y 7→ 2 }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 485 / 653

Constraint Answer Set Programming

Constraint satisfaction problem

Notation We use S(c) = S and R(c) = R to access the scope and
the relation of a constraint c = (S ,R)

For an assignment A : V →
⋃

v∈V dom(v) and a constraint (S ,R)
with scope S = (v1, . . . , vk), define

satC (A) = {c ∈ C | A(S(c)) ∈ R(c)}

where A(S) = (A(v1), . . . ,A(vk))

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 486 / 653

Constraint Answer Set Programming

Constraint satisfaction problem

Notation We use S(c) = S and R(c) = R to access the scope and
the relation of a constraint c = (S ,R)

For an assignment A : V →
⋃

v∈V dom(v) and a constraint (S ,R)
with scope S = (v1, . . . , vk), define

satC (A) = {c ∈ C | A(S(c)) ∈ R(c)}

where A(S) = (A(v1), . . . ,A(vk))

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 486 / 653

Constraint Answer Set Programming

Constraint Answer Set Programming

A constraint logic program P is a logic program over an extended
alphabet A ∪ C where

A is a set of regular atoms and
C is a set of constraint atoms,

such that h(r) ∈ A for each r ∈ P

Given a set of literals B and some set B of atoms, we define
B|B = (B+ ∩ B) ∪ {∼a | a ∈ B− ∩ B}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 487 / 653

Constraint Answer Set Programming

Constraint Answer Set Programming

A constraint logic program P is a logic program over an extended
alphabet A ∪ C where

A is a set of regular atoms and
C is a set of constraint atoms,

such that h(r) ∈ A for each r ∈ P

Given a set of literals B and some set B of atoms, we define
B|B = (B+ ∩ B) ∪ {∼a | a ∈ B− ∩ B}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 487 / 653

Constraint Answer Set Programming

Constraint Answer Set Programming

We identify constraint atoms with constraints via a function

γ : C → C

Furthermore, γ(Y) = {γ(c) | c ∈ Y } for any Y ⊆ C

Note Unlike regular atoms A, constraint atoms C are not subject to
the unique names assumption, eg.

γ(x < y) = γ(((−y − 1) ≤ −(x + 1)) ∧ (x 6= y))

A constraint logic program P is associated with a CSP
as follows

C [P] = γ(A(P) ∩ C),
V [P] is obtained from the constraint scopes in C [P],
D[P] is provided by a declaration

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 488 / 653

Constraint Answer Set Programming

Constraint Answer Set Programming

We identify constraint atoms with constraints via a function

γ : C → C

Furthermore, γ(Y) = {γ(c) | c ∈ Y } for any Y ⊆ C

Note Unlike regular atoms A, constraint atoms C are not subject to
the unique names assumption, eg.

γ(x < y) = γ(((−y − 1) ≤ −(x + 1)) ∧ (x 6= y))

A constraint logic program P is associated with a CSP
as follows

C [P] = γ(A(P) ∩ C),
V [P] is obtained from the constraint scopes in C [P],
D[P] is provided by a declaration

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 488 / 653

Constraint Answer Set Programming

Constraint Answer Set Programming

We identify constraint atoms with constraints via a function

γ : C → C

Furthermore, γ(Y) = {γ(c) | c ∈ Y } for any Y ⊆ C

Note Unlike regular atoms A, constraint atoms C are not subject to
the unique names assumption, eg.

γ(x < y) = γ(((−y − 1) ≤ −(x + 1)) ∧ (x 6= y))

A constraint logic program P is associated with a CSP
as follows

C [P] = γ(A(P) ∩ C),
V [P] is obtained from the constraint scopes in C [P],
D[P] is provided by a declaration

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 488 / 653

Constraint Answer Set Programming

Constraint Answer Set Programming

Let P be a constraint logic program over A ∪ C and
let A : V [P]→ D[P] be an assignment,

define the constraint reduct of as P wrt A as follows

PA = { h(r)← body(r)|A | r ∈ P,

γ(body(r)|C+) ⊆ satC [P](A),

γ(body(r)|C−) ∩ satC [P](A) = ∅ }

A set X ⊆ A of (regular) atoms is a constraint answer set of P wrt A,
if X is an stable model of PA.

Note That is, if X is the ⊆-smallest model of (PA)X

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 489 / 653

Constraint Answer Set Programming

Constraint Answer Set Programming

Let P be a constraint logic program over A ∪ C and
let A : V [P]→ D[P] be an assignment,

define the constraint reduct of as P wrt A as follows

PA = { h(r)← body(r)|A | r ∈ P,

γ(body(r)|C+) ⊆ satC [P](A),

γ(body(r)|C−) ∩ satC [P](A) = ∅ }

A set X ⊆ A of (regular) atoms is a constraint answer set of P wrt A,
if X is an stable model of PA.

Note That is, if X is the ⊆-smallest model of (PA)X

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 489 / 653

Constraint Answer Set Programming

Constraint Answer Set Programming

Let P be a constraint logic program over A ∪ C and
let A : V [P]→ D[P] be an assignment,

define the constraint reduct of as P wrt A as follows

PA = { h(r)← body(r)|A | r ∈ P,

γ(body(r)|C+) ⊆ satC [P](A),

γ(body(r)|C−) ∩ satC [P](A) = ∅ }

A set X ⊆ A of (regular) atoms is a constraint answer set of P wrt A,
if X is an stable model of PA.

Note That is, if X is the ⊆-smallest model of (PA)X

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 489 / 653

Constraint Answer Set Programming

Some Constraint Answer Set
Programming (CASP) systems

adsolver

extension of ASP solver smodels

clingcon

extension of ASP system clingo (viz. gringo and clasp)
lazy approach

aspartame

translational approach (independent of ASP system)
eager approach

aspmt, dlvhex , ezcsp, gasp, inca, . . .

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 490 / 653

Constraint Answer Set Programming

Some Constraint Answer Set
Programming (CASP) systems

adsolver

extension of ASP solver smodels

clingcon

extension of ASP system clingo (viz. gringo and clasp)
lazy approach

aspartame

translational approach (independent of ASP system)
eager approach

aspmt, dlvhex , ezcsp, gasp, inca, . . .

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 490 / 653

Constraint Answer Set Programming

Some Constraint Answer Set
Programming (CASP) systems

adsolver

extension of ASP solver smodels

clingcon

extension of ASP system clingo (viz. gringo and clasp)
lazy approach

aspartame

translational approach (independent of ASP system)
eager approach

aspmt, dlvhex , ezcsp, gasp, inca, . . .

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 490 / 653

Constraint Answer Set Programming

Some Constraint Answer Set
Programming (CASP) systems

adsolver

extension of ASP solver smodels

clingcon

extension of ASP system clingo (viz. gringo and clasp)
lazy approach

aspartame

translational approach (independent of ASP system)
eager approach

aspmt, dlvhex , ezcsp, gasp, inca, . . .

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 490 / 653

Constraint Answer Set Programming

aspartame’s eager approach

CSP
Instance

sugar
A
S
P

ASP
Facts

ASP
Encoding

gringo clasp CSP
Solution

- - - - -

CASP
Program

∗ based on order-encoding for CSPs

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 491 / 653

Constraint Answer Set Programming

aspartame’s eager approach

ASP
Facts

ASP
Encoding

gringo clasp CASP
Solution

- - -

CASP
Program

∗ based on order-encoding for CSPs

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 491 / 653

Constraint Answer Set Programming

aspartame’s eager approach

ASP
Facts

ASP
Encoding∗

gringo clasp CASP
Solution

- - -

CASP
Program

∗ based on order-encoding for CSPs

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 491 / 653

Constraint Answer Set Programming

clingcon’s lazy approach

CASP
Program gringo clasp

CSP CSP
CASP

Solution
-- -

clingcon 1

language extension
propagation via gecode
conflict minimization

clingcon 3

language specification
lazy propagation∗

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 492 / 653

Constraint Answer Set Programming

clingcon’s lazy approach

CASP
Program gringo clasp

CSP CSP
CASP

Solution
-- -

clingcon 1

language extension
propagation via gecode
conflict minimization

clingcon 3

language specification
lazy propagation∗

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 492 / 653

Constraint Answer Set Programming

clingcon’s lazy approach

CASP
Program gringo clasp

CSP CSP
CASP

Solution
-- -

clingcon 1

language extension
propagation via gecode
conflict minimization

clingcon 3

language specification
lazy propagation∗

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 492 / 653

Constraint Answer Set Programming

clingcon’s lazy approach

CASP
Program gringo clasp

CSP CSP
CASP

Solution
-- -

clingcon 1

language extension
propagation via gecode
conflict minimization

clingcon 3

language specification
lazy propagation∗

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 492 / 653

Constraint Answer Set Programming

clingcon’s lazy approach

CASP
Program gringo clasp

CSP CSP
CASP

Solution
-- -

clingcon 1+2

language extension
propagation via gecode
conflict minimization

clingcon 3

language specification
lazy propagation∗

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 492 / 653

Constraint Answer Set Programming

clingcon’s lazy approach

CASP
Program gringo clasp

CSP CSP
CASP

Solution
-- -

clingcon 1+2

language extension
propagation via gecode
conflict minimization

clingcon 3

language specification
lazy propagation∗

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 492 / 653

Constraint Answer Set Programming

clingcon’s lazy approach

CASP
Program gringo clasp

CSP CSP
CASP

Solution
-- -

CSP
Grammar

clingcon 1+2

language extension
propagation via gecode
conflict minimization

clingcon 3

language specification
lazy propagation∗

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 492 / 653

Constraint Answer Set Programming

clingcon’s lazy approach

CASP
Program gringo clasp

CSP CSP
CASP

Solution
-- -

CSP
Grammar

clingcon 1+2

language extension
propagation via gecode
conflict minimization

clingcon 3

language specification
lazy propagation∗

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 492 / 653

Constraint Answer Set Programming

clingcon’s approach

CASP
Program gringo clasp

CSP CSP
CASP

Solution
-- -

CSP
Grammar

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 493 / 653

Constraint Answer Set Programming

clingcon instantiates clingo

T-ASP
Program gringo clasp

T T
T-ASP

Solution
-- -

Theory T
Grammar

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 493 / 653

Heuristic programming: Overview

59 Motivation

60 Heuristically modified ASP

61 Experimental results

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 494 / 653

Motivation

Outline

59 Motivation

60 Heuristically modified ASP

61 Experimental results

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 495 / 653

Motivation

Motivation

Observation Sometimes it is advantageous to take a more
application-oriented approach by including domain-specific
information

domain-specific knowledge can be added
for improving propagation
domain-specific heuristics can be used
for making better choices

Idea Incorporation of domain-specific heuristics by extending

input language and/or solver options
for expressing domain-specific heuristics
solving capacities for integrating domain-specific heuristics

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 496 / 653

Motivation

Motivation

Observation Sometimes it is advantageous to take a more
application-oriented approach by including domain-specific
information

domain-specific knowledge can be added
for improving propagation
domain-specific heuristics can be used
for making better choices

Idea Incorporation of domain-specific heuristics by extending

input language and/or solver options
for expressing domain-specific heuristics
solving capacities for integrating domain-specific heuristics

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 496 / 653

Motivation

Motivation

Observation Sometimes it is advantageous to take a more
application-oriented approach by including domain-specific
information

domain-specific knowledge can be added
for improving propagation
domain-specific heuristics can be used
for making better choices

Idea Incorporation of domain-specific heuristics by extending

input language and/or solver options
for expressing domain-specific heuristics
solving capacities for integrating domain-specific heuristics

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 496 / 653

Motivation

Basic CDCL decision algorithm

loop

propagate // compute deterministic consequences

if no conflict then
if all variables assigned then return variable assignment
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add a conflict constraint
backjump // undo assignments until conflict constraint is unit

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 497 / 653

Motivation

Basic CDCL decision algorithm

loop

propagate // compute deterministic consequences

if no conflict then
if all variables assigned then return variable assignment
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add a conflict constraint
backjump // undo assignments until conflict constraint is unit

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 497 / 653

Motivation

Inside decide

Basic concepts

Atoms, A
Assignments, A : A → {T,F}

AT = {a ∈ A | Ta ∈ A} and AF = {a ∈ A | Fa ∈ A}

Heuristic functions

h : A → [0,+∞) and s : A → {T,F}

Algorithmic scheme

1 h(a) := α× h(a) + β(a) for each a ∈ A
2 U := A \ (AT ∪ AF)
3 C := argmaxa∈Uh(a)
4 a := τ(C)
5 A := A ∪ {a 7→ s(a)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 498 / 653

Motivation

Inside decide

Basic concepts

Atoms, A
Assignments, A : A → {T,F}

AT = {a ∈ A | Ta ∈ A} and AF = {a ∈ A | Fa ∈ A}

Heuristic functions

h : A → [0,+∞) and s : A → {T,F}

Algorithmic scheme

1 h(a) := α× h(a) + β(a) for each a ∈ A
2 U := A \ (AT ∪ AF)
3 C := argmaxa∈Uh(a)
4 a := τ(C)
5 A := A ∪ {a 7→ s(a)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 498 / 653

Motivation

Inside decide

Basic concepts

Atoms, A
Assignments, A : A → {T,F}

AT = {a ∈ A | Ta ∈ A} and AF = {a ∈ A | Fa ∈ A}

Heuristic functions

h : A → [0,+∞) and s : A → {T,F}

Algorithmic scheme

1 h(a) := α× h(a) + β(a) for each a ∈ A
2 U := A \ (AT ∪ AF)
3 C := argmaxa∈Uh(a)
4 a := τ(C)
5 A := A ∪ {a 7→ s(a)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 498 / 653

Motivation

Inside decide

Basic concepts

Atoms, A
Assignments, A : A → {T,F}

AT = {a ∈ A | Ta ∈ A} and AF = {a ∈ A | Fa ∈ A}

Heuristic functions

h : A → [0,+∞) and s : A → {T,F}

Algorithmic scheme

1 h(a) := α× h(a) + β(a) for each a ∈ A
2 U := A \ (AT ∪ AF)
3 C := argmaxa∈Uh(a)
4 a := τ(C)
5 A := A ∪ {a 7→ s(a)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 498 / 653

Heuristically modified ASP

Outline

59 Motivation

60 Heuristically modified ASP

61 Experimental results

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 499 / 653

Heuristically modified ASP

Heuristic language

Heuristic directive

#heuristic a : l1, . . . , ln. [k@p,m]

where

a is an atom, and l1, . . . , ln are literals
k and p are integers
m is a heuristic modifier

Heuristic modifiers

init for initializing the heuristic value of a with k
factor for amplifying the heuristic value of a by factor k
level for ranking all atoms; the rank of a is k
sign for attributing the sign of k as truth value to a

Example

#heuristic occurs(A,T) : action(A), time(T). [T, factor]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 500 / 653

Heuristically modified ASP

Heuristic language

Heuristic directive

#heuristic a : l1, . . . , ln. [k@p,m]

where

a is an atom, and l1, . . . , ln are literals
k and p are integers
m is a heuristic modifier

Heuristic modifiers

init for initializing the heuristic value of a with k
factor for amplifying the heuristic value of a by factor k
level for ranking all atoms; the rank of a is k
sign for attributing the sign of k as truth value to a

Example

#heuristic occurs(A,T) : action(A), time(T). [T, factor]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 500 / 653

Heuristically modified ASP

Heuristic language

Heuristic directive

#heuristic a : l1, . . . , ln. [k@p,m]

where
a is an atom, and l1, . . . , ln are literals
k and p are integers
m is a heuristic modifier

Heuristic modifiers

init for initializing the heuristic value of a with k
factor for amplifying the heuristic value of a by factor k
level for ranking all atoms; the rank of a is k
sign for attributing the sign of k as truth value to a

true/false combine level and sign

Example

#heuristic occurs(A,T) : action(A), time(T). [T, factor]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 500 / 653

Heuristically modified ASP

Heuristic language

Heuristic directive

#heuristic a : l1, . . . , ln. [k@p,m]

where

a is an atom, and l1, . . . , ln are literals
k and p are integers
m is a heuristic modifier

Heuristic modifiers

init for initializing the heuristic value of a with k
factor for amplifying the heuristic value of a by factor k
level for ranking all atoms; the rank of a is k
sign for attributing the sign of k as truth value to a

Example

#heuristic occurs(A,T) : action(A), time(T). [T, factor]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 500 / 653

Heuristically modified ASP

Heuristic language

Heuristic directive

#heuristic a : l1, . . . , ln. [k@p,m]

where

a is an atom, and l1, . . . , ln are literals
k and p are integers
m is a heuristic modifier

Heuristic modifiers

init for initializing the heuristic value of a with k
factor for amplifying the heuristic value of a by factor k
level for ranking all atoms; the rank of a is k
sign for attributing the sign of k as truth value to a

Example

#heuristic occurs(mv,5) : action(mv), time(5). [5, factor]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 500 / 653

Heuristically modified ASP

Simple STRIPS planning

time(1..k).

holds(P,0) :- init(P).

{ occ(A,T) : action(A) } = 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).

:- query(F), not holds(F,k).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 501 / 653

Heuristically modified ASP

Simple STRIPS planning

time(1..k).

holds(P,0) :- init(P).

{ occ(A,T) : action(A) } = 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).

:- query(F), not holds(F,k).

#heuristic occurs(A,T) : action(A), time(T). [2, factor]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 501 / 653

Heuristically modified ASP

Simple STRIPS planning

time(1..k).

holds(P,0) :- init(P).

{ occ(A,T) : action(A) } = 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).

:- query(F), not holds(F,k).

#heuristic occurs(A,T) : action(A), time(T). [1, level]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 501 / 653

Heuristically modified ASP

Simple STRIPS planning

time(1..k).

holds(P,0) :- init(P).

{ occ(A,T) : action(A) } = 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).

:- query(F), not holds(F,k).

#heuristic occurs(A,T) : action(A), time(T). [T, factor]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 501 / 653

Heuristically modified ASP

Simple STRIPS planning

time(1..k).

holds(P,0) :- init(P).

{ occ(A,T) : action(A) } = 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), time(T), not occ(A,T) : del(A,F).

:- query(F), not holds(F,k).

#heuristic holds(F,T-1) : holds(F,T). [t-T+1, true]

#heuristic holds(F,T-1) : not holds(F,T) [t-T+1, false]

fluent(F), time(T).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 501 / 653

Heuristically modified ASP

Heuristic options

Alternative for specifying structure-oriented heuristics in clasp

--dom-mod=<arg> : Default modification for

domain heuristic

<arg>: <mod>[,<pick>]

<mod> : Modifier

{1=level|2=pos|3=true|4=neg|

5=false|6=init|7=factor}

<pick> : Apply <mod> to

{0=all|1=scc|2=hcc|4=disj|

8=min|16=show} atoms

Engage heuristic modifications (in both settings!)

--heuristic=Domain

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 502 / 653

Heuristically modified ASP

Heuristic options

Alternative for specifying structure-oriented heuristics in clasp

--dom-mod=<arg> : Default modification for

domain heuristic

<arg>: <mod>[,<pick>]

<mod> : Modifier

{1=level|2=pos|3=true|4=neg|

5=false|6=init|7=factor}

<pick> : Apply <mod> to

{0=all|1=scc|2=hcc|4=disj|

8=min|16=show} atoms

Engage heuristic modifications (in both settings!)

--heuristic=Domain

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 502 / 653

Heuristically modified ASP

Heuristic options

Alternative for specifying structure-oriented heuristics in clasp

--dom-mod=<arg> : Default modification for

domain heuristic

<arg>: <mod>[,<pick>]

<mod> : Modifier

{1=level|2=pos|3=true|4=neg|

5=false|6=init|7=factor}

<pick> : Apply <mod> to

{0=all|1=scc|2=hcc|4=disj|

8=min|16=show} atoms

Engage heuristic modifications (in both settings!)

--heuristic=Domain

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 502 / 653

Heuristically modified ASP

Inclusion-minimal stable models

Consider a logic program containing a mimimize statement of form

#minimize{a1, . . . , an}

Computing one inclusion-minimal stable model can be done either via

#heuristic ai [1,false]. for i = 1, . . . , n, or
--dom-mod=5,16

Computing all inclusion-minimal stable model can be done

by adding --enum-mod=domRec to the two options

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 503 / 653

Heuristically modified ASP

Inclusion-minimal stable models

Consider a logic program containing a mimimize statement of form

#minimize{a1, . . . , an}

Computing one inclusion-minimal stable model can be done either via

#heuristic ai [1,false]. for i = 1, . . . , n, or
--dom-mod=5,16

Computing all inclusion-minimal stable model can be done

by adding --enum-mod=domRec to the two options

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 503 / 653

Heuristically modified ASP

Inclusion-minimal stable models

Consider a logic program containing a mimimize statement of form

#minimize{a1, . . . , an}

Computing one inclusion-minimal stable model can be done either via

#heuristic ai [1,false]. for i = 1, . . . , n, or
--dom-mod=5,16

Computing all inclusion-minimal stable model can be done

by adding --enum-mod=domRec to the two options

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 503 / 653

Heuristically modified ASP

Heuristic modifications to functions h and s

νa,m(A) — “value for modifier m on atom a wrt assignment A”

init and factor

d0(a) = νa,init(A0) + h0(a)

di (a) =

{
νa,factor(Ai)× hi (a) if Va,factor(Ai) 6= ∅

hi (a) otherwise

sign

ti (a) =

T if νa,sign(Ai) > 0
F if νa,sign(Ai) < 0

si (a) otherwise

level `Ai
(A′) = argmaxa∈A′νa,level(Ai) A′ ⊆ A

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 504 / 653

Heuristically modified ASP

Heuristic modifications to functions h and s

νa,m(A) — “value for modifier m on atom a wrt assignment A”

init and factor

d0(a) = νa,init(A0) + h0(a)

di (a) =

{
νa,factor(Ai)× hi (a) if Va,factor(Ai) 6= ∅

hi (a) otherwise

sign

ti (a) =

T if νa,sign(Ai) > 0
F if νa,sign(Ai) < 0

si (a) otherwise

level `Ai
(A′) = argmaxa∈A′νa,level(Ai) A′ ⊆ A

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 504 / 653

Heuristically modified ASP

Heuristic modifications to functions h and s

νa,m(A) — “value for modifier m on atom a wrt assignment A”

init and factor

d0(a) = νa,init(A0) + h0(a)

di (a) =

{
νa,factor(Ai)× hi (a) if Va,factor(Ai) 6= ∅

hi (a) otherwise

sign

ti (a) =

T if νa,sign(Ai) > 0
F if νa,sign(Ai) < 0

si (a) otherwise

level `Ai
(A′) = argmaxa∈A′νa,level(Ai) A′ ⊆ A

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 504 / 653

Heuristically modified ASP

Inside decide, heuristically modified

0 h(a) := d(a) for each a ∈ A
1 h(a) := α× h(a) + β(a) for each a ∈ A
2 U := `A(A \ (AT ∪ AF))

3 C := argmaxa∈Ud(a)

4 a := τ(C)

5 A := A ∪ {a 7→ t(a)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 505 / 653

Heuristically modified ASP

Inside decide, heuristically modified

0 h(a) := d(a) for each a ∈ A
1 h(a) := α× h(a) + β(a) for each a ∈ A
2 U := `A(A \ (AT ∪ AF))

3 C := argmaxa∈Ud(a)

4 a := τ(C)

5 A := A ∪ {a 7→ t(a)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 505 / 653

Heuristically modified ASP

Inside decide, heuristically modified

0 h(a) := d(a) for each a ∈ A
1 h(a) := α× h(a) + β(a) for each a ∈ A
2 U := `A(A \ (AT ∪ AF))

3 C := argmaxa∈Ud(a)

4 a := τ(C)

5 A := A ∪ {a 7→ t(a)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 505 / 653

Experimental results

Outline

59 Motivation

60 Heuristically modified ASP

61 Experimental results

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 506 / 653

Experimental results

Abductive problems with optimization

Setting Diagnosis Expansion Repair (H) Repair (S)
base configuration 111.1s (115) 161.5s (100) 101.3s (113) 33.3s (27)
sign,-1 324.5s (407) 7.6s (3) 8.4s (5) 3.1s (0)
sign,-1 factor,2 310.1s (387) 7.4s (2) 3.5s (0) 3.2s (1)
sign,-1 factor,8 305.9s (376) 7.7s (2) 3.1s (0) 2.9s (0)
sign,-1 level,1 76.1s (83) 6.6s (2) 0.8s (0) 2.2s (1)

level,1 77.3s (86) 12.9s (5) 3.4s (0) 2.1s (0)

(abducibles subject to optimization via #minimize statements)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 507 / 653

Experimental results

Abductive problems with optimization

Setting Diagnosis Expansion Repair (H) Repair (S)
base configuration 111.1s (115) 161.5s (100) 101.3s (113) 33.3s (27)
sign,-1 324.5s (407) 7.6s (3) 8.4s (5) 3.1s (0)
sign,-1 factor,2 310.1s (387) 7.4s (2) 3.5s (0) 3.2s (1)
sign,-1 factor,8 305.9s (376) 7.7s (2) 3.1s (0) 2.9s (0)
sign,-1 level,1 76.1s (83) 6.6s (2) 0.8s (0) 2.2s (1)

level,1 77.3s (86) 12.9s (5) 3.4s (0) 2.1s (0)

(abducibles subject to optimization via #minimize statements)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 507 / 653

Experimental results

Planning benchmarks

#heuristic holds(F,T-1) : holds(F,T). [t-T+1, true]

#heuristic holds(F,T-1) : not holds(F,T), fluent(F),time(T).

[t-T+1, false]

Problem base configuration #heuristic base config. (SAT) #heu. (SAT)
Blocks’00 134.4s (180/61) 9.2s (239/3) 163.2s (59) 2.6s (0)

Elevator’00 3.1s (279/0) 0.0s (279/0) 3.4s (0) 0.0s (0)
Freecell’00 288.7s (147/115) 184.2s (194/74) 226.4s (47) 52.0s (0)

Logistics’00 145.8s (148/61) 115.3s (168/52) 113.9s (23) 15.5s (3)
Depots’02 400.3s (51/184) 297.4s (115/135) 389.0s (64) 61.6s (0)

Driverlog’02 308.3s (108/143) 189.6s (169/92) 245.8s (61) 6.1s (0)
Rovers’02 245.8s (138/112) 165.7s (179/79) 162.9s (41) 5.7s (0)

Satellite’02 398.4s (73/186) 229.9s (155/106) 364.6s (82) 30.8s (0)
Zenotravel’02 350.7s (101/169) 239.0s (154/116) 224.5s (53) 6.3s (0)

Total 252.8s (1225/1031) 158.9s (1652/657) 187.2s (430) 17.1s (3)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 508 / 653

Experimental results

Planning benchmarks

#heuristic holds(F,T-1) : holds(F,T). [t-T+1, true]

#heuristic holds(F,T-1) : not holds(F,T), fluent(F),time(T).

[t-T+1, false]

Problem base configuration #heuristic base config. (SAT) #heu. (SAT)
Blocks’00 134.4s (180/61) 9.2s (239/3) 163.2s (59) 2.6s (0)

Elevator’00 3.1s (279/0) 0.0s (279/0) 3.4s (0) 0.0s (0)
Freecell’00 288.7s (147/115) 184.2s (194/74) 226.4s (47) 52.0s (0)

Logistics’00 145.8s (148/61) 115.3s (168/52) 113.9s (23) 15.5s (3)
Depots’02 400.3s (51/184) 297.4s (115/135) 389.0s (64) 61.6s (0)

Driverlog’02 308.3s (108/143) 189.6s (169/92) 245.8s (61) 6.1s (0)
Rovers’02 245.8s (138/112) 165.7s (179/79) 162.9s (41) 5.7s (0)

Satellite’02 398.4s (73/186) 229.9s (155/106) 364.6s (82) 30.8s (0)
Zenotravel’02 350.7s (101/169) 239.0s (154/116) 224.5s (53) 6.3s (0)

Total 252.8s (1225/1031) 158.9s (1652/657) 187.2s (430) 17.1s (3)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 508 / 653

Experimental results

Planning benchmarks

#heuristic holds(F,T-1) : holds(F,T). [t-T+1, true]

#heuristic holds(F,T-1) : not holds(F,T), fluent(F),time(T).

[t-T+1, false]

Problem base configuration #heuristic base config. (SAT) #heu. (SAT)
Blocks’00 134.4s (180/61) 9.2s (239/3) 163.2s (59) 2.6s (0)

Elevator’00 3.1s (279/0) 0.0s (279/0) 3.4s (0) 0.0s (0)
Freecell’00 288.7s (147/115) 184.2s (194/74) 226.4s (47) 52.0s (0)

Logistics’00 145.8s (148/61) 115.3s (168/52) 113.9s (23) 15.5s (3)
Depots’02 400.3s (51/184) 297.4s (115/135) 389.0s (64) 61.6s (0)

Driverlog’02 308.3s (108/143) 189.6s (169/92) 245.8s (61) 6.1s (0)
Rovers’02 245.8s (138/112) 165.7s (179/79) 162.9s (41) 5.7s (0)

Satellite’02 398.4s (73/186) 229.9s (155/106) 364.6s (82) 30.8s (0)
Zenotravel’02 350.7s (101/169) 239.0s (154/116) 224.5s (53) 6.3s (0)

Total 252.8s (1225/1031) 158.9s (1652/657) 187.2s (430) 17.1s (3)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 508 / 653

Systems: Overview

62 Potassco

63 gringo

64 clasp

65 clingo

66 clingcon

67 claspfolio

68 clavis

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 509 / 653

Potassco

Outline

62 Potassco

63 gringo

64 clasp

65 clingo

66 clingcon

67 claspfolio

68 clavis

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 510 / 653

Potassco

potassco.org

Potassco, the Potsdam Answer Set Solving Collection,
bundles tools for ASP developed at the University of Potsdam,
for instance:

Grounder gringo, lingo,

Solver clasp, claspfolio, claspar, aspeed

Grounder+Solver Clingo, Clingcon, ROSoClingo

Further Tools aspartame, aspcud, aspic, asprin, claspre, clavis, coala,
fimo, insight, metasp, plasp, piclasp, etc

Benchmark repository asparagus.cs.uni-potsdam.de

Teaching material potassco.org/teaching

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 511 / 653

potassco.org
asparagus.cs.uni-potsdam.de
potassco.org/teaching

Potassco

potassco.org

Potassco, the Potsdam Answer Set Solving Collection,
bundles tools for ASP developed at the University of Potsdam,
for instance:

Grounder gringo, lingo,

Solver clasp, claspfolio, claspar, aspeed

Grounder+Solver Clingo, Clingcon, ROSoClingo

Further Tools aspartame, aspcud, aspic, asprin, claspre, clavis, coala,
fimo, insight, metasp, plasp, piclasp, etc

Benchmark repository asparagus.cs.uni-potsdam.de

Teaching material potassco.org/teaching

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 511 / 653

potassco.org
asparagus.cs.uni-potsdam.de
potassco.org/teaching

Potassco

potassco.org

Potassco, the Potsdam Answer Set Solving Collection,
bundles tools for ASP developed at the University of Potsdam,
for instance:

Grounder gringo, lingo,

Solver clasp, claspfolio, claspar, aspeed

Grounder+Solver Clingo, Clingcon, ROSoClingo

Further Tools aspartame, aspcud, aspic, asprin, claspre, clavis, coala,
fimo, insight, metasp, plasp, piclasp, etc

Benchmark repository asparagus.cs.uni-potsdam.de

Teaching material potassco.org/teaching

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 511 / 653

potassco.org
asparagus.cs.uni-potsdam.de
potassco.org/teaching

gringo

Outline

62 Potassco

63 gringo

64 clasp

65 clingo

66 clingcon

67 claspfolio

68 clavis

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 512 / 653

gringo

gringo

Accepts safe programs with aggregates

Tolerates unrestricted use of function symbols
(as long as it yields a finite ground instantiation :)

Expressive power of a Turing machine

Basic architecture of gringo:

Parser Preprocessor Grounder Output

--lparse
--text
--reify

--ground

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 513 / 653

gringo

Selected directives

Output

#show. #show p/n. #show t : l1, . . . , ln.

Projection

#project p/n. #project a : l1, . . . , ln.

Heuristics

#heuristic a : l1, . . . , ln. [k@p,m]

Acyclicity

#edge (u, v) : l1, . . . , ln.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 514 / 653

gringo

Selected directives

Output

#show. #show p/n. #show t : l1, . . . , ln.

Projection

#project p/n. #project a : l1, . . . , ln.

Heuristics

#heuristic a : l1, . . . , ln. [k@p,m]

Acyclicity

#edge (u, v) : l1, . . . , ln.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 514 / 653

gringo

Selected directives

Output

#show. #show p/n. #show t : l1, . . . , ln.

Projection

#project p/n. #project a : l1, . . . , ln.

Heuristics

#heuristic a : l1, . . . , ln. [k@p,m]

Acyclicity

#edge (u, v) : l1, . . . , ln.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 514 / 653

gringo

Selected directives

Output

#show. #show p/n. #show t : l1, . . . , ln.

Projection

#project p/n. #project a : l1, . . . , ln.

Heuristics

#heuristic a : l1, . . . , ln. [k@p,m]

Acyclicity

#edge (u, v) : l1, . . . , ln.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 514 / 653

clasp

Outline

62 Potassco

63 gringo

64 clasp

65 clingo

66 clingcon

67 claspfolio

68 clavis

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 515 / 653

clasp Features

Outline

62 Potassco

63 gringo

64 clasp
Features
Parallel solving
Configuration
Disjunctive solving

65 clingo

66 clingcon

67 claspfolio

68 clavis

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 516 / 653

clasp Features

clasp

clasp is a native ASP solver combining conflict-driven search with
sophisticated reasoning techniques:

advanced preprocessing, including equivalence reasoning
lookback-based decision heuristics
restart policies
nogood deletion
progress saving
dedicated data structures for binary and ternary nogoods
lazy data structures (watched literals) for long nogoods
dedicated data structures for cardinality and weight constraints
lazy unfounded set checking based on “source pointers”
tight integration of unit propagation and unfounded set checking
various reasoning modes
parallel search
. . .

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 517 / 653

clasp Features

clasp

clasp is a native ASP solver combining conflict-driven search with
sophisticated reasoning techniques:

advanced preprocessing, including equivalence reasoning
lookback-based decision heuristics
restart policies
nogood deletion
progress saving
dedicated data structures for binary and ternary nogoods
lazy data structures (watched literals) for long nogoods
dedicated data structures for cardinality and weight constraints
lazy unfounded set checking based on “source pointers”
tight integration of unit propagation and unfounded set checking
various reasoning modes
parallel search
. . .

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 517 / 653

clasp Features

clasp

clasp is a native ASP solver combining conflict-driven search with
sophisticated reasoning techniques:

advanced preprocessing, including equivalence reasoning
lookback-based decision heuristics
restart policies
nogood deletion
progress saving
dedicated data structures for binary and ternary nogoods
lazy data structures (watched literals) for long nogoods
dedicated data structures for cardinality and weight constraints
lazy unfounded set checking based on “source pointers”
tight integration of unit propagation and unfounded set checking
various reasoning modes
parallel search
. . .

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 517 / 653

clasp Features

Reasoning modes of clasp

Beyond deciding (stable) model existence, clasp allows for:

Optimization
Enumeration (without solution recording)
Projective enumeration (without solution recording)
Intersection and Union (linear solution computation)
and combinations thereof

clasp allows for

ASP solving (smodels format)
MaxSAT and SAT solving (extended dimacs format)
PB solving (opb and wbo format)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 518 / 653

clasp Features

Reasoning modes of clasp

Beyond deciding (stable) model existence, clasp allows for:

Optimization
Enumeration (without solution recording)
Projective enumeration (without solution recording)
Intersection and Union (linear solution computation)
and combinations thereof

clasp allows for

ASP solving (smodels format)
MaxSAT and SAT solving (extended dimacs format)
PB solving (opb and wbo format)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 518 / 653

clasp Parallel solving

Outline

62 Potassco

63 gringo

64 clasp
Features
Parallel solving
Configuration
Disjunctive solving

65 clingo

66 clingcon

67 claspfolio

68 clavis

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 519 / 653

clasp Parallel solving

Parallel search in clasp

clasp

pursues a coarse-grained, task-parallel approach to parallel search
via shared memory multi-threading

up to 64 configurable (non-hierarchic) threads

allows for parallel solving via search space splitting
and/or competing strategies

both supported by solver portfolios

features different nogood exchange policies

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 520 / 653

clasp Parallel solving

Parallel search in clasp

clasp

pursues a coarse-grained, task-parallel approach to parallel search
via shared memory multi-threading

up to 64 configurable (non-hierarchic) threads

allows for parallel solving via search space splitting
and/or competing strategies

both supported by solver portfolios

features different nogood exchange policies

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 520 / 653

clasp Parallel solving

Parallel search in clasp

clasp

pursues a coarse-grained, task-parallel approach to parallel search
via shared memory multi-threading

up to 64 configurable (non-hierarchic) threads

allows for parallel solving via search space splitting
and/or competing strategies

both supported by solver portfolios

features different nogood exchange policies

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 520 / 653

clasp Parallel solving

Parallel search in clasp

clasp

pursues a coarse-grained, task-parallel approach to parallel search
via shared memory multi-threading

up to 64 configurable (non-hierarchic) threads

allows for parallel solving via search space splitting
and/or competing strategies

both supported by solver portfolios

features different nogood exchange policies

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 520 / 653

clasp Parallel solving

Sequential CDCL-style solving

loop

propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 521 / 653

clasp Parallel solving

Parallel CDCL-style solving in clasp

while work available
while no (result) message to send

communicate // exchange information with other solver

propagate // deterministically assign literals

if no conflict then
if all variables assigned then send solution
else decide // non-deterministically assign some literal

else
if root-level conflict then send unsatisfiable
else if external conflict then send unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

communicate // exchange results (and receive work)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 522 / 653

clasp Parallel solving

Parallel CDCL-style solving in clasp

while work available
while no (result) message to send

communicate // exchange information with other solver

propagate // deterministically assign literals

if no conflict then
if all variables assigned then send solution
else decide // non-deterministically assign some literal

else
if root-level conflict then send unsatisfiable
else if external conflict then send unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

communicate // exchange results (and receive work)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 522 / 653

clasp Parallel solving

Parallel CDCL-style solving in clasp

while work available
while no (result) message to send

communicate // exchange information with other solver

propagate // deterministically assign literals

if no conflict then
if all variables assigned then send solution
else decide // non-deterministically assign some literal

else
if root-level conflict then send unsatisfiable
else if external conflict then send unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

communicate // exchange results (and receive work)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 522 / 653

clasp Parallel solving

Parallel CDCL-style solving in clasp

while work available
while no (result) message to send

communicate // exchange information with other solver

propagate // deterministically assign literals

if no conflict then
if all variables assigned then send solution
else decide // non-deterministically assign some literal

else
if root-level conflict then send unsatisfiable
else if external conflict then send unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

communicate // exchange results (and receive work)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 522 / 653

clasp Parallel solving

Parallel CDCL-style solving in clasp

while work available
while no (result) message to send

communicate // exchange information with other solver

propagate // deterministically assign literals

if no conflict then
if all variables assigned then send solution
else decide // non-deterministically assign some literal

else
if root-level conflict then send unsatisfiable
else if external conflict then send unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

communicate // exchange results (and receive work)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 522 / 653

clasp Parallel solving

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 523 / 653

clasp Parallel solving

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 523 / 653

clasp Parallel solving

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 523 / 653

clasp Parallel solving

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 523 / 653

clasp Parallel solving

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 523 / 653

clasp Parallel solving

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 523 / 653

clasp Parallel solving

clasp in context

Compare clasp (2.0.5) to the multi-threaded SAT solvers

cryptominisat (2.9.2)
manysat (1.1)
miraxt (2009)
plingeling (587f)

all run with four and eight threads in their default settings

160/300 benchmarks from crafted category at SAT’11

all solvable by ppfolio in 1000 seconds
crafted SAT benchmarks are closest to ASP benchmarks

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 524 / 653

clasp Parallel solving

clasp in context

 20

 40

 60

 80

 100

 120

 1 10 100 1000

S
o

lv
e

d
 i
n

s
ta

n
c
e

s

Time in seconds

clasp-t1
 -t4
 -t8

cryptominisat-2.9.2-t4
 -t8
miraxt-2009-t4

 -t8
plingeling-587-t4

 -t8
manysat-1.1-t4

 -t8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 525 / 653

clasp Configuration

Outline

62 Potassco

63 gringo

64 clasp
Features
Parallel solving
Configuration
Disjunctive solving

65 clingo

66 clingcon

67 claspfolio

68 clavis

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 526 / 653

clasp Configuration

Using clasp

--help[=<n>],-h : Print {1=basic|2=more|3=full} help and exit

--parallel-mode,-t <arg>: Run parallel search with given number of threads

<arg>: <n {1..64}>[,<mode {compete|split}>]

<n> : Number of threads to use in search

<mode>: Run competition or splitting based search [compete]

--configuration=<arg> : Configure default configuration [frumpy]

<arg>: {frumpy|jumpy|handy|crafty|trendy|chatty}

frumpy: Use conservative defaults

jumpy : Use aggressive defaults

handy : Use defaults geared towards large problems

crafty: Use defaults geared towards crafted problems

trendy: Use defaults geared towards industrial problems

"-t 4": Use 4 competing threads initialized via the default portfolio

--print-portfolio,-g : Print default portfolio and exit

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 527 / 653

clasp Configuration

Using clasp

--help[=<n>],-h : Print {1=basic|2=more|3=full} help and exit

--parallel-mode,-t <arg>: Run parallel search with given number of threads

<arg>: <n {1..64}>[,<mode {compete|split}>]

<n> : Number of threads to use in search

<mode>: Run competition or splitting based search [compete]

--configuration=<arg> : Configure default configuration [frumpy]

<arg>: {frumpy|jumpy|handy|crafty|trendy|chatty}

frumpy: Use conservative defaults

jumpy : Use aggressive defaults

handy : Use defaults geared towards large problems

crafty: Use defaults geared towards crafted problems

trendy: Use defaults geared towards industrial problems

"-t 4": Use 4 competing threads initialized via the default portfolio

--print-portfolio,-g : Print default portfolio and exit

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 527 / 653

clasp Configuration

Using clasp

--help[=<n>],-h : Print {1=basic|2=more|3=full} help and exit

--parallel-mode,-t <arg>: Run parallel search with given number of threads

<arg>: <n {1..64}>[,<mode {compete|split}>]

<n> : Number of threads to use in search

<mode>: Run competition or splitting based search [compete]

--configuration=<arg> : Configure default configuration [frumpy]

<arg>: {frumpy|jumpy|handy|crafty|trendy|chatty}

frumpy: Use conservative defaults

jumpy : Use aggressive defaults

handy : Use defaults geared towards large problems

crafty: Use defaults geared towards crafted problems

trendy: Use defaults geared towards industrial problems

"-t 4": Use 4 competing threads initialized via the default portfolio

--print-portfolio,-g : Print default portfolio and exit

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 527 / 653

clasp Configuration

Using clasp

--help[=<n>],-h : Print {1=basic|2=more|3=full} help and exit

--parallel-mode,-t <arg>: Run parallel search with given number of threads

<arg>: <n {1..64}>[,<mode {compete|split}>]

<n> : Number of threads to use in search

<mode>: Run competition or splitting based search [compete]

--configuration=<arg> : Configure default configuration [frumpy]

<arg>: {frumpy|jumpy|handy|crafty|trendy|chatty}

frumpy: Use conservative defaults

jumpy : Use aggressive defaults

handy : Use defaults geared towards large problems

crafty: Use defaults geared towards crafted problems

trendy: Use defaults geared towards industrial problems

"-t 4": Use 4 competing threads initialized via the default portfolio

--print-portfolio,-g : Print default portfolio and exit

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 527 / 653

clasp Configuration

Using clasp

--help[=<n>],-h : Print {1=basic|2=more|3=full} help and exit

--parallel-mode,-t <arg>: Run parallel search with given number of threads

<arg>: <n {1..64}>[,<mode {compete|split}>]

<n> : Number of threads to use in search

<mode>: Run competition or splitting based search [compete]

--configuration=<arg> : Configure default configuration [frumpy]

<arg>: {frumpy|jumpy|handy|crafty|trendy|chatty}

frumpy: Use conservative defaults

jumpy : Use aggressive defaults

handy : Use defaults geared towards large problems

crafty: Use defaults geared towards crafted problems

trendy: Use defaults geared towards industrial problems

"-t 4": Use 4 competing threads initialized via the default portfolio

--print-portfolio,-g : Print default portfolio and exit

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 527 / 653

clasp Configuration

Comparing configurations
on queensA.lp

n frumpy jumpy handy crafty trendy -t 4

50 0.063 0.023 3.416 0.030 1.805 0.061
100 20.364 0.099 7.891 0.136 7.321 0.121
150 60.000 0.212 14.522 0.271 19.883 0.347
200 60.000 0.415 15.026 0.667 32.476 0.753
500 60.000 3.199 60.000 7.471 60.000 6.104

(times in seconds, cut-off at 60 seconds)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 528 / 653

clasp Configuration

Comparing configurations
on queensA.lp

n frumpy jumpy handy crafty trendy -t 4

50 0.063 0.023 3.416 0.030 1.805 0.061
100 20.364 0.099 7.891 0.136 7.321 0.121
150 60.000 0.212 14.522 0.271 19.883 0.347
200 60.000 0.415 15.026 0.667 32.476 0.753
500 60.000 3.199 60.000 7.471 60.000 6.104

(times in seconds, cut-off at 60 seconds)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 528 / 653

clasp Configuration

Comparing configurations
on queensA.lp

n frumpy jumpy handy crafty trendy -t 4

50 0.063 0.023 3.416 0.030 1.805 0.061
100 20.364 0.099 7.891 0.136 7.321 0.121
150 60.000 0.212 14.522 0.271 19.883 0.347
200 60.000 0.415 15.026 0.667 32.476 0.753
500 60.000 3.199 60.000 7.471 60.000 6.104

(times in seconds, cut-off at 60 seconds)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 528 / 653

clasp Configuration

Comparing configurations
on queensA.lp

n frumpy jumpy handy crafty trendy -t 4

50 0.063 0.023 3.416 0.030 1.805 0.061
100 20.364 0.099 7.891 0.136 7.321 0.121
150 60.000 0.212 14.522 0.271 19.883 0.347
200 60.000 0.415 15.026 0.667 32.476 0.753
500 60.000 3.199 60.000 7.471 60.000 6.104

(times in seconds, cut-off at 60 seconds)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 528 / 653

clasp Configuration

Comparing configurations
on queensA.lp

n frumpy jumpy handy crafty trendy -t 4

50 0.063 0.023 3.416 0.030 1.805 0.061
100 20.364 0.099 7.891 0.136 7.321 0.121
150 60.000 0.212 14.522 0.271 19.883 0.347
200 60.000 0.415 15.026 0.667 32.476 0.753
500 60.000 3.199 60.000 7.471 60.000 6.104

(times in seconds, cut-off at 60 seconds)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 528 / 653

clasp Configuration

clasp’s default portfolio for parallel solving
via clasp --print-portfolio

[solver.0]: --heuristic=Vsids,92 --restarts=L,60 --deletion=basic,50,0 --del-max=2000000 --del-estimate=1 --del-cfl=+,2000,100,20 --del-grow=0 --del-glue=2,0 --strengthen=recursive,0 --otfs=2 --init-moms --score-other=2 --update-lbd=1 --save-progress=160 --init-watches=2 --local-restarts --loops=shared --opt-strat=bb,1

[solver.1]: --heuristic=Vsids --restarts=D,100,0.7 --deletion=basic,50,0 --del-init=3.0,500,19500 --del-grow=1.1,20.0,x,100,1.5 --del-cfl=+,10000,2000 --del-glue=2 --strengthen=recursive --update-lbd --otfs=2 --save-p=75 --counter-restarts=3 --counter-bump=1023 --reverse-arcs=2 --contraction=250 --loops=common --opt-heu=1 --opt-strat=usc,1

[solver.2]: --heuristic=Berkmin --restarts=x,100,1.5 --deletion=basic,75 --del-init=3.0,200,40000 --del-max=400000 --contraction=250 --loops=common --save-p=180 --del-grow=1.1 --strengthen=local --sign-def=4 --restart-on-model --opt-heu=2

[solver.3]: --restarts=x,128,1.5 --deletion=basic,75,0 --del-init=10.0,1000,9000 --del-grow=1.1,20.0 --del-cfl=+,10000,1000 --del-glue=2 --otfs=2 --reverse-arcs=1 --counter-restarts=3 --contraction=250 --heuristic=domain --dom-mod=4,8 --opt-strat=bb,1

[solver.4]: --heuristic=Vsids --restarts=L,100 --deletion=basic,75,2 --del-init=3.0,1000,20000 --del-grow=1.1,25,x,100,1.5 --del-cfl=x,10000,1.1 --del-glue=2 --update-lbd=3 --strengthen=recursive --otfs=2 --save-p=70 --restart-on-model --opt-heu=3 --opt-strat=bb,2

[solver.5]: --heuristic=Vsids --restarts=D,100,0.7 --deletion=sort,50,2 --del-max=200000 --del-init=20.0,1000,14000 --del-cfl=+,4000,600 --del-glue=2 --update-lbd --strengthen=recursive --otfs=2 --save-p=20 --contraction=600 --loops=distinct --counter-restarts=7 --counter-bump=1023 --reverse-arcs=2

[solver.6]: --heuristic=Berkmin,512 --restarts=x,100,1.5 --deletion=basic,75 --del-init=3.0,200,40000 --del-max=400000 --contraction=250 --loops=common --del-grow=1.1,25 --otfs=2 --reverse-arcs=2 --strengthen=recursive --init-w=2 --lookahead=atom,10

[solver.7]: --heuristic=Vsids --reverse-arcs=1 --otfs=1 --local-restarts --save-progress=0 --contraction=250 --counter-restart=7 --counter-bump=200 --restarts=x,100,1.5 --del-init=3.0,800,-1 --deletion=basic,60,0 --strengthen=local --del-grow=1.0,1.0 --del-glue=4 --del-cfl=+,4000,300,100

[solver.8]: --heuristic=Vsids --restarts=L,256 --counter-restart=3 --strengthen=recursive --update-lbd --del-glue=2 --otfs=2 --deletion=ipSort,75,2 --del-init=20.0,1000,19000

[solver.9]: --heuristic=Berkmin,512 --restarts=F,16000 --lookahead=atom,50

[solver.10]: --heuristic=Vmtf --strengthen=no --contr=0 --restarts=x,100,1.3 --del-init=3.0,800,9200

[solver.11]: --heuristic=Vsids --strengthen=recursive --restarts=x,100,1.5,15 --contraction=0

[solver.12]: --heuristic=Vsids --restarts=L,128 --save-p --otfs=1 --init-w=2 --contr=0 --opt-heu=3

[solver.13]: --heuristic=Berkmin,512 --restarts=x,100,1.5,6 --local-restarts --init-w=2 --contr=0

[solver.14]: --no-lookback --heuristic=Unit --lookahead=atom --deletion=no --restarts=no

clasp’s portfolio is fully customizable

configurations are assigned in a round-robin fashion to threads

during parallel solving

-t 4 uses four threads with crafty, trendy, frumpy, and jumpy

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 529 / 653

clasp Configuration

clasp’s default portfolio for parallel solving
via clasp --print-portfolio

[solver.0]: --heuristic=Vsids,92 --restarts=L,60 --deletion=basic,50,0 --del-max=2000000 --del-estimate=1 --del-cfl=+,2000,100,20 --del-grow=0 --del-glue=2,0 --strengthen=recursive,0 --otfs=2 --init-moms --score-other=2 --update-lbd=1 --save-progress=160 --init-watches=2 --local-restarts --loops=shared --opt-strat=bb,1

[solver.1]: --heuristic=Vsids --restarts=D,100,0.7 --deletion=basic,50,0 --del-init=3.0,500,19500 --del-grow=1.1,20.0,x,100,1.5 --del-cfl=+,10000,2000 --del-glue=2 --strengthen=recursive --update-lbd --otfs=2 --save-p=75 --counter-restarts=3 --counter-bump=1023 --reverse-arcs=2 --contraction=250 --loops=common --opt-heu=1 --opt-strat=usc,1

[solver.2]: --heuristic=Berkmin --restarts=x,100,1.5 --deletion=basic,75 --del-init=3.0,200,40000 --del-max=400000 --contraction=250 --loops=common --save-p=180 --del-grow=1.1 --strengthen=local --sign-def=4 --restart-on-model --opt-heu=2

[solver.3]: --restarts=x,128,1.5 --deletion=basic,75,0 --del-init=10.0,1000,9000 --del-grow=1.1,20.0 --del-cfl=+,10000,1000 --del-glue=2 --otfs=2 --reverse-arcs=1 --counter-restarts=3 --contraction=250 --heuristic=domain --dom-mod=4,8 --opt-strat=bb,1

[solver.4]: --heuristic=Vsids --restarts=L,100 --deletion=basic,75,2 --del-init=3.0,1000,20000 --del-grow=1.1,25,x,100,1.5 --del-cfl=x,10000,1.1 --del-glue=2 --update-lbd=3 --strengthen=recursive --otfs=2 --save-p=70 --restart-on-model --opt-heu=3 --opt-strat=bb,2

[solver.5]: --heuristic=Vsids --restarts=D,100,0.7 --deletion=sort,50,2 --del-max=200000 --del-init=20.0,1000,14000 --del-cfl=+,4000,600 --del-glue=2 --update-lbd --strengthen=recursive --otfs=2 --save-p=20 --contraction=600 --loops=distinct --counter-restarts=7 --counter-bump=1023 --reverse-arcs=2

[solver.6]: --heuristic=Berkmin,512 --restarts=x,100,1.5 --deletion=basic,75 --del-init=3.0,200,40000 --del-max=400000 --contraction=250 --loops=common --del-grow=1.1,25 --otfs=2 --reverse-arcs=2 --strengthen=recursive --init-w=2 --lookahead=atom,10

[solver.7]: --heuristic=Vsids --reverse-arcs=1 --otfs=1 --local-restarts --save-progress=0 --contraction=250 --counter-restart=7 --counter-bump=200 --restarts=x,100,1.5 --del-init=3.0,800,-1 --deletion=basic,60,0 --strengthen=local --del-grow=1.0,1.0 --del-glue=4 --del-cfl=+,4000,300,100

[solver.8]: --heuristic=Vsids --restarts=L,256 --counter-restart=3 --strengthen=recursive --update-lbd --del-glue=2 --otfs=2 --deletion=ipSort,75,2 --del-init=20.0,1000,19000

[solver.9]: --heuristic=Berkmin,512 --restarts=F,16000 --lookahead=atom,50

[solver.10]: --heuristic=Vmtf --strengthen=no --contr=0 --restarts=x,100,1.3 --del-init=3.0,800,9200

[solver.11]: --heuristic=Vsids --strengthen=recursive --restarts=x,100,1.5,15 --contraction=0

[solver.12]: --heuristic=Vsids --restarts=L,128 --save-p --otfs=1 --init-w=2 --contr=0 --opt-heu=3

[solver.13]: --heuristic=Berkmin,512 --restarts=x,100,1.5,6 --local-restarts --init-w=2 --contr=0

[solver.14]: --no-lookback --heuristic=Unit --lookahead=atom --deletion=no --restarts=no

clasp’s portfolio is fully customizable

configurations are assigned in a round-robin fashion to threads

during parallel solving

-t 4 uses four threads with crafty, trendy, frumpy, and jumpy

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 529 / 653

clasp Configuration

clasp’s default portfolio for parallel solving
via clasp --print-portfolio

[solver.0]: --heuristic=Vsids,92 --restarts=L,60 --deletion=basic,50,0 --del-max=2000000 --del-estimate=1 --del-cfl=+,2000,100,20 --del-grow=0 --del-glue=2,0 --strengthen=recursive,0 --otfs=2 --init-moms --score-other=2 --update-lbd=1 --save-progress=160 --init-watches=2 --local-restarts --loops=shared --opt-strat=bb,1

[solver.1]: --heuristic=Vsids --restarts=D,100,0.7 --deletion=basic,50,0 --del-init=3.0,500,19500 --del-grow=1.1,20.0,x,100,1.5 --del-cfl=+,10000,2000 --del-glue=2 --strengthen=recursive --update-lbd --otfs=2 --save-p=75 --counter-restarts=3 --counter-bump=1023 --reverse-arcs=2 --contraction=250 --loops=common --opt-heu=1 --opt-strat=usc,1

[solver.2]: --heuristic=Berkmin --restarts=x,100,1.5 --deletion=basic,75 --del-init=3.0,200,40000 --del-max=400000 --contraction=250 --loops=common --save-p=180 --del-grow=1.1 --strengthen=local --sign-def=4 --restart-on-model --opt-heu=2

[solver.3]: --restarts=x,128,1.5 --deletion=basic,75,0 --del-init=10.0,1000,9000 --del-grow=1.1,20.0 --del-cfl=+,10000,1000 --del-glue=2 --otfs=2 --reverse-arcs=1 --counter-restarts=3 --contraction=250 --heuristic=domain --dom-mod=4,8 --opt-strat=bb,1

[solver.4]: --heuristic=Vsids --restarts=L,100 --deletion=basic,75,2 --del-init=3.0,1000,20000 --del-grow=1.1,25,x,100,1.5 --del-cfl=x,10000,1.1 --del-glue=2 --update-lbd=3 --strengthen=recursive --otfs=2 --save-p=70 --restart-on-model --opt-heu=3 --opt-strat=bb,2

[solver.5]: --heuristic=Vsids --restarts=D,100,0.7 --deletion=sort,50,2 --del-max=200000 --del-init=20.0,1000,14000 --del-cfl=+,4000,600 --del-glue=2 --update-lbd --strengthen=recursive --otfs=2 --save-p=20 --contraction=600 --loops=distinct --counter-restarts=7 --counter-bump=1023 --reverse-arcs=2

[solver.6]: --heuristic=Berkmin,512 --restarts=x,100,1.5 --deletion=basic,75 --del-init=3.0,200,40000 --del-max=400000 --contraction=250 --loops=common --del-grow=1.1,25 --otfs=2 --reverse-arcs=2 --strengthen=recursive --init-w=2 --lookahead=atom,10

[solver.7]: --heuristic=Vsids --reverse-arcs=1 --otfs=1 --local-restarts --save-progress=0 --contraction=250 --counter-restart=7 --counter-bump=200 --restarts=x,100,1.5 --del-init=3.0,800,-1 --deletion=basic,60,0 --strengthen=local --del-grow=1.0,1.0 --del-glue=4 --del-cfl=+,4000,300,100

[solver.8]: --heuristic=Vsids --restarts=L,256 --counter-restart=3 --strengthen=recursive --update-lbd --del-glue=2 --otfs=2 --deletion=ipSort,75,2 --del-init=20.0,1000,19000

[solver.9]: --heuristic=Berkmin,512 --restarts=F,16000 --lookahead=atom,50

[solver.10]: --heuristic=Vmtf --strengthen=no --contr=0 --restarts=x,100,1.3 --del-init=3.0,800,9200

[solver.11]: --heuristic=Vsids --strengthen=recursive --restarts=x,100,1.5,15 --contraction=0

[solver.12]: --heuristic=Vsids --restarts=L,128 --save-p --otfs=1 --init-w=2 --contr=0 --opt-heu=3

[solver.13]: --heuristic=Berkmin,512 --restarts=x,100,1.5,6 --local-restarts --init-w=2 --contr=0

[solver.14]: --no-lookback --heuristic=Unit --lookahead=atom --deletion=no --restarts=no

clasp’s portfolio is fully customizable

configurations are assigned in a round-robin fashion to threads

during parallel solving

-t 4 uses four threads with crafty, trendy, frumpy, and jumpy

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 529 / 653

clasp Disjunctive solving

Outline

62 Potassco

63 gringo

64 clasp
Features
Parallel solving
Configuration
Disjunctive solving

65 clingo

66 clingcon

67 claspfolio

68 clavis

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 530 / 653

clasp Disjunctive solving

clasp

clasp is a multi-threaded solver for disjunctive logic programs

aiming at an equitable interplay between “generating” and “testing”
solver units

allowing for a bidirectional dynamic information exchange between
solver units for orthogonal tasks

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 531 / 653

clasp Disjunctive solving

clasp

clasp is a multi-threaded solver for disjunctive logic programs

aiming at an equitable interplay between “generating” and “testing”
solver units

allowing for a bidirectional dynamic information exchange between
solver units for orthogonal tasks

Preprocessing

Shared
Data

HCC1
Data

HCCk
Data

Solver1 Solver1 Solver1

Solvern Solvern Solvern

Generator Tester1 Testerk

Non-HCF SCCs

Generator
Configuration

Tester Configuration

...

...

.
.

.

.
.

.

.
.

.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 531 / 653

clingo

Outline

62 Potassco

63 gringo

64 clasp

65 clingo

66 clingcon

67 claspfolio

68 clavis

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 532 / 653

clingo

Clingo species

Before Clingo = gringo | clasp
Clingo — easy solving
iClingo — incremental solving
oClingo — reactive solving

After

Clingo = gringo | clasp

Clingo — easy solving
+ incremental solving
+ reactive solving
+ complex solving

Clingo series 4 = ASP + Control

Multi-shot ASP solving deals with continously changing programs

See Multi-shot ASP Solving for details

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 533 / 653

clingo

Clingo species

Before Clingo = gringo | clasp
Clingo — easy solving
iClingo — incremental solving
oClingo — reactive solving

After

Clingo = gringo | clasp

Clingo — easy solving
+ incremental solving
+ reactive solving
+ complex solving

Clingo series 4 = ASP + Control

Multi-shot ASP solving deals with continously changing programs

See Multi-shot ASP Solving for details

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 533 / 653

clingo

Clingo species

Before Clingo = gringo | clasp
Clingo — easy solving
iClingo — incremental solving
oClingo — reactive solving

After

Clingo = gringo | clasp

Clingo — easy solving
+ incremental solving
+ reactive solving
+ complex solving

Clingo series 4 = ASP + Control

Multi-shot ASP solving deals with continously changing programs

See Multi-shot ASP Solving for details

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 533 / 653

clingo

Clingo species

Before Clingo = gringo | clasp
Clingo — easy solving
iClingo — incremental solving
oClingo — reactive solving

After

Clingo = gringo | clasp

Clingo — easy solving
+ incremental solving
+ reactive solving
+ complex solving

Clingo series 4 = ASP + Control

Multi-shot ASP solving deals with continously changing programs

See Multi-shot ASP Solving for details

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 533 / 653

clingo

Clingo species

Before Clingo = gringo | clasp
Clingo — easy solving
iClingo — incremental solving
oClingo — reactive solving

After

Clingo = gringo | clasp

Clingo — easy solving
+ incremental solving
+ reactive solving
+ complex solving

Clingo series 4 = ASP + Control

Multi-shot ASP solving deals with continously changing programs

See Multi-shot ASP Solving for details

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 533 / 653

clingo

Clingo species

Before Clingo = gringo | clasp
Clingo — easy solving
iClingo — incremental solving
oClingo — reactive solving

After Clingo = gringo | clasp
Clingo — easy solving

+ incremental solving
+ reactive solving
+ complex solving

Clingo series 4 = ASP + Control

Multi-shot ASP solving deals with continously changing programs

See Multi-shot ASP Solving for details

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 533 / 653

clingo

Clingo species

Before Clingo = gringo | clasp
Clingo — easy solving
iClingo — incremental solving
oClingo — reactive solving

After Clingo = gringo∗ | clasp∗
Clingo — easy solving

+ incremental solving
+ reactive solving
+ complex solving

Clingo series 4 = ASP + Control

Multi-shot ASP solving deals with continously changing programs

See Multi-shot ASP Solving for details

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 533 / 653

clingo

Clingo species

Before Clingo = gringo | clasp
Clingo — easy solving
iClingo — incremental solving
oClingo — reactive solving

After Clingo = (gringo∗ | clasp∗)∗
Clingo — easy solving

+ incremental solving
+ reactive solving
+ complex solving

Clingo series 4 = ASP + Control

Multi-shot ASP solving deals with continously changing programs

See Multi-shot ASP Solving for details

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 533 / 653

clingo

Clingo species

Before Clingo = gringo | clasp
Clingo — easy solving
iClingo — incremental solving
oClingo — reactive solving

After Clingo = (gringo∗ | clasp∗)∗
Clingo — easy solving

+ incremental solving
+ reactive solving
+ complex solving

Clingo series 4 = ASP + Control

Multi-shot ASP solving deals with continously changing programs

See Multi-shot ASP Solving for details

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 533 / 653

clingo

Clingo species

Before Clingo = gringo | clasp
Clingo — easy solving
iClingo — incremental solving
oClingo — reactive solving

After Clingo = (gringo∗ | clasp∗)∗
Clingo — easy solving

+ incremental solving
+ reactive solving
+ complex solving

Clingo series 4 = ASP + Control

Multi-shot ASP solving deals with continously changing programs

See Multi-shot ASP Solving for details

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 533 / 653

clingo

Clingo species

Before Clingo = gringo | clasp
Clingo — easy solving
iClingo — incremental solving
oClingo — reactive solving

After Clingo = (gringo∗ | clasp∗)∗
Clingo — easy solving

+ incremental solving
+ reactive solving
+ complex solving

Clingo series 4 = ASP + Control

Multi-shot ASP solving deals with continously changing programs

See Multi-shot ASP Solving for details

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 533 / 653

clingo

Clingo species

Before Clingo = gringo | clasp
Clingo — easy solving
iClingo — incremental solving
oClingo — reactive solving

After Clingo = (gringo∗ | clasp∗)∗
Clingo — easy solving

+ incremental solving
+ reactive solving
+ complex solving

Clingo series 4 = ASP + Control

Multi-shot ASP solving deals with continously changing programs

See Multi-shot ASP Solving for details

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 533 / 653

clingcon

Outline

62 Potassco

63 gringo

64 clasp

65 clingo

66 clingcon

67 claspfolio

68 clavis

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 534 / 653

clingcon

clingcon

Hybrid grounding and solving

Solving in hybrid domains, like Bio-Informatics

Basic architecture of clingcon:

Theory
Language

gringo clasp

Theory
Propagator

Theory
Solver

clingcon

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 535 / 653

clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

1 $<= amount(B,T) :- pour(B,T), T < t.

amount(B,T) $<= 30 :- pour(B,T), T < t.

amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.

volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 536 / 653

clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

1 $<= amount(B,T) :- pour(B,T), T < t.

amount(B,T) $<= 30 :- pour(B,T), T < t.

amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.

volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 536 / 653

clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

1 $<= amount(B,T) :- pour(B,T), T < t.

amount(B,T) $<= 30 :- pour(B,T), T < t.

amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.

volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 536 / 653

clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

1 $<= amount(B,T) :- pour(B,T), T < t.

amount(B,T) $<= 30 :- pour(B,T), T < t.

amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.

volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 536 / 653

clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

:- pour(B,T), T < t, not (1 $<= amount(B,T)).

amount(B,T) $<= 30 :- pour(B,T), T < t.

amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.

volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 536 / 653

clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

:- pour(B,T), T < t, 1 $> amount(B,T).

amount(B,T) $<= 30 :- pour(B,T), T < t.

amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.

volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 536 / 653

clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

:- pour(B,T), T < t, 1 $> amount(B,T).

:- pour(B,T), T < t, amount(B,T) $> 30.

amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.

volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 536 / 653

clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

:- pour(B,T), T < t, 1 $> amount(B,T).

:- pour(B,T), T < t, amount(B,T) $> 30.

:- not pour(B,T), bucket(B), time(T), T < t, amount(B,T) $!= 0.

volume(B,T+1) $== volume(B,T) $+ amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 536 / 653

clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

:- pour(B,T), T < t, 1 $> amount(B,T).

:- pour(B,T), T < t, amount(B,T) $> 30.

:- not pour(B,T), bucket(B), time(T), T < t, amount(B,T) $!= 0.

:- bucket(B), time(T), T < t, volume(B,T+1) $!= volume(B,T)$+amount(B,T).

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 536 / 653

clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --text

time(0). ... time(4). $domain(0..500).

bucket(a). :- volume(a,0) $!= 0.

bucket(b). :- volume(b,0) $!= 100.

1 { pour(b,0), pour(a,0) } 1. ... 1 { pour(b,3), pour(a,3) } 1.

:- pour(a,0), 1 $> amount(a,0). ... :- pour(a,3), 1 $> amount(a,3).

:- pour(b,0), 1 $> amount(b,0). ... :- pour(b,3), 1 $> amount(b,3).

:- pour(a,0), amount(a,0) $> 30. ... :- pour(a,3), amount(a,3) $> 30.

:- pour(b,0), amount(b,0) $> 30. ... :- pour(b,3), amount(b,3) $> 30.

:- not pour(a,0), amount(a,0) $!= 0. ... :- not pour(a,3), amount(a,3) $!= 0.

:- not pour(b,0), amount(b,0) $!= 0. ... :- not pour(b,3), amount(b,3) $!= 0.

:- volume(a,1) $!= (volume(a,0) $+ amount(a,0)). ... :- volume(a,4) $!= (volume(a,3) $+ amount(a,3)).

:- volume(b,1) $!= (volume(b,0) $+ amount(b,0)). ... :- volume(b,4) $!= (volume(b,3) $+ amount(b,3)).

down(a,0) :- volume(a,0) $< volume(a,0). ... down(a,4) :- volume(a,4) $< volume(a,4).

down(a,0) :- volume(b,0) $< volume(a,0). ... down(a,4) :- volume(b,4) $< volume(a,4).

down(b,0) :- volume(a,0) $< volume(b,0). ... down(b,4) :- volume(a,4) $< volume(b,4).

down(b,0) :- volume(b,0) $< volume(b,0). ... down(b,4) :- volume(b,4) $< volume(b,4).

up(a,0) :- not down(a,0). ... up(a,4) :- not down(a,4).

up(b,0) :- not down(b,0). ... up(b,4) :- not down(b,4).

:- up(a,4).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 537 / 653

clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --text

time(0). ... time(4). $domain(0..500).

bucket(a). :- volume(a,0) $!= 0.

bucket(b). :- volume(b,0) $!= 100.

1 { pour(b,0), pour(a,0) } 1. ... 1 { pour(b,3), pour(a,3) } 1.

:- pour(a,0), 1 $> amount(a,0). ... :- pour(a,3), 1 $> amount(a,3).

:- pour(b,0), 1 $> amount(b,0). ... :- pour(b,3), 1 $> amount(b,3).

:- pour(a,0), amount(a,0) $> 30. ... :- pour(a,3), amount(a,3) $> 30.

:- pour(b,0), amount(b,0) $> 30. ... :- pour(b,3), amount(b,3) $> 30.

:- not pour(a,0), amount(a,0) $!= 0. ... :- not pour(a,3), amount(a,3) $!= 0.

:- not pour(b,0), amount(b,0) $!= 0. ... :- not pour(b,3), amount(b,3) $!= 0.

:- volume(a,1) $!= (volume(a,0) $+ amount(a,0)). ... :- volume(a,4) $!= (volume(a,3) $+ amount(a,3)).

:- volume(b,1) $!= (volume(b,0) $+ amount(b,0)). ... :- volume(b,4) $!= (volume(b,3) $+ amount(b,3)).

down(a,0) :- volume(a,0) $< volume(a,0). ... down(a,4) :- volume(a,4) $< volume(a,4).

down(a,0) :- volume(b,0) $< volume(a,0). ... down(a,4) :- volume(b,4) $< volume(a,4).

down(b,0) :- volume(a,0) $< volume(b,0). ... down(b,4) :- volume(a,4) $< volume(b,4).

down(b,0) :- volume(b,0) $< volume(b,0). ... down(b,4) :- volume(b,4) $< volume(b,4).

up(a,0) :- not down(a,0). ... up(a,4) :- not down(a,4).

up(b,0) :- not down(b,0). ... up(b,4) :- not down(b,4).

:- up(a,4).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 537 / 653

clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --text

time(0). ... time(4). $domain(0..500).

bucket(a). :- volume(a,0) $!= 0.

bucket(b). :- volume(b,0) $!= 100.

1 { pour(b,0), pour(a,0) } 1. ... 1 { pour(b,3), pour(a,3) } 1.

:- pour(a,0), 1 $> amount(a,0). ... :- pour(a,3), 1 $> amount(a,3).

:- pour(b,0), 1 $> amount(b,0). ... :- pour(b,3), 1 $> amount(b,3).

:- pour(a,0), amount(a,0) $> 30. ... :- pour(a,3), amount(a,3) $> 30.

:- pour(b,0), amount(b,0) $> 30. ... :- pour(b,3), amount(b,3) $> 30.

:- not pour(a,0), amount(a,0) $!= 0. ... :- not pour(a,3), amount(a,3) $!= 0.

:- not pour(b,0), amount(b,0) $!= 0. ... :- not pour(b,3), amount(b,3) $!= 0.

:- volume(a,1) $!= (volume(a,0) $+ amount(a,0)). ... :- volume(a,4) $!= (volume(a,3) $+ amount(a,3)).

:- volume(b,1) $!= (volume(b,0) $+ amount(b,0)). ... :- volume(b,4) $!= (volume(b,3) $+ amount(b,3)).

down(a,0) :- volume(a,0) $< volume(a,0). ... down(a,4) :- volume(a,4) $< volume(a,4).

down(a,0) :- volume(b,0) $< volume(a,0). ... down(a,4) :- volume(b,4) $< volume(a,4).

down(b,0) :- volume(a,0) $< volume(b,0). ... down(b,4) :- volume(a,4) $< volume(b,4).

down(b,0) :- volume(b,0) $< volume(b,0). ... down(b,4) :- volume(b,4) $< volume(b,4).

up(a,0) :- not down(a,0). ... up(a,4) :- not down(a,4).

up(b,0) :- not down(b,0). ... up(b,4) :- not down(b,4).

:- up(a,4).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 537 / 653

clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --text

time(0). ... time(4). $domain(0..500).

bucket(a). :- volume(a,0) $!= 0.

bucket(b). :- volume(b,0) $!= 100.

1 { pour(b,0), pour(a,0) } 1. ... 1 { pour(b,3), pour(a,3) } 1.

:- pour(a,0), 1 $> amount(a,0). ... :- pour(a,3), 1 $> amount(a,3).

:- pour(b,0), 1 $> amount(b,0). ... :- pour(b,3), 1 $> amount(b,3).

:- pour(a,0), amount(a,0) $> 30. ... :- pour(a,3), amount(a,3) $> 30.

:- pour(b,0), amount(b,0) $> 30. ... :- pour(b,3), amount(b,3) $> 30.

:- not pour(a,0), amount(a,0) $!= 0. ... :- not pour(a,3), amount(a,3) $!= 0.

:- not pour(b,0), amount(b,0) $!= 0. ... :- not pour(b,3), amount(b,3) $!= 0.

:- volume(a,1) $!= (volume(a,0) $+ amount(a,0)). ... :- volume(a,4) $!= (volume(a,3) $+ amount(a,3)).

:- volume(b,1) $!= (volume(b,0) $+ amount(b,0)). ... :- volume(b,4) $!= (volume(b,3) $+ amount(b,3)).

down(a,0) :- volume(a,0) $< volume(a,0). ... down(a,4) :- volume(a,4) $< volume(a,4).

down(a,0) :- volume(b,0) $< volume(a,0). ... down(a,4) :- volume(b,4) $< volume(a,4).

down(b,0) :- volume(a,0) $< volume(b,0). ... down(b,4) :- volume(a,4) $< volume(b,4).

down(b,0) :- volume(b,0) $< volume(b,0). ... down(b,4) :- volume(b,4) $< volume(b,4).

up(a,0) :- not down(a,0). ... up(a,4) :- not down(a,4).

up(b,0) :- not down(b,0). ... up(b,4) :- not down(b,4).

:- up(a,4).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 537 / 653

clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --text

time(0). ... time(4). $domain(0..500).

bucket(a). :- volume(a,0) $!= 0.

bucket(b). :- volume(b,0) $!= 100.

1 { pour(b,0), pour(a,0) } 1. ... 1 { pour(b,3), pour(a,3) } 1.

:- pour(a,0), 1 $> amount(a,0). ... :- pour(a,3), 1 $> amount(a,3).

:- pour(b,0), 1 $> amount(b,0). ... :- pour(b,3), 1 $> amount(b,3).

:- pour(a,0), amount(a,0) $> 30. ... :- pour(a,3), amount(a,3) $> 30.

:- pour(b,0), amount(b,0) $> 30. ... :- pour(b,3), amount(b,3) $> 30.

:- not pour(a,0), amount(a,0) $!= 0. ... :- not pour(a,3), amount(a,3) $!= 0.

:- not pour(b,0), amount(b,0) $!= 0. ... :- not pour(b,3), amount(b,3) $!= 0.

:- volume(a,1) $!= (volume(a,0) $+ amount(a,0)). ... :- volume(a,4) $!= (volume(a,3) $+ amount(a,3)).

:- volume(b,1) $!= (volume(b,0) $+ amount(b,0)). ... :- volume(b,4) $!= (volume(b,3) $+ amount(b,3)).

down(a,0) :- volume(a,0) $< volume(a,0). ... down(a,4) :- volume(a,4) $< volume(a,4).

down(a,0) :- volume(b,0) $< volume(a,0). ... down(a,4) :- volume(b,4) $< volume(a,4).

down(b,0) :- volume(a,0) $< volume(b,0). ... down(b,4) :- volume(a,4) $< volume(b,4).

down(b,0) :- volume(b,0) $< volume(b,0). ... down(b,4) :- volume(b,4) $< volume(b,4).

up(a,0) :- not down(a,0). ... up(a,4) :- not down(a,4).

up(b,0) :- not down(b,0). ... up(b,4) :- not down(b,4).

:- up(a,4).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 537 / 653

clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp 0

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=[11..30] amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=[11..30] amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=[11..30] amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=[11..30] amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=[11..30] volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=[41..60] volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=[71..90] volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=[101..120] volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1

Time : 0.000

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 538 / 653

clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp 0

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=[11..30] amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=[11..30] amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=[11..30] amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=[11..30] amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=[11..30] volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=[41..60] volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=[71..90] volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=[101..120] volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1

Time : 0.000

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 538 / 653

clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp 0

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=[11..30] amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=[11..30] amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=[11..30] amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=[11..30] amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=[11..30] volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=[41..60] volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=[71..90] volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=[101..120] volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1

Time : 0.000

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 538 / 653

clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp 0

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=[11..30] amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=[11..30] amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=[11..30] amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=[11..30] amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=[11..30] volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=[41..60] volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=[71..90] volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=[101..120] volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1

Time : 0.000

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 538 / 653

clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp 0

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=[11..30] amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=[11..30] amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=[11..30] amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=[11..30] amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=[11..30] volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=[41..60] volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=[71..90] volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=[101..120] volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1

Time : 0.000 Boolean variables

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 538 / 653

clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp 0

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=[11..30] amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=[11..30] amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=[11..30] amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=[11..30] amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=[11..30] volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=[41..60] volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=[71..90] volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=[101..120] volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1

Time : 0.000 Non-Boolean variables

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 538 / 653

clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --csp-num-as=1

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=11 amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=30 amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=30 amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=30 amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=11 volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=41 volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=71 volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=101 volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1+

Time : 0.000

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 539 / 653

clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --csp-num-as=1

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=11 amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=30 amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=30 amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=30 amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=11 volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=41 volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=71 volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=101 volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1+

Time : 0.000

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 539 / 653

clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --csp-num-as=1

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=11 amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=30 amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=30 amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=30 amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=11 volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=41 volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=71 volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=101 volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1+

Time : 0.000

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 539 / 653

clingcon

Pouring Water into Buckets on a Scale

$ clingcon --const t=4 balance.lp --csp-num-as=1

Answer: 1

pour(a,0) pour(a,1) pour(a,2) pour(a,3)

amount(a,0)=11 amount(b,0)=0 1 $> amount(b,0) amount(a,0) $!= 0

amount(a,1)=30 amount(b,1)=0 1 $> amount(b,1) amount(a,1) $!= 0

amount(a,2)=30 amount(b,2)=0 1 $> amount(b,2) amount(a,2) $!= 0

amount(a,3)=30 amount(b,3)=0 1 $> amount(b,3) amount(a,3) $!= 0

volume(a,0)=0 volume(b,0)=100 volume(a,0) $< volume(b,0)

volume(a,1)=11 volume(b,1)=100 volume(a,1) $< volume(b,1)

volume(a,2)=41 volume(b,2)=100 volume(a,2) $< volume(b,2)

volume(a,3)=71 volume(b,3)=100 volume(a,3) $< volume(b,3)

volume(a,4)=101 volume(b,4)=100 volume(b,4) $< volume(a,4)

SATISFIABLE

Models : 1+

Time : 0.000

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 539 / 653

claspfolio

Outline

62 Potassco

63 gringo

64 clasp

65 clingo

66 clingcon

67 claspfolio

68 clavis

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 540 / 653

claspfolio

claspfolio

Automatic selection of some clasp configuration among
several predefined ones via (learned) classifiers

Basic architecture of claspfolio:

gringo clasp Prediction clasp

Models claspfolio

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 541 / 653

claspfolio

Instance Feature Clusters (after PCA)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 542 / 653

claspfolio

Solving with clasp (as usual)

$ clasp queens500 --quiet

clasp version 2.0.2

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 11.445s (Solving: 10.58s 1st Model: 10.55s Unsat: 0.00s)

CPU Time : 11.410s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 543 / 653

claspfolio

Solving with clasp (as usual)

$ clasp queens500 --quiet

clasp version 2.0.2

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 11.445s (Solving: 10.58s 1st Model: 10.55s Unsat: 0.00s)

CPU Time : 11.410s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 543 / 653

claspfolio

Solving with claspfolio

$ claspfolio queens500 --quiet

PRESOLVING

Reading from queens500

Solving...

claspfolio version 1.0.1 (based on clasp version 2.0.2)

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 4.785s (Solving: 3.96s 1st Model: 3.92s Unsat: 0.00s)

CPU Time : 4.780s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 544 / 653

claspfolio

Solving with claspfolio

$ claspfolio queens500 --quiet

PRESOLVING

Reading from queens500

Solving...

claspfolio version 1.0.1 (based on clasp version 2.0.2)

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 4.785s (Solving: 3.96s 1st Model: 3.92s Unsat: 0.00s)

CPU Time : 4.780s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 544 / 653

claspfolio

Solving with claspfolio

$ claspfolio queens500 --quiet

PRESOLVING

Reading from queens500

Solving...

claspfolio version 1.0.1 (based on clasp version 2.0.2)

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 4.785s (Solving: 3.96s 1st Model: 3.92s Unsat: 0.00s)

CPU Time : 4.780s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 544 / 653

claspfolio

Solving with claspfolio

$ claspfolio queens500 --quiet

PRESOLVING

Reading from queens500

Solving...

claspfolio version 1.0.1 (based on clasp version 2.0.2)

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 4.785s (Solving: 3.96s 1st Model: 3.92s Unsat: 0.00s)

CPU Time : 4.780s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 544 / 653

claspfolio

Feature-extraction with claspfolio

$ claspfolio --features queens500

PRESOLVING

Reading from queens500

Solving...

UNKNOWN

Features : 84998,3994,0,250000,1.020,62.594,63.844,21.281,84998, \

3994,100,250000,1.020,62.594,63.844,21.281,84998,3994,250,250000, \

1.020,62.594,63.844,21.281,84998,3994,475,250000,1.020,62.594, \

63.844,21.281,757989,757989,0,510983,506992,3990,1,0,127.066,9983, \

1023958,502993,1994,518971,1,0,0,254994,0,3990,0.100,0.000,99.900, \

0,270303,812,4,0,812,2223,2223,262,262,2.738,2.738,0.000,812,812, \

2270.982,0,0.000

$ claspfolio --list-features

maxLearnt,Constraints,LearntConstraints,FreeVars,Vars/FreeVars, ...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 545 / 653

claspfolio

Feature-extraction with claspfolio

$ claspfolio --features queens500

PRESOLVING

Reading from queens500

Solving...

UNKNOWN

Features : 84998,3994,0,250000,1.020,62.594,63.844,21.281,84998, \

3994,100,250000,1.020,62.594,63.844,21.281,84998,3994,250,250000, \

1.020,62.594,63.844,21.281,84998,3994,475,250000,1.020,62.594, \

63.844,21.281,757989,757989,0,510983,506992,3990,1,0,127.066,9983, \

1023958,502993,1994,518971,1,0,0,254994,0,3990,0.100,0.000,99.900, \

0,270303,812,4,0,812,2223,2223,262,262,2.738,2.738,0.000,812,812, \

2270.982,0,0.000

$ claspfolio --list-features

maxLearnt,Constraints,LearntConstraints,FreeVars,Vars/FreeVars, ...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 545 / 653

claspfolio

Feature-extraction with claspfolio

$ claspfolio --features queens500

PRESOLVING

Reading from queens500

Solving...

UNKNOWN

Features : 84998,3994,0,250000,1.020,62.594,63.844,21.281,84998, \

3994,100,250000,1.020,62.594,63.844,21.281,84998,3994,250,250000, \

1.020,62.594,63.844,21.281,84998,3994,475,250000,1.020,62.594, \

63.844,21.281,757989,757989,0,510983,506992,3990,1,0,127.066,9983, \

1023958,502993,1994,518971,1,0,0,254994,0,3990,0.100,0.000,99.900, \

0,270303,812,4,0,812,2223,2223,262,262,2.738,2.738,0.000,812,812, \

2270.982,0,0.000

$ claspfolio --list-features

maxLearnt,Constraints,LearntConstraints,FreeVars,Vars/FreeVars, ...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 545 / 653

claspfolio

Prediction with claspfolio

$ claspfolio queens500 --decisionvalues

PRESOLVING

Reading from queens500

Solving...

Portfolio Decision Values:

[1] : 3.437538 [10] : 3.639444 [19] : 3.726391

[2] : 3.501728 [11] : 3.483334 [20] : 3.020325

[3] : 3.784733 [12] : 3.271890 [21] : 3.220219

[4] : 3.672955 [13] : 3.344085 [22] : 3.998709

[5] : 3.557408 [14] : 3.315235 [23] : 3.961214

[6] : 3.942037 [15] : 3.620479 [24] : 3.512924

[7] : 3.335304 [16] : 3.396838 [25] : 3.078143

[8] : 3.375315 [17] : 3.238764

[9] : 3.432931 [18] : 3.403484

UNKNOWN

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 546 / 653

claspfolio

Prediction with claspfolio

$ claspfolio queens500 --decisionvalues

PRESOLVING

Reading from queens500

Solving...

Portfolio Decision Values:

[1] : 3.437538 [10] : 3.639444 [19] : 3.726391

[2] : 3.501728 [11] : 3.483334 [20] : 3.020325

[3] : 3.784733 [12] : 3.271890 [21] : 3.220219

[4] : 3.672955 [13] : 3.344085 [22] : 3.998709

[5] : 3.557408 [14] : 3.315235 [23] : 3.961214

[6] : 3.942037 [15] : 3.620479 [24] : 3.512924

[7] : 3.335304 [16] : 3.396838 [25] : 3.078143

[8] : 3.375315 [17] : 3.238764

[9] : 3.432931 [18] : 3.403484

UNKNOWN

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 546 / 653

claspfolio

Prediction with claspfolio

$ claspfolio queens500 --decisionvalues

PRESOLVING

Reading from queens500

Solving...

Portfolio Decision Values:

[1] : 3.437538 [10] : 3.639444 [19] : 3.726391

[2] : 3.501728 [11] : 3.483334 [20] : 3.020325

[3] : 3.784733 [12] : 3.271890 [21] : 3.220219

[4] : 3.672955 [13] : 3.344085 [22] : 3.998709

[5] : 3.557408 [14] : 3.315235 [23] : 3.961214

[6] : 3.942037 [15] : 3.620479 [24] : 3.512924

[7] : 3.335304 [16] : 3.396838 [25] : 3.078143

[8] : 3.375315 [17] : 3.238764

[9] : 3.432931 [18] : 3.403484

UNKNOWN

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 546 / 653

claspfolio

Solving with claspfolio (slightly verbosely)

$ claspfolio queens500 --quiet --autoverbose=1

PRESOLVING

Reading from queens500

Solving...

Chosen configuration: [20]

clasp --configurations=./models/portfolio.txt \

--modelpath=./models/ \

queens500 --quiet --autoverbose=1 \

--heu=VSIDS --sat-pre=20,25,120 --trans-ext=integ

claspfolio version 1.0.1 (based on clasp version 2.0.2)

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 4.783s (Solving: 3.96s 1st Model: 3.93s Unsat: 0.00s)

CPU Time : 4.760s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 547 / 653

claspfolio

Solving with claspfolio (slightly verbosely)

$ claspfolio queens500 --quiet --autoverbose=1

PRESOLVING

Reading from queens500

Solving...

Chosen configuration: [20]

clasp --configurations=./models/portfolio.txt \

--modelpath=./models/ \

queens500 --quiet --autoverbose=1 \

--heu=VSIDS --sat-pre=20,25,120 --trans-ext=integ

claspfolio version 1.0.1 (based on clasp version 2.0.2)

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 4.783s (Solving: 3.96s 1st Model: 3.93s Unsat: 0.00s)

CPU Time : 4.760s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 547 / 653

claspfolio

Solving with claspfolio (slightly verbosely)

$ claspfolio queens500 --quiet --autoverbose=1

PRESOLVING

Reading from queens500

Solving...

Chosen configuration: [20]

clasp --configurations=./models/portfolio.txt \

--modelpath=./models/ \

queens500 --quiet --autoverbose=1 \

--heu=VSIDS --sat-pre=20,25,120 --trans-ext=integ

claspfolio version 1.0.1 (based on clasp version 2.0.2)

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 4.783s (Solving: 3.96s 1st Model: 3.93s Unsat: 0.00s)

CPU Time : 4.760s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 547 / 653

claspfolio

Solving with claspfolio (slightly verbosely)

$ claspfolio queens500 --quiet --autoverbose=1

PRESOLVING

Reading from queens500

Solving...

Chosen configuration: [20]

clasp --configurations=./models/portfolio.txt \

--modelpath=./models/ \

queens500 --quiet --autoverbose=1 \

--heu=VSIDS --sat-pre=20,25,120 --trans-ext=integ

claspfolio version 1.0.1 (based on clasp version 2.0.2)

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 4.783s (Solving: 3.96s 1st Model: 3.93s Unsat: 0.00s)

CPU Time : 4.760s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 547 / 653

claspfolio

Solving with claspfolio (slightly verbosely)

$ claspfolio queens500 --quiet --autoverbose=1

PRESOLVING

Reading from queens500

Solving...

Chosen configuration: [20]

clasp --configurations=./models/portfolio.txt \

--modelpath=./models/ \

queens500 --quiet --autoverbose=1 \

--heu=VSIDS --sat-pre=20,25,120 --trans-ext=integ

claspfolio version 1.0.1 (based on clasp version 2.0.2)

Reading from queens500

Solving...

SATISFIABLE

Models : 1+

Time : 4.783s (Solving: 3.96s 1st Model: 3.93s Unsat: 0.00s)

CPU Time : 4.760s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 547 / 653

clavis

Outline

62 Potassco

63 gringo

64 clasp

65 clingo

66 clingcon

67 claspfolio

68 clavis

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 548 / 653

clavis

clavis

Analysis and visualization toolchain for clasp

clavis

Event logger integrated in clasp
Records CDCL events like propagation, conflicts, restarts, . . .
Generated logfiles readable with different backends
Easily configurable
Applicable to clasp variants like hclasp

insight

Visualization backend for clavis
Combines information about problem structure and solving process
Networks for structural and aggregated information
Plots for temporal information and navigation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 549 / 653

clavis

clavis

Analysis and visualization toolchain for clasp

clavis

Event logger integrated in clasp
Records CDCL events like propagation, conflicts, restarts, . . .
Generated logfiles readable with different backends
Easily configurable
Applicable to clasp variants like hclasp

insight

Visualization backend for clavis
Combines information about problem structure and solving process
Networks for structural and aggregated information
Plots for temporal information and navigation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 549 / 653

clavis

clavis

Analysis and visualization toolchain for clasp

clavis

Event logger integrated in clasp
Records CDCL events like propagation, conflicts, restarts, . . .
Generated logfiles readable with different backends
Easily configurable
Applicable to clasp variants like hclasp

insight

Visualization backend for clavis
Combines information about problem structure and solving process
Networks for structural and aggregated information
Plots for temporal information and navigation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 549 / 653

clavis

Visualization Examples

8-Queens: program interaction graph

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 550 / 653

clavis

Visualization Examples

Towers of Hanoi: program interaction graph
Colors showing flipped assignments

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 551 / 653

clavis

Visualization Examples

Towers of Hanoi: flipped assignments between decisions

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 552 / 653

clavis

Visualization Examples

Towers of Hanoi: flipped assignments between decisions (zoomed in)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 553 / 653

clavis

Visualization Examples

Towers of Hanoi: learned nogoods during zoomed in segment
projected onto program interaction graph layout

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 554 / 653

clavis

Visualization Examples

Towers of Hanoi: learned nogoods during zoomed in segment
compared to program interaction graph

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 555 / 653

clavis

Interactive View

Symbol table shows additional information about variables

Search bar and symbol table allow for dynamic change of the view

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 556 / 653

clavis

Interactive View

Symbol table shows additional information about variables

Search bar and symbol table allow for dynamic change of the view

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 556 / 653

clavis

Interactive View

Symbol table shows additional information about variables

Search bar and symbol table allow for dynamic change of the view

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 556 / 653

Advanced Modeling: Overview

69 Tweaking N-Queens

70 Do’s and Dont’s

71 Hints

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 557 / 653

Anything left to worry about?

ASP offers

rich yet easy modeling languages
efficient instantiation procedures
powerful search engines

BUT The problem encoding (still) matters!

Example Sort a list with 8 elements

divide-and-conquer ∼ 8(log28) = 16 “operations”
permutation guessing ∼ 8!/2 = 20160 “operations”

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 558 / 653

Anything left to worry about?

ASP offers

rich yet easy modeling languages
efficient instantiation procedures
powerful search engines

BUT The problem encoding (still) matters!

Example Sort a list with 8 elements

divide-and-conquer ∼ 8(log28) = 16 “operations”
permutation guessing ∼ 8!/2 = 20160 “operations”

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 558 / 653

Anything left to worry about?

ASP offers

rich yet easy modeling languages
efficient instantiation procedures
powerful search engines

BUT The problem encoding (still) matters!

Example Sort a list with 8 elements

divide-and-conquer ∼ 8(log28) = 16 “operations”
permutation guessing ∼ 8!/2 = 20160 “operations”

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 558 / 653

Anything left to worry about?

ASP offers

rich yet easy modeling languages
efficient instantiation procedures
powerful search engines

BUT The problem encoding (still) matters!

Example Sort a list with 8 elements

divide-and-conquer ∼ 8(log28) = 16 “operations”
permutation guessing ∼ 8!/2 = 20160 “operations”

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 558 / 653

Tweaking N-Queens

Outline

69 Tweaking N-Queens

70 Do’s and Dont’s

71 Hints

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 559 / 653

Tweaking N-Queens

N-Queens Problem

Problem Specification

Given an N×N chessboard,
place N queens such that they do not attack each other
(neither horizontally, vertically, nor diagonally)

N = 4

Chessboard

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

Placement

4 0ZQZ
3 L0Z0
2 0Z0L
1 ZQZ0

1 2 3 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 560 / 653

Tweaking N-Queens

N-Queens Problem

Problem Specification

Given an N×N chessboard,
place N queens such that they do not attack each other
(neither horizontally, vertically, nor diagonally)

N = 4

Chessboard

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

Placement

4 0ZQZ
3 L0Z0
2 0Z0L
1 ZQZ0

1 2 3 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 560 / 653

Tweaking N-Queens

A First Encoding

1 Each square may host a queen
2 No row, column, or diagonal hosts two queens
3 A placement is given by instances of queen in a stable model

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 { queen(X,Y) } 1 :- square(X,Y).

% TEST

:- queen(X,Y), queen(X,Y’), Y < Y’.

% DISPLAY

#show queen/2.

Anything missing?

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 561 / 653

Tweaking N-Queens

A First Encoding

1 Each square may host a queen
2 No row, column, or diagonal hosts two queens
3 A placement is given by instances of queen in a stable model

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 { queen(X,Y) } 1 :- square(X,Y).

% TEST

:- queen(X,Y), queen(X,Y’), Y < Y’.

% DISPLAY

#show queen/2.

Anything missing?

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 561 / 653

Tweaking N-Queens

A First Encoding

1 Each square may host a queen
2 No row, column, or diagonal hosts two queens
3 A placement is given by instances of queen in a stable model

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 { queen(X,Y) } 1 :- square(X,Y).

% TEST

:- queen(X,Y), queen(X’,Y), X < X’.

% DISPLAY

#show queen/2.

Anything missing?

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 561 / 653

Tweaking N-Queens

A First Encoding

1 Each square may host a queen
2 No row, column, or diagonal hosts two queens
3 A placement is given by instances of queen in a stable model

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 { queen(X,Y) } 1 :- square(X,Y).

% TEST

:- queen(X,Y), queen(X’,Y’), X < X’, X’-X = |Y’-Y|.

% DISPLAY

#show queen/2.

Anything missing?

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 561 / 653

Tweaking N-Queens

A First Encoding

1 Each square may host a queen
2 No row, column, or diagonal hosts two queens
3 A placement is given by instances of queen in a stable model

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 { queen(X,Y) } 1 :- square(X,Y).

% TEST

[...]

% DISPLAY

#show queen/2.

Anything missing?

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 561 / 653

Tweaking N-Queens

A First Encoding

1 Each square may host a queen
2 No row, column, or diagonal hosts two queens
3 A placement is given by instances of queen in a stable model

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 { queen(X,Y) } 1 :- square(X,Y).

% TEST

[...]

% DISPLAY

#show queen/2.

Anything missing?

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 561 / 653

Tweaking N-Queens

A First Encoding

1 Each square may host a queen
2 No row, column, or diagonal hosts two queens
3 A placement is given by instances of queen in a stable model
4 We have to place (at least) N queens

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 { queen(X,Y) } 1 :- square(X,Y).

% TEST

[...]

:- not n { queen(X,Y) }.

% DISPLAY

#show queen/2.

Anything missing?

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 561 / 653

Tweaking N-Queens

A First Encoding
Let’s Place 8 Queens!

gringo -c n=8 queens_0.lp | clasp --stats

Answer: 1

queen(1,6) queen(2,3) queen(3,1) queen(4,7)

queen(5,5) queen(6,8) queen(7,2) queen(8,4)

SATISFIABLE

Models : 1+

Time : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 18

Conflicts : 13

Restarts : 0

Variables : 793

Constraints : 729

8 0Z0L0Z0Z
7 ZQZ0Z0Z0
6 0Z0Z0Z0L
5 Z0Z0L0Z0
4 0Z0Z0ZQZ
3 L0Z0Z0Z0
2 0ZQZ0Z0Z
1 Z0Z0ZQZ0

1 2 3 4 5 6 7 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 562 / 653

Tweaking N-Queens

A First Encoding
Let’s Place 8 Queens!

gringo -c n=8 queens_0.lp | clasp --stats

Answer: 1

queen(1,6) queen(2,3) queen(3,1) queen(4,7)

queen(5,5) queen(6,8) queen(7,2) queen(8,4)

SATISFIABLE

Models : 1+

Time : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 18

Conflicts : 13

Restarts : 0

Variables : 793

Constraints : 729

8 0Z0L0Z0Z
7 ZQZ0Z0Z0
6 0Z0Z0Z0L
5 Z0Z0L0Z0
4 0Z0Z0ZQZ
3 L0Z0Z0Z0
2 0ZQZ0Z0Z
1 Z0Z0ZQZ0

1 2 3 4 5 6 7 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 562 / 653

Tweaking N-Queens

A First Encoding
Let’s Place 8 Queens!

gringo -c n=8 queens_0.lp | clasp --stats

Answer: 1

queen(1,6) queen(2,3) queen(3,1) queen(4,7)

queen(5,5) queen(6,8) queen(7,2) queen(8,4)

SATISFIABLE

Models : 1+

Time : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 18

Conflicts : 13

Restarts : 0

Variables : 793

Constraints : 729

8 0Z0L0Z0Z
7 ZQZ0Z0Z0
6 0Z0Z0Z0L
5 Z0Z0L0Z0
4 0Z0Z0ZQZ
3 L0Z0Z0Z0
2 0ZQZ0Z0Z
1 Z0Z0ZQZ0

1 2 3 4 5 6 7 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 562 / 653

Tweaking N-Queens

A First Encoding
Let’s Place 8 Queens!

gringo -c n=8 queens_0.lp | clasp --stats

Answer: 1

queen(1,6) queen(2,3) queen(3,1) queen(4,7)

queen(5,5) queen(6,8) queen(7,2) queen(8,4)

SATISFIABLE

Models : 1+

Time : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 18

Conflicts : 13

Restarts : 0

Variables : 793

Constraints : 729

8 0Z0L0Z0Z
7 ZQZ0Z0Z0
6 0Z0Z0Z0L
5 Z0Z0L0Z0
4 0Z0Z0ZQZ
3 L0Z0Z0Z0
2 0ZQZ0Z0Z
1 Z0Z0ZQZ0

1 2 3 4 5 6 7 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 562 / 653

Tweaking N-Queens

A First Encoding
Let’s Place 22 Queens!

gringo -c n=22 queens_0.lp | clasp --stats

Answer: 1

queen(1,10) queen(2,6) queen(3,16) queen(4,14) queen(5,8) ...

SATISFIABLE

Models : 1+

Time : 150.531s (Solving: 150.37s 1st Model: 150.34s Unsat: 0.00s)

CPU Time : 147.480s

Choices : 594960

Conflicts : 574565

Restarts : 19

Variables : 17271

Constraints : 16787

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 563 / 653

Tweaking N-Queens

A First Encoding
Let’s Place 22 Queens!

gringo -c n=22 queens_0.lp | clasp --stats

Answer: 1

queen(1,10) queen(2,6) queen(3,16) queen(4,14) queen(5,8) ...

SATISFIABLE

Models : 1+

Time : 150.531s (Solving: 150.37s 1st Model: 150.34s Unsat: 0.00s)

CPU Time : 147.480s

Choices : 594960

Conflicts : 574565

Restarts : 19

Variables : 17271

Constraints : 16787

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 563 / 653

Tweaking N-Queens

A First Refinement

At least N queens? Exactly one queen per row and column!

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 { queen(X,Y) } 1 :- square(X,Y).

% TEST

:- queen(X,Y), queen(X,Y’), Y < Y’.

:- queen(X,Y), queen(X’,Y), X < X’.

:- queen(X,Y), queen(X’,Y’), X < X’, X’-X = |Y’-Y|.

:- not n { queen(X,Y) }.

% DISPLAY

#show queen/2.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 564 / 653

Tweaking N-Queens

A First Refinement

At least N queens? Exactly one queen per row and column!

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 { queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 { queen(X,Y) } 1.

:- queen(X,Y), queen(X’,Y), X < X’.

:- queen(X,Y), queen(X’,Y’), X < X’, X’-X = |Y’-Y|.

:- not n { queen(X,Y) }.

% DISPLAY

#show queen/2.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 564 / 653

Tweaking N-Queens

A First Refinement

At least N queens? Exactly one queen per row and column!

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 { queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 { queen(X,Y) } 1.

:- Y = 1..n, not 1 { queen(X,Y) } 1.

:- queen(X,Y), queen(X’,Y’), X < X’, X’-X = |Y’-Y|.

:- not n { queen(X,Y) }.

% DISPLAY

#show queen/2.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 564 / 653

Tweaking N-Queens

A First Refinement

At least N queens? Exactly one queen per row and column!

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 { queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 { queen(X,Y) } 1.

:- Y = 1..n, not 1 { queen(X,Y) } 1.

:- queen(X,Y), queen(X’,Y’), X < X’, X’-X = |Y’-Y|.

% DISPLAY

#show queen/2.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 564 / 653

Tweaking N-Queens

A First Refinement
Let’s Place 22 Queens!

gringo -c n=22 queens_1.lp | clasp --stats

Answer: 1

queen(1,18) queen(2,10) queen(3,21) queen(4,3) queen(5,5) ...

SATISFIABLE

Models : 1+

Time : 0.113s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.020s

Choices : 132

Conflicts : 105

Restarts : 1

Variables : 7238

Constraints : 6710

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 565 / 653

Tweaking N-Queens

A First Refinement
Let’s Place 22 Queens!

gringo -c n=22 queens_1.lp | clasp --stats

Answer: 1

queen(1,18) queen(2,10) queen(3,21) queen(4,3) queen(5,5) ...

SATISFIABLE

Models : 1+

Time : 0.113s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.020s

Choices : 132

Conflicts : 105

Restarts : 1

Variables : 7238

Constraints : 6710

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 565 / 653

Tweaking N-Queens

A First Refinement
Let’s Place 122 Queens!

gringo -c n=122 queens_1.lp | clasp --stats

Answer: 1

queen(1,24) queen(2,52) queen(3,37) queen(4,60) queen(5,76) ...

SATISFIABLE

Models : 1+

Time : 79.475s (Solving: 1.06s 1st Model: 1.06s Unsat: 0.00s)

CPU Time : 6.930s

Choices : 1373

Conflicts : 845

Restarts : 4

Variables : 1211338

Constraints : 1196210

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 566 / 653

Tweaking N-Queens

A First Refinement
Let’s Place 122 Queens!

gringo -c n=122 queens_1.lp | clasp --stats

Answer: 1

queen(1,24) queen(2,52) queen(3,37) queen(4,60) queen(5,76) ...

SATISFIABLE

Models : 1+

Time : 79.475s (Solving: 1.06s 1st Model: 1.06s Unsat: 0.00s)

CPU Time : 6.930s

Choices : 1373

Conflicts : 845

Restarts : 4

Variables : 1211338

Constraints : 1196210

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 566 / 653

Tweaking N-Queens

A First Refinement
Let’s Place 122 Queens!

gringo -c n=122 queens_1.lp | clasp --stats

Answer: 1

queen(1,24) queen(2,52) queen(3,37) queen(4,60) queen(5,76) ...

SATISFIABLE

Models : 1+

Time : 79.475s (Solving: 1.06s 1st Model: 1.06s Unsat: 0.00s)

CPU Time : 6.930s

Choices : 1373

Conflicts : 845

Restarts : 4

Variables : 1211338

Constraints : 1196210

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 566 / 653

Tweaking N-Queens

A First Refinement
Where Time Has Gone

time(gringo -c n=122 queens_1.lp | clasp --stats

1241358 7402724 24950848

real 1m15.468s

user 1m15.980s

sys 0m0.090s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 567 / 653

Tweaking N-Queens

A First Refinement
Where Time Has Gone

time(gringo -c n=122 queens_1.lp | wc)

1241358 7402724 24950848

real 1m15.468s

user 1m15.980s

sys 0m0.090s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 567 / 653

Tweaking N-Queens

A First Refinement
Where Time Has Gone

time(gringo -c n=122 queens_1.lp | wc)

1241358 7402724 24950848

real 1m15.468s

user 1m15.980s

sys 0m0.090s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 567 / 653

Tweaking N-Queens

A First Refinement
Where Time Has Gone

time(gringo -c n=122 queens_1.lp | wc)

1241358 7402724 24950848

real 1m15.468s

user 1m15.980s

sys 0m0.090s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 567 / 653

Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#show queen/2.

Diagonals make trouble!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 568 / 653

Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#show queen/2.

Diagonals make trouble!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 568 / 653

Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#show queen/2.

Diagonals make trouble!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 568 / 653

Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#show queen/2.

Diagonals make trouble!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 568 / 653

Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#show queen/2.

Diagonals make trouble!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 568 / 653

Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#show queen/2.

Diagonals make trouble!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 568 / 653

Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#show queen/2.

Diagonals make trouble!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 568 / 653

Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#show queen/2.

Diagonals make trouble!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 568 / 653

Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#show queen/2.

Diagonals make trouble!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 568 / 653

Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#show queen/2.

Diagonals make trouble!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 568 / 653

Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

{ queen(X,Y) } :- square(X,Y). O(n×n)

% TEST

:- X := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y := 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#show queen/2. Diagonals make trouble!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 568 / 653

Tweaking N-Queens

Enumerating Diagonals

N = 4

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

#diagonal1 =
(#row + #column)− 1

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

#diagonal2 =
(#row−#column) + N

Note For each N, indexes 1, . . . , (2∗N)−1 refer to squares on
#diagonal1/2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 569 / 653

Tweaking N-Queens

Enumerating Diagonals

N = 4

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

1

2

2

3

3

3

4

4

4

4

5

5

5

6

6

7

#diagonal1 =
(#row + #column)− 1

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

7

6

6

5

5

5

4

4

4

4

3

3

3

2

2

1

#diagonal2 =
(#row−#column) + N

Note For each N, indexes 1, . . . , (2∗N)−1 refer to squares on
#diagonal1/2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 569 / 653

Tweaking N-Queens

Enumerating Diagonals

N = 4

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

1

2

2

3

3

3

4

4

4

4

5

5

5

6

6

7

#diagonal1 =
(#row + #column)− 1

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

7

6

6

5

5

5

4

4

4

4

3

3

3

2

2

1

#diagonal2 =
(#row−#column) + N

Note For each N, indexes 1, . . . , (2∗N)−1 refer to squares on
#diagonal1/2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 569 / 653

Tweaking N-Queens

Enumerating Diagonals

N = 4

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

1

2

2

3

3

3

4

4

4

4

5

5

5

6

6

7

#diagonal1 =
(#row + #column)− 1

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

7

6

6

5

5

5

4

4

4

4

3

3

3

2

2

1

#diagonal2 =
(#row−#column) + N

Note For each N, indexes 1, . . . , (2∗N)−1 refer to squares on
#diagonal1/2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 569 / 653

Tweaking N-Queens

A Second Refinement
Let’s go for Diagonals!

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 { queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 { queen(X,Y) } 1.

:- Y = 1..n, not 1 { queen(X,Y) } 1.

:- queen(X,Y), queen(X’,Y’), X < X’, X’-X = |Y’-Y|.

% DISPLAY

#show queen/2.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 570 / 653

Tweaking N-Queens

A Second Refinement
Let’s go for Diagonals!

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 { queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 { queen(X,Y) } 1.

:- Y = 1..n, not 1 { queen(X,Y) } 1.

:- D = 1..2*n-1, 2 { queen(X,Y) : D = (X+Y)-1 }. % Diagonal 1

% DISPLAY

#show queen/2.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 570 / 653

Tweaking N-Queens

A Second Refinement
Let’s go for Diagonals!

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 { queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 { queen(X,Y) } 1.

:- Y = 1..n, not 1 { queen(X,Y) } 1.

:- D = 1..2*n-1, 2 { queen(X,Y) : D = (X+Y)-1 }. % Diagonal 1

:- D = 1..2*n-1, 2 { queen(X,Y) : D = (X-Y)+n }. % Diagonal 2

% DISPLAY

#show queen/2.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 570 / 653

Tweaking N-Queens

A Second Refinement
Let’s go for Diagonals!

queens_2.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 { queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 { queen(X,Y) } 1.

:- Y = 1..n, not 1 { queen(X,Y) } 1.

:- D = 1..2*n-1, 2 { queen(X,Y) : D = (X+Y)-1 }. % Diagonal 1

:- D = 1..2*n-1, 2 { queen(X,Y) : D = (X-Y)+n }. % Diagonal 2

% DISPLAY

#show queen/2.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 570 / 653

Tweaking N-Queens

A Second Refinement
Let’s Place 122 Queens!

gringo -c n=122 queens_2.lp | clasp --stats

Answer: 1

queen(1,98) queen(2,54) queen(3,89) queen(4,83) queen(5,59) ...

SATISFIABLE

Models : 1+

Time : 2.211s (Solving: 0.13s 1st Model: 0.13s Unsat: 0.00s)

CPU Time : 0.210s

Choices : 11036

Conflicts : 499

Restarts : 3

Variables : 16098

Constraints : 970

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 571 / 653

Tweaking N-Queens

A Second Refinement
Let’s Place 122 Queens!

gringo -c n=122 queens_2.lp | clasp --stats

Answer: 1

queen(1,98) queen(2,54) queen(3,89) queen(4,83) queen(5,59) ...

SATISFIABLE

Models : 1+

Time : 2.211s (Solving: 0.13s 1st Model: 0.13s Unsat: 0.00s)

CPU Time : 0.210s

Choices : 11036

Conflicts : 499

Restarts : 3

Variables : 16098

Constraints : 970

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 571 / 653

Tweaking N-Queens

A Second Refinement
Let’s Place 122 Queens!

gringo -c n=122 queens_2.lp | clasp --stats

Answer: 1

queen(1,98) queen(2,54) queen(3,89) queen(4,83) queen(5,59) ...

SATISFIABLE

Models : 1+

Time : 2.211s (Solving: 0.13s 1st Model: 0.13s Unsat: 0.00s)

CPU Time : 0.210s

Choices : 11036

Conflicts : 499

Restarts : 3

Variables : 16098

Constraints : 970

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 571 / 653

Tweaking N-Queens

A Second Refinement
Let’s Place 300 Queens!

gringo -c n=300 queens_2.lp | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 35.450s (Solving: 6.69s 1st Model: 6.68s Unsat: 0.00s)

CPU Time : 7.250s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 572 / 653

Tweaking N-Queens

A Second Refinement
Let’s Place 300 Queens!

gringo -c n=300 queens_2.lp | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 35.450s (Solving: 6.69s 1st Model: 6.68s Unsat: 0.00s)

CPU Time : 7.250s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 572 / 653

Tweaking N-Queens

A Second Refinement
Let’s Place 300 Queens!

gringo -c n=300 queens_2.lp | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 35.450s (Solving: 6.69s 1st Model: 6.68s Unsat: 0.00s)

CPU Time : 7.250s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 572 / 653

Tweaking N-Queens

A Third Refinement
Let’s Precalculate Indexes!

queens_2.lp

% DOMAIN

#const n=4. square(1..n,1..n).

diag1(X,Y,(X+Y)-1) :- square(X,Y). diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE

0 { queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 { queen(X,Y) } 1.

:- Y = 1..n, not 1 { queen(X,Y) } 1.

:- D = 1..2*n-1, 2 { queen(X,Y) : D = (X+Y)-1 }. % Diagonal 1

:- D = 1..2*n-1, 2 { queen(X,Y) : D = (X-Y)+n }. % Diagonal 2

% DISPLAY

#show queen/2.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 573 / 653

Tweaking N-Queens

A Third Refinement
Let’s Precalculate Indexes!

queens_2.lp

% DOMAIN

#const n=4. square(1..n,1..n).

diag1(X,Y,(X+Y)-1) :- square(X,Y). diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE

0 { queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 { queen(X,Y) } 1.

:- Y = 1..n, not 1 { queen(X,Y) } 1.

:- D = 1..2*n-1, 2 { queen(X,Y) : D = (X+Y)-1 }. % Diagonal 1

:- D = 1..2*n-1, 2 { queen(X,Y) : D = (X-Y)+n }. % Diagonal 2

% DISPLAY

#show queen/2.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 573 / 653

Tweaking N-Queens

A Third Refinement
Let’s Precalculate Indexes!

queens_2.lp

% DOMAIN

#const n=4. square(1..n,1..n).

diag1(X,Y,(X+Y)-1) :- square(X,Y). diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE

0 { queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 { queen(X,Y) } 1.

:- Y = 1..n, not 1 { queen(X,Y) } 1.

:- D = 1..2*n-1, 2 { queen(X,Y) : diag1(X,Y,D) }. % Diagonal 1

:- D = 1..2*n-1, 2 { queen(X,Y) : diag2(X,Y,D) }. % Diagonal 2

% DISPLAY

#show queen/2.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 573 / 653

Tweaking N-Queens

A Third Refinement
Let’s Precalculate Indexes!

queens_3.lp

% DOMAIN

#const n=4. square(1..n,1..n).

diag1(X,Y,(X+Y)-1) :- square(X,Y). diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE

0 { queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 { queen(X,Y) } 1.

:- Y = 1..n, not 1 { queen(X,Y) } 1.

:- D = 1..2*n-1, 2 { queen(X,Y) : diag1(X,Y,D) }. % Diagonal 1

:- D = 1..2*n-1, 2 { queen(X,Y) : diag2(X,Y,D) }. % Diagonal 2

% DISPLAY

#show queen/2.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 573 / 653

Tweaking N-Queens

A Third Refinement
Let’s Place 300 Queens!

gringo -c n=300 queens_3.lp | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 8.889s (Solving: 6.61s 1st Model: 6.60s Unsat: 0.00s)

CPU Time : 7.320s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 574 / 653

Tweaking N-Queens

A Third Refinement
Let’s Place 300 Queens!

gringo -c n=300 queens_3.lp | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 8.889s (Solving: 6.61s 1st Model: 6.60s Unsat: 0.00s)

CPU Time : 7.320s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 574 / 653

Tweaking N-Queens

A Third Refinement
Let’s Place 300 Queens!

gringo -c n=300 queens_3.lp | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 8.889s (Solving: 6.61s 1st Model: 6.60s Unsat: 0.00s)

CPU Time : 7.320s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 574 / 653

Tweaking N-Queens

A Third Refinement
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

Answer: 1

queen(1,477) queen(2,365) queen(3,455) queen(4,470) queen(5,237) ...

SATISFIABLE

Models : 1+

Time : 76.798s (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s)

CPU Time : 68.620s

Choices : 869379

Conflicts : 25746

Restarts : 12

Variables : 365994

Constraints : 4794

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 575 / 653

Tweaking N-Queens

A Third Refinement
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

Answer: 1

queen(1,477) queen(2,365) queen(3,455) queen(4,470) queen(5,237) ...

SATISFIABLE

Models : 1+

Time : 76.798s (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s)

CPU Time : 68.620s

Choices : 869379

Conflicts : 25746

Restarts : 12

Variables : 365994

Constraints : 4794

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 575 / 653

Tweaking N-Queens

A Case for Oracles
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

--heuristic=vsids --trans-ext=dynamic

Answer: 1

queen(1,477) queen(2,365) queen(3,455) queen(4,470) queen(5,237) ...

SATISFIABLE

Models : 1+

Time : 76.798s (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s)

CPU Time : 68.620s

Choices : 869379

Conflicts : 25746

Restarts : 12

Variables : 365994

Constraints : 4794

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 576 / 653

Tweaking N-Queens

A Case for Oracles
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

--heuristic=vsids --trans-ext=dynamic

Answer: 1

queen(1,477) queen(2,365) queen(3,455) queen(4,470) queen(5,237) ...

SATISFIABLE

Models : 1+

Time : 76.798s (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s)

CPU Time : 68.620s

Choices : 869379

Conflicts : 25746

Restarts : 12

Variables : 365994

Constraints : 4794

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 576 / 653

Tweaking N-Queens

A Case for Oracles
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

--heuristic=vsids --trans-ext=dynamic

Answer: 1

queen(1,422) queen(2,458) queen(3,224) queen(4,408) queen(5,405) ...

SATISFIABLE

Models : 1+

Time : 37.454s (Solving: 26.38s 1st Model: 26.26s Unsat: 0.00s)

CPU Time : 29.580s

Choices : 961315

Conflicts : 3222

Restarts : 7

Variables : 365994

Constraints : 4794

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 576 / 653

Tweaking N-Queens

A Case for Oracles
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

--heuristic=vsids --trans-ext=dynamic

Answer: 1

queen(1,422) queen(2,458) queen(3,224) queen(4,408) queen(5,405) ...

SATISFIABLE

Models : 1+

Time : 37.454s (Solving: 26.38s 1st Model: 26.26s Unsat: 0.00s)

CPU Time : 29.580s

Choices : 961315

Conflicts : 3222

Restarts : 7

Variables : 365994

Constraints : 4794

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 576 / 653

Tweaking N-Queens

A Case for Oracles
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

--heuristic=vsids --trans-ext=dynamic

Answer: 1

queen(1,90) queen(2,452) queen(3,494) queen(4,145) queen(5,84) ...

SATISFIABLE

Models : 1+

Time : 22.654s (Solving: 10.53s 1st Model: 10.47s Unsat: 0.00s)

CPU Time : 15.750s

Choices : 1058729

Conflicts : 2128

Restarts : 6

Variables : 403123

Constraints : 49636

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 576 / 653

Do’s and Dont’s

Outline

69 Tweaking N-Queens

70 Do’s and Dont’s

71 Hints

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 577 / 653

Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap).

pro(asparagus,fresh). pro(cucumber,fresh).

pro(asparagus,tasty). pro(cucumber,tasty).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 578 / 653

Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap).

pro(asparagus,fresh). pro(cucumber,fresh).

pro(asparagus,tasty). pro(cucumber,tasty).

buy(X) :- veg(X), pro(X,cheap), pro(X,fresh), pro(X,tasty).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 578 / 653

Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap).

pro(asparagus,fresh). pro(cucumber,fresh).

pro(asparagus,tasty). pro(cucumber,tasty).

pro(asparagus,clean).

buy(X) :- veg(X), pro(X,cheap), pro(X,fresh), pro(X,tasty), pro(X,clean).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 578 / 653

Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap).

pro(asparagus,fresh). pro(cucumber,fresh).

pro(asparagus,tasty). pro(cucumber,tasty).

pro(asparagus,clean).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 578 / 653

Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).

pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).

pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).

pro(asparagus,clean).

buy(X) :- veg(X), pro(X,P) : pre(P).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 578 / 653

Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).

pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).

pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).

pro(asparagus,clean). pre(clean).

buy(X) :- veg(X), pro(X,P) : pre(P).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 578 / 653

Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).

pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).

pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).

pro(asparagus,clean).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 578 / 653

Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).

pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).

pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).

pro(asparagus,clean).

buy(X) :- veg(X), not bye(X). bye(X) :- veg(X), pre(P), not pro(X,P).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 578 / 653

Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).

pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).

pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).

pro(asparagus,clean). pre(clean).

buy(X) :- veg(X), not bye(X). bye(X) :- veg(X), pre(P), not pro(X,P).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 578 / 653

Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).

pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).

pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).

pro(asparagus,clean). pre(clean).

buy(X) :- veg(X), not bye(X). bye(X) :- veg(X), pre(P), not pro(X,P).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 578 / 653

Do’s and Dont’s

Running Example: Latin Square

Given: an N×N board

1
2
3
4
5
6

1 2 3 4 5 6

represented by facts:

square(1,1). ... square(1,6).

square(2,1). ... square(2,6).

square(3,1). ... square(3,6).

square(4,1). ... square(4,6).

square(5,1). ... square(5,6).

square(6,1). ... square(6,6).

Wanted: assignment of 1, . . . ,N

1 1 2 3 4 5 6
2 2 3 4 5 6 1
3 3 4 5 6 1 2
4 4 5 6 1 2 3
5 5 6 1 2 3 4
6 6 1 2 3 4 5

1 2 3 4 5 6

represented by atoms:

num(1,1,1) num(1,2,2) ... num(1,6,6)

num(2,1,2) num(2,2,3) ... num(2,6,1)

num(3,1,3) num(3,2,4) ... num(3,6,2)

num(4,1,4) num(4,2,5) ... num(4,6,3)

num(5,1,5) num(5,2,6) ... num(5,6,4)

num(6,1,6) num(6,2,1) ... num(6,6.5)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 579 / 653

Do’s and Dont’s

Running Example: Latin Square

Given: an N×N board

1
2
3
4
5
6

1 2 3 4 5 6

represented by facts:

square(1,1). ... square(1,6).

square(2,1). ... square(2,6).

square(3,1). ... square(3,6).

square(4,1). ... square(4,6).

square(5,1). ... square(5,6).

square(6,1). ... square(6,6).

Wanted: assignment of 1, . . . ,N

1 1 2 3 4 5 6
2 2 3 4 5 6 1
3 3 4 5 6 1 2
4 4 5 6 1 2 3
5 5 6 1 2 3 4
6 6 1 2 3 4 5

1 2 3 4 5 6

represented by atoms:

num(1,1,1) num(1,2,2) ... num(1,6,6)

num(2,1,2) num(2,2,3) ... num(2,6,1)

num(3,1,3) num(3,2,4) ... num(3,6,2)

num(4,1,4) num(4,2,5) ... num(4,6,3)

num(5,1,5) num(5,2,6) ... num(5,6,4)

num(6,1,6) num(6,2,1) ... num(6,6.5)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 579 / 653

Do’s and Dont’s

Projecting Irrelevant Details Out

A Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- square(X,Y), N = 1..n, not num(X,Y’,N) : square(X,Y’).

:- square(X,Y), N = 1..n, not num(X’,Y,N) : square(X’,Y).

Note unreused “singleton variables”

gringo latin_0.lp | wc

105480 2558984 14005258

gringo latin_1.lp | wc

42056 273672 1690522

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 580 / 653

Do’s and Dont’s

Projecting Irrelevant Details Out

A Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- square(X,Y), N = 1..n, not num(X,Y’,N) : square(X,Y’).

:- square(X,Y), N = 1..n, not num(X’,Y,N) : square(X’,Y).

Note unreused “singleton variables”

gringo latin_0.lp | wc

105480 2558984 14005258

gringo latin_1.lp | wc

42056 273672 1690522

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 580 / 653

Do’s and Dont’s

Projecting Irrelevant Details Out

A Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- square(X,Y), N = 1..n, not num(X,Y’,N) : square(X,Y’).

:- square(X,Y), N = 1..n, not num(X’,Y,N) : square(X’,Y).

Note unreused “singleton variables”

gringo latin_0.lp | wc

105480 2558984 14005258

gringo latin_1.lp | wc

42056 273672 1690522

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 580 / 653

Do’s and Dont’s

Projecting Irrelevant Details Out

A Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

squareX(X) :- square(X,Y). squareY(Y) :- square(X,Y).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- squareX(X), N = 1..n, not num(X,Y’,N) : square(X,Y’).

:- squareY(Y), N = 1..n, not num(X’,Y,N) : square(X’,Y).

Note unreused “singleton variables”

gringo latin_0.lp | wc

105480 2558984 14005258

gringo latin_1.lp | wc

42056 273672 1690522

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 580 / 653

Do’s and Dont’s

Projecting Irrelevant Details Out

A Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

squareX(X) :- square(X,Y). squareY(Y) :- square(X,Y).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- squareX(X), N = 1..n, not num(X,Y’,N) : square(X,Y’).

:- squareY(Y), N = 1..n, not num(X’,Y,N) : square(X’,Y).

Note unreused “singleton variables”

gringo latin_0.lp | wc

105480 2558984 14005258

gringo latin_1.lp | wc

42056 273672 1690522

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 580 / 653

Do’s and Dont’s

Unraveling Symmetric Inequalities

Another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X,Y,N), num(X,Y’,N), Y != Y’.

:- num(X,Y,N), num(X’,Y,N), X != X’.

Note duplicate ground rules
(swapping Y/Y’ and X/X’ gives the “same”)

gringo latin_2.lp | wc

2071560 12389384 40906946

gringo latin_3.lp | wc

1055752 6294536 21099558

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 581 / 653

Do’s and Dont’s

Unraveling Symmetric Inequalities

Another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X,Y,N), num(X,Y’,N), Y != Y’.

:- num(X,Y,N), num(X’,Y,N), X != X’.

Note duplicate ground rules
(swapping Y/Y’ and X/X’ gives the “same”)

gringo latin_2.lp | wc

2071560 12389384 40906946

gringo latin_3.lp | wc

1055752 6294536 21099558

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 581 / 653

Do’s and Dont’s

Unraveling Symmetric Inequalities

Another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X,Y,N), num(X,Y’,N), Y != Y’.

:- num(X,Y,N), num(X’,Y,N), X != X’.

Note duplicate ground rules
(swapping Y/Y’ and X/X’ gives the “same”)

gringo latin_2.lp | wc

2071560 12389384 40906946

gringo latin_3.lp | wc

1055752 6294536 21099558

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 581 / 653

Do’s and Dont’s

Unraveling Symmetric Inequalities

Another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X,Y,N), num(X,Y’,N), Y < Y’.

:- num(X,Y,N), num(X’,Y,N), X < X’.

Note duplicate ground rules
(swapping Y/Y’ and X/X’ gives the “same”)

gringo latin_2.lp | wc

2071560 12389384 40906946

gringo latin_3.lp | wc

1055752 6294536 21099558

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 581 / 653

Do’s and Dont’s

Unraveling Symmetric Inequalities

Another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X,Y,N), num(X,Y’,N), Y < Y’.

:- num(X,Y,N), num(X’,Y,N), X < X’.

Note duplicate ground rules
(swapping Y/Y’ and X/X’ gives the “same”)

gringo latin_2.lp | wc

2071560 12389384 40906946

gringo latin_3.lp | wc

1055752 6294536 21099558

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 581 / 653

Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X,Y,N), num(X,Y’,N), Y < Y’.

:- num(X,Y,N), num(X’,Y,N), X < X’.

Note uniqueness of N in a row/column checked by enumerating pairs!

gringo latin_3.lp | wc

1055752 6294536 21099558

gringo latin_4.lp | wc

228360 1205256 4780744

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 582 / 653

Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X,Y,N), num(X,Y’,N), Y < Y’.

:- num(X,Y,N), num(X’,Y,N), X < X’.

Note uniqueness of N in a row/column checked by enumerating pairs!

gringo latin_3.lp | wc

1055752 6294536 21099558

gringo latin_4.lp | wc

228360 1205256 4780744

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 582 / 653

Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X,Y,N), num(X,Y’,N), Y < Y’.

:- num(X,Y,N), num(X’,Y,N), X < X’.

Note uniqueness of N in a row/column checked by enumerating pairs!

gringo latin_3.lp | wc

1055752 6294536 21099558

gringo latin_4.lp | wc

228360 1205256 4780744

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 582 / 653

Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

gtX(X-1,Y,N) :- num(X,Y,N), 1 < X. gtY(X,Y-1,N) :- num(X,Y,N), 1 < Y.

gtX(X-1,Y,N) :- gtX(X,Y,N), 1 < X. gtY(X,Y-1,N) :- gtY(X,Y,N), 1 < Y.

:- num(X,Y,N), gtX(X,Y,N). :- num(X,Y,N), gtY(X,Y,N).

Note uniqueness of N in a row/column checked by enumerating pairs!

gringo latin_3.lp | wc

1055752 6294536 21099558

gringo latin_4.lp | wc

228360 1205256 4780744

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 582 / 653

Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

gtX(X-1,Y,N) :- num(X,Y,N), 1 < X. gtY(X,Y-1,N) :- num(X,Y,N), 1 < Y.

gtX(X-1,Y,N) :- gtX(X,Y,N), 1 < X. gtY(X,Y-1,N) :- gtY(X,Y,N), 1 < Y.

:- num(X,Y,N), gtX(X,Y,N). :- num(X,Y,N), gtY(X,Y,N).

Note uniqueness of N in a row/column checked by enumerating pairs!

gringo latin_3.lp | wc

1055752 6294536 21099558

gringo latin_4.lp | wc

228360 1205256 4780744

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 582 / 653

Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

gtX(X-1,Y,N) :- num(X,Y,N), 1 < X. gtY(X,Y-1,N) :- num(X,Y,N), 1 < Y.

gtX(X-1,Y,N) :- gtX(X,Y,N), 1 < X. gtY(X,Y-1,N) :- gtY(X,Y,N), 1 < Y.

:- num(X,Y,N), gtX(X,Y,N). :- num(X,Y,N), gtY(X,Y,N).

Note uniqueness of N in a row/column checked by enumerating pairs!

gringo latin_3.lp | wc

1055752 6294536 21099558

gringo latin_4.lp | wc

228360 1205256 4780744

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 582 / 653

Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum { X:square(X,n) }.

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = { num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = { num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#show num/3. #show sigma/1.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

48136 373768 2185042Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 583 / 653

Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum { X:square(X,n) }.

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = { num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = { num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#show num/3. #show sigma/1.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

48136 373768 2185042Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 583 / 653

Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum { X:square(X,n) }. 4

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = { num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = { num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#show num/3. #show sigma/1.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

48136 373768 2185042Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 583 / 653

Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum { X:square(X,n) }.

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = { num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = { num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#show num/3. #show sigma/1.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

48136 373768 2185042Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 583 / 653

Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum { X:square(X,n) }.

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C { num(X,Y,N) } C, C = 0..n.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C { num(X,Y,N) } C, C = 0..n.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#show num/3. #show sigma/1.

Note internal transformation by gringo

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 583 / 653

Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum { X:square(X,n) }.

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = { num(X,Y,N) }. 8

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = { num(X,Y,N) }. 8

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#show num/3. #show sigma/1.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

48136 373768 2185042Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 583 / 653

Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = { num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = { num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#show num/3.

gringo latin_5.lp | wc gringo latin_6.lp | wc

48136 373768 2185042

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 583 / 653

Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = { num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = { num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#show num/3.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

48136 373768 2185042

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 583 / 653

Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.

% DISPLAY

#show num/3.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 583 / 653

Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.

% DISPLAY

#show num/3.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

48136 373768 2185042

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 583 / 653

Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.

% DISPLAY

#show num/3.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 584 / 653

Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.

% DISPLAY

#show num/3.

Note many symmetric solutions
(mirroring, rotation, value permutation)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 584 / 653

Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.

% DISPLAY

#show num/3.

Note easy and safe to fix a full row/column!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 584 / 653

Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.

:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking

% DISPLAY

#show num/3.

Note easy and safe to fix a full row/column!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 584 / 653

Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.

:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking

% DISPLAY

#show num/3.

Note Let’s compare enumeration speed!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 584 / 653

Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.

% DISPLAY

#show num/3.

gringo -c n=5 latin_6.lp | clasp -q 0

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 584 / 653

Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.

% DISPLAY

#show num/3.

gringo -c n=5 latin_6.lp | clasp -q 0

Models : 161280 Time : 2.078s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 584 / 653

Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.

:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking

% DISPLAY

#show num/3.

gringo -c n=5 latin_7.lp | clasp -q 0

Models : 161280 Time : 2.078s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 584 / 653

Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 { num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 { num(X,Y,N) } 1.

:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking

% DISPLAY

#show num/3.

gringo -c n=5 latin_7.lp | clasp -q 0

Models : 1344 Time : 0.024s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 584 / 653

Hints

Outline

69 Tweaking N-Queens

70 Do’s and Dont’s

71 Hints

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 585 / 653

Hints

Encode With Care!

1 Create a working encoding

Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce

grounding and/or solving efforts?

2 Revise until no “Yes” answer!

Note If the format of facts makes encoding painful (for instance,
abusing grounding for “scientific calculations”), revise the fact format
as well.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 586 / 653

Hints

Encode With Care!

1 Create a working encoding

Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce

grounding and/or solving efforts?

2 Revise until no “Yes” answer!

Note If the format of facts makes encoding painful (for instance,
abusing grounding for “scientific calculations”), revise the fact format
as well.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 586 / 653

Hints

Encode With Care!

1 Create a working encoding

Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce

grounding and/or solving efforts?

2 Revise until no “Yes” answer!

Note If the format of facts makes encoding painful (for instance,
abusing grounding for “scientific calculations”), revise the fact format
as well.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 586 / 653

Hints

Encode With Care!

1 Create a working encoding

Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce

grounding and/or solving efforts?

2 Revise until no “Yes” answer!

Note If the format of facts makes encoding painful (for instance,
abusing grounding for “scientific calculations”), revise the fact format
as well.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 586 / 653

Hints

Encode With Care!

1 Create a working encoding

Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce

grounding and/or solving efforts?

2 Revise until no “Yes” answer!

Note If the format of facts makes encoding painful (for instance,
abusing grounding for “scientific calculations”), revise the fact format
as well.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 586 / 653

Hints

Encode With Care!

1 Create a working encoding

Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce

grounding and/or solving efforts?

2 Revise until no “Yes” answer!

Note If the format of facts makes encoding painful (for instance,
abusing grounding for “scientific calculations”), revise the fact format
as well.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 586 / 653

Hints

Some Hints on (Preventing) Debugging

Kinds of errors

syntactic . . . follow error messages by the grounder

semantic . . . (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)

1 develop and test incrementally

prepare toy instances with “interesting features”
build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

check whether the grounding fits (use gringo --text)
if stable models are unintended, investigate conditions that fail to hold
if stable models are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 587 / 653

http://www.kr.tuwien.ac.at/research/projects/mmdasp/

Hints

Some Hints on (Preventing) Debugging

Kinds of errors

syntactic . . . follow error messages by the grounder

semantic . . . (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)

1 develop and test incrementally

prepare toy instances with “interesting features”
build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

check whether the grounding fits (use gringo --text)
if stable models are unintended, investigate conditions that fail to hold
if stable models are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 587 / 653

http://www.kr.tuwien.ac.at/research/projects/mmdasp/

Hints

Some Hints on (Preventing) Debugging

Kinds of errors

syntactic . . . follow error messages by the grounder

semantic . . . (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)

1 develop and test incrementally

prepare toy instances with “interesting features”
build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

check whether the grounding fits (use gringo --text)
if stable models are unintended, investigate conditions that fail to hold
if stable models are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 587 / 653

http://www.kr.tuwien.ac.at/research/projects/mmdasp/

Hints

Some Hints on (Preventing) Debugging

Kinds of errors

syntactic . . . follow error messages by the grounder

semantic . . . (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)

1 develop and test incrementally

prepare toy instances with “interesting features”
build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

check whether the grounding fits (use gringo --text)
if stable models are unintended, investigate conditions that fail to hold
if stable models are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 587 / 653

http://www.kr.tuwien.ac.at/research/projects/mmdasp/

Hints

Some Hints on (Preventing) Debugging

Kinds of errors

syntactic . . . follow error messages by the grounder

semantic . . . (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)

1 develop and test incrementally

prepare toy instances with “interesting features”
build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

check whether the grounding fits (use gringo --text)
if stable models are unintended, investigate conditions that fail to hold
if stable models are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 587 / 653

http://www.kr.tuwien.ac.at/research/projects/mmdasp/

Hints

Some Hints on (Preventing) Debugging

Kinds of errors

syntactic . . . follow error messages by the grounder

semantic . . . (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)

1 develop and test incrementally

prepare toy instances with “interesting features”
build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

check whether the grounding fits (use gringo --text)
if stable models are unintended, investigate conditions that fail to hold
if stable models are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 587 / 653

http://www.kr.tuwien.ac.at/research/projects/mmdasp/

Hints

Overcoming Performance Bottlenecks

Grounding

monitor time spent by and output size of gringo

1 system tools (eg. time(gringo [. . .] | wc))
2 grounding info (eg. gringo --text)

Note once identified, reformulate “critical” logic program parts

Solving

check solving statistics (use clasp --stats)

Note if great search efforts (Conflicts/Choices/Restarts), then

1 try prefabricated settings (using clasp option ‘--configuration’)
2 try auto-configuration (offered by claspfolio or accclingo)
3 try manual fine-tuning (requires expert knowledge!)
4 if possible, reformulate the problem or add domain knowledge

(“redundant” constraints) to help the solver

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 588 / 653

Hints

Overcoming Performance Bottlenecks

Grounding

monitor time spent by and output size of gringo

1 system tools (eg. time(gringo [. . .] | wc))
2 grounding info (eg. gringo --text)

Note once identified, reformulate “critical” logic program parts

Solving

check solving statistics (use clasp --stats)

Note if great search efforts (Conflicts/Choices/Restarts), then

1 try prefabricated settings (using clasp option ‘--configuration’)
2 try auto-configuration (offered by claspfolio or accclingo)
3 try manual fine-tuning (requires expert knowledge!)
4 if possible, reformulate the problem or add domain knowledge

(“redundant” constraints) to help the solver

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 588 / 653

Hints

Overcoming Performance Bottlenecks

Grounding

monitor time spent by and output size of gringo

1 system tools (eg. time(gringo [. . .] | wc))
2 grounding info (eg. gringo --text)

Note once identified, reformulate “critical” logic program parts

Solving

check solving statistics (use clasp --stats)

Note if great search efforts (Conflicts/Choices/Restarts), then

1 try prefabricated settings (using clasp option ‘--configuration’)
2 try auto-configuration (offered by claspfolio or accclingo)
3 try manual fine-tuning (requires expert knowledge!)
4 if possible, reformulate the problem or add domain knowledge

(“redundant” constraints) to help the solver

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 588 / 653

Hints

Overcoming Performance Bottlenecks

Grounding

monitor time spent by and output size of gringo

1 system tools (eg. time(gringo [. . .] | wc))
2 grounding info (eg. gringo --text)

Note once identified, reformulate “critical” logic program parts

Solving

check solving statistics (use clasp --stats)

Note if great search efforts (Conflicts/Choices/Restarts), then

1 try prefabricated settings (using clasp option ‘--configuration’)
2 try auto-configuration (offered by claspfolio or accclingo)
3 try manual fine-tuning (requires expert knowledge!)
4 if possible, reformulate the problem or add domain knowledge

(“redundant” constraints) to help the solver

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 588 / 653

Hints

Overcoming Performance Bottlenecks

Grounding

monitor time spent by and output size of gringo

1 system tools (eg. time(gringo [. . .] | wc))
2 grounding info (eg. gringo --text)

Note once identified, reformulate “critical” logic program parts

Solving

check solving statistics (use clasp --stats)

Note if great search efforts (Conflicts/Choices/Restarts), then

1 try prefabricated settings (using clasp option ‘--configuration’)
2 try auto-configuration (offered by claspfolio or accclingo)
3 try manual fine-tuning (requires expert knowledge!)
4 if possible, reformulate the problem or add domain knowledge

(“redundant” constraints) to help the solver

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 588 / 653

Hints

Overcoming Performance Bottlenecks

Grounding

monitor time spent by and output size of gringo

1 system tools (eg. time(gringo [. . .] | wc))
2 grounding info (eg. gringo --text)

Note once identified, reformulate “critical” logic program parts

Solving

check solving statistics (use clasp --stats)

Note if great search efforts (Conflicts/Choices/Restarts), then

1 try prefabricated settings (using clasp option ‘--configuration’)
2 try auto-configuration (offered by claspfolio or accclingo)
3 try manual fine-tuning (requires expert knowledge!)
4 if possible, reformulate the problem or add domain knowledge

(“redundant” constraints) to help the solver

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 588 / 653

Preferences and optimization: Overview

72 Motivation

73 The asprin framework

74 Preliminaries

75 Language

76 Implementation

77 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 589 / 653

Motivation

Outline

72 Motivation

73 The asprin framework

74 Preliminaries

75 Language

76 Implementation

77 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 590 / 653

Motivation

Motivation

Preferences are pervasive

The identification of preferred, or optimal, solutions is often
indispensable in real-world applications

In many cases, this also involves the combination of various
qualitative and quantitative preferences

Only optimization statements representing objective functions using
sum or count aggregates are established components of ASP systems

Example #minimize{40 : sauna, 70 : dive}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 591 / 653

Motivation

Motivation

Preferences are pervasive

The identification of preferred, or optimal, solutions is often
indispensable in real-world applications

In many cases, this also involves the combination of various
qualitative and quantitative preferences

Only optimization statements representing objective functions using
sum or count aggregates are established components of ASP systems

Example #minimize{40 : sauna, 70 : dive}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 591 / 653

Motivation

Motivation

Preferences are pervasive

The identification of preferred, or optimal, solutions is often
indispensable in real-world applications

In many cases, this also involves the combination of various
qualitative and quantitative preferences

Only optimization statements representing objective functions using
sum or count aggregates are established components of ASP systems

Example #minimize{40 : sauna, 70 : dive}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 591 / 653

Motivation

Motivation

Preferences are pervasive

The identification of preferred, or optimal, solutions is often
indispensable in real-world applications

In many cases, this also involves the combination of various
qualitative and quantitative preferences

Only optimization statements representing objective functions using
sum or count aggregates are established components of ASP systems

Example #minimize{40 : sauna, 70 : dive}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 591 / 653

The asprin framework

Outline

72 Motivation

73 The asprin framework

74 Preliminaries

75 Language

76 Implementation

77 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 592 / 653

The asprin framework

Approach

asprin is a framework for handling preferences among the stable
models of logic programs

general because it captures numerous existing approaches to preference
from the literature
flexible because it allows for an easy implementation of new or
extended existing approaches

asprin builds upon advanced control capacities for incremental and
meta solving, allowing for

search for specific preferred solutions without any modifications to the
ASP solver
continuous integrated solving process significantly reducing
redundancies
high customizability via an implementation through ordinary ASP
encodings

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 593 / 653

The asprin framework

Approach

asprin is a framework for handling preferences among the stable
models of logic programs

general because it captures numerous existing approaches to preference
from the literature
flexible because it allows for an easy implementation of new or
extended existing approaches

asprin builds upon advanced control capacities for incremental and
meta solving, allowing for

search for specific preferred solutions without any modifications to the
ASP solver
continuous integrated solving process significantly reducing
redundancies
high customizability via an implementation through ordinary ASP
encodings

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 593 / 653

The asprin framework

Approach

asprin is a framework for handling preferences among the stable
models of logic programs

general because it captures numerous existing approaches to preference
from the literature
flexible because it allows for an easy implementation of new or
extended existing approaches

asprin builds upon advanced control capacities for incremental and
meta solving, allowing for

search for specific preferred solutions without any modifications to the
ASP solver
continuous integrated solving process significantly reducing
redundancies
high customizability via an implementation through ordinary ASP
encodings

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 593 / 653

The asprin framework

Approach

asprin is a framework for handling preferences among the stable
models of logic programs

general because it captures numerous existing approaches to preference
from the literature
flexible because it allows for an easy implementation of new or
extended existing approaches

asprin builds upon advanced control capacities for incremental and
meta solving, allowing for

search for specific preferred solutions without any modifications to the
ASP solver
continuous integrated solving process significantly reducing
redundancies
high customizability via an implementation through ordinary ASP
encodings

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 593 / 653

The asprin framework

Example

#preference(costs, less(weight)){40 : sauna, 70 : dive}
#preference(fun, superset){sauna, dive, hike,∼bunji}
#preference(temps, aso){dive > sauna ‖ hot, sauna > dive ‖¬hot}
#preference(all , pareto){name(costs), name(fun), name(temps)}

#optimize(all)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 594 / 653

Preliminaries

Outline

72 Motivation

73 The asprin framework

74 Preliminaries

75 Language

76 Implementation

77 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 595 / 653

Preliminaries

Preference

A strict partial order � on the stable models of a logic program

That is, X � Y means that X is preferred to Y

A stable model X is �-preferred, if there is no other stable model Y
such that Y � X

A preference type is a (parametric) class of preference relations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 596 / 653

Preliminaries

Preference

A strict partial order � on the stable models of a logic program

That is, X � Y means that X is preferred to Y

A stable model X is �-preferred, if there is no other stable model Y
such that Y � X

A preference type is a (parametric) class of preference relations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 596 / 653

Preliminaries

Preference

A strict partial order � on the stable models of a logic program

That is, X � Y means that X is preferred to Y

A stable model X is �-preferred, if there is no other stable model Y
such that Y � X

A preference type is a (parametric) class of preference relations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 596 / 653

Preliminaries

Preference

A strict partial order � on the stable models of a logic program

That is, X � Y means that X is preferred to Y

A stable model X is �-preferred, if there is no other stable model Y
such that Y � X

A preference type is a (parametric) class of preference relations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 596 / 653

Language

Outline

72 Motivation

73 The asprin framework

74 Preliminaries

75 Language

76 Implementation

77 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 597 / 653

Language

Language

weighted formula w1, . . . ,wl : φ
where each wi is a term and φ is a Boolean formula

naming atom name(s)
where s is the name of a preference

preference element Φ1 > · · · > Φm ‖ Φ
where each Φr is a set of weighted formulas and Φ is a non-weighted formula

preference statement #preference(s, t){e1, . . . , en}
where s and t represent the preference statement and its type

and each ej is a preference element

optimization directive #optimize(s)
where s is the name of a preference

preference specification is a set S of preference statements and a directive

#optimize(s) such that S is an acyclic, closed, and s ∈ S

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 598 / 653

Language

Language

weighted formula w1, . . . ,wl : φ
where each wi is a term and φ is a Boolean formula

naming atom name(s)
where s is the name of a preference

preference element Φ1 > · · · > Φm ‖ Φ
where each Φr is a set of weighted formulas and Φ is a non-weighted formula

preference statement #preference(s, t){e1, . . . , en}
where s and t represent the preference statement and its type

and each ej is a preference element

optimization directive #optimize(s)
where s is the name of a preference

preference specification is a set S of preference statements and a directive

#optimize(s) such that S is an acyclic, closed, and s ∈ S

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 598 / 653

Language

Language

weighted formula w1, . . . ,wl : φ
where each wi is a term and φ is a Boolean formula

naming atom name(s)
where s is the name of a preference

preference element Φ1 > · · · > Φm ‖ Φ
where each Φr is a set of weighted formulas and Φ is a non-weighted formula

preference statement #preference(s, t){e1, . . . , en}
where s and t represent the preference statement and its type

and each ej is a preference element

optimization directive #optimize(s)
where s is the name of a preference

preference specification is a set S of preference statements and a directive

#optimize(s) such that S is an acyclic, closed, and s ∈ S

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 598 / 653

Language

Preference type

A preference type t is a function mapping a set of preference
elements, E , to a (strict) preference relation, t(E), on sets of atoms

The domain of t, dom(t), fixes its admissible preference elements

Example less(cardinality)

(X ,Y) ∈ less(cardinality)(E)
if |{l ∈ E | X |= l}| < |{l ∈ E | Y |= l}|

dom(less(cardinality)) = P({a,¬a | a ∈ A})
(where P(X) denotes the power set of X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 599 / 653

Language

Preference type

A preference type t is a function mapping a set of preference
elements, E , to a (strict) preference relation, t(E), on sets of atoms

The domain of t, dom(t), fixes its admissible preference elements

Example less(cardinality)

(X ,Y) ∈ less(cardinality)(E)
if |{l ∈ E | X |= l}| < |{l ∈ E | Y |= l}|

dom(less(cardinality)) = P({a,¬a | a ∈ A})
(where P(X) denotes the power set of X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 599 / 653

Language

Preference type

A preference type t is a function mapping a set of preference
elements, E , to a (strict) preference relation, t(E), on sets of atoms

The domain of t, dom(t), fixes its admissible preference elements

Example less(cardinality)

(X ,Y) ∈ less(cardinality)(E)
if |{l ∈ E | X |= l}| < |{l ∈ E | Y |= l}|

dom(less(cardinality)) = P({a,¬a | a ∈ A})
(where P(X) denotes the power set of X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 599 / 653

Language

Preference type

A preference type t is a function mapping a set of preference
elements, E , to a (strict) preference relation, t(E), on sets of atoms

The domain of t, dom(t), fixes its admissible preference elements

Example less(cardinality)

(X ,Y) ∈ less(cardinality)(E)
if |{l ∈ E | X |= l}| < |{l ∈ E | Y |= l}|

dom(less(cardinality)) = P({a,¬a | a ∈ A})
(where P(X) denotes the power set of X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 599 / 653

Language

Preference type

A preference type t is a function mapping a set of preference
elements, E , to a (strict) preference relation, t(E), on sets of atoms

The domain of t, dom(t), fixes its admissible preference elements

Example less(cardinality)

(X ,Y) ∈ less(cardinality)(E)
if |{l ∈ E | X |= l}| < |{l ∈ E | Y |= l}|

dom(less(cardinality)) = P({a,¬a | a ∈ A})
(where P(X) denotes the power set of X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 599 / 653

Language

More examples

more(weight) is defined as

(X ,Y) ∈ more(weight)(E) if
∑

(w :l)∈E ,X |=l w >
∑

(w :l)∈E ,Y |=l w

dom(more(weight)) = P({w : a,w : ¬a | w ∈ Z, a ∈ A}); and

subset is defined as

(X ,Y) ∈ subset(E) if {l ∈ E | X |= l} ⊂ {l ∈ E | Y |= l}
dom(less(cardinality)) = P({a,¬a | a ∈ A}).

pareto is defined as

(X ,Y) ∈ pareto(E) if
∧

name(s)∈E (X �s Y) ∧
∨

name(s)∈E (X �s Y)

dom(pareto) = P({n | n ∈ N});

lexico is defined as

(X ,Y) ∈ lexico(E) if
∨

w :name(s)∈E
(
(X �s Y) ∧

∧
v :name(s′)∈E ,v<w (X =s′ Y)

)
dom(lexico) = P({w : n | w ∈ Z, n ∈ N}).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 600 / 653

Language

Preference relation

A preference relation is obtained by applying a preference type to an
admissible set of preference elements

#preference(s, t)E declares preference relation t(E) denoted by �s

Example #preference(1, less(cardinality)){a,¬b, c}) declares

X �1 Y as |{l ∈ {a,¬b, c} | X |= l}| < |{l ∈ {a,¬b, c} | Y |= l}|

where �1 stands for less(cardinality)({a,¬b, c})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 601 / 653

Language

Preference relation

A preference relation is obtained by applying a preference type to an
admissible set of preference elements

#preference(s, t)E declares preference relation t(E) denoted by �s

Example #preference(1, less(cardinality)){a,¬b, c}) declares

X �1 Y as |{l ∈ {a,¬b, c} | X |= l}| < |{l ∈ {a,¬b, c} | Y |= l}|

where �1 stands for less(cardinality)({a,¬b, c})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 601 / 653

Language

Preference relation

A preference relation is obtained by applying a preference type to an
admissible set of preference elements

#preference(s, t)E declares preference relation t(E) denoted by �s

Example #preference(1, less(cardinality)){a,¬b, c}) declares

X �1 Y as |{l ∈ {a,¬b, c} | X |= l}| < |{l ∈ {a,¬b, c} | Y |= l}|

where �1 stands for less(cardinality)({a,¬b, c})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 601 / 653

Implementation

Outline

72 Motivation

73 The asprin framework

74 Preliminaries

75 Language

76 Implementation

77 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 602 / 653

Implementation

Preference program

Reification HX = {holds(a) | a ∈ X} and H ′X = {holds ′(a) | a ∈ X}

Preference program Let s be a preference statement declaring �s

and let Ps be a logic program

We define Ps as a preference program for s, if for all sets X ,Y ⊆ A,
we have

X �s Y iff Ps ∪ HX ∪ H ′Y is satisfiable

Note Ps usually consists of an encoding Ets of ts , facts Fs
representing the preference statement, and auxiliary rules A

Note Dynamic versions of HX and HY must be used for optimization

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 603 / 653

Implementation

Preference program

Reification HX = {holds(a) | a ∈ X} and H ′X = {holds ′(a) | a ∈ X}

Preference program Let s be a preference statement declaring �s

and let Ps be a logic program

We define Ps as a preference program for s, if for all sets X ,Y ⊆ A,
we have

X �s Y iff Ps ∪ HX ∪ H ′Y is satisfiable

Note Ps usually consists of an encoding Ets of ts , facts Fs
representing the preference statement, and auxiliary rules A

Note Dynamic versions of HX and HY must be used for optimization

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 603 / 653

Implementation

Preference program

Reification HX = {holds(a) | a ∈ X} and H ′X = {holds ′(a) | a ∈ X}

Preference program Let s be a preference statement declaring �s

and let Ps be a logic program

We define Ps as a preference program for s, if for all sets X ,Y ⊆ A,
we have

X �s Y iff Ps ∪ HX ∪ H ′Y is satisfiable

Note Ps usually consists of an encoding Ets of ts , facts Fs
representing the preference statement, and auxiliary rules A

Note Dynamic versions of HX and HY must be used for optimization

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 603 / 653

Implementation

Preference program

Reification HX = {holds(a) | a ∈ X} and H ′X = {holds ′(a) | a ∈ X}

Preference program Let s be a preference statement declaring �s

and let Ps be a logic program

We define Ps as a preference program for s, if for all sets X ,Y ⊆ A,
we have

X �s Y iff Ps ∪ HX ∪ H ′Y is satisfiable

Note Ps usually consists of an encoding Ets of ts , facts Fs
representing the preference statement, and auxiliary rules A

Note Dynamic versions of HX and HY must be used for optimization

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 603 / 653

Implementation

#preference(3, subset){a,¬b, c}

Esubset=

 better(P) :- preference(P,subset),

holds’(X) : preference(P,_,_,for(X),_), holds(X);

1 #sum { 1,X : not holds(X), holds’(X),

preference(P,_,_,for(X),_) }.

F3 =

{
preference(3,subset). preference(3,1,1,for(a),()).

preference(3,2,1,for(neg(b)),()).

preference(3,3,1,for(c),()).

}
A =

{
holds(neg(A)) :- not holds(A), preference(_,_,_,for(neg(A)),_).

holds’(neg(A)) :- not holds’(A),preference(_,_,_,for(neg(A)),_).

}
H{a,b}=

{
holds(a). holds(b).

}
H ′{a} =

{
holds’(a).

}
We get a stable model containing better(3) indicating that
{a, b} �3 {a}, or {a} ⊂ {a,¬b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 604 / 653

Implementation

#preference(3, subset){a,¬b, c}

Esubset=

 better(P) :- preference(P,subset),

holds’(X) : preference(P,_,_,for(X),_), holds(X);

1 #sum { 1,X : not holds(X), holds’(X),

preference(P,_,_,for(X),_) }.

F3 =

{
preference(3,subset). preference(3,1,1,for(a),()).

preference(3,2,1,for(neg(b)),()).

preference(3,3,1,for(c),()).

}
A =

{
holds(neg(A)) :- not holds(A), preference(_,_,_,for(neg(A)),_).

holds’(neg(A)) :- not holds’(A),preference(_,_,_,for(neg(A)),_).

}
H{a,b}=

{
holds(a). holds(b).

}
H ′{a} =

{
holds’(a).

}
We get a stable model containing better(3) indicating that
{a, b} �3 {a}, or {a} ⊂ {a,¬b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 604 / 653

Implementation

Basic algorithm solveOpt(P , s)

Input : A program P over A and preference statement s
Output : A �s -preferred stable model of P, if P is satisfiable, and ⊥

otherwise

Y ← solve(P)
if Y = ⊥ then return ⊥

repeat
X ← Y
Y ← solve(P ∪ Ets ∪ Fs ∪ RA ∪ H ′X) ∩ A

until Y = ⊥
return X

where RX = {holds(a)← a | a ∈ X}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 605 / 653

Implementation

Sketched Python Implementation

#script (python)

from gringo import *

holds = []

def getHolds():

global holds

return holds

def onModel(model):

global holds

holds = []

for a in model.atoms():

if (a.name() == "_holds"): holds.append(a.args()[0])

def main(prg):

step = 1

prg.ground([("base", [])])

while True:

if step > 1: prg.ground([("doholds",[step-1]),("preference",[0,step-1])]

ret = prg.solve(on_model=onModel)

if ret == SolveResult.UNSAT: break

step = step+1

#end.

#program base. #program doholds(m).

#show _holds(X,0) : _holds(X,0). _holds(X,m) :- X = @getHolds().

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 606 / 653

Implementation

Sketched Python Implementation

#script (python)

from gringo import *

holds = []

def getHolds():

global holds

return holds

def onModel(model):

global holds

holds = []

for a in model.atoms():

if (a.name() == "_holds"): holds.append(a.args()[0])

def main(prg):

step = 1

prg.ground([("base", [])])

while True:

if step > 1: prg.ground([("doholds",[step-1]),("preference",[0,step-1])]

ret = prg.solve(on_model=onModel)

if ret == SolveResult.UNSAT: break

step = step+1

#end.

#program base. #program doholds(m).

#show _holds(X,0) : _holds(X,0). _holds(X,m) :- X = @getHolds().

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 606 / 653

Implementation

Vanilla minimize statements

Emulating the minimize statement

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

in asprin amounts to

#preference(myminimize,less(weight))

{ C,(X,Y) :: cycle(X,Y) : cost(X,Y,C) }.

#optimize(myminimize).

Note asprin separates the declaration of preferences from the actual
optimization directive

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 607 / 653

Implementation

Vanilla minimize statements

Emulating the minimize statement

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

in asprin amounts to

#preference(myminimize,less(weight))

{ C,(X,Y) :: cycle(X,Y) : cost(X,Y,C) }.

#optimize(myminimize).

Note asprin separates the declaration of preferences from the actual
optimization directive

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 607 / 653

Implementation

Example
in asprin’s input language

#preference(costs,less(weight)){

C :: sauna : cost(sauna,C);

C :: dive : cost(dive,C)

}.

#preference(fun,superset){ sauna; dive; hike; not bunji }.

#preference(temps,aso){

dive > sauna || hot;

sauna > dive || not hot

}.

#preference(all,pareto){name(costs); name(fun); name(temps)}.

#optimize(all).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 608 / 653

Implementation

asprin’s library

Basic preference types

subset and superset

less(cardinality) and more(cardinality)

less(weight) and more(weight)

aso (Answer Set Optimization)
poset (Qualitative Preferences)

Composite preference types

neg

and

pareto

lexico

See Potassco Guide on how to define further types

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 609 / 653

Implementation

asprin’s library

Basic preference types

subset and superset

less(cardinality) and more(cardinality)

less(weight) and more(weight)

aso (Answer Set Optimization)
poset (Qualitative Preferences)

Composite preference types

neg

and

pareto

lexico

See Potassco Guide on how to define further types

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 609 / 653

Implementation

asprin’s library

Basic preference types

subset and superset

less(cardinality) and more(cardinality)

less(weight) and more(weight)

aso (Answer Set Optimization)
poset (Qualitative Preferences)

Composite preference types

neg

and

pareto

lexico

See Potassco Guide on how to define further types

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 609 / 653

Summary

Outline

72 Motivation

73 The asprin framework

74 Preliminaries

75 Language

76 Implementation

77 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 610 / 653

Summary

Summary

asprin stands for “ASP for Preference handling”

asprin is a general, flexible, and extendable framework for
preference handling in ASP

asprin caters to

off-the-shelf users using the preference relations in asprin’s library
preference engineers customizing their own preference relations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 611 / 653

Summary

Summary

asprin stands for “ASP for Preference handling”

asprin is a general, flexible, and extendable framework for
preference handling in ASP

asprin caters to

off-the-shelf users using the preference relations in asprin’s library
preference engineers customizing their own preference relations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 611 / 653

Summary

Summary

asprin stands for “ASP for Preference handling”

asprin is a general, flexible, and extendable framework for
preference handling in ASP

asprin caters to

off-the-shelf users using the preference relations in asprin’s library
preference engineers customizing their own preference relations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 611 / 653

Grounding: Overview

78 Background

79 Bottom Up Grounding

80 Semi-naive Evaluation Based Grounding

81 On-the-fly Simplifications

82 Rule Instantiation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 612 / 653

Background

Outline

78 Background

79 Bottom Up Grounding

80 Semi-naive Evaluation Based Grounding

81 On-the-fly Simplifications

82 Rule Instantiation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 613 / 653

Background

Introduction

Problem

Logic
Program

Stable
Models

Solution

Grounder Solver

Modeling

Grounding and Solving

Interpreting

some grounders (in chronological order)

lparse (grounding using domain predicates)
dlv (semi-naive evaluation based grounding)
gringo (semi-naive evaluation based since version 3)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 614 / 653

Background

Hamiltonian Cycle Instance

% vertices

node(a). node(b).

node(c). node(d).

% edges

edge(a,b). edge(a,c).

edge(b,c). edge(b,d).

edge(c,a). edge(c,d).

edge(d,a).

% starting point (for presentation purposes)

start(a).

c d

a b

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 615 / 653

Background

Hamiltonian Cycle Encoding

% generate path

path(X,Y) :- not omit(X,Y), edge(X,Y).

omit(X,Y) :- not path(X,Y), edge(X,Y).

% at most one incoming/outgoing edge

:- path(X,Y), path(X’,Y), X < X’.

:- path(X,Y), path(X,Y’), Y < Y’.

% at least one incoming/outgoing edge

on_path(Y) :- path(X,Y), path(Y,Z).

:- node(X), not on_path(X).

% connectedness

reach(X) :- start(X).

reach(Y) :- reach(X), path(X,Y).

:- node(X), not reach(X).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 616 / 653

Background

Grounding

Safety

each variable has to occur in a positive body element
consider: p(X) :- not q(X).

Herbrand universe

all constants in program and
all functions over function symbols in program

Herbrand base

all atoms over predicates in program
with terms from Herbrand universe

Instance of a rule

all variables replaced with elements from Herbrand universe

Grounding of a program

ground(P) is the union of all instances of rules in P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 617 / 653

Background

Example: Size of Grounding

% Herbrand Universe: {a,b,c,d}

12 facts from instance

% path(X,Y) :- not omit(X,Y), edge(X,Y).

% omit(X,Y) :- not path(X,Y), edge(X,Y).

% reach(Y) :- reach(X), path(X,Y).

16 rules + 16 rules + 16 rules

% on_path(Y) :- path(X,Y), path(Y,Z).

% :- path(X,Y), path(X’,Y), X < X’.

% :- path(X,Y), path(X,Y’), Y < Y’.

64 rules + 64 rules + 64 rules

% reach(X) :- start(X).

% :- node(X), not on_path(X).

% :- node(X), not reach(X).

4 rules + 4 rules + 4 rules

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 618 / 653

Background

Example: Unnecessary Rules I

% path(X,Y) :- not omit(X,Y), edge(X,Y).

path(a,a) :- not omit(a,a), edge(a,a).

path(a,b) :- not omit(a,b), edge(a,b).

path(a,c) :- not omit(a,c), edge(a,c).

path(a,d) :- not omit(a,d), edge(a,d).
...

path(d,a) :- not omit(d,a), edge(d,a).

path(d,b) :- not omit(d,b), edge(d,b).

path(d,c) :- not omit(d,c), edge(d,d).

path(d,d) :- not omit(d,d), edge(d,d).

c d

a b

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 619 / 653

Background

Example: Unnecessary Rules II

% :- path(X,Y), path(X’,Y), X < X’.

:- path(a,a), path(a,a), a < a.

:- path(a,b), path(a,b), a < a.

:- path(a,c), path(a,c), a < a.

:- path(a,d), path(a,d), a < a.

:- path(a,a), path(b,a), a < b.

:- path(a,b), path(b,b), a < b.

:- path(a,c), path(b,c), a < b.

:- path(a,d), path(b,d), a < b.
...

:- path(d,d), path(d,d), d < d.

c d

a b

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 620 / 653

Bottom Up Grounding

Outline

78 Background

79 Bottom Up Grounding

80 Semi-naive Evaluation Based Grounding

81 On-the-fly Simplifications

82 Rule Instantiation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 621 / 653

Bottom Up Grounding

Bottom Up Grounding

ground relevant rules by incrementally extending the Herbrand base

groundD(P) = {r ∈ ground(P) | B(r)+ ⊆ D,

all comparison literals

in body(r) are satisfied}

function ground bottom up(P,D)
G ← groundD(P)
if head(G) 6⊆ D then

return ground bottom up(P,D ∪ head(G))

return G

given safe program P and set of ground facts I (typically corresponds
to encoding and instance), P ∪ I is equivalent to
ground bottom up(P, head(I)) ∪ I

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 622 / 653

Bottom Up Grounding

Example: Bottom Up Grounding Step 1

% Step 1

path(a,b) :- not omit(a,b), edge(a,b).
... % 7 rules total

path(d,a) :- not omit(d,a), edge(d,a).

omit(a,b) :- not path(a,b), edge(a,b).
... % 7 rules total

omit(d,a) :- not path(d,a), edge(d,a).

:- node(a), not on_path(a). :- node(b), not on_path(b).

:- node(c), not on_path(c). :- node(d), not on_path(d).

:- node(a), not reach(a). :- node(b), not reach(b).

:- node(c), not reach(c). :- node(d), not reach(d).

reach(a) :- start(a).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 623 / 653

Bottom Up Grounding

Example: Bottom Up Grounding Step 2

% Step 2 and rules of Step 1

:- path(a,c), path(b,c), a < b.

:- path(b,d), path(c,d), b < c.

:- path(c,a), path(d,a), c < d.

:- path(a,b), path(a,c), b < c.

:- path(c,a), path(c,d), a < d.

:- path(b,c), path(b,d), c < d.

on_path(a) :- path(a,b), path(c,a).
... % 12 rules total

on_path(d) :- path(d,a), path(c,d).

reach(b) :- reach(a), path(a,b).

reach(c) :- reach(a), path(a,c).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 624 / 653

Bottom Up Grounding

Example: Bottom Up Grounding Step 3 and 4

% Step 3 and rules of Step 2

reach(c) :- reach(b), path(b,c).

reach(d) :- reach(b), path(b,d).

reach(a) :- reach(c), path(c,a).

reach(d) :- reach(c), path(c,d).

% Step 4 and rules of Step 3

reach(a) :- reach(d), path(d,a).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 625 / 653

Bottom Up Grounding

Properties of Bottom Up Grounding

grounds only relevant rules

each positive body literal has a non-cyclic derivation
(ignoring negative literals)

regrounds rules from previous steps

function ground bottom up(P,D)
G ← groundD(P)
if head(G) 6⊆ D then

return ground bottom up(P,D ∪ head(G))

return G

does not perform simplifications

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 626 / 653

Bottom Up Grounding

Improving Bottom Up Grounding

use dependencies to focus grounding

begin with partial Herbrand base given by facts
use rule dependency graph of program to obtain components that can
be grounded successively

adapt semi-naive evaluation put forward in the database field

avoids redundancies when grounding

perform simplifications during grounding

remove literals from rule bodies if possible
omit rules if body cannot be satisfied

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 627 / 653

Bottom Up Grounding

Program Dependencies

dependency graph of program P

rule r2 depends on rule r1
if b ∈ B(r2)+ ∪ B(r2)− unifies with h ∈ head(r1)
GP = (P,E) where E = {(r1, r2) | r2 depends on r1}

positive dependency graph of program P

rule r2 positively depends on rule r1
if b ∈ B(r2)+ unifies with h ∈ head(r1)
G+
P = (P,E) where E = {(r1, r2) | r2 positively depends on r1}

let LP = (C1,1, . . . ,C1,m1 , . . . ,Cn,1, . . . ,Cn,mn) where

(C1, . . . ,Cn) is a topological ordering of GP

(Ci,1, . . . ,Ci,mi) is a topological ordering of each G+
Ci

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 628 / 653

Bottom Up Grounding

Example: Dependencies

omit(X,Y) :- not path(X,Y), edge(X,Y).Component1,1:

path(X,Y) :- not omit(X,Y), edge(X,Y).Component1,2:

:- path(X,Y), path(X’,Y), X < X’.Component2,1:

:- path(X,Y), path(X,Y’), Y < Y’.Component3,1:

on path(Y) :- path(X,Y), path(Y,Z).Component4,1:

:- node(X), not on path(X).Component5,1:

reach(X) :- start(X).Component6,1:

reach(Y) :- reach(X), path(X,Y).Component7,1:

:- node(X), not reach(X).Component8,1:

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 629 / 653

Bottom Up Grounding

Grounding With Dependencies

function ground with dependencies(P,D)
G ← ∅
foreach C in LP do

G ′ ← ground bottom up(C ,D)
(G ,D)← (G ∪ G ′,D ∪ head(G ′))

return G

given safe program P and set of facts I , P ∪ I is equivalent to
ground with dependencies(P, head(I)) ∪ I

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 630 / 653

Bottom Up Grounding

Example: Grounding with Dependencies

% Component1,1

omit(a,b) :- not path(a,b), edge(a,b).
... % 7 rules total

omit(d,a) :- not path(d,a), edge(d,a).

% Component1,2

path(a,b) :- not omit(a,b), edge(a,b).
... % 7 rules total

path(d,a) :- not omit(d,a), edge(d,a).

...

no regrounding if there is no positive recursion in a component

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 631 / 653

Bottom Up Grounding

Example: Grounding Component7,1

% Step 1

reach(b) :- reach(a), path(a,b).

reach(c) :- reach(a), path(a,c).

% Step 2 and rules of Step 1

reach(c) :- reach(b), path(b,c).

reach(d) :- reach(b), path(b,d).

reach(a) :- reach(c), path(c,a).

reach(d) :- reach(c), path(c,d).

% Step 3 and rules of Step 2

reach(a) :- reach(d), path(d,a).

% less regrounding but still...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 632 / 653

Semi-naive Evaluation Based Grounding

Outline

78 Background

79 Bottom Up Grounding

80 Semi-naive Evaluation Based Grounding

81 On-the-fly Simplifications

82 Rule Instantiation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 633 / 653

Semi-naive Evaluation Based Grounding

Recursive Atoms

given LP = (C1, . . . ,Cn), an atom a1 is recursive in component Ci if
a1 unifies a2 such that

r1 ∈ Ci and r2 ∈ Cj with i ≤ j ,

a1 ∈ B(r1)+ ∪ B(r1)−, and
a2 ∈ head(r2)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 634 / 653

Semi-naive Evaluation Based Grounding

Example: Recursive Atoms

omit(X,Y) :- not path(X,Y), edge(X,Y).Component1,1:

path(X,Y) :- not omit(X,Y), edge(X,Y).Component1,2:

:- path(X,Y), path(X’,Y), X < X’.Component2,1:

:- path(X,Y), path(X,Y’), Y < Y’.Component3,1:

on path(Y) :- path(X,Y), path(Y,Z).Component4,1:

:- node(X), not on path(X).Component5,1:

reach(X) :- start(X).Component6,1:

reach(Y) :- reach(X), path(X,Y).Component7,1:

:- node(X), not reach(X).Component8,1:

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 635 / 653

Semi-naive Evaluation Based Grounding

Preparing Components

the set of prepared rules for r ∈ C is

h :- n(b1), a(b2), a(b3), . . . , a(bi−2), a(bi−1), a(bi), B
h :- o(b1), n(b2), a(b3), . . . , a(bi−2), a(bi−1), a(bi), B
...

...
. . .

...
...

h :- o(b1), o(b2), o(b3), . . . , o(bi−2), n(bi−1), a(bi), B
h :- o(b1), o(b2), o(b3), . . . , o(bi−2), o(bi−1), n(bi), B

or {h :- n(bi+1), . . . , n(bj), bj+1, . . . , bn} if i = 0

where body(r) = {b1, . . . , bi , bi+1 . . . , bj , bj+1, . . . , bn},
bk ∈ B(r)+ for 1 ≤ k ≤ i is recursive,
bk ∈ B(r)+ for i < k ≤ j is not recursive, and
B = a(bi+1), . . . , a(bj), bj+1, . . . , bn

a prepared component is the union of all its prepared rules

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 636 / 653

Semi-naive Evaluation Based Grounding

Example: Preparing Components

% prepared Component1,1

omit(X,Y) :- n(edge(X,Y)), not path(X,Y).

% prepared Component1,2

path(X,Y) :- n(edge(X,Y)), not omit(X,Y).

% prepared Component2,1

:- n(path(X,Y)), n(path(X’,Y)), X < X’.

...

% prepared Component7,1

reach(Y) :- n(reach(X)), a(path(X,Y)).

...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 637 / 653

Semi-naive Evaluation Based Grounding

Semi-naive Evaluation-based Grounding

function ground semi naive(P,A)
G ← ∅
foreach C in LP do

(O,N)← (∅,A)
repeat

let Dp = {p(a) | a ∈ D} for set D of atoms
G ′ ← groundOo∪Nn∪Aa

(prepared C)
N ← head(G ′) \ A
(G ,O,A)← (G ∪ G ′,A,N ∪ A)

until N = ∅
return G with o/1, n/1, a/1 stripped from positive bodies

given safe program P and set of facts I , P ∪ I is equivalent to
ground semi naive(P, head(I)) ∪ I

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 638 / 653

Semi-naive Evaluation Based Grounding

Example: Grounding Component7,1

% grounding of

% reach(Y) :- n(reach(X)), a(path(X,Y)).

% Step 1 with N = A from previous step (reach(a) ∈ A)

reach(b) :- n(reach(a)), a(path(a,b)).

reach(c) :- n(reach(a)), a(path(a,c)).

% Step 2 with N = { reach(b), reach(c) }

reach(c) :- n(reach(b)), a(path(b,c)).

reach(d) :- n(reach(b)), a(path(b,d)).

reach(a) :- n(reach(c)), a(path(c,a)).

reach(d) :- n(reach(c)), a(path(c,d)).

% Step 3 with N = { reach(d) }

reach(a) :- n(reach(d)), a(path(d,a)).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 639 / 653

Semi-naive Evaluation Based Grounding

Example: Grounding Component7,1

% grounding of

% reach(Y) :- n(reach(X)), a(path(X,Y)).

% Step 1 with N = A from previous step (reach(a) ∈ A)

reach(b) :- reach(a), path(a,b).

reach(c) :- reach(a), path(a,c).

% Step 2 with N = { reach(b), reach(c) }

reach(c) :- reach(b), path(b,c).

reach(d) :- reach(b), path(b,d).

reach(a) :- reach(c), path(c,a).

reach(d) :- reach(c), path(c,d).

% Step 3 with N = { reach(d) }

reach(a) :- reach(d), path(d,a).

% without n/1 and a/1 of course

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 639 / 653

Semi-naive Evaluation Based Grounding

Example: Nonlinear Programs

trans(U,V) :- edge(U,V).

trans(U,W) :- trans(U,V), trans(V,W).

% prepared Component 1:

trans(U,V) :- n(edge(U,V)).

% prepared Component 2:

trans(U,W) :- n(trans(U,V)), a(trans(V,W)).

trans(U,W) :- o(trans(U,V)), n(trans(V,W)).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 640 / 653

Semi-naive Evaluation Based Grounding

Example: Nonlinear Programs

trans(U,V) :- edge(U,V).

% trans(U,W) :- trans(U,V), trans(V,W).

% better written as:

trans(U,W) :- trans(U,V), edge(V,W).

% prepared Component 1:

trans(U,V) :- n(edge(U,V)).

% prepared Component 2:

trans(U,W) :- n(trans(U,V)), a(edge(V,W)).

trans(U,W) :- o(trans(U,V)), n(trans(V,W)).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 640 / 653

On-the-fly Simplifications

Outline

78 Background

79 Bottom Up Grounding

80 Semi-naive Evaluation Based Grounding

81 On-the-fly Simplifications

82 Rule Instantiation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 641 / 653

On-the-fly Simplifications

Propagation of Facts

simplifications are performed on-the-fly
(rules are printed immediately but not stored in gringo)

maintain a set of fact atoms

remove facts from positive body

discard rules with negative literals over a fact

discard rules whenever the head is a fact

gather new facts whenever a rule body is empty

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 642 / 653

On-the-fly Simplifications

Example: Propagation of Facts

...

path(a,b) :- not omit(a,b), edge(a,b).

...

reach(a) :- start(a).

...

:- node(a), not reach(a).

...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 643 / 653

On-the-fly Simplifications

Example: Propagation of Facts

...

path(a,b) :- not omit(a,b).

...

reach(a). % reach(a) is added as fact

...

:- node(a), not reach(a).

...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 643 / 653

On-the-fly Simplifications

Example: Propagation of Facts

...

path(a,b) :- not omit(a,b).

...

reach(a). % reach(a) is added as fact

...

:- node(a), not reach(a).

...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 643 / 653

On-the-fly Simplifications

Example: Propagation of Facts

...

path(a,b) :- not omit(a,b).

...

reach(a). % reach(a) is added as fact

...

:- node(a), not reach(a). % rule is discarded

...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 643 / 653

On-the-fly Simplifications

Propagation of Negative Literals

non-recursive negative literals not in the current base A can be
removed from rule bodies

stratified logic programs are completely evaluated during grounding

consider the instance where node d is not reachable

c d

a b

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 644 / 653

On-the-fly Simplifications

Example: Propagation of Negative Literals

path(a,b) :- not omit(a,b).

path(a,c) :- not omit(a,c).

path(b,c) :- not omit(b,c).

path(c,a) :- not omit(c,a).

path(d,a) :- not omit(d,a).

...

reach(a).

reach(b) :- path(a,b).

reach(c) :- path(a,c).

reach(c) :- path(b,c), reach(b).

...

% reach(X) is not recursive and reach(d) 6∈ A
:- not reach(b).

:- not reach(c).

:- not reach(d). % remove not reach(d) from body

c d

a b

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 645 / 653

On-the-fly Simplifications

Example: Propagation of Negative Literals

path(a,b) :- not omit(a,b).

path(a,c) :- not omit(a,c).

path(b,c) :- not omit(b,c).

path(c,a) :- not omit(c,a).

path(d,a) :- not omit(d,a).

...

reach(a).

reach(b) :- path(a,b).

reach(c) :- path(a,c).

reach(c) :- path(b,c), reach(b).

...

% reach(X) is not recursive and reach(d) 6∈ A
:- not reach(b).

:- not reach(c).

:- . % inconsistency detected during grounding

c d

a b

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 645 / 653

On-the-fly Simplifications

Conclusion/Summary

grounding algorithms for normal logic programs
(with integrity constraints)

language features not covered here

(recursive) aggregates
conditional literals
optimization statements
disjunctions
arithmetic functions
syntactic sugar to write more compact encodings
safety of = relation (for aggregates and terms)
python/lua integration

external functions
control over grounding and solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 646 / 653

Rule Instantiation

Outline

78 Background

79 Bottom Up Grounding

80 Semi-naive Evaluation Based Grounding

81 On-the-fly Simplifications

82 Rule Instantiation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 647 / 653

Rule Instantiation

Rule Instantiation

the following slides show how to ground individual rules

I am probably not going to show them

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 648 / 653

Rule Instantiation

Safe Body Order

given safe rule r , the tuple (b1, . . . , bn) is a safe body order if

{b1, . . . , bn} = body(r)
the body {b1, . . . , bi} is safe for each i

for example given rule :- node(X), not reach(X).

(node(X), not reach(X)) is a safe body order
(not reach(X), node(X)) is not a safe body order

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 649 / 653

Rule Instantiation

Safe Body Order

given safe rule r , the tuple (b1, . . . , bn) is a safe body order if

{b1, . . . , bn} = body(r)
the body {b1, . . . , bi} is safe for each i

for example given rule :- node(X), not reach(X).

(node(X), not reach(X)) is a safe body order
(not reach(X), node(X)) is not a safe body order

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 649 / 653

Rule Instantiation

Matching Body Literals

matchF ,D(σ, b) is the set of all matches for literal b

σ is a substitution
F are facts (set of ground atoms)
D is the domain (set of ground atoms)
σ′ ∈ matchF ,D(σ, b) if

σ ⊆ σ′ and vars(b) ⊆ vars(σ′) ⊆ vars(b) ∪ vars(σ),
bσ′ holds if b is a comparison literal,
bσ′ ∈ D if b is an atom, and
aσ′ 6∈ F if b is a symbolic literal of form not a

for example given body: p(X), q(X,Y), not r(Y)

F = {r(3)} and D = {p(1), q(1, 2), q(1, 3), r(3)}
matchF ,D(∅, p(X)) = {{X 7→ 1}}
matchF ,D({X 7→ 1}, q(X,Y)) = {{X 7→ 1,Y 7→ 2}, {X 7→ 1,Y 7→ 3}}
matchF ,D({X 7→ 1,Y 7→ 2}, not r(Y)) = {{X 7→ 1,Y 7→ 2}}
matchF ,D({X 7→ 1,Y 7→ 3}, not r(Y)) = ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 650 / 653

Rule Instantiation

Matching Body Literals

matchF ,D(σ, b) is the set of all matches for literal b

σ is a substitution
F are facts (set of ground atoms)
D is the domain (set of ground atoms)
σ′ ∈ matchF ,D(σ, b) if

σ ⊆ σ′ and vars(b) ⊆ vars(σ′) ⊆ vars(b) ∪ vars(σ),
bσ′ holds if b is a comparison literal,
bσ′ ∈ D if b is an atom, and
aσ′ 6∈ F if b is a symbolic literal of form not a

for example given body: p(X), q(X,Y), not r(Y)

F = {r(3)} and D = {p(1), q(1, 2), q(1, 3), r(3)}
matchF ,D(∅, p(X)) = {{X 7→ 1}}
matchF ,D({X 7→ 1}, q(X,Y)) = {{X 7→ 1,Y 7→ 2}, {X 7→ 1,Y 7→ 3}}
matchF ,D({X 7→ 1,Y 7→ 2}, not r(Y)) = {{X 7→ 1,Y 7→ 2}}
matchF ,D({X 7→ 1,Y 7→ 3}, not r(Y)) = ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 650 / 653

Rule Instantiation

Rule Grounding by Backtracking

function ground backtrackr ,R,D(σ,F , (b1, . . . , bn))
if n = 0 then

let H = head(rσ)

B = B(rσ)+ \ F ∪
{not aσ | a ∈ B(r)− \ R, a ∈ D} ∪
{not aσ | a ∈ B(r)− ∩ R}

if B = ∅ then F ← F ∪ H
return ({H :- B | B− ∩ F = ∅,H ∩ F = ∅},F)

else
G ← ∅
foreach σ′ ∈ matchF ,D(σ, b1) do

(G ,F)← (G ,F)tground backtrackr ,R,D(σ′,F , (b2, . . . , bn))

return (G ,F)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 651 / 653

Summary

Outline

83 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 652 / 653

Summary

Summary

ASP is a viable tool for Knowledge Representation and Reasoning

ASP offers efficient and versatile off-the-shelf solving technology

ASP offers an expanding functionality and ease of use

Rapid application development tool

ASP has a growing range of applications

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 653 / 653

Summary

Summary

ASP is a viable tool for Knowledge Representation and Reasoning

ASP offers efficient and versatile off-the-shelf solving technology

ASP offers an expanding functionality and ease of use

Rapid application development tool

ASP has a growing range of applications

ASP = DB+LP+KR+SAT

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 653 / 653

Summary

Summary

ASP is a viable tool for Knowledge Representation and Reasoning

ASP offers efficient and versatile off-the-shelf solving technology

ASP offers an expanding functionality and ease of use

Rapid application development tool

ASP has a growing range of applications

ASP = DB+LP+KR+SMT

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 653 / 653

Summary

Summary

ASP is a viable tool for Knowledge Representation and Reasoning

ASP offers efficient and versatile off-the-shelf solving technology

ASP offers an expanding functionality and ease of use

Rapid application development tool

ASP has a growing range of applications

http://potassco.org

Torsten Schaub (KRR@UP) Answer Set Solving in Practice February 18, 2019 653 / 653

http://potassco.org

	Organization
	Motivation
	Motivation
	Nutshell
	Evolution
	Foundation
	Workflow
	Engine
	Usage
	Summary

	Introduction
	Syntax
	Semantics
	Examples
	Reasoning
	Language
	Variables

	Basic Modeling
	Elaboration tolerance
	ASP solving process
	Methodology
	Case studies
	Satisfiability
	Queens
	Traveling salesperson
	Reviewer Assignment
	Planning

	Language
	Motivation
	Core language
	Integrity constraint
	Choice rule
	Cardinality rule
	Weight rule

	Extended language
	Conditional literal
	Optimization statement

	Intermediate formats
	smodels format
	aspif format

	Language Extensions
	Two kinds of negation
	Disjunctive logic programs
	Propositional theories
	Aggregates
	Gringo language

	Computational Aspects
	Consequence operator
	Computation from first principles
	Complexity

	Axiomatic Characterization
	Completion
	Tightness
	Loops and Loop Formulas

	Operational Characterization
	Partial Interpretations
	Fitting Operator
	Unfounded Sets
	Well-Founded Operator

	Proof-theoretic Characterization
	Tableau Calculi
	Tableau Calculi for ASP
	Tableau Calculi characterizing ASP solvers
	Proof complexity

	Conflict-driven ASP Solving
	Motivation
	Boolean constraints
	Nogoods from logic programs
	Nogoods from program completion
	Nogoods from loop formulas

	Conflict-driven nogood learning
	CDNL-ASP Algorithm
	Nogood Propagation
	Conflict Analysis

	Multi-shot ASP Solving
	Motivation
	#program and #external declaration
	Module composition
	States and operations
	Incremental reasoning
	Boardgaming

	ASP modulo theories
	Theory language
	Low-level semantics
	Intermediate Format
	Theory propagation
	Experiments
	Acyclicity checking
	Constraint Answer Set Programming

	Heuristic programming
	Motivation
	Heuristically modified ASP
	Experimental results

	Systems
	Potassco
	gringo
	clasp
	Features
	Parallel solving
	Configuration
	Disjunctive solving

	clingo
	clingcon
	claspfolio
	clavis

	Advanced Modeling
	Tweaking N-Queens
	Do's and Dont's
	Hints

	Preferences and optimization
	Motivation
	The asprin framework
	Preliminaries
	Language
	Implementation
	Summary

	Grounding
	Background
	Bottom Up Grounding
	Semi-naive Evaluation Based Grounding
	On-the-fly Simplifications
	Rule Instantiation

	Summary
	Summary

