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Completion

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Although each atom is defined through a set of rules,
each such rule provides only a sufficient condition for its head atom

Idea The idea of program completion is to turn such implications into
a definition by adding the corresponding necessary counterpart
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Completion

Program completion

Let P be a normal logic program

The completion CF (P) of P is defined as follows

CF (P) =
{
a↔

∨
r∈P,head(r)=aBF (body(r)) | a ∈ atom(P)

}
where

BF (body(r)) =
∧

a∈body(r)+a ∧
∧

a∈body(r)−¬a
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Completion

An example

P =



a←
b ← ∼a
c ← a,∼d
d ← ∼c,∼e
e ← b,∼f
e ← e


CF (P) =



a↔ >
b ↔ ¬a
c ↔ a ∧ ¬d
d ↔ ¬c ∧ ¬e
e ↔ (b ∧ ¬f ) ∨ e
f ↔ ⊥
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Completion

A closer look

CF (P) is logically equivalent to
←−
CF (P) ∪

−→
CF (P), where

←−
CF (P) =

{
a←

∨
B∈bodyP(a)

BF (B) | a ∈ atom(P)
}

−→
CF (P) =

{
a→

∨
B∈bodyP(a)

BF (B) | a ∈ atom(P)
}

bodyP(a) = {body(r) | r ∈ P and head(r) = a}

←−
CF (P) characterizes the classical models of P
−→
CF (P) completes P by adding necessary conditions for all atoms
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Completion

Supported models

Every stable model of P is a model of CF (P), but not vice versa

Models of CF (P) are called the supported models of P

In other words, every stable model of P is a supported model of P

By definition, every supported model of P is also a model of P
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Completion

An example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has 21 models, including {a, c}, {a, d}, but also {a, b, c , d , e, f }
P has 3 supported models, namely {a, c}, {a, d}, and {a, c , e}
P has 2 stable models, namely {a, c} and {a, d}
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Tightness

Outline

1 Completion

2 Tightness

3 Loops and Loop Formulas
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Tightness

The mismatch

Question What causes the mismatch between supported models and
stable models?

Hint Consider the unstable yet supported model {a, c , e} of P !

Answer Cyclic derivations are causing the mismatch between
supported and stable models

Atoms in a stable model can be “derived” from a program in a finite
number of steps
Atoms in a cycle (not being “supported from outside the cycle”)
cannot be “derived” from a program in a finite number of steps
Note But such atoms do not contradict the completion of a program
and do thus not eliminate an unstable supported model
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Tightness

Non-cyclic derivations

Let X be a stable model of normal logic program P

For every atom A ∈ X , there is a finite sequence of positive rules

〈r1, . . . , rn〉

such that

1 head(r1) = A
2 body(ri )

+ ⊆ {head(rj) | i < j ≤ n} for 1 ≤ i ≤ n
3 ri ∈ PX for 1 ≤ i ≤ n

That is, each atom of X has a non-cyclic derivation from PX

Example There is no finite sequence of rules providing a derivation
for e from P{a,c,e}
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Tightness

Positive atom dependency graph

The origin of (potential) circular derivations can be read off the
positive atom dependency graph G (P) of a logic program P given by

(atom(P), {(a, b) | r ∈ P, a ∈ body(r)+, head(r) = b})

A logic program P is called tight, if G (P) is acyclic
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Tightness

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}
G (P) = ({a, b, c , d , e, f }, {(a, c), (b, e), (e, e)})

a c d

b e f

P has supported models: {a, c}, {a, d}, and {a, c , e}
P has stable models: {a, c} and {a, d}
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Tightness

Tight programs

A logic program P is called tight, if G (P) is acyclic

For tight programs, stable and supported models coincide:

Fages’ Theorem

Let P be a tight normal logic program and X ⊆ atom(P)
Then, X is a stable model of P iff X |= CF (P)
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Tightness

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}
G (P) = ({a, b, c , d , e}, {(a, c), (a, d), (b, c), (b, d), (c, d), (d , c)})

d a c e

b

P has supported models: {a, c, d}, {b}, and {b, c , d}
P has stable models: {a, c , d} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice November 28, 2014 262 / 484



Tightness

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}
G (P) = ({a, b, c , d , e}, {(a, c), (a, d), (b, c), (b, d), (c, d), (d , c)})

d a c e

b

P has supported models: {a, c, d}, {b}, and {b, c , d}
P has stable models: {a, c , d} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice November 28, 2014 262 / 484



Tightness

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}
G (P) = ({a, b, c , d , e}, {(a, c), (a, d), (b, c), (b, d), (c, d), (d , c)})

d a c e

b

P has supported models: {a, c, d}, {b}, and {b, c , d}
P has stable models: {a, c , d} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice November 28, 2014 262 / 484



Tightness

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}
G (P) = ({a, b, c , d , e}, {(a, c), (a, d), (b, c), (b, d), (c, d), (d , c)})

d a c e

b

P has supported models: {a, c, d}, {b}, and {b, c , d}
P has stable models: {a, c , d} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice November 28, 2014 262 / 484



Loops and Loop Formulas

Outline

1 Completion

2 Tightness

3 Loops and Loop Formulas
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Loops and Loop Formulas

Motivation

Question Is there a propositional formula F (P) such that the models
of F (P) correspond to the stable models of P ?

Observation Starting from the completion of a program,
the problem boils down to eliminating the circular support of atoms
holding in the supported models of the program

Idea Add formulas prohibiting circular support of sets of atoms

Note Circular support between atoms a and b is possible,
if a has a path to b and b has a path to a
in the program’s positive atom dependency graph
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Loops and Loop Formulas

Loops

Let P be a normal logic program, and
let G (P) = (atom(P),E ) be the positive atom dependency graph of P

A set ∅ ⊂ L ⊆ atom(P) is a loop of P
if it induces a non-trivial strongly connected subgraph of G (P)

That is, each pair of atoms in L is connected by a path of non-zero
length in (L,E ∩ (L× L))

We denote the set of all loops of P by loop(P)

Note A program P is tight iff loop(P) = ∅
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Note A program P is tight iff loop(P) = ∅
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Loops and Loop Formulas

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

a c d

b e f

loop(P) = {{e}}
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Loops and Loop Formulas

Another example

P =

{
a← ∼b c ← a, b d ← a e ← ∼a,∼b
b ← ∼a c ← d d ← b, c

}

d a c e

b

loop(P) = {{c , d}}
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Loops and Loop Formulas

Yet another example
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Loops and Loop Formulas

Loop formulas

Let P be a normal logic program

For L ⊆ atom(P), define the external supports of L for P as

ESP(L) = {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}

Define the external bodies of L in P as EBP(L) = body(ESP(L))

The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

a∈La
)
→
(∨

B∈EBP(L)
BF (B)

)
≡

(∧
B∈EBP(L)

¬BF (B)
)
→
(∧

a∈L¬a
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

Define LF (P) = {LFP(L) | L ∈ loop(P)}
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Loops and Loop Formulas

Example

P =

{
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b ← ∼a d ← ∼c ,∼e e ← e

}

a c d

b e f

loop(P) = {{e}}
LF (P) = {e → b ∧ ¬f }
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Loops and Loop Formulas

Another example

P =
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d a c e
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Loops and Loop Formulas

Lin-Zhao Theorem

Theorem

Let P be a normal logic program and X ⊆ atom(P)
Then, X is a stable model of P iff X |= CF (P) ∪ LF (P)
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Loops and Loop Formulas

Loops and loop formulas: Properties

Let X be a supported model of normal logic program P

Then, X is a stable model of P iff

X |= {LFP(U) | U ⊆ atom(P)}
X |= {LFP(U) | U ⊆ X}
X |= {LFP(L) | L ∈ loop(P)}, that is, X |= LF (P)
X |= {LFP(L) | L ∈ loop(P) and L ⊆ X}

Note If X is not a stable model of P,
then there is a loop L ⊆ X \ Cn(PX ) such that X 6|= LFP(L)
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Loops and Loop Formulas

Loops and loop formulas: Properties (ctd)

Result If P 6⊆ NC1/poly ,2 then there is no translation T from logic
programs to propositional formulas such that, for each normal logic
program P, both of the following conditions hold:

1 The propositional variables in T [P] are a subset of atom(P)
2 The size of T [P] is polynomial in the size of P

Note Every vocabulary-preserving translation from normal logic
programs to propositional formulas must be exponential
(in the worst case)

Observations

Translation CF (P) ∪ LF (P) preserves the vocabulary of P
The number of loops in loop(P) may be exponential in |atom(P)|

2A conjecture from complexity theory that is believed to be true
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Operational Characterization: Overview

4 Partial Interpretations

5 Fitting Operator

6 Unfounded Sets

7 Well-Founded Operator
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Partial Interpretations

Outline

4 Partial Interpretations

5 Fitting Operator
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Partial Interpretations

Interlude: Partial interpretations
or: 3-valued interpretations

A partial interpretation maps atoms onto truth values true, false,
and unknown

Representation 〈T ,F 〉, where

T is the set of all true atoms and
F is the set of all false atoms
Truth of atoms in A \ (T ∪ F ) is unknown

Properties

〈T ,F 〉 is conflicting if T ∩ F 6= ∅
〈T ,F 〉 is total if T ∪ F = A and T ∩ F = ∅

Definition For 〈T1,F1〉 and 〈T2,F2〉, define

〈T1,F1〉 v 〈T2,F2〉 iff T1 ⊆ T2 and F1 ⊆ F2

〈T1,F1〉 t 〈T2,F2〉 = 〈T1 ∪ T2,F1 ∪ F2〉
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Fitting Operator

Outline

4 Partial Interpretations

5 Fitting Operator

6 Unfounded Sets

7 Well-Founded Operator
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Fitting Operator

Basic idea

Idea Extend TP to normal logic programs

Logical background The idea is to turn a program’s completion
into an operator such that

the head atom of a rule must be true
if the rule’s body is true
an atom must be false
if the body of each rule having it as head is false
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Fitting Operator

Definition

Let P be a normal logic program

Define

ΦP〈T ,F 〉 = 〈TP〈T ,F 〉,FP〈T ,F 〉〉

where

TP〈T ,F 〉 = {head(r) | r ∈ P, body(r)+ ⊆ T , body(r)− ⊆ F}
FP〈T ,F 〉 = {a ∈ atom(P) |

body(r)+ ∩ F 6= ∅ or body(r)− ∩ T 6= ∅
for each r ∈ P such that head(r) = a }
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Fitting Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Let’s iterate ΦP on 〈{a}, {d}〉:

ΦP〈{a}, {d}〉 = 〈{a, c}, {b, f }〉
ΦP〈{a, c}, {b, f }〉 = 〈{a}, {b, d , f }〉
ΦP〈{a}, {b, d , f }〉 = 〈{a, c}, {b, f }〉

...
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Fitting Operator

Fitting semantics

Define the iterative variant of ΦP analogously to TP :

Φ0
P〈T ,F 〉 = 〈T ,F 〉 Φi+1

P 〈T ,F 〉 = ΦPΦi
P〈T ,F 〉

Define the Fitting semantics of a normal logic program P
as the partial interpretation:⊔

i≥0Φi
P〈∅, ∅〉
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Fitting Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Φ0〈∅, ∅〉 = 〈∅, ∅〉
Φ1〈∅, ∅〉 = Φ〈∅, ∅〉 = 〈{a}, {f }〉
Φ2〈∅, ∅〉 = Φ〈{a}, {f }〉 = 〈{a}, {b, f }〉
Φ3〈∅, ∅〉 = Φ〈{a}, {b, f }〉 = 〈{a}, {b, f }〉⊔

i≥0 Φi 〈∅, ∅〉 = 〈{a}, {b, f }〉
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Fitting Operator

Properties

Let P be a normal logic program

ΦP〈∅, ∅〉 is monotonic
That is, Φi

P〈∅, ∅〉 v Φi+1
P 〈∅, ∅〉

The Fitting semantics of P is

not conflicting,
and generally not total
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Fitting Operator

Fitting fixpoints

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Define 〈T ,F 〉 as a Fitting fixpoint of P if ΦP〈T ,F 〉 = 〈T ,F 〉

The Fitting semantics is the v-least Fitting fixpoint of P
Any other Fitting fixpoint extends the Fitting semantics
Total Fitting fixpoints correspond to supported models

Torsten Schaub (KRR@UP) Answer Set Solving in Practice November 28, 2014 286 / 484



Fitting Operator

Fitting fixpoints

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Define 〈T ,F 〉 as a Fitting fixpoint of P if ΦP〈T ,F 〉 = 〈T ,F 〉

The Fitting semantics is the v-least Fitting fixpoint of P
Any other Fitting fixpoint extends the Fitting semantics
Total Fitting fixpoints correspond to supported models

Torsten Schaub (KRR@UP) Answer Set Solving in Practice November 28, 2014 286 / 484



Fitting Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has three total Fitting fixpoints:

1 〈{a, c}, {b, d , e, f }〉
2 〈{a, d}, {b, c , e, f }〉
3 〈{a, c , e}, {b, d , f }〉

P has three supported models, two of them are stable models
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Fitting Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΦP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΦP is stable model preserving

Hence, ΦP can be used for approximating stable models and so for
propagation in ASP-solvers

However, ΦP is still insufficient, because total fixpoints correspond to
supported models, not necessarily stable models

Note The problem is the same as with program completion

The missing piece is non-circularity of derivations !
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Fitting Operator

Example

P =

{
a ← b
b ← a

}

Φ0
P〈∅, ∅〉 = 〈∅, ∅〉

Φ1
P〈∅, ∅〉 = 〈∅, ∅〉

That is, Fitting semantics cannot assign false to a and b,
although they can never become true !
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Unfounded Sets

Outline

4 Partial Interpretations

5 Fitting Operator

6 Unfounded Sets

7 Well-Founded Operator
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Unfounded Sets

Unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

A set U ⊆ atom(P) is an unfounded set of P wrt 〈T ,F 〉,
if for each rule r ∈ P such that head(r) ∈ U, we have that

1 body(r)+ ∩ F 6= ∅ or body(r)− ∩ T 6= ∅ or
2 body(r)+ ∩ U 6= ∅

Intuitively, 〈T ,F 〉 is what we already know about P

Rules satisfying Condition 1 are not usable for further derivations

Condition 2 is the unfounded set condition treating cyclic derivations:
All rules still being usable to derive an atom in U require an(other)
atom in U to be true
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Unfounded Sets

Example

P =

{
a ← b
b ← a

}

∅ is an unfounded set (by definition)

{a} is not an unfounded set of P wrt 〈∅, ∅〉
{a} is an unfounded set of P wrt 〈∅, {b}〉
{a} is not an unfounded set of P wrt 〈{b}, ∅〉

Analogously for {b}

{a, b} is an unfounded set of P wrt 〈∅, ∅〉
{a, b} is an unfounded set of P wrt any partial interpretation
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Unfounded Sets

Greatest unfounded sets

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation The union of two unfounded sets is an unfounded set

The greatest unfounded set of P wrt 〈T ,F 〉 is the union of all
unfounded sets of P wrt 〈T ,F 〉
It is denoted by UP〈T ,F 〉
Alternatively, we may define

UP〈T ,F 〉 = atom(P) \ Cn({r ∈ P | body(r)+ ∩ F = ∅}T )

Note Cn({r ∈ P | body(r)+ ∩ F = ∅}T ) contains all non-circularly
derivable atoms from P wrt 〈T ,F 〉
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Well-Founded Operator

Well-founded operator

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Observation Condition 1 (in the definition of an unfounded set)
corresponds to FP〈T ,F 〉 of Fitting’s ΦP〈T ,F 〉
Idea Extend (negative part of) Fitting’s operator ΦP

That is,

keep definition of TP〈T ,F 〉 from ΦP〈T ,F 〉 and
replace FP〈T ,F 〉 from ΦP〈T ,F 〉 by UP〈T ,F 〉
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if it belongs to the greatest unfounded set
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Well-Founded Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Let’s iterate ΩP1 on 〈{c}, ∅〉:

ΩP〈{c}, ∅〉 = 〈{a}, {d , f }〉
ΩP〈{a}, {d , f }〉 = 〈{a, c}, {b, e, f }〉

ΩP〈{a, c}, {b, e, f }〉 = 〈{a}, {b, d , e, f }〉
ΩP〈{a}, {b, d , e, f }〉 = 〈{a, c}, {b, e, f }〉

...
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Well-Founded Operator

Well-founded semantics

Define the iterative variant of ΩP analogously to ΦP :

Ω0
P〈T ,F 〉 = 〈T ,F 〉 Ωi+1

P 〈T ,F 〉 = ΩPΩi
P〈T ,F 〉

Define the well-founded semantics of a normal logic program P
as the partial interpretation:⊔

i≥0Ωi
P〈∅, ∅〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice November 28, 2014 297 / 484



Well-Founded Operator

Well-founded semantics

Define the iterative variant of ΩP analogously to ΦP :

Ω0
P〈T ,F 〉 = 〈T ,F 〉 Ωi+1

P 〈T ,F 〉 = ΩPΩi
P〈T ,F 〉

Define the well-founded semantics of a normal logic program P
as the partial interpretation:⊔

i≥0Ωi
P〈∅, ∅〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice November 28, 2014 297 / 484



Well-Founded Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Ω0〈∅, ∅〉 = 〈∅, ∅〉
Ω1〈∅, ∅〉 = Ω〈∅, ∅〉 = 〈{a}, {f }〉
Ω2〈∅, ∅〉 = Ω〈{a}, {f }〉 = 〈{a}, {b, e, f }〉
Ω3〈∅, ∅〉 = Ω〈{a}, {b, e, f }〉 = 〈{a}, {b, e, f }〉⊔

i≥0 Ωi 〈∅, ∅〉 = 〈{a}, {b, e, f }〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice November 28, 2014 298 / 484



Well-Founded Operator

Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

Ω0〈∅, ∅〉 = 〈∅, ∅〉
Ω1〈∅, ∅〉 = Ω〈∅, ∅〉 = 〈{a}, {f }〉
Ω2〈∅, ∅〉 = Ω〈{a}, {f }〉 = 〈{a}, {b, e, f }〉
Ω3〈∅, ∅〉 = Ω〈{a}, {b, e, f }〉 = 〈{a}, {b, e, f }〉⊔

i≥0 Ωi 〈∅, ∅〉 = 〈{a}, {b, e, f }〉

Torsten Schaub (KRR@UP) Answer Set Solving in Practice November 28, 2014 298 / 484



Well-Founded Operator

Properties

Let P be a normal logic program

ΩP〈∅, ∅〉 is monotonic
That is, Ωi

P〈∅, ∅〉 v Ωi+1
P 〈∅, ∅〉

The well-founded semantics of P is

not conflicting,
and generally not total

We have
⊔

i≥0 Φi
P〈∅, ∅〉 v

⊔
i≥0 Ωi

P〈∅, ∅〉
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Well-Founded Operator

Well-founded fixpoints

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Define 〈T ,F 〉 as a well-founded fixpoint of P if ΩP〈T ,F 〉 = 〈T ,F 〉

The well-founded semantics is the v-least well-founded fixpoint of P
Any other well-founded fixpoint extends the well-founded semantics
Total well-founded fixpoints correspond to stable models
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Well-Founded Operator

Well-founded fixpoints: Example

P =

{
a← c ← a,∼d e ← b,∼f
b ← ∼a d ← ∼c ,∼e e ← e

}

P has two total well-founded fixpoints:

1 〈{a, c}, {b, d , e, f }〉
2 〈{a, d}, {b, c , e, f }〉

Both of them represent stable models
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Well-Founded Operator

Properties

Let P be a normal logic program,
and let 〈T ,F 〉 be a partial interpretation

Let ΩP〈T ,F 〉 = 〈T ′,F ′〉
If X is a stable model of P such that T ⊆ X and X ∩ F = ∅,
then T ′ ⊆ X and X ∩ F ′ = ∅
That is, ΩP is stable model preserving

Hence, ΩP can be used for approximating stable models and so for
propagation in ASP-solvers

In contrast to ΦP , operator ΩP is sufficient for propagation because
total fixpoints correspond to stable models

Note In addition to ΩP , most ASP-solvers apply backward
propagation, originating from program completion
(although this is unnecessary from a formal point of view)
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Proof-theoretic Characterization:
Overview

8 Tableau Calculi

9 Tableau Calculi for ASP

10 Tableau Calculi characterizing ASP solvers

11 Proof complexity
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Tableau Calculi

Outline

8 Tableau Calculi

9 Tableau Calculi for ASP
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11 Proof complexity

Torsten Schaub (KRR@UP) Answer Set Solving in Practice November 28, 2014 304 / 484



Tableau Calculi

Motivation

Goal Analyze computations in ASP solvers

Wanted A declarative and fine-grained instrument for
characterizing operations as well as strategies of ASP solvers

Idea View stable model computations as derivations in
an inference system

Consider Tableau-based proof systems for analyzing ASP solving
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Tableau Calculi

Tableau calculi

Traditionally, tableau calculi are used for

automated theorem proving and
proof theoretical analysis

in classical as well as non-classical logics

General idea Given an input, prove some property by decomposition
Decomposition is done by applying deduction rules

For details, see Handbook of Tableau Methods, Kluwer, 1999
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Tableau Calculi

General definitions

A tableau is a (mostly binary) tree

A branch in a tableau is a path from the root to a leaf

A branch containing γ1, . . . , γm can be extended by applying
tableau rules of form

γ1, . . . , γm
α1
...
αn

γ1, . . . , γm
β1 | . . . | βn

Rules of the former format append entries α1, . . . , αn to the branch

Rules of the latter format create multiple sub-branches for β1, . . . , βn
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Tableau Calculi

Example

A simple tableau calculus for proving unsatisfiability of propositional
formulas, composed from ¬, ∧, and ∨, consists of rules

¬¬α
α

α1 ∧ α2

α1
α2

β1 ∨ β2
β1 | β2

All rules are semantically valid, when interpreting entries in a branch
conjunctively and distinct (sub-)branches as connected disjunctively

A propositional formula ϕ is unsatisfiable iff there is a tableau with
ϕ as the root node such that

1 all other entries can be produced by tableau rules and
2 every branch contains some formulas α and ¬α
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Tableau Calculi

Example

(1) a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) [ϕ]
(2) a [1]
(3) (¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a [1]

(4) ¬b ∧ (¬a ∨ b) [3] (9) ¬¬¬a [3]
(5) ¬b [4] (10) ¬a [9]
(6) ¬a ∨ b [4]

(7) ¬a [6] (8) b [6]

All three branches of the tableau are contradictory (cf 2, 5, 7, 8, 10)

Hence, a ∧ ((¬b ∧ (¬a ∨ b)) ∨ ¬¬¬a) is unsatisfiable
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Tableau Calculi for ASP

Outline

8 Tableau Calculi

9 Tableau Calculi for ASP

10 Tableau Calculi characterizing ASP solvers

11 Proof complexity
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Tableau Calculi for ASP

Tableaux and ASP

A tableau rule captures an elementary inference scheme in an
ASP solver

A branch in a tableau corresponds to a successful or unsuccessful
computation of a stable model

An entire tableau represents a traversal of the search space
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Tableau Calculi for ASP

ASP-specific definitions

A (signed) tableau for a logic program P is a binary tree such that

the root node of the tree consists of the rules in P;
the other nodes in the tree are entries of the form Tv or Fv , called
signed literals, where v is a variable,
generated by extending a tableau using deduction rules (given below)

An entry Tv (Fv) reflects that variable v is true (false) in a
corresponding variable assignment

A set of signed literals constitutes a partial assignment

For a normal logic program P,

atoms of P in atom(P) and
bodies of P in body(P)

can occur as variables in signed literals
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Tableau Calculi for ASP

Tableau rules for ASP at a glance

(FTB)
p ← l1, . . . , ln
tl1, . . . , tln

T{l1, . . . , ln}
(BFB)

F{l1, . . . , li , . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li

(FTA)
p ← l1, . . . , ln
T{l1, . . . , ln}

Tp
(BFA)

p ← l1, . . . , ln
Fp

F{l1, . . . , ln}

(FFB)
p ← l1, . . . , li , . . . , ln

f li
F{l1, . . . , li , . . . , ln}

(BTB)
T{l1, . . . , li , . . . , ln}

tli

(FFA)
FB1, . . . ,FBm

Fp (§)
(BTA)

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

TBi
(§)

(WFN)
FB1, . . . ,FBm

Fp (†)
(WFJ)

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

TBi
(†)

(FL)
FB1, . . . ,FBm

Fp (‡)
(BL)

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

TBi
(‡)

(Cut[X ]) Tv | Fv (][X ])
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Tableau Calculi for ASP

More concepts

A tableau calculus is a set of tableau rules

A branch in a tableau is conflicting,
if it contains both Tv and Fv for some variable v

A branch in a tableau is total for a program P,
if it contains either Tv or Fv for each v ∈ atom(P) ∪ body(P)

A branch in a tableau of some calculus T is closed,
if no rule in T other than Cut can produce any new entries

A branch in a tableau is complete,
if it is either conflicting or both total and closed

A tableau is complete, if all its branches are complete

A tableau of some calculus T is a refutation of T for a program P,
if every branch in the tableau is conflicting
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Tableau Calculi for ASP

Example

Consider the program

P =


a←
c ← ∼b,∼d
d ← a,∼c


having stable models {a, c} and {a, d}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice November 28, 2014 315 / 484



Tableau Calculi for ASP

(Previewed) Example

a←
c ← ∼b,∼d
d ← a,∼c

(FTB) T∅
(FTA) Ta
(FFA) Fb

(Cut[atom(P)]) Tc Fc
(BTA) T{∼b,∼d} (BFA) F{∼b,∼d}
(BTB) Fd (BFB) Td
(FFB) F{a,∼c} (FTB) T{a,∼c}
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Tableau Calculi for ASP

Auxiliary definitions

For a literal l , define conjugation functions t and f as follows

t l =

{
T l if l is an atom
Fa if l = ∼a for an atom a

f l =

{
F l if l is an atom
Ta if l = ∼a for an atom a

Examples ta = Ta, f a = Fa, t∼a = Fa, and f∼a = Ta
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Tableau Calculi for ASP

Auxiliary definitions

Some tableau rules require conditions for their application

Such conditions are specified as provisos

prerequisites
(proviso)

consequence
proviso: some condition(s)

Note All tableau rules given in the sequel are stable model preserving
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Tableau Calculi for ASP

Forward True Body (FTB)

Prerequisites All of a body’s literals are true

Consequence The body is true

Tableau Rule FTB

p ← l1, . . . , ln
t l1, . . . , t ln

T{l1, . . . , ln}

Example

a← b,∼c
Tb
Fc

T{b,∼c}
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Tableau Calculi for ASP

Backward False Body (BFB)

Prerequisites A body is false, and all its literals except for one are true

Consequence The residual body literal is false

Tableau Rule BFB

F{l1, . . . , li , . . . , ln}
t l1, . . . , t li−1, t li+1, . . . , t ln

f li

Examples

F{b,∼c}
Tb

Tc

F{b,∼c}
Fc

Fb
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Tableau Calculi for ASP

Forward False Body (FFB)

Prerequisites Some literal of a body is false

Consequence The body is false

Tableau Rule FFB

p ← l1, . . . , li , . . . , ln
f li

F{l1, . . . , li , . . . , ln}

Examples

a← b,∼c
Fb

F{b,∼c}

a← b,∼c
Tc

F{b,∼c}
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Tableau Calculi for ASP

Backward True Body (BTB)

Prerequisites A body is true

Consequence The body’s literals are true

Tableau Rule BTB

T{l1, . . . , li , . . . , ln}
t li

Examples

T{b,∼c}
Tb

T{b,∼c}
Fc
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Tableau Calculi for ASP

Tableau rules for bodies

Consider rule body B = {l1, . . . , ln}

Rules FTB and BFB amount to implication

l1 ∧ · · · ∧ ln → B

Rules FFB and BTB amount to implication

B → l1 ∧ · · · ∧ ln

Together they yield

B ≡ l1 ∧ · · · ∧ ln
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Tableau Calculi for ASP

Forward True Atom (FTA)

Prerequisites Some of an atom’s bodies is true

Consequence The atom is true

Tableau Rule FTA

p ← l1, . . . , ln
T{l1, . . . , ln}

Tp

Examples

a← b,∼c
T{b,∼c}

Ta

a← d ,∼e
T{d ,∼e}

Ta
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Tableau Calculi for ASP

Backward False Atom (BFA)

Prerequisites An atom is false

Consequence The bodies of all rules with the atom as head are false

Tableau Rule BFA

p ← l1, . . . , ln
Fp

F{l1, . . . , ln}

Examples

a← b,∼c
Fa

F{b,∼c}

a← d ,∼e
Fa

F{d ,∼e}
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Tableau Calculi for ASP

Forward False Atom (FFA)

Prerequisites For some atom, the bodies of all rules with the atom as
head are false

Consequence The atom is false

Tableau Rule FFA

FB1, . . . ,FBm
(bodyP(p) = {B1, . . . ,Bm})Fp

Example

F{b,∼c}
F{d ,∼e}

(bodyP(a) = {{b,∼c}, {d ,∼e}})Fa
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Tableau Calculi for ASP

Backward True Atom (BTA)

Prerequisites An atom is true, and the bodies of all rules with the
atom as head except for one are false

Consequence The residual body is true

Tableau Rule BTA

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(bodyP(p) = {B1, . . . ,Bm})TBi

Examples

Ta
F{b,∼c}

(∗)T{d ,∼e}

Ta
F{d ,∼e}

(∗)T{b,∼c}

(∗) bodyP(a) = {{b,∼c}, {d ,∼e}}
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Tableau Calculi for ASP

Tableau rules for atoms

Consider an atom p such that bodyP(p) = {B1, . . . ,Bm}

Rules FTA and BFA amount to implication

B1 ∨ · · · ∨ Bm → p

Rules FFA and BTA amount to implication

p → B1 ∨ · · · ∨ Bm

Together they yield

p ≡ B1 ∨ · · · ∨ Bm
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Tableau Calculi for ASP

Relationship with program completion

Let P be a normal logic program

The eight tableau rules introduced so far essentially provide
(straightforward) inferences from CF (P)
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Tableau Calculi for ASP

Preliminaries for unfounded sets

Let P be a normal logic program

For P ′ ⊆ P, define the greatest unfounded set of P wrt P ′ as

UP(P ′) = atom(P) \ Cn((P ′)∅)

For a loop L ∈ loop(P), define the external bodies of L as

EBP(L) = {body(r) | r ∈ P, head(r) ∈ L, body(r)+ ∩ L = ∅}
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Tableau Calculi for ASP

Well-Founded Negation (WFN)

Prerequisites An atom is in the greatest unfounded set wrt rules
whose bodies are false

Consequence The atom is false

Tableau Rule WFN

FB1, . . . ,FBm
(p ∈ UP({r ∈ P | body(r) 6∈ {B1, . . . ,Bm}}))Fp

Examples

a← ∼b
F{∼b}

(∗)Fa

a← a
a← ∼b
F{∼b}

(∗)Fa

(∗) a ∈ UP(P \ {a← ∼b})
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Tableau Calculi for ASP

Well-Founded Justification (WFJ)

Prerequisites A true atom is in the greatest unfounded set wrt rules
whose bodies are false, if a particular body is made false
Consequence The respective body is true
Tableau Rule WFJ

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(p ∈ UP({r ∈ P | body(r) 6∈ {B1, . . . ,Bm}}))TBi

Examples

a← ∼b
Ta

(∗)T{∼b}

a← a
a← ∼b

Ta
(∗)T{∼b}

(∗) a ∈ UP(P \ {a← ∼b})
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Tableau Calculi for ASP

Well-founded tableau rules

Tableau rules WFN and WFJ ensure non-circular support for true
atoms

Note

1 WFN subsumes falsifying atoms via FFA,
2 WFJ can be viewed as “backward propagation” for unfounded sets,
3 WFJ subsumes backward propagation of true atoms via BTA
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Tableau Calculi for ASP

Relationship with well-founded operator

Let P be a normal logic program, 〈T ,F 〉 a partial interpretation, and
P ′ = {r ∈ P | body(r)+ ∩ F = ∅ and body(r)− ∩ T = ∅}.

The following conditions are equivalent

1 p ∈ UP〈T ,F 〉
2 p ∈ UP(P ′)

Hence, the well-founded operator Ω and WFN coincide

Note In contrast to Ω, WFN does not necessarily require a rule body
to contain a false literal for the rule being inapplicable

Torsten Schaub (KRR@UP) Answer Set Solving in Practice November 28, 2014 334 / 484



Tableau Calculi for ASP

Relationship with well-founded operator

Let P be a normal logic program, 〈T ,F 〉 a partial interpretation, and
P ′ = {r ∈ P | body(r)+ ∩ F = ∅ and body(r)− ∩ T = ∅}.

The following conditions are equivalent

1 p ∈ UP〈T ,F 〉
2 p ∈ UP(P ′)

Hence, the well-founded operator Ω and WFN coincide

Note In contrast to Ω, WFN does not necessarily require a rule body
to contain a false literal for the rule being inapplicable

Torsten Schaub (KRR@UP) Answer Set Solving in Practice November 28, 2014 334 / 484



Tableau Calculi for ASP

Relationship with well-founded operator

Let P be a normal logic program, 〈T ,F 〉 a partial interpretation, and
P ′ = {r ∈ P | body(r)+ ∩ F = ∅ and body(r)− ∩ T = ∅}.

The following conditions are equivalent

1 p ∈ UP〈T ,F 〉
2 p ∈ UP(P ′)

Hence, the well-founded operator Ω and WFN coincide

Note In contrast to Ω, WFN does not necessarily require a rule body
to contain a false literal for the rule being inapplicable

Torsten Schaub (KRR@UP) Answer Set Solving in Practice November 28, 2014 334 / 484



Tableau Calculi for ASP

Relationship with well-founded operator

Let P be a normal logic program, 〈T ,F 〉 a partial interpretation, and
P ′ = {r ∈ P | body(r)+ ∩ F = ∅ and body(r)− ∩ T = ∅}.

The following conditions are equivalent

1 p ∈ UP〈T ,F 〉
2 p ∈ UP(P ′)

Hence, the well-founded operator Ω and WFN coincide

Note In contrast to Ω, WFN does not necessarily require a rule body
to contain a false literal for the rule being inapplicable

Torsten Schaub (KRR@UP) Answer Set Solving in Practice November 28, 2014 334 / 484



Tableau Calculi for ASP

Forward Loop (FL)

Prerequisites The external bodies of a loop are false

Consequence The atoms in the loop are false

Tableau Rule FL

FB1, . . . ,FBm
(p ∈ L, L ∈ loop(P),EBP(L) = {B1, . . . ,Bm})Fp

Example

a← a
a← ∼b
F{∼b}

(EBP({a}) = {{∼b}})Fa
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Tableau Calculi for ASP

Backward Loop (BL)

Prerequisites An atom of a loop is true, and all external bodies except
for one are false

Consequence The residual external body is true

Tableau Rule BL

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(p ∈ L, L ∈ loop(P),EBP(L) = {B1, . . . ,Bm})TBi

Example

a← a
a← ∼b

Ta
(EBP({a}) = {{∼b}})T{∼b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice November 28, 2014 336 / 484



Tableau Calculi for ASP

Backward Loop (BL)

Prerequisites An atom of a loop is true, and all external bodies except
for one are false

Consequence The residual external body is true

Tableau Rule BL

Tp
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(p ∈ L, L ∈ loop(P),EBP(L) = {B1, . . . ,Bm})TBi

Example

a← a
a← ∼b

Ta
(EBP({a}) = {{∼b}})T{∼b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice November 28, 2014 336 / 484



Tableau Calculi for ASP

Tableau rules for loops

Tableau rules FL and BL ensure non-circular support for true atoms

For a loop L such that EBP(L) = {B1, . . . ,Bm},
they amount to implications of form∨

p∈L p → B1 ∨ · · · ∨ Bm

Comparison to well-founded tableau rules yields

FL (plus FFA and FFB) is equivalent to WFN (plus FFB),
BL cannot simulate inferences via WFJ

Torsten Schaub (KRR@UP) Answer Set Solving in Practice November 28, 2014 337 / 484



Tableau Calculi for ASP

Tableau rules for loops

Tableau rules FL and BL ensure non-circular support for true atoms

For a loop L such that EBP(L) = {B1, . . . ,Bm},
they amount to implications of form∨

p∈L p → B1 ∨ · · · ∨ Bm

Comparison to well-founded tableau rules yields

FL (plus FFA and FFB) is equivalent to WFN (plus FFB),
BL cannot simulate inferences via WFJ

Torsten Schaub (KRR@UP) Answer Set Solving in Practice November 28, 2014 337 / 484



Tableau Calculi for ASP

Tableau rules for loops

Tableau rules FL and BL ensure non-circular support for true atoms

For a loop L such that EBP(L) = {B1, . . . ,Bm},
they amount to implications of form∨

p∈L p → B1 ∨ · · · ∨ Bm

Comparison to well-founded tableau rules yields

FL (plus FFA and FFB) is equivalent to WFN (plus FFB),
BL cannot simulate inferences via WFJ

Torsten Schaub (KRR@UP) Answer Set Solving in Practice November 28, 2014 337 / 484



Tableau Calculi for ASP

Relationship with loop formulas

Tableau rules FL and BL essentially provide (straightforward)
inferences from loop formulas

Impractical to precompute exponentially many loop formulas

In practice, ASP solvers such as smodels and clasp

exploit strongly connected components of positive atom
dependency graphs

can be viewed as an interpolation of FL

do not directly implement BL (and neither WFJ)

probably difficult to do efficiently

could simulate BL via FL/WFN by means of failed-literal detection
(lookahead)
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Tableau Calculi for ASP

Case analysis by Cut

Up to now, all tableau rules are deterministic

That is, rules extend a single branch but cannot create sub-branches

In general, closing a branch leads to a partial assignment

Case analysis is done by Cut[C] where C ⊆ atom(P) ∪ body(P)
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Tableau Calculi for ASP

Case analysis by Cut

Prerequisites None

Consequence Two alternative (complementary) entries

Tableau Rule Cut[C]

(v ∈ C)Tv | Fv

Examples

a← ∼b
b ← ∼a

(C = atom(P))Ta | Fa

a← ∼b
b ← ∼a

(C = body(P))T{∼b} | F{∼b}
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Tableau Calculi for ASP

Well-known tableau calculi

Fitting’s operator Φ applies forward propagation without
sophisticated unfounded set checks

TΦ = {FTB,FTA,FFB,FFA}

Well-founded operator Ω replaces negation of single atoms with
negation of unfounded sets

TΩ = {FTB,FTA,FFB,WFN}

“Local” propagation via a program’s completion can be determined
by elementary inferences on atoms and rule bodies

Tcompletion = {FTB,FTA,FFB,FFA,BTB,BTA,BFB,BFA}
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Tableau Calculi characterizing ASP solvers

Tableau calculi characterizing ASP solvers

ASP solvers combine propagation with case analysis

We obtain the following tableau calculi characterizing

Tcmodels-1 = Tcompletion ∪ {Cut[atom(P) ∪ body(P)]}
Tassat = Tcompletion ∪ {FL} ∪ {Cut[atom(P) ∪ body(P)]}
Tsmodels = Tcompletion ∪ {WFN} ∪ {Cut[atom(P)]}
TnoMoRe = Tcompletion ∪ {WFN} ∪ {Cut[body(P)]}
Tnomore++ = Tcompletion ∪ {WFN} ∪ {Cut[atom(P) ∪ body(P)]}

SAT-based ASP solvers, assat and cmodels,
incrementally add loop formulas to a program’s completion

Native ASP solvers, smodels, dlv, noMoRe, and nomore++,
essentially differ only in their Cut rules
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Proof complexity

Proof complexity

Proof complexity is used for describing the relative efficiency of
different proof systems

It compares proof systems based on minimal refutations

It is independent of heuristics

A proof system T polynomially simulates a proof system T ′, if every
refutation of T ′ can be polynomially mapped to a refutation of T
Otherwise, T does not polynomially simulate T ′

For showing that proof system T does not polynomially simulate T ′,
we have to provide an infinite witnessing family of programs such that
minimal refutations of T asymptotically are exponentially larger than
minimal refutations of T ′

The size of tableaux is simply the number of their entries

We do not need to know the precise number of entries:
Counting required Cut applications is sufficient !
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Proof complexity

Tsmodels versus TnoMoRe

Tsmodels restricts Cut to atom(P) and TnoMoRe to body(P)
Are both approaches similar or is one of them superior to the other?

Let {Pn
a }, {Pn

b}, and {Pn
c } be infinite families of programs where

Pn
a =


x ← ∼x
x ← a1, b1

...
x ← an, bn

 Pn
b =


x ← c1, . . . , cn,∼x
c1 ← a1 c1 ← b1

...
...

cn ← an cn ← bn

 Pn
c =


a1 ← ∼b1
b1 ← ∼a1

...
an ← ∼bn
bn ← ∼an


In minimal refutations for Pn

a ∪ Pn
c , the number of applications of

Cut[body(Pn
a ∪ Pn

c )] with TnoMoRe is linear in n, whereas Tsmodels

requires exponentially many applications of Cut[atom(Pn
a ∪ Pn

c )]

Vice versa, minimal refutations for Pn
b ∪ Pn

c require linearly many
applications of Cut[atom(Pn

b ∪ Pn
c )] with Tsmodels and exponentially

many applications of Cut[body(Pn
b ∪ Pn

c )] with TnoMoRe
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Proof complexity

Relative efficiency

As witnessed by {Pn
a ∪ Pn

c } and {Pn
b ∪ Pn

c }, respectively,
Tsmodels and TnoMoRe do not polynomially simulate one another

Any refutation of Tsmodels or TnoMoRe is a refutation of Tnomore++

(but not vice versa)

Hence

both Tsmodels and TnoMoRe are polynomially simulated by Tnomore++ and
Tnomore++ is polynomially simulated by neither Tsmodels nor TnoMoRe

More generally, the proof system obtained with
Cut[atom(P) ∪ body(P)] is exponentially stronger than
the ones with either Cut[atom(P)] or Cut[body(P)]

Case analyses (at least) on atoms and bodies are mandatory in
powerful ASP solvers
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Tsmodels: Example tableau

(r1) a← ∼b (r2) b ← d ,∼a (r3) c ← b, d
(r4) c ← g (r5) d ← c (r6) d ← g
(r7) e ← f ,∼c (r8) f ← ∼g (r9) g ← ∼a,∼f

(1) Ta [Cut]
(2) T{∼b} [BTA: r1, 1]
(3) Fb [BTB: 2]
(4) F{d,∼a} [BFA: r2, 3]
(5) F{∼a,∼f } [FFB: r9, 1]
(6) Fg [FFA: r9, 5]
(7) T{∼g} [FTB: r8, 6]
(8) T f [FTA: r8, 7]
(9) F{b, d} [FFB: r3, 3]
(10) F{g} [FFB: r4, r6, 6]
(11) Fc [FFA: r3, r4, 9, 10]
(12) F{c} [FFB: r5, 11]
(13) Fd [FFA: r5, r6, 10, 12]
(14) T{f ,∼c} [FTB: r7, 8, 11]
(15) Te [FTA: r7, 14]

(16) Fa [Cut]
(17) F{∼b} [BFA: r1, 16]
(18) Tb [BFB: 17]
(19) T{d,∼a} [BTA: r2, 18]
(20) Td [BTB: 19]
(21) T{b, d} [FTB: r3, 18, 20]
(22) Tc [FTA: r3, 21]
(23) F{f ,∼c} [FFB: r7, 22]
(24) Fe [FFA: r7, 23]
(25) T{c} [FTB: r5, 22]

(26) T f [Cut]
(27) F{∼a,∼f } [FFB: r9, 26]
(28) Fc [WFN: 27]

(29) F f [Cut]
(30) T{∼a,∼f } [FTB: r9, 16, 29]
(31) Tg [FTA: r9, 30]
(32) T{g} [FTB: r4, r6, 31]
(33) F{∼g} [FFB: r8, 31]
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TnoMoRe: Example tableau

(r1) a← ∼b (r2) b ← d ,∼a (r3) c ← b, d
(r4) c ← g (r5) d ← c (r6) d ← g
(r7) e ← f ,∼c (r8) f ← ∼g (r9) g ← ∼a,∼f

(1) T{∼b} [Cut]
(2) Ta [FTA: r1, 1]
(3) Fb [BTB: 1]
(4) F{d,∼a} [BFA: r2, 3]
(5) F{∼a,∼f } [FFB: r9, 2]
(6) Fg [FFA: r9, 5]
(7) T{∼g} [FTB: r8, 6]
(8) T f [FTA: r8, 7]
(9) F{b, d} [FFB: r3, 3]
(10) F{g} [FFB: r4, r6, 6]
(11) Fc [FFA: r3, r4, 9, 10]
(12) F{c} [FFB: r5, 11]
(13) Fd [FFA: r5, r6, 10, 12]
(14) T{f ,∼c} [FTB: r7, 8, 11]
(15) Te [FTA: r7, 14]

(16) F{∼b} [Cut]
(17) Fa [FFA: r1, 16]
(18) Tb [BFB: 16]
(19) T{d,∼a} [BTA: r2, 18]
(20) Td [BTB: 19]
(21) T{b, d} [FTB: r3, 18, 20]
(22) Tc [FTA: r3, 21]
(23) F{f ,∼c} [FFB: r7, 22]
(24) Fe [FFA: r7, 23]
(25) T{c} [FTB: r5, 22]

(26) T{∼g} [Cut]
(27) Fg [BTB: 26]
(28) F{g} [FFB: r4, r6, 27]
(29) Fc [WFN: 28]

(30) F{∼g} [Cut]
(31) Tg [BFB: 30]
(32) T{g} [FTB: r4, r6, 31]
(33) F f [FFA: r8, 30]
(34) T{∼a,∼f } [FTB: r9, 17, 33]
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Tnomore++: Example tableau

(r1) a← ∼b (r2) b ← d ,∼a (r3) c ← b, d
(r4) c ← g (r5) d ← c (r6) d ← g
(r7) e ← f ,∼c (r8) f ← ∼g (r9) g ← ∼a,∼f

(1) Ta [Cut]
(2) T{∼b} [BTA: r1, 1]
(3) Fb [BTB: 2]
(4) F{d,∼a} [BFA: r2, 3]
(5) F{∼a,∼f } [FFB: r9, 1]
(6) Fg [FFA: r9, 5]
(7) T{∼g} [FTB: r8, 6]
(8) T f [FTA: r8, 7]
(9) F{b, d} [FFB: r3, 3]
(10) F{g} [FFB: r4, r6, 6]
(11) Fc [FFA: r3, r4, 9, 10]
(12) F{c} [FFB: r5, 11]
(13) Fd [FFA: r5, r6, 10, 12]
(14) T{f ,∼c} [FTB: r7, 8, 11]
(15) Te [FTA: r7, 14]

(16) Fa [Cut]
(17) F{∼b} [BFA: r1, 16]
(18) Tb [BFB: 17]
(19) T{d,∼a} [BTA: r2, 18]
(20) Td [BTB: 19]
(21) T{b, d} [FTB: r3, 18, 20]
(22) Tc [FTA: r3, 21]
(23) F{f ,∼c} [FFB: r7, 22]
(24) Fe [FFA: r7, 23]
(25) T{c} [FTB: r5, 22]

(26) T{∼g} [Cut]
(27) Fg [BTB: 26]
(28) F{g} [FFB: r4, r6, 27]
(29) Fc [WFN: 28]

(30) F{∼g} [Cut]
(31) Tg [BFB: 30]
(32) T{g} [FTB: r4, r6, 31]
(33) F f [FFA: r8, 30]
(34) T{∼a,∼f } [FTB: r9, 16, 33]
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Logic programs with stable model semantics as a constraint
programming paradigm.
Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273,
1999.

[62] R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Solving SAT and SAT modulo theories: From an abstract
Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, 2006.

[63] K. Pipatsrisawat and A. Darwiche.
A lightweight component caching scheme for satisfiability solvers.
In J. Marques-Silva and K. Sakallah, editors, Proceedings of the
Tenth International Conference on Theory and Applications of
Satisfiability Testing (SAT’07), volume 4501 of Lecture Notes in
Computer Science, pages 294–299. Springer-Verlag, 2007.

[64] L. Ryan.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice November 28, 2014 484 / 484



Proof complexity

Efficient algorithms for clause-learning SAT solvers.
Master’s thesis, Simon Fraser University, 2004.

[65] P. Simons, I. Niemelä, and T. Soininen.
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